xref: /linux/drivers/net/phy/sfp.c (revision eb65f96cb332d577b490ab9c9f5f8de8c0316076)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RS0,
28 	GPIO_RS1,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RS0 = BIT(GPIO_RS0),
36 	SFP_F_RS1 = BIT(GPIO_RS1),
37 
38 	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39 
40 	SFP_E_INSERT = 0,
41 	SFP_E_REMOVE,
42 	SFP_E_DEV_ATTACH,
43 	SFP_E_DEV_DETACH,
44 	SFP_E_DEV_DOWN,
45 	SFP_E_DEV_UP,
46 	SFP_E_TX_FAULT,
47 	SFP_E_TX_CLEAR,
48 	SFP_E_LOS_HIGH,
49 	SFP_E_LOS_LOW,
50 	SFP_E_TIMEOUT,
51 
52 	SFP_MOD_EMPTY = 0,
53 	SFP_MOD_ERROR,
54 	SFP_MOD_PROBE,
55 	SFP_MOD_WAITDEV,
56 	SFP_MOD_HPOWER,
57 	SFP_MOD_WAITPWR,
58 	SFP_MOD_PRESENT,
59 
60 	SFP_DEV_DETACHED = 0,
61 	SFP_DEV_DOWN,
62 	SFP_DEV_UP,
63 
64 	SFP_S_DOWN = 0,
65 	SFP_S_FAIL,
66 	SFP_S_WAIT,
67 	SFP_S_INIT,
68 	SFP_S_INIT_PHY,
69 	SFP_S_INIT_TX_FAULT,
70 	SFP_S_WAIT_LOS,
71 	SFP_S_LINK_UP,
72 	SFP_S_TX_FAULT,
73 	SFP_S_REINIT,
74 	SFP_S_TX_DISABLE,
75 };
76 
77 static const char  * const mod_state_strings[] = {
78 	[SFP_MOD_EMPTY] = "empty",
79 	[SFP_MOD_ERROR] = "error",
80 	[SFP_MOD_PROBE] = "probe",
81 	[SFP_MOD_WAITDEV] = "waitdev",
82 	[SFP_MOD_HPOWER] = "hpower",
83 	[SFP_MOD_WAITPWR] = "waitpwr",
84 	[SFP_MOD_PRESENT] = "present",
85 };
86 
87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 		return "Unknown module state";
91 	return mod_state_strings[mod_state];
92 }
93 
94 static const char * const dev_state_strings[] = {
95 	[SFP_DEV_DETACHED] = "detached",
96 	[SFP_DEV_DOWN] = "down",
97 	[SFP_DEV_UP] = "up",
98 };
99 
100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 		return "Unknown device state";
104 	return dev_state_strings[dev_state];
105 }
106 
107 static const char * const event_strings[] = {
108 	[SFP_E_INSERT] = "insert",
109 	[SFP_E_REMOVE] = "remove",
110 	[SFP_E_DEV_ATTACH] = "dev_attach",
111 	[SFP_E_DEV_DETACH] = "dev_detach",
112 	[SFP_E_DEV_DOWN] = "dev_down",
113 	[SFP_E_DEV_UP] = "dev_up",
114 	[SFP_E_TX_FAULT] = "tx_fault",
115 	[SFP_E_TX_CLEAR] = "tx_clear",
116 	[SFP_E_LOS_HIGH] = "los_high",
117 	[SFP_E_LOS_LOW] = "los_low",
118 	[SFP_E_TIMEOUT] = "timeout",
119 };
120 
121 static const char *event_to_str(unsigned short event)
122 {
123 	if (event >= ARRAY_SIZE(event_strings))
124 		return "Unknown event";
125 	return event_strings[event];
126 }
127 
128 static const char * const sm_state_strings[] = {
129 	[SFP_S_DOWN] = "down",
130 	[SFP_S_FAIL] = "fail",
131 	[SFP_S_WAIT] = "wait",
132 	[SFP_S_INIT] = "init",
133 	[SFP_S_INIT_PHY] = "init_phy",
134 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 	[SFP_S_WAIT_LOS] = "wait_los",
136 	[SFP_S_LINK_UP] = "link_up",
137 	[SFP_S_TX_FAULT] = "tx_fault",
138 	[SFP_S_REINIT] = "reinit",
139 	[SFP_S_TX_DISABLE] = "tx_disable",
140 };
141 
142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 		return "Unknown state";
146 	return sm_state_strings[sm_state];
147 }
148 
149 static const char *gpio_names[] = {
150 	"mod-def0",
151 	"los",
152 	"tx-fault",
153 	"tx-disable",
154 	"rate-select0",
155 	"rate-select1",
156 };
157 
158 static const enum gpiod_flags gpio_flags[] = {
159 	GPIOD_IN,
160 	GPIOD_IN,
161 	GPIOD_IN,
162 	GPIOD_ASIS,
163 	GPIOD_ASIS,
164 	GPIOD_ASIS,
165 };
166 
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168  * non-cooled module to initialise its laser safety circuitry. We wait
169  * an initial T_WAIT period before we check the tx fault to give any PHY
170  * on board (for a copper SFP) time to initialise.
171  */
172 #define T_WAIT			msecs_to_jiffies(50)
173 #define T_START_UP		msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175 
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177  * an indicated TX_FAULT.
178  */
179 #define T_RESET_US		10
180 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181 
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183  * time. If the TX_FAULT signal is not deasserted after this number of
184  * attempts at clearing it, we decide that the module is faulty.
185  * N_FAULT is the same but after the module has initialised.
186  */
187 #define N_FAULT_INIT		5
188 #define N_FAULT			5
189 
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191  * R_PHY_RETRY is the number of attempts.
192  */
193 #define T_PHY_RETRY		msecs_to_jiffies(50)
194 #define R_PHY_RETRY		25
195 
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197  * the same length on the PCB, which means it's possible for MOD DEF 0 to
198  * connect before the I2C bus on MOD DEF 1/2.
199  *
200  * The SFF-8472 specifies t_serial ("Time from power on until module is
201  * ready for data transmission over the two wire serial bus.") as 300ms.
202  */
203 #define T_SERIAL		msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT	10
207 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW	12
209 
210 /* SFP modules appear to always have their PHY configured for bus address
211  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214  */
215 #define SFP_PHY_ADDR		22
216 #define SFP_PHY_ADDR_ROLLBALL	17
217 
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219  * at a time. Some SFP modules and also some Linux I2C drivers do not like
220  * reads longer than 16 bytes.
221  */
222 #define SFP_EEPROM_BLOCK_SIZE	16
223 
224 struct sff_data {
225 	unsigned int gpios;
226 	bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228 
229 struct sfp {
230 	struct device *dev;
231 	struct i2c_adapter *i2c;
232 	struct mii_bus *i2c_mii;
233 	struct sfp_bus *sfp_bus;
234 	enum mdio_i2c_proto mdio_protocol;
235 	struct phy_device *mod_phy;
236 	const struct sff_data *type;
237 	size_t i2c_block_size;
238 	u32 max_power_mW;
239 
240 	unsigned int (*get_state)(struct sfp *);
241 	void (*set_state)(struct sfp *, unsigned int);
242 	int (*read)(struct sfp *, bool, u8, void *, size_t);
243 	int (*write)(struct sfp *, bool, u8, void *, size_t);
244 
245 	struct gpio_desc *gpio[GPIO_MAX];
246 	int gpio_irq[GPIO_MAX];
247 
248 	bool need_poll;
249 
250 	/* Access rules:
251 	 * state_hw_drive: st_mutex held
252 	 * state_hw_mask: st_mutex held
253 	 * state_soft_mask: st_mutex held
254 	 * state: st_mutex held unless reading input bits
255 	 */
256 	struct mutex st_mutex;			/* Protects state */
257 	unsigned int state_hw_drive;
258 	unsigned int state_hw_mask;
259 	unsigned int state_soft_mask;
260 	unsigned int state_ignore_mask;
261 	unsigned int state;
262 
263 	struct delayed_work poll;
264 	struct delayed_work timeout;
265 	struct mutex sm_mutex;			/* Protects state machine */
266 	unsigned char sm_mod_state;
267 	unsigned char sm_mod_tries_init;
268 	unsigned char sm_mod_tries;
269 	unsigned char sm_dev_state;
270 	unsigned short sm_state;
271 	unsigned char sm_fault_retries;
272 	unsigned char sm_phy_retries;
273 
274 	struct sfp_eeprom_id id;
275 	unsigned int module_power_mW;
276 	unsigned int module_t_start_up;
277 	unsigned int module_t_wait;
278 	unsigned int phy_t_retry;
279 
280 	unsigned int rate_kbd;
281 	unsigned int rs_threshold_kbd;
282 	unsigned int rs_state_mask;
283 
284 	bool have_a2;
285 
286 	const struct sfp_quirk *quirk;
287 
288 #if IS_ENABLED(CONFIG_HWMON)
289 	struct sfp_diag diag;
290 	struct delayed_work hwmon_probe;
291 	unsigned int hwmon_tries;
292 	struct device *hwmon_dev;
293 	char *hwmon_name;
294 #endif
295 
296 #if IS_ENABLED(CONFIG_DEBUG_FS)
297 	struct dentry *debugfs_dir;
298 #endif
299 };
300 
301 static bool sff_module_supported(const struct sfp_eeprom_id *id)
302 {
303 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
304 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
305 }
306 
307 static const struct sff_data sff_data = {
308 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
309 	.module_supported = sff_module_supported,
310 };
311 
312 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
313 {
314 	if (id->base.phys_id == SFF8024_ID_SFP &&
315 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
316 		return true;
317 
318 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
319 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
320 	 * as supported based on vendor name and pn match.
321 	 */
322 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
323 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
324 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
325 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
326 		return true;
327 
328 	return false;
329 }
330 
331 static const struct sff_data sfp_data = {
332 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
333 		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
334 	.module_supported = sfp_module_supported,
335 };
336 
337 static const struct of_device_id sfp_of_match[] = {
338 	{ .compatible = "sff,sff", .data = &sff_data, },
339 	{ .compatible = "sff,sfp", .data = &sfp_data, },
340 	{ },
341 };
342 MODULE_DEVICE_TABLE(of, sfp_of_match);
343 
344 static void sfp_fixup_long_startup(struct sfp *sfp)
345 {
346 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
347 }
348 
349 static void sfp_fixup_ignore_los(struct sfp *sfp)
350 {
351 	/* This forces LOS to zero, so we ignore transitions */
352 	sfp->state_ignore_mask |= SFP_F_LOS;
353 	/* Make sure that LOS options are clear */
354 	sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
355 					    SFP_OPTIONS_LOS_NORMAL);
356 }
357 
358 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
359 {
360 	sfp->state_ignore_mask |= SFP_F_TX_FAULT;
361 }
362 
363 static void sfp_fixup_nokia(struct sfp *sfp)
364 {
365 	sfp_fixup_long_startup(sfp);
366 	sfp_fixup_ignore_los(sfp);
367 }
368 
369 // For 10GBASE-T short-reach modules
370 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
371 {
372 	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
373 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
374 }
375 
376 static void sfp_fixup_rollball(struct sfp *sfp)
377 {
378 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
379 
380 	/* RollBall modules may disallow access to PHY registers for up to 25
381 	 * seconds, and the reads return 0xffff before that. Increase the time
382 	 * between PHY probe retries from 50ms to 1s so that we will wait for
383 	 * the PHY for a sufficient amount of time.
384 	 */
385 	sfp->phy_t_retry = msecs_to_jiffies(1000);
386 }
387 
388 static void sfp_fixup_fs_2_5gt(struct sfp *sfp)
389 {
390 	sfp_fixup_rollball(sfp);
391 
392 	/* The RollBall fixup is not enough for FS modules, the PHY chip inside
393 	 * them does not return 0xffff for PHY ID registers in all MMDs for the
394 	 * while initializing. They need a 4 second wait before accessing PHY.
395 	 */
396 	sfp->module_t_wait = msecs_to_jiffies(4000);
397 }
398 
399 static void sfp_fixup_fs_10gt(struct sfp *sfp)
400 {
401 	sfp_fixup_10gbaset_30m(sfp);
402 	sfp_fixup_fs_2_5gt(sfp);
403 }
404 
405 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
406 {
407 	/* Ignore the TX_FAULT and LOS signals on this module.
408 	 * these are possibly used for other purposes on this
409 	 * module, e.g. a serial port.
410 	 */
411 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
412 }
413 
414 static void sfp_fixup_rollball_cc(struct sfp *sfp)
415 {
416 	sfp_fixup_rollball(sfp);
417 
418 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
419 	 * burned in EEPROM. For PHY probing we need the correct one.
420 	 */
421 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
422 }
423 
424 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
425 				unsigned long *modes,
426 				unsigned long *interfaces)
427 {
428 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
429 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
430 }
431 
432 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
433 				      unsigned long *modes,
434 				      unsigned long *interfaces)
435 {
436 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
437 }
438 
439 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
440 			       unsigned long *modes,
441 			       unsigned long *interfaces)
442 {
443 	/* Copper 2.5G SFP */
444 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
445 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
446 	sfp_quirk_disable_autoneg(id, modes, interfaces);
447 }
448 
449 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
450 				      unsigned long *modes,
451 				      unsigned long *interfaces)
452 {
453 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
454 	 * types including 10G Ethernet which is not truth. So clear all claimed
455 	 * modes and set only one mode which module supports: 1000baseX_Full.
456 	 */
457 	linkmode_zero(modes);
458 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
459 }
460 
461 #define SFP_QUIRK(_v, _p, _m, _f) \
462 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
463 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
464 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
465 
466 static const struct sfp_quirk sfp_quirks[] = {
467 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
468 	// report 2500MBd NRZ in their EEPROM
469 	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
470 
471 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
472 	// NRZ in their EEPROM
473 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
474 		  sfp_fixup_nokia),
475 
476 	// Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball
477 	// protocol to talk to the PHY and needs 4 sec wait before probing the
478 	// PHY.
479 	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
480 
481 	// Fiberstore SFP-2.5G-T uses Rollball protocol to talk to the PHY and
482 	// needs 4 sec wait before probing the PHY.
483 	SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_fs_2_5gt),
484 
485 	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
486 	// NRZ in their EEPROM
487 	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
488 		  sfp_fixup_ignore_tx_fault),
489 
490 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
491 
492 	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
493 	// 2600MBd in their EERPOM
494 	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
495 
496 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
497 	// their EEPROM
498 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
499 		  sfp_fixup_ignore_tx_fault),
500 
501 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
502 	// 2500MBd NRZ in their EEPROM
503 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
504 
505 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
506 
507 	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
508 	// Rollball protocol to talk to the PHY.
509 	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
510 	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
511 
512 	// OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
513 	SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
514 
515 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
516 	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
517 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
518 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
519 	SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball),
520 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
521 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
522 };
523 
524 static size_t sfp_strlen(const char *str, size_t maxlen)
525 {
526 	size_t size, i;
527 
528 	/* Trailing characters should be filled with space chars, but
529 	 * some manufacturers can't read SFF-8472 and use NUL.
530 	 */
531 	for (i = 0, size = 0; i < maxlen; i++)
532 		if (str[i] != ' ' && str[i] != '\0')
533 			size = i + 1;
534 
535 	return size;
536 }
537 
538 static bool sfp_match(const char *qs, const char *str, size_t len)
539 {
540 	if (!qs)
541 		return true;
542 	if (strlen(qs) != len)
543 		return false;
544 	return !strncmp(qs, str, len);
545 }
546 
547 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
548 {
549 	const struct sfp_quirk *q;
550 	unsigned int i;
551 	size_t vs, ps;
552 
553 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
554 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
555 
556 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
557 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
558 		    sfp_match(q->part, id->base.vendor_pn, ps))
559 			return q;
560 
561 	return NULL;
562 }
563 
564 static unsigned long poll_jiffies;
565 
566 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
567 {
568 	unsigned int i, state, v;
569 
570 	for (i = state = 0; i < GPIO_MAX; i++) {
571 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
572 			continue;
573 
574 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
575 		if (v)
576 			state |= BIT(i);
577 	}
578 
579 	return state;
580 }
581 
582 static unsigned int sff_gpio_get_state(struct sfp *sfp)
583 {
584 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
585 }
586 
587 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
588 {
589 	unsigned int drive;
590 
591 	if (state & SFP_F_PRESENT)
592 		/* If the module is present, drive the requested signals */
593 		drive = sfp->state_hw_drive;
594 	else
595 		/* Otherwise, let them float to the pull-ups */
596 		drive = 0;
597 
598 	if (sfp->gpio[GPIO_TX_DISABLE]) {
599 		if (drive & SFP_F_TX_DISABLE)
600 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
601 					       state & SFP_F_TX_DISABLE);
602 		else
603 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
604 	}
605 
606 	if (sfp->gpio[GPIO_RS0]) {
607 		if (drive & SFP_F_RS0)
608 			gpiod_direction_output(sfp->gpio[GPIO_RS0],
609 					       state & SFP_F_RS0);
610 		else
611 			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
612 	}
613 
614 	if (sfp->gpio[GPIO_RS1]) {
615 		if (drive & SFP_F_RS1)
616 			gpiod_direction_output(sfp->gpio[GPIO_RS1],
617 					       state & SFP_F_RS1);
618 		else
619 			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
620 	}
621 }
622 
623 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
624 			size_t len)
625 {
626 	struct i2c_msg msgs[2];
627 	u8 bus_addr = a2 ? 0x51 : 0x50;
628 	size_t block_size = sfp->i2c_block_size;
629 	size_t this_len;
630 	int ret;
631 
632 	msgs[0].addr = bus_addr;
633 	msgs[0].flags = 0;
634 	msgs[0].len = 1;
635 	msgs[0].buf = &dev_addr;
636 	msgs[1].addr = bus_addr;
637 	msgs[1].flags = I2C_M_RD;
638 	msgs[1].len = len;
639 	msgs[1].buf = buf;
640 
641 	while (len) {
642 		this_len = len;
643 		if (this_len > block_size)
644 			this_len = block_size;
645 
646 		msgs[1].len = this_len;
647 
648 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
649 		if (ret < 0)
650 			return ret;
651 
652 		if (ret != ARRAY_SIZE(msgs))
653 			break;
654 
655 		msgs[1].buf += this_len;
656 		dev_addr += this_len;
657 		len -= this_len;
658 	}
659 
660 	return msgs[1].buf - (u8 *)buf;
661 }
662 
663 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
664 	size_t len)
665 {
666 	struct i2c_msg msgs[1];
667 	u8 bus_addr = a2 ? 0x51 : 0x50;
668 	int ret;
669 
670 	msgs[0].addr = bus_addr;
671 	msgs[0].flags = 0;
672 	msgs[0].len = 1 + len;
673 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
674 	if (!msgs[0].buf)
675 		return -ENOMEM;
676 
677 	msgs[0].buf[0] = dev_addr;
678 	memcpy(&msgs[0].buf[1], buf, len);
679 
680 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
681 
682 	kfree(msgs[0].buf);
683 
684 	if (ret < 0)
685 		return ret;
686 
687 	return ret == ARRAY_SIZE(msgs) ? len : 0;
688 }
689 
690 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
691 {
692 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
693 		return -EINVAL;
694 
695 	sfp->i2c = i2c;
696 	sfp->read = sfp_i2c_read;
697 	sfp->write = sfp_i2c_write;
698 
699 	return 0;
700 }
701 
702 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
703 {
704 	struct mii_bus *i2c_mii;
705 	int ret;
706 
707 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
708 	if (IS_ERR(i2c_mii))
709 		return PTR_ERR(i2c_mii);
710 
711 	i2c_mii->name = "SFP I2C Bus";
712 	i2c_mii->phy_mask = ~0;
713 
714 	ret = mdiobus_register(i2c_mii);
715 	if (ret < 0) {
716 		mdiobus_free(i2c_mii);
717 		return ret;
718 	}
719 
720 	sfp->i2c_mii = i2c_mii;
721 
722 	return 0;
723 }
724 
725 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
726 {
727 	mdiobus_unregister(sfp->i2c_mii);
728 	sfp->i2c_mii = NULL;
729 }
730 
731 /* Interface */
732 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
733 {
734 	return sfp->read(sfp, a2, addr, buf, len);
735 }
736 
737 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
738 {
739 	return sfp->write(sfp, a2, addr, buf, len);
740 }
741 
742 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
743 {
744 	int ret;
745 	u8 old, v;
746 
747 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
748 	if (ret != sizeof(old))
749 		return ret;
750 
751 	v = (old & ~mask) | (val & mask);
752 	if (v == old)
753 		return sizeof(v);
754 
755 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
756 }
757 
758 static unsigned int sfp_soft_get_state(struct sfp *sfp)
759 {
760 	unsigned int state = 0;
761 	u8 status;
762 	int ret;
763 
764 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
765 	if (ret == sizeof(status)) {
766 		if (status & SFP_STATUS_RX_LOS)
767 			state |= SFP_F_LOS;
768 		if (status & SFP_STATUS_TX_FAULT)
769 			state |= SFP_F_TX_FAULT;
770 	} else {
771 		dev_err_ratelimited(sfp->dev,
772 				    "failed to read SFP soft status: %pe\n",
773 				    ERR_PTR(ret));
774 		/* Preserve the current state */
775 		state = sfp->state;
776 	}
777 
778 	return state & sfp->state_soft_mask;
779 }
780 
781 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
782 			       unsigned int soft)
783 {
784 	u8 mask = 0;
785 	u8 val = 0;
786 
787 	if (soft & SFP_F_TX_DISABLE)
788 		mask |= SFP_STATUS_TX_DISABLE_FORCE;
789 	if (state & SFP_F_TX_DISABLE)
790 		val |= SFP_STATUS_TX_DISABLE_FORCE;
791 
792 	if (soft & SFP_F_RS0)
793 		mask |= SFP_STATUS_RS0_SELECT;
794 	if (state & SFP_F_RS0)
795 		val |= SFP_STATUS_RS0_SELECT;
796 
797 	if (mask)
798 		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
799 
800 	val = mask = 0;
801 	if (soft & SFP_F_RS1)
802 		mask |= SFP_EXT_STATUS_RS1_SELECT;
803 	if (state & SFP_F_RS1)
804 		val |= SFP_EXT_STATUS_RS1_SELECT;
805 
806 	if (mask)
807 		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
808 }
809 
810 static void sfp_soft_start_poll(struct sfp *sfp)
811 {
812 	const struct sfp_eeprom_id *id = &sfp->id;
813 	unsigned int mask = 0;
814 
815 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
816 		mask |= SFP_F_TX_DISABLE;
817 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
818 		mask |= SFP_F_TX_FAULT;
819 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
820 		mask |= SFP_F_LOS;
821 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
822 		mask |= sfp->rs_state_mask;
823 
824 	mutex_lock(&sfp->st_mutex);
825 	// Poll the soft state for hardware pins we want to ignore
826 	sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
827 			       mask;
828 
829 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
830 	    !sfp->need_poll)
831 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
832 	mutex_unlock(&sfp->st_mutex);
833 }
834 
835 static void sfp_soft_stop_poll(struct sfp *sfp)
836 {
837 	mutex_lock(&sfp->st_mutex);
838 	sfp->state_soft_mask = 0;
839 	mutex_unlock(&sfp->st_mutex);
840 }
841 
842 /* sfp_get_state() - must be called with st_mutex held, or in the
843  * initialisation path.
844  */
845 static unsigned int sfp_get_state(struct sfp *sfp)
846 {
847 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
848 	unsigned int state;
849 
850 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
851 	if (state & SFP_F_PRESENT && soft)
852 		state |= sfp_soft_get_state(sfp);
853 
854 	return state;
855 }
856 
857 /* sfp_set_state() - must be called with st_mutex held, or in the
858  * initialisation path.
859  */
860 static void sfp_set_state(struct sfp *sfp, unsigned int state)
861 {
862 	unsigned int soft;
863 
864 	sfp->set_state(sfp, state);
865 
866 	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
867 	if (state & SFP_F_PRESENT && soft)
868 		sfp_soft_set_state(sfp, state, soft);
869 }
870 
871 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
872 {
873 	mutex_lock(&sfp->st_mutex);
874 	sfp->state = (sfp->state & ~mask) | set;
875 	sfp_set_state(sfp, sfp->state);
876 	mutex_unlock(&sfp->st_mutex);
877 }
878 
879 static unsigned int sfp_check(void *buf, size_t len)
880 {
881 	u8 *p, check;
882 
883 	for (p = buf, check = 0; len; p++, len--)
884 		check += *p;
885 
886 	return check;
887 }
888 
889 /* hwmon */
890 #if IS_ENABLED(CONFIG_HWMON)
891 static umode_t sfp_hwmon_is_visible(const void *data,
892 				    enum hwmon_sensor_types type,
893 				    u32 attr, int channel)
894 {
895 	const struct sfp *sfp = data;
896 
897 	switch (type) {
898 	case hwmon_temp:
899 		switch (attr) {
900 		case hwmon_temp_min_alarm:
901 		case hwmon_temp_max_alarm:
902 		case hwmon_temp_lcrit_alarm:
903 		case hwmon_temp_crit_alarm:
904 		case hwmon_temp_min:
905 		case hwmon_temp_max:
906 		case hwmon_temp_lcrit:
907 		case hwmon_temp_crit:
908 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
909 				return 0;
910 			fallthrough;
911 		case hwmon_temp_input:
912 		case hwmon_temp_label:
913 			return 0444;
914 		default:
915 			return 0;
916 		}
917 	case hwmon_in:
918 		switch (attr) {
919 		case hwmon_in_min_alarm:
920 		case hwmon_in_max_alarm:
921 		case hwmon_in_lcrit_alarm:
922 		case hwmon_in_crit_alarm:
923 		case hwmon_in_min:
924 		case hwmon_in_max:
925 		case hwmon_in_lcrit:
926 		case hwmon_in_crit:
927 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
928 				return 0;
929 			fallthrough;
930 		case hwmon_in_input:
931 		case hwmon_in_label:
932 			return 0444;
933 		default:
934 			return 0;
935 		}
936 	case hwmon_curr:
937 		switch (attr) {
938 		case hwmon_curr_min_alarm:
939 		case hwmon_curr_max_alarm:
940 		case hwmon_curr_lcrit_alarm:
941 		case hwmon_curr_crit_alarm:
942 		case hwmon_curr_min:
943 		case hwmon_curr_max:
944 		case hwmon_curr_lcrit:
945 		case hwmon_curr_crit:
946 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
947 				return 0;
948 			fallthrough;
949 		case hwmon_curr_input:
950 		case hwmon_curr_label:
951 			return 0444;
952 		default:
953 			return 0;
954 		}
955 	case hwmon_power:
956 		/* External calibration of receive power requires
957 		 * floating point arithmetic. Doing that in the kernel
958 		 * is not easy, so just skip it. If the module does
959 		 * not require external calibration, we can however
960 		 * show receiver power, since FP is then not needed.
961 		 */
962 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
963 		    channel == 1)
964 			return 0;
965 		switch (attr) {
966 		case hwmon_power_min_alarm:
967 		case hwmon_power_max_alarm:
968 		case hwmon_power_lcrit_alarm:
969 		case hwmon_power_crit_alarm:
970 		case hwmon_power_min:
971 		case hwmon_power_max:
972 		case hwmon_power_lcrit:
973 		case hwmon_power_crit:
974 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
975 				return 0;
976 			fallthrough;
977 		case hwmon_power_input:
978 		case hwmon_power_label:
979 			return 0444;
980 		default:
981 			return 0;
982 		}
983 	default:
984 		return 0;
985 	}
986 }
987 
988 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
989 {
990 	__be16 val;
991 	int err;
992 
993 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
994 	if (err < 0)
995 		return err;
996 
997 	*value = be16_to_cpu(val);
998 
999 	return 0;
1000 }
1001 
1002 static void sfp_hwmon_to_rx_power(long *value)
1003 {
1004 	*value = DIV_ROUND_CLOSEST(*value, 10);
1005 }
1006 
1007 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
1008 				long *value)
1009 {
1010 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1011 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1012 }
1013 
1014 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1015 {
1016 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1017 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
1018 
1019 	if (*value >= 0x8000)
1020 		*value -= 0x10000;
1021 
1022 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1023 }
1024 
1025 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1026 {
1027 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1028 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
1029 
1030 	*value = DIV_ROUND_CLOSEST(*value, 10);
1031 }
1032 
1033 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1034 {
1035 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1036 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1037 
1038 	*value = DIV_ROUND_CLOSEST(*value, 500);
1039 }
1040 
1041 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1042 {
1043 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1044 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1045 
1046 	*value = DIV_ROUND_CLOSEST(*value, 10);
1047 }
1048 
1049 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1050 {
1051 	int err;
1052 
1053 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1054 	if (err < 0)
1055 		return err;
1056 
1057 	sfp_hwmon_calibrate_temp(sfp, value);
1058 
1059 	return 0;
1060 }
1061 
1062 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1063 {
1064 	int err;
1065 
1066 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1067 	if (err < 0)
1068 		return err;
1069 
1070 	sfp_hwmon_calibrate_vcc(sfp, value);
1071 
1072 	return 0;
1073 }
1074 
1075 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1076 {
1077 	int err;
1078 
1079 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1080 	if (err < 0)
1081 		return err;
1082 
1083 	sfp_hwmon_calibrate_bias(sfp, value);
1084 
1085 	return 0;
1086 }
1087 
1088 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1089 {
1090 	int err;
1091 
1092 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1093 	if (err < 0)
1094 		return err;
1095 
1096 	sfp_hwmon_calibrate_tx_power(sfp, value);
1097 
1098 	return 0;
1099 }
1100 
1101 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1102 {
1103 	int err;
1104 
1105 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1106 	if (err < 0)
1107 		return err;
1108 
1109 	sfp_hwmon_to_rx_power(value);
1110 
1111 	return 0;
1112 }
1113 
1114 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1115 {
1116 	u8 status;
1117 	int err;
1118 
1119 	switch (attr) {
1120 	case hwmon_temp_input:
1121 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1122 
1123 	case hwmon_temp_lcrit:
1124 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1125 		sfp_hwmon_calibrate_temp(sfp, value);
1126 		return 0;
1127 
1128 	case hwmon_temp_min:
1129 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1130 		sfp_hwmon_calibrate_temp(sfp, value);
1131 		return 0;
1132 	case hwmon_temp_max:
1133 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1134 		sfp_hwmon_calibrate_temp(sfp, value);
1135 		return 0;
1136 
1137 	case hwmon_temp_crit:
1138 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1139 		sfp_hwmon_calibrate_temp(sfp, value);
1140 		return 0;
1141 
1142 	case hwmon_temp_lcrit_alarm:
1143 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1144 		if (err < 0)
1145 			return err;
1146 
1147 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1148 		return 0;
1149 
1150 	case hwmon_temp_min_alarm:
1151 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1152 		if (err < 0)
1153 			return err;
1154 
1155 		*value = !!(status & SFP_WARN0_TEMP_LOW);
1156 		return 0;
1157 
1158 	case hwmon_temp_max_alarm:
1159 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1160 		if (err < 0)
1161 			return err;
1162 
1163 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1164 		return 0;
1165 
1166 	case hwmon_temp_crit_alarm:
1167 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1168 		if (err < 0)
1169 			return err;
1170 
1171 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1172 		return 0;
1173 	default:
1174 		return -EOPNOTSUPP;
1175 	}
1176 
1177 	return -EOPNOTSUPP;
1178 }
1179 
1180 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1181 {
1182 	u8 status;
1183 	int err;
1184 
1185 	switch (attr) {
1186 	case hwmon_in_input:
1187 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1188 
1189 	case hwmon_in_lcrit:
1190 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1191 		sfp_hwmon_calibrate_vcc(sfp, value);
1192 		return 0;
1193 
1194 	case hwmon_in_min:
1195 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1196 		sfp_hwmon_calibrate_vcc(sfp, value);
1197 		return 0;
1198 
1199 	case hwmon_in_max:
1200 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1201 		sfp_hwmon_calibrate_vcc(sfp, value);
1202 		return 0;
1203 
1204 	case hwmon_in_crit:
1205 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1206 		sfp_hwmon_calibrate_vcc(sfp, value);
1207 		return 0;
1208 
1209 	case hwmon_in_lcrit_alarm:
1210 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1211 		if (err < 0)
1212 			return err;
1213 
1214 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1215 		return 0;
1216 
1217 	case hwmon_in_min_alarm:
1218 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1219 		if (err < 0)
1220 			return err;
1221 
1222 		*value = !!(status & SFP_WARN0_VCC_LOW);
1223 		return 0;
1224 
1225 	case hwmon_in_max_alarm:
1226 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1227 		if (err < 0)
1228 			return err;
1229 
1230 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1231 		return 0;
1232 
1233 	case hwmon_in_crit_alarm:
1234 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1235 		if (err < 0)
1236 			return err;
1237 
1238 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1239 		return 0;
1240 	default:
1241 		return -EOPNOTSUPP;
1242 	}
1243 
1244 	return -EOPNOTSUPP;
1245 }
1246 
1247 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1248 {
1249 	u8 status;
1250 	int err;
1251 
1252 	switch (attr) {
1253 	case hwmon_curr_input:
1254 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1255 
1256 	case hwmon_curr_lcrit:
1257 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1258 		sfp_hwmon_calibrate_bias(sfp, value);
1259 		return 0;
1260 
1261 	case hwmon_curr_min:
1262 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1263 		sfp_hwmon_calibrate_bias(sfp, value);
1264 		return 0;
1265 
1266 	case hwmon_curr_max:
1267 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1268 		sfp_hwmon_calibrate_bias(sfp, value);
1269 		return 0;
1270 
1271 	case hwmon_curr_crit:
1272 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1273 		sfp_hwmon_calibrate_bias(sfp, value);
1274 		return 0;
1275 
1276 	case hwmon_curr_lcrit_alarm:
1277 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1278 		if (err < 0)
1279 			return err;
1280 
1281 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1282 		return 0;
1283 
1284 	case hwmon_curr_min_alarm:
1285 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1286 		if (err < 0)
1287 			return err;
1288 
1289 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1290 		return 0;
1291 
1292 	case hwmon_curr_max_alarm:
1293 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1294 		if (err < 0)
1295 			return err;
1296 
1297 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1298 		return 0;
1299 
1300 	case hwmon_curr_crit_alarm:
1301 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1302 		if (err < 0)
1303 			return err;
1304 
1305 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1306 		return 0;
1307 	default:
1308 		return -EOPNOTSUPP;
1309 	}
1310 
1311 	return -EOPNOTSUPP;
1312 }
1313 
1314 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1315 {
1316 	u8 status;
1317 	int err;
1318 
1319 	switch (attr) {
1320 	case hwmon_power_input:
1321 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1322 
1323 	case hwmon_power_lcrit:
1324 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1325 		sfp_hwmon_calibrate_tx_power(sfp, value);
1326 		return 0;
1327 
1328 	case hwmon_power_min:
1329 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1330 		sfp_hwmon_calibrate_tx_power(sfp, value);
1331 		return 0;
1332 
1333 	case hwmon_power_max:
1334 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1335 		sfp_hwmon_calibrate_tx_power(sfp, value);
1336 		return 0;
1337 
1338 	case hwmon_power_crit:
1339 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1340 		sfp_hwmon_calibrate_tx_power(sfp, value);
1341 		return 0;
1342 
1343 	case hwmon_power_lcrit_alarm:
1344 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1345 		if (err < 0)
1346 			return err;
1347 
1348 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1349 		return 0;
1350 
1351 	case hwmon_power_min_alarm:
1352 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1353 		if (err < 0)
1354 			return err;
1355 
1356 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1357 		return 0;
1358 
1359 	case hwmon_power_max_alarm:
1360 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1361 		if (err < 0)
1362 			return err;
1363 
1364 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1365 		return 0;
1366 
1367 	case hwmon_power_crit_alarm:
1368 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1369 		if (err < 0)
1370 			return err;
1371 
1372 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1373 		return 0;
1374 	default:
1375 		return -EOPNOTSUPP;
1376 	}
1377 
1378 	return -EOPNOTSUPP;
1379 }
1380 
1381 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1382 {
1383 	u8 status;
1384 	int err;
1385 
1386 	switch (attr) {
1387 	case hwmon_power_input:
1388 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1389 
1390 	case hwmon_power_lcrit:
1391 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1392 		sfp_hwmon_to_rx_power(value);
1393 		return 0;
1394 
1395 	case hwmon_power_min:
1396 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1397 		sfp_hwmon_to_rx_power(value);
1398 		return 0;
1399 
1400 	case hwmon_power_max:
1401 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1402 		sfp_hwmon_to_rx_power(value);
1403 		return 0;
1404 
1405 	case hwmon_power_crit:
1406 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1407 		sfp_hwmon_to_rx_power(value);
1408 		return 0;
1409 
1410 	case hwmon_power_lcrit_alarm:
1411 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1412 		if (err < 0)
1413 			return err;
1414 
1415 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1416 		return 0;
1417 
1418 	case hwmon_power_min_alarm:
1419 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1420 		if (err < 0)
1421 			return err;
1422 
1423 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1424 		return 0;
1425 
1426 	case hwmon_power_max_alarm:
1427 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1428 		if (err < 0)
1429 			return err;
1430 
1431 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1432 		return 0;
1433 
1434 	case hwmon_power_crit_alarm:
1435 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1436 		if (err < 0)
1437 			return err;
1438 
1439 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1440 		return 0;
1441 	default:
1442 		return -EOPNOTSUPP;
1443 	}
1444 
1445 	return -EOPNOTSUPP;
1446 }
1447 
1448 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1449 			  u32 attr, int channel, long *value)
1450 {
1451 	struct sfp *sfp = dev_get_drvdata(dev);
1452 
1453 	switch (type) {
1454 	case hwmon_temp:
1455 		return sfp_hwmon_temp(sfp, attr, value);
1456 	case hwmon_in:
1457 		return sfp_hwmon_vcc(sfp, attr, value);
1458 	case hwmon_curr:
1459 		return sfp_hwmon_bias(sfp, attr, value);
1460 	case hwmon_power:
1461 		switch (channel) {
1462 		case 0:
1463 			return sfp_hwmon_tx_power(sfp, attr, value);
1464 		case 1:
1465 			return sfp_hwmon_rx_power(sfp, attr, value);
1466 		default:
1467 			return -EOPNOTSUPP;
1468 		}
1469 	default:
1470 		return -EOPNOTSUPP;
1471 	}
1472 }
1473 
1474 static const char *const sfp_hwmon_power_labels[] = {
1475 	"TX_power",
1476 	"RX_power",
1477 };
1478 
1479 static int sfp_hwmon_read_string(struct device *dev,
1480 				 enum hwmon_sensor_types type,
1481 				 u32 attr, int channel, const char **str)
1482 {
1483 	switch (type) {
1484 	case hwmon_curr:
1485 		switch (attr) {
1486 		case hwmon_curr_label:
1487 			*str = "bias";
1488 			return 0;
1489 		default:
1490 			return -EOPNOTSUPP;
1491 		}
1492 		break;
1493 	case hwmon_temp:
1494 		switch (attr) {
1495 		case hwmon_temp_label:
1496 			*str = "temperature";
1497 			return 0;
1498 		default:
1499 			return -EOPNOTSUPP;
1500 		}
1501 		break;
1502 	case hwmon_in:
1503 		switch (attr) {
1504 		case hwmon_in_label:
1505 			*str = "VCC";
1506 			return 0;
1507 		default:
1508 			return -EOPNOTSUPP;
1509 		}
1510 		break;
1511 	case hwmon_power:
1512 		switch (attr) {
1513 		case hwmon_power_label:
1514 			*str = sfp_hwmon_power_labels[channel];
1515 			return 0;
1516 		default:
1517 			return -EOPNOTSUPP;
1518 		}
1519 		break;
1520 	default:
1521 		return -EOPNOTSUPP;
1522 	}
1523 
1524 	return -EOPNOTSUPP;
1525 }
1526 
1527 static const struct hwmon_ops sfp_hwmon_ops = {
1528 	.is_visible = sfp_hwmon_is_visible,
1529 	.read = sfp_hwmon_read,
1530 	.read_string = sfp_hwmon_read_string,
1531 };
1532 
1533 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1534 	HWMON_CHANNEL_INFO(chip,
1535 			   HWMON_C_REGISTER_TZ),
1536 	HWMON_CHANNEL_INFO(in,
1537 			   HWMON_I_INPUT |
1538 			   HWMON_I_MAX | HWMON_I_MIN |
1539 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1540 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1541 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1542 			   HWMON_I_LABEL),
1543 	HWMON_CHANNEL_INFO(temp,
1544 			   HWMON_T_INPUT |
1545 			   HWMON_T_MAX | HWMON_T_MIN |
1546 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1547 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1548 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1549 			   HWMON_T_LABEL),
1550 	HWMON_CHANNEL_INFO(curr,
1551 			   HWMON_C_INPUT |
1552 			   HWMON_C_MAX | HWMON_C_MIN |
1553 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1554 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1555 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1556 			   HWMON_C_LABEL),
1557 	HWMON_CHANNEL_INFO(power,
1558 			   /* Transmit power */
1559 			   HWMON_P_INPUT |
1560 			   HWMON_P_MAX | HWMON_P_MIN |
1561 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1562 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1563 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1564 			   HWMON_P_LABEL,
1565 			   /* Receive power */
1566 			   HWMON_P_INPUT |
1567 			   HWMON_P_MAX | HWMON_P_MIN |
1568 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1569 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1570 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1571 			   HWMON_P_LABEL),
1572 	NULL,
1573 };
1574 
1575 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1576 	.ops = &sfp_hwmon_ops,
1577 	.info = sfp_hwmon_info,
1578 };
1579 
1580 static void sfp_hwmon_probe(struct work_struct *work)
1581 {
1582 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1583 	int err;
1584 
1585 	/* hwmon interface needs to access 16bit registers in atomic way to
1586 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1587 	 * possible to guarantee coherency because EEPROM is broken in such way
1588 	 * that does not support atomic 16bit read operation then we have to
1589 	 * skip registration of hwmon device.
1590 	 */
1591 	if (sfp->i2c_block_size < 2) {
1592 		dev_info(sfp->dev,
1593 			 "skipping hwmon device registration due to broken EEPROM\n");
1594 		dev_info(sfp->dev,
1595 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1596 		return;
1597 	}
1598 
1599 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1600 	if (err < 0) {
1601 		if (sfp->hwmon_tries--) {
1602 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1603 					 T_PROBE_RETRY_SLOW);
1604 		} else {
1605 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1606 				 ERR_PTR(err));
1607 		}
1608 		return;
1609 	}
1610 
1611 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1612 	if (IS_ERR(sfp->hwmon_name)) {
1613 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1614 		return;
1615 	}
1616 
1617 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1618 							 sfp->hwmon_name, sfp,
1619 							 &sfp_hwmon_chip_info,
1620 							 NULL);
1621 	if (IS_ERR(sfp->hwmon_dev))
1622 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1623 			PTR_ERR(sfp->hwmon_dev));
1624 }
1625 
1626 static int sfp_hwmon_insert(struct sfp *sfp)
1627 {
1628 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1629 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1630 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 static void sfp_hwmon_remove(struct sfp *sfp)
1637 {
1638 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1639 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1640 		hwmon_device_unregister(sfp->hwmon_dev);
1641 		sfp->hwmon_dev = NULL;
1642 		kfree(sfp->hwmon_name);
1643 	}
1644 }
1645 
1646 static int sfp_hwmon_init(struct sfp *sfp)
1647 {
1648 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1649 
1650 	return 0;
1651 }
1652 
1653 static void sfp_hwmon_exit(struct sfp *sfp)
1654 {
1655 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1656 }
1657 #else
1658 static int sfp_hwmon_insert(struct sfp *sfp)
1659 {
1660 	return 0;
1661 }
1662 
1663 static void sfp_hwmon_remove(struct sfp *sfp)
1664 {
1665 }
1666 
1667 static int sfp_hwmon_init(struct sfp *sfp)
1668 {
1669 	return 0;
1670 }
1671 
1672 static void sfp_hwmon_exit(struct sfp *sfp)
1673 {
1674 }
1675 #endif
1676 
1677 /* Helpers */
1678 static void sfp_module_tx_disable(struct sfp *sfp)
1679 {
1680 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1681 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1682 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1683 }
1684 
1685 static void sfp_module_tx_enable(struct sfp *sfp)
1686 {
1687 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1688 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1689 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1690 }
1691 
1692 #if IS_ENABLED(CONFIG_DEBUG_FS)
1693 static int sfp_debug_state_show(struct seq_file *s, void *data)
1694 {
1695 	struct sfp *sfp = s->private;
1696 
1697 	seq_printf(s, "Module state: %s\n",
1698 		   mod_state_to_str(sfp->sm_mod_state));
1699 	seq_printf(s, "Module probe attempts: %d %d\n",
1700 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1701 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1702 	seq_printf(s, "Device state: %s\n",
1703 		   dev_state_to_str(sfp->sm_dev_state));
1704 	seq_printf(s, "Main state: %s\n",
1705 		   sm_state_to_str(sfp->sm_state));
1706 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1707 		   sfp->sm_fault_retries);
1708 	seq_printf(s, "PHY probe remaining retries: %d\n",
1709 		   sfp->sm_phy_retries);
1710 	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1711 	seq_printf(s, "Rate select threshold: %u kBd\n",
1712 		   sfp->rs_threshold_kbd);
1713 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1714 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1715 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1716 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1717 	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1718 	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1719 	return 0;
1720 }
1721 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1722 
1723 static void sfp_debugfs_init(struct sfp *sfp)
1724 {
1725 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1726 
1727 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1728 			    &sfp_debug_state_fops);
1729 }
1730 
1731 static void sfp_debugfs_exit(struct sfp *sfp)
1732 {
1733 	debugfs_remove_recursive(sfp->debugfs_dir);
1734 }
1735 #else
1736 static void sfp_debugfs_init(struct sfp *sfp)
1737 {
1738 }
1739 
1740 static void sfp_debugfs_exit(struct sfp *sfp)
1741 {
1742 }
1743 #endif
1744 
1745 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1746 {
1747 	unsigned int state;
1748 
1749 	mutex_lock(&sfp->st_mutex);
1750 	state = sfp->state;
1751 	if (!(state & SFP_F_TX_DISABLE)) {
1752 		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1753 
1754 		udelay(T_RESET_US);
1755 
1756 		sfp_set_state(sfp, state);
1757 	}
1758 	mutex_unlock(&sfp->st_mutex);
1759 }
1760 
1761 /* SFP state machine */
1762 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1763 {
1764 	if (timeout)
1765 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1766 				 timeout);
1767 	else
1768 		cancel_delayed_work(&sfp->timeout);
1769 }
1770 
1771 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1772 			unsigned int timeout)
1773 {
1774 	sfp->sm_state = state;
1775 	sfp_sm_set_timer(sfp, timeout);
1776 }
1777 
1778 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1779 			    unsigned int timeout)
1780 {
1781 	sfp->sm_mod_state = state;
1782 	sfp_sm_set_timer(sfp, timeout);
1783 }
1784 
1785 static void sfp_sm_phy_detach(struct sfp *sfp)
1786 {
1787 	sfp_remove_phy(sfp->sfp_bus);
1788 	phy_device_remove(sfp->mod_phy);
1789 	phy_device_free(sfp->mod_phy);
1790 	sfp->mod_phy = NULL;
1791 }
1792 
1793 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1794 {
1795 	struct phy_device *phy;
1796 	int err;
1797 
1798 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1799 	if (phy == ERR_PTR(-ENODEV))
1800 		return PTR_ERR(phy);
1801 	if (IS_ERR(phy)) {
1802 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1803 		return PTR_ERR(phy);
1804 	}
1805 
1806 	/* Mark this PHY as being on a SFP module */
1807 	phy->is_on_sfp_module = true;
1808 
1809 	err = phy_device_register(phy);
1810 	if (err) {
1811 		phy_device_free(phy);
1812 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1813 			ERR_PTR(err));
1814 		return err;
1815 	}
1816 
1817 	err = sfp_add_phy(sfp->sfp_bus, phy);
1818 	if (err) {
1819 		phy_device_remove(phy);
1820 		phy_device_free(phy);
1821 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1822 		return err;
1823 	}
1824 
1825 	sfp->mod_phy = phy;
1826 
1827 	return 0;
1828 }
1829 
1830 static void sfp_sm_link_up(struct sfp *sfp)
1831 {
1832 	sfp_link_up(sfp->sfp_bus);
1833 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1834 }
1835 
1836 static void sfp_sm_link_down(struct sfp *sfp)
1837 {
1838 	sfp_link_down(sfp->sfp_bus);
1839 }
1840 
1841 static void sfp_sm_link_check_los(struct sfp *sfp)
1842 {
1843 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1844 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1845 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1846 	bool los = false;
1847 
1848 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1849 	 * are set, we assume that no LOS signal is available. If both are
1850 	 * set, we assume LOS is not implemented (and is meaningless.)
1851 	 */
1852 	if (los_options == los_inverted)
1853 		los = !(sfp->state & SFP_F_LOS);
1854 	else if (los_options == los_normal)
1855 		los = !!(sfp->state & SFP_F_LOS);
1856 
1857 	if (los)
1858 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1859 	else
1860 		sfp_sm_link_up(sfp);
1861 }
1862 
1863 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1864 {
1865 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1866 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1867 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1868 
1869 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1870 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1871 }
1872 
1873 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1874 {
1875 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1876 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1877 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1878 
1879 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1880 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1881 }
1882 
1883 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1884 {
1885 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1886 		dev_err(sfp->dev,
1887 			"module persistently indicates fault, disabling\n");
1888 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1889 	} else {
1890 		if (warn)
1891 			dev_err(sfp->dev, "module transmit fault indicated\n");
1892 
1893 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1894 	}
1895 }
1896 
1897 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1898 {
1899 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1900 		return sfp_i2c_mdiobus_create(sfp);
1901 
1902 	return 0;
1903 }
1904 
1905 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1906  * normally sits at I2C bus address 0x56, and may either be a clause 22
1907  * or clause 45 PHY.
1908  *
1909  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1910  * negotiation enabled, but some may be in 1000base-X - which is for the
1911  * PHY driver to determine.
1912  *
1913  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1914  * mode according to the negotiated line speed.
1915  */
1916 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1917 {
1918 	int err = 0;
1919 
1920 	switch (sfp->mdio_protocol) {
1921 	case MDIO_I2C_NONE:
1922 		break;
1923 
1924 	case MDIO_I2C_MARVELL_C22:
1925 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1926 		break;
1927 
1928 	case MDIO_I2C_C45:
1929 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1930 		break;
1931 
1932 	case MDIO_I2C_ROLLBALL:
1933 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1934 		break;
1935 	}
1936 
1937 	return err;
1938 }
1939 
1940 static int sfp_module_parse_power(struct sfp *sfp)
1941 {
1942 	u32 power_mW = 1000;
1943 	bool supports_a2;
1944 
1945 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1946 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1947 		power_mW = 1500;
1948 	/* Added in Rev 11.9, but there is no compliance code for this */
1949 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1950 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1951 		power_mW = 2000;
1952 
1953 	/* Power level 1 modules (max. 1W) are always supported. */
1954 	if (power_mW <= 1000) {
1955 		sfp->module_power_mW = power_mW;
1956 		return 0;
1957 	}
1958 
1959 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1960 				SFP_SFF8472_COMPLIANCE_NONE ||
1961 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1962 
1963 	if (power_mW > sfp->max_power_mW) {
1964 		/* Module power specification exceeds the allowed maximum. */
1965 		if (!supports_a2) {
1966 			/* The module appears not to implement bus address
1967 			 * 0xa2, so assume that the module powers up in the
1968 			 * indicated mode.
1969 			 */
1970 			dev_err(sfp->dev,
1971 				"Host does not support %u.%uW modules\n",
1972 				power_mW / 1000, (power_mW / 100) % 10);
1973 			return -EINVAL;
1974 		} else {
1975 			dev_warn(sfp->dev,
1976 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1977 				 power_mW / 1000, (power_mW / 100) % 10);
1978 			return 0;
1979 		}
1980 	}
1981 
1982 	if (!supports_a2) {
1983 		/* The module power level is below the host maximum and the
1984 		 * module appears not to implement bus address 0xa2, so assume
1985 		 * that the module powers up in the indicated mode.
1986 		 */
1987 		return 0;
1988 	}
1989 
1990 	/* If the module requires a higher power mode, but also requires
1991 	 * an address change sequence, warn the user that the module may
1992 	 * not be functional.
1993 	 */
1994 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1995 		dev_warn(sfp->dev,
1996 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1997 			 power_mW / 1000, (power_mW / 100) % 10);
1998 		return 0;
1999 	}
2000 
2001 	sfp->module_power_mW = power_mW;
2002 
2003 	return 0;
2004 }
2005 
2006 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
2007 {
2008 	int err;
2009 
2010 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2011 			    SFP_EXT_STATUS_PWRLVL_SELECT,
2012 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2013 	if (err != sizeof(u8)) {
2014 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2015 			enable ? "en" : "dis", ERR_PTR(err));
2016 		return -EAGAIN;
2017 	}
2018 
2019 	if (enable)
2020 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2021 			 sfp->module_power_mW / 1000,
2022 			 (sfp->module_power_mW / 100) % 10);
2023 
2024 	return 0;
2025 }
2026 
2027 static void sfp_module_parse_rate_select(struct sfp *sfp)
2028 {
2029 	u8 rate_id;
2030 
2031 	sfp->rs_threshold_kbd = 0;
2032 	sfp->rs_state_mask = 0;
2033 
2034 	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2035 		/* No support for RateSelect */
2036 		return;
2037 
2038 	/* Default to INF-8074 RateSelect operation. The signalling threshold
2039 	 * rate is not well specified, so always select "Full Bandwidth", but
2040 	 * SFF-8079 reveals that it is understood that RS0 will be low for
2041 	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2042 	 * This method exists prior to SFF-8472.
2043 	 */
2044 	sfp->rs_state_mask = SFP_F_RS0;
2045 	sfp->rs_threshold_kbd = 1594;
2046 
2047 	/* Parse the rate identifier, which is complicated due to history:
2048 	 * SFF-8472 rev 9.5 marks this field as reserved.
2049 	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2050 	 *  compliance is not required.
2051 	 * SFF-8472 rev 10.2 defines this field using values 0..4
2052 	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2053 	 * and even values.
2054 	 */
2055 	rate_id = sfp->id.base.rate_id;
2056 	if (rate_id == 0)
2057 		/* Unspecified */
2058 		return;
2059 
2060 	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2061 	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2062 	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2063 	 */
2064 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2065 	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2066 	    rate_id == 3)
2067 		rate_id = SFF_RID_8431;
2068 
2069 	if (rate_id & SFF_RID_8079) {
2070 		/* SFF-8079 RateSelect / Application Select in conjunction with
2071 		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2072 		 * with only bit 0 used, which takes precedence over SFF-8472.
2073 		 */
2074 		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2075 			/* SFF-8079 Part 1 - rate selection between Fibre
2076 			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2077 			 * is high for 2125, so we have to subtract 1 to
2078 			 * include it.
2079 			 */
2080 			sfp->rs_threshold_kbd = 2125 - 1;
2081 			sfp->rs_state_mask = SFP_F_RS0;
2082 		}
2083 		return;
2084 	}
2085 
2086 	/* SFF-8472 rev 9.5 does not define the rate identifier */
2087 	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2088 		return;
2089 
2090 	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2091 	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2092 	 */
2093 	switch (rate_id) {
2094 	case SFF_RID_8431_RX_ONLY:
2095 		sfp->rs_threshold_kbd = 4250;
2096 		sfp->rs_state_mask = SFP_F_RS0;
2097 		break;
2098 
2099 	case SFF_RID_8431_TX_ONLY:
2100 		sfp->rs_threshold_kbd = 4250;
2101 		sfp->rs_state_mask = SFP_F_RS1;
2102 		break;
2103 
2104 	case SFF_RID_8431:
2105 		sfp->rs_threshold_kbd = 4250;
2106 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2107 		break;
2108 
2109 	case SFF_RID_10G8G:
2110 		sfp->rs_threshold_kbd = 9000;
2111 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2112 		break;
2113 	}
2114 }
2115 
2116 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2117  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2118  * not support multibyte reads from the EEPROM. Each multi-byte read
2119  * operation returns just one byte of EEPROM followed by zeros. There is
2120  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2121  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2122  * name and vendor id into EEPROM, so there is even no way to detect if
2123  * module is V-SOL V2801F. Therefore check for those zeros in the read
2124  * data and then based on check switch to reading EEPROM to one byte
2125  * at a time.
2126  */
2127 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2128 {
2129 	size_t i, block_size = sfp->i2c_block_size;
2130 
2131 	/* Already using byte IO */
2132 	if (block_size == 1)
2133 		return false;
2134 
2135 	for (i = 1; i < len; i += block_size) {
2136 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2137 			return false;
2138 	}
2139 	return true;
2140 }
2141 
2142 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2143 {
2144 	u8 check;
2145 	int err;
2146 
2147 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2148 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2149 	    id->base.connector != SFF8024_CONNECTOR_LC) {
2150 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2151 		id->base.phys_id = SFF8024_ID_SFF_8472;
2152 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2153 		id->base.connector = SFF8024_CONNECTOR_LC;
2154 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2155 		if (err != 3) {
2156 			dev_err(sfp->dev,
2157 				"Failed to rewrite module EEPROM: %pe\n",
2158 				ERR_PTR(err));
2159 			return err;
2160 		}
2161 
2162 		/* Cotsworks modules have been found to require a delay between write operations. */
2163 		mdelay(50);
2164 
2165 		/* Update base structure checksum */
2166 		check = sfp_check(&id->base, sizeof(id->base) - 1);
2167 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2168 		if (err != 1) {
2169 			dev_err(sfp->dev,
2170 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2171 				ERR_PTR(err));
2172 			return err;
2173 		}
2174 	}
2175 	return 0;
2176 }
2177 
2178 static int sfp_module_parse_sff8472(struct sfp *sfp)
2179 {
2180 	/* If the module requires address swap mode, warn about it */
2181 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2182 		dev_warn(sfp->dev,
2183 			 "module address swap to access page 0xA2 is not supported.\n");
2184 	else
2185 		sfp->have_a2 = true;
2186 
2187 	return 0;
2188 }
2189 
2190 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2191 {
2192 	/* SFP module inserted - read I2C data */
2193 	struct sfp_eeprom_id id;
2194 	bool cotsworks_sfbg;
2195 	unsigned int mask;
2196 	bool cotsworks;
2197 	u8 check;
2198 	int ret;
2199 
2200 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2201 
2202 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2203 	if (ret < 0) {
2204 		if (report)
2205 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2206 				ERR_PTR(ret));
2207 		return -EAGAIN;
2208 	}
2209 
2210 	if (ret != sizeof(id.base)) {
2211 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2212 		return -EAGAIN;
2213 	}
2214 
2215 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2216 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2217 	 * that EEPROM supports atomic 16bit read operation for diagnostic
2218 	 * fields, so do not switch to one byte reading at a time unless it
2219 	 * is really required and we have no other option.
2220 	 */
2221 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2222 		dev_info(sfp->dev,
2223 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2224 		dev_info(sfp->dev,
2225 			 "Switching to reading EEPROM to one byte at a time\n");
2226 		sfp->i2c_block_size = 1;
2227 
2228 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2229 		if (ret < 0) {
2230 			if (report)
2231 				dev_err(sfp->dev,
2232 					"failed to read EEPROM: %pe\n",
2233 					ERR_PTR(ret));
2234 			return -EAGAIN;
2235 		}
2236 
2237 		if (ret != sizeof(id.base)) {
2238 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2239 				ERR_PTR(ret));
2240 			return -EAGAIN;
2241 		}
2242 	}
2243 
2244 	/* Cotsworks do not seem to update the checksums when they
2245 	 * do the final programming with the final module part number,
2246 	 * serial number and date code.
2247 	 */
2248 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2249 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2250 
2251 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2252 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2253 	 * Cotsworks PN matches and bytes are not correct.
2254 	 */
2255 	if (cotsworks && cotsworks_sfbg) {
2256 		ret = sfp_cotsworks_fixup_check(sfp, &id);
2257 		if (ret < 0)
2258 			return ret;
2259 	}
2260 
2261 	/* Validate the checksum over the base structure */
2262 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2263 	if (check != id.base.cc_base) {
2264 		if (cotsworks) {
2265 			dev_warn(sfp->dev,
2266 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2267 				 check, id.base.cc_base);
2268 		} else {
2269 			dev_err(sfp->dev,
2270 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2271 				check, id.base.cc_base);
2272 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2273 				       16, 1, &id, sizeof(id), true);
2274 			return -EINVAL;
2275 		}
2276 	}
2277 
2278 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2279 	if (ret < 0) {
2280 		if (report)
2281 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2282 				ERR_PTR(ret));
2283 		return -EAGAIN;
2284 	}
2285 
2286 	if (ret != sizeof(id.ext)) {
2287 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2288 		return -EAGAIN;
2289 	}
2290 
2291 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2292 	if (check != id.ext.cc_ext) {
2293 		if (cotsworks) {
2294 			dev_warn(sfp->dev,
2295 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2296 				 check, id.ext.cc_ext);
2297 		} else {
2298 			dev_err(sfp->dev,
2299 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2300 				check, id.ext.cc_ext);
2301 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2302 				       16, 1, &id, sizeof(id), true);
2303 			memset(&id.ext, 0, sizeof(id.ext));
2304 		}
2305 	}
2306 
2307 	sfp->id = id;
2308 
2309 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2310 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2311 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2312 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2313 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2314 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2315 
2316 	/* Check whether we support this module */
2317 	if (!sfp->type->module_supported(&id)) {
2318 		dev_err(sfp->dev,
2319 			"module is not supported - phys id 0x%02x 0x%02x\n",
2320 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2321 		return -EINVAL;
2322 	}
2323 
2324 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2325 		ret = sfp_module_parse_sff8472(sfp);
2326 		if (ret < 0)
2327 			return ret;
2328 	}
2329 
2330 	/* Parse the module power requirement */
2331 	ret = sfp_module_parse_power(sfp);
2332 	if (ret < 0)
2333 		return ret;
2334 
2335 	sfp_module_parse_rate_select(sfp);
2336 
2337 	mask = SFP_F_PRESENT;
2338 	if (sfp->gpio[GPIO_TX_DISABLE])
2339 		mask |= SFP_F_TX_DISABLE;
2340 	if (sfp->gpio[GPIO_TX_FAULT])
2341 		mask |= SFP_F_TX_FAULT;
2342 	if (sfp->gpio[GPIO_LOS])
2343 		mask |= SFP_F_LOS;
2344 	if (sfp->gpio[GPIO_RS0])
2345 		mask |= SFP_F_RS0;
2346 	if (sfp->gpio[GPIO_RS1])
2347 		mask |= SFP_F_RS1;
2348 
2349 	sfp->module_t_start_up = T_START_UP;
2350 	sfp->module_t_wait = T_WAIT;
2351 	sfp->phy_t_retry = T_PHY_RETRY;
2352 
2353 	sfp->state_ignore_mask = 0;
2354 
2355 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2356 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2357 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2358 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2359 		sfp->mdio_protocol = MDIO_I2C_C45;
2360 	else if (sfp->id.base.e1000_base_t)
2361 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2362 	else
2363 		sfp->mdio_protocol = MDIO_I2C_NONE;
2364 
2365 	sfp->quirk = sfp_lookup_quirk(&id);
2366 
2367 	mutex_lock(&sfp->st_mutex);
2368 	/* Initialise state bits to use from hardware */
2369 	sfp->state_hw_mask = mask;
2370 
2371 	/* We want to drive the rate select pins that the module is using */
2372 	sfp->state_hw_drive |= sfp->rs_state_mask;
2373 
2374 	if (sfp->quirk && sfp->quirk->fixup)
2375 		sfp->quirk->fixup(sfp);
2376 
2377 	sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2378 	mutex_unlock(&sfp->st_mutex);
2379 
2380 	return 0;
2381 }
2382 
2383 static void sfp_sm_mod_remove(struct sfp *sfp)
2384 {
2385 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2386 		sfp_module_remove(sfp->sfp_bus);
2387 
2388 	sfp_hwmon_remove(sfp);
2389 
2390 	memset(&sfp->id, 0, sizeof(sfp->id));
2391 	sfp->module_power_mW = 0;
2392 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2393 	sfp->have_a2 = false;
2394 
2395 	dev_info(sfp->dev, "module removed\n");
2396 }
2397 
2398 /* This state machine tracks the upstream's state */
2399 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2400 {
2401 	switch (sfp->sm_dev_state) {
2402 	default:
2403 		if (event == SFP_E_DEV_ATTACH)
2404 			sfp->sm_dev_state = SFP_DEV_DOWN;
2405 		break;
2406 
2407 	case SFP_DEV_DOWN:
2408 		if (event == SFP_E_DEV_DETACH)
2409 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2410 		else if (event == SFP_E_DEV_UP)
2411 			sfp->sm_dev_state = SFP_DEV_UP;
2412 		break;
2413 
2414 	case SFP_DEV_UP:
2415 		if (event == SFP_E_DEV_DETACH)
2416 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2417 		else if (event == SFP_E_DEV_DOWN)
2418 			sfp->sm_dev_state = SFP_DEV_DOWN;
2419 		break;
2420 	}
2421 }
2422 
2423 /* This state machine tracks the insert/remove state of the module, probes
2424  * the on-board EEPROM, and sets up the power level.
2425  */
2426 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2427 {
2428 	int err;
2429 
2430 	/* Handle remove event globally, it resets this state machine */
2431 	if (event == SFP_E_REMOVE) {
2432 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2433 			sfp_sm_mod_remove(sfp);
2434 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2435 		return;
2436 	}
2437 
2438 	/* Handle device detach globally */
2439 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2440 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2441 		if (sfp->module_power_mW > 1000 &&
2442 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2443 			sfp_sm_mod_hpower(sfp, false);
2444 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2445 		return;
2446 	}
2447 
2448 	switch (sfp->sm_mod_state) {
2449 	default:
2450 		if (event == SFP_E_INSERT) {
2451 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2452 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2453 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2454 		}
2455 		break;
2456 
2457 	case SFP_MOD_PROBE:
2458 		/* Wait for T_PROBE_INIT to time out */
2459 		if (event != SFP_E_TIMEOUT)
2460 			break;
2461 
2462 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2463 		if (err == -EAGAIN) {
2464 			if (sfp->sm_mod_tries_init &&
2465 			   --sfp->sm_mod_tries_init) {
2466 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2467 				break;
2468 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2469 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2470 					dev_warn(sfp->dev,
2471 						 "please wait, module slow to respond\n");
2472 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2473 				break;
2474 			}
2475 		}
2476 		if (err < 0) {
2477 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2478 			break;
2479 		}
2480 
2481 		/* Force a poll to re-read the hardware signal state after
2482 		 * sfp_sm_mod_probe() changed state_hw_mask.
2483 		 */
2484 		mod_delayed_work(system_wq, &sfp->poll, 1);
2485 
2486 		err = sfp_hwmon_insert(sfp);
2487 		if (err)
2488 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2489 				 ERR_PTR(err));
2490 
2491 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2492 		fallthrough;
2493 	case SFP_MOD_WAITDEV:
2494 		/* Ensure that the device is attached before proceeding */
2495 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2496 			break;
2497 
2498 		/* Report the module insertion to the upstream device */
2499 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2500 					sfp->quirk);
2501 		if (err < 0) {
2502 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2503 			break;
2504 		}
2505 
2506 		/* If this is a power level 1 module, we are done */
2507 		if (sfp->module_power_mW <= 1000)
2508 			goto insert;
2509 
2510 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2511 		fallthrough;
2512 	case SFP_MOD_HPOWER:
2513 		/* Enable high power mode */
2514 		err = sfp_sm_mod_hpower(sfp, true);
2515 		if (err < 0) {
2516 			if (err != -EAGAIN) {
2517 				sfp_module_remove(sfp->sfp_bus);
2518 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2519 			} else {
2520 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2521 			}
2522 			break;
2523 		}
2524 
2525 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2526 		break;
2527 
2528 	case SFP_MOD_WAITPWR:
2529 		/* Wait for T_HPOWER_LEVEL to time out */
2530 		if (event != SFP_E_TIMEOUT)
2531 			break;
2532 
2533 	insert:
2534 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2535 		break;
2536 
2537 	case SFP_MOD_PRESENT:
2538 	case SFP_MOD_ERROR:
2539 		break;
2540 	}
2541 }
2542 
2543 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2544 {
2545 	unsigned long timeout;
2546 	int ret;
2547 
2548 	/* Some events are global */
2549 	if (sfp->sm_state != SFP_S_DOWN &&
2550 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2551 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2552 		if (sfp->sm_state == SFP_S_LINK_UP &&
2553 		    sfp->sm_dev_state == SFP_DEV_UP)
2554 			sfp_sm_link_down(sfp);
2555 		if (sfp->sm_state > SFP_S_INIT)
2556 			sfp_module_stop(sfp->sfp_bus);
2557 		if (sfp->mod_phy)
2558 			sfp_sm_phy_detach(sfp);
2559 		if (sfp->i2c_mii)
2560 			sfp_i2c_mdiobus_destroy(sfp);
2561 		sfp_module_tx_disable(sfp);
2562 		sfp_soft_stop_poll(sfp);
2563 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2564 		return;
2565 	}
2566 
2567 	/* The main state machine */
2568 	switch (sfp->sm_state) {
2569 	case SFP_S_DOWN:
2570 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2571 		    sfp->sm_dev_state != SFP_DEV_UP)
2572 			break;
2573 
2574 		/* Only use the soft state bits if we have access to the A2h
2575 		 * memory, which implies that we have some level of SFF-8472
2576 		 * compliance.
2577 		 */
2578 		if (sfp->have_a2)
2579 			sfp_soft_start_poll(sfp);
2580 
2581 		sfp_module_tx_enable(sfp);
2582 
2583 		/* Initialise the fault clearance retries */
2584 		sfp->sm_fault_retries = N_FAULT_INIT;
2585 
2586 		/* We need to check the TX_FAULT state, which is not defined
2587 		 * while TX_DISABLE is asserted. The earliest we want to do
2588 		 * anything (such as probe for a PHY) is 50ms (or more on
2589 		 * specific modules).
2590 		 */
2591 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2592 		break;
2593 
2594 	case SFP_S_WAIT:
2595 		if (event != SFP_E_TIMEOUT)
2596 			break;
2597 
2598 		if (sfp->state & SFP_F_TX_FAULT) {
2599 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2600 			 * from the TX_DISABLE deassertion for the module to
2601 			 * initialise, which is indicated by TX_FAULT
2602 			 * deasserting.
2603 			 */
2604 			timeout = sfp->module_t_start_up;
2605 			if (timeout > sfp->module_t_wait)
2606 				timeout -= sfp->module_t_wait;
2607 			else
2608 				timeout = 1;
2609 
2610 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2611 		} else {
2612 			/* TX_FAULT is not asserted, assume the module has
2613 			 * finished initialising.
2614 			 */
2615 			goto init_done;
2616 		}
2617 		break;
2618 
2619 	case SFP_S_INIT:
2620 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2621 			/* TX_FAULT is still asserted after t_init
2622 			 * or t_start_up, so assume there is a fault.
2623 			 */
2624 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2625 				     sfp->sm_fault_retries == N_FAULT_INIT);
2626 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2627 	init_done:
2628 			/* Create mdiobus and start trying for PHY */
2629 			ret = sfp_sm_add_mdio_bus(sfp);
2630 			if (ret < 0) {
2631 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2632 				break;
2633 			}
2634 			sfp->sm_phy_retries = R_PHY_RETRY;
2635 			goto phy_probe;
2636 		}
2637 		break;
2638 
2639 	case SFP_S_INIT_PHY:
2640 		if (event != SFP_E_TIMEOUT)
2641 			break;
2642 	phy_probe:
2643 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2644 		 * clear.  Probe for the PHY and check the LOS state.
2645 		 */
2646 		ret = sfp_sm_probe_for_phy(sfp);
2647 		if (ret == -ENODEV) {
2648 			if (--sfp->sm_phy_retries) {
2649 				sfp_sm_next(sfp, SFP_S_INIT_PHY,
2650 					    sfp->phy_t_retry);
2651 				dev_dbg(sfp->dev,
2652 					"no PHY detected, %u tries left\n",
2653 					sfp->sm_phy_retries);
2654 				break;
2655 			} else {
2656 				dev_info(sfp->dev, "no PHY detected\n");
2657 			}
2658 		} else if (ret) {
2659 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2660 			break;
2661 		}
2662 		if (sfp_module_start(sfp->sfp_bus)) {
2663 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2664 			break;
2665 		}
2666 		sfp_sm_link_check_los(sfp);
2667 
2668 		/* Reset the fault retry count */
2669 		sfp->sm_fault_retries = N_FAULT;
2670 		break;
2671 
2672 	case SFP_S_INIT_TX_FAULT:
2673 		if (event == SFP_E_TIMEOUT) {
2674 			sfp_module_tx_fault_reset(sfp);
2675 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2676 		}
2677 		break;
2678 
2679 	case SFP_S_WAIT_LOS:
2680 		if (event == SFP_E_TX_FAULT)
2681 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2682 		else if (sfp_los_event_inactive(sfp, event))
2683 			sfp_sm_link_up(sfp);
2684 		break;
2685 
2686 	case SFP_S_LINK_UP:
2687 		if (event == SFP_E_TX_FAULT) {
2688 			sfp_sm_link_down(sfp);
2689 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2690 		} else if (sfp_los_event_active(sfp, event)) {
2691 			sfp_sm_link_down(sfp);
2692 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2693 		}
2694 		break;
2695 
2696 	case SFP_S_TX_FAULT:
2697 		if (event == SFP_E_TIMEOUT) {
2698 			sfp_module_tx_fault_reset(sfp);
2699 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2700 		}
2701 		break;
2702 
2703 	case SFP_S_REINIT:
2704 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2705 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2706 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2707 			dev_info(sfp->dev, "module transmit fault recovered\n");
2708 			sfp_sm_link_check_los(sfp);
2709 		}
2710 		break;
2711 
2712 	case SFP_S_TX_DISABLE:
2713 		break;
2714 	}
2715 }
2716 
2717 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2718 {
2719 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2720 		mod_state_to_str(sfp->sm_mod_state),
2721 		dev_state_to_str(sfp->sm_dev_state),
2722 		sm_state_to_str(sfp->sm_state),
2723 		event_to_str(event));
2724 
2725 	sfp_sm_device(sfp, event);
2726 	sfp_sm_module(sfp, event);
2727 	sfp_sm_main(sfp, event);
2728 
2729 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2730 		mod_state_to_str(sfp->sm_mod_state),
2731 		dev_state_to_str(sfp->sm_dev_state),
2732 		sm_state_to_str(sfp->sm_state));
2733 }
2734 
2735 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2736 {
2737 	mutex_lock(&sfp->sm_mutex);
2738 	__sfp_sm_event(sfp, event);
2739 	mutex_unlock(&sfp->sm_mutex);
2740 }
2741 
2742 static void sfp_attach(struct sfp *sfp)
2743 {
2744 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2745 }
2746 
2747 static void sfp_detach(struct sfp *sfp)
2748 {
2749 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2750 }
2751 
2752 static void sfp_start(struct sfp *sfp)
2753 {
2754 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2755 }
2756 
2757 static void sfp_stop(struct sfp *sfp)
2758 {
2759 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2760 }
2761 
2762 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2763 {
2764 	unsigned int set;
2765 
2766 	sfp->rate_kbd = rate_kbd;
2767 
2768 	if (rate_kbd > sfp->rs_threshold_kbd)
2769 		set = sfp->rs_state_mask;
2770 	else
2771 		set = 0;
2772 
2773 	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2774 }
2775 
2776 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2777 {
2778 	/* locking... and check module is present */
2779 
2780 	if (sfp->id.ext.sff8472_compliance &&
2781 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2782 		modinfo->type = ETH_MODULE_SFF_8472;
2783 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2784 	} else {
2785 		modinfo->type = ETH_MODULE_SFF_8079;
2786 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2787 	}
2788 	return 0;
2789 }
2790 
2791 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2792 			     u8 *data)
2793 {
2794 	unsigned int first, last, len;
2795 	int ret;
2796 
2797 	if (!(sfp->state & SFP_F_PRESENT))
2798 		return -ENODEV;
2799 
2800 	if (ee->len == 0)
2801 		return -EINVAL;
2802 
2803 	first = ee->offset;
2804 	last = ee->offset + ee->len;
2805 	if (first < ETH_MODULE_SFF_8079_LEN) {
2806 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2807 		len -= first;
2808 
2809 		ret = sfp_read(sfp, false, first, data, len);
2810 		if (ret < 0)
2811 			return ret;
2812 
2813 		first += len;
2814 		data += len;
2815 	}
2816 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2817 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2818 		len -= first;
2819 		first -= ETH_MODULE_SFF_8079_LEN;
2820 
2821 		ret = sfp_read(sfp, true, first, data, len);
2822 		if (ret < 0)
2823 			return ret;
2824 	}
2825 	return 0;
2826 }
2827 
2828 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2829 				     const struct ethtool_module_eeprom *page,
2830 				     struct netlink_ext_ack *extack)
2831 {
2832 	if (!(sfp->state & SFP_F_PRESENT))
2833 		return -ENODEV;
2834 
2835 	if (page->bank) {
2836 		NL_SET_ERR_MSG(extack, "Banks not supported");
2837 		return -EOPNOTSUPP;
2838 	}
2839 
2840 	if (page->page) {
2841 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2842 		return -EOPNOTSUPP;
2843 	}
2844 
2845 	if (page->i2c_address != 0x50 &&
2846 	    page->i2c_address != 0x51) {
2847 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2848 		return -EOPNOTSUPP;
2849 	}
2850 
2851 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2852 			page->data, page->length);
2853 };
2854 
2855 static const struct sfp_socket_ops sfp_module_ops = {
2856 	.attach = sfp_attach,
2857 	.detach = sfp_detach,
2858 	.start = sfp_start,
2859 	.stop = sfp_stop,
2860 	.set_signal_rate = sfp_set_signal_rate,
2861 	.module_info = sfp_module_info,
2862 	.module_eeprom = sfp_module_eeprom,
2863 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2864 };
2865 
2866 static void sfp_timeout(struct work_struct *work)
2867 {
2868 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2869 
2870 	rtnl_lock();
2871 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2872 	rtnl_unlock();
2873 }
2874 
2875 static void sfp_check_state(struct sfp *sfp)
2876 {
2877 	unsigned int state, i, changed;
2878 
2879 	rtnl_lock();
2880 	mutex_lock(&sfp->st_mutex);
2881 	state = sfp_get_state(sfp);
2882 	changed = state ^ sfp->state;
2883 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2884 
2885 	for (i = 0; i < GPIO_MAX; i++)
2886 		if (changed & BIT(i))
2887 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2888 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2889 
2890 	state |= sfp->state & SFP_F_OUTPUTS;
2891 	sfp->state = state;
2892 	mutex_unlock(&sfp->st_mutex);
2893 
2894 	mutex_lock(&sfp->sm_mutex);
2895 	if (changed & SFP_F_PRESENT)
2896 		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2897 				    SFP_E_INSERT : SFP_E_REMOVE);
2898 
2899 	if (changed & SFP_F_TX_FAULT)
2900 		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2901 				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2902 
2903 	if (changed & SFP_F_LOS)
2904 		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2905 				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2906 	mutex_unlock(&sfp->sm_mutex);
2907 	rtnl_unlock();
2908 }
2909 
2910 static irqreturn_t sfp_irq(int irq, void *data)
2911 {
2912 	struct sfp *sfp = data;
2913 
2914 	sfp_check_state(sfp);
2915 
2916 	return IRQ_HANDLED;
2917 }
2918 
2919 static void sfp_poll(struct work_struct *work)
2920 {
2921 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2922 
2923 	sfp_check_state(sfp);
2924 
2925 	// st_mutex doesn't need to be held here for state_soft_mask,
2926 	// it's unimportant if we race while reading this.
2927 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2928 	    sfp->need_poll)
2929 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2930 }
2931 
2932 static struct sfp *sfp_alloc(struct device *dev)
2933 {
2934 	struct sfp *sfp;
2935 
2936 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2937 	if (!sfp)
2938 		return ERR_PTR(-ENOMEM);
2939 
2940 	sfp->dev = dev;
2941 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2942 
2943 	mutex_init(&sfp->sm_mutex);
2944 	mutex_init(&sfp->st_mutex);
2945 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2946 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2947 
2948 	sfp_hwmon_init(sfp);
2949 
2950 	return sfp;
2951 }
2952 
2953 static void sfp_cleanup(void *data)
2954 {
2955 	struct sfp *sfp = data;
2956 
2957 	sfp_hwmon_exit(sfp);
2958 
2959 	cancel_delayed_work_sync(&sfp->poll);
2960 	cancel_delayed_work_sync(&sfp->timeout);
2961 	if (sfp->i2c_mii) {
2962 		mdiobus_unregister(sfp->i2c_mii);
2963 		mdiobus_free(sfp->i2c_mii);
2964 	}
2965 	if (sfp->i2c)
2966 		i2c_put_adapter(sfp->i2c);
2967 	kfree(sfp);
2968 }
2969 
2970 static int sfp_i2c_get(struct sfp *sfp)
2971 {
2972 	struct fwnode_handle *h;
2973 	struct i2c_adapter *i2c;
2974 	int err;
2975 
2976 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2977 	if (IS_ERR(h)) {
2978 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2979 		return -ENODEV;
2980 	}
2981 
2982 	i2c = i2c_get_adapter_by_fwnode(h);
2983 	if (!i2c) {
2984 		err = -EPROBE_DEFER;
2985 		goto put;
2986 	}
2987 
2988 	err = sfp_i2c_configure(sfp, i2c);
2989 	if (err)
2990 		i2c_put_adapter(i2c);
2991 put:
2992 	fwnode_handle_put(h);
2993 	return err;
2994 }
2995 
2996 static int sfp_probe(struct platform_device *pdev)
2997 {
2998 	const struct sff_data *sff;
2999 	char *sfp_irq_name;
3000 	struct sfp *sfp;
3001 	int err, i;
3002 
3003 	sfp = sfp_alloc(&pdev->dev);
3004 	if (IS_ERR(sfp))
3005 		return PTR_ERR(sfp);
3006 
3007 	platform_set_drvdata(pdev, sfp);
3008 
3009 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
3010 	if (err < 0)
3011 		return err;
3012 
3013 	sff = device_get_match_data(sfp->dev);
3014 	if (!sff)
3015 		sff = &sfp_data;
3016 
3017 	sfp->type = sff;
3018 
3019 	err = sfp_i2c_get(sfp);
3020 	if (err)
3021 		return err;
3022 
3023 	for (i = 0; i < GPIO_MAX; i++)
3024 		if (sff->gpios & BIT(i)) {
3025 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3026 					   gpio_names[i], gpio_flags[i]);
3027 			if (IS_ERR(sfp->gpio[i]))
3028 				return PTR_ERR(sfp->gpio[i]);
3029 		}
3030 
3031 	sfp->state_hw_mask = SFP_F_PRESENT;
3032 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
3033 
3034 	sfp->get_state = sfp_gpio_get_state;
3035 	sfp->set_state = sfp_gpio_set_state;
3036 
3037 	/* Modules that have no detect signal are always present */
3038 	if (!(sfp->gpio[GPIO_MODDEF0]))
3039 		sfp->get_state = sff_gpio_get_state;
3040 
3041 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3042 				 &sfp->max_power_mW);
3043 	if (sfp->max_power_mW < 1000) {
3044 		if (sfp->max_power_mW)
3045 			dev_warn(sfp->dev,
3046 				 "Firmware bug: host maximum power should be at least 1W\n");
3047 		sfp->max_power_mW = 1000;
3048 	}
3049 
3050 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3051 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3052 
3053 	/* Get the initial state, and always signal TX disable,
3054 	 * since the network interface will not be up.
3055 	 */
3056 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3057 
3058 	if (sfp->gpio[GPIO_RS0] &&
3059 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3060 		sfp->state |= SFP_F_RS0;
3061 	sfp_set_state(sfp, sfp->state);
3062 	sfp_module_tx_disable(sfp);
3063 	if (sfp->state & SFP_F_PRESENT) {
3064 		rtnl_lock();
3065 		sfp_sm_event(sfp, SFP_E_INSERT);
3066 		rtnl_unlock();
3067 	}
3068 
3069 	for (i = 0; i < GPIO_MAX; i++) {
3070 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3071 			continue;
3072 
3073 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3074 		if (sfp->gpio_irq[i] < 0) {
3075 			sfp->gpio_irq[i] = 0;
3076 			sfp->need_poll = true;
3077 			continue;
3078 		}
3079 
3080 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3081 					      "%s-%s", dev_name(sfp->dev),
3082 					      gpio_names[i]);
3083 
3084 		if (!sfp_irq_name)
3085 			return -ENOMEM;
3086 
3087 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3088 						NULL, sfp_irq,
3089 						IRQF_ONESHOT |
3090 						IRQF_TRIGGER_RISING |
3091 						IRQF_TRIGGER_FALLING,
3092 						sfp_irq_name, sfp);
3093 		if (err) {
3094 			sfp->gpio_irq[i] = 0;
3095 			sfp->need_poll = true;
3096 		}
3097 	}
3098 
3099 	if (sfp->need_poll)
3100 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3101 
3102 	/* We could have an issue in cases no Tx disable pin is available or
3103 	 * wired as modules using a laser as their light source will continue to
3104 	 * be active when the fiber is removed. This could be a safety issue and
3105 	 * we should at least warn the user about that.
3106 	 */
3107 	if (!sfp->gpio[GPIO_TX_DISABLE])
3108 		dev_warn(sfp->dev,
3109 			 "No tx_disable pin: SFP modules will always be emitting.\n");
3110 
3111 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3112 	if (!sfp->sfp_bus)
3113 		return -ENOMEM;
3114 
3115 	sfp_debugfs_init(sfp);
3116 
3117 	return 0;
3118 }
3119 
3120 static void sfp_remove(struct platform_device *pdev)
3121 {
3122 	struct sfp *sfp = platform_get_drvdata(pdev);
3123 
3124 	sfp_debugfs_exit(sfp);
3125 	sfp_unregister_socket(sfp->sfp_bus);
3126 
3127 	rtnl_lock();
3128 	sfp_sm_event(sfp, SFP_E_REMOVE);
3129 	rtnl_unlock();
3130 }
3131 
3132 static void sfp_shutdown(struct platform_device *pdev)
3133 {
3134 	struct sfp *sfp = platform_get_drvdata(pdev);
3135 	int i;
3136 
3137 	for (i = 0; i < GPIO_MAX; i++) {
3138 		if (!sfp->gpio_irq[i])
3139 			continue;
3140 
3141 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3142 	}
3143 
3144 	cancel_delayed_work_sync(&sfp->poll);
3145 	cancel_delayed_work_sync(&sfp->timeout);
3146 }
3147 
3148 static struct platform_driver sfp_driver = {
3149 	.probe = sfp_probe,
3150 	.remove_new = sfp_remove,
3151 	.shutdown = sfp_shutdown,
3152 	.driver = {
3153 		.name = "sfp",
3154 		.of_match_table = sfp_of_match,
3155 	},
3156 };
3157 
3158 static int sfp_init(void)
3159 {
3160 	poll_jiffies = msecs_to_jiffies(100);
3161 
3162 	return platform_driver_register(&sfp_driver);
3163 }
3164 module_init(sfp_init);
3165 
3166 static void sfp_exit(void)
3167 {
3168 	platform_driver_unregister(&sfp_driver);
3169 }
3170 module_exit(sfp_exit);
3171 
3172 MODULE_ALIAS("platform:sfp");
3173 MODULE_AUTHOR("Russell King");
3174 MODULE_LICENSE("GPL v2");
3175 MODULE_DESCRIPTION("SFP cage support");
3176