xref: /linux/drivers/net/phy/sfp.c (revision e8e507a8ac90d48053dfdea9d4855495b0204956)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/debugfs.h>
5 #include <linux/delay.h>
6 #include <linux/gpio/consumer.h>
7 #include <linux/hwmon.h>
8 #include <linux/i2c.h>
9 #include <linux/interrupt.h>
10 #include <linux/jiffies.h>
11 #include <linux/mdio/mdio-i2c.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/of.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 
21 #include "sfp.h"
22 #include "swphy.h"
23 
24 enum {
25 	GPIO_MODDEF0,
26 	GPIO_LOS,
27 	GPIO_TX_FAULT,
28 	GPIO_TX_DISABLE,
29 	GPIO_RATE_SELECT,
30 	GPIO_MAX,
31 
32 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
33 	SFP_F_LOS = BIT(GPIO_LOS),
34 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
35 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
36 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
37 
38 	SFP_E_INSERT = 0,
39 	SFP_E_REMOVE,
40 	SFP_E_DEV_ATTACH,
41 	SFP_E_DEV_DETACH,
42 	SFP_E_DEV_DOWN,
43 	SFP_E_DEV_UP,
44 	SFP_E_TX_FAULT,
45 	SFP_E_TX_CLEAR,
46 	SFP_E_LOS_HIGH,
47 	SFP_E_LOS_LOW,
48 	SFP_E_TIMEOUT,
49 
50 	SFP_MOD_EMPTY = 0,
51 	SFP_MOD_ERROR,
52 	SFP_MOD_PROBE,
53 	SFP_MOD_WAITDEV,
54 	SFP_MOD_HPOWER,
55 	SFP_MOD_WAITPWR,
56 	SFP_MOD_PRESENT,
57 
58 	SFP_DEV_DETACHED = 0,
59 	SFP_DEV_DOWN,
60 	SFP_DEV_UP,
61 
62 	SFP_S_DOWN = 0,
63 	SFP_S_FAIL,
64 	SFP_S_WAIT,
65 	SFP_S_INIT,
66 	SFP_S_INIT_PHY,
67 	SFP_S_INIT_TX_FAULT,
68 	SFP_S_WAIT_LOS,
69 	SFP_S_LINK_UP,
70 	SFP_S_TX_FAULT,
71 	SFP_S_REINIT,
72 	SFP_S_TX_DISABLE,
73 };
74 
75 static const char  * const mod_state_strings[] = {
76 	[SFP_MOD_EMPTY] = "empty",
77 	[SFP_MOD_ERROR] = "error",
78 	[SFP_MOD_PROBE] = "probe",
79 	[SFP_MOD_WAITDEV] = "waitdev",
80 	[SFP_MOD_HPOWER] = "hpower",
81 	[SFP_MOD_WAITPWR] = "waitpwr",
82 	[SFP_MOD_PRESENT] = "present",
83 };
84 
85 static const char *mod_state_to_str(unsigned short mod_state)
86 {
87 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
88 		return "Unknown module state";
89 	return mod_state_strings[mod_state];
90 }
91 
92 static const char * const dev_state_strings[] = {
93 	[SFP_DEV_DETACHED] = "detached",
94 	[SFP_DEV_DOWN] = "down",
95 	[SFP_DEV_UP] = "up",
96 };
97 
98 static const char *dev_state_to_str(unsigned short dev_state)
99 {
100 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
101 		return "Unknown device state";
102 	return dev_state_strings[dev_state];
103 }
104 
105 static const char * const event_strings[] = {
106 	[SFP_E_INSERT] = "insert",
107 	[SFP_E_REMOVE] = "remove",
108 	[SFP_E_DEV_ATTACH] = "dev_attach",
109 	[SFP_E_DEV_DETACH] = "dev_detach",
110 	[SFP_E_DEV_DOWN] = "dev_down",
111 	[SFP_E_DEV_UP] = "dev_up",
112 	[SFP_E_TX_FAULT] = "tx_fault",
113 	[SFP_E_TX_CLEAR] = "tx_clear",
114 	[SFP_E_LOS_HIGH] = "los_high",
115 	[SFP_E_LOS_LOW] = "los_low",
116 	[SFP_E_TIMEOUT] = "timeout",
117 };
118 
119 static const char *event_to_str(unsigned short event)
120 {
121 	if (event >= ARRAY_SIZE(event_strings))
122 		return "Unknown event";
123 	return event_strings[event];
124 }
125 
126 static const char * const sm_state_strings[] = {
127 	[SFP_S_DOWN] = "down",
128 	[SFP_S_FAIL] = "fail",
129 	[SFP_S_WAIT] = "wait",
130 	[SFP_S_INIT] = "init",
131 	[SFP_S_INIT_PHY] = "init_phy",
132 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
133 	[SFP_S_WAIT_LOS] = "wait_los",
134 	[SFP_S_LINK_UP] = "link_up",
135 	[SFP_S_TX_FAULT] = "tx_fault",
136 	[SFP_S_REINIT] = "reinit",
137 	[SFP_S_TX_DISABLE] = "rx_disable",
138 };
139 
140 static const char *sm_state_to_str(unsigned short sm_state)
141 {
142 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
143 		return "Unknown state";
144 	return sm_state_strings[sm_state];
145 }
146 
147 static const char *gpio_of_names[] = {
148 	"mod-def0",
149 	"los",
150 	"tx-fault",
151 	"tx-disable",
152 	"rate-select0",
153 };
154 
155 static const enum gpiod_flags gpio_flags[] = {
156 	GPIOD_IN,
157 	GPIOD_IN,
158 	GPIOD_IN,
159 	GPIOD_ASIS,
160 	GPIOD_ASIS,
161 };
162 
163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
164  * non-cooled module to initialise its laser safety circuitry. We wait
165  * an initial T_WAIT period before we check the tx fault to give any PHY
166  * on board (for a copper SFP) time to initialise.
167  */
168 #define T_WAIT			msecs_to_jiffies(50)
169 #define T_START_UP		msecs_to_jiffies(300)
170 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
171 
172 /* t_reset is the time required to assert the TX_DISABLE signal to reset
173  * an indicated TX_FAULT.
174  */
175 #define T_RESET_US		10
176 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
177 
178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
179  * time. If the TX_FAULT signal is not deasserted after this number of
180  * attempts at clearing it, we decide that the module is faulty.
181  * N_FAULT is the same but after the module has initialised.
182  */
183 #define N_FAULT_INIT		5
184 #define N_FAULT			5
185 
186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
187  * R_PHY_RETRY is the number of attempts.
188  */
189 #define T_PHY_RETRY		msecs_to_jiffies(50)
190 #define R_PHY_RETRY		12
191 
192 /* SFP module presence detection is poor: the three MOD DEF signals are
193  * the same length on the PCB, which means it's possible for MOD DEF 0 to
194  * connect before the I2C bus on MOD DEF 1/2.
195  *
196  * The SFF-8472 specifies t_serial ("Time from power on until module is
197  * ready for data transmission over the two wire serial bus.") as 300ms.
198  */
199 #define T_SERIAL		msecs_to_jiffies(300)
200 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
201 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
202 #define R_PROBE_RETRY_INIT	10
203 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
204 #define R_PROBE_RETRY_SLOW	12
205 
206 /* SFP modules appear to always have their PHY configured for bus address
207  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
208  */
209 #define SFP_PHY_ADDR	22
210 
211 struct sff_data {
212 	unsigned int gpios;
213 	bool (*module_supported)(const struct sfp_eeprom_id *id);
214 };
215 
216 struct sfp {
217 	struct device *dev;
218 	struct i2c_adapter *i2c;
219 	struct mii_bus *i2c_mii;
220 	struct sfp_bus *sfp_bus;
221 	struct phy_device *mod_phy;
222 	const struct sff_data *type;
223 	size_t i2c_block_size;
224 	u32 max_power_mW;
225 
226 	unsigned int (*get_state)(struct sfp *);
227 	void (*set_state)(struct sfp *, unsigned int);
228 	int (*read)(struct sfp *, bool, u8, void *, size_t);
229 	int (*write)(struct sfp *, bool, u8, void *, size_t);
230 
231 	struct gpio_desc *gpio[GPIO_MAX];
232 	int gpio_irq[GPIO_MAX];
233 
234 	bool need_poll;
235 
236 	struct mutex st_mutex;			/* Protects state */
237 	unsigned int state_soft_mask;
238 	unsigned int state;
239 	struct delayed_work poll;
240 	struct delayed_work timeout;
241 	struct mutex sm_mutex;			/* Protects state machine */
242 	unsigned char sm_mod_state;
243 	unsigned char sm_mod_tries_init;
244 	unsigned char sm_mod_tries;
245 	unsigned char sm_dev_state;
246 	unsigned short sm_state;
247 	unsigned char sm_fault_retries;
248 	unsigned char sm_phy_retries;
249 
250 	struct sfp_eeprom_id id;
251 	unsigned int module_power_mW;
252 	unsigned int module_t_start_up;
253 
254 #if IS_ENABLED(CONFIG_HWMON)
255 	struct sfp_diag diag;
256 	struct delayed_work hwmon_probe;
257 	unsigned int hwmon_tries;
258 	struct device *hwmon_dev;
259 	char *hwmon_name;
260 #endif
261 
262 #if IS_ENABLED(CONFIG_DEBUG_FS)
263 	struct dentry *debugfs_dir;
264 #endif
265 };
266 
267 static bool sff_module_supported(const struct sfp_eeprom_id *id)
268 {
269 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
270 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
271 }
272 
273 static const struct sff_data sff_data = {
274 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
275 	.module_supported = sff_module_supported,
276 };
277 
278 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
279 {
280 	return id->base.phys_id == SFF8024_ID_SFP &&
281 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
282 }
283 
284 static const struct sff_data sfp_data = {
285 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
286 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
287 	.module_supported = sfp_module_supported,
288 };
289 
290 static const struct of_device_id sfp_of_match[] = {
291 	{ .compatible = "sff,sff", .data = &sff_data, },
292 	{ .compatible = "sff,sfp", .data = &sfp_data, },
293 	{ },
294 };
295 MODULE_DEVICE_TABLE(of, sfp_of_match);
296 
297 static unsigned long poll_jiffies;
298 
299 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
300 {
301 	unsigned int i, state, v;
302 
303 	for (i = state = 0; i < GPIO_MAX; i++) {
304 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
305 			continue;
306 
307 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
308 		if (v)
309 			state |= BIT(i);
310 	}
311 
312 	return state;
313 }
314 
315 static unsigned int sff_gpio_get_state(struct sfp *sfp)
316 {
317 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
318 }
319 
320 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
321 {
322 	if (state & SFP_F_PRESENT) {
323 		/* If the module is present, drive the signals */
324 		if (sfp->gpio[GPIO_TX_DISABLE])
325 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
326 					       state & SFP_F_TX_DISABLE);
327 		if (state & SFP_F_RATE_SELECT)
328 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
329 					       state & SFP_F_RATE_SELECT);
330 	} else {
331 		/* Otherwise, let them float to the pull-ups */
332 		if (sfp->gpio[GPIO_TX_DISABLE])
333 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
334 		if (state & SFP_F_RATE_SELECT)
335 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
336 	}
337 }
338 
339 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
340 			size_t len)
341 {
342 	struct i2c_msg msgs[2];
343 	size_t block_size;
344 	size_t this_len;
345 	u8 bus_addr;
346 	int ret;
347 
348 	if (a2) {
349 		block_size = 16;
350 		bus_addr = 0x51;
351 	} else {
352 		block_size = sfp->i2c_block_size;
353 		bus_addr = 0x50;
354 	}
355 
356 	msgs[0].addr = bus_addr;
357 	msgs[0].flags = 0;
358 	msgs[0].len = 1;
359 	msgs[0].buf = &dev_addr;
360 	msgs[1].addr = bus_addr;
361 	msgs[1].flags = I2C_M_RD;
362 	msgs[1].len = len;
363 	msgs[1].buf = buf;
364 
365 	while (len) {
366 		this_len = len;
367 		if (this_len > block_size)
368 			this_len = block_size;
369 
370 		msgs[1].len = this_len;
371 
372 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
373 		if (ret < 0)
374 			return ret;
375 
376 		if (ret != ARRAY_SIZE(msgs))
377 			break;
378 
379 		msgs[1].buf += this_len;
380 		dev_addr += this_len;
381 		len -= this_len;
382 	}
383 
384 	return msgs[1].buf - (u8 *)buf;
385 }
386 
387 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
388 	size_t len)
389 {
390 	struct i2c_msg msgs[1];
391 	u8 bus_addr = a2 ? 0x51 : 0x50;
392 	int ret;
393 
394 	msgs[0].addr = bus_addr;
395 	msgs[0].flags = 0;
396 	msgs[0].len = 1 + len;
397 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
398 	if (!msgs[0].buf)
399 		return -ENOMEM;
400 
401 	msgs[0].buf[0] = dev_addr;
402 	memcpy(&msgs[0].buf[1], buf, len);
403 
404 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
405 
406 	kfree(msgs[0].buf);
407 
408 	if (ret < 0)
409 		return ret;
410 
411 	return ret == ARRAY_SIZE(msgs) ? len : 0;
412 }
413 
414 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
415 {
416 	struct mii_bus *i2c_mii;
417 	int ret;
418 
419 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
420 		return -EINVAL;
421 
422 	sfp->i2c = i2c;
423 	sfp->read = sfp_i2c_read;
424 	sfp->write = sfp_i2c_write;
425 
426 	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
427 	if (IS_ERR(i2c_mii))
428 		return PTR_ERR(i2c_mii);
429 
430 	i2c_mii->name = "SFP I2C Bus";
431 	i2c_mii->phy_mask = ~0;
432 
433 	ret = mdiobus_register(i2c_mii);
434 	if (ret < 0) {
435 		mdiobus_free(i2c_mii);
436 		return ret;
437 	}
438 
439 	sfp->i2c_mii = i2c_mii;
440 
441 	return 0;
442 }
443 
444 /* Interface */
445 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
446 {
447 	return sfp->read(sfp, a2, addr, buf, len);
448 }
449 
450 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
451 {
452 	return sfp->write(sfp, a2, addr, buf, len);
453 }
454 
455 static unsigned int sfp_soft_get_state(struct sfp *sfp)
456 {
457 	unsigned int state = 0;
458 	u8 status;
459 	int ret;
460 
461 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
462 	if (ret == sizeof(status)) {
463 		if (status & SFP_STATUS_RX_LOS)
464 			state |= SFP_F_LOS;
465 		if (status & SFP_STATUS_TX_FAULT)
466 			state |= SFP_F_TX_FAULT;
467 	} else {
468 		dev_err_ratelimited(sfp->dev,
469 				    "failed to read SFP soft status: %d\n",
470 				    ret);
471 		/* Preserve the current state */
472 		state = sfp->state;
473 	}
474 
475 	return state & sfp->state_soft_mask;
476 }
477 
478 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
479 {
480 	u8 status;
481 
482 	if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
483 		     sizeof(status)) {
484 		if (state & SFP_F_TX_DISABLE)
485 			status |= SFP_STATUS_TX_DISABLE_FORCE;
486 		else
487 			status &= ~SFP_STATUS_TX_DISABLE_FORCE;
488 
489 		sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
490 	}
491 }
492 
493 static void sfp_soft_start_poll(struct sfp *sfp)
494 {
495 	const struct sfp_eeprom_id *id = &sfp->id;
496 
497 	sfp->state_soft_mask = 0;
498 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
499 	    !sfp->gpio[GPIO_TX_DISABLE])
500 		sfp->state_soft_mask |= SFP_F_TX_DISABLE;
501 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
502 	    !sfp->gpio[GPIO_TX_FAULT])
503 		sfp->state_soft_mask |= SFP_F_TX_FAULT;
504 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
505 	    !sfp->gpio[GPIO_LOS])
506 		sfp->state_soft_mask |= SFP_F_LOS;
507 
508 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
509 	    !sfp->need_poll)
510 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
511 }
512 
513 static void sfp_soft_stop_poll(struct sfp *sfp)
514 {
515 	sfp->state_soft_mask = 0;
516 }
517 
518 static unsigned int sfp_get_state(struct sfp *sfp)
519 {
520 	unsigned int state = sfp->get_state(sfp);
521 
522 	if (state & SFP_F_PRESENT &&
523 	    sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
524 		state |= sfp_soft_get_state(sfp);
525 
526 	return state;
527 }
528 
529 static void sfp_set_state(struct sfp *sfp, unsigned int state)
530 {
531 	sfp->set_state(sfp, state);
532 
533 	if (state & SFP_F_PRESENT &&
534 	    sfp->state_soft_mask & SFP_F_TX_DISABLE)
535 		sfp_soft_set_state(sfp, state);
536 }
537 
538 static unsigned int sfp_check(void *buf, size_t len)
539 {
540 	u8 *p, check;
541 
542 	for (p = buf, check = 0; len; p++, len--)
543 		check += *p;
544 
545 	return check;
546 }
547 
548 /* hwmon */
549 #if IS_ENABLED(CONFIG_HWMON)
550 static umode_t sfp_hwmon_is_visible(const void *data,
551 				    enum hwmon_sensor_types type,
552 				    u32 attr, int channel)
553 {
554 	const struct sfp *sfp = data;
555 
556 	switch (type) {
557 	case hwmon_temp:
558 		switch (attr) {
559 		case hwmon_temp_min_alarm:
560 		case hwmon_temp_max_alarm:
561 		case hwmon_temp_lcrit_alarm:
562 		case hwmon_temp_crit_alarm:
563 		case hwmon_temp_min:
564 		case hwmon_temp_max:
565 		case hwmon_temp_lcrit:
566 		case hwmon_temp_crit:
567 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
568 				return 0;
569 			fallthrough;
570 		case hwmon_temp_input:
571 		case hwmon_temp_label:
572 			return 0444;
573 		default:
574 			return 0;
575 		}
576 	case hwmon_in:
577 		switch (attr) {
578 		case hwmon_in_min_alarm:
579 		case hwmon_in_max_alarm:
580 		case hwmon_in_lcrit_alarm:
581 		case hwmon_in_crit_alarm:
582 		case hwmon_in_min:
583 		case hwmon_in_max:
584 		case hwmon_in_lcrit:
585 		case hwmon_in_crit:
586 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
587 				return 0;
588 			fallthrough;
589 		case hwmon_in_input:
590 		case hwmon_in_label:
591 			return 0444;
592 		default:
593 			return 0;
594 		}
595 	case hwmon_curr:
596 		switch (attr) {
597 		case hwmon_curr_min_alarm:
598 		case hwmon_curr_max_alarm:
599 		case hwmon_curr_lcrit_alarm:
600 		case hwmon_curr_crit_alarm:
601 		case hwmon_curr_min:
602 		case hwmon_curr_max:
603 		case hwmon_curr_lcrit:
604 		case hwmon_curr_crit:
605 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
606 				return 0;
607 			fallthrough;
608 		case hwmon_curr_input:
609 		case hwmon_curr_label:
610 			return 0444;
611 		default:
612 			return 0;
613 		}
614 	case hwmon_power:
615 		/* External calibration of receive power requires
616 		 * floating point arithmetic. Doing that in the kernel
617 		 * is not easy, so just skip it. If the module does
618 		 * not require external calibration, we can however
619 		 * show receiver power, since FP is then not needed.
620 		 */
621 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
622 		    channel == 1)
623 			return 0;
624 		switch (attr) {
625 		case hwmon_power_min_alarm:
626 		case hwmon_power_max_alarm:
627 		case hwmon_power_lcrit_alarm:
628 		case hwmon_power_crit_alarm:
629 		case hwmon_power_min:
630 		case hwmon_power_max:
631 		case hwmon_power_lcrit:
632 		case hwmon_power_crit:
633 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
634 				return 0;
635 			fallthrough;
636 		case hwmon_power_input:
637 		case hwmon_power_label:
638 			return 0444;
639 		default:
640 			return 0;
641 		}
642 	default:
643 		return 0;
644 	}
645 }
646 
647 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
648 {
649 	__be16 val;
650 	int err;
651 
652 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
653 	if (err < 0)
654 		return err;
655 
656 	*value = be16_to_cpu(val);
657 
658 	return 0;
659 }
660 
661 static void sfp_hwmon_to_rx_power(long *value)
662 {
663 	*value = DIV_ROUND_CLOSEST(*value, 10);
664 }
665 
666 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
667 				long *value)
668 {
669 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
670 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
671 }
672 
673 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
674 {
675 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
676 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
677 
678 	if (*value >= 0x8000)
679 		*value -= 0x10000;
680 
681 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
682 }
683 
684 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
685 {
686 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
687 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
688 
689 	*value = DIV_ROUND_CLOSEST(*value, 10);
690 }
691 
692 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
693 {
694 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
695 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
696 
697 	*value = DIV_ROUND_CLOSEST(*value, 500);
698 }
699 
700 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
701 {
702 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
703 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
704 
705 	*value = DIV_ROUND_CLOSEST(*value, 10);
706 }
707 
708 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
709 {
710 	int err;
711 
712 	err = sfp_hwmon_read_sensor(sfp, reg, value);
713 	if (err < 0)
714 		return err;
715 
716 	sfp_hwmon_calibrate_temp(sfp, value);
717 
718 	return 0;
719 }
720 
721 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
722 {
723 	int err;
724 
725 	err = sfp_hwmon_read_sensor(sfp, reg, value);
726 	if (err < 0)
727 		return err;
728 
729 	sfp_hwmon_calibrate_vcc(sfp, value);
730 
731 	return 0;
732 }
733 
734 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
735 {
736 	int err;
737 
738 	err = sfp_hwmon_read_sensor(sfp, reg, value);
739 	if (err < 0)
740 		return err;
741 
742 	sfp_hwmon_calibrate_bias(sfp, value);
743 
744 	return 0;
745 }
746 
747 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
748 {
749 	int err;
750 
751 	err = sfp_hwmon_read_sensor(sfp, reg, value);
752 	if (err < 0)
753 		return err;
754 
755 	sfp_hwmon_calibrate_tx_power(sfp, value);
756 
757 	return 0;
758 }
759 
760 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
761 {
762 	int err;
763 
764 	err = sfp_hwmon_read_sensor(sfp, reg, value);
765 	if (err < 0)
766 		return err;
767 
768 	sfp_hwmon_to_rx_power(value);
769 
770 	return 0;
771 }
772 
773 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
774 {
775 	u8 status;
776 	int err;
777 
778 	switch (attr) {
779 	case hwmon_temp_input:
780 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
781 
782 	case hwmon_temp_lcrit:
783 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
784 		sfp_hwmon_calibrate_temp(sfp, value);
785 		return 0;
786 
787 	case hwmon_temp_min:
788 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
789 		sfp_hwmon_calibrate_temp(sfp, value);
790 		return 0;
791 	case hwmon_temp_max:
792 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
793 		sfp_hwmon_calibrate_temp(sfp, value);
794 		return 0;
795 
796 	case hwmon_temp_crit:
797 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
798 		sfp_hwmon_calibrate_temp(sfp, value);
799 		return 0;
800 
801 	case hwmon_temp_lcrit_alarm:
802 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
803 		if (err < 0)
804 			return err;
805 
806 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
807 		return 0;
808 
809 	case hwmon_temp_min_alarm:
810 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
811 		if (err < 0)
812 			return err;
813 
814 		*value = !!(status & SFP_WARN0_TEMP_LOW);
815 		return 0;
816 
817 	case hwmon_temp_max_alarm:
818 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
819 		if (err < 0)
820 			return err;
821 
822 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
823 		return 0;
824 
825 	case hwmon_temp_crit_alarm:
826 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
827 		if (err < 0)
828 			return err;
829 
830 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
831 		return 0;
832 	default:
833 		return -EOPNOTSUPP;
834 	}
835 
836 	return -EOPNOTSUPP;
837 }
838 
839 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
840 {
841 	u8 status;
842 	int err;
843 
844 	switch (attr) {
845 	case hwmon_in_input:
846 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
847 
848 	case hwmon_in_lcrit:
849 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
850 		sfp_hwmon_calibrate_vcc(sfp, value);
851 		return 0;
852 
853 	case hwmon_in_min:
854 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
855 		sfp_hwmon_calibrate_vcc(sfp, value);
856 		return 0;
857 
858 	case hwmon_in_max:
859 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
860 		sfp_hwmon_calibrate_vcc(sfp, value);
861 		return 0;
862 
863 	case hwmon_in_crit:
864 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
865 		sfp_hwmon_calibrate_vcc(sfp, value);
866 		return 0;
867 
868 	case hwmon_in_lcrit_alarm:
869 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
870 		if (err < 0)
871 			return err;
872 
873 		*value = !!(status & SFP_ALARM0_VCC_LOW);
874 		return 0;
875 
876 	case hwmon_in_min_alarm:
877 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
878 		if (err < 0)
879 			return err;
880 
881 		*value = !!(status & SFP_WARN0_VCC_LOW);
882 		return 0;
883 
884 	case hwmon_in_max_alarm:
885 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
886 		if (err < 0)
887 			return err;
888 
889 		*value = !!(status & SFP_WARN0_VCC_HIGH);
890 		return 0;
891 
892 	case hwmon_in_crit_alarm:
893 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
894 		if (err < 0)
895 			return err;
896 
897 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
898 		return 0;
899 	default:
900 		return -EOPNOTSUPP;
901 	}
902 
903 	return -EOPNOTSUPP;
904 }
905 
906 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
907 {
908 	u8 status;
909 	int err;
910 
911 	switch (attr) {
912 	case hwmon_curr_input:
913 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
914 
915 	case hwmon_curr_lcrit:
916 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
917 		sfp_hwmon_calibrate_bias(sfp, value);
918 		return 0;
919 
920 	case hwmon_curr_min:
921 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
922 		sfp_hwmon_calibrate_bias(sfp, value);
923 		return 0;
924 
925 	case hwmon_curr_max:
926 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
927 		sfp_hwmon_calibrate_bias(sfp, value);
928 		return 0;
929 
930 	case hwmon_curr_crit:
931 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
932 		sfp_hwmon_calibrate_bias(sfp, value);
933 		return 0;
934 
935 	case hwmon_curr_lcrit_alarm:
936 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
937 		if (err < 0)
938 			return err;
939 
940 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
941 		return 0;
942 
943 	case hwmon_curr_min_alarm:
944 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
945 		if (err < 0)
946 			return err;
947 
948 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
949 		return 0;
950 
951 	case hwmon_curr_max_alarm:
952 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
953 		if (err < 0)
954 			return err;
955 
956 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
957 		return 0;
958 
959 	case hwmon_curr_crit_alarm:
960 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
961 		if (err < 0)
962 			return err;
963 
964 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
965 		return 0;
966 	default:
967 		return -EOPNOTSUPP;
968 	}
969 
970 	return -EOPNOTSUPP;
971 }
972 
973 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
974 {
975 	u8 status;
976 	int err;
977 
978 	switch (attr) {
979 	case hwmon_power_input:
980 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
981 
982 	case hwmon_power_lcrit:
983 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
984 		sfp_hwmon_calibrate_tx_power(sfp, value);
985 		return 0;
986 
987 	case hwmon_power_min:
988 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
989 		sfp_hwmon_calibrate_tx_power(sfp, value);
990 		return 0;
991 
992 	case hwmon_power_max:
993 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
994 		sfp_hwmon_calibrate_tx_power(sfp, value);
995 		return 0;
996 
997 	case hwmon_power_crit:
998 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
999 		sfp_hwmon_calibrate_tx_power(sfp, value);
1000 		return 0;
1001 
1002 	case hwmon_power_lcrit_alarm:
1003 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1004 		if (err < 0)
1005 			return err;
1006 
1007 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1008 		return 0;
1009 
1010 	case hwmon_power_min_alarm:
1011 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1012 		if (err < 0)
1013 			return err;
1014 
1015 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1016 		return 0;
1017 
1018 	case hwmon_power_max_alarm:
1019 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1020 		if (err < 0)
1021 			return err;
1022 
1023 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1024 		return 0;
1025 
1026 	case hwmon_power_crit_alarm:
1027 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1028 		if (err < 0)
1029 			return err;
1030 
1031 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1032 		return 0;
1033 	default:
1034 		return -EOPNOTSUPP;
1035 	}
1036 
1037 	return -EOPNOTSUPP;
1038 }
1039 
1040 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1041 {
1042 	u8 status;
1043 	int err;
1044 
1045 	switch (attr) {
1046 	case hwmon_power_input:
1047 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1048 
1049 	case hwmon_power_lcrit:
1050 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1051 		sfp_hwmon_to_rx_power(value);
1052 		return 0;
1053 
1054 	case hwmon_power_min:
1055 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1056 		sfp_hwmon_to_rx_power(value);
1057 		return 0;
1058 
1059 	case hwmon_power_max:
1060 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1061 		sfp_hwmon_to_rx_power(value);
1062 		return 0;
1063 
1064 	case hwmon_power_crit:
1065 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1066 		sfp_hwmon_to_rx_power(value);
1067 		return 0;
1068 
1069 	case hwmon_power_lcrit_alarm:
1070 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1071 		if (err < 0)
1072 			return err;
1073 
1074 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1075 		return 0;
1076 
1077 	case hwmon_power_min_alarm:
1078 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1079 		if (err < 0)
1080 			return err;
1081 
1082 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1083 		return 0;
1084 
1085 	case hwmon_power_max_alarm:
1086 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1087 		if (err < 0)
1088 			return err;
1089 
1090 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1091 		return 0;
1092 
1093 	case hwmon_power_crit_alarm:
1094 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1095 		if (err < 0)
1096 			return err;
1097 
1098 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1099 		return 0;
1100 	default:
1101 		return -EOPNOTSUPP;
1102 	}
1103 
1104 	return -EOPNOTSUPP;
1105 }
1106 
1107 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1108 			  u32 attr, int channel, long *value)
1109 {
1110 	struct sfp *sfp = dev_get_drvdata(dev);
1111 
1112 	switch (type) {
1113 	case hwmon_temp:
1114 		return sfp_hwmon_temp(sfp, attr, value);
1115 	case hwmon_in:
1116 		return sfp_hwmon_vcc(sfp, attr, value);
1117 	case hwmon_curr:
1118 		return sfp_hwmon_bias(sfp, attr, value);
1119 	case hwmon_power:
1120 		switch (channel) {
1121 		case 0:
1122 			return sfp_hwmon_tx_power(sfp, attr, value);
1123 		case 1:
1124 			return sfp_hwmon_rx_power(sfp, attr, value);
1125 		default:
1126 			return -EOPNOTSUPP;
1127 		}
1128 	default:
1129 		return -EOPNOTSUPP;
1130 	}
1131 }
1132 
1133 static const char *const sfp_hwmon_power_labels[] = {
1134 	"TX_power",
1135 	"RX_power",
1136 };
1137 
1138 static int sfp_hwmon_read_string(struct device *dev,
1139 				 enum hwmon_sensor_types type,
1140 				 u32 attr, int channel, const char **str)
1141 {
1142 	switch (type) {
1143 	case hwmon_curr:
1144 		switch (attr) {
1145 		case hwmon_curr_label:
1146 			*str = "bias";
1147 			return 0;
1148 		default:
1149 			return -EOPNOTSUPP;
1150 		}
1151 		break;
1152 	case hwmon_temp:
1153 		switch (attr) {
1154 		case hwmon_temp_label:
1155 			*str = "temperature";
1156 			return 0;
1157 		default:
1158 			return -EOPNOTSUPP;
1159 		}
1160 		break;
1161 	case hwmon_in:
1162 		switch (attr) {
1163 		case hwmon_in_label:
1164 			*str = "VCC";
1165 			return 0;
1166 		default:
1167 			return -EOPNOTSUPP;
1168 		}
1169 		break;
1170 	case hwmon_power:
1171 		switch (attr) {
1172 		case hwmon_power_label:
1173 			*str = sfp_hwmon_power_labels[channel];
1174 			return 0;
1175 		default:
1176 			return -EOPNOTSUPP;
1177 		}
1178 		break;
1179 	default:
1180 		return -EOPNOTSUPP;
1181 	}
1182 
1183 	return -EOPNOTSUPP;
1184 }
1185 
1186 static const struct hwmon_ops sfp_hwmon_ops = {
1187 	.is_visible = sfp_hwmon_is_visible,
1188 	.read = sfp_hwmon_read,
1189 	.read_string = sfp_hwmon_read_string,
1190 };
1191 
1192 static u32 sfp_hwmon_chip_config[] = {
1193 	HWMON_C_REGISTER_TZ,
1194 	0,
1195 };
1196 
1197 static const struct hwmon_channel_info sfp_hwmon_chip = {
1198 	.type = hwmon_chip,
1199 	.config = sfp_hwmon_chip_config,
1200 };
1201 
1202 static u32 sfp_hwmon_temp_config[] = {
1203 	HWMON_T_INPUT |
1204 	HWMON_T_MAX | HWMON_T_MIN |
1205 	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1206 	HWMON_T_CRIT | HWMON_T_LCRIT |
1207 	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1208 	HWMON_T_LABEL,
1209 	0,
1210 };
1211 
1212 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1213 	.type = hwmon_temp,
1214 	.config = sfp_hwmon_temp_config,
1215 };
1216 
1217 static u32 sfp_hwmon_vcc_config[] = {
1218 	HWMON_I_INPUT |
1219 	HWMON_I_MAX | HWMON_I_MIN |
1220 	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1221 	HWMON_I_CRIT | HWMON_I_LCRIT |
1222 	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1223 	HWMON_I_LABEL,
1224 	0,
1225 };
1226 
1227 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1228 	.type = hwmon_in,
1229 	.config = sfp_hwmon_vcc_config,
1230 };
1231 
1232 static u32 sfp_hwmon_bias_config[] = {
1233 	HWMON_C_INPUT |
1234 	HWMON_C_MAX | HWMON_C_MIN |
1235 	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1236 	HWMON_C_CRIT | HWMON_C_LCRIT |
1237 	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1238 	HWMON_C_LABEL,
1239 	0,
1240 };
1241 
1242 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1243 	.type = hwmon_curr,
1244 	.config = sfp_hwmon_bias_config,
1245 };
1246 
1247 static u32 sfp_hwmon_power_config[] = {
1248 	/* Transmit power */
1249 	HWMON_P_INPUT |
1250 	HWMON_P_MAX | HWMON_P_MIN |
1251 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1252 	HWMON_P_CRIT | HWMON_P_LCRIT |
1253 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1254 	HWMON_P_LABEL,
1255 	/* Receive power */
1256 	HWMON_P_INPUT |
1257 	HWMON_P_MAX | HWMON_P_MIN |
1258 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1259 	HWMON_P_CRIT | HWMON_P_LCRIT |
1260 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1261 	HWMON_P_LABEL,
1262 	0,
1263 };
1264 
1265 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1266 	.type = hwmon_power,
1267 	.config = sfp_hwmon_power_config,
1268 };
1269 
1270 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1271 	&sfp_hwmon_chip,
1272 	&sfp_hwmon_vcc_channel_info,
1273 	&sfp_hwmon_temp_channel_info,
1274 	&sfp_hwmon_bias_channel_info,
1275 	&sfp_hwmon_power_channel_info,
1276 	NULL,
1277 };
1278 
1279 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1280 	.ops = &sfp_hwmon_ops,
1281 	.info = sfp_hwmon_info,
1282 };
1283 
1284 static void sfp_hwmon_probe(struct work_struct *work)
1285 {
1286 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1287 	int err, i;
1288 
1289 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1290 	if (err < 0) {
1291 		if (sfp->hwmon_tries--) {
1292 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1293 					 T_PROBE_RETRY_SLOW);
1294 		} else {
1295 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1296 		}
1297 		return;
1298 	}
1299 
1300 	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1301 	if (!sfp->hwmon_name) {
1302 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1303 		return;
1304 	}
1305 
1306 	for (i = 0; sfp->hwmon_name[i]; i++)
1307 		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1308 			sfp->hwmon_name[i] = '_';
1309 
1310 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1311 							 sfp->hwmon_name, sfp,
1312 							 &sfp_hwmon_chip_info,
1313 							 NULL);
1314 	if (IS_ERR(sfp->hwmon_dev))
1315 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1316 			PTR_ERR(sfp->hwmon_dev));
1317 }
1318 
1319 static int sfp_hwmon_insert(struct sfp *sfp)
1320 {
1321 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1322 		return 0;
1323 
1324 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1325 		return 0;
1326 
1327 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1328 		/* This driver in general does not support address
1329 		 * change.
1330 		 */
1331 		return 0;
1332 
1333 	mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1334 	sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1335 
1336 	return 0;
1337 }
1338 
1339 static void sfp_hwmon_remove(struct sfp *sfp)
1340 {
1341 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1342 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1343 		hwmon_device_unregister(sfp->hwmon_dev);
1344 		sfp->hwmon_dev = NULL;
1345 		kfree(sfp->hwmon_name);
1346 	}
1347 }
1348 
1349 static int sfp_hwmon_init(struct sfp *sfp)
1350 {
1351 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1352 
1353 	return 0;
1354 }
1355 
1356 static void sfp_hwmon_exit(struct sfp *sfp)
1357 {
1358 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1359 }
1360 #else
1361 static int sfp_hwmon_insert(struct sfp *sfp)
1362 {
1363 	return 0;
1364 }
1365 
1366 static void sfp_hwmon_remove(struct sfp *sfp)
1367 {
1368 }
1369 
1370 static int sfp_hwmon_init(struct sfp *sfp)
1371 {
1372 	return 0;
1373 }
1374 
1375 static void sfp_hwmon_exit(struct sfp *sfp)
1376 {
1377 }
1378 #endif
1379 
1380 /* Helpers */
1381 static void sfp_module_tx_disable(struct sfp *sfp)
1382 {
1383 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1384 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1385 	sfp->state |= SFP_F_TX_DISABLE;
1386 	sfp_set_state(sfp, sfp->state);
1387 }
1388 
1389 static void sfp_module_tx_enable(struct sfp *sfp)
1390 {
1391 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1392 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1393 	sfp->state &= ~SFP_F_TX_DISABLE;
1394 	sfp_set_state(sfp, sfp->state);
1395 }
1396 
1397 #if IS_ENABLED(CONFIG_DEBUG_FS)
1398 static int sfp_debug_state_show(struct seq_file *s, void *data)
1399 {
1400 	struct sfp *sfp = s->private;
1401 
1402 	seq_printf(s, "Module state: %s\n",
1403 		   mod_state_to_str(sfp->sm_mod_state));
1404 	seq_printf(s, "Module probe attempts: %d %d\n",
1405 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1406 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1407 	seq_printf(s, "Device state: %s\n",
1408 		   dev_state_to_str(sfp->sm_dev_state));
1409 	seq_printf(s, "Main state: %s\n",
1410 		   sm_state_to_str(sfp->sm_state));
1411 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1412 		   sfp->sm_fault_retries);
1413 	seq_printf(s, "PHY probe remaining retries: %d\n",
1414 		   sfp->sm_phy_retries);
1415 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1416 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1417 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1418 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1419 	return 0;
1420 }
1421 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1422 
1423 static void sfp_debugfs_init(struct sfp *sfp)
1424 {
1425 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1426 
1427 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1428 			    &sfp_debug_state_fops);
1429 }
1430 
1431 static void sfp_debugfs_exit(struct sfp *sfp)
1432 {
1433 	debugfs_remove_recursive(sfp->debugfs_dir);
1434 }
1435 #else
1436 static void sfp_debugfs_init(struct sfp *sfp)
1437 {
1438 }
1439 
1440 static void sfp_debugfs_exit(struct sfp *sfp)
1441 {
1442 }
1443 #endif
1444 
1445 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1446 {
1447 	unsigned int state = sfp->state;
1448 
1449 	if (state & SFP_F_TX_DISABLE)
1450 		return;
1451 
1452 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1453 
1454 	udelay(T_RESET_US);
1455 
1456 	sfp_set_state(sfp, state);
1457 }
1458 
1459 /* SFP state machine */
1460 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1461 {
1462 	if (timeout)
1463 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1464 				 timeout);
1465 	else
1466 		cancel_delayed_work(&sfp->timeout);
1467 }
1468 
1469 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1470 			unsigned int timeout)
1471 {
1472 	sfp->sm_state = state;
1473 	sfp_sm_set_timer(sfp, timeout);
1474 }
1475 
1476 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1477 			    unsigned int timeout)
1478 {
1479 	sfp->sm_mod_state = state;
1480 	sfp_sm_set_timer(sfp, timeout);
1481 }
1482 
1483 static void sfp_sm_phy_detach(struct sfp *sfp)
1484 {
1485 	sfp_remove_phy(sfp->sfp_bus);
1486 	phy_device_remove(sfp->mod_phy);
1487 	phy_device_free(sfp->mod_phy);
1488 	sfp->mod_phy = NULL;
1489 }
1490 
1491 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1492 {
1493 	struct phy_device *phy;
1494 	int err;
1495 
1496 	phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1497 	if (phy == ERR_PTR(-ENODEV))
1498 		return PTR_ERR(phy);
1499 	if (IS_ERR(phy)) {
1500 		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1501 		return PTR_ERR(phy);
1502 	}
1503 
1504 	err = phy_device_register(phy);
1505 	if (err) {
1506 		phy_device_free(phy);
1507 		dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1508 		return err;
1509 	}
1510 
1511 	err = sfp_add_phy(sfp->sfp_bus, phy);
1512 	if (err) {
1513 		phy_device_remove(phy);
1514 		phy_device_free(phy);
1515 		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1516 		return err;
1517 	}
1518 
1519 	sfp->mod_phy = phy;
1520 
1521 	return 0;
1522 }
1523 
1524 static void sfp_sm_link_up(struct sfp *sfp)
1525 {
1526 	sfp_link_up(sfp->sfp_bus);
1527 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1528 }
1529 
1530 static void sfp_sm_link_down(struct sfp *sfp)
1531 {
1532 	sfp_link_down(sfp->sfp_bus);
1533 }
1534 
1535 static void sfp_sm_link_check_los(struct sfp *sfp)
1536 {
1537 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1538 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1539 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1540 	bool los = false;
1541 
1542 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1543 	 * are set, we assume that no LOS signal is available. If both are
1544 	 * set, we assume LOS is not implemented (and is meaningless.)
1545 	 */
1546 	if (los_options == los_inverted)
1547 		los = !(sfp->state & SFP_F_LOS);
1548 	else if (los_options == los_normal)
1549 		los = !!(sfp->state & SFP_F_LOS);
1550 
1551 	if (los)
1552 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1553 	else
1554 		sfp_sm_link_up(sfp);
1555 }
1556 
1557 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1558 {
1559 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1560 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1561 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1562 
1563 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1564 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1565 }
1566 
1567 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1568 {
1569 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1570 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1571 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1572 
1573 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1574 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1575 }
1576 
1577 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1578 {
1579 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1580 		dev_err(sfp->dev,
1581 			"module persistently indicates fault, disabling\n");
1582 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1583 	} else {
1584 		if (warn)
1585 			dev_err(sfp->dev, "module transmit fault indicated\n");
1586 
1587 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1588 	}
1589 }
1590 
1591 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1592  * normally sits at I2C bus address 0x56, and may either be a clause 22
1593  * or clause 45 PHY.
1594  *
1595  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1596  * negotiation enabled, but some may be in 1000base-X - which is for the
1597  * PHY driver to determine.
1598  *
1599  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1600  * mode according to the negotiated line speed.
1601  */
1602 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1603 {
1604 	int err = 0;
1605 
1606 	switch (sfp->id.base.extended_cc) {
1607 	case SFF8024_ECC_10GBASE_T_SFI:
1608 	case SFF8024_ECC_10GBASE_T_SR:
1609 	case SFF8024_ECC_5GBASE_T:
1610 	case SFF8024_ECC_2_5GBASE_T:
1611 		err = sfp_sm_probe_phy(sfp, true);
1612 		break;
1613 
1614 	default:
1615 		if (sfp->id.base.e1000_base_t)
1616 			err = sfp_sm_probe_phy(sfp, false);
1617 		break;
1618 	}
1619 	return err;
1620 }
1621 
1622 static int sfp_module_parse_power(struct sfp *sfp)
1623 {
1624 	u32 power_mW = 1000;
1625 
1626 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1627 		power_mW = 1500;
1628 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1629 		power_mW = 2000;
1630 
1631 	if (power_mW > sfp->max_power_mW) {
1632 		/* Module power specification exceeds the allowed maximum. */
1633 		if (sfp->id.ext.sff8472_compliance ==
1634 			SFP_SFF8472_COMPLIANCE_NONE &&
1635 		    !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1636 			/* The module appears not to implement bus address
1637 			 * 0xa2, so assume that the module powers up in the
1638 			 * indicated mode.
1639 			 */
1640 			dev_err(sfp->dev,
1641 				"Host does not support %u.%uW modules\n",
1642 				power_mW / 1000, (power_mW / 100) % 10);
1643 			return -EINVAL;
1644 		} else {
1645 			dev_warn(sfp->dev,
1646 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1647 				 power_mW / 1000, (power_mW / 100) % 10);
1648 			return 0;
1649 		}
1650 	}
1651 
1652 	/* If the module requires a higher power mode, but also requires
1653 	 * an address change sequence, warn the user that the module may
1654 	 * not be functional.
1655 	 */
1656 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1657 		dev_warn(sfp->dev,
1658 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1659 			 power_mW / 1000, (power_mW / 100) % 10);
1660 		return 0;
1661 	}
1662 
1663 	sfp->module_power_mW = power_mW;
1664 
1665 	return 0;
1666 }
1667 
1668 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1669 {
1670 	u8 val;
1671 	int err;
1672 
1673 	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1674 	if (err != sizeof(val)) {
1675 		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1676 		return -EAGAIN;
1677 	}
1678 
1679 	/* DM7052 reports as a high power module, responds to reads (with
1680 	 * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1681 	 * if the bit is already set, we're already in high power mode.
1682 	 */
1683 	if (!!(val & BIT(0)) == enable)
1684 		return 0;
1685 
1686 	if (enable)
1687 		val |= BIT(0);
1688 	else
1689 		val &= ~BIT(0);
1690 
1691 	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1692 	if (err != sizeof(val)) {
1693 		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1694 		return -EAGAIN;
1695 	}
1696 
1697 	if (enable)
1698 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1699 			 sfp->module_power_mW / 1000,
1700 			 (sfp->module_power_mW / 100) % 10);
1701 
1702 	return 0;
1703 }
1704 
1705 /* Some modules (Nokia 3FE46541AA) lock up if byte 0x51 is read as a
1706  * single read. Switch back to reading 16 byte blocks unless we have
1707  * a CarlitoxxPro module (rebranded VSOL V2801F). Even more annoyingly,
1708  * some VSOL V2801F have the vendor name changed to OEM.
1709  */
1710 static int sfp_quirk_i2c_block_size(const struct sfp_eeprom_base *base)
1711 {
1712 	if (!memcmp(base->vendor_name, "VSOL            ", 16))
1713 		return 1;
1714 	if (!memcmp(base->vendor_name, "OEM             ", 16) &&
1715 	    !memcmp(base->vendor_pn,   "V2801F          ", 16))
1716 		return 1;
1717 
1718 	/* Some modules can't cope with long reads */
1719 	return 16;
1720 }
1721 
1722 static void sfp_quirks_base(struct sfp *sfp, const struct sfp_eeprom_base *base)
1723 {
1724 	sfp->i2c_block_size = sfp_quirk_i2c_block_size(base);
1725 }
1726 
1727 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1728 {
1729 	u8 check;
1730 	int err;
1731 
1732 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1733 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1734 	    id->base.connector != SFF8024_CONNECTOR_LC) {
1735 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1736 		id->base.phys_id = SFF8024_ID_SFF_8472;
1737 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1738 		id->base.connector = SFF8024_CONNECTOR_LC;
1739 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1740 		if (err != 3) {
1741 			dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1742 			return err;
1743 		}
1744 
1745 		/* Cotsworks modules have been found to require a delay between write operations. */
1746 		mdelay(50);
1747 
1748 		/* Update base structure checksum */
1749 		check = sfp_check(&id->base, sizeof(id->base) - 1);
1750 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1751 		if (err != 1) {
1752 			dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1753 			return err;
1754 		}
1755 	}
1756 	return 0;
1757 }
1758 
1759 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1760 {
1761 	/* SFP module inserted - read I2C data */
1762 	struct sfp_eeprom_id id;
1763 	bool cotsworks_sfbg;
1764 	bool cotsworks;
1765 	u8 check;
1766 	int ret;
1767 
1768 	/* Some modules (CarlitoxxPro CPGOS03-0490) do not support multibyte
1769 	 * reads from the EEPROM, so start by reading the base identifying
1770 	 * information one byte at a time.
1771 	 */
1772 	sfp->i2c_block_size = 1;
1773 
1774 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1775 	if (ret < 0) {
1776 		if (report)
1777 			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1778 		return -EAGAIN;
1779 	}
1780 
1781 	if (ret != sizeof(id.base)) {
1782 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1783 		return -EAGAIN;
1784 	}
1785 
1786 	/* Cotsworks do not seem to update the checksums when they
1787 	 * do the final programming with the final module part number,
1788 	 * serial number and date code.
1789 	 */
1790 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1791 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1792 
1793 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
1794 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1795 	 * Cotsworks PN matches and bytes are not correct.
1796 	 */
1797 	if (cotsworks && cotsworks_sfbg) {
1798 		ret = sfp_cotsworks_fixup_check(sfp, &id);
1799 		if (ret < 0)
1800 			return ret;
1801 	}
1802 
1803 	/* Validate the checksum over the base structure */
1804 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1805 	if (check != id.base.cc_base) {
1806 		if (cotsworks) {
1807 			dev_warn(sfp->dev,
1808 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1809 				 check, id.base.cc_base);
1810 		} else {
1811 			dev_err(sfp->dev,
1812 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1813 				check, id.base.cc_base);
1814 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1815 				       16, 1, &id, sizeof(id), true);
1816 			return -EINVAL;
1817 		}
1818 	}
1819 
1820 	/* Apply any early module-specific quirks */
1821 	sfp_quirks_base(sfp, &id.base);
1822 
1823 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1824 	if (ret < 0) {
1825 		if (report)
1826 			dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1827 		return -EAGAIN;
1828 	}
1829 
1830 	if (ret != sizeof(id.ext)) {
1831 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1832 		return -EAGAIN;
1833 	}
1834 
1835 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1836 	if (check != id.ext.cc_ext) {
1837 		if (cotsworks) {
1838 			dev_warn(sfp->dev,
1839 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1840 				 check, id.ext.cc_ext);
1841 		} else {
1842 			dev_err(sfp->dev,
1843 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1844 				check, id.ext.cc_ext);
1845 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1846 				       16, 1, &id, sizeof(id), true);
1847 			memset(&id.ext, 0, sizeof(id.ext));
1848 		}
1849 	}
1850 
1851 	sfp->id = id;
1852 
1853 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1854 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1855 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1856 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1857 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1858 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1859 
1860 	/* Check whether we support this module */
1861 	if (!sfp->type->module_supported(&id)) {
1862 		dev_err(sfp->dev,
1863 			"module is not supported - phys id 0x%02x 0x%02x\n",
1864 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1865 		return -EINVAL;
1866 	}
1867 
1868 	/* If the module requires address swap mode, warn about it */
1869 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1870 		dev_warn(sfp->dev,
1871 			 "module address swap to access page 0xA2 is not supported.\n");
1872 
1873 	/* Parse the module power requirement */
1874 	ret = sfp_module_parse_power(sfp);
1875 	if (ret < 0)
1876 		return ret;
1877 
1878 	if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1879 	    !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1880 		sfp->module_t_start_up = T_START_UP_BAD_GPON;
1881 	else
1882 		sfp->module_t_start_up = T_START_UP;
1883 
1884 	return 0;
1885 }
1886 
1887 static void sfp_sm_mod_remove(struct sfp *sfp)
1888 {
1889 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1890 		sfp_module_remove(sfp->sfp_bus);
1891 
1892 	sfp_hwmon_remove(sfp);
1893 
1894 	memset(&sfp->id, 0, sizeof(sfp->id));
1895 	sfp->module_power_mW = 0;
1896 
1897 	dev_info(sfp->dev, "module removed\n");
1898 }
1899 
1900 /* This state machine tracks the upstream's state */
1901 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1902 {
1903 	switch (sfp->sm_dev_state) {
1904 	default:
1905 		if (event == SFP_E_DEV_ATTACH)
1906 			sfp->sm_dev_state = SFP_DEV_DOWN;
1907 		break;
1908 
1909 	case SFP_DEV_DOWN:
1910 		if (event == SFP_E_DEV_DETACH)
1911 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1912 		else if (event == SFP_E_DEV_UP)
1913 			sfp->sm_dev_state = SFP_DEV_UP;
1914 		break;
1915 
1916 	case SFP_DEV_UP:
1917 		if (event == SFP_E_DEV_DETACH)
1918 			sfp->sm_dev_state = SFP_DEV_DETACHED;
1919 		else if (event == SFP_E_DEV_DOWN)
1920 			sfp->sm_dev_state = SFP_DEV_DOWN;
1921 		break;
1922 	}
1923 }
1924 
1925 /* This state machine tracks the insert/remove state of the module, probes
1926  * the on-board EEPROM, and sets up the power level.
1927  */
1928 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1929 {
1930 	int err;
1931 
1932 	/* Handle remove event globally, it resets this state machine */
1933 	if (event == SFP_E_REMOVE) {
1934 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
1935 			sfp_sm_mod_remove(sfp);
1936 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1937 		return;
1938 	}
1939 
1940 	/* Handle device detach globally */
1941 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1942 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1943 		if (sfp->module_power_mW > 1000 &&
1944 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
1945 			sfp_sm_mod_hpower(sfp, false);
1946 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1947 		return;
1948 	}
1949 
1950 	switch (sfp->sm_mod_state) {
1951 	default:
1952 		if (event == SFP_E_INSERT) {
1953 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1954 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1955 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1956 		}
1957 		break;
1958 
1959 	case SFP_MOD_PROBE:
1960 		/* Wait for T_PROBE_INIT to time out */
1961 		if (event != SFP_E_TIMEOUT)
1962 			break;
1963 
1964 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1965 		if (err == -EAGAIN) {
1966 			if (sfp->sm_mod_tries_init &&
1967 			   --sfp->sm_mod_tries_init) {
1968 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1969 				break;
1970 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1971 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1972 					dev_warn(sfp->dev,
1973 						 "please wait, module slow to respond\n");
1974 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1975 				break;
1976 			}
1977 		}
1978 		if (err < 0) {
1979 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1980 			break;
1981 		}
1982 
1983 		err = sfp_hwmon_insert(sfp);
1984 		if (err)
1985 			dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1986 
1987 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1988 		fallthrough;
1989 	case SFP_MOD_WAITDEV:
1990 		/* Ensure that the device is attached before proceeding */
1991 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
1992 			break;
1993 
1994 		/* Report the module insertion to the upstream device */
1995 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1996 		if (err < 0) {
1997 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1998 			break;
1999 		}
2000 
2001 		/* If this is a power level 1 module, we are done */
2002 		if (sfp->module_power_mW <= 1000)
2003 			goto insert;
2004 
2005 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2006 		fallthrough;
2007 	case SFP_MOD_HPOWER:
2008 		/* Enable high power mode */
2009 		err = sfp_sm_mod_hpower(sfp, true);
2010 		if (err < 0) {
2011 			if (err != -EAGAIN) {
2012 				sfp_module_remove(sfp->sfp_bus);
2013 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2014 			} else {
2015 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2016 			}
2017 			break;
2018 		}
2019 
2020 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2021 		break;
2022 
2023 	case SFP_MOD_WAITPWR:
2024 		/* Wait for T_HPOWER_LEVEL to time out */
2025 		if (event != SFP_E_TIMEOUT)
2026 			break;
2027 
2028 	insert:
2029 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2030 		break;
2031 
2032 	case SFP_MOD_PRESENT:
2033 	case SFP_MOD_ERROR:
2034 		break;
2035 	}
2036 }
2037 
2038 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2039 {
2040 	unsigned long timeout;
2041 	int ret;
2042 
2043 	/* Some events are global */
2044 	if (sfp->sm_state != SFP_S_DOWN &&
2045 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2046 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2047 		if (sfp->sm_state == SFP_S_LINK_UP &&
2048 		    sfp->sm_dev_state == SFP_DEV_UP)
2049 			sfp_sm_link_down(sfp);
2050 		if (sfp->sm_state > SFP_S_INIT)
2051 			sfp_module_stop(sfp->sfp_bus);
2052 		if (sfp->mod_phy)
2053 			sfp_sm_phy_detach(sfp);
2054 		sfp_module_tx_disable(sfp);
2055 		sfp_soft_stop_poll(sfp);
2056 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2057 		return;
2058 	}
2059 
2060 	/* The main state machine */
2061 	switch (sfp->sm_state) {
2062 	case SFP_S_DOWN:
2063 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2064 		    sfp->sm_dev_state != SFP_DEV_UP)
2065 			break;
2066 
2067 		if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2068 			sfp_soft_start_poll(sfp);
2069 
2070 		sfp_module_tx_enable(sfp);
2071 
2072 		/* Initialise the fault clearance retries */
2073 		sfp->sm_fault_retries = N_FAULT_INIT;
2074 
2075 		/* We need to check the TX_FAULT state, which is not defined
2076 		 * while TX_DISABLE is asserted. The earliest we want to do
2077 		 * anything (such as probe for a PHY) is 50ms.
2078 		 */
2079 		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2080 		break;
2081 
2082 	case SFP_S_WAIT:
2083 		if (event != SFP_E_TIMEOUT)
2084 			break;
2085 
2086 		if (sfp->state & SFP_F_TX_FAULT) {
2087 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2088 			 * from the TX_DISABLE deassertion for the module to
2089 			 * initialise, which is indicated by TX_FAULT
2090 			 * deasserting.
2091 			 */
2092 			timeout = sfp->module_t_start_up;
2093 			if (timeout > T_WAIT)
2094 				timeout -= T_WAIT;
2095 			else
2096 				timeout = 1;
2097 
2098 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2099 		} else {
2100 			/* TX_FAULT is not asserted, assume the module has
2101 			 * finished initialising.
2102 			 */
2103 			goto init_done;
2104 		}
2105 		break;
2106 
2107 	case SFP_S_INIT:
2108 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2109 			/* TX_FAULT is still asserted after t_init or
2110 			 * or t_start_up, so assume there is a fault.
2111 			 */
2112 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2113 				     sfp->sm_fault_retries == N_FAULT_INIT);
2114 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2115 	init_done:
2116 			sfp->sm_phy_retries = R_PHY_RETRY;
2117 			goto phy_probe;
2118 		}
2119 		break;
2120 
2121 	case SFP_S_INIT_PHY:
2122 		if (event != SFP_E_TIMEOUT)
2123 			break;
2124 	phy_probe:
2125 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2126 		 * clear.  Probe for the PHY and check the LOS state.
2127 		 */
2128 		ret = sfp_sm_probe_for_phy(sfp);
2129 		if (ret == -ENODEV) {
2130 			if (--sfp->sm_phy_retries) {
2131 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2132 				break;
2133 			} else {
2134 				dev_info(sfp->dev, "no PHY detected\n");
2135 			}
2136 		} else if (ret) {
2137 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2138 			break;
2139 		}
2140 		if (sfp_module_start(sfp->sfp_bus)) {
2141 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2142 			break;
2143 		}
2144 		sfp_sm_link_check_los(sfp);
2145 
2146 		/* Reset the fault retry count */
2147 		sfp->sm_fault_retries = N_FAULT;
2148 		break;
2149 
2150 	case SFP_S_INIT_TX_FAULT:
2151 		if (event == SFP_E_TIMEOUT) {
2152 			sfp_module_tx_fault_reset(sfp);
2153 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2154 		}
2155 		break;
2156 
2157 	case SFP_S_WAIT_LOS:
2158 		if (event == SFP_E_TX_FAULT)
2159 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2160 		else if (sfp_los_event_inactive(sfp, event))
2161 			sfp_sm_link_up(sfp);
2162 		break;
2163 
2164 	case SFP_S_LINK_UP:
2165 		if (event == SFP_E_TX_FAULT) {
2166 			sfp_sm_link_down(sfp);
2167 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2168 		} else if (sfp_los_event_active(sfp, event)) {
2169 			sfp_sm_link_down(sfp);
2170 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2171 		}
2172 		break;
2173 
2174 	case SFP_S_TX_FAULT:
2175 		if (event == SFP_E_TIMEOUT) {
2176 			sfp_module_tx_fault_reset(sfp);
2177 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2178 		}
2179 		break;
2180 
2181 	case SFP_S_REINIT:
2182 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2183 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2184 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2185 			dev_info(sfp->dev, "module transmit fault recovered\n");
2186 			sfp_sm_link_check_los(sfp);
2187 		}
2188 		break;
2189 
2190 	case SFP_S_TX_DISABLE:
2191 		break;
2192 	}
2193 }
2194 
2195 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2196 {
2197 	mutex_lock(&sfp->sm_mutex);
2198 
2199 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2200 		mod_state_to_str(sfp->sm_mod_state),
2201 		dev_state_to_str(sfp->sm_dev_state),
2202 		sm_state_to_str(sfp->sm_state),
2203 		event_to_str(event));
2204 
2205 	sfp_sm_device(sfp, event);
2206 	sfp_sm_module(sfp, event);
2207 	sfp_sm_main(sfp, event);
2208 
2209 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2210 		mod_state_to_str(sfp->sm_mod_state),
2211 		dev_state_to_str(sfp->sm_dev_state),
2212 		sm_state_to_str(sfp->sm_state));
2213 
2214 	mutex_unlock(&sfp->sm_mutex);
2215 }
2216 
2217 static void sfp_attach(struct sfp *sfp)
2218 {
2219 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2220 }
2221 
2222 static void sfp_detach(struct sfp *sfp)
2223 {
2224 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2225 }
2226 
2227 static void sfp_start(struct sfp *sfp)
2228 {
2229 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2230 }
2231 
2232 static void sfp_stop(struct sfp *sfp)
2233 {
2234 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2235 }
2236 
2237 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2238 {
2239 	/* locking... and check module is present */
2240 
2241 	if (sfp->id.ext.sff8472_compliance &&
2242 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2243 		modinfo->type = ETH_MODULE_SFF_8472;
2244 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2245 	} else {
2246 		modinfo->type = ETH_MODULE_SFF_8079;
2247 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2248 	}
2249 	return 0;
2250 }
2251 
2252 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2253 			     u8 *data)
2254 {
2255 	unsigned int first, last, len;
2256 	int ret;
2257 
2258 	if (ee->len == 0)
2259 		return -EINVAL;
2260 
2261 	first = ee->offset;
2262 	last = ee->offset + ee->len;
2263 	if (first < ETH_MODULE_SFF_8079_LEN) {
2264 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2265 		len -= first;
2266 
2267 		ret = sfp_read(sfp, false, first, data, len);
2268 		if (ret < 0)
2269 			return ret;
2270 
2271 		first += len;
2272 		data += len;
2273 	}
2274 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2275 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2276 		len -= first;
2277 		first -= ETH_MODULE_SFF_8079_LEN;
2278 
2279 		ret = sfp_read(sfp, true, first, data, len);
2280 		if (ret < 0)
2281 			return ret;
2282 	}
2283 	return 0;
2284 }
2285 
2286 static const struct sfp_socket_ops sfp_module_ops = {
2287 	.attach = sfp_attach,
2288 	.detach = sfp_detach,
2289 	.start = sfp_start,
2290 	.stop = sfp_stop,
2291 	.module_info = sfp_module_info,
2292 	.module_eeprom = sfp_module_eeprom,
2293 };
2294 
2295 static void sfp_timeout(struct work_struct *work)
2296 {
2297 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2298 
2299 	rtnl_lock();
2300 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2301 	rtnl_unlock();
2302 }
2303 
2304 static void sfp_check_state(struct sfp *sfp)
2305 {
2306 	unsigned int state, i, changed;
2307 
2308 	mutex_lock(&sfp->st_mutex);
2309 	state = sfp_get_state(sfp);
2310 	changed = state ^ sfp->state;
2311 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2312 
2313 	for (i = 0; i < GPIO_MAX; i++)
2314 		if (changed & BIT(i))
2315 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2316 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2317 
2318 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2319 	sfp->state = state;
2320 
2321 	rtnl_lock();
2322 	if (changed & SFP_F_PRESENT)
2323 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2324 				SFP_E_INSERT : SFP_E_REMOVE);
2325 
2326 	if (changed & SFP_F_TX_FAULT)
2327 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2328 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2329 
2330 	if (changed & SFP_F_LOS)
2331 		sfp_sm_event(sfp, state & SFP_F_LOS ?
2332 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2333 	rtnl_unlock();
2334 	mutex_unlock(&sfp->st_mutex);
2335 }
2336 
2337 static irqreturn_t sfp_irq(int irq, void *data)
2338 {
2339 	struct sfp *sfp = data;
2340 
2341 	sfp_check_state(sfp);
2342 
2343 	return IRQ_HANDLED;
2344 }
2345 
2346 static void sfp_poll(struct work_struct *work)
2347 {
2348 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2349 
2350 	sfp_check_state(sfp);
2351 
2352 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2353 	    sfp->need_poll)
2354 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2355 }
2356 
2357 static struct sfp *sfp_alloc(struct device *dev)
2358 {
2359 	struct sfp *sfp;
2360 
2361 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2362 	if (!sfp)
2363 		return ERR_PTR(-ENOMEM);
2364 
2365 	sfp->dev = dev;
2366 
2367 	mutex_init(&sfp->sm_mutex);
2368 	mutex_init(&sfp->st_mutex);
2369 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2370 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2371 
2372 	sfp_hwmon_init(sfp);
2373 
2374 	return sfp;
2375 }
2376 
2377 static void sfp_cleanup(void *data)
2378 {
2379 	struct sfp *sfp = data;
2380 
2381 	sfp_hwmon_exit(sfp);
2382 
2383 	cancel_delayed_work_sync(&sfp->poll);
2384 	cancel_delayed_work_sync(&sfp->timeout);
2385 	if (sfp->i2c_mii) {
2386 		mdiobus_unregister(sfp->i2c_mii);
2387 		mdiobus_free(sfp->i2c_mii);
2388 	}
2389 	if (sfp->i2c)
2390 		i2c_put_adapter(sfp->i2c);
2391 	kfree(sfp);
2392 }
2393 
2394 static int sfp_probe(struct platform_device *pdev)
2395 {
2396 	const struct sff_data *sff;
2397 	struct i2c_adapter *i2c;
2398 	char *sfp_irq_name;
2399 	struct sfp *sfp;
2400 	int err, i;
2401 
2402 	sfp = sfp_alloc(&pdev->dev);
2403 	if (IS_ERR(sfp))
2404 		return PTR_ERR(sfp);
2405 
2406 	platform_set_drvdata(pdev, sfp);
2407 
2408 	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2409 	if (err < 0)
2410 		return err;
2411 
2412 	sff = sfp->type = &sfp_data;
2413 
2414 	if (pdev->dev.of_node) {
2415 		struct device_node *node = pdev->dev.of_node;
2416 		const struct of_device_id *id;
2417 		struct device_node *np;
2418 
2419 		id = of_match_node(sfp_of_match, node);
2420 		if (WARN_ON(!id))
2421 			return -EINVAL;
2422 
2423 		sff = sfp->type = id->data;
2424 
2425 		np = of_parse_phandle(node, "i2c-bus", 0);
2426 		if (!np) {
2427 			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2428 			return -ENODEV;
2429 		}
2430 
2431 		i2c = of_find_i2c_adapter_by_node(np);
2432 		of_node_put(np);
2433 	} else if (has_acpi_companion(&pdev->dev)) {
2434 		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2435 		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2436 		struct fwnode_reference_args args;
2437 		struct acpi_handle *acpi_handle;
2438 		int ret;
2439 
2440 		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2441 		if (ret || !is_acpi_device_node(args.fwnode)) {
2442 			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2443 			return -ENODEV;
2444 		}
2445 
2446 		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2447 		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2448 	} else {
2449 		return -EINVAL;
2450 	}
2451 
2452 	if (!i2c)
2453 		return -EPROBE_DEFER;
2454 
2455 	err = sfp_i2c_configure(sfp, i2c);
2456 	if (err < 0) {
2457 		i2c_put_adapter(i2c);
2458 		return err;
2459 	}
2460 
2461 	for (i = 0; i < GPIO_MAX; i++)
2462 		if (sff->gpios & BIT(i)) {
2463 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2464 					   gpio_of_names[i], gpio_flags[i]);
2465 			if (IS_ERR(sfp->gpio[i]))
2466 				return PTR_ERR(sfp->gpio[i]);
2467 		}
2468 
2469 	sfp->get_state = sfp_gpio_get_state;
2470 	sfp->set_state = sfp_gpio_set_state;
2471 
2472 	/* Modules that have no detect signal are always present */
2473 	if (!(sfp->gpio[GPIO_MODDEF0]))
2474 		sfp->get_state = sff_gpio_get_state;
2475 
2476 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2477 				 &sfp->max_power_mW);
2478 	if (!sfp->max_power_mW)
2479 		sfp->max_power_mW = 1000;
2480 
2481 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2482 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2483 
2484 	/* Get the initial state, and always signal TX disable,
2485 	 * since the network interface will not be up.
2486 	 */
2487 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2488 
2489 	if (sfp->gpio[GPIO_RATE_SELECT] &&
2490 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2491 		sfp->state |= SFP_F_RATE_SELECT;
2492 	sfp_set_state(sfp, sfp->state);
2493 	sfp_module_tx_disable(sfp);
2494 	if (sfp->state & SFP_F_PRESENT) {
2495 		rtnl_lock();
2496 		sfp_sm_event(sfp, SFP_E_INSERT);
2497 		rtnl_unlock();
2498 	}
2499 
2500 	for (i = 0; i < GPIO_MAX; i++) {
2501 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2502 			continue;
2503 
2504 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2505 		if (sfp->gpio_irq[i] < 0) {
2506 			sfp->gpio_irq[i] = 0;
2507 			sfp->need_poll = true;
2508 			continue;
2509 		}
2510 
2511 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2512 					      "%s-%s", dev_name(sfp->dev),
2513 					      gpio_of_names[i]);
2514 
2515 		if (!sfp_irq_name)
2516 			return -ENOMEM;
2517 
2518 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2519 						NULL, sfp_irq,
2520 						IRQF_ONESHOT |
2521 						IRQF_TRIGGER_RISING |
2522 						IRQF_TRIGGER_FALLING,
2523 						sfp_irq_name, sfp);
2524 		if (err) {
2525 			sfp->gpio_irq[i] = 0;
2526 			sfp->need_poll = true;
2527 		}
2528 	}
2529 
2530 	if (sfp->need_poll)
2531 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2532 
2533 	/* We could have an issue in cases no Tx disable pin is available or
2534 	 * wired as modules using a laser as their light source will continue to
2535 	 * be active when the fiber is removed. This could be a safety issue and
2536 	 * we should at least warn the user about that.
2537 	 */
2538 	if (!sfp->gpio[GPIO_TX_DISABLE])
2539 		dev_warn(sfp->dev,
2540 			 "No tx_disable pin: SFP modules will always be emitting.\n");
2541 
2542 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2543 	if (!sfp->sfp_bus)
2544 		return -ENOMEM;
2545 
2546 	sfp_debugfs_init(sfp);
2547 
2548 	return 0;
2549 }
2550 
2551 static int sfp_remove(struct platform_device *pdev)
2552 {
2553 	struct sfp *sfp = platform_get_drvdata(pdev);
2554 
2555 	sfp_debugfs_exit(sfp);
2556 	sfp_unregister_socket(sfp->sfp_bus);
2557 
2558 	rtnl_lock();
2559 	sfp_sm_event(sfp, SFP_E_REMOVE);
2560 	rtnl_unlock();
2561 
2562 	return 0;
2563 }
2564 
2565 static void sfp_shutdown(struct platform_device *pdev)
2566 {
2567 	struct sfp *sfp = platform_get_drvdata(pdev);
2568 	int i;
2569 
2570 	for (i = 0; i < GPIO_MAX; i++) {
2571 		if (!sfp->gpio_irq[i])
2572 			continue;
2573 
2574 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2575 	}
2576 
2577 	cancel_delayed_work_sync(&sfp->poll);
2578 	cancel_delayed_work_sync(&sfp->timeout);
2579 }
2580 
2581 static struct platform_driver sfp_driver = {
2582 	.probe = sfp_probe,
2583 	.remove = sfp_remove,
2584 	.shutdown = sfp_shutdown,
2585 	.driver = {
2586 		.name = "sfp",
2587 		.of_match_table = sfp_of_match,
2588 	},
2589 };
2590 
2591 static int sfp_init(void)
2592 {
2593 	poll_jiffies = msecs_to_jiffies(100);
2594 
2595 	return platform_driver_register(&sfp_driver);
2596 }
2597 module_init(sfp_init);
2598 
2599 static void sfp_exit(void)
2600 {
2601 	platform_driver_unregister(&sfp_driver);
2602 }
2603 module_exit(sfp_exit);
2604 
2605 MODULE_ALIAS("platform:sfp");
2606 MODULE_AUTHOR("Russell King");
2607 MODULE_LICENSE("GPL v2");
2608