xref: /linux/drivers/net/ppp/ppp_generic.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  *  This program is free software; you can redistribute it and/or
7  *  modify it under the terms of the GNU General Public License
8  *  as published by the Free Software Foundation; either version
9  *  2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h.  Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <linux/file.h>
50 #include <asm/unaligned.h>
51 #include <net/slhc_vj.h>
52 #include <linux/atomic.h>
53 
54 #include <linux/nsproxy.h>
55 #include <net/net_namespace.h>
56 #include <net/netns/generic.h>
57 
58 #define PPP_VERSION	"2.4.2"
59 
60 /*
61  * Network protocols we support.
62  */
63 #define NP_IP	0		/* Internet Protocol V4 */
64 #define NP_IPV6	1		/* Internet Protocol V6 */
65 #define NP_IPX	2		/* IPX protocol */
66 #define NP_AT	3		/* Appletalk protocol */
67 #define NP_MPLS_UC 4		/* MPLS unicast */
68 #define NP_MPLS_MC 5		/* MPLS multicast */
69 #define NUM_NP	6		/* Number of NPs. */
70 
71 #define MPHDRLEN	6	/* multilink protocol header length */
72 #define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
73 
74 /*
75  * An instance of /dev/ppp can be associated with either a ppp
76  * interface unit or a ppp channel.  In both cases, file->private_data
77  * points to one of these.
78  */
79 struct ppp_file {
80 	enum {
81 		INTERFACE=1, CHANNEL
82 	}		kind;
83 	struct sk_buff_head xq;		/* pppd transmit queue */
84 	struct sk_buff_head rq;		/* receive queue for pppd */
85 	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
86 	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
87 	int		hdrlen;		/* space to leave for headers */
88 	int		index;		/* interface unit / channel number */
89 	int		dead;		/* unit/channel has been shut down */
90 };
91 
92 #define PF_TO_X(pf, X)		container_of(pf, X, file)
93 
94 #define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
95 #define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
96 
97 /*
98  * Data structure to hold primary network stats for which
99  * we want to use 64 bit storage.  Other network stats
100  * are stored in dev->stats of the ppp strucute.
101  */
102 struct ppp_link_stats {
103 	u64 rx_packets;
104 	u64 tx_packets;
105 	u64 rx_bytes;
106 	u64 tx_bytes;
107 };
108 
109 /*
110  * Data structure describing one ppp unit.
111  * A ppp unit corresponds to a ppp network interface device
112  * and represents a multilink bundle.
113  * It can have 0 or more ppp channels connected to it.
114  */
115 struct ppp {
116 	struct ppp_file	file;		/* stuff for read/write/poll 0 */
117 	struct file	*owner;		/* file that owns this unit 48 */
118 	struct list_head channels;	/* list of attached channels 4c */
119 	int		n_channels;	/* how many channels are attached 54 */
120 	spinlock_t	rlock;		/* lock for receive side 58 */
121 	spinlock_t	wlock;		/* lock for transmit side 5c */
122 	int		mru;		/* max receive unit 60 */
123 	unsigned int	flags;		/* control bits 64 */
124 	unsigned int	xstate;		/* transmit state bits 68 */
125 	unsigned int	rstate;		/* receive state bits 6c */
126 	int		debug;		/* debug flags 70 */
127 	struct slcompress *vj;		/* state for VJ header compression */
128 	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
129 	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
130 	struct compressor *xcomp;	/* transmit packet compressor 8c */
131 	void		*xc_state;	/* its internal state 90 */
132 	struct compressor *rcomp;	/* receive decompressor 94 */
133 	void		*rc_state;	/* its internal state 98 */
134 	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
135 	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
136 	struct net_device *dev;		/* network interface device a4 */
137 	int		closing;	/* is device closing down? a8 */
138 #ifdef CONFIG_PPP_MULTILINK
139 	int		nxchan;		/* next channel to send something on */
140 	u32		nxseq;		/* next sequence number to send */
141 	int		mrru;		/* MP: max reconst. receive unit */
142 	u32		nextseq;	/* MP: seq no of next packet */
143 	u32		minseq;		/* MP: min of most recent seqnos */
144 	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
145 #endif /* CONFIG_PPP_MULTILINK */
146 #ifdef CONFIG_PPP_FILTER
147 	struct bpf_prog *pass_filter;	/* filter for packets to pass */
148 	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
149 #endif /* CONFIG_PPP_FILTER */
150 	struct net	*ppp_net;	/* the net we belong to */
151 	struct ppp_link_stats stats64;	/* 64 bit network stats */
152 };
153 
154 /*
155  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
156  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
157  * SC_MUST_COMP
158  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
159  * Bits in xstate: SC_COMP_RUN
160  */
161 #define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
162 			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
163 			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
164 
165 /*
166  * Private data structure for each channel.
167  * This includes the data structure used for multilink.
168  */
169 struct channel {
170 	struct ppp_file	file;		/* stuff for read/write/poll */
171 	struct list_head list;		/* link in all/new_channels list */
172 	struct ppp_channel *chan;	/* public channel data structure */
173 	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
174 	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
175 	struct ppp	*ppp;		/* ppp unit we're connected to */
176 	struct net	*chan_net;	/* the net channel belongs to */
177 	struct list_head clist;		/* link in list of channels per unit */
178 	rwlock_t	upl;		/* protects `ppp' */
179 #ifdef CONFIG_PPP_MULTILINK
180 	u8		avail;		/* flag used in multilink stuff */
181 	u8		had_frag;	/* >= 1 fragments have been sent */
182 	u32		lastseq;	/* MP: last sequence # received */
183 	int		speed;		/* speed of the corresponding ppp channel*/
184 #endif /* CONFIG_PPP_MULTILINK */
185 };
186 
187 struct ppp_config {
188 	struct file *file;
189 	s32 unit;
190 	bool ifname_is_set;
191 };
192 
193 /*
194  * SMP locking issues:
195  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
196  * list and the ppp.n_channels field, you need to take both locks
197  * before you modify them.
198  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
199  * channel.downl.
200  */
201 
202 static DEFINE_MUTEX(ppp_mutex);
203 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
204 static atomic_t channel_count = ATOMIC_INIT(0);
205 
206 /* per-net private data for this module */
207 static int ppp_net_id __read_mostly;
208 struct ppp_net {
209 	/* units to ppp mapping */
210 	struct idr units_idr;
211 
212 	/*
213 	 * all_ppp_mutex protects the units_idr mapping.
214 	 * It also ensures that finding a ppp unit in the units_idr
215 	 * map and updating its file.refcnt field is atomic.
216 	 */
217 	struct mutex all_ppp_mutex;
218 
219 	/* channels */
220 	struct list_head all_channels;
221 	struct list_head new_channels;
222 	int last_channel_index;
223 
224 	/*
225 	 * all_channels_lock protects all_channels and
226 	 * last_channel_index, and the atomicity of find
227 	 * a channel and updating its file.refcnt field.
228 	 */
229 	spinlock_t all_channels_lock;
230 };
231 
232 /* Get the PPP protocol number from a skb */
233 #define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
234 
235 /* We limit the length of ppp->file.rq to this (arbitrary) value */
236 #define PPP_MAX_RQLEN	32
237 
238 /*
239  * Maximum number of multilink fragments queued up.
240  * This has to be large enough to cope with the maximum latency of
241  * the slowest channel relative to the others.  Strictly it should
242  * depend on the number of channels and their characteristics.
243  */
244 #define PPP_MP_MAX_QLEN	128
245 
246 /* Multilink header bits. */
247 #define B	0x80		/* this fragment begins a packet */
248 #define E	0x40		/* this fragment ends a packet */
249 
250 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
251 #define seq_before(a, b)	((s32)((a) - (b)) < 0)
252 #define seq_after(a, b)		((s32)((a) - (b)) > 0)
253 
254 /* Prototypes. */
255 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
256 			struct file *file, unsigned int cmd, unsigned long arg);
257 static void ppp_xmit_process(struct ppp *ppp);
258 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
259 static void ppp_push(struct ppp *ppp);
260 static void ppp_channel_push(struct channel *pch);
261 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
262 			      struct channel *pch);
263 static void ppp_receive_error(struct ppp *ppp);
264 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
265 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
266 					    struct sk_buff *skb);
267 #ifdef CONFIG_PPP_MULTILINK
268 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
269 				struct channel *pch);
270 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
271 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
272 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
273 #endif /* CONFIG_PPP_MULTILINK */
274 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
275 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
276 static void ppp_ccp_closed(struct ppp *ppp);
277 static struct compressor *find_compressor(int type);
278 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
279 static int ppp_create_interface(struct net *net, struct file *file, int *unit);
280 static void init_ppp_file(struct ppp_file *pf, int kind);
281 static void ppp_destroy_interface(struct ppp *ppp);
282 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
283 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
284 static int ppp_connect_channel(struct channel *pch, int unit);
285 static int ppp_disconnect_channel(struct channel *pch);
286 static void ppp_destroy_channel(struct channel *pch);
287 static int unit_get(struct idr *p, void *ptr);
288 static int unit_set(struct idr *p, void *ptr, int n);
289 static void unit_put(struct idr *p, int n);
290 static void *unit_find(struct idr *p, int n);
291 static void ppp_setup(struct net_device *dev);
292 
293 static const struct net_device_ops ppp_netdev_ops;
294 
295 static struct class *ppp_class;
296 
297 /* per net-namespace data */
298 static inline struct ppp_net *ppp_pernet(struct net *net)
299 {
300 	BUG_ON(!net);
301 
302 	return net_generic(net, ppp_net_id);
303 }
304 
305 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
306 static inline int proto_to_npindex(int proto)
307 {
308 	switch (proto) {
309 	case PPP_IP:
310 		return NP_IP;
311 	case PPP_IPV6:
312 		return NP_IPV6;
313 	case PPP_IPX:
314 		return NP_IPX;
315 	case PPP_AT:
316 		return NP_AT;
317 	case PPP_MPLS_UC:
318 		return NP_MPLS_UC;
319 	case PPP_MPLS_MC:
320 		return NP_MPLS_MC;
321 	}
322 	return -EINVAL;
323 }
324 
325 /* Translates an NP index into a PPP protocol number */
326 static const int npindex_to_proto[NUM_NP] = {
327 	PPP_IP,
328 	PPP_IPV6,
329 	PPP_IPX,
330 	PPP_AT,
331 	PPP_MPLS_UC,
332 	PPP_MPLS_MC,
333 };
334 
335 /* Translates an ethertype into an NP index */
336 static inline int ethertype_to_npindex(int ethertype)
337 {
338 	switch (ethertype) {
339 	case ETH_P_IP:
340 		return NP_IP;
341 	case ETH_P_IPV6:
342 		return NP_IPV6;
343 	case ETH_P_IPX:
344 		return NP_IPX;
345 	case ETH_P_PPPTALK:
346 	case ETH_P_ATALK:
347 		return NP_AT;
348 	case ETH_P_MPLS_UC:
349 		return NP_MPLS_UC;
350 	case ETH_P_MPLS_MC:
351 		return NP_MPLS_MC;
352 	}
353 	return -1;
354 }
355 
356 /* Translates an NP index into an ethertype */
357 static const int npindex_to_ethertype[NUM_NP] = {
358 	ETH_P_IP,
359 	ETH_P_IPV6,
360 	ETH_P_IPX,
361 	ETH_P_PPPTALK,
362 	ETH_P_MPLS_UC,
363 	ETH_P_MPLS_MC,
364 };
365 
366 /*
367  * Locking shorthand.
368  */
369 #define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
370 #define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
371 #define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
372 #define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
373 #define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
374 				     ppp_recv_lock(ppp); } while (0)
375 #define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
376 				     ppp_xmit_unlock(ppp); } while (0)
377 
378 /*
379  * /dev/ppp device routines.
380  * The /dev/ppp device is used by pppd to control the ppp unit.
381  * It supports the read, write, ioctl and poll functions.
382  * Open instances of /dev/ppp can be in one of three states:
383  * unattached, attached to a ppp unit, or attached to a ppp channel.
384  */
385 static int ppp_open(struct inode *inode, struct file *file)
386 {
387 	/*
388 	 * This could (should?) be enforced by the permissions on /dev/ppp.
389 	 */
390 	if (!capable(CAP_NET_ADMIN))
391 		return -EPERM;
392 	return 0;
393 }
394 
395 static int ppp_release(struct inode *unused, struct file *file)
396 {
397 	struct ppp_file *pf = file->private_data;
398 	struct ppp *ppp;
399 
400 	if (pf) {
401 		file->private_data = NULL;
402 		if (pf->kind == INTERFACE) {
403 			ppp = PF_TO_PPP(pf);
404 			rtnl_lock();
405 			if (file == ppp->owner)
406 				unregister_netdevice(ppp->dev);
407 			rtnl_unlock();
408 		}
409 		if (atomic_dec_and_test(&pf->refcnt)) {
410 			switch (pf->kind) {
411 			case INTERFACE:
412 				ppp_destroy_interface(PF_TO_PPP(pf));
413 				break;
414 			case CHANNEL:
415 				ppp_destroy_channel(PF_TO_CHANNEL(pf));
416 				break;
417 			}
418 		}
419 	}
420 	return 0;
421 }
422 
423 static ssize_t ppp_read(struct file *file, char __user *buf,
424 			size_t count, loff_t *ppos)
425 {
426 	struct ppp_file *pf = file->private_data;
427 	DECLARE_WAITQUEUE(wait, current);
428 	ssize_t ret;
429 	struct sk_buff *skb = NULL;
430 	struct iovec iov;
431 	struct iov_iter to;
432 
433 	ret = count;
434 
435 	if (!pf)
436 		return -ENXIO;
437 	add_wait_queue(&pf->rwait, &wait);
438 	for (;;) {
439 		set_current_state(TASK_INTERRUPTIBLE);
440 		skb = skb_dequeue(&pf->rq);
441 		if (skb)
442 			break;
443 		ret = 0;
444 		if (pf->dead)
445 			break;
446 		if (pf->kind == INTERFACE) {
447 			/*
448 			 * Return 0 (EOF) on an interface that has no
449 			 * channels connected, unless it is looping
450 			 * network traffic (demand mode).
451 			 */
452 			struct ppp *ppp = PF_TO_PPP(pf);
453 
454 			ppp_recv_lock(ppp);
455 			if (ppp->n_channels == 0 &&
456 			    (ppp->flags & SC_LOOP_TRAFFIC) == 0) {
457 				ppp_recv_unlock(ppp);
458 				break;
459 			}
460 			ppp_recv_unlock(ppp);
461 		}
462 		ret = -EAGAIN;
463 		if (file->f_flags & O_NONBLOCK)
464 			break;
465 		ret = -ERESTARTSYS;
466 		if (signal_pending(current))
467 			break;
468 		schedule();
469 	}
470 	set_current_state(TASK_RUNNING);
471 	remove_wait_queue(&pf->rwait, &wait);
472 
473 	if (!skb)
474 		goto out;
475 
476 	ret = -EOVERFLOW;
477 	if (skb->len > count)
478 		goto outf;
479 	ret = -EFAULT;
480 	iov.iov_base = buf;
481 	iov.iov_len = count;
482 	iov_iter_init(&to, READ, &iov, 1, count);
483 	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
484 		goto outf;
485 	ret = skb->len;
486 
487  outf:
488 	kfree_skb(skb);
489  out:
490 	return ret;
491 }
492 
493 static ssize_t ppp_write(struct file *file, const char __user *buf,
494 			 size_t count, loff_t *ppos)
495 {
496 	struct ppp_file *pf = file->private_data;
497 	struct sk_buff *skb;
498 	ssize_t ret;
499 
500 	if (!pf)
501 		return -ENXIO;
502 	ret = -ENOMEM;
503 	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
504 	if (!skb)
505 		goto out;
506 	skb_reserve(skb, pf->hdrlen);
507 	ret = -EFAULT;
508 	if (copy_from_user(skb_put(skb, count), buf, count)) {
509 		kfree_skb(skb);
510 		goto out;
511 	}
512 
513 	skb_queue_tail(&pf->xq, skb);
514 
515 	switch (pf->kind) {
516 	case INTERFACE:
517 		ppp_xmit_process(PF_TO_PPP(pf));
518 		break;
519 	case CHANNEL:
520 		ppp_channel_push(PF_TO_CHANNEL(pf));
521 		break;
522 	}
523 
524 	ret = count;
525 
526  out:
527 	return ret;
528 }
529 
530 /* No kernel lock - fine */
531 static unsigned int ppp_poll(struct file *file, poll_table *wait)
532 {
533 	struct ppp_file *pf = file->private_data;
534 	unsigned int mask;
535 
536 	if (!pf)
537 		return 0;
538 	poll_wait(file, &pf->rwait, wait);
539 	mask = POLLOUT | POLLWRNORM;
540 	if (skb_peek(&pf->rq))
541 		mask |= POLLIN | POLLRDNORM;
542 	if (pf->dead)
543 		mask |= POLLHUP;
544 	else if (pf->kind == INTERFACE) {
545 		/* see comment in ppp_read */
546 		struct ppp *ppp = PF_TO_PPP(pf);
547 
548 		ppp_recv_lock(ppp);
549 		if (ppp->n_channels == 0 &&
550 		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
551 			mask |= POLLIN | POLLRDNORM;
552 		ppp_recv_unlock(ppp);
553 	}
554 
555 	return mask;
556 }
557 
558 #ifdef CONFIG_PPP_FILTER
559 static int get_filter(void __user *arg, struct sock_filter **p)
560 {
561 	struct sock_fprog uprog;
562 	struct sock_filter *code = NULL;
563 	int len;
564 
565 	if (copy_from_user(&uprog, arg, sizeof(uprog)))
566 		return -EFAULT;
567 
568 	if (!uprog.len) {
569 		*p = NULL;
570 		return 0;
571 	}
572 
573 	len = uprog.len * sizeof(struct sock_filter);
574 	code = memdup_user(uprog.filter, len);
575 	if (IS_ERR(code))
576 		return PTR_ERR(code);
577 
578 	*p = code;
579 	return uprog.len;
580 }
581 #endif /* CONFIG_PPP_FILTER */
582 
583 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
584 {
585 	struct ppp_file *pf;
586 	struct ppp *ppp;
587 	int err = -EFAULT, val, val2, i;
588 	struct ppp_idle idle;
589 	struct npioctl npi;
590 	int unit, cflags;
591 	struct slcompress *vj;
592 	void __user *argp = (void __user *)arg;
593 	int __user *p = argp;
594 
595 	mutex_lock(&ppp_mutex);
596 
597 	pf = file->private_data;
598 	if (!pf) {
599 		err = ppp_unattached_ioctl(current->nsproxy->net_ns,
600 					   pf, file, cmd, arg);
601 		goto out;
602 	}
603 
604 	if (cmd == PPPIOCDETACH) {
605 		/*
606 		 * We have to be careful here... if the file descriptor
607 		 * has been dup'd, we could have another process in the
608 		 * middle of a poll using the same file *, so we had
609 		 * better not free the interface data structures -
610 		 * instead we fail the ioctl.  Even in this case, we
611 		 * shut down the interface if we are the owner of it.
612 		 * Actually, we should get rid of PPPIOCDETACH, userland
613 		 * (i.e. pppd) could achieve the same effect by closing
614 		 * this fd and reopening /dev/ppp.
615 		 */
616 		err = -EINVAL;
617 		if (pf->kind == INTERFACE) {
618 			ppp = PF_TO_PPP(pf);
619 			rtnl_lock();
620 			if (file == ppp->owner)
621 				unregister_netdevice(ppp->dev);
622 			rtnl_unlock();
623 		}
624 		if (atomic_long_read(&file->f_count) < 2) {
625 			ppp_release(NULL, file);
626 			err = 0;
627 		} else
628 			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
629 				atomic_long_read(&file->f_count));
630 		goto out;
631 	}
632 
633 	if (pf->kind == CHANNEL) {
634 		struct channel *pch;
635 		struct ppp_channel *chan;
636 
637 		pch = PF_TO_CHANNEL(pf);
638 
639 		switch (cmd) {
640 		case PPPIOCCONNECT:
641 			if (get_user(unit, p))
642 				break;
643 			err = ppp_connect_channel(pch, unit);
644 			break;
645 
646 		case PPPIOCDISCONN:
647 			err = ppp_disconnect_channel(pch);
648 			break;
649 
650 		default:
651 			down_read(&pch->chan_sem);
652 			chan = pch->chan;
653 			err = -ENOTTY;
654 			if (chan && chan->ops->ioctl)
655 				err = chan->ops->ioctl(chan, cmd, arg);
656 			up_read(&pch->chan_sem);
657 		}
658 		goto out;
659 	}
660 
661 	if (pf->kind != INTERFACE) {
662 		/* can't happen */
663 		pr_err("PPP: not interface or channel??\n");
664 		err = -EINVAL;
665 		goto out;
666 	}
667 
668 	ppp = PF_TO_PPP(pf);
669 	switch (cmd) {
670 	case PPPIOCSMRU:
671 		if (get_user(val, p))
672 			break;
673 		ppp->mru = val;
674 		err = 0;
675 		break;
676 
677 	case PPPIOCSFLAGS:
678 		if (get_user(val, p))
679 			break;
680 		ppp_lock(ppp);
681 		cflags = ppp->flags & ~val;
682 #ifdef CONFIG_PPP_MULTILINK
683 		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
684 			ppp->nextseq = 0;
685 #endif
686 		ppp->flags = val & SC_FLAG_BITS;
687 		ppp_unlock(ppp);
688 		if (cflags & SC_CCP_OPEN)
689 			ppp_ccp_closed(ppp);
690 		err = 0;
691 		break;
692 
693 	case PPPIOCGFLAGS:
694 		val = ppp->flags | ppp->xstate | ppp->rstate;
695 		if (put_user(val, p))
696 			break;
697 		err = 0;
698 		break;
699 
700 	case PPPIOCSCOMPRESS:
701 		err = ppp_set_compress(ppp, arg);
702 		break;
703 
704 	case PPPIOCGUNIT:
705 		if (put_user(ppp->file.index, p))
706 			break;
707 		err = 0;
708 		break;
709 
710 	case PPPIOCSDEBUG:
711 		if (get_user(val, p))
712 			break;
713 		ppp->debug = val;
714 		err = 0;
715 		break;
716 
717 	case PPPIOCGDEBUG:
718 		if (put_user(ppp->debug, p))
719 			break;
720 		err = 0;
721 		break;
722 
723 	case PPPIOCGIDLE:
724 		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
725 		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
726 		if (copy_to_user(argp, &idle, sizeof(idle)))
727 			break;
728 		err = 0;
729 		break;
730 
731 	case PPPIOCSMAXCID:
732 		if (get_user(val, p))
733 			break;
734 		val2 = 15;
735 		if ((val >> 16) != 0) {
736 			val2 = val >> 16;
737 			val &= 0xffff;
738 		}
739 		vj = slhc_init(val2+1, val+1);
740 		if (IS_ERR(vj)) {
741 			err = PTR_ERR(vj);
742 			break;
743 		}
744 		ppp_lock(ppp);
745 		if (ppp->vj)
746 			slhc_free(ppp->vj);
747 		ppp->vj = vj;
748 		ppp_unlock(ppp);
749 		err = 0;
750 		break;
751 
752 	case PPPIOCGNPMODE:
753 	case PPPIOCSNPMODE:
754 		if (copy_from_user(&npi, argp, sizeof(npi)))
755 			break;
756 		err = proto_to_npindex(npi.protocol);
757 		if (err < 0)
758 			break;
759 		i = err;
760 		if (cmd == PPPIOCGNPMODE) {
761 			err = -EFAULT;
762 			npi.mode = ppp->npmode[i];
763 			if (copy_to_user(argp, &npi, sizeof(npi)))
764 				break;
765 		} else {
766 			ppp->npmode[i] = npi.mode;
767 			/* we may be able to transmit more packets now (??) */
768 			netif_wake_queue(ppp->dev);
769 		}
770 		err = 0;
771 		break;
772 
773 #ifdef CONFIG_PPP_FILTER
774 	case PPPIOCSPASS:
775 	{
776 		struct sock_filter *code;
777 
778 		err = get_filter(argp, &code);
779 		if (err >= 0) {
780 			struct bpf_prog *pass_filter = NULL;
781 			struct sock_fprog_kern fprog = {
782 				.len = err,
783 				.filter = code,
784 			};
785 
786 			err = 0;
787 			if (fprog.filter)
788 				err = bpf_prog_create(&pass_filter, &fprog);
789 			if (!err) {
790 				ppp_lock(ppp);
791 				if (ppp->pass_filter)
792 					bpf_prog_destroy(ppp->pass_filter);
793 				ppp->pass_filter = pass_filter;
794 				ppp_unlock(ppp);
795 			}
796 			kfree(code);
797 		}
798 		break;
799 	}
800 	case PPPIOCSACTIVE:
801 	{
802 		struct sock_filter *code;
803 
804 		err = get_filter(argp, &code);
805 		if (err >= 0) {
806 			struct bpf_prog *active_filter = NULL;
807 			struct sock_fprog_kern fprog = {
808 				.len = err,
809 				.filter = code,
810 			};
811 
812 			err = 0;
813 			if (fprog.filter)
814 				err = bpf_prog_create(&active_filter, &fprog);
815 			if (!err) {
816 				ppp_lock(ppp);
817 				if (ppp->active_filter)
818 					bpf_prog_destroy(ppp->active_filter);
819 				ppp->active_filter = active_filter;
820 				ppp_unlock(ppp);
821 			}
822 			kfree(code);
823 		}
824 		break;
825 	}
826 #endif /* CONFIG_PPP_FILTER */
827 
828 #ifdef CONFIG_PPP_MULTILINK
829 	case PPPIOCSMRRU:
830 		if (get_user(val, p))
831 			break;
832 		ppp_recv_lock(ppp);
833 		ppp->mrru = val;
834 		ppp_recv_unlock(ppp);
835 		err = 0;
836 		break;
837 #endif /* CONFIG_PPP_MULTILINK */
838 
839 	default:
840 		err = -ENOTTY;
841 	}
842 
843 out:
844 	mutex_unlock(&ppp_mutex);
845 
846 	return err;
847 }
848 
849 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
850 			struct file *file, unsigned int cmd, unsigned long arg)
851 {
852 	int unit, err = -EFAULT;
853 	struct ppp *ppp;
854 	struct channel *chan;
855 	struct ppp_net *pn;
856 	int __user *p = (int __user *)arg;
857 
858 	switch (cmd) {
859 	case PPPIOCNEWUNIT:
860 		/* Create a new ppp unit */
861 		if (get_user(unit, p))
862 			break;
863 		err = ppp_create_interface(net, file, &unit);
864 		if (err < 0)
865 			break;
866 
867 		err = -EFAULT;
868 		if (put_user(unit, p))
869 			break;
870 		err = 0;
871 		break;
872 
873 	case PPPIOCATTACH:
874 		/* Attach to an existing ppp unit */
875 		if (get_user(unit, p))
876 			break;
877 		err = -ENXIO;
878 		pn = ppp_pernet(net);
879 		mutex_lock(&pn->all_ppp_mutex);
880 		ppp = ppp_find_unit(pn, unit);
881 		if (ppp) {
882 			atomic_inc(&ppp->file.refcnt);
883 			file->private_data = &ppp->file;
884 			err = 0;
885 		}
886 		mutex_unlock(&pn->all_ppp_mutex);
887 		break;
888 
889 	case PPPIOCATTCHAN:
890 		if (get_user(unit, p))
891 			break;
892 		err = -ENXIO;
893 		pn = ppp_pernet(net);
894 		spin_lock_bh(&pn->all_channels_lock);
895 		chan = ppp_find_channel(pn, unit);
896 		if (chan) {
897 			atomic_inc(&chan->file.refcnt);
898 			file->private_data = &chan->file;
899 			err = 0;
900 		}
901 		spin_unlock_bh(&pn->all_channels_lock);
902 		break;
903 
904 	default:
905 		err = -ENOTTY;
906 	}
907 
908 	return err;
909 }
910 
911 static const struct file_operations ppp_device_fops = {
912 	.owner		= THIS_MODULE,
913 	.read		= ppp_read,
914 	.write		= ppp_write,
915 	.poll		= ppp_poll,
916 	.unlocked_ioctl	= ppp_ioctl,
917 	.open		= ppp_open,
918 	.release	= ppp_release,
919 	.llseek		= noop_llseek,
920 };
921 
922 static __net_init int ppp_init_net(struct net *net)
923 {
924 	struct ppp_net *pn = net_generic(net, ppp_net_id);
925 
926 	idr_init(&pn->units_idr);
927 	mutex_init(&pn->all_ppp_mutex);
928 
929 	INIT_LIST_HEAD(&pn->all_channels);
930 	INIT_LIST_HEAD(&pn->new_channels);
931 
932 	spin_lock_init(&pn->all_channels_lock);
933 
934 	return 0;
935 }
936 
937 static __net_exit void ppp_exit_net(struct net *net)
938 {
939 	struct ppp_net *pn = net_generic(net, ppp_net_id);
940 	struct net_device *dev;
941 	struct net_device *aux;
942 	struct ppp *ppp;
943 	LIST_HEAD(list);
944 	int id;
945 
946 	rtnl_lock();
947 	for_each_netdev_safe(net, dev, aux) {
948 		if (dev->netdev_ops == &ppp_netdev_ops)
949 			unregister_netdevice_queue(dev, &list);
950 	}
951 
952 	idr_for_each_entry(&pn->units_idr, ppp, id)
953 		/* Skip devices already unregistered by previous loop */
954 		if (!net_eq(dev_net(ppp->dev), net))
955 			unregister_netdevice_queue(ppp->dev, &list);
956 
957 	unregister_netdevice_many(&list);
958 	rtnl_unlock();
959 
960 	idr_destroy(&pn->units_idr);
961 }
962 
963 static struct pernet_operations ppp_net_ops = {
964 	.init = ppp_init_net,
965 	.exit = ppp_exit_net,
966 	.id   = &ppp_net_id,
967 	.size = sizeof(struct ppp_net),
968 };
969 
970 static int ppp_unit_register(struct ppp *ppp, int unit, bool ifname_is_set)
971 {
972 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
973 	int ret;
974 
975 	mutex_lock(&pn->all_ppp_mutex);
976 
977 	if (unit < 0) {
978 		ret = unit_get(&pn->units_idr, ppp);
979 		if (ret < 0)
980 			goto err;
981 	} else {
982 		/* Caller asked for a specific unit number. Fail with -EEXIST
983 		 * if unavailable. For backward compatibility, return -EEXIST
984 		 * too if idr allocation fails; this makes pppd retry without
985 		 * requesting a specific unit number.
986 		 */
987 		if (unit_find(&pn->units_idr, unit)) {
988 			ret = -EEXIST;
989 			goto err;
990 		}
991 		ret = unit_set(&pn->units_idr, ppp, unit);
992 		if (ret < 0) {
993 			/* Rewrite error for backward compatibility */
994 			ret = -EEXIST;
995 			goto err;
996 		}
997 	}
998 	ppp->file.index = ret;
999 
1000 	if (!ifname_is_set)
1001 		snprintf(ppp->dev->name, IFNAMSIZ, "ppp%i", ppp->file.index);
1002 
1003 	ret = register_netdevice(ppp->dev);
1004 	if (ret < 0)
1005 		goto err_unit;
1006 
1007 	atomic_inc(&ppp_unit_count);
1008 
1009 	mutex_unlock(&pn->all_ppp_mutex);
1010 
1011 	return 0;
1012 
1013 err_unit:
1014 	unit_put(&pn->units_idr, ppp->file.index);
1015 err:
1016 	mutex_unlock(&pn->all_ppp_mutex);
1017 
1018 	return ret;
1019 }
1020 
1021 static int ppp_dev_configure(struct net *src_net, struct net_device *dev,
1022 			     const struct ppp_config *conf)
1023 {
1024 	struct ppp *ppp = netdev_priv(dev);
1025 	int indx;
1026 	int err;
1027 
1028 	ppp->dev = dev;
1029 	ppp->ppp_net = src_net;
1030 	ppp->mru = PPP_MRU;
1031 	ppp->owner = conf->file;
1032 
1033 	init_ppp_file(&ppp->file, INTERFACE);
1034 	ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */
1035 
1036 	for (indx = 0; indx < NUM_NP; ++indx)
1037 		ppp->npmode[indx] = NPMODE_PASS;
1038 	INIT_LIST_HEAD(&ppp->channels);
1039 	spin_lock_init(&ppp->rlock);
1040 	spin_lock_init(&ppp->wlock);
1041 #ifdef CONFIG_PPP_MULTILINK
1042 	ppp->minseq = -1;
1043 	skb_queue_head_init(&ppp->mrq);
1044 #endif /* CONFIG_PPP_MULTILINK */
1045 #ifdef CONFIG_PPP_FILTER
1046 	ppp->pass_filter = NULL;
1047 	ppp->active_filter = NULL;
1048 #endif /* CONFIG_PPP_FILTER */
1049 
1050 	err = ppp_unit_register(ppp, conf->unit, conf->ifname_is_set);
1051 	if (err < 0)
1052 		return err;
1053 
1054 	conf->file->private_data = &ppp->file;
1055 
1056 	return 0;
1057 }
1058 
1059 static const struct nla_policy ppp_nl_policy[IFLA_PPP_MAX + 1] = {
1060 	[IFLA_PPP_DEV_FD]	= { .type = NLA_S32 },
1061 };
1062 
1063 static int ppp_nl_validate(struct nlattr *tb[], struct nlattr *data[])
1064 {
1065 	if (!data)
1066 		return -EINVAL;
1067 
1068 	if (!data[IFLA_PPP_DEV_FD])
1069 		return -EINVAL;
1070 	if (nla_get_s32(data[IFLA_PPP_DEV_FD]) < 0)
1071 		return -EBADF;
1072 
1073 	return 0;
1074 }
1075 
1076 static int ppp_nl_newlink(struct net *src_net, struct net_device *dev,
1077 			  struct nlattr *tb[], struct nlattr *data[])
1078 {
1079 	struct ppp_config conf = {
1080 		.unit = -1,
1081 		.ifname_is_set = true,
1082 	};
1083 	struct file *file;
1084 	int err;
1085 
1086 	file = fget(nla_get_s32(data[IFLA_PPP_DEV_FD]));
1087 	if (!file)
1088 		return -EBADF;
1089 
1090 	/* rtnl_lock is already held here, but ppp_create_interface() locks
1091 	 * ppp_mutex before holding rtnl_lock. Using mutex_trylock() avoids
1092 	 * possible deadlock due to lock order inversion, at the cost of
1093 	 * pushing the problem back to userspace.
1094 	 */
1095 	if (!mutex_trylock(&ppp_mutex)) {
1096 		err = -EBUSY;
1097 		goto out;
1098 	}
1099 
1100 	if (file->f_op != &ppp_device_fops || file->private_data) {
1101 		err = -EBADF;
1102 		goto out_unlock;
1103 	}
1104 
1105 	conf.file = file;
1106 	err = ppp_dev_configure(src_net, dev, &conf);
1107 
1108 out_unlock:
1109 	mutex_unlock(&ppp_mutex);
1110 out:
1111 	fput(file);
1112 
1113 	return err;
1114 }
1115 
1116 static void ppp_nl_dellink(struct net_device *dev, struct list_head *head)
1117 {
1118 	unregister_netdevice_queue(dev, head);
1119 }
1120 
1121 static size_t ppp_nl_get_size(const struct net_device *dev)
1122 {
1123 	return 0;
1124 }
1125 
1126 static int ppp_nl_fill_info(struct sk_buff *skb, const struct net_device *dev)
1127 {
1128 	return 0;
1129 }
1130 
1131 static struct net *ppp_nl_get_link_net(const struct net_device *dev)
1132 {
1133 	struct ppp *ppp = netdev_priv(dev);
1134 
1135 	return ppp->ppp_net;
1136 }
1137 
1138 static struct rtnl_link_ops ppp_link_ops __read_mostly = {
1139 	.kind		= "ppp",
1140 	.maxtype	= IFLA_PPP_MAX,
1141 	.policy		= ppp_nl_policy,
1142 	.priv_size	= sizeof(struct ppp),
1143 	.setup		= ppp_setup,
1144 	.validate	= ppp_nl_validate,
1145 	.newlink	= ppp_nl_newlink,
1146 	.dellink	= ppp_nl_dellink,
1147 	.get_size	= ppp_nl_get_size,
1148 	.fill_info	= ppp_nl_fill_info,
1149 	.get_link_net	= ppp_nl_get_link_net,
1150 };
1151 
1152 #define PPP_MAJOR	108
1153 
1154 /* Called at boot time if ppp is compiled into the kernel,
1155    or at module load time (from init_module) if compiled as a module. */
1156 static int __init ppp_init(void)
1157 {
1158 	int err;
1159 
1160 	pr_info("PPP generic driver version " PPP_VERSION "\n");
1161 
1162 	err = register_pernet_device(&ppp_net_ops);
1163 	if (err) {
1164 		pr_err("failed to register PPP pernet device (%d)\n", err);
1165 		goto out;
1166 	}
1167 
1168 	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
1169 	if (err) {
1170 		pr_err("failed to register PPP device (%d)\n", err);
1171 		goto out_net;
1172 	}
1173 
1174 	ppp_class = class_create(THIS_MODULE, "ppp");
1175 	if (IS_ERR(ppp_class)) {
1176 		err = PTR_ERR(ppp_class);
1177 		goto out_chrdev;
1178 	}
1179 
1180 	err = rtnl_link_register(&ppp_link_ops);
1181 	if (err) {
1182 		pr_err("failed to register rtnetlink PPP handler\n");
1183 		goto out_class;
1184 	}
1185 
1186 	/* not a big deal if we fail here :-) */
1187 	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
1188 
1189 	return 0;
1190 
1191 out_class:
1192 	class_destroy(ppp_class);
1193 out_chrdev:
1194 	unregister_chrdev(PPP_MAJOR, "ppp");
1195 out_net:
1196 	unregister_pernet_device(&ppp_net_ops);
1197 out:
1198 	return err;
1199 }
1200 
1201 /*
1202  * Network interface unit routines.
1203  */
1204 static netdev_tx_t
1205 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
1206 {
1207 	struct ppp *ppp = netdev_priv(dev);
1208 	int npi, proto;
1209 	unsigned char *pp;
1210 
1211 	npi = ethertype_to_npindex(ntohs(skb->protocol));
1212 	if (npi < 0)
1213 		goto outf;
1214 
1215 	/* Drop, accept or reject the packet */
1216 	switch (ppp->npmode[npi]) {
1217 	case NPMODE_PASS:
1218 		break;
1219 	case NPMODE_QUEUE:
1220 		/* it would be nice to have a way to tell the network
1221 		   system to queue this one up for later. */
1222 		goto outf;
1223 	case NPMODE_DROP:
1224 	case NPMODE_ERROR:
1225 		goto outf;
1226 	}
1227 
1228 	/* Put the 2-byte PPP protocol number on the front,
1229 	   making sure there is room for the address and control fields. */
1230 	if (skb_cow_head(skb, PPP_HDRLEN))
1231 		goto outf;
1232 
1233 	pp = skb_push(skb, 2);
1234 	proto = npindex_to_proto[npi];
1235 	put_unaligned_be16(proto, pp);
1236 
1237 	skb_scrub_packet(skb, !net_eq(ppp->ppp_net, dev_net(dev)));
1238 	skb_queue_tail(&ppp->file.xq, skb);
1239 	ppp_xmit_process(ppp);
1240 	return NETDEV_TX_OK;
1241 
1242  outf:
1243 	kfree_skb(skb);
1244 	++dev->stats.tx_dropped;
1245 	return NETDEV_TX_OK;
1246 }
1247 
1248 static int
1249 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1250 {
1251 	struct ppp *ppp = netdev_priv(dev);
1252 	int err = -EFAULT;
1253 	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1254 	struct ppp_stats stats;
1255 	struct ppp_comp_stats cstats;
1256 	char *vers;
1257 
1258 	switch (cmd) {
1259 	case SIOCGPPPSTATS:
1260 		ppp_get_stats(ppp, &stats);
1261 		if (copy_to_user(addr, &stats, sizeof(stats)))
1262 			break;
1263 		err = 0;
1264 		break;
1265 
1266 	case SIOCGPPPCSTATS:
1267 		memset(&cstats, 0, sizeof(cstats));
1268 		if (ppp->xc_state)
1269 			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1270 		if (ppp->rc_state)
1271 			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1272 		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1273 			break;
1274 		err = 0;
1275 		break;
1276 
1277 	case SIOCGPPPVER:
1278 		vers = PPP_VERSION;
1279 		if (copy_to_user(addr, vers, strlen(vers) + 1))
1280 			break;
1281 		err = 0;
1282 		break;
1283 
1284 	default:
1285 		err = -EINVAL;
1286 	}
1287 
1288 	return err;
1289 }
1290 
1291 static struct rtnl_link_stats64*
1292 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1293 {
1294 	struct ppp *ppp = netdev_priv(dev);
1295 
1296 	ppp_recv_lock(ppp);
1297 	stats64->rx_packets = ppp->stats64.rx_packets;
1298 	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1299 	ppp_recv_unlock(ppp);
1300 
1301 	ppp_xmit_lock(ppp);
1302 	stats64->tx_packets = ppp->stats64.tx_packets;
1303 	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1304 	ppp_xmit_unlock(ppp);
1305 
1306 	stats64->rx_errors        = dev->stats.rx_errors;
1307 	stats64->tx_errors        = dev->stats.tx_errors;
1308 	stats64->rx_dropped       = dev->stats.rx_dropped;
1309 	stats64->tx_dropped       = dev->stats.tx_dropped;
1310 	stats64->rx_length_errors = dev->stats.rx_length_errors;
1311 
1312 	return stats64;
1313 }
1314 
1315 static int ppp_dev_init(struct net_device *dev)
1316 {
1317 	netdev_lockdep_set_classes(dev);
1318 	return 0;
1319 }
1320 
1321 static void ppp_dev_uninit(struct net_device *dev)
1322 {
1323 	struct ppp *ppp = netdev_priv(dev);
1324 	struct ppp_net *pn = ppp_pernet(ppp->ppp_net);
1325 
1326 	ppp_lock(ppp);
1327 	ppp->closing = 1;
1328 	ppp_unlock(ppp);
1329 
1330 	mutex_lock(&pn->all_ppp_mutex);
1331 	unit_put(&pn->units_idr, ppp->file.index);
1332 	mutex_unlock(&pn->all_ppp_mutex);
1333 
1334 	ppp->owner = NULL;
1335 
1336 	ppp->file.dead = 1;
1337 	wake_up_interruptible(&ppp->file.rwait);
1338 }
1339 
1340 static const struct net_device_ops ppp_netdev_ops = {
1341 	.ndo_init	 = ppp_dev_init,
1342 	.ndo_uninit      = ppp_dev_uninit,
1343 	.ndo_start_xmit  = ppp_start_xmit,
1344 	.ndo_do_ioctl    = ppp_net_ioctl,
1345 	.ndo_get_stats64 = ppp_get_stats64,
1346 };
1347 
1348 static struct device_type ppp_type = {
1349 	.name = "ppp",
1350 };
1351 
1352 static void ppp_setup(struct net_device *dev)
1353 {
1354 	dev->netdev_ops = &ppp_netdev_ops;
1355 	SET_NETDEV_DEVTYPE(dev, &ppp_type);
1356 
1357 	dev->hard_header_len = PPP_HDRLEN;
1358 	dev->mtu = PPP_MRU;
1359 	dev->addr_len = 0;
1360 	dev->tx_queue_len = 3;
1361 	dev->type = ARPHRD_PPP;
1362 	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1363 	netif_keep_dst(dev);
1364 }
1365 
1366 /*
1367  * Transmit-side routines.
1368  */
1369 
1370 /*
1371  * Called to do any work queued up on the transmit side
1372  * that can now be done.
1373  */
1374 static void
1375 ppp_xmit_process(struct ppp *ppp)
1376 {
1377 	struct sk_buff *skb;
1378 
1379 	ppp_xmit_lock(ppp);
1380 	if (!ppp->closing) {
1381 		ppp_push(ppp);
1382 		while (!ppp->xmit_pending &&
1383 		       (skb = skb_dequeue(&ppp->file.xq)))
1384 			ppp_send_frame(ppp, skb);
1385 		/* If there's no work left to do, tell the core net
1386 		   code that we can accept some more. */
1387 		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1388 			netif_wake_queue(ppp->dev);
1389 		else
1390 			netif_stop_queue(ppp->dev);
1391 	}
1392 	ppp_xmit_unlock(ppp);
1393 }
1394 
1395 static inline struct sk_buff *
1396 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1397 {
1398 	struct sk_buff *new_skb;
1399 	int len;
1400 	int new_skb_size = ppp->dev->mtu +
1401 		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1402 	int compressor_skb_size = ppp->dev->mtu +
1403 		ppp->xcomp->comp_extra + PPP_HDRLEN;
1404 	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1405 	if (!new_skb) {
1406 		if (net_ratelimit())
1407 			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1408 		return NULL;
1409 	}
1410 	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1411 		skb_reserve(new_skb,
1412 			    ppp->dev->hard_header_len - PPP_HDRLEN);
1413 
1414 	/* compressor still expects A/C bytes in hdr */
1415 	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1416 				   new_skb->data, skb->len + 2,
1417 				   compressor_skb_size);
1418 	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1419 		consume_skb(skb);
1420 		skb = new_skb;
1421 		skb_put(skb, len);
1422 		skb_pull(skb, 2);	/* pull off A/C bytes */
1423 	} else if (len == 0) {
1424 		/* didn't compress, or CCP not up yet */
1425 		consume_skb(new_skb);
1426 		new_skb = skb;
1427 	} else {
1428 		/*
1429 		 * (len < 0)
1430 		 * MPPE requires that we do not send unencrypted
1431 		 * frames.  The compressor will return -1 if we
1432 		 * should drop the frame.  We cannot simply test
1433 		 * the compress_proto because MPPE and MPPC share
1434 		 * the same number.
1435 		 */
1436 		if (net_ratelimit())
1437 			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1438 		kfree_skb(skb);
1439 		consume_skb(new_skb);
1440 		new_skb = NULL;
1441 	}
1442 	return new_skb;
1443 }
1444 
1445 /*
1446  * Compress and send a frame.
1447  * The caller should have locked the xmit path,
1448  * and xmit_pending should be 0.
1449  */
1450 static void
1451 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1452 {
1453 	int proto = PPP_PROTO(skb);
1454 	struct sk_buff *new_skb;
1455 	int len;
1456 	unsigned char *cp;
1457 
1458 	if (proto < 0x8000) {
1459 #ifdef CONFIG_PPP_FILTER
1460 		/* check if we should pass this packet */
1461 		/* the filter instructions are constructed assuming
1462 		   a four-byte PPP header on each packet */
1463 		*skb_push(skb, 2) = 1;
1464 		if (ppp->pass_filter &&
1465 		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1466 			if (ppp->debug & 1)
1467 				netdev_printk(KERN_DEBUG, ppp->dev,
1468 					      "PPP: outbound frame "
1469 					      "not passed\n");
1470 			kfree_skb(skb);
1471 			return;
1472 		}
1473 		/* if this packet passes the active filter, record the time */
1474 		if (!(ppp->active_filter &&
1475 		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1476 			ppp->last_xmit = jiffies;
1477 		skb_pull(skb, 2);
1478 #else
1479 		/* for data packets, record the time */
1480 		ppp->last_xmit = jiffies;
1481 #endif /* CONFIG_PPP_FILTER */
1482 	}
1483 
1484 	++ppp->stats64.tx_packets;
1485 	ppp->stats64.tx_bytes += skb->len - 2;
1486 
1487 	switch (proto) {
1488 	case PPP_IP:
1489 		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1490 			break;
1491 		/* try to do VJ TCP header compression */
1492 		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1493 				    GFP_ATOMIC);
1494 		if (!new_skb) {
1495 			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1496 			goto drop;
1497 		}
1498 		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1499 		cp = skb->data + 2;
1500 		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1501 				    new_skb->data + 2, &cp,
1502 				    !(ppp->flags & SC_NO_TCP_CCID));
1503 		if (cp == skb->data + 2) {
1504 			/* didn't compress */
1505 			consume_skb(new_skb);
1506 		} else {
1507 			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1508 				proto = PPP_VJC_COMP;
1509 				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1510 			} else {
1511 				proto = PPP_VJC_UNCOMP;
1512 				cp[0] = skb->data[2];
1513 			}
1514 			consume_skb(skb);
1515 			skb = new_skb;
1516 			cp = skb_put(skb, len + 2);
1517 			cp[0] = 0;
1518 			cp[1] = proto;
1519 		}
1520 		break;
1521 
1522 	case PPP_CCP:
1523 		/* peek at outbound CCP frames */
1524 		ppp_ccp_peek(ppp, skb, 0);
1525 		break;
1526 	}
1527 
1528 	/* try to do packet compression */
1529 	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1530 	    proto != PPP_LCP && proto != PPP_CCP) {
1531 		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1532 			if (net_ratelimit())
1533 				netdev_err(ppp->dev,
1534 					   "ppp: compression required but "
1535 					   "down - pkt dropped.\n");
1536 			goto drop;
1537 		}
1538 		skb = pad_compress_skb(ppp, skb);
1539 		if (!skb)
1540 			goto drop;
1541 	}
1542 
1543 	/*
1544 	 * If we are waiting for traffic (demand dialling),
1545 	 * queue it up for pppd to receive.
1546 	 */
1547 	if (ppp->flags & SC_LOOP_TRAFFIC) {
1548 		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1549 			goto drop;
1550 		skb_queue_tail(&ppp->file.rq, skb);
1551 		wake_up_interruptible(&ppp->file.rwait);
1552 		return;
1553 	}
1554 
1555 	ppp->xmit_pending = skb;
1556 	ppp_push(ppp);
1557 	return;
1558 
1559  drop:
1560 	kfree_skb(skb);
1561 	++ppp->dev->stats.tx_errors;
1562 }
1563 
1564 /*
1565  * Try to send the frame in xmit_pending.
1566  * The caller should have the xmit path locked.
1567  */
1568 static void
1569 ppp_push(struct ppp *ppp)
1570 {
1571 	struct list_head *list;
1572 	struct channel *pch;
1573 	struct sk_buff *skb = ppp->xmit_pending;
1574 
1575 	if (!skb)
1576 		return;
1577 
1578 	list = &ppp->channels;
1579 	if (list_empty(list)) {
1580 		/* nowhere to send the packet, just drop it */
1581 		ppp->xmit_pending = NULL;
1582 		kfree_skb(skb);
1583 		return;
1584 	}
1585 
1586 	if ((ppp->flags & SC_MULTILINK) == 0) {
1587 		/* not doing multilink: send it down the first channel */
1588 		list = list->next;
1589 		pch = list_entry(list, struct channel, clist);
1590 
1591 		spin_lock_bh(&pch->downl);
1592 		if (pch->chan) {
1593 			if (pch->chan->ops->start_xmit(pch->chan, skb))
1594 				ppp->xmit_pending = NULL;
1595 		} else {
1596 			/* channel got unregistered */
1597 			kfree_skb(skb);
1598 			ppp->xmit_pending = NULL;
1599 		}
1600 		spin_unlock_bh(&pch->downl);
1601 		return;
1602 	}
1603 
1604 #ifdef CONFIG_PPP_MULTILINK
1605 	/* Multilink: fragment the packet over as many links
1606 	   as can take the packet at the moment. */
1607 	if (!ppp_mp_explode(ppp, skb))
1608 		return;
1609 #endif /* CONFIG_PPP_MULTILINK */
1610 
1611 	ppp->xmit_pending = NULL;
1612 	kfree_skb(skb);
1613 }
1614 
1615 #ifdef CONFIG_PPP_MULTILINK
1616 static bool mp_protocol_compress __read_mostly = true;
1617 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1618 MODULE_PARM_DESC(mp_protocol_compress,
1619 		 "compress protocol id in multilink fragments");
1620 
1621 /*
1622  * Divide a packet to be transmitted into fragments and
1623  * send them out the individual links.
1624  */
1625 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1626 {
1627 	int len, totlen;
1628 	int i, bits, hdrlen, mtu;
1629 	int flen;
1630 	int navail, nfree, nzero;
1631 	int nbigger;
1632 	int totspeed;
1633 	int totfree;
1634 	unsigned char *p, *q;
1635 	struct list_head *list;
1636 	struct channel *pch;
1637 	struct sk_buff *frag;
1638 	struct ppp_channel *chan;
1639 
1640 	totspeed = 0; /*total bitrate of the bundle*/
1641 	nfree = 0; /* # channels which have no packet already queued */
1642 	navail = 0; /* total # of usable channels (not deregistered) */
1643 	nzero = 0; /* number of channels with zero speed associated*/
1644 	totfree = 0; /*total # of channels available and
1645 				  *having no queued packets before
1646 				  *starting the fragmentation*/
1647 
1648 	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1649 	i = 0;
1650 	list_for_each_entry(pch, &ppp->channels, clist) {
1651 		if (pch->chan) {
1652 			pch->avail = 1;
1653 			navail++;
1654 			pch->speed = pch->chan->speed;
1655 		} else {
1656 			pch->avail = 0;
1657 		}
1658 		if (pch->avail) {
1659 			if (skb_queue_empty(&pch->file.xq) ||
1660 				!pch->had_frag) {
1661 					if (pch->speed == 0)
1662 						nzero++;
1663 					else
1664 						totspeed += pch->speed;
1665 
1666 					pch->avail = 2;
1667 					++nfree;
1668 					++totfree;
1669 				}
1670 			if (!pch->had_frag && i < ppp->nxchan)
1671 				ppp->nxchan = i;
1672 		}
1673 		++i;
1674 	}
1675 	/*
1676 	 * Don't start sending this packet unless at least half of
1677 	 * the channels are free.  This gives much better TCP
1678 	 * performance if we have a lot of channels.
1679 	 */
1680 	if (nfree == 0 || nfree < navail / 2)
1681 		return 0; /* can't take now, leave it in xmit_pending */
1682 
1683 	/* Do protocol field compression */
1684 	p = skb->data;
1685 	len = skb->len;
1686 	if (*p == 0 && mp_protocol_compress) {
1687 		++p;
1688 		--len;
1689 	}
1690 
1691 	totlen = len;
1692 	nbigger = len % nfree;
1693 
1694 	/* skip to the channel after the one we last used
1695 	   and start at that one */
1696 	list = &ppp->channels;
1697 	for (i = 0; i < ppp->nxchan; ++i) {
1698 		list = list->next;
1699 		if (list == &ppp->channels) {
1700 			i = 0;
1701 			break;
1702 		}
1703 	}
1704 
1705 	/* create a fragment for each channel */
1706 	bits = B;
1707 	while (len > 0) {
1708 		list = list->next;
1709 		if (list == &ppp->channels) {
1710 			i = 0;
1711 			continue;
1712 		}
1713 		pch = list_entry(list, struct channel, clist);
1714 		++i;
1715 		if (!pch->avail)
1716 			continue;
1717 
1718 		/*
1719 		 * Skip this channel if it has a fragment pending already and
1720 		 * we haven't given a fragment to all of the free channels.
1721 		 */
1722 		if (pch->avail == 1) {
1723 			if (nfree > 0)
1724 				continue;
1725 		} else {
1726 			pch->avail = 1;
1727 		}
1728 
1729 		/* check the channel's mtu and whether it is still attached. */
1730 		spin_lock_bh(&pch->downl);
1731 		if (pch->chan == NULL) {
1732 			/* can't use this channel, it's being deregistered */
1733 			if (pch->speed == 0)
1734 				nzero--;
1735 			else
1736 				totspeed -= pch->speed;
1737 
1738 			spin_unlock_bh(&pch->downl);
1739 			pch->avail = 0;
1740 			totlen = len;
1741 			totfree--;
1742 			nfree--;
1743 			if (--navail == 0)
1744 				break;
1745 			continue;
1746 		}
1747 
1748 		/*
1749 		*if the channel speed is not set divide
1750 		*the packet evenly among the free channels;
1751 		*otherwise divide it according to the speed
1752 		*of the channel we are going to transmit on
1753 		*/
1754 		flen = len;
1755 		if (nfree > 0) {
1756 			if (pch->speed == 0) {
1757 				flen = len/nfree;
1758 				if (nbigger > 0) {
1759 					flen++;
1760 					nbigger--;
1761 				}
1762 			} else {
1763 				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1764 					((totspeed*totfree)/pch->speed)) - hdrlen;
1765 				if (nbigger > 0) {
1766 					flen += ((totfree - nzero)*pch->speed)/totspeed;
1767 					nbigger -= ((totfree - nzero)*pch->speed)/
1768 							totspeed;
1769 				}
1770 			}
1771 			nfree--;
1772 		}
1773 
1774 		/*
1775 		 *check if we are on the last channel or
1776 		 *we exceded the length of the data to
1777 		 *fragment
1778 		 */
1779 		if ((nfree <= 0) || (flen > len))
1780 			flen = len;
1781 		/*
1782 		 *it is not worth to tx on slow channels:
1783 		 *in that case from the resulting flen according to the
1784 		 *above formula will be equal or less than zero.
1785 		 *Skip the channel in this case
1786 		 */
1787 		if (flen <= 0) {
1788 			pch->avail = 2;
1789 			spin_unlock_bh(&pch->downl);
1790 			continue;
1791 		}
1792 
1793 		/*
1794 		 * hdrlen includes the 2-byte PPP protocol field, but the
1795 		 * MTU counts only the payload excluding the protocol field.
1796 		 * (RFC1661 Section 2)
1797 		 */
1798 		mtu = pch->chan->mtu - (hdrlen - 2);
1799 		if (mtu < 4)
1800 			mtu = 4;
1801 		if (flen > mtu)
1802 			flen = mtu;
1803 		if (flen == len)
1804 			bits |= E;
1805 		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1806 		if (!frag)
1807 			goto noskb;
1808 		q = skb_put(frag, flen + hdrlen);
1809 
1810 		/* make the MP header */
1811 		put_unaligned_be16(PPP_MP, q);
1812 		if (ppp->flags & SC_MP_XSHORTSEQ) {
1813 			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1814 			q[3] = ppp->nxseq;
1815 		} else {
1816 			q[2] = bits;
1817 			q[3] = ppp->nxseq >> 16;
1818 			q[4] = ppp->nxseq >> 8;
1819 			q[5] = ppp->nxseq;
1820 		}
1821 
1822 		memcpy(q + hdrlen, p, flen);
1823 
1824 		/* try to send it down the channel */
1825 		chan = pch->chan;
1826 		if (!skb_queue_empty(&pch->file.xq) ||
1827 			!chan->ops->start_xmit(chan, frag))
1828 			skb_queue_tail(&pch->file.xq, frag);
1829 		pch->had_frag = 1;
1830 		p += flen;
1831 		len -= flen;
1832 		++ppp->nxseq;
1833 		bits = 0;
1834 		spin_unlock_bh(&pch->downl);
1835 	}
1836 	ppp->nxchan = i;
1837 
1838 	return 1;
1839 
1840  noskb:
1841 	spin_unlock_bh(&pch->downl);
1842 	if (ppp->debug & 1)
1843 		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1844 	++ppp->dev->stats.tx_errors;
1845 	++ppp->nxseq;
1846 	return 1;	/* abandon the frame */
1847 }
1848 #endif /* CONFIG_PPP_MULTILINK */
1849 
1850 /*
1851  * Try to send data out on a channel.
1852  */
1853 static void
1854 ppp_channel_push(struct channel *pch)
1855 {
1856 	struct sk_buff *skb;
1857 	struct ppp *ppp;
1858 
1859 	spin_lock_bh(&pch->downl);
1860 	if (pch->chan) {
1861 		while (!skb_queue_empty(&pch->file.xq)) {
1862 			skb = skb_dequeue(&pch->file.xq);
1863 			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1864 				/* put the packet back and try again later */
1865 				skb_queue_head(&pch->file.xq, skb);
1866 				break;
1867 			}
1868 		}
1869 	} else {
1870 		/* channel got deregistered */
1871 		skb_queue_purge(&pch->file.xq);
1872 	}
1873 	spin_unlock_bh(&pch->downl);
1874 	/* see if there is anything from the attached unit to be sent */
1875 	if (skb_queue_empty(&pch->file.xq)) {
1876 		read_lock_bh(&pch->upl);
1877 		ppp = pch->ppp;
1878 		if (ppp)
1879 			ppp_xmit_process(ppp);
1880 		read_unlock_bh(&pch->upl);
1881 	}
1882 }
1883 
1884 /*
1885  * Receive-side routines.
1886  */
1887 
1888 struct ppp_mp_skb_parm {
1889 	u32		sequence;
1890 	u8		BEbits;
1891 };
1892 #define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1893 
1894 static inline void
1895 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1896 {
1897 	ppp_recv_lock(ppp);
1898 	if (!ppp->closing)
1899 		ppp_receive_frame(ppp, skb, pch);
1900 	else
1901 		kfree_skb(skb);
1902 	ppp_recv_unlock(ppp);
1903 }
1904 
1905 void
1906 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1907 {
1908 	struct channel *pch = chan->ppp;
1909 	int proto;
1910 
1911 	if (!pch) {
1912 		kfree_skb(skb);
1913 		return;
1914 	}
1915 
1916 	read_lock_bh(&pch->upl);
1917 	if (!pskb_may_pull(skb, 2)) {
1918 		kfree_skb(skb);
1919 		if (pch->ppp) {
1920 			++pch->ppp->dev->stats.rx_length_errors;
1921 			ppp_receive_error(pch->ppp);
1922 		}
1923 		goto done;
1924 	}
1925 
1926 	proto = PPP_PROTO(skb);
1927 	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1928 		/* put it on the channel queue */
1929 		skb_queue_tail(&pch->file.rq, skb);
1930 		/* drop old frames if queue too long */
1931 		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1932 		       (skb = skb_dequeue(&pch->file.rq)))
1933 			kfree_skb(skb);
1934 		wake_up_interruptible(&pch->file.rwait);
1935 	} else {
1936 		ppp_do_recv(pch->ppp, skb, pch);
1937 	}
1938 
1939 done:
1940 	read_unlock_bh(&pch->upl);
1941 }
1942 
1943 /* Put a 0-length skb in the receive queue as an error indication */
1944 void
1945 ppp_input_error(struct ppp_channel *chan, int code)
1946 {
1947 	struct channel *pch = chan->ppp;
1948 	struct sk_buff *skb;
1949 
1950 	if (!pch)
1951 		return;
1952 
1953 	read_lock_bh(&pch->upl);
1954 	if (pch->ppp) {
1955 		skb = alloc_skb(0, GFP_ATOMIC);
1956 		if (skb) {
1957 			skb->len = 0;		/* probably unnecessary */
1958 			skb->cb[0] = code;
1959 			ppp_do_recv(pch->ppp, skb, pch);
1960 		}
1961 	}
1962 	read_unlock_bh(&pch->upl);
1963 }
1964 
1965 /*
1966  * We come in here to process a received frame.
1967  * The receive side of the ppp unit is locked.
1968  */
1969 static void
1970 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1971 {
1972 	/* note: a 0-length skb is used as an error indication */
1973 	if (skb->len > 0) {
1974 		skb_checksum_complete_unset(skb);
1975 #ifdef CONFIG_PPP_MULTILINK
1976 		/* XXX do channel-level decompression here */
1977 		if (PPP_PROTO(skb) == PPP_MP)
1978 			ppp_receive_mp_frame(ppp, skb, pch);
1979 		else
1980 #endif /* CONFIG_PPP_MULTILINK */
1981 			ppp_receive_nonmp_frame(ppp, skb);
1982 	} else {
1983 		kfree_skb(skb);
1984 		ppp_receive_error(ppp);
1985 	}
1986 }
1987 
1988 static void
1989 ppp_receive_error(struct ppp *ppp)
1990 {
1991 	++ppp->dev->stats.rx_errors;
1992 	if (ppp->vj)
1993 		slhc_toss(ppp->vj);
1994 }
1995 
1996 static void
1997 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1998 {
1999 	struct sk_buff *ns;
2000 	int proto, len, npi;
2001 
2002 	/*
2003 	 * Decompress the frame, if compressed.
2004 	 * Note that some decompressors need to see uncompressed frames
2005 	 * that come in as well as compressed frames.
2006 	 */
2007 	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
2008 	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
2009 		skb = ppp_decompress_frame(ppp, skb);
2010 
2011 	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
2012 		goto err;
2013 
2014 	proto = PPP_PROTO(skb);
2015 	switch (proto) {
2016 	case PPP_VJC_COMP:
2017 		/* decompress VJ compressed packets */
2018 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2019 			goto err;
2020 
2021 		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
2022 			/* copy to a new sk_buff with more tailroom */
2023 			ns = dev_alloc_skb(skb->len + 128);
2024 			if (!ns) {
2025 				netdev_err(ppp->dev, "PPP: no memory "
2026 					   "(VJ decomp)\n");
2027 				goto err;
2028 			}
2029 			skb_reserve(ns, 2);
2030 			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
2031 			consume_skb(skb);
2032 			skb = ns;
2033 		}
2034 		else
2035 			skb->ip_summed = CHECKSUM_NONE;
2036 
2037 		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
2038 		if (len <= 0) {
2039 			netdev_printk(KERN_DEBUG, ppp->dev,
2040 				      "PPP: VJ decompression error\n");
2041 			goto err;
2042 		}
2043 		len += 2;
2044 		if (len > skb->len)
2045 			skb_put(skb, len - skb->len);
2046 		else if (len < skb->len)
2047 			skb_trim(skb, len);
2048 		proto = PPP_IP;
2049 		break;
2050 
2051 	case PPP_VJC_UNCOMP:
2052 		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
2053 			goto err;
2054 
2055 		/* Until we fix the decompressor need to make sure
2056 		 * data portion is linear.
2057 		 */
2058 		if (!pskb_may_pull(skb, skb->len))
2059 			goto err;
2060 
2061 		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
2062 			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
2063 			goto err;
2064 		}
2065 		proto = PPP_IP;
2066 		break;
2067 
2068 	case PPP_CCP:
2069 		ppp_ccp_peek(ppp, skb, 1);
2070 		break;
2071 	}
2072 
2073 	++ppp->stats64.rx_packets;
2074 	ppp->stats64.rx_bytes += skb->len - 2;
2075 
2076 	npi = proto_to_npindex(proto);
2077 	if (npi < 0) {
2078 		/* control or unknown frame - pass it to pppd */
2079 		skb_queue_tail(&ppp->file.rq, skb);
2080 		/* limit queue length by dropping old frames */
2081 		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
2082 		       (skb = skb_dequeue(&ppp->file.rq)))
2083 			kfree_skb(skb);
2084 		/* wake up any process polling or blocking on read */
2085 		wake_up_interruptible(&ppp->file.rwait);
2086 
2087 	} else {
2088 		/* network protocol frame - give it to the kernel */
2089 
2090 #ifdef CONFIG_PPP_FILTER
2091 		/* check if the packet passes the pass and active filters */
2092 		/* the filter instructions are constructed assuming
2093 		   a four-byte PPP header on each packet */
2094 		if (ppp->pass_filter || ppp->active_filter) {
2095 			if (skb_unclone(skb, GFP_ATOMIC))
2096 				goto err;
2097 
2098 			*skb_push(skb, 2) = 0;
2099 			if (ppp->pass_filter &&
2100 			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
2101 				if (ppp->debug & 1)
2102 					netdev_printk(KERN_DEBUG, ppp->dev,
2103 						      "PPP: inbound frame "
2104 						      "not passed\n");
2105 				kfree_skb(skb);
2106 				return;
2107 			}
2108 			if (!(ppp->active_filter &&
2109 			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
2110 				ppp->last_recv = jiffies;
2111 			__skb_pull(skb, 2);
2112 		} else
2113 #endif /* CONFIG_PPP_FILTER */
2114 			ppp->last_recv = jiffies;
2115 
2116 		if ((ppp->dev->flags & IFF_UP) == 0 ||
2117 		    ppp->npmode[npi] != NPMODE_PASS) {
2118 			kfree_skb(skb);
2119 		} else {
2120 			/* chop off protocol */
2121 			skb_pull_rcsum(skb, 2);
2122 			skb->dev = ppp->dev;
2123 			skb->protocol = htons(npindex_to_ethertype[npi]);
2124 			skb_reset_mac_header(skb);
2125 			skb_scrub_packet(skb, !net_eq(ppp->ppp_net,
2126 						      dev_net(ppp->dev)));
2127 			netif_rx(skb);
2128 		}
2129 	}
2130 	return;
2131 
2132  err:
2133 	kfree_skb(skb);
2134 	ppp_receive_error(ppp);
2135 }
2136 
2137 static struct sk_buff *
2138 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
2139 {
2140 	int proto = PPP_PROTO(skb);
2141 	struct sk_buff *ns;
2142 	int len;
2143 
2144 	/* Until we fix all the decompressor's need to make sure
2145 	 * data portion is linear.
2146 	 */
2147 	if (!pskb_may_pull(skb, skb->len))
2148 		goto err;
2149 
2150 	if (proto == PPP_COMP) {
2151 		int obuff_size;
2152 
2153 		switch(ppp->rcomp->compress_proto) {
2154 		case CI_MPPE:
2155 			obuff_size = ppp->mru + PPP_HDRLEN + 1;
2156 			break;
2157 		default:
2158 			obuff_size = ppp->mru + PPP_HDRLEN;
2159 			break;
2160 		}
2161 
2162 		ns = dev_alloc_skb(obuff_size);
2163 		if (!ns) {
2164 			netdev_err(ppp->dev, "ppp_decompress_frame: "
2165 				   "no memory\n");
2166 			goto err;
2167 		}
2168 		/* the decompressor still expects the A/C bytes in the hdr */
2169 		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
2170 				skb->len + 2, ns->data, obuff_size);
2171 		if (len < 0) {
2172 			/* Pass the compressed frame to pppd as an
2173 			   error indication. */
2174 			if (len == DECOMP_FATALERROR)
2175 				ppp->rstate |= SC_DC_FERROR;
2176 			kfree_skb(ns);
2177 			goto err;
2178 		}
2179 
2180 		consume_skb(skb);
2181 		skb = ns;
2182 		skb_put(skb, len);
2183 		skb_pull(skb, 2);	/* pull off the A/C bytes */
2184 
2185 	} else {
2186 		/* Uncompressed frame - pass to decompressor so it
2187 		   can update its dictionary if necessary. */
2188 		if (ppp->rcomp->incomp)
2189 			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
2190 					   skb->len + 2);
2191 	}
2192 
2193 	return skb;
2194 
2195  err:
2196 	ppp->rstate |= SC_DC_ERROR;
2197 	ppp_receive_error(ppp);
2198 	return skb;
2199 }
2200 
2201 #ifdef CONFIG_PPP_MULTILINK
2202 /*
2203  * Receive a multilink frame.
2204  * We put it on the reconstruction queue and then pull off
2205  * as many completed frames as we can.
2206  */
2207 static void
2208 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
2209 {
2210 	u32 mask, seq;
2211 	struct channel *ch;
2212 	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
2213 
2214 	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
2215 		goto err;		/* no good, throw it away */
2216 
2217 	/* Decode sequence number and begin/end bits */
2218 	if (ppp->flags & SC_MP_SHORTSEQ) {
2219 		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
2220 		mask = 0xfff;
2221 	} else {
2222 		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
2223 		mask = 0xffffff;
2224 	}
2225 	PPP_MP_CB(skb)->BEbits = skb->data[2];
2226 	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
2227 
2228 	/*
2229 	 * Do protocol ID decompression on the first fragment of each packet.
2230 	 */
2231 	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
2232 		*skb_push(skb, 1) = 0;
2233 
2234 	/*
2235 	 * Expand sequence number to 32 bits, making it as close
2236 	 * as possible to ppp->minseq.
2237 	 */
2238 	seq |= ppp->minseq & ~mask;
2239 	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
2240 		seq += mask + 1;
2241 	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
2242 		seq -= mask + 1;	/* should never happen */
2243 	PPP_MP_CB(skb)->sequence = seq;
2244 	pch->lastseq = seq;
2245 
2246 	/*
2247 	 * If this packet comes before the next one we were expecting,
2248 	 * drop it.
2249 	 */
2250 	if (seq_before(seq, ppp->nextseq)) {
2251 		kfree_skb(skb);
2252 		++ppp->dev->stats.rx_dropped;
2253 		ppp_receive_error(ppp);
2254 		return;
2255 	}
2256 
2257 	/*
2258 	 * Reevaluate minseq, the minimum over all channels of the
2259 	 * last sequence number received on each channel.  Because of
2260 	 * the increasing sequence number rule, we know that any fragment
2261 	 * before `minseq' which hasn't arrived is never going to arrive.
2262 	 * The list of channels can't change because we have the receive
2263 	 * side of the ppp unit locked.
2264 	 */
2265 	list_for_each_entry(ch, &ppp->channels, clist) {
2266 		if (seq_before(ch->lastseq, seq))
2267 			seq = ch->lastseq;
2268 	}
2269 	if (seq_before(ppp->minseq, seq))
2270 		ppp->minseq = seq;
2271 
2272 	/* Put the fragment on the reconstruction queue */
2273 	ppp_mp_insert(ppp, skb);
2274 
2275 	/* If the queue is getting long, don't wait any longer for packets
2276 	   before the start of the queue. */
2277 	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2278 		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2279 		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2280 			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2281 	}
2282 
2283 	/* Pull completed packets off the queue and receive them. */
2284 	while ((skb = ppp_mp_reconstruct(ppp))) {
2285 		if (pskb_may_pull(skb, 2))
2286 			ppp_receive_nonmp_frame(ppp, skb);
2287 		else {
2288 			++ppp->dev->stats.rx_length_errors;
2289 			kfree_skb(skb);
2290 			ppp_receive_error(ppp);
2291 		}
2292 	}
2293 
2294 	return;
2295 
2296  err:
2297 	kfree_skb(skb);
2298 	ppp_receive_error(ppp);
2299 }
2300 
2301 /*
2302  * Insert a fragment on the MP reconstruction queue.
2303  * The queue is ordered by increasing sequence number.
2304  */
2305 static void
2306 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2307 {
2308 	struct sk_buff *p;
2309 	struct sk_buff_head *list = &ppp->mrq;
2310 	u32 seq = PPP_MP_CB(skb)->sequence;
2311 
2312 	/* N.B. we don't need to lock the list lock because we have the
2313 	   ppp unit receive-side lock. */
2314 	skb_queue_walk(list, p) {
2315 		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2316 			break;
2317 	}
2318 	__skb_queue_before(list, p, skb);
2319 }
2320 
2321 /*
2322  * Reconstruct a packet from the MP fragment queue.
2323  * We go through increasing sequence numbers until we find a
2324  * complete packet, or we get to the sequence number for a fragment
2325  * which hasn't arrived but might still do so.
2326  */
2327 static struct sk_buff *
2328 ppp_mp_reconstruct(struct ppp *ppp)
2329 {
2330 	u32 seq = ppp->nextseq;
2331 	u32 minseq = ppp->minseq;
2332 	struct sk_buff_head *list = &ppp->mrq;
2333 	struct sk_buff *p, *tmp;
2334 	struct sk_buff *head, *tail;
2335 	struct sk_buff *skb = NULL;
2336 	int lost = 0, len = 0;
2337 
2338 	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2339 		return NULL;
2340 	head = list->next;
2341 	tail = NULL;
2342 	skb_queue_walk_safe(list, p, tmp) {
2343 	again:
2344 		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2345 			/* this can't happen, anyway ignore the skb */
2346 			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2347 				   "seq %u < %u\n",
2348 				   PPP_MP_CB(p)->sequence, seq);
2349 			__skb_unlink(p, list);
2350 			kfree_skb(p);
2351 			continue;
2352 		}
2353 		if (PPP_MP_CB(p)->sequence != seq) {
2354 			u32 oldseq;
2355 			/* Fragment `seq' is missing.  If it is after
2356 			   minseq, it might arrive later, so stop here. */
2357 			if (seq_after(seq, minseq))
2358 				break;
2359 			/* Fragment `seq' is lost, keep going. */
2360 			lost = 1;
2361 			oldseq = seq;
2362 			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2363 				minseq + 1: PPP_MP_CB(p)->sequence;
2364 
2365 			if (ppp->debug & 1)
2366 				netdev_printk(KERN_DEBUG, ppp->dev,
2367 					      "lost frag %u..%u\n",
2368 					      oldseq, seq-1);
2369 
2370 			goto again;
2371 		}
2372 
2373 		/*
2374 		 * At this point we know that all the fragments from
2375 		 * ppp->nextseq to seq are either present or lost.
2376 		 * Also, there are no complete packets in the queue
2377 		 * that have no missing fragments and end before this
2378 		 * fragment.
2379 		 */
2380 
2381 		/* B bit set indicates this fragment starts a packet */
2382 		if (PPP_MP_CB(p)->BEbits & B) {
2383 			head = p;
2384 			lost = 0;
2385 			len = 0;
2386 		}
2387 
2388 		len += p->len;
2389 
2390 		/* Got a complete packet yet? */
2391 		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2392 		    (PPP_MP_CB(head)->BEbits & B)) {
2393 			if (len > ppp->mrru + 2) {
2394 				++ppp->dev->stats.rx_length_errors;
2395 				netdev_printk(KERN_DEBUG, ppp->dev,
2396 					      "PPP: reconstructed packet"
2397 					      " is too long (%d)\n", len);
2398 			} else {
2399 				tail = p;
2400 				break;
2401 			}
2402 			ppp->nextseq = seq + 1;
2403 		}
2404 
2405 		/*
2406 		 * If this is the ending fragment of a packet,
2407 		 * and we haven't found a complete valid packet yet,
2408 		 * we can discard up to and including this fragment.
2409 		 */
2410 		if (PPP_MP_CB(p)->BEbits & E) {
2411 			struct sk_buff *tmp2;
2412 
2413 			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2414 				if (ppp->debug & 1)
2415 					netdev_printk(KERN_DEBUG, ppp->dev,
2416 						      "discarding frag %u\n",
2417 						      PPP_MP_CB(p)->sequence);
2418 				__skb_unlink(p, list);
2419 				kfree_skb(p);
2420 			}
2421 			head = skb_peek(list);
2422 			if (!head)
2423 				break;
2424 		}
2425 		++seq;
2426 	}
2427 
2428 	/* If we have a complete packet, copy it all into one skb. */
2429 	if (tail != NULL) {
2430 		/* If we have discarded any fragments,
2431 		   signal a receive error. */
2432 		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2433 			skb_queue_walk_safe(list, p, tmp) {
2434 				if (p == head)
2435 					break;
2436 				if (ppp->debug & 1)
2437 					netdev_printk(KERN_DEBUG, ppp->dev,
2438 						      "discarding frag %u\n",
2439 						      PPP_MP_CB(p)->sequence);
2440 				__skb_unlink(p, list);
2441 				kfree_skb(p);
2442 			}
2443 
2444 			if (ppp->debug & 1)
2445 				netdev_printk(KERN_DEBUG, ppp->dev,
2446 					      "  missed pkts %u..%u\n",
2447 					      ppp->nextseq,
2448 					      PPP_MP_CB(head)->sequence-1);
2449 			++ppp->dev->stats.rx_dropped;
2450 			ppp_receive_error(ppp);
2451 		}
2452 
2453 		skb = head;
2454 		if (head != tail) {
2455 			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2456 			p = skb_queue_next(list, head);
2457 			__skb_unlink(skb, list);
2458 			skb_queue_walk_from_safe(list, p, tmp) {
2459 				__skb_unlink(p, list);
2460 				*fragpp = p;
2461 				p->next = NULL;
2462 				fragpp = &p->next;
2463 
2464 				skb->len += p->len;
2465 				skb->data_len += p->len;
2466 				skb->truesize += p->truesize;
2467 
2468 				if (p == tail)
2469 					break;
2470 			}
2471 		} else {
2472 			__skb_unlink(skb, list);
2473 		}
2474 
2475 		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2476 	}
2477 
2478 	return skb;
2479 }
2480 #endif /* CONFIG_PPP_MULTILINK */
2481 
2482 /*
2483  * Channel interface.
2484  */
2485 
2486 /* Create a new, unattached ppp channel. */
2487 int ppp_register_channel(struct ppp_channel *chan)
2488 {
2489 	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2490 }
2491 
2492 /* Create a new, unattached ppp channel for specified net. */
2493 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2494 {
2495 	struct channel *pch;
2496 	struct ppp_net *pn;
2497 
2498 	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2499 	if (!pch)
2500 		return -ENOMEM;
2501 
2502 	pn = ppp_pernet(net);
2503 
2504 	pch->ppp = NULL;
2505 	pch->chan = chan;
2506 	pch->chan_net = get_net(net);
2507 	chan->ppp = pch;
2508 	init_ppp_file(&pch->file, CHANNEL);
2509 	pch->file.hdrlen = chan->hdrlen;
2510 #ifdef CONFIG_PPP_MULTILINK
2511 	pch->lastseq = -1;
2512 #endif /* CONFIG_PPP_MULTILINK */
2513 	init_rwsem(&pch->chan_sem);
2514 	spin_lock_init(&pch->downl);
2515 	rwlock_init(&pch->upl);
2516 
2517 	spin_lock_bh(&pn->all_channels_lock);
2518 	pch->file.index = ++pn->last_channel_index;
2519 	list_add(&pch->list, &pn->new_channels);
2520 	atomic_inc(&channel_count);
2521 	spin_unlock_bh(&pn->all_channels_lock);
2522 
2523 	return 0;
2524 }
2525 
2526 /*
2527  * Return the index of a channel.
2528  */
2529 int ppp_channel_index(struct ppp_channel *chan)
2530 {
2531 	struct channel *pch = chan->ppp;
2532 
2533 	if (pch)
2534 		return pch->file.index;
2535 	return -1;
2536 }
2537 
2538 /*
2539  * Return the PPP unit number to which a channel is connected.
2540  */
2541 int ppp_unit_number(struct ppp_channel *chan)
2542 {
2543 	struct channel *pch = chan->ppp;
2544 	int unit = -1;
2545 
2546 	if (pch) {
2547 		read_lock_bh(&pch->upl);
2548 		if (pch->ppp)
2549 			unit = pch->ppp->file.index;
2550 		read_unlock_bh(&pch->upl);
2551 	}
2552 	return unit;
2553 }
2554 
2555 /*
2556  * Return the PPP device interface name of a channel.
2557  */
2558 char *ppp_dev_name(struct ppp_channel *chan)
2559 {
2560 	struct channel *pch = chan->ppp;
2561 	char *name = NULL;
2562 
2563 	if (pch) {
2564 		read_lock_bh(&pch->upl);
2565 		if (pch->ppp && pch->ppp->dev)
2566 			name = pch->ppp->dev->name;
2567 		read_unlock_bh(&pch->upl);
2568 	}
2569 	return name;
2570 }
2571 
2572 
2573 /*
2574  * Disconnect a channel from the generic layer.
2575  * This must be called in process context.
2576  */
2577 void
2578 ppp_unregister_channel(struct ppp_channel *chan)
2579 {
2580 	struct channel *pch = chan->ppp;
2581 	struct ppp_net *pn;
2582 
2583 	if (!pch)
2584 		return;		/* should never happen */
2585 
2586 	chan->ppp = NULL;
2587 
2588 	/*
2589 	 * This ensures that we have returned from any calls into the
2590 	 * the channel's start_xmit or ioctl routine before we proceed.
2591 	 */
2592 	down_write(&pch->chan_sem);
2593 	spin_lock_bh(&pch->downl);
2594 	pch->chan = NULL;
2595 	spin_unlock_bh(&pch->downl);
2596 	up_write(&pch->chan_sem);
2597 	ppp_disconnect_channel(pch);
2598 
2599 	pn = ppp_pernet(pch->chan_net);
2600 	spin_lock_bh(&pn->all_channels_lock);
2601 	list_del(&pch->list);
2602 	spin_unlock_bh(&pn->all_channels_lock);
2603 
2604 	pch->file.dead = 1;
2605 	wake_up_interruptible(&pch->file.rwait);
2606 	if (atomic_dec_and_test(&pch->file.refcnt))
2607 		ppp_destroy_channel(pch);
2608 }
2609 
2610 /*
2611  * Callback from a channel when it can accept more to transmit.
2612  * This should be called at BH/softirq level, not interrupt level.
2613  */
2614 void
2615 ppp_output_wakeup(struct ppp_channel *chan)
2616 {
2617 	struct channel *pch = chan->ppp;
2618 
2619 	if (!pch)
2620 		return;
2621 	ppp_channel_push(pch);
2622 }
2623 
2624 /*
2625  * Compression control.
2626  */
2627 
2628 /* Process the PPPIOCSCOMPRESS ioctl. */
2629 static int
2630 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2631 {
2632 	int err;
2633 	struct compressor *cp, *ocomp;
2634 	struct ppp_option_data data;
2635 	void *state, *ostate;
2636 	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2637 
2638 	err = -EFAULT;
2639 	if (copy_from_user(&data, (void __user *) arg, sizeof(data)))
2640 		goto out;
2641 	if (data.length > CCP_MAX_OPTION_LENGTH)
2642 		goto out;
2643 	if (copy_from_user(ccp_option, (void __user *) data.ptr, data.length))
2644 		goto out;
2645 
2646 	err = -EINVAL;
2647 	if (data.length < 2 || ccp_option[1] < 2 || ccp_option[1] > data.length)
2648 		goto out;
2649 
2650 	cp = try_then_request_module(
2651 		find_compressor(ccp_option[0]),
2652 		"ppp-compress-%d", ccp_option[0]);
2653 	if (!cp)
2654 		goto out;
2655 
2656 	err = -ENOBUFS;
2657 	if (data.transmit) {
2658 		state = cp->comp_alloc(ccp_option, data.length);
2659 		if (state) {
2660 			ppp_xmit_lock(ppp);
2661 			ppp->xstate &= ~SC_COMP_RUN;
2662 			ocomp = ppp->xcomp;
2663 			ostate = ppp->xc_state;
2664 			ppp->xcomp = cp;
2665 			ppp->xc_state = state;
2666 			ppp_xmit_unlock(ppp);
2667 			if (ostate) {
2668 				ocomp->comp_free(ostate);
2669 				module_put(ocomp->owner);
2670 			}
2671 			err = 0;
2672 		} else
2673 			module_put(cp->owner);
2674 
2675 	} else {
2676 		state = cp->decomp_alloc(ccp_option, data.length);
2677 		if (state) {
2678 			ppp_recv_lock(ppp);
2679 			ppp->rstate &= ~SC_DECOMP_RUN;
2680 			ocomp = ppp->rcomp;
2681 			ostate = ppp->rc_state;
2682 			ppp->rcomp = cp;
2683 			ppp->rc_state = state;
2684 			ppp_recv_unlock(ppp);
2685 			if (ostate) {
2686 				ocomp->decomp_free(ostate);
2687 				module_put(ocomp->owner);
2688 			}
2689 			err = 0;
2690 		} else
2691 			module_put(cp->owner);
2692 	}
2693 
2694  out:
2695 	return err;
2696 }
2697 
2698 /*
2699  * Look at a CCP packet and update our state accordingly.
2700  * We assume the caller has the xmit or recv path locked.
2701  */
2702 static void
2703 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2704 {
2705 	unsigned char *dp;
2706 	int len;
2707 
2708 	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2709 		return;	/* no header */
2710 	dp = skb->data + 2;
2711 
2712 	switch (CCP_CODE(dp)) {
2713 	case CCP_CONFREQ:
2714 
2715 		/* A ConfReq starts negotiation of compression
2716 		 * in one direction of transmission,
2717 		 * and hence brings it down...but which way?
2718 		 *
2719 		 * Remember:
2720 		 * A ConfReq indicates what the sender would like to receive
2721 		 */
2722 		if(inbound)
2723 			/* He is proposing what I should send */
2724 			ppp->xstate &= ~SC_COMP_RUN;
2725 		else
2726 			/* I am proposing to what he should send */
2727 			ppp->rstate &= ~SC_DECOMP_RUN;
2728 
2729 		break;
2730 
2731 	case CCP_TERMREQ:
2732 	case CCP_TERMACK:
2733 		/*
2734 		 * CCP is going down, both directions of transmission
2735 		 */
2736 		ppp->rstate &= ~SC_DECOMP_RUN;
2737 		ppp->xstate &= ~SC_COMP_RUN;
2738 		break;
2739 
2740 	case CCP_CONFACK:
2741 		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2742 			break;
2743 		len = CCP_LENGTH(dp);
2744 		if (!pskb_may_pull(skb, len + 2))
2745 			return;		/* too short */
2746 		dp += CCP_HDRLEN;
2747 		len -= CCP_HDRLEN;
2748 		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2749 			break;
2750 		if (inbound) {
2751 			/* we will start receiving compressed packets */
2752 			if (!ppp->rc_state)
2753 				break;
2754 			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2755 					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2756 				ppp->rstate |= SC_DECOMP_RUN;
2757 				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2758 			}
2759 		} else {
2760 			/* we will soon start sending compressed packets */
2761 			if (!ppp->xc_state)
2762 				break;
2763 			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2764 					ppp->file.index, 0, ppp->debug))
2765 				ppp->xstate |= SC_COMP_RUN;
2766 		}
2767 		break;
2768 
2769 	case CCP_RESETACK:
2770 		/* reset the [de]compressor */
2771 		if ((ppp->flags & SC_CCP_UP) == 0)
2772 			break;
2773 		if (inbound) {
2774 			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2775 				ppp->rcomp->decomp_reset(ppp->rc_state);
2776 				ppp->rstate &= ~SC_DC_ERROR;
2777 			}
2778 		} else {
2779 			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2780 				ppp->xcomp->comp_reset(ppp->xc_state);
2781 		}
2782 		break;
2783 	}
2784 }
2785 
2786 /* Free up compression resources. */
2787 static void
2788 ppp_ccp_closed(struct ppp *ppp)
2789 {
2790 	void *xstate, *rstate;
2791 	struct compressor *xcomp, *rcomp;
2792 
2793 	ppp_lock(ppp);
2794 	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2795 	ppp->xstate = 0;
2796 	xcomp = ppp->xcomp;
2797 	xstate = ppp->xc_state;
2798 	ppp->xc_state = NULL;
2799 	ppp->rstate = 0;
2800 	rcomp = ppp->rcomp;
2801 	rstate = ppp->rc_state;
2802 	ppp->rc_state = NULL;
2803 	ppp_unlock(ppp);
2804 
2805 	if (xstate) {
2806 		xcomp->comp_free(xstate);
2807 		module_put(xcomp->owner);
2808 	}
2809 	if (rstate) {
2810 		rcomp->decomp_free(rstate);
2811 		module_put(rcomp->owner);
2812 	}
2813 }
2814 
2815 /* List of compressors. */
2816 static LIST_HEAD(compressor_list);
2817 static DEFINE_SPINLOCK(compressor_list_lock);
2818 
2819 struct compressor_entry {
2820 	struct list_head list;
2821 	struct compressor *comp;
2822 };
2823 
2824 static struct compressor_entry *
2825 find_comp_entry(int proto)
2826 {
2827 	struct compressor_entry *ce;
2828 
2829 	list_for_each_entry(ce, &compressor_list, list) {
2830 		if (ce->comp->compress_proto == proto)
2831 			return ce;
2832 	}
2833 	return NULL;
2834 }
2835 
2836 /* Register a compressor */
2837 int
2838 ppp_register_compressor(struct compressor *cp)
2839 {
2840 	struct compressor_entry *ce;
2841 	int ret;
2842 	spin_lock(&compressor_list_lock);
2843 	ret = -EEXIST;
2844 	if (find_comp_entry(cp->compress_proto))
2845 		goto out;
2846 	ret = -ENOMEM;
2847 	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2848 	if (!ce)
2849 		goto out;
2850 	ret = 0;
2851 	ce->comp = cp;
2852 	list_add(&ce->list, &compressor_list);
2853  out:
2854 	spin_unlock(&compressor_list_lock);
2855 	return ret;
2856 }
2857 
2858 /* Unregister a compressor */
2859 void
2860 ppp_unregister_compressor(struct compressor *cp)
2861 {
2862 	struct compressor_entry *ce;
2863 
2864 	spin_lock(&compressor_list_lock);
2865 	ce = find_comp_entry(cp->compress_proto);
2866 	if (ce && ce->comp == cp) {
2867 		list_del(&ce->list);
2868 		kfree(ce);
2869 	}
2870 	spin_unlock(&compressor_list_lock);
2871 }
2872 
2873 /* Find a compressor. */
2874 static struct compressor *
2875 find_compressor(int type)
2876 {
2877 	struct compressor_entry *ce;
2878 	struct compressor *cp = NULL;
2879 
2880 	spin_lock(&compressor_list_lock);
2881 	ce = find_comp_entry(type);
2882 	if (ce) {
2883 		cp = ce->comp;
2884 		if (!try_module_get(cp->owner))
2885 			cp = NULL;
2886 	}
2887 	spin_unlock(&compressor_list_lock);
2888 	return cp;
2889 }
2890 
2891 /*
2892  * Miscelleneous stuff.
2893  */
2894 
2895 static void
2896 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2897 {
2898 	struct slcompress *vj = ppp->vj;
2899 
2900 	memset(st, 0, sizeof(*st));
2901 	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2902 	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2903 	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2904 	st->p.ppp_opackets = ppp->stats64.tx_packets;
2905 	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2906 	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2907 	if (!vj)
2908 		return;
2909 	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2910 	st->vj.vjs_compressed = vj->sls_o_compressed;
2911 	st->vj.vjs_searches = vj->sls_o_searches;
2912 	st->vj.vjs_misses = vj->sls_o_misses;
2913 	st->vj.vjs_errorin = vj->sls_i_error;
2914 	st->vj.vjs_tossed = vj->sls_i_tossed;
2915 	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2916 	st->vj.vjs_compressedin = vj->sls_i_compressed;
2917 }
2918 
2919 /*
2920  * Stuff for handling the lists of ppp units and channels
2921  * and for initialization.
2922  */
2923 
2924 /*
2925  * Create a new ppp interface unit.  Fails if it can't allocate memory
2926  * or if there is already a unit with the requested number.
2927  * unit == -1 means allocate a new number.
2928  */
2929 static int ppp_create_interface(struct net *net, struct file *file, int *unit)
2930 {
2931 	struct ppp_config conf = {
2932 		.file = file,
2933 		.unit = *unit,
2934 		.ifname_is_set = false,
2935 	};
2936 	struct net_device *dev;
2937 	struct ppp *ppp;
2938 	int err;
2939 
2940 	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_ENUM, ppp_setup);
2941 	if (!dev) {
2942 		err = -ENOMEM;
2943 		goto err;
2944 	}
2945 	dev_net_set(dev, net);
2946 	dev->rtnl_link_ops = &ppp_link_ops;
2947 
2948 	rtnl_lock();
2949 
2950 	err = ppp_dev_configure(net, dev, &conf);
2951 	if (err < 0)
2952 		goto err_dev;
2953 	ppp = netdev_priv(dev);
2954 	*unit = ppp->file.index;
2955 
2956 	rtnl_unlock();
2957 
2958 	return 0;
2959 
2960 err_dev:
2961 	rtnl_unlock();
2962 	free_netdev(dev);
2963 err:
2964 	return err;
2965 }
2966 
2967 /*
2968  * Initialize a ppp_file structure.
2969  */
2970 static void
2971 init_ppp_file(struct ppp_file *pf, int kind)
2972 {
2973 	pf->kind = kind;
2974 	skb_queue_head_init(&pf->xq);
2975 	skb_queue_head_init(&pf->rq);
2976 	atomic_set(&pf->refcnt, 1);
2977 	init_waitqueue_head(&pf->rwait);
2978 }
2979 
2980 /*
2981  * Free the memory used by a ppp unit.  This is only called once
2982  * there are no channels connected to the unit and no file structs
2983  * that reference the unit.
2984  */
2985 static void ppp_destroy_interface(struct ppp *ppp)
2986 {
2987 	atomic_dec(&ppp_unit_count);
2988 
2989 	if (!ppp->file.dead || ppp->n_channels) {
2990 		/* "can't happen" */
2991 		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2992 			   "but dead=%d n_channels=%d !\n",
2993 			   ppp, ppp->file.dead, ppp->n_channels);
2994 		return;
2995 	}
2996 
2997 	ppp_ccp_closed(ppp);
2998 	if (ppp->vj) {
2999 		slhc_free(ppp->vj);
3000 		ppp->vj = NULL;
3001 	}
3002 	skb_queue_purge(&ppp->file.xq);
3003 	skb_queue_purge(&ppp->file.rq);
3004 #ifdef CONFIG_PPP_MULTILINK
3005 	skb_queue_purge(&ppp->mrq);
3006 #endif /* CONFIG_PPP_MULTILINK */
3007 #ifdef CONFIG_PPP_FILTER
3008 	if (ppp->pass_filter) {
3009 		bpf_prog_destroy(ppp->pass_filter);
3010 		ppp->pass_filter = NULL;
3011 	}
3012 
3013 	if (ppp->active_filter) {
3014 		bpf_prog_destroy(ppp->active_filter);
3015 		ppp->active_filter = NULL;
3016 	}
3017 #endif /* CONFIG_PPP_FILTER */
3018 
3019 	kfree_skb(ppp->xmit_pending);
3020 
3021 	free_netdev(ppp->dev);
3022 }
3023 
3024 /*
3025  * Locate an existing ppp unit.
3026  * The caller should have locked the all_ppp_mutex.
3027  */
3028 static struct ppp *
3029 ppp_find_unit(struct ppp_net *pn, int unit)
3030 {
3031 	return unit_find(&pn->units_idr, unit);
3032 }
3033 
3034 /*
3035  * Locate an existing ppp channel.
3036  * The caller should have locked the all_channels_lock.
3037  * First we look in the new_channels list, then in the
3038  * all_channels list.  If found in the new_channels list,
3039  * we move it to the all_channels list.  This is for speed
3040  * when we have a lot of channels in use.
3041  */
3042 static struct channel *
3043 ppp_find_channel(struct ppp_net *pn, int unit)
3044 {
3045 	struct channel *pch;
3046 
3047 	list_for_each_entry(pch, &pn->new_channels, list) {
3048 		if (pch->file.index == unit) {
3049 			list_move(&pch->list, &pn->all_channels);
3050 			return pch;
3051 		}
3052 	}
3053 
3054 	list_for_each_entry(pch, &pn->all_channels, list) {
3055 		if (pch->file.index == unit)
3056 			return pch;
3057 	}
3058 
3059 	return NULL;
3060 }
3061 
3062 /*
3063  * Connect a PPP channel to a PPP interface unit.
3064  */
3065 static int
3066 ppp_connect_channel(struct channel *pch, int unit)
3067 {
3068 	struct ppp *ppp;
3069 	struct ppp_net *pn;
3070 	int ret = -ENXIO;
3071 	int hdrlen;
3072 
3073 	pn = ppp_pernet(pch->chan_net);
3074 
3075 	mutex_lock(&pn->all_ppp_mutex);
3076 	ppp = ppp_find_unit(pn, unit);
3077 	if (!ppp)
3078 		goto out;
3079 	write_lock_bh(&pch->upl);
3080 	ret = -EINVAL;
3081 	if (pch->ppp)
3082 		goto outl;
3083 
3084 	ppp_lock(ppp);
3085 	if (pch->file.hdrlen > ppp->file.hdrlen)
3086 		ppp->file.hdrlen = pch->file.hdrlen;
3087 	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
3088 	if (hdrlen > ppp->dev->hard_header_len)
3089 		ppp->dev->hard_header_len = hdrlen;
3090 	list_add_tail(&pch->clist, &ppp->channels);
3091 	++ppp->n_channels;
3092 	pch->ppp = ppp;
3093 	atomic_inc(&ppp->file.refcnt);
3094 	ppp_unlock(ppp);
3095 	ret = 0;
3096 
3097  outl:
3098 	write_unlock_bh(&pch->upl);
3099  out:
3100 	mutex_unlock(&pn->all_ppp_mutex);
3101 	return ret;
3102 }
3103 
3104 /*
3105  * Disconnect a channel from its ppp unit.
3106  */
3107 static int
3108 ppp_disconnect_channel(struct channel *pch)
3109 {
3110 	struct ppp *ppp;
3111 	int err = -EINVAL;
3112 
3113 	write_lock_bh(&pch->upl);
3114 	ppp = pch->ppp;
3115 	pch->ppp = NULL;
3116 	write_unlock_bh(&pch->upl);
3117 	if (ppp) {
3118 		/* remove it from the ppp unit's list */
3119 		ppp_lock(ppp);
3120 		list_del(&pch->clist);
3121 		if (--ppp->n_channels == 0)
3122 			wake_up_interruptible(&ppp->file.rwait);
3123 		ppp_unlock(ppp);
3124 		if (atomic_dec_and_test(&ppp->file.refcnt))
3125 			ppp_destroy_interface(ppp);
3126 		err = 0;
3127 	}
3128 	return err;
3129 }
3130 
3131 /*
3132  * Free up the resources used by a ppp channel.
3133  */
3134 static void ppp_destroy_channel(struct channel *pch)
3135 {
3136 	put_net(pch->chan_net);
3137 	pch->chan_net = NULL;
3138 
3139 	atomic_dec(&channel_count);
3140 
3141 	if (!pch->file.dead) {
3142 		/* "can't happen" */
3143 		pr_err("ppp: destroying undead channel %p !\n", pch);
3144 		return;
3145 	}
3146 	skb_queue_purge(&pch->file.xq);
3147 	skb_queue_purge(&pch->file.rq);
3148 	kfree(pch);
3149 }
3150 
3151 static void __exit ppp_cleanup(void)
3152 {
3153 	/* should never happen */
3154 	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
3155 		pr_err("PPP: removing module but units remain!\n");
3156 	rtnl_link_unregister(&ppp_link_ops);
3157 	unregister_chrdev(PPP_MAJOR, "ppp");
3158 	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
3159 	class_destroy(ppp_class);
3160 	unregister_pernet_device(&ppp_net_ops);
3161 }
3162 
3163 /*
3164  * Units handling. Caller must protect concurrent access
3165  * by holding all_ppp_mutex
3166  */
3167 
3168 /* associate pointer with specified number */
3169 static int unit_set(struct idr *p, void *ptr, int n)
3170 {
3171 	int unit;
3172 
3173 	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
3174 	if (unit == -ENOSPC)
3175 		unit = -EINVAL;
3176 	return unit;
3177 }
3178 
3179 /* get new free unit number and associate pointer with it */
3180 static int unit_get(struct idr *p, void *ptr)
3181 {
3182 	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3183 }
3184 
3185 /* put unit number back to a pool */
3186 static void unit_put(struct idr *p, int n)
3187 {
3188 	idr_remove(p, n);
3189 }
3190 
3191 /* get pointer associated with the number */
3192 static void *unit_find(struct idr *p, int n)
3193 {
3194 	return idr_find(p, n);
3195 }
3196 
3197 /* Module/initialization stuff */
3198 
3199 module_init(ppp_init);
3200 module_exit(ppp_cleanup);
3201 
3202 EXPORT_SYMBOL(ppp_register_net_channel);
3203 EXPORT_SYMBOL(ppp_register_channel);
3204 EXPORT_SYMBOL(ppp_unregister_channel);
3205 EXPORT_SYMBOL(ppp_channel_index);
3206 EXPORT_SYMBOL(ppp_unit_number);
3207 EXPORT_SYMBOL(ppp_dev_name);
3208 EXPORT_SYMBOL(ppp_input);
3209 EXPORT_SYMBOL(ppp_input_error);
3210 EXPORT_SYMBOL(ppp_output_wakeup);
3211 EXPORT_SYMBOL(ppp_register_compressor);
3212 EXPORT_SYMBOL(ppp_unregister_compressor);
3213 MODULE_LICENSE("GPL");
3214 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3215 MODULE_ALIAS_RTNL_LINK("ppp");
3216 MODULE_ALIAS("devname:ppp");
3217