1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/acpi.h> 3 #include <linux/ctype.h> 4 #include <linux/debugfs.h> 5 #include <linux/delay.h> 6 #include <linux/gpio/consumer.h> 7 #include <linux/hwmon.h> 8 #include <linux/i2c.h> 9 #include <linux/interrupt.h> 10 #include <linux/jiffies.h> 11 #include <linux/mdio/mdio-i2c.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/of.h> 15 #include <linux/phy.h> 16 #include <linux/platform_device.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "sfp.h" 22 #include "swphy.h" 23 24 enum { 25 GPIO_MODDEF0, 26 GPIO_LOS, 27 GPIO_TX_FAULT, 28 GPIO_TX_DISABLE, 29 GPIO_RATE_SELECT, 30 GPIO_MAX, 31 32 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 33 SFP_F_LOS = BIT(GPIO_LOS), 34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 37 38 SFP_E_INSERT = 0, 39 SFP_E_REMOVE, 40 SFP_E_DEV_ATTACH, 41 SFP_E_DEV_DETACH, 42 SFP_E_DEV_DOWN, 43 SFP_E_DEV_UP, 44 SFP_E_TX_FAULT, 45 SFP_E_TX_CLEAR, 46 SFP_E_LOS_HIGH, 47 SFP_E_LOS_LOW, 48 SFP_E_TIMEOUT, 49 50 SFP_MOD_EMPTY = 0, 51 SFP_MOD_ERROR, 52 SFP_MOD_PROBE, 53 SFP_MOD_WAITDEV, 54 SFP_MOD_HPOWER, 55 SFP_MOD_WAITPWR, 56 SFP_MOD_PRESENT, 57 58 SFP_DEV_DETACHED = 0, 59 SFP_DEV_DOWN, 60 SFP_DEV_UP, 61 62 SFP_S_DOWN = 0, 63 SFP_S_FAIL, 64 SFP_S_WAIT, 65 SFP_S_INIT, 66 SFP_S_INIT_PHY, 67 SFP_S_INIT_TX_FAULT, 68 SFP_S_WAIT_LOS, 69 SFP_S_LINK_UP, 70 SFP_S_TX_FAULT, 71 SFP_S_REINIT, 72 SFP_S_TX_DISABLE, 73 }; 74 75 static const char * const mod_state_strings[] = { 76 [SFP_MOD_EMPTY] = "empty", 77 [SFP_MOD_ERROR] = "error", 78 [SFP_MOD_PROBE] = "probe", 79 [SFP_MOD_WAITDEV] = "waitdev", 80 [SFP_MOD_HPOWER] = "hpower", 81 [SFP_MOD_WAITPWR] = "waitpwr", 82 [SFP_MOD_PRESENT] = "present", 83 }; 84 85 static const char *mod_state_to_str(unsigned short mod_state) 86 { 87 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 88 return "Unknown module state"; 89 return mod_state_strings[mod_state]; 90 } 91 92 static const char * const dev_state_strings[] = { 93 [SFP_DEV_DETACHED] = "detached", 94 [SFP_DEV_DOWN] = "down", 95 [SFP_DEV_UP] = "up", 96 }; 97 98 static const char *dev_state_to_str(unsigned short dev_state) 99 { 100 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 101 return "Unknown device state"; 102 return dev_state_strings[dev_state]; 103 } 104 105 static const char * const event_strings[] = { 106 [SFP_E_INSERT] = "insert", 107 [SFP_E_REMOVE] = "remove", 108 [SFP_E_DEV_ATTACH] = "dev_attach", 109 [SFP_E_DEV_DETACH] = "dev_detach", 110 [SFP_E_DEV_DOWN] = "dev_down", 111 [SFP_E_DEV_UP] = "dev_up", 112 [SFP_E_TX_FAULT] = "tx_fault", 113 [SFP_E_TX_CLEAR] = "tx_clear", 114 [SFP_E_LOS_HIGH] = "los_high", 115 [SFP_E_LOS_LOW] = "los_low", 116 [SFP_E_TIMEOUT] = "timeout", 117 }; 118 119 static const char *event_to_str(unsigned short event) 120 { 121 if (event >= ARRAY_SIZE(event_strings)) 122 return "Unknown event"; 123 return event_strings[event]; 124 } 125 126 static const char * const sm_state_strings[] = { 127 [SFP_S_DOWN] = "down", 128 [SFP_S_FAIL] = "fail", 129 [SFP_S_WAIT] = "wait", 130 [SFP_S_INIT] = "init", 131 [SFP_S_INIT_PHY] = "init_phy", 132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 133 [SFP_S_WAIT_LOS] = "wait_los", 134 [SFP_S_LINK_UP] = "link_up", 135 [SFP_S_TX_FAULT] = "tx_fault", 136 [SFP_S_REINIT] = "reinit", 137 [SFP_S_TX_DISABLE] = "rx_disable", 138 }; 139 140 static const char *sm_state_to_str(unsigned short sm_state) 141 { 142 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 143 return "Unknown state"; 144 return sm_state_strings[sm_state]; 145 } 146 147 static const char *gpio_of_names[] = { 148 "mod-def0", 149 "los", 150 "tx-fault", 151 "tx-disable", 152 "rate-select0", 153 }; 154 155 static const enum gpiod_flags gpio_flags[] = { 156 GPIOD_IN, 157 GPIOD_IN, 158 GPIOD_IN, 159 GPIOD_ASIS, 160 GPIOD_ASIS, 161 }; 162 163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 164 * non-cooled module to initialise its laser safety circuitry. We wait 165 * an initial T_WAIT period before we check the tx fault to give any PHY 166 * on board (for a copper SFP) time to initialise. 167 */ 168 #define T_WAIT msecs_to_jiffies(50) 169 #define T_START_UP msecs_to_jiffies(300) 170 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 171 172 /* t_reset is the time required to assert the TX_DISABLE signal to reset 173 * an indicated TX_FAULT. 174 */ 175 #define T_RESET_US 10 176 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 177 178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 179 * time. If the TX_FAULT signal is not deasserted after this number of 180 * attempts at clearing it, we decide that the module is faulty. 181 * N_FAULT is the same but after the module has initialised. 182 */ 183 #define N_FAULT_INIT 5 184 #define N_FAULT 5 185 186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 187 * R_PHY_RETRY is the number of attempts. 188 */ 189 #define T_PHY_RETRY msecs_to_jiffies(50) 190 #define R_PHY_RETRY 12 191 192 /* SFP module presence detection is poor: the three MOD DEF signals are 193 * the same length on the PCB, which means it's possible for MOD DEF 0 to 194 * connect before the I2C bus on MOD DEF 1/2. 195 * 196 * The SFF-8472 specifies t_serial ("Time from power on until module is 197 * ready for data transmission over the two wire serial bus.") as 300ms. 198 */ 199 #define T_SERIAL msecs_to_jiffies(300) 200 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 201 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 202 #define R_PROBE_RETRY_INIT 10 203 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 204 #define R_PROBE_RETRY_SLOW 12 205 206 /* SFP modules appear to always have their PHY configured for bus address 207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 208 */ 209 #define SFP_PHY_ADDR 22 210 211 struct sff_data { 212 unsigned int gpios; 213 bool (*module_supported)(const struct sfp_eeprom_id *id); 214 }; 215 216 struct sfp { 217 struct device *dev; 218 struct i2c_adapter *i2c; 219 struct mii_bus *i2c_mii; 220 struct sfp_bus *sfp_bus; 221 struct phy_device *mod_phy; 222 const struct sff_data *type; 223 size_t i2c_block_size; 224 u32 max_power_mW; 225 226 unsigned int (*get_state)(struct sfp *); 227 void (*set_state)(struct sfp *, unsigned int); 228 int (*read)(struct sfp *, bool, u8, void *, size_t); 229 int (*write)(struct sfp *, bool, u8, void *, size_t); 230 231 struct gpio_desc *gpio[GPIO_MAX]; 232 int gpio_irq[GPIO_MAX]; 233 234 bool need_poll; 235 236 struct mutex st_mutex; /* Protects state */ 237 unsigned int state_soft_mask; 238 unsigned int state; 239 struct delayed_work poll; 240 struct delayed_work timeout; 241 struct mutex sm_mutex; /* Protects state machine */ 242 unsigned char sm_mod_state; 243 unsigned char sm_mod_tries_init; 244 unsigned char sm_mod_tries; 245 unsigned char sm_dev_state; 246 unsigned short sm_state; 247 unsigned char sm_fault_retries; 248 unsigned char sm_phy_retries; 249 250 struct sfp_eeprom_id id; 251 unsigned int module_power_mW; 252 unsigned int module_t_start_up; 253 254 #if IS_ENABLED(CONFIG_HWMON) 255 struct sfp_diag diag; 256 struct delayed_work hwmon_probe; 257 unsigned int hwmon_tries; 258 struct device *hwmon_dev; 259 char *hwmon_name; 260 #endif 261 262 #if IS_ENABLED(CONFIG_DEBUG_FS) 263 struct dentry *debugfs_dir; 264 #endif 265 }; 266 267 static bool sff_module_supported(const struct sfp_eeprom_id *id) 268 { 269 return id->base.phys_id == SFF8024_ID_SFF_8472 && 270 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 271 } 272 273 static const struct sff_data sff_data = { 274 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 275 .module_supported = sff_module_supported, 276 }; 277 278 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 279 { 280 return id->base.phys_id == SFF8024_ID_SFP && 281 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 282 } 283 284 static const struct sff_data sfp_data = { 285 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 286 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 287 .module_supported = sfp_module_supported, 288 }; 289 290 static const struct of_device_id sfp_of_match[] = { 291 { .compatible = "sff,sff", .data = &sff_data, }, 292 { .compatible = "sff,sfp", .data = &sfp_data, }, 293 { }, 294 }; 295 MODULE_DEVICE_TABLE(of, sfp_of_match); 296 297 static unsigned long poll_jiffies; 298 299 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 300 { 301 unsigned int i, state, v; 302 303 for (i = state = 0; i < GPIO_MAX; i++) { 304 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 305 continue; 306 307 v = gpiod_get_value_cansleep(sfp->gpio[i]); 308 if (v) 309 state |= BIT(i); 310 } 311 312 return state; 313 } 314 315 static unsigned int sff_gpio_get_state(struct sfp *sfp) 316 { 317 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 318 } 319 320 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 321 { 322 if (state & SFP_F_PRESENT) { 323 /* If the module is present, drive the signals */ 324 if (sfp->gpio[GPIO_TX_DISABLE]) 325 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 326 state & SFP_F_TX_DISABLE); 327 if (state & SFP_F_RATE_SELECT) 328 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 329 state & SFP_F_RATE_SELECT); 330 } else { 331 /* Otherwise, let them float to the pull-ups */ 332 if (sfp->gpio[GPIO_TX_DISABLE]) 333 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 334 if (state & SFP_F_RATE_SELECT) 335 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 336 } 337 } 338 339 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 340 size_t len) 341 { 342 struct i2c_msg msgs[2]; 343 size_t block_size; 344 size_t this_len; 345 u8 bus_addr; 346 int ret; 347 348 if (a2) { 349 block_size = 16; 350 bus_addr = 0x51; 351 } else { 352 block_size = sfp->i2c_block_size; 353 bus_addr = 0x50; 354 } 355 356 msgs[0].addr = bus_addr; 357 msgs[0].flags = 0; 358 msgs[0].len = 1; 359 msgs[0].buf = &dev_addr; 360 msgs[1].addr = bus_addr; 361 msgs[1].flags = I2C_M_RD; 362 msgs[1].len = len; 363 msgs[1].buf = buf; 364 365 while (len) { 366 this_len = len; 367 if (this_len > block_size) 368 this_len = block_size; 369 370 msgs[1].len = this_len; 371 372 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 373 if (ret < 0) 374 return ret; 375 376 if (ret != ARRAY_SIZE(msgs)) 377 break; 378 379 msgs[1].buf += this_len; 380 dev_addr += this_len; 381 len -= this_len; 382 } 383 384 return msgs[1].buf - (u8 *)buf; 385 } 386 387 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 388 size_t len) 389 { 390 struct i2c_msg msgs[1]; 391 u8 bus_addr = a2 ? 0x51 : 0x50; 392 int ret; 393 394 msgs[0].addr = bus_addr; 395 msgs[0].flags = 0; 396 msgs[0].len = 1 + len; 397 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 398 if (!msgs[0].buf) 399 return -ENOMEM; 400 401 msgs[0].buf[0] = dev_addr; 402 memcpy(&msgs[0].buf[1], buf, len); 403 404 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 405 406 kfree(msgs[0].buf); 407 408 if (ret < 0) 409 return ret; 410 411 return ret == ARRAY_SIZE(msgs) ? len : 0; 412 } 413 414 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 415 { 416 struct mii_bus *i2c_mii; 417 int ret; 418 419 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 420 return -EINVAL; 421 422 sfp->i2c = i2c; 423 sfp->read = sfp_i2c_read; 424 sfp->write = sfp_i2c_write; 425 426 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); 427 if (IS_ERR(i2c_mii)) 428 return PTR_ERR(i2c_mii); 429 430 i2c_mii->name = "SFP I2C Bus"; 431 i2c_mii->phy_mask = ~0; 432 433 ret = mdiobus_register(i2c_mii); 434 if (ret < 0) { 435 mdiobus_free(i2c_mii); 436 return ret; 437 } 438 439 sfp->i2c_mii = i2c_mii; 440 441 return 0; 442 } 443 444 /* Interface */ 445 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 446 { 447 return sfp->read(sfp, a2, addr, buf, len); 448 } 449 450 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 451 { 452 return sfp->write(sfp, a2, addr, buf, len); 453 } 454 455 static unsigned int sfp_soft_get_state(struct sfp *sfp) 456 { 457 unsigned int state = 0; 458 u8 status; 459 int ret; 460 461 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 462 if (ret == sizeof(status)) { 463 if (status & SFP_STATUS_RX_LOS) 464 state |= SFP_F_LOS; 465 if (status & SFP_STATUS_TX_FAULT) 466 state |= SFP_F_TX_FAULT; 467 } else { 468 dev_err_ratelimited(sfp->dev, 469 "failed to read SFP soft status: %d\n", 470 ret); 471 /* Preserve the current state */ 472 state = sfp->state; 473 } 474 475 return state & sfp->state_soft_mask; 476 } 477 478 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 479 { 480 u8 status; 481 482 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) == 483 sizeof(status)) { 484 if (state & SFP_F_TX_DISABLE) 485 status |= SFP_STATUS_TX_DISABLE_FORCE; 486 else 487 status &= ~SFP_STATUS_TX_DISABLE_FORCE; 488 489 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status)); 490 } 491 } 492 493 static void sfp_soft_start_poll(struct sfp *sfp) 494 { 495 const struct sfp_eeprom_id *id = &sfp->id; 496 497 sfp->state_soft_mask = 0; 498 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE && 499 !sfp->gpio[GPIO_TX_DISABLE]) 500 sfp->state_soft_mask |= SFP_F_TX_DISABLE; 501 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT && 502 !sfp->gpio[GPIO_TX_FAULT]) 503 sfp->state_soft_mask |= SFP_F_TX_FAULT; 504 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS && 505 !sfp->gpio[GPIO_LOS]) 506 sfp->state_soft_mask |= SFP_F_LOS; 507 508 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 509 !sfp->need_poll) 510 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 511 } 512 513 static void sfp_soft_stop_poll(struct sfp *sfp) 514 { 515 sfp->state_soft_mask = 0; 516 } 517 518 static unsigned int sfp_get_state(struct sfp *sfp) 519 { 520 unsigned int state = sfp->get_state(sfp); 521 522 if (state & SFP_F_PRESENT && 523 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT)) 524 state |= sfp_soft_get_state(sfp); 525 526 return state; 527 } 528 529 static void sfp_set_state(struct sfp *sfp, unsigned int state) 530 { 531 sfp->set_state(sfp, state); 532 533 if (state & SFP_F_PRESENT && 534 sfp->state_soft_mask & SFP_F_TX_DISABLE) 535 sfp_soft_set_state(sfp, state); 536 } 537 538 static unsigned int sfp_check(void *buf, size_t len) 539 { 540 u8 *p, check; 541 542 for (p = buf, check = 0; len; p++, len--) 543 check += *p; 544 545 return check; 546 } 547 548 /* hwmon */ 549 #if IS_ENABLED(CONFIG_HWMON) 550 static umode_t sfp_hwmon_is_visible(const void *data, 551 enum hwmon_sensor_types type, 552 u32 attr, int channel) 553 { 554 const struct sfp *sfp = data; 555 556 switch (type) { 557 case hwmon_temp: 558 switch (attr) { 559 case hwmon_temp_min_alarm: 560 case hwmon_temp_max_alarm: 561 case hwmon_temp_lcrit_alarm: 562 case hwmon_temp_crit_alarm: 563 case hwmon_temp_min: 564 case hwmon_temp_max: 565 case hwmon_temp_lcrit: 566 case hwmon_temp_crit: 567 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 568 return 0; 569 fallthrough; 570 case hwmon_temp_input: 571 case hwmon_temp_label: 572 return 0444; 573 default: 574 return 0; 575 } 576 case hwmon_in: 577 switch (attr) { 578 case hwmon_in_min_alarm: 579 case hwmon_in_max_alarm: 580 case hwmon_in_lcrit_alarm: 581 case hwmon_in_crit_alarm: 582 case hwmon_in_min: 583 case hwmon_in_max: 584 case hwmon_in_lcrit: 585 case hwmon_in_crit: 586 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 587 return 0; 588 fallthrough; 589 case hwmon_in_input: 590 case hwmon_in_label: 591 return 0444; 592 default: 593 return 0; 594 } 595 case hwmon_curr: 596 switch (attr) { 597 case hwmon_curr_min_alarm: 598 case hwmon_curr_max_alarm: 599 case hwmon_curr_lcrit_alarm: 600 case hwmon_curr_crit_alarm: 601 case hwmon_curr_min: 602 case hwmon_curr_max: 603 case hwmon_curr_lcrit: 604 case hwmon_curr_crit: 605 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 606 return 0; 607 fallthrough; 608 case hwmon_curr_input: 609 case hwmon_curr_label: 610 return 0444; 611 default: 612 return 0; 613 } 614 case hwmon_power: 615 /* External calibration of receive power requires 616 * floating point arithmetic. Doing that in the kernel 617 * is not easy, so just skip it. If the module does 618 * not require external calibration, we can however 619 * show receiver power, since FP is then not needed. 620 */ 621 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 622 channel == 1) 623 return 0; 624 switch (attr) { 625 case hwmon_power_min_alarm: 626 case hwmon_power_max_alarm: 627 case hwmon_power_lcrit_alarm: 628 case hwmon_power_crit_alarm: 629 case hwmon_power_min: 630 case hwmon_power_max: 631 case hwmon_power_lcrit: 632 case hwmon_power_crit: 633 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 634 return 0; 635 fallthrough; 636 case hwmon_power_input: 637 case hwmon_power_label: 638 return 0444; 639 default: 640 return 0; 641 } 642 default: 643 return 0; 644 } 645 } 646 647 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 648 { 649 __be16 val; 650 int err; 651 652 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 653 if (err < 0) 654 return err; 655 656 *value = be16_to_cpu(val); 657 658 return 0; 659 } 660 661 static void sfp_hwmon_to_rx_power(long *value) 662 { 663 *value = DIV_ROUND_CLOSEST(*value, 10); 664 } 665 666 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 667 long *value) 668 { 669 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 670 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 671 } 672 673 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 674 { 675 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 676 be16_to_cpu(sfp->diag.cal_t_offset), value); 677 678 if (*value >= 0x8000) 679 *value -= 0x10000; 680 681 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 682 } 683 684 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 685 { 686 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 687 be16_to_cpu(sfp->diag.cal_v_offset), value); 688 689 *value = DIV_ROUND_CLOSEST(*value, 10); 690 } 691 692 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 693 { 694 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 695 be16_to_cpu(sfp->diag.cal_txi_offset), value); 696 697 *value = DIV_ROUND_CLOSEST(*value, 500); 698 } 699 700 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 701 { 702 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 703 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 704 705 *value = DIV_ROUND_CLOSEST(*value, 10); 706 } 707 708 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 709 { 710 int err; 711 712 err = sfp_hwmon_read_sensor(sfp, reg, value); 713 if (err < 0) 714 return err; 715 716 sfp_hwmon_calibrate_temp(sfp, value); 717 718 return 0; 719 } 720 721 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 722 { 723 int err; 724 725 err = sfp_hwmon_read_sensor(sfp, reg, value); 726 if (err < 0) 727 return err; 728 729 sfp_hwmon_calibrate_vcc(sfp, value); 730 731 return 0; 732 } 733 734 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 735 { 736 int err; 737 738 err = sfp_hwmon_read_sensor(sfp, reg, value); 739 if (err < 0) 740 return err; 741 742 sfp_hwmon_calibrate_bias(sfp, value); 743 744 return 0; 745 } 746 747 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 748 { 749 int err; 750 751 err = sfp_hwmon_read_sensor(sfp, reg, value); 752 if (err < 0) 753 return err; 754 755 sfp_hwmon_calibrate_tx_power(sfp, value); 756 757 return 0; 758 } 759 760 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 761 { 762 int err; 763 764 err = sfp_hwmon_read_sensor(sfp, reg, value); 765 if (err < 0) 766 return err; 767 768 sfp_hwmon_to_rx_power(value); 769 770 return 0; 771 } 772 773 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 774 { 775 u8 status; 776 int err; 777 778 switch (attr) { 779 case hwmon_temp_input: 780 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 781 782 case hwmon_temp_lcrit: 783 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 784 sfp_hwmon_calibrate_temp(sfp, value); 785 return 0; 786 787 case hwmon_temp_min: 788 *value = be16_to_cpu(sfp->diag.temp_low_warn); 789 sfp_hwmon_calibrate_temp(sfp, value); 790 return 0; 791 case hwmon_temp_max: 792 *value = be16_to_cpu(sfp->diag.temp_high_warn); 793 sfp_hwmon_calibrate_temp(sfp, value); 794 return 0; 795 796 case hwmon_temp_crit: 797 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 798 sfp_hwmon_calibrate_temp(sfp, value); 799 return 0; 800 801 case hwmon_temp_lcrit_alarm: 802 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 803 if (err < 0) 804 return err; 805 806 *value = !!(status & SFP_ALARM0_TEMP_LOW); 807 return 0; 808 809 case hwmon_temp_min_alarm: 810 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 811 if (err < 0) 812 return err; 813 814 *value = !!(status & SFP_WARN0_TEMP_LOW); 815 return 0; 816 817 case hwmon_temp_max_alarm: 818 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 819 if (err < 0) 820 return err; 821 822 *value = !!(status & SFP_WARN0_TEMP_HIGH); 823 return 0; 824 825 case hwmon_temp_crit_alarm: 826 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 827 if (err < 0) 828 return err; 829 830 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 831 return 0; 832 default: 833 return -EOPNOTSUPP; 834 } 835 836 return -EOPNOTSUPP; 837 } 838 839 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 840 { 841 u8 status; 842 int err; 843 844 switch (attr) { 845 case hwmon_in_input: 846 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 847 848 case hwmon_in_lcrit: 849 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 850 sfp_hwmon_calibrate_vcc(sfp, value); 851 return 0; 852 853 case hwmon_in_min: 854 *value = be16_to_cpu(sfp->diag.volt_low_warn); 855 sfp_hwmon_calibrate_vcc(sfp, value); 856 return 0; 857 858 case hwmon_in_max: 859 *value = be16_to_cpu(sfp->diag.volt_high_warn); 860 sfp_hwmon_calibrate_vcc(sfp, value); 861 return 0; 862 863 case hwmon_in_crit: 864 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 865 sfp_hwmon_calibrate_vcc(sfp, value); 866 return 0; 867 868 case hwmon_in_lcrit_alarm: 869 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 870 if (err < 0) 871 return err; 872 873 *value = !!(status & SFP_ALARM0_VCC_LOW); 874 return 0; 875 876 case hwmon_in_min_alarm: 877 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 878 if (err < 0) 879 return err; 880 881 *value = !!(status & SFP_WARN0_VCC_LOW); 882 return 0; 883 884 case hwmon_in_max_alarm: 885 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 886 if (err < 0) 887 return err; 888 889 *value = !!(status & SFP_WARN0_VCC_HIGH); 890 return 0; 891 892 case hwmon_in_crit_alarm: 893 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 894 if (err < 0) 895 return err; 896 897 *value = !!(status & SFP_ALARM0_VCC_HIGH); 898 return 0; 899 default: 900 return -EOPNOTSUPP; 901 } 902 903 return -EOPNOTSUPP; 904 } 905 906 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 907 { 908 u8 status; 909 int err; 910 911 switch (attr) { 912 case hwmon_curr_input: 913 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 914 915 case hwmon_curr_lcrit: 916 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 917 sfp_hwmon_calibrate_bias(sfp, value); 918 return 0; 919 920 case hwmon_curr_min: 921 *value = be16_to_cpu(sfp->diag.bias_low_warn); 922 sfp_hwmon_calibrate_bias(sfp, value); 923 return 0; 924 925 case hwmon_curr_max: 926 *value = be16_to_cpu(sfp->diag.bias_high_warn); 927 sfp_hwmon_calibrate_bias(sfp, value); 928 return 0; 929 930 case hwmon_curr_crit: 931 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 932 sfp_hwmon_calibrate_bias(sfp, value); 933 return 0; 934 935 case hwmon_curr_lcrit_alarm: 936 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 937 if (err < 0) 938 return err; 939 940 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 941 return 0; 942 943 case hwmon_curr_min_alarm: 944 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 945 if (err < 0) 946 return err; 947 948 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 949 return 0; 950 951 case hwmon_curr_max_alarm: 952 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 953 if (err < 0) 954 return err; 955 956 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 957 return 0; 958 959 case hwmon_curr_crit_alarm: 960 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 961 if (err < 0) 962 return err; 963 964 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 965 return 0; 966 default: 967 return -EOPNOTSUPP; 968 } 969 970 return -EOPNOTSUPP; 971 } 972 973 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 974 { 975 u8 status; 976 int err; 977 978 switch (attr) { 979 case hwmon_power_input: 980 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 981 982 case hwmon_power_lcrit: 983 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 984 sfp_hwmon_calibrate_tx_power(sfp, value); 985 return 0; 986 987 case hwmon_power_min: 988 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 989 sfp_hwmon_calibrate_tx_power(sfp, value); 990 return 0; 991 992 case hwmon_power_max: 993 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 994 sfp_hwmon_calibrate_tx_power(sfp, value); 995 return 0; 996 997 case hwmon_power_crit: 998 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 999 sfp_hwmon_calibrate_tx_power(sfp, value); 1000 return 0; 1001 1002 case hwmon_power_lcrit_alarm: 1003 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1004 if (err < 0) 1005 return err; 1006 1007 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1008 return 0; 1009 1010 case hwmon_power_min_alarm: 1011 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1012 if (err < 0) 1013 return err; 1014 1015 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1016 return 0; 1017 1018 case hwmon_power_max_alarm: 1019 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1020 if (err < 0) 1021 return err; 1022 1023 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1024 return 0; 1025 1026 case hwmon_power_crit_alarm: 1027 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1028 if (err < 0) 1029 return err; 1030 1031 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1032 return 0; 1033 default: 1034 return -EOPNOTSUPP; 1035 } 1036 1037 return -EOPNOTSUPP; 1038 } 1039 1040 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1041 { 1042 u8 status; 1043 int err; 1044 1045 switch (attr) { 1046 case hwmon_power_input: 1047 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1048 1049 case hwmon_power_lcrit: 1050 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1051 sfp_hwmon_to_rx_power(value); 1052 return 0; 1053 1054 case hwmon_power_min: 1055 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1056 sfp_hwmon_to_rx_power(value); 1057 return 0; 1058 1059 case hwmon_power_max: 1060 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1061 sfp_hwmon_to_rx_power(value); 1062 return 0; 1063 1064 case hwmon_power_crit: 1065 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1066 sfp_hwmon_to_rx_power(value); 1067 return 0; 1068 1069 case hwmon_power_lcrit_alarm: 1070 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1071 if (err < 0) 1072 return err; 1073 1074 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1075 return 0; 1076 1077 case hwmon_power_min_alarm: 1078 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1079 if (err < 0) 1080 return err; 1081 1082 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1083 return 0; 1084 1085 case hwmon_power_max_alarm: 1086 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1087 if (err < 0) 1088 return err; 1089 1090 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1091 return 0; 1092 1093 case hwmon_power_crit_alarm: 1094 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1095 if (err < 0) 1096 return err; 1097 1098 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1099 return 0; 1100 default: 1101 return -EOPNOTSUPP; 1102 } 1103 1104 return -EOPNOTSUPP; 1105 } 1106 1107 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1108 u32 attr, int channel, long *value) 1109 { 1110 struct sfp *sfp = dev_get_drvdata(dev); 1111 1112 switch (type) { 1113 case hwmon_temp: 1114 return sfp_hwmon_temp(sfp, attr, value); 1115 case hwmon_in: 1116 return sfp_hwmon_vcc(sfp, attr, value); 1117 case hwmon_curr: 1118 return sfp_hwmon_bias(sfp, attr, value); 1119 case hwmon_power: 1120 switch (channel) { 1121 case 0: 1122 return sfp_hwmon_tx_power(sfp, attr, value); 1123 case 1: 1124 return sfp_hwmon_rx_power(sfp, attr, value); 1125 default: 1126 return -EOPNOTSUPP; 1127 } 1128 default: 1129 return -EOPNOTSUPP; 1130 } 1131 } 1132 1133 static const char *const sfp_hwmon_power_labels[] = { 1134 "TX_power", 1135 "RX_power", 1136 }; 1137 1138 static int sfp_hwmon_read_string(struct device *dev, 1139 enum hwmon_sensor_types type, 1140 u32 attr, int channel, const char **str) 1141 { 1142 switch (type) { 1143 case hwmon_curr: 1144 switch (attr) { 1145 case hwmon_curr_label: 1146 *str = "bias"; 1147 return 0; 1148 default: 1149 return -EOPNOTSUPP; 1150 } 1151 break; 1152 case hwmon_temp: 1153 switch (attr) { 1154 case hwmon_temp_label: 1155 *str = "temperature"; 1156 return 0; 1157 default: 1158 return -EOPNOTSUPP; 1159 } 1160 break; 1161 case hwmon_in: 1162 switch (attr) { 1163 case hwmon_in_label: 1164 *str = "VCC"; 1165 return 0; 1166 default: 1167 return -EOPNOTSUPP; 1168 } 1169 break; 1170 case hwmon_power: 1171 switch (attr) { 1172 case hwmon_power_label: 1173 *str = sfp_hwmon_power_labels[channel]; 1174 return 0; 1175 default: 1176 return -EOPNOTSUPP; 1177 } 1178 break; 1179 default: 1180 return -EOPNOTSUPP; 1181 } 1182 1183 return -EOPNOTSUPP; 1184 } 1185 1186 static const struct hwmon_ops sfp_hwmon_ops = { 1187 .is_visible = sfp_hwmon_is_visible, 1188 .read = sfp_hwmon_read, 1189 .read_string = sfp_hwmon_read_string, 1190 }; 1191 1192 static u32 sfp_hwmon_chip_config[] = { 1193 HWMON_C_REGISTER_TZ, 1194 0, 1195 }; 1196 1197 static const struct hwmon_channel_info sfp_hwmon_chip = { 1198 .type = hwmon_chip, 1199 .config = sfp_hwmon_chip_config, 1200 }; 1201 1202 static u32 sfp_hwmon_temp_config[] = { 1203 HWMON_T_INPUT | 1204 HWMON_T_MAX | HWMON_T_MIN | 1205 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1206 HWMON_T_CRIT | HWMON_T_LCRIT | 1207 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1208 HWMON_T_LABEL, 1209 0, 1210 }; 1211 1212 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = { 1213 .type = hwmon_temp, 1214 .config = sfp_hwmon_temp_config, 1215 }; 1216 1217 static u32 sfp_hwmon_vcc_config[] = { 1218 HWMON_I_INPUT | 1219 HWMON_I_MAX | HWMON_I_MIN | 1220 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1221 HWMON_I_CRIT | HWMON_I_LCRIT | 1222 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1223 HWMON_I_LABEL, 1224 0, 1225 }; 1226 1227 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = { 1228 .type = hwmon_in, 1229 .config = sfp_hwmon_vcc_config, 1230 }; 1231 1232 static u32 sfp_hwmon_bias_config[] = { 1233 HWMON_C_INPUT | 1234 HWMON_C_MAX | HWMON_C_MIN | 1235 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1236 HWMON_C_CRIT | HWMON_C_LCRIT | 1237 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1238 HWMON_C_LABEL, 1239 0, 1240 }; 1241 1242 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = { 1243 .type = hwmon_curr, 1244 .config = sfp_hwmon_bias_config, 1245 }; 1246 1247 static u32 sfp_hwmon_power_config[] = { 1248 /* Transmit power */ 1249 HWMON_P_INPUT | 1250 HWMON_P_MAX | HWMON_P_MIN | 1251 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1252 HWMON_P_CRIT | HWMON_P_LCRIT | 1253 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1254 HWMON_P_LABEL, 1255 /* Receive power */ 1256 HWMON_P_INPUT | 1257 HWMON_P_MAX | HWMON_P_MIN | 1258 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1259 HWMON_P_CRIT | HWMON_P_LCRIT | 1260 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1261 HWMON_P_LABEL, 1262 0, 1263 }; 1264 1265 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = { 1266 .type = hwmon_power, 1267 .config = sfp_hwmon_power_config, 1268 }; 1269 1270 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1271 &sfp_hwmon_chip, 1272 &sfp_hwmon_vcc_channel_info, 1273 &sfp_hwmon_temp_channel_info, 1274 &sfp_hwmon_bias_channel_info, 1275 &sfp_hwmon_power_channel_info, 1276 NULL, 1277 }; 1278 1279 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1280 .ops = &sfp_hwmon_ops, 1281 .info = sfp_hwmon_info, 1282 }; 1283 1284 static void sfp_hwmon_probe(struct work_struct *work) 1285 { 1286 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1287 int err, i; 1288 1289 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1290 if (err < 0) { 1291 if (sfp->hwmon_tries--) { 1292 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1293 T_PROBE_RETRY_SLOW); 1294 } else { 1295 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); 1296 } 1297 return; 1298 } 1299 1300 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL); 1301 if (!sfp->hwmon_name) { 1302 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1303 return; 1304 } 1305 1306 for (i = 0; sfp->hwmon_name[i]; i++) 1307 if (hwmon_is_bad_char(sfp->hwmon_name[i])) 1308 sfp->hwmon_name[i] = '_'; 1309 1310 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1311 sfp->hwmon_name, sfp, 1312 &sfp_hwmon_chip_info, 1313 NULL); 1314 if (IS_ERR(sfp->hwmon_dev)) 1315 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1316 PTR_ERR(sfp->hwmon_dev)); 1317 } 1318 1319 static int sfp_hwmon_insert(struct sfp *sfp) 1320 { 1321 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1322 return 0; 1323 1324 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1325 return 0; 1326 1327 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1328 /* This driver in general does not support address 1329 * change. 1330 */ 1331 return 0; 1332 1333 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1334 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1335 1336 return 0; 1337 } 1338 1339 static void sfp_hwmon_remove(struct sfp *sfp) 1340 { 1341 cancel_delayed_work_sync(&sfp->hwmon_probe); 1342 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1343 hwmon_device_unregister(sfp->hwmon_dev); 1344 sfp->hwmon_dev = NULL; 1345 kfree(sfp->hwmon_name); 1346 } 1347 } 1348 1349 static int sfp_hwmon_init(struct sfp *sfp) 1350 { 1351 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1352 1353 return 0; 1354 } 1355 1356 static void sfp_hwmon_exit(struct sfp *sfp) 1357 { 1358 cancel_delayed_work_sync(&sfp->hwmon_probe); 1359 } 1360 #else 1361 static int sfp_hwmon_insert(struct sfp *sfp) 1362 { 1363 return 0; 1364 } 1365 1366 static void sfp_hwmon_remove(struct sfp *sfp) 1367 { 1368 } 1369 1370 static int sfp_hwmon_init(struct sfp *sfp) 1371 { 1372 return 0; 1373 } 1374 1375 static void sfp_hwmon_exit(struct sfp *sfp) 1376 { 1377 } 1378 #endif 1379 1380 /* Helpers */ 1381 static void sfp_module_tx_disable(struct sfp *sfp) 1382 { 1383 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1384 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1385 sfp->state |= SFP_F_TX_DISABLE; 1386 sfp_set_state(sfp, sfp->state); 1387 } 1388 1389 static void sfp_module_tx_enable(struct sfp *sfp) 1390 { 1391 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1392 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1393 sfp->state &= ~SFP_F_TX_DISABLE; 1394 sfp_set_state(sfp, sfp->state); 1395 } 1396 1397 #if IS_ENABLED(CONFIG_DEBUG_FS) 1398 static int sfp_debug_state_show(struct seq_file *s, void *data) 1399 { 1400 struct sfp *sfp = s->private; 1401 1402 seq_printf(s, "Module state: %s\n", 1403 mod_state_to_str(sfp->sm_mod_state)); 1404 seq_printf(s, "Module probe attempts: %d %d\n", 1405 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1406 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1407 seq_printf(s, "Device state: %s\n", 1408 dev_state_to_str(sfp->sm_dev_state)); 1409 seq_printf(s, "Main state: %s\n", 1410 sm_state_to_str(sfp->sm_state)); 1411 seq_printf(s, "Fault recovery remaining retries: %d\n", 1412 sfp->sm_fault_retries); 1413 seq_printf(s, "PHY probe remaining retries: %d\n", 1414 sfp->sm_phy_retries); 1415 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1416 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1417 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1418 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1419 return 0; 1420 } 1421 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1422 1423 static void sfp_debugfs_init(struct sfp *sfp) 1424 { 1425 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1426 1427 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1428 &sfp_debug_state_fops); 1429 } 1430 1431 static void sfp_debugfs_exit(struct sfp *sfp) 1432 { 1433 debugfs_remove_recursive(sfp->debugfs_dir); 1434 } 1435 #else 1436 static void sfp_debugfs_init(struct sfp *sfp) 1437 { 1438 } 1439 1440 static void sfp_debugfs_exit(struct sfp *sfp) 1441 { 1442 } 1443 #endif 1444 1445 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1446 { 1447 unsigned int state = sfp->state; 1448 1449 if (state & SFP_F_TX_DISABLE) 1450 return; 1451 1452 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1453 1454 udelay(T_RESET_US); 1455 1456 sfp_set_state(sfp, state); 1457 } 1458 1459 /* SFP state machine */ 1460 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1461 { 1462 if (timeout) 1463 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1464 timeout); 1465 else 1466 cancel_delayed_work(&sfp->timeout); 1467 } 1468 1469 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1470 unsigned int timeout) 1471 { 1472 sfp->sm_state = state; 1473 sfp_sm_set_timer(sfp, timeout); 1474 } 1475 1476 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1477 unsigned int timeout) 1478 { 1479 sfp->sm_mod_state = state; 1480 sfp_sm_set_timer(sfp, timeout); 1481 } 1482 1483 static void sfp_sm_phy_detach(struct sfp *sfp) 1484 { 1485 sfp_remove_phy(sfp->sfp_bus); 1486 phy_device_remove(sfp->mod_phy); 1487 phy_device_free(sfp->mod_phy); 1488 sfp->mod_phy = NULL; 1489 } 1490 1491 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45) 1492 { 1493 struct phy_device *phy; 1494 int err; 1495 1496 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45); 1497 if (phy == ERR_PTR(-ENODEV)) 1498 return PTR_ERR(phy); 1499 if (IS_ERR(phy)) { 1500 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy)); 1501 return PTR_ERR(phy); 1502 } 1503 1504 err = phy_device_register(phy); 1505 if (err) { 1506 phy_device_free(phy); 1507 dev_err(sfp->dev, "phy_device_register failed: %d\n", err); 1508 return err; 1509 } 1510 1511 err = sfp_add_phy(sfp->sfp_bus, phy); 1512 if (err) { 1513 phy_device_remove(phy); 1514 phy_device_free(phy); 1515 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err); 1516 return err; 1517 } 1518 1519 sfp->mod_phy = phy; 1520 1521 return 0; 1522 } 1523 1524 static void sfp_sm_link_up(struct sfp *sfp) 1525 { 1526 sfp_link_up(sfp->sfp_bus); 1527 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1528 } 1529 1530 static void sfp_sm_link_down(struct sfp *sfp) 1531 { 1532 sfp_link_down(sfp->sfp_bus); 1533 } 1534 1535 static void sfp_sm_link_check_los(struct sfp *sfp) 1536 { 1537 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1538 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1539 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1540 bool los = false; 1541 1542 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1543 * are set, we assume that no LOS signal is available. If both are 1544 * set, we assume LOS is not implemented (and is meaningless.) 1545 */ 1546 if (los_options == los_inverted) 1547 los = !(sfp->state & SFP_F_LOS); 1548 else if (los_options == los_normal) 1549 los = !!(sfp->state & SFP_F_LOS); 1550 1551 if (los) 1552 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1553 else 1554 sfp_sm_link_up(sfp); 1555 } 1556 1557 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1558 { 1559 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1560 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1561 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1562 1563 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1564 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1565 } 1566 1567 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1568 { 1569 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1570 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1571 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1572 1573 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1574 (los_options == los_normal && event == SFP_E_LOS_LOW); 1575 } 1576 1577 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1578 { 1579 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1580 dev_err(sfp->dev, 1581 "module persistently indicates fault, disabling\n"); 1582 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1583 } else { 1584 if (warn) 1585 dev_err(sfp->dev, "module transmit fault indicated\n"); 1586 1587 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1588 } 1589 } 1590 1591 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1592 * normally sits at I2C bus address 0x56, and may either be a clause 22 1593 * or clause 45 PHY. 1594 * 1595 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1596 * negotiation enabled, but some may be in 1000base-X - which is for the 1597 * PHY driver to determine. 1598 * 1599 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1600 * mode according to the negotiated line speed. 1601 */ 1602 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1603 { 1604 int err = 0; 1605 1606 switch (sfp->id.base.extended_cc) { 1607 case SFF8024_ECC_10GBASE_T_SFI: 1608 case SFF8024_ECC_10GBASE_T_SR: 1609 case SFF8024_ECC_5GBASE_T: 1610 case SFF8024_ECC_2_5GBASE_T: 1611 err = sfp_sm_probe_phy(sfp, true); 1612 break; 1613 1614 default: 1615 if (sfp->id.base.e1000_base_t) 1616 err = sfp_sm_probe_phy(sfp, false); 1617 break; 1618 } 1619 return err; 1620 } 1621 1622 static int sfp_module_parse_power(struct sfp *sfp) 1623 { 1624 u32 power_mW = 1000; 1625 1626 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1627 power_mW = 1500; 1628 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1629 power_mW = 2000; 1630 1631 if (power_mW > sfp->max_power_mW) { 1632 /* Module power specification exceeds the allowed maximum. */ 1633 if (sfp->id.ext.sff8472_compliance == 1634 SFP_SFF8472_COMPLIANCE_NONE && 1635 !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) { 1636 /* The module appears not to implement bus address 1637 * 0xa2, so assume that the module powers up in the 1638 * indicated mode. 1639 */ 1640 dev_err(sfp->dev, 1641 "Host does not support %u.%uW modules\n", 1642 power_mW / 1000, (power_mW / 100) % 10); 1643 return -EINVAL; 1644 } else { 1645 dev_warn(sfp->dev, 1646 "Host does not support %u.%uW modules, module left in power mode 1\n", 1647 power_mW / 1000, (power_mW / 100) % 10); 1648 return 0; 1649 } 1650 } 1651 1652 /* If the module requires a higher power mode, but also requires 1653 * an address change sequence, warn the user that the module may 1654 * not be functional. 1655 */ 1656 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) { 1657 dev_warn(sfp->dev, 1658 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1659 power_mW / 1000, (power_mW / 100) % 10); 1660 return 0; 1661 } 1662 1663 sfp->module_power_mW = power_mW; 1664 1665 return 0; 1666 } 1667 1668 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1669 { 1670 u8 val; 1671 int err; 1672 1673 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1674 if (err != sizeof(val)) { 1675 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err); 1676 return -EAGAIN; 1677 } 1678 1679 /* DM7052 reports as a high power module, responds to reads (with 1680 * all bytes 0xff) at 0x51 but does not accept writes. In any case, 1681 * if the bit is already set, we're already in high power mode. 1682 */ 1683 if (!!(val & BIT(0)) == enable) 1684 return 0; 1685 1686 if (enable) 1687 val |= BIT(0); 1688 else 1689 val &= ~BIT(0); 1690 1691 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1692 if (err != sizeof(val)) { 1693 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err); 1694 return -EAGAIN; 1695 } 1696 1697 if (enable) 1698 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1699 sfp->module_power_mW / 1000, 1700 (sfp->module_power_mW / 100) % 10); 1701 1702 return 0; 1703 } 1704 1705 /* Some modules (Nokia 3FE46541AA) lock up if byte 0x51 is read as a 1706 * single read. Switch back to reading 16 byte blocks unless we have 1707 * a CarlitoxxPro module (rebranded VSOL V2801F). Even more annoyingly, 1708 * some VSOL V2801F have the vendor name changed to OEM. 1709 */ 1710 static int sfp_quirk_i2c_block_size(const struct sfp_eeprom_base *base) 1711 { 1712 if (!memcmp(base->vendor_name, "VSOL ", 16)) 1713 return 1; 1714 if (!memcmp(base->vendor_name, "OEM ", 16) && 1715 !memcmp(base->vendor_pn, "V2801F ", 16)) 1716 return 1; 1717 1718 /* Some modules can't cope with long reads */ 1719 return 16; 1720 } 1721 1722 static void sfp_quirks_base(struct sfp *sfp, const struct sfp_eeprom_base *base) 1723 { 1724 sfp->i2c_block_size = sfp_quirk_i2c_block_size(base); 1725 } 1726 1727 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1728 { 1729 u8 check; 1730 int err; 1731 1732 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1733 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1734 id->base.connector != SFF8024_CONNECTOR_LC) { 1735 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1736 id->base.phys_id = SFF8024_ID_SFF_8472; 1737 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1738 id->base.connector = SFF8024_CONNECTOR_LC; 1739 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1740 if (err != 3) { 1741 dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err); 1742 return err; 1743 } 1744 1745 /* Cotsworks modules have been found to require a delay between write operations. */ 1746 mdelay(50); 1747 1748 /* Update base structure checksum */ 1749 check = sfp_check(&id->base, sizeof(id->base) - 1); 1750 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1751 if (err != 1) { 1752 dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err); 1753 return err; 1754 } 1755 } 1756 return 0; 1757 } 1758 1759 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1760 { 1761 /* SFP module inserted - read I2C data */ 1762 struct sfp_eeprom_id id; 1763 bool cotsworks_sfbg; 1764 bool cotsworks; 1765 u8 check; 1766 int ret; 1767 1768 /* Some modules (CarlitoxxPro CPGOS03-0490) do not support multibyte 1769 * reads from the EEPROM, so start by reading the base identifying 1770 * information one byte at a time. 1771 */ 1772 sfp->i2c_block_size = 1; 1773 1774 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1775 if (ret < 0) { 1776 if (report) 1777 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); 1778 return -EAGAIN; 1779 } 1780 1781 if (ret != sizeof(id.base)) { 1782 dev_err(sfp->dev, "EEPROM short read: %d\n", ret); 1783 return -EAGAIN; 1784 } 1785 1786 /* Cotsworks do not seem to update the checksums when they 1787 * do the final programming with the final module part number, 1788 * serial number and date code. 1789 */ 1790 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1791 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 1792 1793 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 1794 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 1795 * Cotsworks PN matches and bytes are not correct. 1796 */ 1797 if (cotsworks && cotsworks_sfbg) { 1798 ret = sfp_cotsworks_fixup_check(sfp, &id); 1799 if (ret < 0) 1800 return ret; 1801 } 1802 1803 /* Validate the checksum over the base structure */ 1804 check = sfp_check(&id.base, sizeof(id.base) - 1); 1805 if (check != id.base.cc_base) { 1806 if (cotsworks) { 1807 dev_warn(sfp->dev, 1808 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 1809 check, id.base.cc_base); 1810 } else { 1811 dev_err(sfp->dev, 1812 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 1813 check, id.base.cc_base); 1814 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1815 16, 1, &id, sizeof(id), true); 1816 return -EINVAL; 1817 } 1818 } 1819 1820 /* Apply any early module-specific quirks */ 1821 sfp_quirks_base(sfp, &id.base); 1822 1823 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 1824 if (ret < 0) { 1825 if (report) 1826 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); 1827 return -EAGAIN; 1828 } 1829 1830 if (ret != sizeof(id.ext)) { 1831 dev_err(sfp->dev, "EEPROM short read: %d\n", ret); 1832 return -EAGAIN; 1833 } 1834 1835 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 1836 if (check != id.ext.cc_ext) { 1837 if (cotsworks) { 1838 dev_warn(sfp->dev, 1839 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 1840 check, id.ext.cc_ext); 1841 } else { 1842 dev_err(sfp->dev, 1843 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 1844 check, id.ext.cc_ext); 1845 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1846 16, 1, &id, sizeof(id), true); 1847 memset(&id.ext, 0, sizeof(id.ext)); 1848 } 1849 } 1850 1851 sfp->id = id; 1852 1853 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 1854 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 1855 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 1856 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 1857 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 1858 (int)sizeof(id.ext.datecode), id.ext.datecode); 1859 1860 /* Check whether we support this module */ 1861 if (!sfp->type->module_supported(&id)) { 1862 dev_err(sfp->dev, 1863 "module is not supported - phys id 0x%02x 0x%02x\n", 1864 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 1865 return -EINVAL; 1866 } 1867 1868 /* If the module requires address swap mode, warn about it */ 1869 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1870 dev_warn(sfp->dev, 1871 "module address swap to access page 0xA2 is not supported.\n"); 1872 1873 /* Parse the module power requirement */ 1874 ret = sfp_module_parse_power(sfp); 1875 if (ret < 0) 1876 return ret; 1877 1878 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) && 1879 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16)) 1880 sfp->module_t_start_up = T_START_UP_BAD_GPON; 1881 else 1882 sfp->module_t_start_up = T_START_UP; 1883 1884 return 0; 1885 } 1886 1887 static void sfp_sm_mod_remove(struct sfp *sfp) 1888 { 1889 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 1890 sfp_module_remove(sfp->sfp_bus); 1891 1892 sfp_hwmon_remove(sfp); 1893 1894 memset(&sfp->id, 0, sizeof(sfp->id)); 1895 sfp->module_power_mW = 0; 1896 1897 dev_info(sfp->dev, "module removed\n"); 1898 } 1899 1900 /* This state machine tracks the upstream's state */ 1901 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 1902 { 1903 switch (sfp->sm_dev_state) { 1904 default: 1905 if (event == SFP_E_DEV_ATTACH) 1906 sfp->sm_dev_state = SFP_DEV_DOWN; 1907 break; 1908 1909 case SFP_DEV_DOWN: 1910 if (event == SFP_E_DEV_DETACH) 1911 sfp->sm_dev_state = SFP_DEV_DETACHED; 1912 else if (event == SFP_E_DEV_UP) 1913 sfp->sm_dev_state = SFP_DEV_UP; 1914 break; 1915 1916 case SFP_DEV_UP: 1917 if (event == SFP_E_DEV_DETACH) 1918 sfp->sm_dev_state = SFP_DEV_DETACHED; 1919 else if (event == SFP_E_DEV_DOWN) 1920 sfp->sm_dev_state = SFP_DEV_DOWN; 1921 break; 1922 } 1923 } 1924 1925 /* This state machine tracks the insert/remove state of the module, probes 1926 * the on-board EEPROM, and sets up the power level. 1927 */ 1928 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 1929 { 1930 int err; 1931 1932 /* Handle remove event globally, it resets this state machine */ 1933 if (event == SFP_E_REMOVE) { 1934 if (sfp->sm_mod_state > SFP_MOD_PROBE) 1935 sfp_sm_mod_remove(sfp); 1936 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 1937 return; 1938 } 1939 1940 /* Handle device detach globally */ 1941 if (sfp->sm_dev_state < SFP_DEV_DOWN && 1942 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 1943 if (sfp->module_power_mW > 1000 && 1944 sfp->sm_mod_state > SFP_MOD_HPOWER) 1945 sfp_sm_mod_hpower(sfp, false); 1946 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 1947 return; 1948 } 1949 1950 switch (sfp->sm_mod_state) { 1951 default: 1952 if (event == SFP_E_INSERT) { 1953 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 1954 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 1955 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 1956 } 1957 break; 1958 1959 case SFP_MOD_PROBE: 1960 /* Wait for T_PROBE_INIT to time out */ 1961 if (event != SFP_E_TIMEOUT) 1962 break; 1963 1964 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 1965 if (err == -EAGAIN) { 1966 if (sfp->sm_mod_tries_init && 1967 --sfp->sm_mod_tries_init) { 1968 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 1969 break; 1970 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 1971 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 1972 dev_warn(sfp->dev, 1973 "please wait, module slow to respond\n"); 1974 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 1975 break; 1976 } 1977 } 1978 if (err < 0) { 1979 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 1980 break; 1981 } 1982 1983 err = sfp_hwmon_insert(sfp); 1984 if (err) 1985 dev_warn(sfp->dev, "hwmon probe failed: %d\n", err); 1986 1987 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 1988 fallthrough; 1989 case SFP_MOD_WAITDEV: 1990 /* Ensure that the device is attached before proceeding */ 1991 if (sfp->sm_dev_state < SFP_DEV_DOWN) 1992 break; 1993 1994 /* Report the module insertion to the upstream device */ 1995 err = sfp_module_insert(sfp->sfp_bus, &sfp->id); 1996 if (err < 0) { 1997 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 1998 break; 1999 } 2000 2001 /* If this is a power level 1 module, we are done */ 2002 if (sfp->module_power_mW <= 1000) 2003 goto insert; 2004 2005 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2006 fallthrough; 2007 case SFP_MOD_HPOWER: 2008 /* Enable high power mode */ 2009 err = sfp_sm_mod_hpower(sfp, true); 2010 if (err < 0) { 2011 if (err != -EAGAIN) { 2012 sfp_module_remove(sfp->sfp_bus); 2013 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2014 } else { 2015 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2016 } 2017 break; 2018 } 2019 2020 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2021 break; 2022 2023 case SFP_MOD_WAITPWR: 2024 /* Wait for T_HPOWER_LEVEL to time out */ 2025 if (event != SFP_E_TIMEOUT) 2026 break; 2027 2028 insert: 2029 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2030 break; 2031 2032 case SFP_MOD_PRESENT: 2033 case SFP_MOD_ERROR: 2034 break; 2035 } 2036 } 2037 2038 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2039 { 2040 unsigned long timeout; 2041 int ret; 2042 2043 /* Some events are global */ 2044 if (sfp->sm_state != SFP_S_DOWN && 2045 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2046 sfp->sm_dev_state != SFP_DEV_UP)) { 2047 if (sfp->sm_state == SFP_S_LINK_UP && 2048 sfp->sm_dev_state == SFP_DEV_UP) 2049 sfp_sm_link_down(sfp); 2050 if (sfp->sm_state > SFP_S_INIT) 2051 sfp_module_stop(sfp->sfp_bus); 2052 if (sfp->mod_phy) 2053 sfp_sm_phy_detach(sfp); 2054 sfp_module_tx_disable(sfp); 2055 sfp_soft_stop_poll(sfp); 2056 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2057 return; 2058 } 2059 2060 /* The main state machine */ 2061 switch (sfp->sm_state) { 2062 case SFP_S_DOWN: 2063 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2064 sfp->sm_dev_state != SFP_DEV_UP) 2065 break; 2066 2067 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) 2068 sfp_soft_start_poll(sfp); 2069 2070 sfp_module_tx_enable(sfp); 2071 2072 /* Initialise the fault clearance retries */ 2073 sfp->sm_fault_retries = N_FAULT_INIT; 2074 2075 /* We need to check the TX_FAULT state, which is not defined 2076 * while TX_DISABLE is asserted. The earliest we want to do 2077 * anything (such as probe for a PHY) is 50ms. 2078 */ 2079 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT); 2080 break; 2081 2082 case SFP_S_WAIT: 2083 if (event != SFP_E_TIMEOUT) 2084 break; 2085 2086 if (sfp->state & SFP_F_TX_FAULT) { 2087 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2088 * from the TX_DISABLE deassertion for the module to 2089 * initialise, which is indicated by TX_FAULT 2090 * deasserting. 2091 */ 2092 timeout = sfp->module_t_start_up; 2093 if (timeout > T_WAIT) 2094 timeout -= T_WAIT; 2095 else 2096 timeout = 1; 2097 2098 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2099 } else { 2100 /* TX_FAULT is not asserted, assume the module has 2101 * finished initialising. 2102 */ 2103 goto init_done; 2104 } 2105 break; 2106 2107 case SFP_S_INIT: 2108 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2109 /* TX_FAULT is still asserted after t_init or 2110 * or t_start_up, so assume there is a fault. 2111 */ 2112 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2113 sfp->sm_fault_retries == N_FAULT_INIT); 2114 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2115 init_done: 2116 sfp->sm_phy_retries = R_PHY_RETRY; 2117 goto phy_probe; 2118 } 2119 break; 2120 2121 case SFP_S_INIT_PHY: 2122 if (event != SFP_E_TIMEOUT) 2123 break; 2124 phy_probe: 2125 /* TX_FAULT deasserted or we timed out with TX_FAULT 2126 * clear. Probe for the PHY and check the LOS state. 2127 */ 2128 ret = sfp_sm_probe_for_phy(sfp); 2129 if (ret == -ENODEV) { 2130 if (--sfp->sm_phy_retries) { 2131 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2132 break; 2133 } else { 2134 dev_info(sfp->dev, "no PHY detected\n"); 2135 } 2136 } else if (ret) { 2137 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2138 break; 2139 } 2140 if (sfp_module_start(sfp->sfp_bus)) { 2141 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2142 break; 2143 } 2144 sfp_sm_link_check_los(sfp); 2145 2146 /* Reset the fault retry count */ 2147 sfp->sm_fault_retries = N_FAULT; 2148 break; 2149 2150 case SFP_S_INIT_TX_FAULT: 2151 if (event == SFP_E_TIMEOUT) { 2152 sfp_module_tx_fault_reset(sfp); 2153 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2154 } 2155 break; 2156 2157 case SFP_S_WAIT_LOS: 2158 if (event == SFP_E_TX_FAULT) 2159 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2160 else if (sfp_los_event_inactive(sfp, event)) 2161 sfp_sm_link_up(sfp); 2162 break; 2163 2164 case SFP_S_LINK_UP: 2165 if (event == SFP_E_TX_FAULT) { 2166 sfp_sm_link_down(sfp); 2167 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2168 } else if (sfp_los_event_active(sfp, event)) { 2169 sfp_sm_link_down(sfp); 2170 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2171 } 2172 break; 2173 2174 case SFP_S_TX_FAULT: 2175 if (event == SFP_E_TIMEOUT) { 2176 sfp_module_tx_fault_reset(sfp); 2177 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2178 } 2179 break; 2180 2181 case SFP_S_REINIT: 2182 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2183 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2184 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2185 dev_info(sfp->dev, "module transmit fault recovered\n"); 2186 sfp_sm_link_check_los(sfp); 2187 } 2188 break; 2189 2190 case SFP_S_TX_DISABLE: 2191 break; 2192 } 2193 } 2194 2195 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2196 { 2197 mutex_lock(&sfp->sm_mutex); 2198 2199 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2200 mod_state_to_str(sfp->sm_mod_state), 2201 dev_state_to_str(sfp->sm_dev_state), 2202 sm_state_to_str(sfp->sm_state), 2203 event_to_str(event)); 2204 2205 sfp_sm_device(sfp, event); 2206 sfp_sm_module(sfp, event); 2207 sfp_sm_main(sfp, event); 2208 2209 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2210 mod_state_to_str(sfp->sm_mod_state), 2211 dev_state_to_str(sfp->sm_dev_state), 2212 sm_state_to_str(sfp->sm_state)); 2213 2214 mutex_unlock(&sfp->sm_mutex); 2215 } 2216 2217 static void sfp_attach(struct sfp *sfp) 2218 { 2219 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2220 } 2221 2222 static void sfp_detach(struct sfp *sfp) 2223 { 2224 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2225 } 2226 2227 static void sfp_start(struct sfp *sfp) 2228 { 2229 sfp_sm_event(sfp, SFP_E_DEV_UP); 2230 } 2231 2232 static void sfp_stop(struct sfp *sfp) 2233 { 2234 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2235 } 2236 2237 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2238 { 2239 /* locking... and check module is present */ 2240 2241 if (sfp->id.ext.sff8472_compliance && 2242 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2243 modinfo->type = ETH_MODULE_SFF_8472; 2244 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2245 } else { 2246 modinfo->type = ETH_MODULE_SFF_8079; 2247 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2248 } 2249 return 0; 2250 } 2251 2252 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2253 u8 *data) 2254 { 2255 unsigned int first, last, len; 2256 int ret; 2257 2258 if (ee->len == 0) 2259 return -EINVAL; 2260 2261 first = ee->offset; 2262 last = ee->offset + ee->len; 2263 if (first < ETH_MODULE_SFF_8079_LEN) { 2264 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2265 len -= first; 2266 2267 ret = sfp_read(sfp, false, first, data, len); 2268 if (ret < 0) 2269 return ret; 2270 2271 first += len; 2272 data += len; 2273 } 2274 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2275 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2276 len -= first; 2277 first -= ETH_MODULE_SFF_8079_LEN; 2278 2279 ret = sfp_read(sfp, true, first, data, len); 2280 if (ret < 0) 2281 return ret; 2282 } 2283 return 0; 2284 } 2285 2286 static const struct sfp_socket_ops sfp_module_ops = { 2287 .attach = sfp_attach, 2288 .detach = sfp_detach, 2289 .start = sfp_start, 2290 .stop = sfp_stop, 2291 .module_info = sfp_module_info, 2292 .module_eeprom = sfp_module_eeprom, 2293 }; 2294 2295 static void sfp_timeout(struct work_struct *work) 2296 { 2297 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2298 2299 rtnl_lock(); 2300 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2301 rtnl_unlock(); 2302 } 2303 2304 static void sfp_check_state(struct sfp *sfp) 2305 { 2306 unsigned int state, i, changed; 2307 2308 mutex_lock(&sfp->st_mutex); 2309 state = sfp_get_state(sfp); 2310 changed = state ^ sfp->state; 2311 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2312 2313 for (i = 0; i < GPIO_MAX; i++) 2314 if (changed & BIT(i)) 2315 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 2316 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2317 2318 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2319 sfp->state = state; 2320 2321 rtnl_lock(); 2322 if (changed & SFP_F_PRESENT) 2323 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2324 SFP_E_INSERT : SFP_E_REMOVE); 2325 2326 if (changed & SFP_F_TX_FAULT) 2327 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2328 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2329 2330 if (changed & SFP_F_LOS) 2331 sfp_sm_event(sfp, state & SFP_F_LOS ? 2332 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2333 rtnl_unlock(); 2334 mutex_unlock(&sfp->st_mutex); 2335 } 2336 2337 static irqreturn_t sfp_irq(int irq, void *data) 2338 { 2339 struct sfp *sfp = data; 2340 2341 sfp_check_state(sfp); 2342 2343 return IRQ_HANDLED; 2344 } 2345 2346 static void sfp_poll(struct work_struct *work) 2347 { 2348 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2349 2350 sfp_check_state(sfp); 2351 2352 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2353 sfp->need_poll) 2354 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2355 } 2356 2357 static struct sfp *sfp_alloc(struct device *dev) 2358 { 2359 struct sfp *sfp; 2360 2361 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2362 if (!sfp) 2363 return ERR_PTR(-ENOMEM); 2364 2365 sfp->dev = dev; 2366 2367 mutex_init(&sfp->sm_mutex); 2368 mutex_init(&sfp->st_mutex); 2369 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2370 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2371 2372 sfp_hwmon_init(sfp); 2373 2374 return sfp; 2375 } 2376 2377 static void sfp_cleanup(void *data) 2378 { 2379 struct sfp *sfp = data; 2380 2381 sfp_hwmon_exit(sfp); 2382 2383 cancel_delayed_work_sync(&sfp->poll); 2384 cancel_delayed_work_sync(&sfp->timeout); 2385 if (sfp->i2c_mii) { 2386 mdiobus_unregister(sfp->i2c_mii); 2387 mdiobus_free(sfp->i2c_mii); 2388 } 2389 if (sfp->i2c) 2390 i2c_put_adapter(sfp->i2c); 2391 kfree(sfp); 2392 } 2393 2394 static int sfp_probe(struct platform_device *pdev) 2395 { 2396 const struct sff_data *sff; 2397 struct i2c_adapter *i2c; 2398 char *sfp_irq_name; 2399 struct sfp *sfp; 2400 int err, i; 2401 2402 sfp = sfp_alloc(&pdev->dev); 2403 if (IS_ERR(sfp)) 2404 return PTR_ERR(sfp); 2405 2406 platform_set_drvdata(pdev, sfp); 2407 2408 err = devm_add_action(sfp->dev, sfp_cleanup, sfp); 2409 if (err < 0) 2410 return err; 2411 2412 sff = sfp->type = &sfp_data; 2413 2414 if (pdev->dev.of_node) { 2415 struct device_node *node = pdev->dev.of_node; 2416 const struct of_device_id *id; 2417 struct device_node *np; 2418 2419 id = of_match_node(sfp_of_match, node); 2420 if (WARN_ON(!id)) 2421 return -EINVAL; 2422 2423 sff = sfp->type = id->data; 2424 2425 np = of_parse_phandle(node, "i2c-bus", 0); 2426 if (!np) { 2427 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2428 return -ENODEV; 2429 } 2430 2431 i2c = of_find_i2c_adapter_by_node(np); 2432 of_node_put(np); 2433 } else if (has_acpi_companion(&pdev->dev)) { 2434 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); 2435 struct fwnode_handle *fw = acpi_fwnode_handle(adev); 2436 struct fwnode_reference_args args; 2437 struct acpi_handle *acpi_handle; 2438 int ret; 2439 2440 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); 2441 if (ret || !is_acpi_device_node(args.fwnode)) { 2442 dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); 2443 return -ENODEV; 2444 } 2445 2446 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); 2447 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); 2448 } else { 2449 return -EINVAL; 2450 } 2451 2452 if (!i2c) 2453 return -EPROBE_DEFER; 2454 2455 err = sfp_i2c_configure(sfp, i2c); 2456 if (err < 0) { 2457 i2c_put_adapter(i2c); 2458 return err; 2459 } 2460 2461 for (i = 0; i < GPIO_MAX; i++) 2462 if (sff->gpios & BIT(i)) { 2463 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2464 gpio_of_names[i], gpio_flags[i]); 2465 if (IS_ERR(sfp->gpio[i])) 2466 return PTR_ERR(sfp->gpio[i]); 2467 } 2468 2469 sfp->get_state = sfp_gpio_get_state; 2470 sfp->set_state = sfp_gpio_set_state; 2471 2472 /* Modules that have no detect signal are always present */ 2473 if (!(sfp->gpio[GPIO_MODDEF0])) 2474 sfp->get_state = sff_gpio_get_state; 2475 2476 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2477 &sfp->max_power_mW); 2478 if (!sfp->max_power_mW) 2479 sfp->max_power_mW = 1000; 2480 2481 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2482 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2483 2484 /* Get the initial state, and always signal TX disable, 2485 * since the network interface will not be up. 2486 */ 2487 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2488 2489 if (sfp->gpio[GPIO_RATE_SELECT] && 2490 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2491 sfp->state |= SFP_F_RATE_SELECT; 2492 sfp_set_state(sfp, sfp->state); 2493 sfp_module_tx_disable(sfp); 2494 if (sfp->state & SFP_F_PRESENT) { 2495 rtnl_lock(); 2496 sfp_sm_event(sfp, SFP_E_INSERT); 2497 rtnl_unlock(); 2498 } 2499 2500 for (i = 0; i < GPIO_MAX; i++) { 2501 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2502 continue; 2503 2504 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2505 if (sfp->gpio_irq[i] < 0) { 2506 sfp->gpio_irq[i] = 0; 2507 sfp->need_poll = true; 2508 continue; 2509 } 2510 2511 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2512 "%s-%s", dev_name(sfp->dev), 2513 gpio_of_names[i]); 2514 2515 if (!sfp_irq_name) 2516 return -ENOMEM; 2517 2518 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2519 NULL, sfp_irq, 2520 IRQF_ONESHOT | 2521 IRQF_TRIGGER_RISING | 2522 IRQF_TRIGGER_FALLING, 2523 sfp_irq_name, sfp); 2524 if (err) { 2525 sfp->gpio_irq[i] = 0; 2526 sfp->need_poll = true; 2527 } 2528 } 2529 2530 if (sfp->need_poll) 2531 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2532 2533 /* We could have an issue in cases no Tx disable pin is available or 2534 * wired as modules using a laser as their light source will continue to 2535 * be active when the fiber is removed. This could be a safety issue and 2536 * we should at least warn the user about that. 2537 */ 2538 if (!sfp->gpio[GPIO_TX_DISABLE]) 2539 dev_warn(sfp->dev, 2540 "No tx_disable pin: SFP modules will always be emitting.\n"); 2541 2542 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2543 if (!sfp->sfp_bus) 2544 return -ENOMEM; 2545 2546 sfp_debugfs_init(sfp); 2547 2548 return 0; 2549 } 2550 2551 static int sfp_remove(struct platform_device *pdev) 2552 { 2553 struct sfp *sfp = platform_get_drvdata(pdev); 2554 2555 sfp_debugfs_exit(sfp); 2556 sfp_unregister_socket(sfp->sfp_bus); 2557 2558 rtnl_lock(); 2559 sfp_sm_event(sfp, SFP_E_REMOVE); 2560 rtnl_unlock(); 2561 2562 return 0; 2563 } 2564 2565 static void sfp_shutdown(struct platform_device *pdev) 2566 { 2567 struct sfp *sfp = platform_get_drvdata(pdev); 2568 int i; 2569 2570 for (i = 0; i < GPIO_MAX; i++) { 2571 if (!sfp->gpio_irq[i]) 2572 continue; 2573 2574 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2575 } 2576 2577 cancel_delayed_work_sync(&sfp->poll); 2578 cancel_delayed_work_sync(&sfp->timeout); 2579 } 2580 2581 static struct platform_driver sfp_driver = { 2582 .probe = sfp_probe, 2583 .remove = sfp_remove, 2584 .shutdown = sfp_shutdown, 2585 .driver = { 2586 .name = "sfp", 2587 .of_match_table = sfp_of_match, 2588 }, 2589 }; 2590 2591 static int sfp_init(void) 2592 { 2593 poll_jiffies = msecs_to_jiffies(100); 2594 2595 return platform_driver_register(&sfp_driver); 2596 } 2597 module_init(sfp_init); 2598 2599 static void sfp_exit(void) 2600 { 2601 platform_driver_unregister(&sfp_driver); 2602 } 2603 module_exit(sfp_exit); 2604 2605 MODULE_ALIAS("platform:sfp"); 2606 MODULE_AUTHOR("Russell King"); 2607 MODULE_LICENSE("GPL v2"); 2608