1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RS0, 28 GPIO_RS1, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RS0 = BIT(GPIO_RS0), 36 SFP_F_RS1 = BIT(GPIO_RS1), 37 38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 39 40 SFP_E_INSERT = 0, 41 SFP_E_REMOVE, 42 SFP_E_DEV_ATTACH, 43 SFP_E_DEV_DETACH, 44 SFP_E_DEV_DOWN, 45 SFP_E_DEV_UP, 46 SFP_E_TX_FAULT, 47 SFP_E_TX_CLEAR, 48 SFP_E_LOS_HIGH, 49 SFP_E_LOS_LOW, 50 SFP_E_TIMEOUT, 51 52 SFP_MOD_EMPTY = 0, 53 SFP_MOD_ERROR, 54 SFP_MOD_PROBE, 55 SFP_MOD_WAITDEV, 56 SFP_MOD_HPOWER, 57 SFP_MOD_WAITPWR, 58 SFP_MOD_PRESENT, 59 60 SFP_DEV_DETACHED = 0, 61 SFP_DEV_DOWN, 62 SFP_DEV_UP, 63 64 SFP_S_DOWN = 0, 65 SFP_S_FAIL, 66 SFP_S_WAIT, 67 SFP_S_INIT, 68 SFP_S_INIT_PHY, 69 SFP_S_INIT_TX_FAULT, 70 SFP_S_WAIT_LOS, 71 SFP_S_LINK_UP, 72 SFP_S_TX_FAULT, 73 SFP_S_REINIT, 74 SFP_S_TX_DISABLE, 75 }; 76 77 static const char * const mod_state_strings[] = { 78 [SFP_MOD_EMPTY] = "empty", 79 [SFP_MOD_ERROR] = "error", 80 [SFP_MOD_PROBE] = "probe", 81 [SFP_MOD_WAITDEV] = "waitdev", 82 [SFP_MOD_HPOWER] = "hpower", 83 [SFP_MOD_WAITPWR] = "waitpwr", 84 [SFP_MOD_PRESENT] = "present", 85 }; 86 87 static const char *mod_state_to_str(unsigned short mod_state) 88 { 89 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 90 return "Unknown module state"; 91 return mod_state_strings[mod_state]; 92 } 93 94 static const char * const dev_state_strings[] = { 95 [SFP_DEV_DETACHED] = "detached", 96 [SFP_DEV_DOWN] = "down", 97 [SFP_DEV_UP] = "up", 98 }; 99 100 static const char *dev_state_to_str(unsigned short dev_state) 101 { 102 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 103 return "Unknown device state"; 104 return dev_state_strings[dev_state]; 105 } 106 107 static const char * const event_strings[] = { 108 [SFP_E_INSERT] = "insert", 109 [SFP_E_REMOVE] = "remove", 110 [SFP_E_DEV_ATTACH] = "dev_attach", 111 [SFP_E_DEV_DETACH] = "dev_detach", 112 [SFP_E_DEV_DOWN] = "dev_down", 113 [SFP_E_DEV_UP] = "dev_up", 114 [SFP_E_TX_FAULT] = "tx_fault", 115 [SFP_E_TX_CLEAR] = "tx_clear", 116 [SFP_E_LOS_HIGH] = "los_high", 117 [SFP_E_LOS_LOW] = "los_low", 118 [SFP_E_TIMEOUT] = "timeout", 119 }; 120 121 static const char *event_to_str(unsigned short event) 122 { 123 if (event >= ARRAY_SIZE(event_strings)) 124 return "Unknown event"; 125 return event_strings[event]; 126 } 127 128 static const char * const sm_state_strings[] = { 129 [SFP_S_DOWN] = "down", 130 [SFP_S_FAIL] = "fail", 131 [SFP_S_WAIT] = "wait", 132 [SFP_S_INIT] = "init", 133 [SFP_S_INIT_PHY] = "init_phy", 134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 135 [SFP_S_WAIT_LOS] = "wait_los", 136 [SFP_S_LINK_UP] = "link_up", 137 [SFP_S_TX_FAULT] = "tx_fault", 138 [SFP_S_REINIT] = "reinit", 139 [SFP_S_TX_DISABLE] = "tx_disable", 140 }; 141 142 static const char *sm_state_to_str(unsigned short sm_state) 143 { 144 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 145 return "Unknown state"; 146 return sm_state_strings[sm_state]; 147 } 148 149 static const char *gpio_names[] = { 150 "mod-def0", 151 "los", 152 "tx-fault", 153 "tx-disable", 154 "rate-select0", 155 "rate-select1", 156 }; 157 158 static const enum gpiod_flags gpio_flags[] = { 159 GPIOD_IN, 160 GPIOD_IN, 161 GPIOD_IN, 162 GPIOD_ASIS, 163 GPIOD_ASIS, 164 GPIOD_ASIS, 165 }; 166 167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 168 * non-cooled module to initialise its laser safety circuitry. We wait 169 * an initial T_WAIT period before we check the tx fault to give any PHY 170 * on board (for a copper SFP) time to initialise. 171 */ 172 #define T_WAIT msecs_to_jiffies(50) 173 #define T_START_UP msecs_to_jiffies(300) 174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 175 176 /* t_reset is the time required to assert the TX_DISABLE signal to reset 177 * an indicated TX_FAULT. 178 */ 179 #define T_RESET_US 10 180 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 181 182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 183 * time. If the TX_FAULT signal is not deasserted after this number of 184 * attempts at clearing it, we decide that the module is faulty. 185 * N_FAULT is the same but after the module has initialised. 186 */ 187 #define N_FAULT_INIT 5 188 #define N_FAULT 5 189 190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 191 * R_PHY_RETRY is the number of attempts. 192 */ 193 #define T_PHY_RETRY msecs_to_jiffies(50) 194 #define R_PHY_RETRY 12 195 196 /* SFP module presence detection is poor: the three MOD DEF signals are 197 * the same length on the PCB, which means it's possible for MOD DEF 0 to 198 * connect before the I2C bus on MOD DEF 1/2. 199 * 200 * The SFF-8472 specifies t_serial ("Time from power on until module is 201 * ready for data transmission over the two wire serial bus.") as 300ms. 202 */ 203 #define T_SERIAL msecs_to_jiffies(300) 204 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 206 #define R_PROBE_RETRY_INIT 10 207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 208 #define R_PROBE_RETRY_SLOW 12 209 210 /* SFP modules appear to always have their PHY configured for bus address 211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 214 */ 215 #define SFP_PHY_ADDR 22 216 #define SFP_PHY_ADDR_ROLLBALL 17 217 218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM 219 * at a time. Some SFP modules and also some Linux I2C drivers do not like 220 * reads longer than 16 bytes. 221 */ 222 #define SFP_EEPROM_BLOCK_SIZE 16 223 224 struct sff_data { 225 unsigned int gpios; 226 bool (*module_supported)(const struct sfp_eeprom_id *id); 227 }; 228 229 struct sfp { 230 struct device *dev; 231 struct i2c_adapter *i2c; 232 struct mii_bus *i2c_mii; 233 struct sfp_bus *sfp_bus; 234 enum mdio_i2c_proto mdio_protocol; 235 struct phy_device *mod_phy; 236 const struct sff_data *type; 237 size_t i2c_block_size; 238 u32 max_power_mW; 239 240 unsigned int (*get_state)(struct sfp *); 241 void (*set_state)(struct sfp *, unsigned int); 242 int (*read)(struct sfp *, bool, u8, void *, size_t); 243 int (*write)(struct sfp *, bool, u8, void *, size_t); 244 245 struct gpio_desc *gpio[GPIO_MAX]; 246 int gpio_irq[GPIO_MAX]; 247 248 bool need_poll; 249 250 /* Access rules: 251 * state_hw_drive: st_mutex held 252 * state_hw_mask: st_mutex held 253 * state_soft_mask: st_mutex held 254 * state: st_mutex held unless reading input bits 255 */ 256 struct mutex st_mutex; /* Protects state */ 257 unsigned int state_hw_drive; 258 unsigned int state_hw_mask; 259 unsigned int state_soft_mask; 260 unsigned int state; 261 262 struct delayed_work poll; 263 struct delayed_work timeout; 264 struct mutex sm_mutex; /* Protects state machine */ 265 unsigned char sm_mod_state; 266 unsigned char sm_mod_tries_init; 267 unsigned char sm_mod_tries; 268 unsigned char sm_dev_state; 269 unsigned short sm_state; 270 unsigned char sm_fault_retries; 271 unsigned char sm_phy_retries; 272 273 struct sfp_eeprom_id id; 274 unsigned int module_power_mW; 275 unsigned int module_t_start_up; 276 unsigned int module_t_wait; 277 278 unsigned int rate_kbd; 279 unsigned int rs_threshold_kbd; 280 unsigned int rs_state_mask; 281 282 bool have_a2; 283 bool tx_fault_ignore; 284 285 const struct sfp_quirk *quirk; 286 287 #if IS_ENABLED(CONFIG_HWMON) 288 struct sfp_diag diag; 289 struct delayed_work hwmon_probe; 290 unsigned int hwmon_tries; 291 struct device *hwmon_dev; 292 char *hwmon_name; 293 #endif 294 295 #if IS_ENABLED(CONFIG_DEBUG_FS) 296 struct dentry *debugfs_dir; 297 #endif 298 }; 299 300 static bool sff_module_supported(const struct sfp_eeprom_id *id) 301 { 302 return id->base.phys_id == SFF8024_ID_SFF_8472 && 303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 304 } 305 306 static const struct sff_data sff_data = { 307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 308 .module_supported = sff_module_supported, 309 }; 310 311 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 312 { 313 if (id->base.phys_id == SFF8024_ID_SFP && 314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 315 return true; 316 317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 318 * phys id SFF instead of SFP. Therefore mark this module explicitly 319 * as supported based on vendor name and pn match. 320 */ 321 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 323 !memcmp(id->base.vendor_name, "UBNT ", 16) && 324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 325 return true; 326 327 return false; 328 } 329 330 static const struct sff_data sfp_data = { 331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 333 .module_supported = sfp_module_supported, 334 }; 335 336 static const struct of_device_id sfp_of_match[] = { 337 { .compatible = "sff,sff", .data = &sff_data, }, 338 { .compatible = "sff,sfp", .data = &sfp_data, }, 339 { }, 340 }; 341 MODULE_DEVICE_TABLE(of, sfp_of_match); 342 343 static void sfp_fixup_long_startup(struct sfp *sfp) 344 { 345 sfp->module_t_start_up = T_START_UP_BAD_GPON; 346 } 347 348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 349 { 350 sfp->tx_fault_ignore = true; 351 } 352 353 // For 10GBASE-T short-reach modules 354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp) 355 { 356 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; 357 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; 358 } 359 360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs) 361 { 362 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 363 sfp->module_t_wait = msecs_to_jiffies(secs * 1000); 364 } 365 366 static void sfp_fixup_fs_10gt(struct sfp *sfp) 367 { 368 sfp_fixup_10gbaset_30m(sfp); 369 370 // These SFPs need 4 seconds before the PHY can be accessed 371 sfp_fixup_rollball_proto(sfp, 4); 372 } 373 374 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 375 { 376 /* Ignore the TX_FAULT and LOS signals on this module. 377 * these are possibly used for other purposes on this 378 * module, e.g. a serial port. 379 */ 380 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 381 } 382 383 static void sfp_fixup_rollball(struct sfp *sfp) 384 { 385 // Rollball SFPs need 25 seconds before the PHY can be accessed 386 sfp_fixup_rollball_proto(sfp, 25); 387 } 388 389 static void sfp_fixup_rollball_cc(struct sfp *sfp) 390 { 391 sfp_fixup_rollball(sfp); 392 393 /* Some RollBall SFPs may have wrong (zero) extended compliance code 394 * burned in EEPROM. For PHY probing we need the correct one. 395 */ 396 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 397 } 398 399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 400 unsigned long *modes, 401 unsigned long *interfaces) 402 { 403 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 404 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 405 } 406 407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, 408 unsigned long *modes, 409 unsigned long *interfaces) 410 { 411 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); 412 } 413 414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, 415 unsigned long *modes, 416 unsigned long *interfaces) 417 { 418 /* Copper 2.5G SFP */ 419 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); 420 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 421 sfp_quirk_disable_autoneg(id, modes, interfaces); 422 } 423 424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 425 unsigned long *modes, 426 unsigned long *interfaces) 427 { 428 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 429 * types including 10G Ethernet which is not truth. So clear all claimed 430 * modes and set only one mode which module supports: 1000baseX_Full. 431 */ 432 linkmode_zero(modes); 433 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 434 } 435 436 #define SFP_QUIRK(_v, _p, _m, _f) \ 437 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 440 441 static const struct sfp_quirk sfp_quirks[] = { 442 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 443 // report 2500MBd NRZ in their EEPROM 444 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 445 446 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 447 // NRZ in their EEPROM 448 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 449 sfp_fixup_long_startup), 450 451 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the 452 // Rollball protocol to talk to the PHY. 453 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), 454 455 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 456 457 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports 458 // 2600MBd in their EERPOM 459 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), 460 461 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 462 // their EEPROM 463 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 464 sfp_fixup_ignore_tx_fault), 465 466 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 467 // 2500MBd NRZ in their EEPROM 468 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 469 470 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 471 472 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the 473 // Rollball protocol to talk to the PHY. 474 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), 475 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), 476 477 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 478 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 479 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 480 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 481 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 482 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 483 }; 484 485 static size_t sfp_strlen(const char *str, size_t maxlen) 486 { 487 size_t size, i; 488 489 /* Trailing characters should be filled with space chars, but 490 * some manufacturers can't read SFF-8472 and use NUL. 491 */ 492 for (i = 0, size = 0; i < maxlen; i++) 493 if (str[i] != ' ' && str[i] != '\0') 494 size = i + 1; 495 496 return size; 497 } 498 499 static bool sfp_match(const char *qs, const char *str, size_t len) 500 { 501 if (!qs) 502 return true; 503 if (strlen(qs) != len) 504 return false; 505 return !strncmp(qs, str, len); 506 } 507 508 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 509 { 510 const struct sfp_quirk *q; 511 unsigned int i; 512 size_t vs, ps; 513 514 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 515 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 516 517 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 518 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 519 sfp_match(q->part, id->base.vendor_pn, ps)) 520 return q; 521 522 return NULL; 523 } 524 525 static unsigned long poll_jiffies; 526 527 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 528 { 529 unsigned int i, state, v; 530 531 for (i = state = 0; i < GPIO_MAX; i++) { 532 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 533 continue; 534 535 v = gpiod_get_value_cansleep(sfp->gpio[i]); 536 if (v) 537 state |= BIT(i); 538 } 539 540 return state; 541 } 542 543 static unsigned int sff_gpio_get_state(struct sfp *sfp) 544 { 545 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 546 } 547 548 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 549 { 550 unsigned int drive; 551 552 if (state & SFP_F_PRESENT) 553 /* If the module is present, drive the requested signals */ 554 drive = sfp->state_hw_drive; 555 else 556 /* Otherwise, let them float to the pull-ups */ 557 drive = 0; 558 559 if (sfp->gpio[GPIO_TX_DISABLE]) { 560 if (drive & SFP_F_TX_DISABLE) 561 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 562 state & SFP_F_TX_DISABLE); 563 else 564 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 565 } 566 567 if (sfp->gpio[GPIO_RS0]) { 568 if (drive & SFP_F_RS0) 569 gpiod_direction_output(sfp->gpio[GPIO_RS0], 570 state & SFP_F_RS0); 571 else 572 gpiod_direction_input(sfp->gpio[GPIO_RS0]); 573 } 574 575 if (sfp->gpio[GPIO_RS1]) { 576 if (drive & SFP_F_RS1) 577 gpiod_direction_output(sfp->gpio[GPIO_RS1], 578 state & SFP_F_RS1); 579 else 580 gpiod_direction_input(sfp->gpio[GPIO_RS1]); 581 } 582 } 583 584 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 585 size_t len) 586 { 587 struct i2c_msg msgs[2]; 588 u8 bus_addr = a2 ? 0x51 : 0x50; 589 size_t block_size = sfp->i2c_block_size; 590 size_t this_len; 591 int ret; 592 593 msgs[0].addr = bus_addr; 594 msgs[0].flags = 0; 595 msgs[0].len = 1; 596 msgs[0].buf = &dev_addr; 597 msgs[1].addr = bus_addr; 598 msgs[1].flags = I2C_M_RD; 599 msgs[1].len = len; 600 msgs[1].buf = buf; 601 602 while (len) { 603 this_len = len; 604 if (this_len > block_size) 605 this_len = block_size; 606 607 msgs[1].len = this_len; 608 609 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 610 if (ret < 0) 611 return ret; 612 613 if (ret != ARRAY_SIZE(msgs)) 614 break; 615 616 msgs[1].buf += this_len; 617 dev_addr += this_len; 618 len -= this_len; 619 } 620 621 return msgs[1].buf - (u8 *)buf; 622 } 623 624 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 625 size_t len) 626 { 627 struct i2c_msg msgs[1]; 628 u8 bus_addr = a2 ? 0x51 : 0x50; 629 int ret; 630 631 msgs[0].addr = bus_addr; 632 msgs[0].flags = 0; 633 msgs[0].len = 1 + len; 634 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 635 if (!msgs[0].buf) 636 return -ENOMEM; 637 638 msgs[0].buf[0] = dev_addr; 639 memcpy(&msgs[0].buf[1], buf, len); 640 641 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 642 643 kfree(msgs[0].buf); 644 645 if (ret < 0) 646 return ret; 647 648 return ret == ARRAY_SIZE(msgs) ? len : 0; 649 } 650 651 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 652 { 653 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 654 return -EINVAL; 655 656 sfp->i2c = i2c; 657 sfp->read = sfp_i2c_read; 658 sfp->write = sfp_i2c_write; 659 660 return 0; 661 } 662 663 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 664 { 665 struct mii_bus *i2c_mii; 666 int ret; 667 668 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 669 if (IS_ERR(i2c_mii)) 670 return PTR_ERR(i2c_mii); 671 672 i2c_mii->name = "SFP I2C Bus"; 673 i2c_mii->phy_mask = ~0; 674 675 ret = mdiobus_register(i2c_mii); 676 if (ret < 0) { 677 mdiobus_free(i2c_mii); 678 return ret; 679 } 680 681 sfp->i2c_mii = i2c_mii; 682 683 return 0; 684 } 685 686 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 687 { 688 mdiobus_unregister(sfp->i2c_mii); 689 sfp->i2c_mii = NULL; 690 } 691 692 /* Interface */ 693 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 694 { 695 return sfp->read(sfp, a2, addr, buf, len); 696 } 697 698 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 699 { 700 return sfp->write(sfp, a2, addr, buf, len); 701 } 702 703 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 704 { 705 int ret; 706 u8 old, v; 707 708 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 709 if (ret != sizeof(old)) 710 return ret; 711 712 v = (old & ~mask) | (val & mask); 713 if (v == old) 714 return sizeof(v); 715 716 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 717 } 718 719 static unsigned int sfp_soft_get_state(struct sfp *sfp) 720 { 721 unsigned int state = 0; 722 u8 status; 723 int ret; 724 725 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 726 if (ret == sizeof(status)) { 727 if (status & SFP_STATUS_RX_LOS) 728 state |= SFP_F_LOS; 729 if (status & SFP_STATUS_TX_FAULT) 730 state |= SFP_F_TX_FAULT; 731 } else { 732 dev_err_ratelimited(sfp->dev, 733 "failed to read SFP soft status: %pe\n", 734 ERR_PTR(ret)); 735 /* Preserve the current state */ 736 state = sfp->state; 737 } 738 739 return state & sfp->state_soft_mask; 740 } 741 742 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, 743 unsigned int soft) 744 { 745 u8 mask = 0; 746 u8 val = 0; 747 748 if (soft & SFP_F_TX_DISABLE) 749 mask |= SFP_STATUS_TX_DISABLE_FORCE; 750 if (state & SFP_F_TX_DISABLE) 751 val |= SFP_STATUS_TX_DISABLE_FORCE; 752 753 if (soft & SFP_F_RS0) 754 mask |= SFP_STATUS_RS0_SELECT; 755 if (state & SFP_F_RS0) 756 val |= SFP_STATUS_RS0_SELECT; 757 758 if (mask) 759 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 760 761 val = mask = 0; 762 if (soft & SFP_F_RS1) 763 mask |= SFP_EXT_STATUS_RS1_SELECT; 764 if (state & SFP_F_RS1) 765 val |= SFP_EXT_STATUS_RS1_SELECT; 766 767 if (mask) 768 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); 769 } 770 771 static void sfp_soft_start_poll(struct sfp *sfp) 772 { 773 const struct sfp_eeprom_id *id = &sfp->id; 774 unsigned int mask = 0; 775 776 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 777 mask |= SFP_F_TX_DISABLE; 778 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 779 mask |= SFP_F_TX_FAULT; 780 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 781 mask |= SFP_F_LOS; 782 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) 783 mask |= sfp->rs_state_mask; 784 785 mutex_lock(&sfp->st_mutex); 786 // Poll the soft state for hardware pins we want to ignore 787 sfp->state_soft_mask = ~sfp->state_hw_mask & mask; 788 789 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 790 !sfp->need_poll) 791 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 792 mutex_unlock(&sfp->st_mutex); 793 } 794 795 static void sfp_soft_stop_poll(struct sfp *sfp) 796 { 797 mutex_lock(&sfp->st_mutex); 798 sfp->state_soft_mask = 0; 799 mutex_unlock(&sfp->st_mutex); 800 } 801 802 /* sfp_get_state() - must be called with st_mutex held, or in the 803 * initialisation path. 804 */ 805 static unsigned int sfp_get_state(struct sfp *sfp) 806 { 807 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 808 unsigned int state; 809 810 state = sfp->get_state(sfp) & sfp->state_hw_mask; 811 if (state & SFP_F_PRESENT && soft) 812 state |= sfp_soft_get_state(sfp); 813 814 return state; 815 } 816 817 /* sfp_set_state() - must be called with st_mutex held, or in the 818 * initialisation path. 819 */ 820 static void sfp_set_state(struct sfp *sfp, unsigned int state) 821 { 822 unsigned int soft; 823 824 sfp->set_state(sfp, state); 825 826 soft = sfp->state_soft_mask & SFP_F_OUTPUTS; 827 if (state & SFP_F_PRESENT && soft) 828 sfp_soft_set_state(sfp, state, soft); 829 } 830 831 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) 832 { 833 mutex_lock(&sfp->st_mutex); 834 sfp->state = (sfp->state & ~mask) | set; 835 sfp_set_state(sfp, sfp->state); 836 mutex_unlock(&sfp->st_mutex); 837 } 838 839 static unsigned int sfp_check(void *buf, size_t len) 840 { 841 u8 *p, check; 842 843 for (p = buf, check = 0; len; p++, len--) 844 check += *p; 845 846 return check; 847 } 848 849 /* hwmon */ 850 #if IS_ENABLED(CONFIG_HWMON) 851 static umode_t sfp_hwmon_is_visible(const void *data, 852 enum hwmon_sensor_types type, 853 u32 attr, int channel) 854 { 855 const struct sfp *sfp = data; 856 857 switch (type) { 858 case hwmon_temp: 859 switch (attr) { 860 case hwmon_temp_min_alarm: 861 case hwmon_temp_max_alarm: 862 case hwmon_temp_lcrit_alarm: 863 case hwmon_temp_crit_alarm: 864 case hwmon_temp_min: 865 case hwmon_temp_max: 866 case hwmon_temp_lcrit: 867 case hwmon_temp_crit: 868 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 869 return 0; 870 fallthrough; 871 case hwmon_temp_input: 872 case hwmon_temp_label: 873 return 0444; 874 default: 875 return 0; 876 } 877 case hwmon_in: 878 switch (attr) { 879 case hwmon_in_min_alarm: 880 case hwmon_in_max_alarm: 881 case hwmon_in_lcrit_alarm: 882 case hwmon_in_crit_alarm: 883 case hwmon_in_min: 884 case hwmon_in_max: 885 case hwmon_in_lcrit: 886 case hwmon_in_crit: 887 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 888 return 0; 889 fallthrough; 890 case hwmon_in_input: 891 case hwmon_in_label: 892 return 0444; 893 default: 894 return 0; 895 } 896 case hwmon_curr: 897 switch (attr) { 898 case hwmon_curr_min_alarm: 899 case hwmon_curr_max_alarm: 900 case hwmon_curr_lcrit_alarm: 901 case hwmon_curr_crit_alarm: 902 case hwmon_curr_min: 903 case hwmon_curr_max: 904 case hwmon_curr_lcrit: 905 case hwmon_curr_crit: 906 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 907 return 0; 908 fallthrough; 909 case hwmon_curr_input: 910 case hwmon_curr_label: 911 return 0444; 912 default: 913 return 0; 914 } 915 case hwmon_power: 916 /* External calibration of receive power requires 917 * floating point arithmetic. Doing that in the kernel 918 * is not easy, so just skip it. If the module does 919 * not require external calibration, we can however 920 * show receiver power, since FP is then not needed. 921 */ 922 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 923 channel == 1) 924 return 0; 925 switch (attr) { 926 case hwmon_power_min_alarm: 927 case hwmon_power_max_alarm: 928 case hwmon_power_lcrit_alarm: 929 case hwmon_power_crit_alarm: 930 case hwmon_power_min: 931 case hwmon_power_max: 932 case hwmon_power_lcrit: 933 case hwmon_power_crit: 934 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 935 return 0; 936 fallthrough; 937 case hwmon_power_input: 938 case hwmon_power_label: 939 return 0444; 940 default: 941 return 0; 942 } 943 default: 944 return 0; 945 } 946 } 947 948 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 949 { 950 __be16 val; 951 int err; 952 953 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 954 if (err < 0) 955 return err; 956 957 *value = be16_to_cpu(val); 958 959 return 0; 960 } 961 962 static void sfp_hwmon_to_rx_power(long *value) 963 { 964 *value = DIV_ROUND_CLOSEST(*value, 10); 965 } 966 967 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 968 long *value) 969 { 970 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 971 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 972 } 973 974 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 975 { 976 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 977 be16_to_cpu(sfp->diag.cal_t_offset), value); 978 979 if (*value >= 0x8000) 980 *value -= 0x10000; 981 982 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 983 } 984 985 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 986 { 987 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 988 be16_to_cpu(sfp->diag.cal_v_offset), value); 989 990 *value = DIV_ROUND_CLOSEST(*value, 10); 991 } 992 993 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 994 { 995 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 996 be16_to_cpu(sfp->diag.cal_txi_offset), value); 997 998 *value = DIV_ROUND_CLOSEST(*value, 500); 999 } 1000 1001 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 1002 { 1003 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 1004 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 1005 1006 *value = DIV_ROUND_CLOSEST(*value, 10); 1007 } 1008 1009 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 1010 { 1011 int err; 1012 1013 err = sfp_hwmon_read_sensor(sfp, reg, value); 1014 if (err < 0) 1015 return err; 1016 1017 sfp_hwmon_calibrate_temp(sfp, value); 1018 1019 return 0; 1020 } 1021 1022 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 1023 { 1024 int err; 1025 1026 err = sfp_hwmon_read_sensor(sfp, reg, value); 1027 if (err < 0) 1028 return err; 1029 1030 sfp_hwmon_calibrate_vcc(sfp, value); 1031 1032 return 0; 1033 } 1034 1035 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 1036 { 1037 int err; 1038 1039 err = sfp_hwmon_read_sensor(sfp, reg, value); 1040 if (err < 0) 1041 return err; 1042 1043 sfp_hwmon_calibrate_bias(sfp, value); 1044 1045 return 0; 1046 } 1047 1048 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 1049 { 1050 int err; 1051 1052 err = sfp_hwmon_read_sensor(sfp, reg, value); 1053 if (err < 0) 1054 return err; 1055 1056 sfp_hwmon_calibrate_tx_power(sfp, value); 1057 1058 return 0; 1059 } 1060 1061 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 1062 { 1063 int err; 1064 1065 err = sfp_hwmon_read_sensor(sfp, reg, value); 1066 if (err < 0) 1067 return err; 1068 1069 sfp_hwmon_to_rx_power(value); 1070 1071 return 0; 1072 } 1073 1074 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 1075 { 1076 u8 status; 1077 int err; 1078 1079 switch (attr) { 1080 case hwmon_temp_input: 1081 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 1082 1083 case hwmon_temp_lcrit: 1084 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 1085 sfp_hwmon_calibrate_temp(sfp, value); 1086 return 0; 1087 1088 case hwmon_temp_min: 1089 *value = be16_to_cpu(sfp->diag.temp_low_warn); 1090 sfp_hwmon_calibrate_temp(sfp, value); 1091 return 0; 1092 case hwmon_temp_max: 1093 *value = be16_to_cpu(sfp->diag.temp_high_warn); 1094 sfp_hwmon_calibrate_temp(sfp, value); 1095 return 0; 1096 1097 case hwmon_temp_crit: 1098 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 1099 sfp_hwmon_calibrate_temp(sfp, value); 1100 return 0; 1101 1102 case hwmon_temp_lcrit_alarm: 1103 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1104 if (err < 0) 1105 return err; 1106 1107 *value = !!(status & SFP_ALARM0_TEMP_LOW); 1108 return 0; 1109 1110 case hwmon_temp_min_alarm: 1111 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1112 if (err < 0) 1113 return err; 1114 1115 *value = !!(status & SFP_WARN0_TEMP_LOW); 1116 return 0; 1117 1118 case hwmon_temp_max_alarm: 1119 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1120 if (err < 0) 1121 return err; 1122 1123 *value = !!(status & SFP_WARN0_TEMP_HIGH); 1124 return 0; 1125 1126 case hwmon_temp_crit_alarm: 1127 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1128 if (err < 0) 1129 return err; 1130 1131 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1132 return 0; 1133 default: 1134 return -EOPNOTSUPP; 1135 } 1136 1137 return -EOPNOTSUPP; 1138 } 1139 1140 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1141 { 1142 u8 status; 1143 int err; 1144 1145 switch (attr) { 1146 case hwmon_in_input: 1147 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1148 1149 case hwmon_in_lcrit: 1150 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1151 sfp_hwmon_calibrate_vcc(sfp, value); 1152 return 0; 1153 1154 case hwmon_in_min: 1155 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1156 sfp_hwmon_calibrate_vcc(sfp, value); 1157 return 0; 1158 1159 case hwmon_in_max: 1160 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1161 sfp_hwmon_calibrate_vcc(sfp, value); 1162 return 0; 1163 1164 case hwmon_in_crit: 1165 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1166 sfp_hwmon_calibrate_vcc(sfp, value); 1167 return 0; 1168 1169 case hwmon_in_lcrit_alarm: 1170 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1171 if (err < 0) 1172 return err; 1173 1174 *value = !!(status & SFP_ALARM0_VCC_LOW); 1175 return 0; 1176 1177 case hwmon_in_min_alarm: 1178 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1179 if (err < 0) 1180 return err; 1181 1182 *value = !!(status & SFP_WARN0_VCC_LOW); 1183 return 0; 1184 1185 case hwmon_in_max_alarm: 1186 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1187 if (err < 0) 1188 return err; 1189 1190 *value = !!(status & SFP_WARN0_VCC_HIGH); 1191 return 0; 1192 1193 case hwmon_in_crit_alarm: 1194 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1195 if (err < 0) 1196 return err; 1197 1198 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1199 return 0; 1200 default: 1201 return -EOPNOTSUPP; 1202 } 1203 1204 return -EOPNOTSUPP; 1205 } 1206 1207 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1208 { 1209 u8 status; 1210 int err; 1211 1212 switch (attr) { 1213 case hwmon_curr_input: 1214 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1215 1216 case hwmon_curr_lcrit: 1217 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1218 sfp_hwmon_calibrate_bias(sfp, value); 1219 return 0; 1220 1221 case hwmon_curr_min: 1222 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1223 sfp_hwmon_calibrate_bias(sfp, value); 1224 return 0; 1225 1226 case hwmon_curr_max: 1227 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1228 sfp_hwmon_calibrate_bias(sfp, value); 1229 return 0; 1230 1231 case hwmon_curr_crit: 1232 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1233 sfp_hwmon_calibrate_bias(sfp, value); 1234 return 0; 1235 1236 case hwmon_curr_lcrit_alarm: 1237 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1238 if (err < 0) 1239 return err; 1240 1241 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1242 return 0; 1243 1244 case hwmon_curr_min_alarm: 1245 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1246 if (err < 0) 1247 return err; 1248 1249 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1250 return 0; 1251 1252 case hwmon_curr_max_alarm: 1253 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1254 if (err < 0) 1255 return err; 1256 1257 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1258 return 0; 1259 1260 case hwmon_curr_crit_alarm: 1261 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1262 if (err < 0) 1263 return err; 1264 1265 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1266 return 0; 1267 default: 1268 return -EOPNOTSUPP; 1269 } 1270 1271 return -EOPNOTSUPP; 1272 } 1273 1274 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1275 { 1276 u8 status; 1277 int err; 1278 1279 switch (attr) { 1280 case hwmon_power_input: 1281 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1282 1283 case hwmon_power_lcrit: 1284 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1285 sfp_hwmon_calibrate_tx_power(sfp, value); 1286 return 0; 1287 1288 case hwmon_power_min: 1289 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1290 sfp_hwmon_calibrate_tx_power(sfp, value); 1291 return 0; 1292 1293 case hwmon_power_max: 1294 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1295 sfp_hwmon_calibrate_tx_power(sfp, value); 1296 return 0; 1297 1298 case hwmon_power_crit: 1299 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1300 sfp_hwmon_calibrate_tx_power(sfp, value); 1301 return 0; 1302 1303 case hwmon_power_lcrit_alarm: 1304 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1305 if (err < 0) 1306 return err; 1307 1308 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1309 return 0; 1310 1311 case hwmon_power_min_alarm: 1312 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1313 if (err < 0) 1314 return err; 1315 1316 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1317 return 0; 1318 1319 case hwmon_power_max_alarm: 1320 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1321 if (err < 0) 1322 return err; 1323 1324 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1325 return 0; 1326 1327 case hwmon_power_crit_alarm: 1328 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1329 if (err < 0) 1330 return err; 1331 1332 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1333 return 0; 1334 default: 1335 return -EOPNOTSUPP; 1336 } 1337 1338 return -EOPNOTSUPP; 1339 } 1340 1341 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1342 { 1343 u8 status; 1344 int err; 1345 1346 switch (attr) { 1347 case hwmon_power_input: 1348 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1349 1350 case hwmon_power_lcrit: 1351 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1352 sfp_hwmon_to_rx_power(value); 1353 return 0; 1354 1355 case hwmon_power_min: 1356 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1357 sfp_hwmon_to_rx_power(value); 1358 return 0; 1359 1360 case hwmon_power_max: 1361 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1362 sfp_hwmon_to_rx_power(value); 1363 return 0; 1364 1365 case hwmon_power_crit: 1366 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1367 sfp_hwmon_to_rx_power(value); 1368 return 0; 1369 1370 case hwmon_power_lcrit_alarm: 1371 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1372 if (err < 0) 1373 return err; 1374 1375 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1376 return 0; 1377 1378 case hwmon_power_min_alarm: 1379 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1380 if (err < 0) 1381 return err; 1382 1383 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1384 return 0; 1385 1386 case hwmon_power_max_alarm: 1387 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1388 if (err < 0) 1389 return err; 1390 1391 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1392 return 0; 1393 1394 case hwmon_power_crit_alarm: 1395 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1396 if (err < 0) 1397 return err; 1398 1399 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1400 return 0; 1401 default: 1402 return -EOPNOTSUPP; 1403 } 1404 1405 return -EOPNOTSUPP; 1406 } 1407 1408 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1409 u32 attr, int channel, long *value) 1410 { 1411 struct sfp *sfp = dev_get_drvdata(dev); 1412 1413 switch (type) { 1414 case hwmon_temp: 1415 return sfp_hwmon_temp(sfp, attr, value); 1416 case hwmon_in: 1417 return sfp_hwmon_vcc(sfp, attr, value); 1418 case hwmon_curr: 1419 return sfp_hwmon_bias(sfp, attr, value); 1420 case hwmon_power: 1421 switch (channel) { 1422 case 0: 1423 return sfp_hwmon_tx_power(sfp, attr, value); 1424 case 1: 1425 return sfp_hwmon_rx_power(sfp, attr, value); 1426 default: 1427 return -EOPNOTSUPP; 1428 } 1429 default: 1430 return -EOPNOTSUPP; 1431 } 1432 } 1433 1434 static const char *const sfp_hwmon_power_labels[] = { 1435 "TX_power", 1436 "RX_power", 1437 }; 1438 1439 static int sfp_hwmon_read_string(struct device *dev, 1440 enum hwmon_sensor_types type, 1441 u32 attr, int channel, const char **str) 1442 { 1443 switch (type) { 1444 case hwmon_curr: 1445 switch (attr) { 1446 case hwmon_curr_label: 1447 *str = "bias"; 1448 return 0; 1449 default: 1450 return -EOPNOTSUPP; 1451 } 1452 break; 1453 case hwmon_temp: 1454 switch (attr) { 1455 case hwmon_temp_label: 1456 *str = "temperature"; 1457 return 0; 1458 default: 1459 return -EOPNOTSUPP; 1460 } 1461 break; 1462 case hwmon_in: 1463 switch (attr) { 1464 case hwmon_in_label: 1465 *str = "VCC"; 1466 return 0; 1467 default: 1468 return -EOPNOTSUPP; 1469 } 1470 break; 1471 case hwmon_power: 1472 switch (attr) { 1473 case hwmon_power_label: 1474 *str = sfp_hwmon_power_labels[channel]; 1475 return 0; 1476 default: 1477 return -EOPNOTSUPP; 1478 } 1479 break; 1480 default: 1481 return -EOPNOTSUPP; 1482 } 1483 1484 return -EOPNOTSUPP; 1485 } 1486 1487 static const struct hwmon_ops sfp_hwmon_ops = { 1488 .is_visible = sfp_hwmon_is_visible, 1489 .read = sfp_hwmon_read, 1490 .read_string = sfp_hwmon_read_string, 1491 }; 1492 1493 static const struct hwmon_channel_info * const sfp_hwmon_info[] = { 1494 HWMON_CHANNEL_INFO(chip, 1495 HWMON_C_REGISTER_TZ), 1496 HWMON_CHANNEL_INFO(in, 1497 HWMON_I_INPUT | 1498 HWMON_I_MAX | HWMON_I_MIN | 1499 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1500 HWMON_I_CRIT | HWMON_I_LCRIT | 1501 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1502 HWMON_I_LABEL), 1503 HWMON_CHANNEL_INFO(temp, 1504 HWMON_T_INPUT | 1505 HWMON_T_MAX | HWMON_T_MIN | 1506 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1507 HWMON_T_CRIT | HWMON_T_LCRIT | 1508 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1509 HWMON_T_LABEL), 1510 HWMON_CHANNEL_INFO(curr, 1511 HWMON_C_INPUT | 1512 HWMON_C_MAX | HWMON_C_MIN | 1513 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1514 HWMON_C_CRIT | HWMON_C_LCRIT | 1515 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1516 HWMON_C_LABEL), 1517 HWMON_CHANNEL_INFO(power, 1518 /* Transmit power */ 1519 HWMON_P_INPUT | 1520 HWMON_P_MAX | HWMON_P_MIN | 1521 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1522 HWMON_P_CRIT | HWMON_P_LCRIT | 1523 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1524 HWMON_P_LABEL, 1525 /* Receive power */ 1526 HWMON_P_INPUT | 1527 HWMON_P_MAX | HWMON_P_MIN | 1528 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1529 HWMON_P_CRIT | HWMON_P_LCRIT | 1530 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1531 HWMON_P_LABEL), 1532 NULL, 1533 }; 1534 1535 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1536 .ops = &sfp_hwmon_ops, 1537 .info = sfp_hwmon_info, 1538 }; 1539 1540 static void sfp_hwmon_probe(struct work_struct *work) 1541 { 1542 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1543 int err; 1544 1545 /* hwmon interface needs to access 16bit registers in atomic way to 1546 * guarantee coherency of the diagnostic monitoring data. If it is not 1547 * possible to guarantee coherency because EEPROM is broken in such way 1548 * that does not support atomic 16bit read operation then we have to 1549 * skip registration of hwmon device. 1550 */ 1551 if (sfp->i2c_block_size < 2) { 1552 dev_info(sfp->dev, 1553 "skipping hwmon device registration due to broken EEPROM\n"); 1554 dev_info(sfp->dev, 1555 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1556 return; 1557 } 1558 1559 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1560 if (err < 0) { 1561 if (sfp->hwmon_tries--) { 1562 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1563 T_PROBE_RETRY_SLOW); 1564 } else { 1565 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1566 ERR_PTR(err)); 1567 } 1568 return; 1569 } 1570 1571 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1572 if (IS_ERR(sfp->hwmon_name)) { 1573 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1574 return; 1575 } 1576 1577 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1578 sfp->hwmon_name, sfp, 1579 &sfp_hwmon_chip_info, 1580 NULL); 1581 if (IS_ERR(sfp->hwmon_dev)) 1582 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1583 PTR_ERR(sfp->hwmon_dev)); 1584 } 1585 1586 static int sfp_hwmon_insert(struct sfp *sfp) 1587 { 1588 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { 1589 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1590 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1591 } 1592 1593 return 0; 1594 } 1595 1596 static void sfp_hwmon_remove(struct sfp *sfp) 1597 { 1598 cancel_delayed_work_sync(&sfp->hwmon_probe); 1599 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1600 hwmon_device_unregister(sfp->hwmon_dev); 1601 sfp->hwmon_dev = NULL; 1602 kfree(sfp->hwmon_name); 1603 } 1604 } 1605 1606 static int sfp_hwmon_init(struct sfp *sfp) 1607 { 1608 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1609 1610 return 0; 1611 } 1612 1613 static void sfp_hwmon_exit(struct sfp *sfp) 1614 { 1615 cancel_delayed_work_sync(&sfp->hwmon_probe); 1616 } 1617 #else 1618 static int sfp_hwmon_insert(struct sfp *sfp) 1619 { 1620 return 0; 1621 } 1622 1623 static void sfp_hwmon_remove(struct sfp *sfp) 1624 { 1625 } 1626 1627 static int sfp_hwmon_init(struct sfp *sfp) 1628 { 1629 return 0; 1630 } 1631 1632 static void sfp_hwmon_exit(struct sfp *sfp) 1633 { 1634 } 1635 #endif 1636 1637 /* Helpers */ 1638 static void sfp_module_tx_disable(struct sfp *sfp) 1639 { 1640 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1641 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1642 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); 1643 } 1644 1645 static void sfp_module_tx_enable(struct sfp *sfp) 1646 { 1647 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1648 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1649 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); 1650 } 1651 1652 #if IS_ENABLED(CONFIG_DEBUG_FS) 1653 static int sfp_debug_state_show(struct seq_file *s, void *data) 1654 { 1655 struct sfp *sfp = s->private; 1656 1657 seq_printf(s, "Module state: %s\n", 1658 mod_state_to_str(sfp->sm_mod_state)); 1659 seq_printf(s, "Module probe attempts: %d %d\n", 1660 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1661 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1662 seq_printf(s, "Device state: %s\n", 1663 dev_state_to_str(sfp->sm_dev_state)); 1664 seq_printf(s, "Main state: %s\n", 1665 sm_state_to_str(sfp->sm_state)); 1666 seq_printf(s, "Fault recovery remaining retries: %d\n", 1667 sfp->sm_fault_retries); 1668 seq_printf(s, "PHY probe remaining retries: %d\n", 1669 sfp->sm_phy_retries); 1670 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); 1671 seq_printf(s, "Rate select threshold: %u kBd\n", 1672 sfp->rs_threshold_kbd); 1673 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1674 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1675 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1676 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1677 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); 1678 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); 1679 return 0; 1680 } 1681 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1682 1683 static void sfp_debugfs_init(struct sfp *sfp) 1684 { 1685 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1686 1687 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1688 &sfp_debug_state_fops); 1689 } 1690 1691 static void sfp_debugfs_exit(struct sfp *sfp) 1692 { 1693 debugfs_remove_recursive(sfp->debugfs_dir); 1694 } 1695 #else 1696 static void sfp_debugfs_init(struct sfp *sfp) 1697 { 1698 } 1699 1700 static void sfp_debugfs_exit(struct sfp *sfp) 1701 { 1702 } 1703 #endif 1704 1705 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1706 { 1707 unsigned int state; 1708 1709 mutex_lock(&sfp->st_mutex); 1710 state = sfp->state; 1711 if (!(state & SFP_F_TX_DISABLE)) { 1712 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1713 1714 udelay(T_RESET_US); 1715 1716 sfp_set_state(sfp, state); 1717 } 1718 mutex_unlock(&sfp->st_mutex); 1719 } 1720 1721 /* SFP state machine */ 1722 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1723 { 1724 if (timeout) 1725 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1726 timeout); 1727 else 1728 cancel_delayed_work(&sfp->timeout); 1729 } 1730 1731 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1732 unsigned int timeout) 1733 { 1734 sfp->sm_state = state; 1735 sfp_sm_set_timer(sfp, timeout); 1736 } 1737 1738 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1739 unsigned int timeout) 1740 { 1741 sfp->sm_mod_state = state; 1742 sfp_sm_set_timer(sfp, timeout); 1743 } 1744 1745 static void sfp_sm_phy_detach(struct sfp *sfp) 1746 { 1747 sfp_remove_phy(sfp->sfp_bus); 1748 phy_device_remove(sfp->mod_phy); 1749 phy_device_free(sfp->mod_phy); 1750 sfp->mod_phy = NULL; 1751 } 1752 1753 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1754 { 1755 struct phy_device *phy; 1756 int err; 1757 1758 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1759 if (phy == ERR_PTR(-ENODEV)) 1760 return PTR_ERR(phy); 1761 if (IS_ERR(phy)) { 1762 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1763 return PTR_ERR(phy); 1764 } 1765 1766 err = phy_device_register(phy); 1767 if (err) { 1768 phy_device_free(phy); 1769 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1770 ERR_PTR(err)); 1771 return err; 1772 } 1773 1774 err = sfp_add_phy(sfp->sfp_bus, phy); 1775 if (err) { 1776 phy_device_remove(phy); 1777 phy_device_free(phy); 1778 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1779 return err; 1780 } 1781 1782 sfp->mod_phy = phy; 1783 1784 return 0; 1785 } 1786 1787 static void sfp_sm_link_up(struct sfp *sfp) 1788 { 1789 sfp_link_up(sfp->sfp_bus); 1790 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1791 } 1792 1793 static void sfp_sm_link_down(struct sfp *sfp) 1794 { 1795 sfp_link_down(sfp->sfp_bus); 1796 } 1797 1798 static void sfp_sm_link_check_los(struct sfp *sfp) 1799 { 1800 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1801 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1802 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1803 bool los = false; 1804 1805 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1806 * are set, we assume that no LOS signal is available. If both are 1807 * set, we assume LOS is not implemented (and is meaningless.) 1808 */ 1809 if (los_options == los_inverted) 1810 los = !(sfp->state & SFP_F_LOS); 1811 else if (los_options == los_normal) 1812 los = !!(sfp->state & SFP_F_LOS); 1813 1814 if (los) 1815 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1816 else 1817 sfp_sm_link_up(sfp); 1818 } 1819 1820 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1821 { 1822 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1823 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1824 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1825 1826 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1827 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1828 } 1829 1830 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1831 { 1832 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1833 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1834 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1835 1836 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1837 (los_options == los_normal && event == SFP_E_LOS_LOW); 1838 } 1839 1840 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1841 { 1842 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1843 dev_err(sfp->dev, 1844 "module persistently indicates fault, disabling\n"); 1845 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1846 } else { 1847 if (warn) 1848 dev_err(sfp->dev, "module transmit fault indicated\n"); 1849 1850 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1851 } 1852 } 1853 1854 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1855 { 1856 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1857 return sfp_i2c_mdiobus_create(sfp); 1858 1859 return 0; 1860 } 1861 1862 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1863 * normally sits at I2C bus address 0x56, and may either be a clause 22 1864 * or clause 45 PHY. 1865 * 1866 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1867 * negotiation enabled, but some may be in 1000base-X - which is for the 1868 * PHY driver to determine. 1869 * 1870 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1871 * mode according to the negotiated line speed. 1872 */ 1873 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1874 { 1875 int err = 0; 1876 1877 switch (sfp->mdio_protocol) { 1878 case MDIO_I2C_NONE: 1879 break; 1880 1881 case MDIO_I2C_MARVELL_C22: 1882 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1883 break; 1884 1885 case MDIO_I2C_C45: 1886 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1887 break; 1888 1889 case MDIO_I2C_ROLLBALL: 1890 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1891 break; 1892 } 1893 1894 return err; 1895 } 1896 1897 static int sfp_module_parse_power(struct sfp *sfp) 1898 { 1899 u32 power_mW = 1000; 1900 bool supports_a2; 1901 1902 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1903 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1904 power_mW = 1500; 1905 /* Added in Rev 11.9, but there is no compliance code for this */ 1906 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1907 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1908 power_mW = 2000; 1909 1910 /* Power level 1 modules (max. 1W) are always supported. */ 1911 if (power_mW <= 1000) { 1912 sfp->module_power_mW = power_mW; 1913 return 0; 1914 } 1915 1916 supports_a2 = sfp->id.ext.sff8472_compliance != 1917 SFP_SFF8472_COMPLIANCE_NONE || 1918 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1919 1920 if (power_mW > sfp->max_power_mW) { 1921 /* Module power specification exceeds the allowed maximum. */ 1922 if (!supports_a2) { 1923 /* The module appears not to implement bus address 1924 * 0xa2, so assume that the module powers up in the 1925 * indicated mode. 1926 */ 1927 dev_err(sfp->dev, 1928 "Host does not support %u.%uW modules\n", 1929 power_mW / 1000, (power_mW / 100) % 10); 1930 return -EINVAL; 1931 } else { 1932 dev_warn(sfp->dev, 1933 "Host does not support %u.%uW modules, module left in power mode 1\n", 1934 power_mW / 1000, (power_mW / 100) % 10); 1935 return 0; 1936 } 1937 } 1938 1939 if (!supports_a2) { 1940 /* The module power level is below the host maximum and the 1941 * module appears not to implement bus address 0xa2, so assume 1942 * that the module powers up in the indicated mode. 1943 */ 1944 return 0; 1945 } 1946 1947 /* If the module requires a higher power mode, but also requires 1948 * an address change sequence, warn the user that the module may 1949 * not be functional. 1950 */ 1951 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1952 dev_warn(sfp->dev, 1953 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1954 power_mW / 1000, (power_mW / 100) % 10); 1955 return 0; 1956 } 1957 1958 sfp->module_power_mW = power_mW; 1959 1960 return 0; 1961 } 1962 1963 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1964 { 1965 int err; 1966 1967 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 1968 SFP_EXT_STATUS_PWRLVL_SELECT, 1969 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 1970 if (err != sizeof(u8)) { 1971 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 1972 enable ? "en" : "dis", ERR_PTR(err)); 1973 return -EAGAIN; 1974 } 1975 1976 if (enable) 1977 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1978 sfp->module_power_mW / 1000, 1979 (sfp->module_power_mW / 100) % 10); 1980 1981 return 0; 1982 } 1983 1984 static void sfp_module_parse_rate_select(struct sfp *sfp) 1985 { 1986 u8 rate_id; 1987 1988 sfp->rs_threshold_kbd = 0; 1989 sfp->rs_state_mask = 0; 1990 1991 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) 1992 /* No support for RateSelect */ 1993 return; 1994 1995 /* Default to INF-8074 RateSelect operation. The signalling threshold 1996 * rate is not well specified, so always select "Full Bandwidth", but 1997 * SFF-8079 reveals that it is understood that RS0 will be low for 1998 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. 1999 * This method exists prior to SFF-8472. 2000 */ 2001 sfp->rs_state_mask = SFP_F_RS0; 2002 sfp->rs_threshold_kbd = 1594; 2003 2004 /* Parse the rate identifier, which is complicated due to history: 2005 * SFF-8472 rev 9.5 marks this field as reserved. 2006 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 2007 * compliance is not required. 2008 * SFF-8472 rev 10.2 defines this field using values 0..4 2009 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 2010 * and even values. 2011 */ 2012 rate_id = sfp->id.base.rate_id; 2013 if (rate_id == 0) 2014 /* Unspecified */ 2015 return; 2016 2017 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, 2018 * and allocated value 3 to SFF-8431 independent tx/rx rate select. 2019 * Convert this to a SFF-8472 rev 11.0 rate identifier. 2020 */ 2021 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 2022 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && 2023 rate_id == 3) 2024 rate_id = SFF_RID_8431; 2025 2026 if (rate_id & SFF_RID_8079) { 2027 /* SFF-8079 RateSelect / Application Select in conjunction with 2028 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield 2029 * with only bit 0 used, which takes precedence over SFF-8472. 2030 */ 2031 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { 2032 /* SFF-8079 Part 1 - rate selection between Fibre 2033 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 2034 * is high for 2125, so we have to subtract 1 to 2035 * include it. 2036 */ 2037 sfp->rs_threshold_kbd = 2125 - 1; 2038 sfp->rs_state_mask = SFP_F_RS0; 2039 } 2040 return; 2041 } 2042 2043 /* SFF-8472 rev 9.5 does not define the rate identifier */ 2044 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) 2045 return; 2046 2047 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will 2048 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. 2049 */ 2050 switch (rate_id) { 2051 case SFF_RID_8431_RX_ONLY: 2052 sfp->rs_threshold_kbd = 4250; 2053 sfp->rs_state_mask = SFP_F_RS0; 2054 break; 2055 2056 case SFF_RID_8431_TX_ONLY: 2057 sfp->rs_threshold_kbd = 4250; 2058 sfp->rs_state_mask = SFP_F_RS1; 2059 break; 2060 2061 case SFF_RID_8431: 2062 sfp->rs_threshold_kbd = 4250; 2063 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2064 break; 2065 2066 case SFF_RID_10G8G: 2067 sfp->rs_threshold_kbd = 9000; 2068 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2069 break; 2070 } 2071 } 2072 2073 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 2074 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 2075 * not support multibyte reads from the EEPROM. Each multi-byte read 2076 * operation returns just one byte of EEPROM followed by zeros. There is 2077 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 2078 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 2079 * name and vendor id into EEPROM, so there is even no way to detect if 2080 * module is V-SOL V2801F. Therefore check for those zeros in the read 2081 * data and then based on check switch to reading EEPROM to one byte 2082 * at a time. 2083 */ 2084 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 2085 { 2086 size_t i, block_size = sfp->i2c_block_size; 2087 2088 /* Already using byte IO */ 2089 if (block_size == 1) 2090 return false; 2091 2092 for (i = 1; i < len; i += block_size) { 2093 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 2094 return false; 2095 } 2096 return true; 2097 } 2098 2099 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 2100 { 2101 u8 check; 2102 int err; 2103 2104 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 2105 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 2106 id->base.connector != SFF8024_CONNECTOR_LC) { 2107 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 2108 id->base.phys_id = SFF8024_ID_SFF_8472; 2109 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 2110 id->base.connector = SFF8024_CONNECTOR_LC; 2111 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 2112 if (err != 3) { 2113 dev_err(sfp->dev, 2114 "Failed to rewrite module EEPROM: %pe\n", 2115 ERR_PTR(err)); 2116 return err; 2117 } 2118 2119 /* Cotsworks modules have been found to require a delay between write operations. */ 2120 mdelay(50); 2121 2122 /* Update base structure checksum */ 2123 check = sfp_check(&id->base, sizeof(id->base) - 1); 2124 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 2125 if (err != 1) { 2126 dev_err(sfp->dev, 2127 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 2128 ERR_PTR(err)); 2129 return err; 2130 } 2131 } 2132 return 0; 2133 } 2134 2135 static int sfp_module_parse_sff8472(struct sfp *sfp) 2136 { 2137 /* If the module requires address swap mode, warn about it */ 2138 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2139 dev_warn(sfp->dev, 2140 "module address swap to access page 0xA2 is not supported.\n"); 2141 else 2142 sfp->have_a2 = true; 2143 2144 return 0; 2145 } 2146 2147 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 2148 { 2149 /* SFP module inserted - read I2C data */ 2150 struct sfp_eeprom_id id; 2151 bool cotsworks_sfbg; 2152 unsigned int mask; 2153 bool cotsworks; 2154 u8 check; 2155 int ret; 2156 2157 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2158 2159 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2160 if (ret < 0) { 2161 if (report) 2162 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2163 ERR_PTR(ret)); 2164 return -EAGAIN; 2165 } 2166 2167 if (ret != sizeof(id.base)) { 2168 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2169 return -EAGAIN; 2170 } 2171 2172 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 2173 * address 0x51 is just one byte at a time. Also SFF-8472 requires 2174 * that EEPROM supports atomic 16bit read operation for diagnostic 2175 * fields, so do not switch to one byte reading at a time unless it 2176 * is really required and we have no other option. 2177 */ 2178 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 2179 dev_info(sfp->dev, 2180 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 2181 dev_info(sfp->dev, 2182 "Switching to reading EEPROM to one byte at a time\n"); 2183 sfp->i2c_block_size = 1; 2184 2185 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2186 if (ret < 0) { 2187 if (report) 2188 dev_err(sfp->dev, 2189 "failed to read EEPROM: %pe\n", 2190 ERR_PTR(ret)); 2191 return -EAGAIN; 2192 } 2193 2194 if (ret != sizeof(id.base)) { 2195 dev_err(sfp->dev, "EEPROM short read: %pe\n", 2196 ERR_PTR(ret)); 2197 return -EAGAIN; 2198 } 2199 } 2200 2201 /* Cotsworks do not seem to update the checksums when they 2202 * do the final programming with the final module part number, 2203 * serial number and date code. 2204 */ 2205 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 2206 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 2207 2208 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 2209 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 2210 * Cotsworks PN matches and bytes are not correct. 2211 */ 2212 if (cotsworks && cotsworks_sfbg) { 2213 ret = sfp_cotsworks_fixup_check(sfp, &id); 2214 if (ret < 0) 2215 return ret; 2216 } 2217 2218 /* Validate the checksum over the base structure */ 2219 check = sfp_check(&id.base, sizeof(id.base) - 1); 2220 if (check != id.base.cc_base) { 2221 if (cotsworks) { 2222 dev_warn(sfp->dev, 2223 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2224 check, id.base.cc_base); 2225 } else { 2226 dev_err(sfp->dev, 2227 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2228 check, id.base.cc_base); 2229 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2230 16, 1, &id, sizeof(id), true); 2231 return -EINVAL; 2232 } 2233 } 2234 2235 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2236 if (ret < 0) { 2237 if (report) 2238 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2239 ERR_PTR(ret)); 2240 return -EAGAIN; 2241 } 2242 2243 if (ret != sizeof(id.ext)) { 2244 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2245 return -EAGAIN; 2246 } 2247 2248 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2249 if (check != id.ext.cc_ext) { 2250 if (cotsworks) { 2251 dev_warn(sfp->dev, 2252 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2253 check, id.ext.cc_ext); 2254 } else { 2255 dev_err(sfp->dev, 2256 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2257 check, id.ext.cc_ext); 2258 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2259 16, 1, &id, sizeof(id), true); 2260 memset(&id.ext, 0, sizeof(id.ext)); 2261 } 2262 } 2263 2264 sfp->id = id; 2265 2266 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2267 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2268 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2269 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2270 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2271 (int)sizeof(id.ext.datecode), id.ext.datecode); 2272 2273 /* Check whether we support this module */ 2274 if (!sfp->type->module_supported(&id)) { 2275 dev_err(sfp->dev, 2276 "module is not supported - phys id 0x%02x 0x%02x\n", 2277 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2278 return -EINVAL; 2279 } 2280 2281 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { 2282 ret = sfp_module_parse_sff8472(sfp); 2283 if (ret < 0) 2284 return ret; 2285 } 2286 2287 /* Parse the module power requirement */ 2288 ret = sfp_module_parse_power(sfp); 2289 if (ret < 0) 2290 return ret; 2291 2292 sfp_module_parse_rate_select(sfp); 2293 2294 mask = SFP_F_PRESENT; 2295 if (sfp->gpio[GPIO_TX_DISABLE]) 2296 mask |= SFP_F_TX_DISABLE; 2297 if (sfp->gpio[GPIO_TX_FAULT]) 2298 mask |= SFP_F_TX_FAULT; 2299 if (sfp->gpio[GPIO_LOS]) 2300 mask |= SFP_F_LOS; 2301 if (sfp->gpio[GPIO_RS0]) 2302 mask |= SFP_F_RS0; 2303 if (sfp->gpio[GPIO_RS1]) 2304 mask |= SFP_F_RS1; 2305 2306 sfp->module_t_start_up = T_START_UP; 2307 sfp->module_t_wait = T_WAIT; 2308 2309 sfp->tx_fault_ignore = false; 2310 2311 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2312 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2313 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2314 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2315 sfp->mdio_protocol = MDIO_I2C_C45; 2316 else if (sfp->id.base.e1000_base_t) 2317 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2318 else 2319 sfp->mdio_protocol = MDIO_I2C_NONE; 2320 2321 sfp->quirk = sfp_lookup_quirk(&id); 2322 2323 mutex_lock(&sfp->st_mutex); 2324 /* Initialise state bits to use from hardware */ 2325 sfp->state_hw_mask = mask; 2326 2327 /* We want to drive the rate select pins that the module is using */ 2328 sfp->state_hw_drive |= sfp->rs_state_mask; 2329 2330 if (sfp->quirk && sfp->quirk->fixup) 2331 sfp->quirk->fixup(sfp); 2332 mutex_unlock(&sfp->st_mutex); 2333 2334 return 0; 2335 } 2336 2337 static void sfp_sm_mod_remove(struct sfp *sfp) 2338 { 2339 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2340 sfp_module_remove(sfp->sfp_bus); 2341 2342 sfp_hwmon_remove(sfp); 2343 2344 memset(&sfp->id, 0, sizeof(sfp->id)); 2345 sfp->module_power_mW = 0; 2346 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2347 sfp->have_a2 = false; 2348 2349 dev_info(sfp->dev, "module removed\n"); 2350 } 2351 2352 /* This state machine tracks the upstream's state */ 2353 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2354 { 2355 switch (sfp->sm_dev_state) { 2356 default: 2357 if (event == SFP_E_DEV_ATTACH) 2358 sfp->sm_dev_state = SFP_DEV_DOWN; 2359 break; 2360 2361 case SFP_DEV_DOWN: 2362 if (event == SFP_E_DEV_DETACH) 2363 sfp->sm_dev_state = SFP_DEV_DETACHED; 2364 else if (event == SFP_E_DEV_UP) 2365 sfp->sm_dev_state = SFP_DEV_UP; 2366 break; 2367 2368 case SFP_DEV_UP: 2369 if (event == SFP_E_DEV_DETACH) 2370 sfp->sm_dev_state = SFP_DEV_DETACHED; 2371 else if (event == SFP_E_DEV_DOWN) 2372 sfp->sm_dev_state = SFP_DEV_DOWN; 2373 break; 2374 } 2375 } 2376 2377 /* This state machine tracks the insert/remove state of the module, probes 2378 * the on-board EEPROM, and sets up the power level. 2379 */ 2380 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2381 { 2382 int err; 2383 2384 /* Handle remove event globally, it resets this state machine */ 2385 if (event == SFP_E_REMOVE) { 2386 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2387 sfp_sm_mod_remove(sfp); 2388 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2389 return; 2390 } 2391 2392 /* Handle device detach globally */ 2393 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2394 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2395 if (sfp->module_power_mW > 1000 && 2396 sfp->sm_mod_state > SFP_MOD_HPOWER) 2397 sfp_sm_mod_hpower(sfp, false); 2398 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2399 return; 2400 } 2401 2402 switch (sfp->sm_mod_state) { 2403 default: 2404 if (event == SFP_E_INSERT) { 2405 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2406 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2407 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2408 } 2409 break; 2410 2411 case SFP_MOD_PROBE: 2412 /* Wait for T_PROBE_INIT to time out */ 2413 if (event != SFP_E_TIMEOUT) 2414 break; 2415 2416 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2417 if (err == -EAGAIN) { 2418 if (sfp->sm_mod_tries_init && 2419 --sfp->sm_mod_tries_init) { 2420 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2421 break; 2422 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2423 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2424 dev_warn(sfp->dev, 2425 "please wait, module slow to respond\n"); 2426 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2427 break; 2428 } 2429 } 2430 if (err < 0) { 2431 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2432 break; 2433 } 2434 2435 /* Force a poll to re-read the hardware signal state after 2436 * sfp_sm_mod_probe() changed state_hw_mask. 2437 */ 2438 mod_delayed_work(system_wq, &sfp->poll, 1); 2439 2440 err = sfp_hwmon_insert(sfp); 2441 if (err) 2442 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2443 ERR_PTR(err)); 2444 2445 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2446 fallthrough; 2447 case SFP_MOD_WAITDEV: 2448 /* Ensure that the device is attached before proceeding */ 2449 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2450 break; 2451 2452 /* Report the module insertion to the upstream device */ 2453 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2454 sfp->quirk); 2455 if (err < 0) { 2456 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2457 break; 2458 } 2459 2460 /* If this is a power level 1 module, we are done */ 2461 if (sfp->module_power_mW <= 1000) 2462 goto insert; 2463 2464 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2465 fallthrough; 2466 case SFP_MOD_HPOWER: 2467 /* Enable high power mode */ 2468 err = sfp_sm_mod_hpower(sfp, true); 2469 if (err < 0) { 2470 if (err != -EAGAIN) { 2471 sfp_module_remove(sfp->sfp_bus); 2472 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2473 } else { 2474 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2475 } 2476 break; 2477 } 2478 2479 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2480 break; 2481 2482 case SFP_MOD_WAITPWR: 2483 /* Wait for T_HPOWER_LEVEL to time out */ 2484 if (event != SFP_E_TIMEOUT) 2485 break; 2486 2487 insert: 2488 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2489 break; 2490 2491 case SFP_MOD_PRESENT: 2492 case SFP_MOD_ERROR: 2493 break; 2494 } 2495 } 2496 2497 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2498 { 2499 unsigned long timeout; 2500 int ret; 2501 2502 /* Some events are global */ 2503 if (sfp->sm_state != SFP_S_DOWN && 2504 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2505 sfp->sm_dev_state != SFP_DEV_UP)) { 2506 if (sfp->sm_state == SFP_S_LINK_UP && 2507 sfp->sm_dev_state == SFP_DEV_UP) 2508 sfp_sm_link_down(sfp); 2509 if (sfp->sm_state > SFP_S_INIT) 2510 sfp_module_stop(sfp->sfp_bus); 2511 if (sfp->mod_phy) 2512 sfp_sm_phy_detach(sfp); 2513 if (sfp->i2c_mii) 2514 sfp_i2c_mdiobus_destroy(sfp); 2515 sfp_module_tx_disable(sfp); 2516 sfp_soft_stop_poll(sfp); 2517 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2518 return; 2519 } 2520 2521 /* The main state machine */ 2522 switch (sfp->sm_state) { 2523 case SFP_S_DOWN: 2524 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2525 sfp->sm_dev_state != SFP_DEV_UP) 2526 break; 2527 2528 /* Only use the soft state bits if we have access to the A2h 2529 * memory, which implies that we have some level of SFF-8472 2530 * compliance. 2531 */ 2532 if (sfp->have_a2) 2533 sfp_soft_start_poll(sfp); 2534 2535 sfp_module_tx_enable(sfp); 2536 2537 /* Initialise the fault clearance retries */ 2538 sfp->sm_fault_retries = N_FAULT_INIT; 2539 2540 /* We need to check the TX_FAULT state, which is not defined 2541 * while TX_DISABLE is asserted. The earliest we want to do 2542 * anything (such as probe for a PHY) is 50ms (or more on 2543 * specific modules). 2544 */ 2545 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2546 break; 2547 2548 case SFP_S_WAIT: 2549 if (event != SFP_E_TIMEOUT) 2550 break; 2551 2552 if (sfp->state & SFP_F_TX_FAULT) { 2553 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2554 * from the TX_DISABLE deassertion for the module to 2555 * initialise, which is indicated by TX_FAULT 2556 * deasserting. 2557 */ 2558 timeout = sfp->module_t_start_up; 2559 if (timeout > sfp->module_t_wait) 2560 timeout -= sfp->module_t_wait; 2561 else 2562 timeout = 1; 2563 2564 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2565 } else { 2566 /* TX_FAULT is not asserted, assume the module has 2567 * finished initialising. 2568 */ 2569 goto init_done; 2570 } 2571 break; 2572 2573 case SFP_S_INIT: 2574 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2575 /* TX_FAULT is still asserted after t_init 2576 * or t_start_up, so assume there is a fault. 2577 */ 2578 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2579 sfp->sm_fault_retries == N_FAULT_INIT); 2580 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2581 init_done: 2582 /* Create mdiobus and start trying for PHY */ 2583 ret = sfp_sm_add_mdio_bus(sfp); 2584 if (ret < 0) { 2585 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2586 break; 2587 } 2588 sfp->sm_phy_retries = R_PHY_RETRY; 2589 goto phy_probe; 2590 } 2591 break; 2592 2593 case SFP_S_INIT_PHY: 2594 if (event != SFP_E_TIMEOUT) 2595 break; 2596 phy_probe: 2597 /* TX_FAULT deasserted or we timed out with TX_FAULT 2598 * clear. Probe for the PHY and check the LOS state. 2599 */ 2600 ret = sfp_sm_probe_for_phy(sfp); 2601 if (ret == -ENODEV) { 2602 if (--sfp->sm_phy_retries) { 2603 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2604 break; 2605 } else { 2606 dev_info(sfp->dev, "no PHY detected\n"); 2607 } 2608 } else if (ret) { 2609 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2610 break; 2611 } 2612 if (sfp_module_start(sfp->sfp_bus)) { 2613 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2614 break; 2615 } 2616 sfp_sm_link_check_los(sfp); 2617 2618 /* Reset the fault retry count */ 2619 sfp->sm_fault_retries = N_FAULT; 2620 break; 2621 2622 case SFP_S_INIT_TX_FAULT: 2623 if (event == SFP_E_TIMEOUT) { 2624 sfp_module_tx_fault_reset(sfp); 2625 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2626 } 2627 break; 2628 2629 case SFP_S_WAIT_LOS: 2630 if (event == SFP_E_TX_FAULT) 2631 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2632 else if (sfp_los_event_inactive(sfp, event)) 2633 sfp_sm_link_up(sfp); 2634 break; 2635 2636 case SFP_S_LINK_UP: 2637 if (event == SFP_E_TX_FAULT) { 2638 sfp_sm_link_down(sfp); 2639 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2640 } else if (sfp_los_event_active(sfp, event)) { 2641 sfp_sm_link_down(sfp); 2642 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2643 } 2644 break; 2645 2646 case SFP_S_TX_FAULT: 2647 if (event == SFP_E_TIMEOUT) { 2648 sfp_module_tx_fault_reset(sfp); 2649 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2650 } 2651 break; 2652 2653 case SFP_S_REINIT: 2654 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2655 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2656 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2657 dev_info(sfp->dev, "module transmit fault recovered\n"); 2658 sfp_sm_link_check_los(sfp); 2659 } 2660 break; 2661 2662 case SFP_S_TX_DISABLE: 2663 break; 2664 } 2665 } 2666 2667 static void __sfp_sm_event(struct sfp *sfp, unsigned int event) 2668 { 2669 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2670 mod_state_to_str(sfp->sm_mod_state), 2671 dev_state_to_str(sfp->sm_dev_state), 2672 sm_state_to_str(sfp->sm_state), 2673 event_to_str(event)); 2674 2675 sfp_sm_device(sfp, event); 2676 sfp_sm_module(sfp, event); 2677 sfp_sm_main(sfp, event); 2678 2679 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2680 mod_state_to_str(sfp->sm_mod_state), 2681 dev_state_to_str(sfp->sm_dev_state), 2682 sm_state_to_str(sfp->sm_state)); 2683 } 2684 2685 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2686 { 2687 mutex_lock(&sfp->sm_mutex); 2688 __sfp_sm_event(sfp, event); 2689 mutex_unlock(&sfp->sm_mutex); 2690 } 2691 2692 static void sfp_attach(struct sfp *sfp) 2693 { 2694 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2695 } 2696 2697 static void sfp_detach(struct sfp *sfp) 2698 { 2699 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2700 } 2701 2702 static void sfp_start(struct sfp *sfp) 2703 { 2704 sfp_sm_event(sfp, SFP_E_DEV_UP); 2705 } 2706 2707 static void sfp_stop(struct sfp *sfp) 2708 { 2709 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2710 } 2711 2712 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) 2713 { 2714 unsigned int set; 2715 2716 sfp->rate_kbd = rate_kbd; 2717 2718 if (rate_kbd > sfp->rs_threshold_kbd) 2719 set = sfp->rs_state_mask; 2720 else 2721 set = 0; 2722 2723 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); 2724 } 2725 2726 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2727 { 2728 /* locking... and check module is present */ 2729 2730 if (sfp->id.ext.sff8472_compliance && 2731 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2732 modinfo->type = ETH_MODULE_SFF_8472; 2733 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2734 } else { 2735 modinfo->type = ETH_MODULE_SFF_8079; 2736 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2737 } 2738 return 0; 2739 } 2740 2741 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2742 u8 *data) 2743 { 2744 unsigned int first, last, len; 2745 int ret; 2746 2747 if (!(sfp->state & SFP_F_PRESENT)) 2748 return -ENODEV; 2749 2750 if (ee->len == 0) 2751 return -EINVAL; 2752 2753 first = ee->offset; 2754 last = ee->offset + ee->len; 2755 if (first < ETH_MODULE_SFF_8079_LEN) { 2756 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2757 len -= first; 2758 2759 ret = sfp_read(sfp, false, first, data, len); 2760 if (ret < 0) 2761 return ret; 2762 2763 first += len; 2764 data += len; 2765 } 2766 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2767 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2768 len -= first; 2769 first -= ETH_MODULE_SFF_8079_LEN; 2770 2771 ret = sfp_read(sfp, true, first, data, len); 2772 if (ret < 0) 2773 return ret; 2774 } 2775 return 0; 2776 } 2777 2778 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2779 const struct ethtool_module_eeprom *page, 2780 struct netlink_ext_ack *extack) 2781 { 2782 if (!(sfp->state & SFP_F_PRESENT)) 2783 return -ENODEV; 2784 2785 if (page->bank) { 2786 NL_SET_ERR_MSG(extack, "Banks not supported"); 2787 return -EOPNOTSUPP; 2788 } 2789 2790 if (page->page) { 2791 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2792 return -EOPNOTSUPP; 2793 } 2794 2795 if (page->i2c_address != 0x50 && 2796 page->i2c_address != 0x51) { 2797 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2798 return -EOPNOTSUPP; 2799 } 2800 2801 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2802 page->data, page->length); 2803 }; 2804 2805 static const struct sfp_socket_ops sfp_module_ops = { 2806 .attach = sfp_attach, 2807 .detach = sfp_detach, 2808 .start = sfp_start, 2809 .stop = sfp_stop, 2810 .set_signal_rate = sfp_set_signal_rate, 2811 .module_info = sfp_module_info, 2812 .module_eeprom = sfp_module_eeprom, 2813 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2814 }; 2815 2816 static void sfp_timeout(struct work_struct *work) 2817 { 2818 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2819 2820 rtnl_lock(); 2821 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2822 rtnl_unlock(); 2823 } 2824 2825 static void sfp_check_state(struct sfp *sfp) 2826 { 2827 unsigned int state, i, changed; 2828 2829 rtnl_lock(); 2830 mutex_lock(&sfp->st_mutex); 2831 state = sfp_get_state(sfp); 2832 changed = state ^ sfp->state; 2833 if (sfp->tx_fault_ignore) 2834 changed &= SFP_F_PRESENT | SFP_F_LOS; 2835 else 2836 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2837 2838 for (i = 0; i < GPIO_MAX; i++) 2839 if (changed & BIT(i)) 2840 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2841 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2842 2843 state |= sfp->state & SFP_F_OUTPUTS; 2844 sfp->state = state; 2845 mutex_unlock(&sfp->st_mutex); 2846 2847 mutex_lock(&sfp->sm_mutex); 2848 if (changed & SFP_F_PRESENT) 2849 __sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2850 SFP_E_INSERT : SFP_E_REMOVE); 2851 2852 if (changed & SFP_F_TX_FAULT) 2853 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2854 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2855 2856 if (changed & SFP_F_LOS) 2857 __sfp_sm_event(sfp, state & SFP_F_LOS ? 2858 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2859 mutex_unlock(&sfp->sm_mutex); 2860 rtnl_unlock(); 2861 } 2862 2863 static irqreturn_t sfp_irq(int irq, void *data) 2864 { 2865 struct sfp *sfp = data; 2866 2867 sfp_check_state(sfp); 2868 2869 return IRQ_HANDLED; 2870 } 2871 2872 static void sfp_poll(struct work_struct *work) 2873 { 2874 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2875 2876 sfp_check_state(sfp); 2877 2878 // st_mutex doesn't need to be held here for state_soft_mask, 2879 // it's unimportant if we race while reading this. 2880 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2881 sfp->need_poll) 2882 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2883 } 2884 2885 static struct sfp *sfp_alloc(struct device *dev) 2886 { 2887 struct sfp *sfp; 2888 2889 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2890 if (!sfp) 2891 return ERR_PTR(-ENOMEM); 2892 2893 sfp->dev = dev; 2894 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2895 2896 mutex_init(&sfp->sm_mutex); 2897 mutex_init(&sfp->st_mutex); 2898 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2899 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2900 2901 sfp_hwmon_init(sfp); 2902 2903 return sfp; 2904 } 2905 2906 static void sfp_cleanup(void *data) 2907 { 2908 struct sfp *sfp = data; 2909 2910 sfp_hwmon_exit(sfp); 2911 2912 cancel_delayed_work_sync(&sfp->poll); 2913 cancel_delayed_work_sync(&sfp->timeout); 2914 if (sfp->i2c_mii) { 2915 mdiobus_unregister(sfp->i2c_mii); 2916 mdiobus_free(sfp->i2c_mii); 2917 } 2918 if (sfp->i2c) 2919 i2c_put_adapter(sfp->i2c); 2920 kfree(sfp); 2921 } 2922 2923 static int sfp_i2c_get(struct sfp *sfp) 2924 { 2925 struct fwnode_handle *h; 2926 struct i2c_adapter *i2c; 2927 int err; 2928 2929 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2930 if (IS_ERR(h)) { 2931 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2932 return -ENODEV; 2933 } 2934 2935 i2c = i2c_get_adapter_by_fwnode(h); 2936 if (!i2c) { 2937 err = -EPROBE_DEFER; 2938 goto put; 2939 } 2940 2941 err = sfp_i2c_configure(sfp, i2c); 2942 if (err) 2943 i2c_put_adapter(i2c); 2944 put: 2945 fwnode_handle_put(h); 2946 return err; 2947 } 2948 2949 static int sfp_probe(struct platform_device *pdev) 2950 { 2951 const struct sff_data *sff; 2952 char *sfp_irq_name; 2953 struct sfp *sfp; 2954 int err, i; 2955 2956 sfp = sfp_alloc(&pdev->dev); 2957 if (IS_ERR(sfp)) 2958 return PTR_ERR(sfp); 2959 2960 platform_set_drvdata(pdev, sfp); 2961 2962 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2963 if (err < 0) 2964 return err; 2965 2966 sff = device_get_match_data(sfp->dev); 2967 if (!sff) 2968 sff = &sfp_data; 2969 2970 sfp->type = sff; 2971 2972 err = sfp_i2c_get(sfp); 2973 if (err) 2974 return err; 2975 2976 for (i = 0; i < GPIO_MAX; i++) 2977 if (sff->gpios & BIT(i)) { 2978 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2979 gpio_names[i], gpio_flags[i]); 2980 if (IS_ERR(sfp->gpio[i])) 2981 return PTR_ERR(sfp->gpio[i]); 2982 } 2983 2984 sfp->state_hw_mask = SFP_F_PRESENT; 2985 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2986 2987 sfp->get_state = sfp_gpio_get_state; 2988 sfp->set_state = sfp_gpio_set_state; 2989 2990 /* Modules that have no detect signal are always present */ 2991 if (!(sfp->gpio[GPIO_MODDEF0])) 2992 sfp->get_state = sff_gpio_get_state; 2993 2994 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2995 &sfp->max_power_mW); 2996 if (sfp->max_power_mW < 1000) { 2997 if (sfp->max_power_mW) 2998 dev_warn(sfp->dev, 2999 "Firmware bug: host maximum power should be at least 1W\n"); 3000 sfp->max_power_mW = 1000; 3001 } 3002 3003 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 3004 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 3005 3006 /* Get the initial state, and always signal TX disable, 3007 * since the network interface will not be up. 3008 */ 3009 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 3010 3011 if (sfp->gpio[GPIO_RS0] && 3012 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) 3013 sfp->state |= SFP_F_RS0; 3014 sfp_set_state(sfp, sfp->state); 3015 sfp_module_tx_disable(sfp); 3016 if (sfp->state & SFP_F_PRESENT) { 3017 rtnl_lock(); 3018 sfp_sm_event(sfp, SFP_E_INSERT); 3019 rtnl_unlock(); 3020 } 3021 3022 for (i = 0; i < GPIO_MAX; i++) { 3023 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 3024 continue; 3025 3026 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 3027 if (sfp->gpio_irq[i] < 0) { 3028 sfp->gpio_irq[i] = 0; 3029 sfp->need_poll = true; 3030 continue; 3031 } 3032 3033 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 3034 "%s-%s", dev_name(sfp->dev), 3035 gpio_names[i]); 3036 3037 if (!sfp_irq_name) 3038 return -ENOMEM; 3039 3040 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 3041 NULL, sfp_irq, 3042 IRQF_ONESHOT | 3043 IRQF_TRIGGER_RISING | 3044 IRQF_TRIGGER_FALLING, 3045 sfp_irq_name, sfp); 3046 if (err) { 3047 sfp->gpio_irq[i] = 0; 3048 sfp->need_poll = true; 3049 } 3050 } 3051 3052 if (sfp->need_poll) 3053 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 3054 3055 /* We could have an issue in cases no Tx disable pin is available or 3056 * wired as modules using a laser as their light source will continue to 3057 * be active when the fiber is removed. This could be a safety issue and 3058 * we should at least warn the user about that. 3059 */ 3060 if (!sfp->gpio[GPIO_TX_DISABLE]) 3061 dev_warn(sfp->dev, 3062 "No tx_disable pin: SFP modules will always be emitting.\n"); 3063 3064 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 3065 if (!sfp->sfp_bus) 3066 return -ENOMEM; 3067 3068 sfp_debugfs_init(sfp); 3069 3070 return 0; 3071 } 3072 3073 static int sfp_remove(struct platform_device *pdev) 3074 { 3075 struct sfp *sfp = platform_get_drvdata(pdev); 3076 3077 sfp_debugfs_exit(sfp); 3078 sfp_unregister_socket(sfp->sfp_bus); 3079 3080 rtnl_lock(); 3081 sfp_sm_event(sfp, SFP_E_REMOVE); 3082 rtnl_unlock(); 3083 3084 return 0; 3085 } 3086 3087 static void sfp_shutdown(struct platform_device *pdev) 3088 { 3089 struct sfp *sfp = platform_get_drvdata(pdev); 3090 int i; 3091 3092 for (i = 0; i < GPIO_MAX; i++) { 3093 if (!sfp->gpio_irq[i]) 3094 continue; 3095 3096 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 3097 } 3098 3099 cancel_delayed_work_sync(&sfp->poll); 3100 cancel_delayed_work_sync(&sfp->timeout); 3101 } 3102 3103 static struct platform_driver sfp_driver = { 3104 .probe = sfp_probe, 3105 .remove = sfp_remove, 3106 .shutdown = sfp_shutdown, 3107 .driver = { 3108 .name = "sfp", 3109 .of_match_table = sfp_of_match, 3110 }, 3111 }; 3112 3113 static int sfp_init(void) 3114 { 3115 poll_jiffies = msecs_to_jiffies(100); 3116 3117 return platform_driver_register(&sfp_driver); 3118 } 3119 module_init(sfp_init); 3120 3121 static void sfp_exit(void) 3122 { 3123 platform_driver_unregister(&sfp_driver); 3124 } 3125 module_exit(sfp_exit); 3126 3127 MODULE_ALIAS("platform:sfp"); 3128 MODULE_AUTHOR("Russell King"); 3129 MODULE_LICENSE("GPL v2"); 3130