1 /* 2 * Generic PPP layer for Linux. 3 * 4 * Copyright 1999-2002 Paul Mackerras. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * The generic PPP layer handles the PPP network interfaces, the 12 * /dev/ppp device, packet and VJ compression, and multilink. 13 * It talks to PPP `channels' via the interface defined in 14 * include/linux/ppp_channel.h. Channels provide the basic means for 15 * sending and receiving PPP frames on some kind of communications 16 * channel. 17 * 18 * Part of the code in this driver was inspired by the old async-only 19 * PPP driver, written by Michael Callahan and Al Longyear, and 20 * subsequently hacked by Paul Mackerras. 21 * 22 * ==FILEVERSION 20041108== 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/sched/signal.h> 28 #include <linux/kmod.h> 29 #include <linux/init.h> 30 #include <linux/list.h> 31 #include <linux/idr.h> 32 #include <linux/netdevice.h> 33 #include <linux/poll.h> 34 #include <linux/ppp_defs.h> 35 #include <linux/filter.h> 36 #include <linux/ppp-ioctl.h> 37 #include <linux/ppp_channel.h> 38 #include <linux/ppp-comp.h> 39 #include <linux/skbuff.h> 40 #include <linux/rtnetlink.h> 41 #include <linux/if_arp.h> 42 #include <linux/ip.h> 43 #include <linux/tcp.h> 44 #include <linux/spinlock.h> 45 #include <linux/rwsem.h> 46 #include <linux/stddef.h> 47 #include <linux/device.h> 48 #include <linux/mutex.h> 49 #include <linux/slab.h> 50 #include <linux/file.h> 51 #include <asm/unaligned.h> 52 #include <net/slhc_vj.h> 53 #include <linux/atomic.h> 54 55 #include <linux/nsproxy.h> 56 #include <net/net_namespace.h> 57 #include <net/netns/generic.h> 58 59 #define PPP_VERSION "2.4.2" 60 61 /* 62 * Network protocols we support. 63 */ 64 #define NP_IP 0 /* Internet Protocol V4 */ 65 #define NP_IPV6 1 /* Internet Protocol V6 */ 66 #define NP_IPX 2 /* IPX protocol */ 67 #define NP_AT 3 /* Appletalk protocol */ 68 #define NP_MPLS_UC 4 /* MPLS unicast */ 69 #define NP_MPLS_MC 5 /* MPLS multicast */ 70 #define NUM_NP 6 /* Number of NPs. */ 71 72 #define MPHDRLEN 6 /* multilink protocol header length */ 73 #define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */ 74 75 /* 76 * An instance of /dev/ppp can be associated with either a ppp 77 * interface unit or a ppp channel. In both cases, file->private_data 78 * points to one of these. 79 */ 80 struct ppp_file { 81 enum { 82 INTERFACE=1, CHANNEL 83 } kind; 84 struct sk_buff_head xq; /* pppd transmit queue */ 85 struct sk_buff_head rq; /* receive queue for pppd */ 86 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */ 87 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */ 88 int hdrlen; /* space to leave for headers */ 89 int index; /* interface unit / channel number */ 90 int dead; /* unit/channel has been shut down */ 91 }; 92 93 #define PF_TO_X(pf, X) container_of(pf, X, file) 94 95 #define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp) 96 #define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel) 97 98 /* 99 * Data structure to hold primary network stats for which 100 * we want to use 64 bit storage. Other network stats 101 * are stored in dev->stats of the ppp strucute. 102 */ 103 struct ppp_link_stats { 104 u64 rx_packets; 105 u64 tx_packets; 106 u64 rx_bytes; 107 u64 tx_bytes; 108 }; 109 110 /* 111 * Data structure describing one ppp unit. 112 * A ppp unit corresponds to a ppp network interface device 113 * and represents a multilink bundle. 114 * It can have 0 or more ppp channels connected to it. 115 */ 116 struct ppp { 117 struct ppp_file file; /* stuff for read/write/poll 0 */ 118 struct file *owner; /* file that owns this unit 48 */ 119 struct list_head channels; /* list of attached channels 4c */ 120 int n_channels; /* how many channels are attached 54 */ 121 spinlock_t rlock; /* lock for receive side 58 */ 122 spinlock_t wlock; /* lock for transmit side 5c */ 123 int __percpu *xmit_recursion; /* xmit recursion detect */ 124 int mru; /* max receive unit 60 */ 125 unsigned int flags; /* control bits 64 */ 126 unsigned int xstate; /* transmit state bits 68 */ 127 unsigned int rstate; /* receive state bits 6c */ 128 int debug; /* debug flags 70 */ 129 struct slcompress *vj; /* state for VJ header compression */ 130 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */ 131 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */ 132 struct compressor *xcomp; /* transmit packet compressor 8c */ 133 void *xc_state; /* its internal state 90 */ 134 struct compressor *rcomp; /* receive decompressor 94 */ 135 void *rc_state; /* its internal state 98 */ 136 unsigned long last_xmit; /* jiffies when last pkt sent 9c */ 137 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */ 138 struct net_device *dev; /* network interface device a4 */ 139 int closing; /* is device closing down? a8 */ 140 #ifdef CONFIG_PPP_MULTILINK 141 int nxchan; /* next channel to send something on */ 142 u32 nxseq; /* next sequence number to send */ 143 int mrru; /* MP: max reconst. receive unit */ 144 u32 nextseq; /* MP: seq no of next packet */ 145 u32 minseq; /* MP: min of most recent seqnos */ 146 struct sk_buff_head mrq; /* MP: receive reconstruction queue */ 147 #endif /* CONFIG_PPP_MULTILINK */ 148 #ifdef CONFIG_PPP_FILTER 149 struct bpf_prog *pass_filter; /* filter for packets to pass */ 150 struct bpf_prog *active_filter; /* filter for pkts to reset idle */ 151 #endif /* CONFIG_PPP_FILTER */ 152 struct net *ppp_net; /* the net we belong to */ 153 struct ppp_link_stats stats64; /* 64 bit network stats */ 154 }; 155 156 /* 157 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC, 158 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP, 159 * SC_MUST_COMP 160 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR. 161 * Bits in xstate: SC_COMP_RUN 162 */ 163 #define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \ 164 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \ 165 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP) 166 167 /* 168 * Private data structure for each channel. 169 * This includes the data structure used for multilink. 170 */ 171 struct channel { 172 struct ppp_file file; /* stuff for read/write/poll */ 173 struct list_head list; /* link in all/new_channels list */ 174 struct ppp_channel *chan; /* public channel data structure */ 175 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */ 176 spinlock_t downl; /* protects `chan', file.xq dequeue */ 177 struct ppp *ppp; /* ppp unit we're connected to */ 178 struct net *chan_net; /* the net channel belongs to */ 179 struct list_head clist; /* link in list of channels per unit */ 180 rwlock_t upl; /* protects `ppp' */ 181 #ifdef CONFIG_PPP_MULTILINK 182 u8 avail; /* flag used in multilink stuff */ 183 u8 had_frag; /* >= 1 fragments have been sent */ 184 u32 lastseq; /* MP: last sequence # received */ 185 int speed; /* speed of the corresponding ppp channel*/ 186 #endif /* CONFIG_PPP_MULTILINK */ 187 }; 188 189 struct ppp_config { 190 struct file *file; 191 s32 unit; 192 bool ifname_is_set; 193 }; 194 195 /* 196 * SMP locking issues: 197 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels 198 * list and the ppp.n_channels field, you need to take both locks 199 * before you modify them. 200 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock -> 201 * channel.downl. 202 */ 203 204 static DEFINE_MUTEX(ppp_mutex); 205 static atomic_t ppp_unit_count = ATOMIC_INIT(0); 206 static atomic_t channel_count = ATOMIC_INIT(0); 207 208 /* per-net private data for this module */ 209 static unsigned int ppp_net_id __read_mostly; 210 struct ppp_net { 211 /* units to ppp mapping */ 212 struct idr units_idr; 213 214 /* 215 * all_ppp_mutex protects the units_idr mapping. 216 * It also ensures that finding a ppp unit in the units_idr 217 * map and updating its file.refcnt field is atomic. 218 */ 219 struct mutex all_ppp_mutex; 220 221 /* channels */ 222 struct list_head all_channels; 223 struct list_head new_channels; 224 int last_channel_index; 225 226 /* 227 * all_channels_lock protects all_channels and 228 * last_channel_index, and the atomicity of find 229 * a channel and updating its file.refcnt field. 230 */ 231 spinlock_t all_channels_lock; 232 }; 233 234 /* Get the PPP protocol number from a skb */ 235 #define PPP_PROTO(skb) get_unaligned_be16((skb)->data) 236 237 /* We limit the length of ppp->file.rq to this (arbitrary) value */ 238 #define PPP_MAX_RQLEN 32 239 240 /* 241 * Maximum number of multilink fragments queued up. 242 * This has to be large enough to cope with the maximum latency of 243 * the slowest channel relative to the others. Strictly it should 244 * depend on the number of channels and their characteristics. 245 */ 246 #define PPP_MP_MAX_QLEN 128 247 248 /* Multilink header bits. */ 249 #define B 0x80 /* this fragment begins a packet */ 250 #define E 0x40 /* this fragment ends a packet */ 251 252 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */ 253 #define seq_before(a, b) ((s32)((a) - (b)) < 0) 254 #define seq_after(a, b) ((s32)((a) - (b)) > 0) 255 256 /* Prototypes. */ 257 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf, 258 struct file *file, unsigned int cmd, unsigned long arg); 259 static void ppp_xmit_process(struct ppp *ppp); 260 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb); 261 static void ppp_push(struct ppp *ppp); 262 static void ppp_channel_push(struct channel *pch); 263 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, 264 struct channel *pch); 265 static void ppp_receive_error(struct ppp *ppp); 266 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb); 267 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp, 268 struct sk_buff *skb); 269 #ifdef CONFIG_PPP_MULTILINK 270 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, 271 struct channel *pch); 272 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb); 273 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp); 274 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb); 275 #endif /* CONFIG_PPP_MULTILINK */ 276 static int ppp_set_compress(struct ppp *ppp, unsigned long arg); 277 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound); 278 static void ppp_ccp_closed(struct ppp *ppp); 279 static struct compressor *find_compressor(int type); 280 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st); 281 static int ppp_create_interface(struct net *net, struct file *file, int *unit); 282 static void init_ppp_file(struct ppp_file *pf, int kind); 283 static void ppp_destroy_interface(struct ppp *ppp); 284 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit); 285 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit); 286 static int ppp_connect_channel(struct channel *pch, int unit); 287 static int ppp_disconnect_channel(struct channel *pch); 288 static void ppp_destroy_channel(struct channel *pch); 289 static int unit_get(struct idr *p, void *ptr); 290 static int unit_set(struct idr *p, void *ptr, int n); 291 static void unit_put(struct idr *p, int n); 292 static void *unit_find(struct idr *p, int n); 293 static void ppp_setup(struct net_device *dev); 294 295 static const struct net_device_ops ppp_netdev_ops; 296 297 static struct class *ppp_class; 298 299 /* per net-namespace data */ 300 static inline struct ppp_net *ppp_pernet(struct net *net) 301 { 302 BUG_ON(!net); 303 304 return net_generic(net, ppp_net_id); 305 } 306 307 /* Translates a PPP protocol number to a NP index (NP == network protocol) */ 308 static inline int proto_to_npindex(int proto) 309 { 310 switch (proto) { 311 case PPP_IP: 312 return NP_IP; 313 case PPP_IPV6: 314 return NP_IPV6; 315 case PPP_IPX: 316 return NP_IPX; 317 case PPP_AT: 318 return NP_AT; 319 case PPP_MPLS_UC: 320 return NP_MPLS_UC; 321 case PPP_MPLS_MC: 322 return NP_MPLS_MC; 323 } 324 return -EINVAL; 325 } 326 327 /* Translates an NP index into a PPP protocol number */ 328 static const int npindex_to_proto[NUM_NP] = { 329 PPP_IP, 330 PPP_IPV6, 331 PPP_IPX, 332 PPP_AT, 333 PPP_MPLS_UC, 334 PPP_MPLS_MC, 335 }; 336 337 /* Translates an ethertype into an NP index */ 338 static inline int ethertype_to_npindex(int ethertype) 339 { 340 switch (ethertype) { 341 case ETH_P_IP: 342 return NP_IP; 343 case ETH_P_IPV6: 344 return NP_IPV6; 345 case ETH_P_IPX: 346 return NP_IPX; 347 case ETH_P_PPPTALK: 348 case ETH_P_ATALK: 349 return NP_AT; 350 case ETH_P_MPLS_UC: 351 return NP_MPLS_UC; 352 case ETH_P_MPLS_MC: 353 return NP_MPLS_MC; 354 } 355 return -1; 356 } 357 358 /* Translates an NP index into an ethertype */ 359 static const int npindex_to_ethertype[NUM_NP] = { 360 ETH_P_IP, 361 ETH_P_IPV6, 362 ETH_P_IPX, 363 ETH_P_PPPTALK, 364 ETH_P_MPLS_UC, 365 ETH_P_MPLS_MC, 366 }; 367 368 /* 369 * Locking shorthand. 370 */ 371 #define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock) 372 #define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock) 373 #define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock) 374 #define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock) 375 #define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \ 376 ppp_recv_lock(ppp); } while (0) 377 #define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \ 378 ppp_xmit_unlock(ppp); } while (0) 379 380 /* 381 * /dev/ppp device routines. 382 * The /dev/ppp device is used by pppd to control the ppp unit. 383 * It supports the read, write, ioctl and poll functions. 384 * Open instances of /dev/ppp can be in one of three states: 385 * unattached, attached to a ppp unit, or attached to a ppp channel. 386 */ 387 static int ppp_open(struct inode *inode, struct file *file) 388 { 389 /* 390 * This could (should?) be enforced by the permissions on /dev/ppp. 391 */ 392 if (!capable(CAP_NET_ADMIN)) 393 return -EPERM; 394 return 0; 395 } 396 397 static int ppp_release(struct inode *unused, struct file *file) 398 { 399 struct ppp_file *pf = file->private_data; 400 struct ppp *ppp; 401 402 if (pf) { 403 file->private_data = NULL; 404 if (pf->kind == INTERFACE) { 405 ppp = PF_TO_PPP(pf); 406 rtnl_lock(); 407 if (file == ppp->owner) 408 unregister_netdevice(ppp->dev); 409 rtnl_unlock(); 410 } 411 if (atomic_dec_and_test(&pf->refcnt)) { 412 switch (pf->kind) { 413 case INTERFACE: 414 ppp_destroy_interface(PF_TO_PPP(pf)); 415 break; 416 case CHANNEL: 417 ppp_destroy_channel(PF_TO_CHANNEL(pf)); 418 break; 419 } 420 } 421 } 422 return 0; 423 } 424 425 static ssize_t ppp_read(struct file *file, char __user *buf, 426 size_t count, loff_t *ppos) 427 { 428 struct ppp_file *pf = file->private_data; 429 DECLARE_WAITQUEUE(wait, current); 430 ssize_t ret; 431 struct sk_buff *skb = NULL; 432 struct iovec iov; 433 struct iov_iter to; 434 435 ret = count; 436 437 if (!pf) 438 return -ENXIO; 439 add_wait_queue(&pf->rwait, &wait); 440 for (;;) { 441 set_current_state(TASK_INTERRUPTIBLE); 442 skb = skb_dequeue(&pf->rq); 443 if (skb) 444 break; 445 ret = 0; 446 if (pf->dead) 447 break; 448 if (pf->kind == INTERFACE) { 449 /* 450 * Return 0 (EOF) on an interface that has no 451 * channels connected, unless it is looping 452 * network traffic (demand mode). 453 */ 454 struct ppp *ppp = PF_TO_PPP(pf); 455 456 ppp_recv_lock(ppp); 457 if (ppp->n_channels == 0 && 458 (ppp->flags & SC_LOOP_TRAFFIC) == 0) { 459 ppp_recv_unlock(ppp); 460 break; 461 } 462 ppp_recv_unlock(ppp); 463 } 464 ret = -EAGAIN; 465 if (file->f_flags & O_NONBLOCK) 466 break; 467 ret = -ERESTARTSYS; 468 if (signal_pending(current)) 469 break; 470 schedule(); 471 } 472 set_current_state(TASK_RUNNING); 473 remove_wait_queue(&pf->rwait, &wait); 474 475 if (!skb) 476 goto out; 477 478 ret = -EOVERFLOW; 479 if (skb->len > count) 480 goto outf; 481 ret = -EFAULT; 482 iov.iov_base = buf; 483 iov.iov_len = count; 484 iov_iter_init(&to, READ, &iov, 1, count); 485 if (skb_copy_datagram_iter(skb, 0, &to, skb->len)) 486 goto outf; 487 ret = skb->len; 488 489 outf: 490 kfree_skb(skb); 491 out: 492 return ret; 493 } 494 495 static ssize_t ppp_write(struct file *file, const char __user *buf, 496 size_t count, loff_t *ppos) 497 { 498 struct ppp_file *pf = file->private_data; 499 struct sk_buff *skb; 500 ssize_t ret; 501 502 if (!pf) 503 return -ENXIO; 504 ret = -ENOMEM; 505 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL); 506 if (!skb) 507 goto out; 508 skb_reserve(skb, pf->hdrlen); 509 ret = -EFAULT; 510 if (copy_from_user(skb_put(skb, count), buf, count)) { 511 kfree_skb(skb); 512 goto out; 513 } 514 515 skb_queue_tail(&pf->xq, skb); 516 517 switch (pf->kind) { 518 case INTERFACE: 519 ppp_xmit_process(PF_TO_PPP(pf)); 520 break; 521 case CHANNEL: 522 ppp_channel_push(PF_TO_CHANNEL(pf)); 523 break; 524 } 525 526 ret = count; 527 528 out: 529 return ret; 530 } 531 532 /* No kernel lock - fine */ 533 static unsigned int ppp_poll(struct file *file, poll_table *wait) 534 { 535 struct ppp_file *pf = file->private_data; 536 unsigned int mask; 537 538 if (!pf) 539 return 0; 540 poll_wait(file, &pf->rwait, wait); 541 mask = POLLOUT | POLLWRNORM; 542 if (skb_peek(&pf->rq)) 543 mask |= POLLIN | POLLRDNORM; 544 if (pf->dead) 545 mask |= POLLHUP; 546 else if (pf->kind == INTERFACE) { 547 /* see comment in ppp_read */ 548 struct ppp *ppp = PF_TO_PPP(pf); 549 550 ppp_recv_lock(ppp); 551 if (ppp->n_channels == 0 && 552 (ppp->flags & SC_LOOP_TRAFFIC) == 0) 553 mask |= POLLIN | POLLRDNORM; 554 ppp_recv_unlock(ppp); 555 } 556 557 return mask; 558 } 559 560 #ifdef CONFIG_PPP_FILTER 561 static int get_filter(void __user *arg, struct sock_filter **p) 562 { 563 struct sock_fprog uprog; 564 struct sock_filter *code = NULL; 565 int len; 566 567 if (copy_from_user(&uprog, arg, sizeof(uprog))) 568 return -EFAULT; 569 570 if (!uprog.len) { 571 *p = NULL; 572 return 0; 573 } 574 575 len = uprog.len * sizeof(struct sock_filter); 576 code = memdup_user(uprog.filter, len); 577 if (IS_ERR(code)) 578 return PTR_ERR(code); 579 580 *p = code; 581 return uprog.len; 582 } 583 #endif /* CONFIG_PPP_FILTER */ 584 585 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 586 { 587 struct ppp_file *pf; 588 struct ppp *ppp; 589 int err = -EFAULT, val, val2, i; 590 struct ppp_idle idle; 591 struct npioctl npi; 592 int unit, cflags; 593 struct slcompress *vj; 594 void __user *argp = (void __user *)arg; 595 int __user *p = argp; 596 597 mutex_lock(&ppp_mutex); 598 599 pf = file->private_data; 600 if (!pf) { 601 err = ppp_unattached_ioctl(current->nsproxy->net_ns, 602 pf, file, cmd, arg); 603 goto out; 604 } 605 606 if (cmd == PPPIOCDETACH) { 607 /* 608 * We have to be careful here... if the file descriptor 609 * has been dup'd, we could have another process in the 610 * middle of a poll using the same file *, so we had 611 * better not free the interface data structures - 612 * instead we fail the ioctl. Even in this case, we 613 * shut down the interface if we are the owner of it. 614 * Actually, we should get rid of PPPIOCDETACH, userland 615 * (i.e. pppd) could achieve the same effect by closing 616 * this fd and reopening /dev/ppp. 617 */ 618 err = -EINVAL; 619 if (pf->kind == INTERFACE) { 620 ppp = PF_TO_PPP(pf); 621 rtnl_lock(); 622 if (file == ppp->owner) 623 unregister_netdevice(ppp->dev); 624 rtnl_unlock(); 625 } 626 if (atomic_long_read(&file->f_count) < 2) { 627 ppp_release(NULL, file); 628 err = 0; 629 } else 630 pr_warn("PPPIOCDETACH file->f_count=%ld\n", 631 atomic_long_read(&file->f_count)); 632 goto out; 633 } 634 635 if (pf->kind == CHANNEL) { 636 struct channel *pch; 637 struct ppp_channel *chan; 638 639 pch = PF_TO_CHANNEL(pf); 640 641 switch (cmd) { 642 case PPPIOCCONNECT: 643 if (get_user(unit, p)) 644 break; 645 err = ppp_connect_channel(pch, unit); 646 break; 647 648 case PPPIOCDISCONN: 649 err = ppp_disconnect_channel(pch); 650 break; 651 652 default: 653 down_read(&pch->chan_sem); 654 chan = pch->chan; 655 err = -ENOTTY; 656 if (chan && chan->ops->ioctl) 657 err = chan->ops->ioctl(chan, cmd, arg); 658 up_read(&pch->chan_sem); 659 } 660 goto out; 661 } 662 663 if (pf->kind != INTERFACE) { 664 /* can't happen */ 665 pr_err("PPP: not interface or channel??\n"); 666 err = -EINVAL; 667 goto out; 668 } 669 670 ppp = PF_TO_PPP(pf); 671 switch (cmd) { 672 case PPPIOCSMRU: 673 if (get_user(val, p)) 674 break; 675 ppp->mru = val; 676 err = 0; 677 break; 678 679 case PPPIOCSFLAGS: 680 if (get_user(val, p)) 681 break; 682 ppp_lock(ppp); 683 cflags = ppp->flags & ~val; 684 #ifdef CONFIG_PPP_MULTILINK 685 if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK)) 686 ppp->nextseq = 0; 687 #endif 688 ppp->flags = val & SC_FLAG_BITS; 689 ppp_unlock(ppp); 690 if (cflags & SC_CCP_OPEN) 691 ppp_ccp_closed(ppp); 692 err = 0; 693 break; 694 695 case PPPIOCGFLAGS: 696 val = ppp->flags | ppp->xstate | ppp->rstate; 697 if (put_user(val, p)) 698 break; 699 err = 0; 700 break; 701 702 case PPPIOCSCOMPRESS: 703 err = ppp_set_compress(ppp, arg); 704 break; 705 706 case PPPIOCGUNIT: 707 if (put_user(ppp->file.index, p)) 708 break; 709 err = 0; 710 break; 711 712 case PPPIOCSDEBUG: 713 if (get_user(val, p)) 714 break; 715 ppp->debug = val; 716 err = 0; 717 break; 718 719 case PPPIOCGDEBUG: 720 if (put_user(ppp->debug, p)) 721 break; 722 err = 0; 723 break; 724 725 case PPPIOCGIDLE: 726 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ; 727 idle.recv_idle = (jiffies - ppp->last_recv) / HZ; 728 if (copy_to_user(argp, &idle, sizeof(idle))) 729 break; 730 err = 0; 731 break; 732 733 case PPPIOCSMAXCID: 734 if (get_user(val, p)) 735 break; 736 val2 = 15; 737 if ((val >> 16) != 0) { 738 val2 = val >> 16; 739 val &= 0xffff; 740 } 741 vj = slhc_init(val2+1, val+1); 742 if (IS_ERR(vj)) { 743 err = PTR_ERR(vj); 744 break; 745 } 746 ppp_lock(ppp); 747 if (ppp->vj) 748 slhc_free(ppp->vj); 749 ppp->vj = vj; 750 ppp_unlock(ppp); 751 err = 0; 752 break; 753 754 case PPPIOCGNPMODE: 755 case PPPIOCSNPMODE: 756 if (copy_from_user(&npi, argp, sizeof(npi))) 757 break; 758 err = proto_to_npindex(npi.protocol); 759 if (err < 0) 760 break; 761 i = err; 762 if (cmd == PPPIOCGNPMODE) { 763 err = -EFAULT; 764 npi.mode = ppp->npmode[i]; 765 if (copy_to_user(argp, &npi, sizeof(npi))) 766 break; 767 } else { 768 ppp->npmode[i] = npi.mode; 769 /* we may be able to transmit more packets now (??) */ 770 netif_wake_queue(ppp->dev); 771 } 772 err = 0; 773 break; 774 775 #ifdef CONFIG_PPP_FILTER 776 case PPPIOCSPASS: 777 { 778 struct sock_filter *code; 779 780 err = get_filter(argp, &code); 781 if (err >= 0) { 782 struct bpf_prog *pass_filter = NULL; 783 struct sock_fprog_kern fprog = { 784 .len = err, 785 .filter = code, 786 }; 787 788 err = 0; 789 if (fprog.filter) 790 err = bpf_prog_create(&pass_filter, &fprog); 791 if (!err) { 792 ppp_lock(ppp); 793 if (ppp->pass_filter) 794 bpf_prog_destroy(ppp->pass_filter); 795 ppp->pass_filter = pass_filter; 796 ppp_unlock(ppp); 797 } 798 kfree(code); 799 } 800 break; 801 } 802 case PPPIOCSACTIVE: 803 { 804 struct sock_filter *code; 805 806 err = get_filter(argp, &code); 807 if (err >= 0) { 808 struct bpf_prog *active_filter = NULL; 809 struct sock_fprog_kern fprog = { 810 .len = err, 811 .filter = code, 812 }; 813 814 err = 0; 815 if (fprog.filter) 816 err = bpf_prog_create(&active_filter, &fprog); 817 if (!err) { 818 ppp_lock(ppp); 819 if (ppp->active_filter) 820 bpf_prog_destroy(ppp->active_filter); 821 ppp->active_filter = active_filter; 822 ppp_unlock(ppp); 823 } 824 kfree(code); 825 } 826 break; 827 } 828 #endif /* CONFIG_PPP_FILTER */ 829 830 #ifdef CONFIG_PPP_MULTILINK 831 case PPPIOCSMRRU: 832 if (get_user(val, p)) 833 break; 834 ppp_recv_lock(ppp); 835 ppp->mrru = val; 836 ppp_recv_unlock(ppp); 837 err = 0; 838 break; 839 #endif /* CONFIG_PPP_MULTILINK */ 840 841 default: 842 err = -ENOTTY; 843 } 844 845 out: 846 mutex_unlock(&ppp_mutex); 847 848 return err; 849 } 850 851 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf, 852 struct file *file, unsigned int cmd, unsigned long arg) 853 { 854 int unit, err = -EFAULT; 855 struct ppp *ppp; 856 struct channel *chan; 857 struct ppp_net *pn; 858 int __user *p = (int __user *)arg; 859 860 switch (cmd) { 861 case PPPIOCNEWUNIT: 862 /* Create a new ppp unit */ 863 if (get_user(unit, p)) 864 break; 865 err = ppp_create_interface(net, file, &unit); 866 if (err < 0) 867 break; 868 869 err = -EFAULT; 870 if (put_user(unit, p)) 871 break; 872 err = 0; 873 break; 874 875 case PPPIOCATTACH: 876 /* Attach to an existing ppp unit */ 877 if (get_user(unit, p)) 878 break; 879 err = -ENXIO; 880 pn = ppp_pernet(net); 881 mutex_lock(&pn->all_ppp_mutex); 882 ppp = ppp_find_unit(pn, unit); 883 if (ppp) { 884 atomic_inc(&ppp->file.refcnt); 885 file->private_data = &ppp->file; 886 err = 0; 887 } 888 mutex_unlock(&pn->all_ppp_mutex); 889 break; 890 891 case PPPIOCATTCHAN: 892 if (get_user(unit, p)) 893 break; 894 err = -ENXIO; 895 pn = ppp_pernet(net); 896 spin_lock_bh(&pn->all_channels_lock); 897 chan = ppp_find_channel(pn, unit); 898 if (chan) { 899 atomic_inc(&chan->file.refcnt); 900 file->private_data = &chan->file; 901 err = 0; 902 } 903 spin_unlock_bh(&pn->all_channels_lock); 904 break; 905 906 default: 907 err = -ENOTTY; 908 } 909 910 return err; 911 } 912 913 static const struct file_operations ppp_device_fops = { 914 .owner = THIS_MODULE, 915 .read = ppp_read, 916 .write = ppp_write, 917 .poll = ppp_poll, 918 .unlocked_ioctl = ppp_ioctl, 919 .open = ppp_open, 920 .release = ppp_release, 921 .llseek = noop_llseek, 922 }; 923 924 static __net_init int ppp_init_net(struct net *net) 925 { 926 struct ppp_net *pn = net_generic(net, ppp_net_id); 927 928 idr_init(&pn->units_idr); 929 mutex_init(&pn->all_ppp_mutex); 930 931 INIT_LIST_HEAD(&pn->all_channels); 932 INIT_LIST_HEAD(&pn->new_channels); 933 934 spin_lock_init(&pn->all_channels_lock); 935 936 return 0; 937 } 938 939 static __net_exit void ppp_exit_net(struct net *net) 940 { 941 struct ppp_net *pn = net_generic(net, ppp_net_id); 942 struct net_device *dev; 943 struct net_device *aux; 944 struct ppp *ppp; 945 LIST_HEAD(list); 946 int id; 947 948 rtnl_lock(); 949 for_each_netdev_safe(net, dev, aux) { 950 if (dev->netdev_ops == &ppp_netdev_ops) 951 unregister_netdevice_queue(dev, &list); 952 } 953 954 idr_for_each_entry(&pn->units_idr, ppp, id) 955 /* Skip devices already unregistered by previous loop */ 956 if (!net_eq(dev_net(ppp->dev), net)) 957 unregister_netdevice_queue(ppp->dev, &list); 958 959 unregister_netdevice_many(&list); 960 rtnl_unlock(); 961 962 idr_destroy(&pn->units_idr); 963 } 964 965 static struct pernet_operations ppp_net_ops = { 966 .init = ppp_init_net, 967 .exit = ppp_exit_net, 968 .id = &ppp_net_id, 969 .size = sizeof(struct ppp_net), 970 }; 971 972 static int ppp_unit_register(struct ppp *ppp, int unit, bool ifname_is_set) 973 { 974 struct ppp_net *pn = ppp_pernet(ppp->ppp_net); 975 int ret; 976 977 mutex_lock(&pn->all_ppp_mutex); 978 979 if (unit < 0) { 980 ret = unit_get(&pn->units_idr, ppp); 981 if (ret < 0) 982 goto err; 983 } else { 984 /* Caller asked for a specific unit number. Fail with -EEXIST 985 * if unavailable. For backward compatibility, return -EEXIST 986 * too if idr allocation fails; this makes pppd retry without 987 * requesting a specific unit number. 988 */ 989 if (unit_find(&pn->units_idr, unit)) { 990 ret = -EEXIST; 991 goto err; 992 } 993 ret = unit_set(&pn->units_idr, ppp, unit); 994 if (ret < 0) { 995 /* Rewrite error for backward compatibility */ 996 ret = -EEXIST; 997 goto err; 998 } 999 } 1000 ppp->file.index = ret; 1001 1002 if (!ifname_is_set) 1003 snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ppp->file.index); 1004 1005 ret = register_netdevice(ppp->dev); 1006 if (ret < 0) 1007 goto err_unit; 1008 1009 atomic_inc(&ppp_unit_count); 1010 1011 mutex_unlock(&pn->all_ppp_mutex); 1012 1013 return 0; 1014 1015 err_unit: 1016 unit_put(&pn->units_idr, ppp->file.index); 1017 err: 1018 mutex_unlock(&pn->all_ppp_mutex); 1019 1020 return ret; 1021 } 1022 1023 static int ppp_dev_configure(struct net *src_net, struct net_device *dev, 1024 const struct ppp_config *conf) 1025 { 1026 struct ppp *ppp = netdev_priv(dev); 1027 int indx; 1028 int err; 1029 int cpu; 1030 1031 ppp->dev = dev; 1032 ppp->ppp_net = src_net; 1033 ppp->mru = PPP_MRU; 1034 ppp->owner = conf->file; 1035 1036 init_ppp_file(&ppp->file, INTERFACE); 1037 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */ 1038 1039 for (indx = 0; indx < NUM_NP; ++indx) 1040 ppp->npmode[indx] = NPMODE_PASS; 1041 INIT_LIST_HEAD(&ppp->channels); 1042 spin_lock_init(&ppp->rlock); 1043 spin_lock_init(&ppp->wlock); 1044 1045 ppp->xmit_recursion = alloc_percpu(int); 1046 if (!ppp->xmit_recursion) { 1047 err = -ENOMEM; 1048 goto err1; 1049 } 1050 for_each_possible_cpu(cpu) 1051 (*per_cpu_ptr(ppp->xmit_recursion, cpu)) = 0; 1052 1053 #ifdef CONFIG_PPP_MULTILINK 1054 ppp->minseq = -1; 1055 skb_queue_head_init(&ppp->mrq); 1056 #endif /* CONFIG_PPP_MULTILINK */ 1057 #ifdef CONFIG_PPP_FILTER 1058 ppp->pass_filter = NULL; 1059 ppp->active_filter = NULL; 1060 #endif /* CONFIG_PPP_FILTER */ 1061 1062 err = ppp_unit_register(ppp, conf->unit, conf->ifname_is_set); 1063 if (err < 0) 1064 goto err2; 1065 1066 conf->file->private_data = &ppp->file; 1067 1068 return 0; 1069 err2: 1070 free_percpu(ppp->xmit_recursion); 1071 err1: 1072 return err; 1073 } 1074 1075 static const struct nla_policy ppp_nl_policy[IFLA_PPP_MAX + 1] = { 1076 [IFLA_PPP_DEV_FD] = { .type = NLA_S32 }, 1077 }; 1078 1079 static int ppp_nl_validate(struct nlattr *tb[], struct nlattr *data[], 1080 struct netlink_ext_ack *extack) 1081 { 1082 if (!data) 1083 return -EINVAL; 1084 1085 if (!data[IFLA_PPP_DEV_FD]) 1086 return -EINVAL; 1087 if (nla_get_s32(data[IFLA_PPP_DEV_FD]) < 0) 1088 return -EBADF; 1089 1090 return 0; 1091 } 1092 1093 static int ppp_nl_newlink(struct net *src_net, struct net_device *dev, 1094 struct nlattr *tb[], struct nlattr *data[], 1095 struct netlink_ext_ack *extack) 1096 { 1097 struct ppp_config conf = { 1098 .unit = -1, 1099 .ifname_is_set = true, 1100 }; 1101 struct file *file; 1102 int err; 1103 1104 file = fget(nla_get_s32(data[IFLA_PPP_DEV_FD])); 1105 if (!file) 1106 return -EBADF; 1107 1108 /* rtnl_lock is already held here, but ppp_create_interface() locks 1109 * ppp_mutex before holding rtnl_lock. Using mutex_trylock() avoids 1110 * possible deadlock due to lock order inversion, at the cost of 1111 * pushing the problem back to userspace. 1112 */ 1113 if (!mutex_trylock(&ppp_mutex)) { 1114 err = -EBUSY; 1115 goto out; 1116 } 1117 1118 if (file->f_op != &ppp_device_fops || file->private_data) { 1119 err = -EBADF; 1120 goto out_unlock; 1121 } 1122 1123 conf.file = file; 1124 1125 /* Don't use device name generated by the rtnetlink layer when ifname 1126 * isn't specified. Let ppp_dev_configure() set the device name using 1127 * the PPP unit identifer as suffix (i.e. ppp<unit_id>). This allows 1128 * userspace to infer the device name using to the PPPIOCGUNIT ioctl. 1129 */ 1130 if (!tb[IFLA_IFNAME]) 1131 conf.ifname_is_set = false; 1132 1133 err = ppp_dev_configure(src_net, dev, &conf); 1134 1135 out_unlock: 1136 mutex_unlock(&ppp_mutex); 1137 out: 1138 fput(file); 1139 1140 return err; 1141 } 1142 1143 static void ppp_nl_dellink(struct net_device *dev, struct list_head *head) 1144 { 1145 unregister_netdevice_queue(dev, head); 1146 } 1147 1148 static size_t ppp_nl_get_size(const struct net_device *dev) 1149 { 1150 return 0; 1151 } 1152 1153 static int ppp_nl_fill_info(struct sk_buff *skb, const struct net_device *dev) 1154 { 1155 return 0; 1156 } 1157 1158 static struct net *ppp_nl_get_link_net(const struct net_device *dev) 1159 { 1160 struct ppp *ppp = netdev_priv(dev); 1161 1162 return ppp->ppp_net; 1163 } 1164 1165 static struct rtnl_link_ops ppp_link_ops __read_mostly = { 1166 .kind = "ppp", 1167 .maxtype = IFLA_PPP_MAX, 1168 .policy = ppp_nl_policy, 1169 .priv_size = sizeof(struct ppp), 1170 .setup = ppp_setup, 1171 .validate = ppp_nl_validate, 1172 .newlink = ppp_nl_newlink, 1173 .dellink = ppp_nl_dellink, 1174 .get_size = ppp_nl_get_size, 1175 .fill_info = ppp_nl_fill_info, 1176 .get_link_net = ppp_nl_get_link_net, 1177 }; 1178 1179 #define PPP_MAJOR 108 1180 1181 /* Called at boot time if ppp is compiled into the kernel, 1182 or at module load time (from init_module) if compiled as a module. */ 1183 static int __init ppp_init(void) 1184 { 1185 int err; 1186 1187 pr_info("PPP generic driver version " PPP_VERSION "\n"); 1188 1189 err = register_pernet_device(&ppp_net_ops); 1190 if (err) { 1191 pr_err("failed to register PPP pernet device (%d)\n", err); 1192 goto out; 1193 } 1194 1195 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops); 1196 if (err) { 1197 pr_err("failed to register PPP device (%d)\n", err); 1198 goto out_net; 1199 } 1200 1201 ppp_class = class_create(THIS_MODULE, "ppp"); 1202 if (IS_ERR(ppp_class)) { 1203 err = PTR_ERR(ppp_class); 1204 goto out_chrdev; 1205 } 1206 1207 err = rtnl_link_register(&ppp_link_ops); 1208 if (err) { 1209 pr_err("failed to register rtnetlink PPP handler\n"); 1210 goto out_class; 1211 } 1212 1213 /* not a big deal if we fail here :-) */ 1214 device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp"); 1215 1216 return 0; 1217 1218 out_class: 1219 class_destroy(ppp_class); 1220 out_chrdev: 1221 unregister_chrdev(PPP_MAJOR, "ppp"); 1222 out_net: 1223 unregister_pernet_device(&ppp_net_ops); 1224 out: 1225 return err; 1226 } 1227 1228 /* 1229 * Network interface unit routines. 1230 */ 1231 static netdev_tx_t 1232 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev) 1233 { 1234 struct ppp *ppp = netdev_priv(dev); 1235 int npi, proto; 1236 unsigned char *pp; 1237 1238 npi = ethertype_to_npindex(ntohs(skb->protocol)); 1239 if (npi < 0) 1240 goto outf; 1241 1242 /* Drop, accept or reject the packet */ 1243 switch (ppp->npmode[npi]) { 1244 case NPMODE_PASS: 1245 break; 1246 case NPMODE_QUEUE: 1247 /* it would be nice to have a way to tell the network 1248 system to queue this one up for later. */ 1249 goto outf; 1250 case NPMODE_DROP: 1251 case NPMODE_ERROR: 1252 goto outf; 1253 } 1254 1255 /* Put the 2-byte PPP protocol number on the front, 1256 making sure there is room for the address and control fields. */ 1257 if (skb_cow_head(skb, PPP_HDRLEN)) 1258 goto outf; 1259 1260 pp = skb_push(skb, 2); 1261 proto = npindex_to_proto[npi]; 1262 put_unaligned_be16(proto, pp); 1263 1264 skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev))); 1265 skb_queue_tail(&ppp->file.xq, skb); 1266 ppp_xmit_process(ppp); 1267 return NETDEV_TX_OK; 1268 1269 outf: 1270 kfree_skb(skb); 1271 ++dev->stats.tx_dropped; 1272 return NETDEV_TX_OK; 1273 } 1274 1275 static int 1276 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1277 { 1278 struct ppp *ppp = netdev_priv(dev); 1279 int err = -EFAULT; 1280 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data; 1281 struct ppp_stats stats; 1282 struct ppp_comp_stats cstats; 1283 char *vers; 1284 1285 switch (cmd) { 1286 case SIOCGPPPSTATS: 1287 ppp_get_stats(ppp, &stats); 1288 if (copy_to_user(addr, &stats, sizeof(stats))) 1289 break; 1290 err = 0; 1291 break; 1292 1293 case SIOCGPPPCSTATS: 1294 memset(&cstats, 0, sizeof(cstats)); 1295 if (ppp->xc_state) 1296 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c); 1297 if (ppp->rc_state) 1298 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d); 1299 if (copy_to_user(addr, &cstats, sizeof(cstats))) 1300 break; 1301 err = 0; 1302 break; 1303 1304 case SIOCGPPPVER: 1305 vers = PPP_VERSION; 1306 if (copy_to_user(addr, vers, strlen(vers) + 1)) 1307 break; 1308 err = 0; 1309 break; 1310 1311 default: 1312 err = -EINVAL; 1313 } 1314 1315 return err; 1316 } 1317 1318 static void 1319 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64) 1320 { 1321 struct ppp *ppp = netdev_priv(dev); 1322 1323 ppp_recv_lock(ppp); 1324 stats64->rx_packets = ppp->stats64.rx_packets; 1325 stats64->rx_bytes = ppp->stats64.rx_bytes; 1326 ppp_recv_unlock(ppp); 1327 1328 ppp_xmit_lock(ppp); 1329 stats64->tx_packets = ppp->stats64.tx_packets; 1330 stats64->tx_bytes = ppp->stats64.tx_bytes; 1331 ppp_xmit_unlock(ppp); 1332 1333 stats64->rx_errors = dev->stats.rx_errors; 1334 stats64->tx_errors = dev->stats.tx_errors; 1335 stats64->rx_dropped = dev->stats.rx_dropped; 1336 stats64->tx_dropped = dev->stats.tx_dropped; 1337 stats64->rx_length_errors = dev->stats.rx_length_errors; 1338 } 1339 1340 static int ppp_dev_init(struct net_device *dev) 1341 { 1342 struct ppp *ppp; 1343 1344 netdev_lockdep_set_classes(dev); 1345 1346 ppp = netdev_priv(dev); 1347 /* Let the netdevice take a reference on the ppp file. This ensures 1348 * that ppp_destroy_interface() won't run before the device gets 1349 * unregistered. 1350 */ 1351 atomic_inc(&ppp->file.refcnt); 1352 1353 return 0; 1354 } 1355 1356 static void ppp_dev_uninit(struct net_device *dev) 1357 { 1358 struct ppp *ppp = netdev_priv(dev); 1359 struct ppp_net *pn = ppp_pernet(ppp->ppp_net); 1360 1361 ppp_lock(ppp); 1362 ppp->closing = 1; 1363 ppp_unlock(ppp); 1364 1365 mutex_lock(&pn->all_ppp_mutex); 1366 unit_put(&pn->units_idr, ppp->file.index); 1367 mutex_unlock(&pn->all_ppp_mutex); 1368 1369 ppp->owner = NULL; 1370 1371 ppp->file.dead = 1; 1372 wake_up_interruptible(&ppp->file.rwait); 1373 } 1374 1375 static void ppp_dev_priv_destructor(struct net_device *dev) 1376 { 1377 struct ppp *ppp; 1378 1379 ppp = netdev_priv(dev); 1380 if (atomic_dec_and_test(&ppp->file.refcnt)) 1381 ppp_destroy_interface(ppp); 1382 } 1383 1384 static const struct net_device_ops ppp_netdev_ops = { 1385 .ndo_init = ppp_dev_init, 1386 .ndo_uninit = ppp_dev_uninit, 1387 .ndo_start_xmit = ppp_start_xmit, 1388 .ndo_do_ioctl = ppp_net_ioctl, 1389 .ndo_get_stats64 = ppp_get_stats64, 1390 }; 1391 1392 static struct device_type ppp_type = { 1393 .name = "ppp", 1394 }; 1395 1396 static void ppp_setup(struct net_device *dev) 1397 { 1398 dev->netdev_ops = &ppp_netdev_ops; 1399 SET_NETDEV_DEVTYPE(dev, &ppp_type); 1400 1401 dev->features |= NETIF_F_LLTX; 1402 1403 dev->hard_header_len = PPP_HDRLEN; 1404 dev->mtu = PPP_MRU; 1405 dev->addr_len = 0; 1406 dev->tx_queue_len = 3; 1407 dev->type = ARPHRD_PPP; 1408 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 1409 dev->priv_destructor = ppp_dev_priv_destructor; 1410 netif_keep_dst(dev); 1411 } 1412 1413 /* 1414 * Transmit-side routines. 1415 */ 1416 1417 /* Called to do any work queued up on the transmit side that can now be done */ 1418 static void __ppp_xmit_process(struct ppp *ppp) 1419 { 1420 struct sk_buff *skb; 1421 1422 ppp_xmit_lock(ppp); 1423 if (!ppp->closing) { 1424 ppp_push(ppp); 1425 while (!ppp->xmit_pending && 1426 (skb = skb_dequeue(&ppp->file.xq))) 1427 ppp_send_frame(ppp, skb); 1428 /* If there's no work left to do, tell the core net 1429 code that we can accept some more. */ 1430 if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq)) 1431 netif_wake_queue(ppp->dev); 1432 else 1433 netif_stop_queue(ppp->dev); 1434 } 1435 ppp_xmit_unlock(ppp); 1436 } 1437 1438 static void ppp_xmit_process(struct ppp *ppp) 1439 { 1440 local_bh_disable(); 1441 1442 if (unlikely(*this_cpu_ptr(ppp->xmit_recursion))) 1443 goto err; 1444 1445 (*this_cpu_ptr(ppp->xmit_recursion))++; 1446 __ppp_xmit_process(ppp); 1447 (*this_cpu_ptr(ppp->xmit_recursion))--; 1448 1449 local_bh_enable(); 1450 1451 return; 1452 1453 err: 1454 local_bh_enable(); 1455 1456 if (net_ratelimit()) 1457 netdev_err(ppp->dev, "recursion detected\n"); 1458 } 1459 1460 static inline struct sk_buff * 1461 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb) 1462 { 1463 struct sk_buff *new_skb; 1464 int len; 1465 int new_skb_size = ppp->dev->mtu + 1466 ppp->xcomp->comp_extra + ppp->dev->hard_header_len; 1467 int compressor_skb_size = ppp->dev->mtu + 1468 ppp->xcomp->comp_extra + PPP_HDRLEN; 1469 new_skb = alloc_skb(new_skb_size, GFP_ATOMIC); 1470 if (!new_skb) { 1471 if (net_ratelimit()) 1472 netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n"); 1473 return NULL; 1474 } 1475 if (ppp->dev->hard_header_len > PPP_HDRLEN) 1476 skb_reserve(new_skb, 1477 ppp->dev->hard_header_len - PPP_HDRLEN); 1478 1479 /* compressor still expects A/C bytes in hdr */ 1480 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2, 1481 new_skb->data, skb->len + 2, 1482 compressor_skb_size); 1483 if (len > 0 && (ppp->flags & SC_CCP_UP)) { 1484 consume_skb(skb); 1485 skb = new_skb; 1486 skb_put(skb, len); 1487 skb_pull(skb, 2); /* pull off A/C bytes */ 1488 } else if (len == 0) { 1489 /* didn't compress, or CCP not up yet */ 1490 consume_skb(new_skb); 1491 new_skb = skb; 1492 } else { 1493 /* 1494 * (len < 0) 1495 * MPPE requires that we do not send unencrypted 1496 * frames. The compressor will return -1 if we 1497 * should drop the frame. We cannot simply test 1498 * the compress_proto because MPPE and MPPC share 1499 * the same number. 1500 */ 1501 if (net_ratelimit()) 1502 netdev_err(ppp->dev, "ppp: compressor dropped pkt\n"); 1503 kfree_skb(skb); 1504 consume_skb(new_skb); 1505 new_skb = NULL; 1506 } 1507 return new_skb; 1508 } 1509 1510 /* 1511 * Compress and send a frame. 1512 * The caller should have locked the xmit path, 1513 * and xmit_pending should be 0. 1514 */ 1515 static void 1516 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb) 1517 { 1518 int proto = PPP_PROTO(skb); 1519 struct sk_buff *new_skb; 1520 int len; 1521 unsigned char *cp; 1522 1523 if (proto < 0x8000) { 1524 #ifdef CONFIG_PPP_FILTER 1525 /* check if we should pass this packet */ 1526 /* the filter instructions are constructed assuming 1527 a four-byte PPP header on each packet */ 1528 *(u8 *)skb_push(skb, 2) = 1; 1529 if (ppp->pass_filter && 1530 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) { 1531 if (ppp->debug & 1) 1532 netdev_printk(KERN_DEBUG, ppp->dev, 1533 "PPP: outbound frame " 1534 "not passed\n"); 1535 kfree_skb(skb); 1536 return; 1537 } 1538 /* if this packet passes the active filter, record the time */ 1539 if (!(ppp->active_filter && 1540 BPF_PROG_RUN(ppp->active_filter, skb) == 0)) 1541 ppp->last_xmit = jiffies; 1542 skb_pull(skb, 2); 1543 #else 1544 /* for data packets, record the time */ 1545 ppp->last_xmit = jiffies; 1546 #endif /* CONFIG_PPP_FILTER */ 1547 } 1548 1549 ++ppp->stats64.tx_packets; 1550 ppp->stats64.tx_bytes += skb->len - 2; 1551 1552 switch (proto) { 1553 case PPP_IP: 1554 if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0) 1555 break; 1556 /* try to do VJ TCP header compression */ 1557 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2, 1558 GFP_ATOMIC); 1559 if (!new_skb) { 1560 netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n"); 1561 goto drop; 1562 } 1563 skb_reserve(new_skb, ppp->dev->hard_header_len - 2); 1564 cp = skb->data + 2; 1565 len = slhc_compress(ppp->vj, cp, skb->len - 2, 1566 new_skb->data + 2, &cp, 1567 !(ppp->flags & SC_NO_TCP_CCID)); 1568 if (cp == skb->data + 2) { 1569 /* didn't compress */ 1570 consume_skb(new_skb); 1571 } else { 1572 if (cp[0] & SL_TYPE_COMPRESSED_TCP) { 1573 proto = PPP_VJC_COMP; 1574 cp[0] &= ~SL_TYPE_COMPRESSED_TCP; 1575 } else { 1576 proto = PPP_VJC_UNCOMP; 1577 cp[0] = skb->data[2]; 1578 } 1579 consume_skb(skb); 1580 skb = new_skb; 1581 cp = skb_put(skb, len + 2); 1582 cp[0] = 0; 1583 cp[1] = proto; 1584 } 1585 break; 1586 1587 case PPP_CCP: 1588 /* peek at outbound CCP frames */ 1589 ppp_ccp_peek(ppp, skb, 0); 1590 break; 1591 } 1592 1593 /* try to do packet compression */ 1594 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state && 1595 proto != PPP_LCP && proto != PPP_CCP) { 1596 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) { 1597 if (net_ratelimit()) 1598 netdev_err(ppp->dev, 1599 "ppp: compression required but " 1600 "down - pkt dropped.\n"); 1601 goto drop; 1602 } 1603 skb = pad_compress_skb(ppp, skb); 1604 if (!skb) 1605 goto drop; 1606 } 1607 1608 /* 1609 * If we are waiting for traffic (demand dialling), 1610 * queue it up for pppd to receive. 1611 */ 1612 if (ppp->flags & SC_LOOP_TRAFFIC) { 1613 if (ppp->file.rq.qlen > PPP_MAX_RQLEN) 1614 goto drop; 1615 skb_queue_tail(&ppp->file.rq, skb); 1616 wake_up_interruptible(&ppp->file.rwait); 1617 return; 1618 } 1619 1620 ppp->xmit_pending = skb; 1621 ppp_push(ppp); 1622 return; 1623 1624 drop: 1625 kfree_skb(skb); 1626 ++ppp->dev->stats.tx_errors; 1627 } 1628 1629 /* 1630 * Try to send the frame in xmit_pending. 1631 * The caller should have the xmit path locked. 1632 */ 1633 static void 1634 ppp_push(struct ppp *ppp) 1635 { 1636 struct list_head *list; 1637 struct channel *pch; 1638 struct sk_buff *skb = ppp->xmit_pending; 1639 1640 if (!skb) 1641 return; 1642 1643 list = &ppp->channels; 1644 if (list_empty(list)) { 1645 /* nowhere to send the packet, just drop it */ 1646 ppp->xmit_pending = NULL; 1647 kfree_skb(skb); 1648 return; 1649 } 1650 1651 if ((ppp->flags & SC_MULTILINK) == 0) { 1652 /* not doing multilink: send it down the first channel */ 1653 list = list->next; 1654 pch = list_entry(list, struct channel, clist); 1655 1656 spin_lock(&pch->downl); 1657 if (pch->chan) { 1658 if (pch->chan->ops->start_xmit(pch->chan, skb)) 1659 ppp->xmit_pending = NULL; 1660 } else { 1661 /* channel got unregistered */ 1662 kfree_skb(skb); 1663 ppp->xmit_pending = NULL; 1664 } 1665 spin_unlock(&pch->downl); 1666 return; 1667 } 1668 1669 #ifdef CONFIG_PPP_MULTILINK 1670 /* Multilink: fragment the packet over as many links 1671 as can take the packet at the moment. */ 1672 if (!ppp_mp_explode(ppp, skb)) 1673 return; 1674 #endif /* CONFIG_PPP_MULTILINK */ 1675 1676 ppp->xmit_pending = NULL; 1677 kfree_skb(skb); 1678 } 1679 1680 #ifdef CONFIG_PPP_MULTILINK 1681 static bool mp_protocol_compress __read_mostly = true; 1682 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR); 1683 MODULE_PARM_DESC(mp_protocol_compress, 1684 "compress protocol id in multilink fragments"); 1685 1686 /* 1687 * Divide a packet to be transmitted into fragments and 1688 * send them out the individual links. 1689 */ 1690 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) 1691 { 1692 int len, totlen; 1693 int i, bits, hdrlen, mtu; 1694 int flen; 1695 int navail, nfree, nzero; 1696 int nbigger; 1697 int totspeed; 1698 int totfree; 1699 unsigned char *p, *q; 1700 struct list_head *list; 1701 struct channel *pch; 1702 struct sk_buff *frag; 1703 struct ppp_channel *chan; 1704 1705 totspeed = 0; /*total bitrate of the bundle*/ 1706 nfree = 0; /* # channels which have no packet already queued */ 1707 navail = 0; /* total # of usable channels (not deregistered) */ 1708 nzero = 0; /* number of channels with zero speed associated*/ 1709 totfree = 0; /*total # of channels available and 1710 *having no queued packets before 1711 *starting the fragmentation*/ 1712 1713 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1714 i = 0; 1715 list_for_each_entry(pch, &ppp->channels, clist) { 1716 if (pch->chan) { 1717 pch->avail = 1; 1718 navail++; 1719 pch->speed = pch->chan->speed; 1720 } else { 1721 pch->avail = 0; 1722 } 1723 if (pch->avail) { 1724 if (skb_queue_empty(&pch->file.xq) || 1725 !pch->had_frag) { 1726 if (pch->speed == 0) 1727 nzero++; 1728 else 1729 totspeed += pch->speed; 1730 1731 pch->avail = 2; 1732 ++nfree; 1733 ++totfree; 1734 } 1735 if (!pch->had_frag && i < ppp->nxchan) 1736 ppp->nxchan = i; 1737 } 1738 ++i; 1739 } 1740 /* 1741 * Don't start sending this packet unless at least half of 1742 * the channels are free. This gives much better TCP 1743 * performance if we have a lot of channels. 1744 */ 1745 if (nfree == 0 || nfree < navail / 2) 1746 return 0; /* can't take now, leave it in xmit_pending */ 1747 1748 /* Do protocol field compression */ 1749 p = skb->data; 1750 len = skb->len; 1751 if (*p == 0 && mp_protocol_compress) { 1752 ++p; 1753 --len; 1754 } 1755 1756 totlen = len; 1757 nbigger = len % nfree; 1758 1759 /* skip to the channel after the one we last used 1760 and start at that one */ 1761 list = &ppp->channels; 1762 for (i = 0; i < ppp->nxchan; ++i) { 1763 list = list->next; 1764 if (list == &ppp->channels) { 1765 i = 0; 1766 break; 1767 } 1768 } 1769 1770 /* create a fragment for each channel */ 1771 bits = B; 1772 while (len > 0) { 1773 list = list->next; 1774 if (list == &ppp->channels) { 1775 i = 0; 1776 continue; 1777 } 1778 pch = list_entry(list, struct channel, clist); 1779 ++i; 1780 if (!pch->avail) 1781 continue; 1782 1783 /* 1784 * Skip this channel if it has a fragment pending already and 1785 * we haven't given a fragment to all of the free channels. 1786 */ 1787 if (pch->avail == 1) { 1788 if (nfree > 0) 1789 continue; 1790 } else { 1791 pch->avail = 1; 1792 } 1793 1794 /* check the channel's mtu and whether it is still attached. */ 1795 spin_lock(&pch->downl); 1796 if (pch->chan == NULL) { 1797 /* can't use this channel, it's being deregistered */ 1798 if (pch->speed == 0) 1799 nzero--; 1800 else 1801 totspeed -= pch->speed; 1802 1803 spin_unlock(&pch->downl); 1804 pch->avail = 0; 1805 totlen = len; 1806 totfree--; 1807 nfree--; 1808 if (--navail == 0) 1809 break; 1810 continue; 1811 } 1812 1813 /* 1814 *if the channel speed is not set divide 1815 *the packet evenly among the free channels; 1816 *otherwise divide it according to the speed 1817 *of the channel we are going to transmit on 1818 */ 1819 flen = len; 1820 if (nfree > 0) { 1821 if (pch->speed == 0) { 1822 flen = len/nfree; 1823 if (nbigger > 0) { 1824 flen++; 1825 nbigger--; 1826 } 1827 } else { 1828 flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) / 1829 ((totspeed*totfree)/pch->speed)) - hdrlen; 1830 if (nbigger > 0) { 1831 flen += ((totfree - nzero)*pch->speed)/totspeed; 1832 nbigger -= ((totfree - nzero)*pch->speed)/ 1833 totspeed; 1834 } 1835 } 1836 nfree--; 1837 } 1838 1839 /* 1840 *check if we are on the last channel or 1841 *we exceded the length of the data to 1842 *fragment 1843 */ 1844 if ((nfree <= 0) || (flen > len)) 1845 flen = len; 1846 /* 1847 *it is not worth to tx on slow channels: 1848 *in that case from the resulting flen according to the 1849 *above formula will be equal or less than zero. 1850 *Skip the channel in this case 1851 */ 1852 if (flen <= 0) { 1853 pch->avail = 2; 1854 spin_unlock(&pch->downl); 1855 continue; 1856 } 1857 1858 /* 1859 * hdrlen includes the 2-byte PPP protocol field, but the 1860 * MTU counts only the payload excluding the protocol field. 1861 * (RFC1661 Section 2) 1862 */ 1863 mtu = pch->chan->mtu - (hdrlen - 2); 1864 if (mtu < 4) 1865 mtu = 4; 1866 if (flen > mtu) 1867 flen = mtu; 1868 if (flen == len) 1869 bits |= E; 1870 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); 1871 if (!frag) 1872 goto noskb; 1873 q = skb_put(frag, flen + hdrlen); 1874 1875 /* make the MP header */ 1876 put_unaligned_be16(PPP_MP, q); 1877 if (ppp->flags & SC_MP_XSHORTSEQ) { 1878 q[2] = bits + ((ppp->nxseq >> 8) & 0xf); 1879 q[3] = ppp->nxseq; 1880 } else { 1881 q[2] = bits; 1882 q[3] = ppp->nxseq >> 16; 1883 q[4] = ppp->nxseq >> 8; 1884 q[5] = ppp->nxseq; 1885 } 1886 1887 memcpy(q + hdrlen, p, flen); 1888 1889 /* try to send it down the channel */ 1890 chan = pch->chan; 1891 if (!skb_queue_empty(&pch->file.xq) || 1892 !chan->ops->start_xmit(chan, frag)) 1893 skb_queue_tail(&pch->file.xq, frag); 1894 pch->had_frag = 1; 1895 p += flen; 1896 len -= flen; 1897 ++ppp->nxseq; 1898 bits = 0; 1899 spin_unlock(&pch->downl); 1900 } 1901 ppp->nxchan = i; 1902 1903 return 1; 1904 1905 noskb: 1906 spin_unlock(&pch->downl); 1907 if (ppp->debug & 1) 1908 netdev_err(ppp->dev, "PPP: no memory (fragment)\n"); 1909 ++ppp->dev->stats.tx_errors; 1910 ++ppp->nxseq; 1911 return 1; /* abandon the frame */ 1912 } 1913 #endif /* CONFIG_PPP_MULTILINK */ 1914 1915 /* Try to send data out on a channel */ 1916 static void __ppp_channel_push(struct channel *pch) 1917 { 1918 struct sk_buff *skb; 1919 struct ppp *ppp; 1920 1921 spin_lock(&pch->downl); 1922 if (pch->chan) { 1923 while (!skb_queue_empty(&pch->file.xq)) { 1924 skb = skb_dequeue(&pch->file.xq); 1925 if (!pch->chan->ops->start_xmit(pch->chan, skb)) { 1926 /* put the packet back and try again later */ 1927 skb_queue_head(&pch->file.xq, skb); 1928 break; 1929 } 1930 } 1931 } else { 1932 /* channel got deregistered */ 1933 skb_queue_purge(&pch->file.xq); 1934 } 1935 spin_unlock(&pch->downl); 1936 /* see if there is anything from the attached unit to be sent */ 1937 if (skb_queue_empty(&pch->file.xq)) { 1938 ppp = pch->ppp; 1939 if (ppp) 1940 __ppp_xmit_process(ppp); 1941 } 1942 } 1943 1944 static void ppp_channel_push(struct channel *pch) 1945 { 1946 read_lock_bh(&pch->upl); 1947 if (pch->ppp) { 1948 (*this_cpu_ptr(pch->ppp->xmit_recursion))++; 1949 __ppp_channel_push(pch); 1950 (*this_cpu_ptr(pch->ppp->xmit_recursion))--; 1951 } else { 1952 __ppp_channel_push(pch); 1953 } 1954 read_unlock_bh(&pch->upl); 1955 } 1956 1957 /* 1958 * Receive-side routines. 1959 */ 1960 1961 struct ppp_mp_skb_parm { 1962 u32 sequence; 1963 u8 BEbits; 1964 }; 1965 #define PPP_MP_CB(skb) ((struct ppp_mp_skb_parm *)((skb)->cb)) 1966 1967 static inline void 1968 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1969 { 1970 ppp_recv_lock(ppp); 1971 if (!ppp->closing) 1972 ppp_receive_frame(ppp, skb, pch); 1973 else 1974 kfree_skb(skb); 1975 ppp_recv_unlock(ppp); 1976 } 1977 1978 void 1979 ppp_input(struct ppp_channel *chan, struct sk_buff *skb) 1980 { 1981 struct channel *pch = chan->ppp; 1982 int proto; 1983 1984 if (!pch) { 1985 kfree_skb(skb); 1986 return; 1987 } 1988 1989 read_lock_bh(&pch->upl); 1990 if (!pskb_may_pull(skb, 2)) { 1991 kfree_skb(skb); 1992 if (pch->ppp) { 1993 ++pch->ppp->dev->stats.rx_length_errors; 1994 ppp_receive_error(pch->ppp); 1995 } 1996 goto done; 1997 } 1998 1999 proto = PPP_PROTO(skb); 2000 if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) { 2001 /* put it on the channel queue */ 2002 skb_queue_tail(&pch->file.rq, skb); 2003 /* drop old frames if queue too long */ 2004 while (pch->file.rq.qlen > PPP_MAX_RQLEN && 2005 (skb = skb_dequeue(&pch->file.rq))) 2006 kfree_skb(skb); 2007 wake_up_interruptible(&pch->file.rwait); 2008 } else { 2009 ppp_do_recv(pch->ppp, skb, pch); 2010 } 2011 2012 done: 2013 read_unlock_bh(&pch->upl); 2014 } 2015 2016 /* Put a 0-length skb in the receive queue as an error indication */ 2017 void 2018 ppp_input_error(struct ppp_channel *chan, int code) 2019 { 2020 struct channel *pch = chan->ppp; 2021 struct sk_buff *skb; 2022 2023 if (!pch) 2024 return; 2025 2026 read_lock_bh(&pch->upl); 2027 if (pch->ppp) { 2028 skb = alloc_skb(0, GFP_ATOMIC); 2029 if (skb) { 2030 skb->len = 0; /* probably unnecessary */ 2031 skb->cb[0] = code; 2032 ppp_do_recv(pch->ppp, skb, pch); 2033 } 2034 } 2035 read_unlock_bh(&pch->upl); 2036 } 2037 2038 /* 2039 * We come in here to process a received frame. 2040 * The receive side of the ppp unit is locked. 2041 */ 2042 static void 2043 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 2044 { 2045 /* note: a 0-length skb is used as an error indication */ 2046 if (skb->len > 0) { 2047 skb_checksum_complete_unset(skb); 2048 #ifdef CONFIG_PPP_MULTILINK 2049 /* XXX do channel-level decompression here */ 2050 if (PPP_PROTO(skb) == PPP_MP) 2051 ppp_receive_mp_frame(ppp, skb, pch); 2052 else 2053 #endif /* CONFIG_PPP_MULTILINK */ 2054 ppp_receive_nonmp_frame(ppp, skb); 2055 } else { 2056 kfree_skb(skb); 2057 ppp_receive_error(ppp); 2058 } 2059 } 2060 2061 static void 2062 ppp_receive_error(struct ppp *ppp) 2063 { 2064 ++ppp->dev->stats.rx_errors; 2065 if (ppp->vj) 2066 slhc_toss(ppp->vj); 2067 } 2068 2069 static void 2070 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb) 2071 { 2072 struct sk_buff *ns; 2073 int proto, len, npi; 2074 2075 /* 2076 * Decompress the frame, if compressed. 2077 * Note that some decompressors need to see uncompressed frames 2078 * that come in as well as compressed frames. 2079 */ 2080 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) && 2081 (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0) 2082 skb = ppp_decompress_frame(ppp, skb); 2083 2084 if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR) 2085 goto err; 2086 2087 proto = PPP_PROTO(skb); 2088 switch (proto) { 2089 case PPP_VJC_COMP: 2090 /* decompress VJ compressed packets */ 2091 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) 2092 goto err; 2093 2094 if (skb_tailroom(skb) < 124 || skb_cloned(skb)) { 2095 /* copy to a new sk_buff with more tailroom */ 2096 ns = dev_alloc_skb(skb->len + 128); 2097 if (!ns) { 2098 netdev_err(ppp->dev, "PPP: no memory " 2099 "(VJ decomp)\n"); 2100 goto err; 2101 } 2102 skb_reserve(ns, 2); 2103 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 2104 consume_skb(skb); 2105 skb = ns; 2106 } 2107 else 2108 skb->ip_summed = CHECKSUM_NONE; 2109 2110 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2); 2111 if (len <= 0) { 2112 netdev_printk(KERN_DEBUG, ppp->dev, 2113 "PPP: VJ decompression error\n"); 2114 goto err; 2115 } 2116 len += 2; 2117 if (len > skb->len) 2118 skb_put(skb, len - skb->len); 2119 else if (len < skb->len) 2120 skb_trim(skb, len); 2121 proto = PPP_IP; 2122 break; 2123 2124 case PPP_VJC_UNCOMP: 2125 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP)) 2126 goto err; 2127 2128 /* Until we fix the decompressor need to make sure 2129 * data portion is linear. 2130 */ 2131 if (!pskb_may_pull(skb, skb->len)) 2132 goto err; 2133 2134 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) { 2135 netdev_err(ppp->dev, "PPP: VJ uncompressed error\n"); 2136 goto err; 2137 } 2138 proto = PPP_IP; 2139 break; 2140 2141 case PPP_CCP: 2142 ppp_ccp_peek(ppp, skb, 1); 2143 break; 2144 } 2145 2146 ++ppp->stats64.rx_packets; 2147 ppp->stats64.rx_bytes += skb->len - 2; 2148 2149 npi = proto_to_npindex(proto); 2150 if (npi < 0) { 2151 /* control or unknown frame - pass it to pppd */ 2152 skb_queue_tail(&ppp->file.rq, skb); 2153 /* limit queue length by dropping old frames */ 2154 while (ppp->file.rq.qlen > PPP_MAX_RQLEN && 2155 (skb = skb_dequeue(&ppp->file.rq))) 2156 kfree_skb(skb); 2157 /* wake up any process polling or blocking on read */ 2158 wake_up_interruptible(&ppp->file.rwait); 2159 2160 } else { 2161 /* network protocol frame - give it to the kernel */ 2162 2163 #ifdef CONFIG_PPP_FILTER 2164 /* check if the packet passes the pass and active filters */ 2165 /* the filter instructions are constructed assuming 2166 a four-byte PPP header on each packet */ 2167 if (ppp->pass_filter || ppp->active_filter) { 2168 if (skb_unclone(skb, GFP_ATOMIC)) 2169 goto err; 2170 2171 *(u8 *)skb_push(skb, 2) = 0; 2172 if (ppp->pass_filter && 2173 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) { 2174 if (ppp->debug & 1) 2175 netdev_printk(KERN_DEBUG, ppp->dev, 2176 "PPP: inbound frame " 2177 "not passed\n"); 2178 kfree_skb(skb); 2179 return; 2180 } 2181 if (!(ppp->active_filter && 2182 BPF_PROG_RUN(ppp->active_filter, skb) == 0)) 2183 ppp->last_recv = jiffies; 2184 __skb_pull(skb, 2); 2185 } else 2186 #endif /* CONFIG_PPP_FILTER */ 2187 ppp->last_recv = jiffies; 2188 2189 if ((ppp->dev->flags & IFF_UP) == 0 || 2190 ppp->npmode[npi] != NPMODE_PASS) { 2191 kfree_skb(skb); 2192 } else { 2193 /* chop off protocol */ 2194 skb_pull_rcsum(skb, 2); 2195 skb->dev = ppp->dev; 2196 skb->protocol = htons(npindex_to_ethertype[npi]); 2197 skb_reset_mac_header(skb); 2198 skb_scrub_packet(skb, !net_eq(ppp->ppp_net, 2199 dev_net(ppp->dev))); 2200 netif_rx(skb); 2201 } 2202 } 2203 return; 2204 2205 err: 2206 kfree_skb(skb); 2207 ppp_receive_error(ppp); 2208 } 2209 2210 static struct sk_buff * 2211 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb) 2212 { 2213 int proto = PPP_PROTO(skb); 2214 struct sk_buff *ns; 2215 int len; 2216 2217 /* Until we fix all the decompressor's need to make sure 2218 * data portion is linear. 2219 */ 2220 if (!pskb_may_pull(skb, skb->len)) 2221 goto err; 2222 2223 if (proto == PPP_COMP) { 2224 int obuff_size; 2225 2226 switch(ppp->rcomp->compress_proto) { 2227 case CI_MPPE: 2228 obuff_size = ppp->mru + PPP_HDRLEN + 1; 2229 break; 2230 default: 2231 obuff_size = ppp->mru + PPP_HDRLEN; 2232 break; 2233 } 2234 2235 ns = dev_alloc_skb(obuff_size); 2236 if (!ns) { 2237 netdev_err(ppp->dev, "ppp_decompress_frame: " 2238 "no memory\n"); 2239 goto err; 2240 } 2241 /* the decompressor still expects the A/C bytes in the hdr */ 2242 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2, 2243 skb->len + 2, ns->data, obuff_size); 2244 if (len < 0) { 2245 /* Pass the compressed frame to pppd as an 2246 error indication. */ 2247 if (len == DECOMP_FATALERROR) 2248 ppp->rstate |= SC_DC_FERROR; 2249 kfree_skb(ns); 2250 goto err; 2251 } 2252 2253 consume_skb(skb); 2254 skb = ns; 2255 skb_put(skb, len); 2256 skb_pull(skb, 2); /* pull off the A/C bytes */ 2257 2258 } else { 2259 /* Uncompressed frame - pass to decompressor so it 2260 can update its dictionary if necessary. */ 2261 if (ppp->rcomp->incomp) 2262 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2, 2263 skb->len + 2); 2264 } 2265 2266 return skb; 2267 2268 err: 2269 ppp->rstate |= SC_DC_ERROR; 2270 ppp_receive_error(ppp); 2271 return skb; 2272 } 2273 2274 #ifdef CONFIG_PPP_MULTILINK 2275 /* 2276 * Receive a multilink frame. 2277 * We put it on the reconstruction queue and then pull off 2278 * as many completed frames as we can. 2279 */ 2280 static void 2281 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 2282 { 2283 u32 mask, seq; 2284 struct channel *ch; 2285 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 2286 2287 if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0) 2288 goto err; /* no good, throw it away */ 2289 2290 /* Decode sequence number and begin/end bits */ 2291 if (ppp->flags & SC_MP_SHORTSEQ) { 2292 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3]; 2293 mask = 0xfff; 2294 } else { 2295 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5]; 2296 mask = 0xffffff; 2297 } 2298 PPP_MP_CB(skb)->BEbits = skb->data[2]; 2299 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */ 2300 2301 /* 2302 * Do protocol ID decompression on the first fragment of each packet. 2303 */ 2304 if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1)) 2305 *(u8 *)skb_push(skb, 1) = 0; 2306 2307 /* 2308 * Expand sequence number to 32 bits, making it as close 2309 * as possible to ppp->minseq. 2310 */ 2311 seq |= ppp->minseq & ~mask; 2312 if ((int)(ppp->minseq - seq) > (int)(mask >> 1)) 2313 seq += mask + 1; 2314 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1)) 2315 seq -= mask + 1; /* should never happen */ 2316 PPP_MP_CB(skb)->sequence = seq; 2317 pch->lastseq = seq; 2318 2319 /* 2320 * If this packet comes before the next one we were expecting, 2321 * drop it. 2322 */ 2323 if (seq_before(seq, ppp->nextseq)) { 2324 kfree_skb(skb); 2325 ++ppp->dev->stats.rx_dropped; 2326 ppp_receive_error(ppp); 2327 return; 2328 } 2329 2330 /* 2331 * Reevaluate minseq, the minimum over all channels of the 2332 * last sequence number received on each channel. Because of 2333 * the increasing sequence number rule, we know that any fragment 2334 * before `minseq' which hasn't arrived is never going to arrive. 2335 * The list of channels can't change because we have the receive 2336 * side of the ppp unit locked. 2337 */ 2338 list_for_each_entry(ch, &ppp->channels, clist) { 2339 if (seq_before(ch->lastseq, seq)) 2340 seq = ch->lastseq; 2341 } 2342 if (seq_before(ppp->minseq, seq)) 2343 ppp->minseq = seq; 2344 2345 /* Put the fragment on the reconstruction queue */ 2346 ppp_mp_insert(ppp, skb); 2347 2348 /* If the queue is getting long, don't wait any longer for packets 2349 before the start of the queue. */ 2350 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) { 2351 struct sk_buff *mskb = skb_peek(&ppp->mrq); 2352 if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence)) 2353 ppp->minseq = PPP_MP_CB(mskb)->sequence; 2354 } 2355 2356 /* Pull completed packets off the queue and receive them. */ 2357 while ((skb = ppp_mp_reconstruct(ppp))) { 2358 if (pskb_may_pull(skb, 2)) 2359 ppp_receive_nonmp_frame(ppp, skb); 2360 else { 2361 ++ppp->dev->stats.rx_length_errors; 2362 kfree_skb(skb); 2363 ppp_receive_error(ppp); 2364 } 2365 } 2366 2367 return; 2368 2369 err: 2370 kfree_skb(skb); 2371 ppp_receive_error(ppp); 2372 } 2373 2374 /* 2375 * Insert a fragment on the MP reconstruction queue. 2376 * The queue is ordered by increasing sequence number. 2377 */ 2378 static void 2379 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb) 2380 { 2381 struct sk_buff *p; 2382 struct sk_buff_head *list = &ppp->mrq; 2383 u32 seq = PPP_MP_CB(skb)->sequence; 2384 2385 /* N.B. we don't need to lock the list lock because we have the 2386 ppp unit receive-side lock. */ 2387 skb_queue_walk(list, p) { 2388 if (seq_before(seq, PPP_MP_CB(p)->sequence)) 2389 break; 2390 } 2391 __skb_queue_before(list, p, skb); 2392 } 2393 2394 /* 2395 * Reconstruct a packet from the MP fragment queue. 2396 * We go through increasing sequence numbers until we find a 2397 * complete packet, or we get to the sequence number for a fragment 2398 * which hasn't arrived but might still do so. 2399 */ 2400 static struct sk_buff * 2401 ppp_mp_reconstruct(struct ppp *ppp) 2402 { 2403 u32 seq = ppp->nextseq; 2404 u32 minseq = ppp->minseq; 2405 struct sk_buff_head *list = &ppp->mrq; 2406 struct sk_buff *p, *tmp; 2407 struct sk_buff *head, *tail; 2408 struct sk_buff *skb = NULL; 2409 int lost = 0, len = 0; 2410 2411 if (ppp->mrru == 0) /* do nothing until mrru is set */ 2412 return NULL; 2413 head = list->next; 2414 tail = NULL; 2415 skb_queue_walk_safe(list, p, tmp) { 2416 again: 2417 if (seq_before(PPP_MP_CB(p)->sequence, seq)) { 2418 /* this can't happen, anyway ignore the skb */ 2419 netdev_err(ppp->dev, "ppp_mp_reconstruct bad " 2420 "seq %u < %u\n", 2421 PPP_MP_CB(p)->sequence, seq); 2422 __skb_unlink(p, list); 2423 kfree_skb(p); 2424 continue; 2425 } 2426 if (PPP_MP_CB(p)->sequence != seq) { 2427 u32 oldseq; 2428 /* Fragment `seq' is missing. If it is after 2429 minseq, it might arrive later, so stop here. */ 2430 if (seq_after(seq, minseq)) 2431 break; 2432 /* Fragment `seq' is lost, keep going. */ 2433 lost = 1; 2434 oldseq = seq; 2435 seq = seq_before(minseq, PPP_MP_CB(p)->sequence)? 2436 minseq + 1: PPP_MP_CB(p)->sequence; 2437 2438 if (ppp->debug & 1) 2439 netdev_printk(KERN_DEBUG, ppp->dev, 2440 "lost frag %u..%u\n", 2441 oldseq, seq-1); 2442 2443 goto again; 2444 } 2445 2446 /* 2447 * At this point we know that all the fragments from 2448 * ppp->nextseq to seq are either present or lost. 2449 * Also, there are no complete packets in the queue 2450 * that have no missing fragments and end before this 2451 * fragment. 2452 */ 2453 2454 /* B bit set indicates this fragment starts a packet */ 2455 if (PPP_MP_CB(p)->BEbits & B) { 2456 head = p; 2457 lost = 0; 2458 len = 0; 2459 } 2460 2461 len += p->len; 2462 2463 /* Got a complete packet yet? */ 2464 if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) && 2465 (PPP_MP_CB(head)->BEbits & B)) { 2466 if (len > ppp->mrru + 2) { 2467 ++ppp->dev->stats.rx_length_errors; 2468 netdev_printk(KERN_DEBUG, ppp->dev, 2469 "PPP: reconstructed packet" 2470 " is too long (%d)\n", len); 2471 } else { 2472 tail = p; 2473 break; 2474 } 2475 ppp->nextseq = seq + 1; 2476 } 2477 2478 /* 2479 * If this is the ending fragment of a packet, 2480 * and we haven't found a complete valid packet yet, 2481 * we can discard up to and including this fragment. 2482 */ 2483 if (PPP_MP_CB(p)->BEbits & E) { 2484 struct sk_buff *tmp2; 2485 2486 skb_queue_reverse_walk_from_safe(list, p, tmp2) { 2487 if (ppp->debug & 1) 2488 netdev_printk(KERN_DEBUG, ppp->dev, 2489 "discarding frag %u\n", 2490 PPP_MP_CB(p)->sequence); 2491 __skb_unlink(p, list); 2492 kfree_skb(p); 2493 } 2494 head = skb_peek(list); 2495 if (!head) 2496 break; 2497 } 2498 ++seq; 2499 } 2500 2501 /* If we have a complete packet, copy it all into one skb. */ 2502 if (tail != NULL) { 2503 /* If we have discarded any fragments, 2504 signal a receive error. */ 2505 if (PPP_MP_CB(head)->sequence != ppp->nextseq) { 2506 skb_queue_walk_safe(list, p, tmp) { 2507 if (p == head) 2508 break; 2509 if (ppp->debug & 1) 2510 netdev_printk(KERN_DEBUG, ppp->dev, 2511 "discarding frag %u\n", 2512 PPP_MP_CB(p)->sequence); 2513 __skb_unlink(p, list); 2514 kfree_skb(p); 2515 } 2516 2517 if (ppp->debug & 1) 2518 netdev_printk(KERN_DEBUG, ppp->dev, 2519 " missed pkts %u..%u\n", 2520 ppp->nextseq, 2521 PPP_MP_CB(head)->sequence-1); 2522 ++ppp->dev->stats.rx_dropped; 2523 ppp_receive_error(ppp); 2524 } 2525 2526 skb = head; 2527 if (head != tail) { 2528 struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list; 2529 p = skb_queue_next(list, head); 2530 __skb_unlink(skb, list); 2531 skb_queue_walk_from_safe(list, p, tmp) { 2532 __skb_unlink(p, list); 2533 *fragpp = p; 2534 p->next = NULL; 2535 fragpp = &p->next; 2536 2537 skb->len += p->len; 2538 skb->data_len += p->len; 2539 skb->truesize += p->truesize; 2540 2541 if (p == tail) 2542 break; 2543 } 2544 } else { 2545 __skb_unlink(skb, list); 2546 } 2547 2548 ppp->nextseq = PPP_MP_CB(tail)->sequence + 1; 2549 } 2550 2551 return skb; 2552 } 2553 #endif /* CONFIG_PPP_MULTILINK */ 2554 2555 /* 2556 * Channel interface. 2557 */ 2558 2559 /* Create a new, unattached ppp channel. */ 2560 int ppp_register_channel(struct ppp_channel *chan) 2561 { 2562 return ppp_register_net_channel(current->nsproxy->net_ns, chan); 2563 } 2564 2565 /* Create a new, unattached ppp channel for specified net. */ 2566 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan) 2567 { 2568 struct channel *pch; 2569 struct ppp_net *pn; 2570 2571 pch = kzalloc(sizeof(struct channel), GFP_KERNEL); 2572 if (!pch) 2573 return -ENOMEM; 2574 2575 pn = ppp_pernet(net); 2576 2577 pch->ppp = NULL; 2578 pch->chan = chan; 2579 pch->chan_net = get_net(net); 2580 chan->ppp = pch; 2581 init_ppp_file(&pch->file, CHANNEL); 2582 pch->file.hdrlen = chan->hdrlen; 2583 #ifdef CONFIG_PPP_MULTILINK 2584 pch->lastseq = -1; 2585 #endif /* CONFIG_PPP_MULTILINK */ 2586 init_rwsem(&pch->chan_sem); 2587 spin_lock_init(&pch->downl); 2588 rwlock_init(&pch->upl); 2589 2590 spin_lock_bh(&pn->all_channels_lock); 2591 pch->file.index = ++pn->last_channel_index; 2592 list_add(&pch->list, &pn->new_channels); 2593 atomic_inc(&channel_count); 2594 spin_unlock_bh(&pn->all_channels_lock); 2595 2596 return 0; 2597 } 2598 2599 /* 2600 * Return the index of a channel. 2601 */ 2602 int ppp_channel_index(struct ppp_channel *chan) 2603 { 2604 struct channel *pch = chan->ppp; 2605 2606 if (pch) 2607 return pch->file.index; 2608 return -1; 2609 } 2610 2611 /* 2612 * Return the PPP unit number to which a channel is connected. 2613 */ 2614 int ppp_unit_number(struct ppp_channel *chan) 2615 { 2616 struct channel *pch = chan->ppp; 2617 int unit = -1; 2618 2619 if (pch) { 2620 read_lock_bh(&pch->upl); 2621 if (pch->ppp) 2622 unit = pch->ppp->file.index; 2623 read_unlock_bh(&pch->upl); 2624 } 2625 return unit; 2626 } 2627 2628 /* 2629 * Return the PPP device interface name of a channel. 2630 */ 2631 char *ppp_dev_name(struct ppp_channel *chan) 2632 { 2633 struct channel *pch = chan->ppp; 2634 char *name = NULL; 2635 2636 if (pch) { 2637 read_lock_bh(&pch->upl); 2638 if (pch->ppp && pch->ppp->dev) 2639 name = pch->ppp->dev->name; 2640 read_unlock_bh(&pch->upl); 2641 } 2642 return name; 2643 } 2644 2645 2646 /* 2647 * Disconnect a channel from the generic layer. 2648 * This must be called in process context. 2649 */ 2650 void 2651 ppp_unregister_channel(struct ppp_channel *chan) 2652 { 2653 struct channel *pch = chan->ppp; 2654 struct ppp_net *pn; 2655 2656 if (!pch) 2657 return; /* should never happen */ 2658 2659 chan->ppp = NULL; 2660 2661 /* 2662 * This ensures that we have returned from any calls into the 2663 * the channel's start_xmit or ioctl routine before we proceed. 2664 */ 2665 down_write(&pch->chan_sem); 2666 spin_lock_bh(&pch->downl); 2667 pch->chan = NULL; 2668 spin_unlock_bh(&pch->downl); 2669 up_write(&pch->chan_sem); 2670 ppp_disconnect_channel(pch); 2671 2672 pn = ppp_pernet(pch->chan_net); 2673 spin_lock_bh(&pn->all_channels_lock); 2674 list_del(&pch->list); 2675 spin_unlock_bh(&pn->all_channels_lock); 2676 2677 pch->file.dead = 1; 2678 wake_up_interruptible(&pch->file.rwait); 2679 if (atomic_dec_and_test(&pch->file.refcnt)) 2680 ppp_destroy_channel(pch); 2681 } 2682 2683 /* 2684 * Callback from a channel when it can accept more to transmit. 2685 * This should be called at BH/softirq level, not interrupt level. 2686 */ 2687 void 2688 ppp_output_wakeup(struct ppp_channel *chan) 2689 { 2690 struct channel *pch = chan->ppp; 2691 2692 if (!pch) 2693 return; 2694 ppp_channel_push(pch); 2695 } 2696 2697 /* 2698 * Compression control. 2699 */ 2700 2701 /* Process the PPPIOCSCOMPRESS ioctl. */ 2702 static int 2703 ppp_set_compress(struct ppp *ppp, unsigned long arg) 2704 { 2705 int err; 2706 struct compressor *cp, *ocomp; 2707 struct ppp_option_data data; 2708 void *state, *ostate; 2709 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH]; 2710 2711 err = -EFAULT; 2712 if (copy_from_user(&data, (void __user *) arg, sizeof(data))) 2713 goto out; 2714 if (data.length > CCP_MAX_OPTION_LENGTH) 2715 goto out; 2716 if (copy_from_user(ccp_option, (void __user *) data.ptr, data.length)) 2717 goto out; 2718 2719 err = -EINVAL; 2720 if (data.length < 2 || ccp_option[1] < 2 || ccp_option[1] > data.length) 2721 goto out; 2722 2723 cp = try_then_request_module( 2724 find_compressor(ccp_option[0]), 2725 "ppp-compress-%d", ccp_option[0]); 2726 if (!cp) 2727 goto out; 2728 2729 err = -ENOBUFS; 2730 if (data.transmit) { 2731 state = cp->comp_alloc(ccp_option, data.length); 2732 if (state) { 2733 ppp_xmit_lock(ppp); 2734 ppp->xstate &= ~SC_COMP_RUN; 2735 ocomp = ppp->xcomp; 2736 ostate = ppp->xc_state; 2737 ppp->xcomp = cp; 2738 ppp->xc_state = state; 2739 ppp_xmit_unlock(ppp); 2740 if (ostate) { 2741 ocomp->comp_free(ostate); 2742 module_put(ocomp->owner); 2743 } 2744 err = 0; 2745 } else 2746 module_put(cp->owner); 2747 2748 } else { 2749 state = cp->decomp_alloc(ccp_option, data.length); 2750 if (state) { 2751 ppp_recv_lock(ppp); 2752 ppp->rstate &= ~SC_DECOMP_RUN; 2753 ocomp = ppp->rcomp; 2754 ostate = ppp->rc_state; 2755 ppp->rcomp = cp; 2756 ppp->rc_state = state; 2757 ppp_recv_unlock(ppp); 2758 if (ostate) { 2759 ocomp->decomp_free(ostate); 2760 module_put(ocomp->owner); 2761 } 2762 err = 0; 2763 } else 2764 module_put(cp->owner); 2765 } 2766 2767 out: 2768 return err; 2769 } 2770 2771 /* 2772 * Look at a CCP packet and update our state accordingly. 2773 * We assume the caller has the xmit or recv path locked. 2774 */ 2775 static void 2776 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound) 2777 { 2778 unsigned char *dp; 2779 int len; 2780 2781 if (!pskb_may_pull(skb, CCP_HDRLEN + 2)) 2782 return; /* no header */ 2783 dp = skb->data + 2; 2784 2785 switch (CCP_CODE(dp)) { 2786 case CCP_CONFREQ: 2787 2788 /* A ConfReq starts negotiation of compression 2789 * in one direction of transmission, 2790 * and hence brings it down...but which way? 2791 * 2792 * Remember: 2793 * A ConfReq indicates what the sender would like to receive 2794 */ 2795 if(inbound) 2796 /* He is proposing what I should send */ 2797 ppp->xstate &= ~SC_COMP_RUN; 2798 else 2799 /* I am proposing to what he should send */ 2800 ppp->rstate &= ~SC_DECOMP_RUN; 2801 2802 break; 2803 2804 case CCP_TERMREQ: 2805 case CCP_TERMACK: 2806 /* 2807 * CCP is going down, both directions of transmission 2808 */ 2809 ppp->rstate &= ~SC_DECOMP_RUN; 2810 ppp->xstate &= ~SC_COMP_RUN; 2811 break; 2812 2813 case CCP_CONFACK: 2814 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN) 2815 break; 2816 len = CCP_LENGTH(dp); 2817 if (!pskb_may_pull(skb, len + 2)) 2818 return; /* too short */ 2819 dp += CCP_HDRLEN; 2820 len -= CCP_HDRLEN; 2821 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp)) 2822 break; 2823 if (inbound) { 2824 /* we will start receiving compressed packets */ 2825 if (!ppp->rc_state) 2826 break; 2827 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len, 2828 ppp->file.index, 0, ppp->mru, ppp->debug)) { 2829 ppp->rstate |= SC_DECOMP_RUN; 2830 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR); 2831 } 2832 } else { 2833 /* we will soon start sending compressed packets */ 2834 if (!ppp->xc_state) 2835 break; 2836 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len, 2837 ppp->file.index, 0, ppp->debug)) 2838 ppp->xstate |= SC_COMP_RUN; 2839 } 2840 break; 2841 2842 case CCP_RESETACK: 2843 /* reset the [de]compressor */ 2844 if ((ppp->flags & SC_CCP_UP) == 0) 2845 break; 2846 if (inbound) { 2847 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) { 2848 ppp->rcomp->decomp_reset(ppp->rc_state); 2849 ppp->rstate &= ~SC_DC_ERROR; 2850 } 2851 } else { 2852 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN)) 2853 ppp->xcomp->comp_reset(ppp->xc_state); 2854 } 2855 break; 2856 } 2857 } 2858 2859 /* Free up compression resources. */ 2860 static void 2861 ppp_ccp_closed(struct ppp *ppp) 2862 { 2863 void *xstate, *rstate; 2864 struct compressor *xcomp, *rcomp; 2865 2866 ppp_lock(ppp); 2867 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP); 2868 ppp->xstate = 0; 2869 xcomp = ppp->xcomp; 2870 xstate = ppp->xc_state; 2871 ppp->xc_state = NULL; 2872 ppp->rstate = 0; 2873 rcomp = ppp->rcomp; 2874 rstate = ppp->rc_state; 2875 ppp->rc_state = NULL; 2876 ppp_unlock(ppp); 2877 2878 if (xstate) { 2879 xcomp->comp_free(xstate); 2880 module_put(xcomp->owner); 2881 } 2882 if (rstate) { 2883 rcomp->decomp_free(rstate); 2884 module_put(rcomp->owner); 2885 } 2886 } 2887 2888 /* List of compressors. */ 2889 static LIST_HEAD(compressor_list); 2890 static DEFINE_SPINLOCK(compressor_list_lock); 2891 2892 struct compressor_entry { 2893 struct list_head list; 2894 struct compressor *comp; 2895 }; 2896 2897 static struct compressor_entry * 2898 find_comp_entry(int proto) 2899 { 2900 struct compressor_entry *ce; 2901 2902 list_for_each_entry(ce, &compressor_list, list) { 2903 if (ce->comp->compress_proto == proto) 2904 return ce; 2905 } 2906 return NULL; 2907 } 2908 2909 /* Register a compressor */ 2910 int 2911 ppp_register_compressor(struct compressor *cp) 2912 { 2913 struct compressor_entry *ce; 2914 int ret; 2915 spin_lock(&compressor_list_lock); 2916 ret = -EEXIST; 2917 if (find_comp_entry(cp->compress_proto)) 2918 goto out; 2919 ret = -ENOMEM; 2920 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC); 2921 if (!ce) 2922 goto out; 2923 ret = 0; 2924 ce->comp = cp; 2925 list_add(&ce->list, &compressor_list); 2926 out: 2927 spin_unlock(&compressor_list_lock); 2928 return ret; 2929 } 2930 2931 /* Unregister a compressor */ 2932 void 2933 ppp_unregister_compressor(struct compressor *cp) 2934 { 2935 struct compressor_entry *ce; 2936 2937 spin_lock(&compressor_list_lock); 2938 ce = find_comp_entry(cp->compress_proto); 2939 if (ce && ce->comp == cp) { 2940 list_del(&ce->list); 2941 kfree(ce); 2942 } 2943 spin_unlock(&compressor_list_lock); 2944 } 2945 2946 /* Find a compressor. */ 2947 static struct compressor * 2948 find_compressor(int type) 2949 { 2950 struct compressor_entry *ce; 2951 struct compressor *cp = NULL; 2952 2953 spin_lock(&compressor_list_lock); 2954 ce = find_comp_entry(type); 2955 if (ce) { 2956 cp = ce->comp; 2957 if (!try_module_get(cp->owner)) 2958 cp = NULL; 2959 } 2960 spin_unlock(&compressor_list_lock); 2961 return cp; 2962 } 2963 2964 /* 2965 * Miscelleneous stuff. 2966 */ 2967 2968 static void 2969 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st) 2970 { 2971 struct slcompress *vj = ppp->vj; 2972 2973 memset(st, 0, sizeof(*st)); 2974 st->p.ppp_ipackets = ppp->stats64.rx_packets; 2975 st->p.ppp_ierrors = ppp->dev->stats.rx_errors; 2976 st->p.ppp_ibytes = ppp->stats64.rx_bytes; 2977 st->p.ppp_opackets = ppp->stats64.tx_packets; 2978 st->p.ppp_oerrors = ppp->dev->stats.tx_errors; 2979 st->p.ppp_obytes = ppp->stats64.tx_bytes; 2980 if (!vj) 2981 return; 2982 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed; 2983 st->vj.vjs_compressed = vj->sls_o_compressed; 2984 st->vj.vjs_searches = vj->sls_o_searches; 2985 st->vj.vjs_misses = vj->sls_o_misses; 2986 st->vj.vjs_errorin = vj->sls_i_error; 2987 st->vj.vjs_tossed = vj->sls_i_tossed; 2988 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed; 2989 st->vj.vjs_compressedin = vj->sls_i_compressed; 2990 } 2991 2992 /* 2993 * Stuff for handling the lists of ppp units and channels 2994 * and for initialization. 2995 */ 2996 2997 /* 2998 * Create a new ppp interface unit. Fails if it can't allocate memory 2999 * or if there is already a unit with the requested number. 3000 * unit == -1 means allocate a new number. 3001 */ 3002 static int ppp_create_interface(struct net *net, struct file *file, int *unit) 3003 { 3004 struct ppp_config conf = { 3005 .file = file, 3006 .unit = *unit, 3007 .ifname_is_set = false, 3008 }; 3009 struct net_device *dev; 3010 struct ppp *ppp; 3011 int err; 3012 3013 dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup); 3014 if (!dev) { 3015 err = -ENOMEM; 3016 goto err; 3017 } 3018 dev_net_set(dev, net); 3019 dev->rtnl_link_ops = &ppp_link_ops; 3020 3021 rtnl_lock(); 3022 3023 err = ppp_dev_configure(net, dev, &conf); 3024 if (err < 0) 3025 goto err_dev; 3026 ppp = netdev_priv(dev); 3027 *unit = ppp->file.index; 3028 3029 rtnl_unlock(); 3030 3031 return 0; 3032 3033 err_dev: 3034 rtnl_unlock(); 3035 free_netdev(dev); 3036 err: 3037 return err; 3038 } 3039 3040 /* 3041 * Initialize a ppp_file structure. 3042 */ 3043 static void 3044 init_ppp_file(struct ppp_file *pf, int kind) 3045 { 3046 pf->kind = kind; 3047 skb_queue_head_init(&pf->xq); 3048 skb_queue_head_init(&pf->rq); 3049 atomic_set(&pf->refcnt, 1); 3050 init_waitqueue_head(&pf->rwait); 3051 } 3052 3053 /* 3054 * Free the memory used by a ppp unit. This is only called once 3055 * there are no channels connected to the unit and no file structs 3056 * that reference the unit. 3057 */ 3058 static void ppp_destroy_interface(struct ppp *ppp) 3059 { 3060 atomic_dec(&ppp_unit_count); 3061 3062 if (!ppp->file.dead || ppp->n_channels) { 3063 /* "can't happen" */ 3064 netdev_err(ppp->dev, "ppp: destroying ppp struct %p " 3065 "but dead=%d n_channels=%d !\n", 3066 ppp, ppp->file.dead, ppp->n_channels); 3067 return; 3068 } 3069 3070 ppp_ccp_closed(ppp); 3071 if (ppp->vj) { 3072 slhc_free(ppp->vj); 3073 ppp->vj = NULL; 3074 } 3075 skb_queue_purge(&ppp->file.xq); 3076 skb_queue_purge(&ppp->file.rq); 3077 #ifdef CONFIG_PPP_MULTILINK 3078 skb_queue_purge(&ppp->mrq); 3079 #endif /* CONFIG_PPP_MULTILINK */ 3080 #ifdef CONFIG_PPP_FILTER 3081 if (ppp->pass_filter) { 3082 bpf_prog_destroy(ppp->pass_filter); 3083 ppp->pass_filter = NULL; 3084 } 3085 3086 if (ppp->active_filter) { 3087 bpf_prog_destroy(ppp->active_filter); 3088 ppp->active_filter = NULL; 3089 } 3090 #endif /* CONFIG_PPP_FILTER */ 3091 3092 kfree_skb(ppp->xmit_pending); 3093 free_percpu(ppp->xmit_recursion); 3094 3095 free_netdev(ppp->dev); 3096 } 3097 3098 /* 3099 * Locate an existing ppp unit. 3100 * The caller should have locked the all_ppp_mutex. 3101 */ 3102 static struct ppp * 3103 ppp_find_unit(struct ppp_net *pn, int unit) 3104 { 3105 return unit_find(&pn->units_idr, unit); 3106 } 3107 3108 /* 3109 * Locate an existing ppp channel. 3110 * The caller should have locked the all_channels_lock. 3111 * First we look in the new_channels list, then in the 3112 * all_channels list. If found in the new_channels list, 3113 * we move it to the all_channels list. This is for speed 3114 * when we have a lot of channels in use. 3115 */ 3116 static struct channel * 3117 ppp_find_channel(struct ppp_net *pn, int unit) 3118 { 3119 struct channel *pch; 3120 3121 list_for_each_entry(pch, &pn->new_channels, list) { 3122 if (pch->file.index == unit) { 3123 list_move(&pch->list, &pn->all_channels); 3124 return pch; 3125 } 3126 } 3127 3128 list_for_each_entry(pch, &pn->all_channels, list) { 3129 if (pch->file.index == unit) 3130 return pch; 3131 } 3132 3133 return NULL; 3134 } 3135 3136 /* 3137 * Connect a PPP channel to a PPP interface unit. 3138 */ 3139 static int 3140 ppp_connect_channel(struct channel *pch, int unit) 3141 { 3142 struct ppp *ppp; 3143 struct ppp_net *pn; 3144 int ret = -ENXIO; 3145 int hdrlen; 3146 3147 pn = ppp_pernet(pch->chan_net); 3148 3149 mutex_lock(&pn->all_ppp_mutex); 3150 ppp = ppp_find_unit(pn, unit); 3151 if (!ppp) 3152 goto out; 3153 write_lock_bh(&pch->upl); 3154 ret = -EINVAL; 3155 if (pch->ppp) 3156 goto outl; 3157 3158 ppp_lock(ppp); 3159 if (pch->file.hdrlen > ppp->file.hdrlen) 3160 ppp->file.hdrlen = pch->file.hdrlen; 3161 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */ 3162 if (hdrlen > ppp->dev->hard_header_len) 3163 ppp->dev->hard_header_len = hdrlen; 3164 list_add_tail(&pch->clist, &ppp->channels); 3165 ++ppp->n_channels; 3166 pch->ppp = ppp; 3167 atomic_inc(&ppp->file.refcnt); 3168 ppp_unlock(ppp); 3169 ret = 0; 3170 3171 outl: 3172 write_unlock_bh(&pch->upl); 3173 out: 3174 mutex_unlock(&pn->all_ppp_mutex); 3175 return ret; 3176 } 3177 3178 /* 3179 * Disconnect a channel from its ppp unit. 3180 */ 3181 static int 3182 ppp_disconnect_channel(struct channel *pch) 3183 { 3184 struct ppp *ppp; 3185 int err = -EINVAL; 3186 3187 write_lock_bh(&pch->upl); 3188 ppp = pch->ppp; 3189 pch->ppp = NULL; 3190 write_unlock_bh(&pch->upl); 3191 if (ppp) { 3192 /* remove it from the ppp unit's list */ 3193 ppp_lock(ppp); 3194 list_del(&pch->clist); 3195 if (--ppp->n_channels == 0) 3196 wake_up_interruptible(&ppp->file.rwait); 3197 ppp_unlock(ppp); 3198 if (atomic_dec_and_test(&ppp->file.refcnt)) 3199 ppp_destroy_interface(ppp); 3200 err = 0; 3201 } 3202 return err; 3203 } 3204 3205 /* 3206 * Free up the resources used by a ppp channel. 3207 */ 3208 static void ppp_destroy_channel(struct channel *pch) 3209 { 3210 put_net(pch->chan_net); 3211 pch->chan_net = NULL; 3212 3213 atomic_dec(&channel_count); 3214 3215 if (!pch->file.dead) { 3216 /* "can't happen" */ 3217 pr_err("ppp: destroying undead channel %p !\n", pch); 3218 return; 3219 } 3220 skb_queue_purge(&pch->file.xq); 3221 skb_queue_purge(&pch->file.rq); 3222 kfree(pch); 3223 } 3224 3225 static void __exit ppp_cleanup(void) 3226 { 3227 /* should never happen */ 3228 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count)) 3229 pr_err("PPP: removing module but units remain!\n"); 3230 rtnl_link_unregister(&ppp_link_ops); 3231 unregister_chrdev(PPP_MAJOR, "ppp"); 3232 device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0)); 3233 class_destroy(ppp_class); 3234 unregister_pernet_device(&ppp_net_ops); 3235 } 3236 3237 /* 3238 * Units handling. Caller must protect concurrent access 3239 * by holding all_ppp_mutex 3240 */ 3241 3242 /* associate pointer with specified number */ 3243 static int unit_set(struct idr *p, void *ptr, int n) 3244 { 3245 int unit; 3246 3247 unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL); 3248 if (unit == -ENOSPC) 3249 unit = -EINVAL; 3250 return unit; 3251 } 3252 3253 /* get new free unit number and associate pointer with it */ 3254 static int unit_get(struct idr *p, void *ptr) 3255 { 3256 return idr_alloc(p, ptr, 0, 0, GFP_KERNEL); 3257 } 3258 3259 /* put unit number back to a pool */ 3260 static void unit_put(struct idr *p, int n) 3261 { 3262 idr_remove(p, n); 3263 } 3264 3265 /* get pointer associated with the number */ 3266 static void *unit_find(struct idr *p, int n) 3267 { 3268 return idr_find(p, n); 3269 } 3270 3271 /* Module/initialization stuff */ 3272 3273 module_init(ppp_init); 3274 module_exit(ppp_cleanup); 3275 3276 EXPORT_SYMBOL(ppp_register_net_channel); 3277 EXPORT_SYMBOL(ppp_register_channel); 3278 EXPORT_SYMBOL(ppp_unregister_channel); 3279 EXPORT_SYMBOL(ppp_channel_index); 3280 EXPORT_SYMBOL(ppp_unit_number); 3281 EXPORT_SYMBOL(ppp_dev_name); 3282 EXPORT_SYMBOL(ppp_input); 3283 EXPORT_SYMBOL(ppp_input_error); 3284 EXPORT_SYMBOL(ppp_output_wakeup); 3285 EXPORT_SYMBOL(ppp_register_compressor); 3286 EXPORT_SYMBOL(ppp_unregister_compressor); 3287 MODULE_LICENSE("GPL"); 3288 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0); 3289 MODULE_ALIAS_RTNL_LINK("ppp"); 3290 MODULE_ALIAS("devname:ppp"); 3291