1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RS0, 28 GPIO_RS1, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RS0 = BIT(GPIO_RS0), 36 SFP_F_RS1 = BIT(GPIO_RS1), 37 38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 39 40 SFP_E_INSERT = 0, 41 SFP_E_REMOVE, 42 SFP_E_DEV_ATTACH, 43 SFP_E_DEV_DETACH, 44 SFP_E_DEV_DOWN, 45 SFP_E_DEV_UP, 46 SFP_E_TX_FAULT, 47 SFP_E_TX_CLEAR, 48 SFP_E_LOS_HIGH, 49 SFP_E_LOS_LOW, 50 SFP_E_TIMEOUT, 51 52 SFP_MOD_EMPTY = 0, 53 SFP_MOD_ERROR, 54 SFP_MOD_PROBE, 55 SFP_MOD_WAITDEV, 56 SFP_MOD_HPOWER, 57 SFP_MOD_WAITPWR, 58 SFP_MOD_PRESENT, 59 60 SFP_DEV_DETACHED = 0, 61 SFP_DEV_DOWN, 62 SFP_DEV_UP, 63 64 SFP_S_DOWN = 0, 65 SFP_S_FAIL, 66 SFP_S_WAIT, 67 SFP_S_INIT, 68 SFP_S_INIT_PHY, 69 SFP_S_INIT_TX_FAULT, 70 SFP_S_WAIT_LOS, 71 SFP_S_LINK_UP, 72 SFP_S_TX_FAULT, 73 SFP_S_REINIT, 74 SFP_S_TX_DISABLE, 75 }; 76 77 static const char * const mod_state_strings[] = { 78 [SFP_MOD_EMPTY] = "empty", 79 [SFP_MOD_ERROR] = "error", 80 [SFP_MOD_PROBE] = "probe", 81 [SFP_MOD_WAITDEV] = "waitdev", 82 [SFP_MOD_HPOWER] = "hpower", 83 [SFP_MOD_WAITPWR] = "waitpwr", 84 [SFP_MOD_PRESENT] = "present", 85 }; 86 87 static const char *mod_state_to_str(unsigned short mod_state) 88 { 89 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 90 return "Unknown module state"; 91 return mod_state_strings[mod_state]; 92 } 93 94 static const char * const dev_state_strings[] = { 95 [SFP_DEV_DETACHED] = "detached", 96 [SFP_DEV_DOWN] = "down", 97 [SFP_DEV_UP] = "up", 98 }; 99 100 static const char *dev_state_to_str(unsigned short dev_state) 101 { 102 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 103 return "Unknown device state"; 104 return dev_state_strings[dev_state]; 105 } 106 107 static const char * const event_strings[] = { 108 [SFP_E_INSERT] = "insert", 109 [SFP_E_REMOVE] = "remove", 110 [SFP_E_DEV_ATTACH] = "dev_attach", 111 [SFP_E_DEV_DETACH] = "dev_detach", 112 [SFP_E_DEV_DOWN] = "dev_down", 113 [SFP_E_DEV_UP] = "dev_up", 114 [SFP_E_TX_FAULT] = "tx_fault", 115 [SFP_E_TX_CLEAR] = "tx_clear", 116 [SFP_E_LOS_HIGH] = "los_high", 117 [SFP_E_LOS_LOW] = "los_low", 118 [SFP_E_TIMEOUT] = "timeout", 119 }; 120 121 static const char *event_to_str(unsigned short event) 122 { 123 if (event >= ARRAY_SIZE(event_strings)) 124 return "Unknown event"; 125 return event_strings[event]; 126 } 127 128 static const char * const sm_state_strings[] = { 129 [SFP_S_DOWN] = "down", 130 [SFP_S_FAIL] = "fail", 131 [SFP_S_WAIT] = "wait", 132 [SFP_S_INIT] = "init", 133 [SFP_S_INIT_PHY] = "init_phy", 134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 135 [SFP_S_WAIT_LOS] = "wait_los", 136 [SFP_S_LINK_UP] = "link_up", 137 [SFP_S_TX_FAULT] = "tx_fault", 138 [SFP_S_REINIT] = "reinit", 139 [SFP_S_TX_DISABLE] = "tx_disable", 140 }; 141 142 static const char *sm_state_to_str(unsigned short sm_state) 143 { 144 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 145 return "Unknown state"; 146 return sm_state_strings[sm_state]; 147 } 148 149 static const char *gpio_names[] = { 150 "mod-def0", 151 "los", 152 "tx-fault", 153 "tx-disable", 154 "rate-select0", 155 "rate-select1", 156 }; 157 158 static const enum gpiod_flags gpio_flags[] = { 159 GPIOD_IN, 160 GPIOD_IN, 161 GPIOD_IN, 162 GPIOD_ASIS, 163 GPIOD_ASIS, 164 GPIOD_ASIS, 165 }; 166 167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 168 * non-cooled module to initialise its laser safety circuitry. We wait 169 * an initial T_WAIT period before we check the tx fault to give any PHY 170 * on board (for a copper SFP) time to initialise. 171 */ 172 #define T_WAIT msecs_to_jiffies(50) 173 #define T_START_UP msecs_to_jiffies(300) 174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 175 176 /* t_reset is the time required to assert the TX_DISABLE signal to reset 177 * an indicated TX_FAULT. 178 */ 179 #define T_RESET_US 10 180 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 181 182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 183 * time. If the TX_FAULT signal is not deasserted after this number of 184 * attempts at clearing it, we decide that the module is faulty. 185 * N_FAULT is the same but after the module has initialised. 186 */ 187 #define N_FAULT_INIT 5 188 #define N_FAULT 5 189 190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 191 * R_PHY_RETRY is the number of attempts. 192 */ 193 #define T_PHY_RETRY msecs_to_jiffies(50) 194 #define R_PHY_RETRY 25 195 196 /* SFP module presence detection is poor: the three MOD DEF signals are 197 * the same length on the PCB, which means it's possible for MOD DEF 0 to 198 * connect before the I2C bus on MOD DEF 1/2. 199 * 200 * The SFF-8472 specifies t_serial ("Time from power on until module is 201 * ready for data transmission over the two wire serial bus.") as 300ms. 202 */ 203 #define T_SERIAL msecs_to_jiffies(300) 204 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 206 #define R_PROBE_RETRY_INIT 10 207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 208 #define R_PROBE_RETRY_SLOW 12 209 210 /* SFP modules appear to always have their PHY configured for bus address 211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 214 */ 215 #define SFP_PHY_ADDR 22 216 #define SFP_PHY_ADDR_ROLLBALL 17 217 218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM 219 * at a time. Some SFP modules and also some Linux I2C drivers do not like 220 * reads longer than 16 bytes. 221 */ 222 #define SFP_EEPROM_BLOCK_SIZE 16 223 224 struct sff_data { 225 unsigned int gpios; 226 bool (*module_supported)(const struct sfp_eeprom_id *id); 227 }; 228 229 struct sfp { 230 struct device *dev; 231 struct i2c_adapter *i2c; 232 struct mii_bus *i2c_mii; 233 struct sfp_bus *sfp_bus; 234 enum mdio_i2c_proto mdio_protocol; 235 struct phy_device *mod_phy; 236 const struct sff_data *type; 237 size_t i2c_block_size; 238 u32 max_power_mW; 239 240 unsigned int (*get_state)(struct sfp *); 241 void (*set_state)(struct sfp *, unsigned int); 242 int (*read)(struct sfp *, bool, u8, void *, size_t); 243 int (*write)(struct sfp *, bool, u8, void *, size_t); 244 245 struct gpio_desc *gpio[GPIO_MAX]; 246 int gpio_irq[GPIO_MAX]; 247 248 bool need_poll; 249 250 /* Access rules: 251 * state_hw_drive: st_mutex held 252 * state_hw_mask: st_mutex held 253 * state_soft_mask: st_mutex held 254 * state: st_mutex held unless reading input bits 255 */ 256 struct mutex st_mutex; /* Protects state */ 257 unsigned int state_hw_drive; 258 unsigned int state_hw_mask; 259 unsigned int state_soft_mask; 260 unsigned int state_ignore_mask; 261 unsigned int state; 262 263 struct delayed_work poll; 264 struct delayed_work timeout; 265 struct mutex sm_mutex; /* Protects state machine */ 266 unsigned char sm_mod_state; 267 unsigned char sm_mod_tries_init; 268 unsigned char sm_mod_tries; 269 unsigned char sm_dev_state; 270 unsigned short sm_state; 271 unsigned char sm_fault_retries; 272 unsigned char sm_phy_retries; 273 274 struct sfp_eeprom_id id; 275 unsigned int module_power_mW; 276 unsigned int module_t_start_up; 277 unsigned int module_t_wait; 278 unsigned int phy_t_retry; 279 280 unsigned int rate_kbd; 281 unsigned int rs_threshold_kbd; 282 unsigned int rs_state_mask; 283 284 bool have_a2; 285 286 const struct sfp_quirk *quirk; 287 288 #if IS_ENABLED(CONFIG_HWMON) 289 struct sfp_diag diag; 290 struct delayed_work hwmon_probe; 291 unsigned int hwmon_tries; 292 struct device *hwmon_dev; 293 char *hwmon_name; 294 #endif 295 296 #if IS_ENABLED(CONFIG_DEBUG_FS) 297 struct dentry *debugfs_dir; 298 #endif 299 }; 300 301 static bool sff_module_supported(const struct sfp_eeprom_id *id) 302 { 303 return id->base.phys_id == SFF8024_ID_SFF_8472 && 304 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 305 } 306 307 static const struct sff_data sff_data = { 308 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 309 .module_supported = sff_module_supported, 310 }; 311 312 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 313 { 314 if (id->base.phys_id == SFF8024_ID_SFP && 315 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 316 return true; 317 318 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 319 * phys id SFF instead of SFP. Therefore mark this module explicitly 320 * as supported based on vendor name and pn match. 321 */ 322 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 323 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 324 !memcmp(id->base.vendor_name, "UBNT ", 16) && 325 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 326 return true; 327 328 return false; 329 } 330 331 static const struct sff_data sfp_data = { 332 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 333 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 334 .module_supported = sfp_module_supported, 335 }; 336 337 static const struct of_device_id sfp_of_match[] = { 338 { .compatible = "sff,sff", .data = &sff_data, }, 339 { .compatible = "sff,sfp", .data = &sfp_data, }, 340 { }, 341 }; 342 MODULE_DEVICE_TABLE(of, sfp_of_match); 343 344 static void sfp_fixup_long_startup(struct sfp *sfp) 345 { 346 sfp->module_t_start_up = T_START_UP_BAD_GPON; 347 } 348 349 static void sfp_fixup_ignore_los(struct sfp *sfp) 350 { 351 /* This forces LOS to zero, so we ignore transitions */ 352 sfp->state_ignore_mask |= SFP_F_LOS; 353 /* Make sure that LOS options are clear */ 354 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED | 355 SFP_OPTIONS_LOS_NORMAL); 356 } 357 358 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 359 { 360 sfp->state_ignore_mask |= SFP_F_TX_FAULT; 361 } 362 363 static void sfp_fixup_nokia(struct sfp *sfp) 364 { 365 sfp_fixup_long_startup(sfp); 366 sfp_fixup_ignore_los(sfp); 367 } 368 369 // For 10GBASE-T short-reach modules 370 static void sfp_fixup_10gbaset_30m(struct sfp *sfp) 371 { 372 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; 373 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; 374 } 375 376 static void sfp_fixup_rollball(struct sfp *sfp) 377 { 378 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 379 380 /* RollBall modules may disallow access to PHY registers for up to 25 381 * seconds, and the reads return 0xffff before that. Increase the time 382 * between PHY probe retries from 50ms to 1s so that we will wait for 383 * the PHY for a sufficient amount of time. 384 */ 385 sfp->phy_t_retry = msecs_to_jiffies(1000); 386 } 387 388 static void sfp_fixup_rollball_wait4s(struct sfp *sfp) 389 { 390 sfp_fixup_rollball(sfp); 391 392 /* The RollBall fixup is not enough for FS modules, the PHY chip inside 393 * them does not return 0xffff for PHY ID registers in all MMDs for the 394 * while initializing. They need a 4 second wait before accessing PHY. 395 */ 396 sfp->module_t_wait = msecs_to_jiffies(4000); 397 } 398 399 static void sfp_fixup_fs_10gt(struct sfp *sfp) 400 { 401 sfp_fixup_10gbaset_30m(sfp); 402 sfp_fixup_rollball_wait4s(sfp); 403 } 404 405 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 406 { 407 /* Ignore the TX_FAULT and LOS signals on this module. 408 * these are possibly used for other purposes on this 409 * module, e.g. a serial port. 410 */ 411 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 412 } 413 414 static void sfp_fixup_rollball_cc(struct sfp *sfp) 415 { 416 sfp_fixup_rollball(sfp); 417 418 /* Some RollBall SFPs may have wrong (zero) extended compliance code 419 * burned in EEPROM. For PHY probing we need the correct one. 420 */ 421 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 422 } 423 424 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 425 unsigned long *modes, 426 unsigned long *interfaces) 427 { 428 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 429 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 430 } 431 432 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, 433 unsigned long *modes, 434 unsigned long *interfaces) 435 { 436 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); 437 } 438 439 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, 440 unsigned long *modes, 441 unsigned long *interfaces) 442 { 443 /* Copper 2.5G SFP */ 444 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); 445 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 446 sfp_quirk_disable_autoneg(id, modes, interfaces); 447 } 448 449 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 450 unsigned long *modes, 451 unsigned long *interfaces) 452 { 453 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 454 * types including 10G Ethernet which is not truth. So clear all claimed 455 * modes and set only one mode which module supports: 1000baseX_Full. 456 */ 457 linkmode_zero(modes); 458 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 459 } 460 461 #define SFP_QUIRK(_v, _p, _m, _f) \ 462 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 463 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 464 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 465 466 static const struct sfp_quirk sfp_quirks[] = { 467 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 468 // report 2500MBd NRZ in their EEPROM 469 SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex, 470 sfp_fixup_ignore_tx_fault), 471 472 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 473 // NRZ in their EEPROM 474 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 475 sfp_fixup_nokia), 476 477 // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball 478 // protocol to talk to the PHY and needs 4 sec wait before probing the 479 // PHY. 480 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), 481 482 // Fiberstore SFP-2.5G-T and SFP-10GM-T uses Rollball protocol to talk 483 // to the PHY and needs 4 sec wait before probing the PHY. 484 SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_rollball_wait4s), 485 SFP_QUIRK_F("FS", "SFP-10GM-T", sfp_fixup_rollball_wait4s), 486 487 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd 488 // NRZ in their EEPROM 489 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, 490 sfp_fixup_ignore_tx_fault), 491 492 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 493 494 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports 495 // 2600MBd in their EERPOM 496 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), 497 498 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 499 // their EEPROM 500 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 501 sfp_fixup_ignore_tx_fault), 502 503 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 504 // 2500MBd NRZ in their EEPROM 505 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 506 507 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 508 509 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the 510 // Rollball protocol to talk to the PHY. 511 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), 512 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), 513 514 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator 515 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault), 516 517 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 518 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 519 SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-D", sfp_quirk_2500basex), 520 SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-U", sfp_quirk_2500basex), 521 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 522 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 523 SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball), 524 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 525 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 526 }; 527 528 static size_t sfp_strlen(const char *str, size_t maxlen) 529 { 530 size_t size, i; 531 532 /* Trailing characters should be filled with space chars, but 533 * some manufacturers can't read SFF-8472 and use NUL. 534 */ 535 for (i = 0, size = 0; i < maxlen; i++) 536 if (str[i] != ' ' && str[i] != '\0') 537 size = i + 1; 538 539 return size; 540 } 541 542 static bool sfp_match(const char *qs, const char *str, size_t len) 543 { 544 if (!qs) 545 return true; 546 if (strlen(qs) != len) 547 return false; 548 return !strncmp(qs, str, len); 549 } 550 551 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 552 { 553 const struct sfp_quirk *q; 554 unsigned int i; 555 size_t vs, ps; 556 557 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 558 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 559 560 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 561 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 562 sfp_match(q->part, id->base.vendor_pn, ps)) 563 return q; 564 565 return NULL; 566 } 567 568 static unsigned long poll_jiffies; 569 570 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 571 { 572 unsigned int i, state, v; 573 574 for (i = state = 0; i < GPIO_MAX; i++) { 575 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 576 continue; 577 578 v = gpiod_get_value_cansleep(sfp->gpio[i]); 579 if (v) 580 state |= BIT(i); 581 } 582 583 return state; 584 } 585 586 static unsigned int sff_gpio_get_state(struct sfp *sfp) 587 { 588 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 589 } 590 591 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 592 { 593 unsigned int drive; 594 595 if (state & SFP_F_PRESENT) 596 /* If the module is present, drive the requested signals */ 597 drive = sfp->state_hw_drive; 598 else 599 /* Otherwise, let them float to the pull-ups */ 600 drive = 0; 601 602 if (sfp->gpio[GPIO_TX_DISABLE]) { 603 if (drive & SFP_F_TX_DISABLE) 604 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 605 state & SFP_F_TX_DISABLE); 606 else 607 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 608 } 609 610 if (sfp->gpio[GPIO_RS0]) { 611 if (drive & SFP_F_RS0) 612 gpiod_direction_output(sfp->gpio[GPIO_RS0], 613 state & SFP_F_RS0); 614 else 615 gpiod_direction_input(sfp->gpio[GPIO_RS0]); 616 } 617 618 if (sfp->gpio[GPIO_RS1]) { 619 if (drive & SFP_F_RS1) 620 gpiod_direction_output(sfp->gpio[GPIO_RS1], 621 state & SFP_F_RS1); 622 else 623 gpiod_direction_input(sfp->gpio[GPIO_RS1]); 624 } 625 } 626 627 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 628 size_t len) 629 { 630 struct i2c_msg msgs[2]; 631 u8 bus_addr = a2 ? 0x51 : 0x50; 632 size_t block_size = sfp->i2c_block_size; 633 size_t this_len; 634 int ret; 635 636 msgs[0].addr = bus_addr; 637 msgs[0].flags = 0; 638 msgs[0].len = 1; 639 msgs[0].buf = &dev_addr; 640 msgs[1].addr = bus_addr; 641 msgs[1].flags = I2C_M_RD; 642 msgs[1].len = len; 643 msgs[1].buf = buf; 644 645 while (len) { 646 this_len = len; 647 if (this_len > block_size) 648 this_len = block_size; 649 650 msgs[1].len = this_len; 651 652 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 653 if (ret < 0) 654 return ret; 655 656 if (ret != ARRAY_SIZE(msgs)) 657 break; 658 659 msgs[1].buf += this_len; 660 dev_addr += this_len; 661 len -= this_len; 662 } 663 664 return msgs[1].buf - (u8 *)buf; 665 } 666 667 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 668 size_t len) 669 { 670 struct i2c_msg msgs[1]; 671 u8 bus_addr = a2 ? 0x51 : 0x50; 672 int ret; 673 674 msgs[0].addr = bus_addr; 675 msgs[0].flags = 0; 676 msgs[0].len = 1 + len; 677 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 678 if (!msgs[0].buf) 679 return -ENOMEM; 680 681 msgs[0].buf[0] = dev_addr; 682 memcpy(&msgs[0].buf[1], buf, len); 683 684 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 685 686 kfree(msgs[0].buf); 687 688 if (ret < 0) 689 return ret; 690 691 return ret == ARRAY_SIZE(msgs) ? len : 0; 692 } 693 694 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 695 { 696 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 697 return -EINVAL; 698 699 sfp->i2c = i2c; 700 sfp->read = sfp_i2c_read; 701 sfp->write = sfp_i2c_write; 702 703 return 0; 704 } 705 706 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 707 { 708 struct mii_bus *i2c_mii; 709 int ret; 710 711 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 712 if (IS_ERR(i2c_mii)) 713 return PTR_ERR(i2c_mii); 714 715 i2c_mii->name = "SFP I2C Bus"; 716 i2c_mii->phy_mask = ~0; 717 718 ret = mdiobus_register(i2c_mii); 719 if (ret < 0) { 720 mdiobus_free(i2c_mii); 721 return ret; 722 } 723 724 sfp->i2c_mii = i2c_mii; 725 726 return 0; 727 } 728 729 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 730 { 731 mdiobus_unregister(sfp->i2c_mii); 732 sfp->i2c_mii = NULL; 733 } 734 735 /* Interface */ 736 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 737 { 738 return sfp->read(sfp, a2, addr, buf, len); 739 } 740 741 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 742 { 743 return sfp->write(sfp, a2, addr, buf, len); 744 } 745 746 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 747 { 748 int ret; 749 u8 old, v; 750 751 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 752 if (ret != sizeof(old)) 753 return ret; 754 755 v = (old & ~mask) | (val & mask); 756 if (v == old) 757 return sizeof(v); 758 759 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 760 } 761 762 static unsigned int sfp_soft_get_state(struct sfp *sfp) 763 { 764 unsigned int state = 0; 765 u8 status; 766 int ret; 767 768 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 769 if (ret == sizeof(status)) { 770 if (status & SFP_STATUS_RX_LOS) 771 state |= SFP_F_LOS; 772 if (status & SFP_STATUS_TX_FAULT) 773 state |= SFP_F_TX_FAULT; 774 } else { 775 dev_err_ratelimited(sfp->dev, 776 "failed to read SFP soft status: %pe\n", 777 ERR_PTR(ret)); 778 /* Preserve the current state */ 779 state = sfp->state; 780 } 781 782 return state & sfp->state_soft_mask; 783 } 784 785 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, 786 unsigned int soft) 787 { 788 u8 mask = 0; 789 u8 val = 0; 790 791 if (soft & SFP_F_TX_DISABLE) 792 mask |= SFP_STATUS_TX_DISABLE_FORCE; 793 if (state & SFP_F_TX_DISABLE) 794 val |= SFP_STATUS_TX_DISABLE_FORCE; 795 796 if (soft & SFP_F_RS0) 797 mask |= SFP_STATUS_RS0_SELECT; 798 if (state & SFP_F_RS0) 799 val |= SFP_STATUS_RS0_SELECT; 800 801 if (mask) 802 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 803 804 val = mask = 0; 805 if (soft & SFP_F_RS1) 806 mask |= SFP_EXT_STATUS_RS1_SELECT; 807 if (state & SFP_F_RS1) 808 val |= SFP_EXT_STATUS_RS1_SELECT; 809 810 if (mask) 811 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); 812 } 813 814 static void sfp_soft_start_poll(struct sfp *sfp) 815 { 816 const struct sfp_eeprom_id *id = &sfp->id; 817 unsigned int mask = 0; 818 819 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 820 mask |= SFP_F_TX_DISABLE; 821 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 822 mask |= SFP_F_TX_FAULT; 823 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 824 mask |= SFP_F_LOS; 825 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) 826 mask |= sfp->rs_state_mask; 827 828 mutex_lock(&sfp->st_mutex); 829 // Poll the soft state for hardware pins we want to ignore 830 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask & 831 mask; 832 833 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 834 !sfp->need_poll) 835 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 836 mutex_unlock(&sfp->st_mutex); 837 } 838 839 static void sfp_soft_stop_poll(struct sfp *sfp) 840 { 841 mutex_lock(&sfp->st_mutex); 842 sfp->state_soft_mask = 0; 843 mutex_unlock(&sfp->st_mutex); 844 } 845 846 /* sfp_get_state() - must be called with st_mutex held, or in the 847 * initialisation path. 848 */ 849 static unsigned int sfp_get_state(struct sfp *sfp) 850 { 851 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 852 unsigned int state; 853 854 state = sfp->get_state(sfp) & sfp->state_hw_mask; 855 if (state & SFP_F_PRESENT && soft) 856 state |= sfp_soft_get_state(sfp); 857 858 return state; 859 } 860 861 /* sfp_set_state() - must be called with st_mutex held, or in the 862 * initialisation path. 863 */ 864 static void sfp_set_state(struct sfp *sfp, unsigned int state) 865 { 866 unsigned int soft; 867 868 sfp->set_state(sfp, state); 869 870 soft = sfp->state_soft_mask & SFP_F_OUTPUTS; 871 if (state & SFP_F_PRESENT && soft) 872 sfp_soft_set_state(sfp, state, soft); 873 } 874 875 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) 876 { 877 mutex_lock(&sfp->st_mutex); 878 sfp->state = (sfp->state & ~mask) | set; 879 sfp_set_state(sfp, sfp->state); 880 mutex_unlock(&sfp->st_mutex); 881 } 882 883 static unsigned int sfp_check(void *buf, size_t len) 884 { 885 u8 *p, check; 886 887 for (p = buf, check = 0; len; p++, len--) 888 check += *p; 889 890 return check; 891 } 892 893 /* hwmon */ 894 #if IS_ENABLED(CONFIG_HWMON) 895 static umode_t sfp_hwmon_is_visible(const void *data, 896 enum hwmon_sensor_types type, 897 u32 attr, int channel) 898 { 899 const struct sfp *sfp = data; 900 901 switch (type) { 902 case hwmon_temp: 903 switch (attr) { 904 case hwmon_temp_min_alarm: 905 case hwmon_temp_max_alarm: 906 case hwmon_temp_lcrit_alarm: 907 case hwmon_temp_crit_alarm: 908 case hwmon_temp_min: 909 case hwmon_temp_max: 910 case hwmon_temp_lcrit: 911 case hwmon_temp_crit: 912 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 913 return 0; 914 fallthrough; 915 case hwmon_temp_input: 916 case hwmon_temp_label: 917 return 0444; 918 default: 919 return 0; 920 } 921 case hwmon_in: 922 switch (attr) { 923 case hwmon_in_min_alarm: 924 case hwmon_in_max_alarm: 925 case hwmon_in_lcrit_alarm: 926 case hwmon_in_crit_alarm: 927 case hwmon_in_min: 928 case hwmon_in_max: 929 case hwmon_in_lcrit: 930 case hwmon_in_crit: 931 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 932 return 0; 933 fallthrough; 934 case hwmon_in_input: 935 case hwmon_in_label: 936 return 0444; 937 default: 938 return 0; 939 } 940 case hwmon_curr: 941 switch (attr) { 942 case hwmon_curr_min_alarm: 943 case hwmon_curr_max_alarm: 944 case hwmon_curr_lcrit_alarm: 945 case hwmon_curr_crit_alarm: 946 case hwmon_curr_min: 947 case hwmon_curr_max: 948 case hwmon_curr_lcrit: 949 case hwmon_curr_crit: 950 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 951 return 0; 952 fallthrough; 953 case hwmon_curr_input: 954 case hwmon_curr_label: 955 return 0444; 956 default: 957 return 0; 958 } 959 case hwmon_power: 960 /* External calibration of receive power requires 961 * floating point arithmetic. Doing that in the kernel 962 * is not easy, so just skip it. If the module does 963 * not require external calibration, we can however 964 * show receiver power, since FP is then not needed. 965 */ 966 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 967 channel == 1) 968 return 0; 969 switch (attr) { 970 case hwmon_power_min_alarm: 971 case hwmon_power_max_alarm: 972 case hwmon_power_lcrit_alarm: 973 case hwmon_power_crit_alarm: 974 case hwmon_power_min: 975 case hwmon_power_max: 976 case hwmon_power_lcrit: 977 case hwmon_power_crit: 978 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 979 return 0; 980 fallthrough; 981 case hwmon_power_input: 982 case hwmon_power_label: 983 return 0444; 984 default: 985 return 0; 986 } 987 default: 988 return 0; 989 } 990 } 991 992 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 993 { 994 __be16 val; 995 int err; 996 997 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 998 if (err < 0) 999 return err; 1000 1001 *value = be16_to_cpu(val); 1002 1003 return 0; 1004 } 1005 1006 static void sfp_hwmon_to_rx_power(long *value) 1007 { 1008 *value = DIV_ROUND_CLOSEST(*value, 10); 1009 } 1010 1011 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 1012 long *value) 1013 { 1014 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 1015 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 1016 } 1017 1018 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 1019 { 1020 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 1021 be16_to_cpu(sfp->diag.cal_t_offset), value); 1022 1023 if (*value >= 0x8000) 1024 *value -= 0x10000; 1025 1026 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 1027 } 1028 1029 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 1030 { 1031 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 1032 be16_to_cpu(sfp->diag.cal_v_offset), value); 1033 1034 *value = DIV_ROUND_CLOSEST(*value, 10); 1035 } 1036 1037 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 1038 { 1039 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 1040 be16_to_cpu(sfp->diag.cal_txi_offset), value); 1041 1042 *value = DIV_ROUND_CLOSEST(*value, 500); 1043 } 1044 1045 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 1046 { 1047 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 1048 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 1049 1050 *value = DIV_ROUND_CLOSEST(*value, 10); 1051 } 1052 1053 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 1054 { 1055 int err; 1056 1057 err = sfp_hwmon_read_sensor(sfp, reg, value); 1058 if (err < 0) 1059 return err; 1060 1061 sfp_hwmon_calibrate_temp(sfp, value); 1062 1063 return 0; 1064 } 1065 1066 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 1067 { 1068 int err; 1069 1070 err = sfp_hwmon_read_sensor(sfp, reg, value); 1071 if (err < 0) 1072 return err; 1073 1074 sfp_hwmon_calibrate_vcc(sfp, value); 1075 1076 return 0; 1077 } 1078 1079 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 1080 { 1081 int err; 1082 1083 err = sfp_hwmon_read_sensor(sfp, reg, value); 1084 if (err < 0) 1085 return err; 1086 1087 sfp_hwmon_calibrate_bias(sfp, value); 1088 1089 return 0; 1090 } 1091 1092 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 1093 { 1094 int err; 1095 1096 err = sfp_hwmon_read_sensor(sfp, reg, value); 1097 if (err < 0) 1098 return err; 1099 1100 sfp_hwmon_calibrate_tx_power(sfp, value); 1101 1102 return 0; 1103 } 1104 1105 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 1106 { 1107 int err; 1108 1109 err = sfp_hwmon_read_sensor(sfp, reg, value); 1110 if (err < 0) 1111 return err; 1112 1113 sfp_hwmon_to_rx_power(value); 1114 1115 return 0; 1116 } 1117 1118 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 1119 { 1120 u8 status; 1121 int err; 1122 1123 switch (attr) { 1124 case hwmon_temp_input: 1125 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 1126 1127 case hwmon_temp_lcrit: 1128 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 1129 sfp_hwmon_calibrate_temp(sfp, value); 1130 return 0; 1131 1132 case hwmon_temp_min: 1133 *value = be16_to_cpu(sfp->diag.temp_low_warn); 1134 sfp_hwmon_calibrate_temp(sfp, value); 1135 return 0; 1136 case hwmon_temp_max: 1137 *value = be16_to_cpu(sfp->diag.temp_high_warn); 1138 sfp_hwmon_calibrate_temp(sfp, value); 1139 return 0; 1140 1141 case hwmon_temp_crit: 1142 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 1143 sfp_hwmon_calibrate_temp(sfp, value); 1144 return 0; 1145 1146 case hwmon_temp_lcrit_alarm: 1147 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1148 if (err < 0) 1149 return err; 1150 1151 *value = !!(status & SFP_ALARM0_TEMP_LOW); 1152 return 0; 1153 1154 case hwmon_temp_min_alarm: 1155 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1156 if (err < 0) 1157 return err; 1158 1159 *value = !!(status & SFP_WARN0_TEMP_LOW); 1160 return 0; 1161 1162 case hwmon_temp_max_alarm: 1163 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1164 if (err < 0) 1165 return err; 1166 1167 *value = !!(status & SFP_WARN0_TEMP_HIGH); 1168 return 0; 1169 1170 case hwmon_temp_crit_alarm: 1171 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1172 if (err < 0) 1173 return err; 1174 1175 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1176 return 0; 1177 default: 1178 return -EOPNOTSUPP; 1179 } 1180 1181 return -EOPNOTSUPP; 1182 } 1183 1184 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1185 { 1186 u8 status; 1187 int err; 1188 1189 switch (attr) { 1190 case hwmon_in_input: 1191 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1192 1193 case hwmon_in_lcrit: 1194 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1195 sfp_hwmon_calibrate_vcc(sfp, value); 1196 return 0; 1197 1198 case hwmon_in_min: 1199 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1200 sfp_hwmon_calibrate_vcc(sfp, value); 1201 return 0; 1202 1203 case hwmon_in_max: 1204 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1205 sfp_hwmon_calibrate_vcc(sfp, value); 1206 return 0; 1207 1208 case hwmon_in_crit: 1209 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1210 sfp_hwmon_calibrate_vcc(sfp, value); 1211 return 0; 1212 1213 case hwmon_in_lcrit_alarm: 1214 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1215 if (err < 0) 1216 return err; 1217 1218 *value = !!(status & SFP_ALARM0_VCC_LOW); 1219 return 0; 1220 1221 case hwmon_in_min_alarm: 1222 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1223 if (err < 0) 1224 return err; 1225 1226 *value = !!(status & SFP_WARN0_VCC_LOW); 1227 return 0; 1228 1229 case hwmon_in_max_alarm: 1230 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1231 if (err < 0) 1232 return err; 1233 1234 *value = !!(status & SFP_WARN0_VCC_HIGH); 1235 return 0; 1236 1237 case hwmon_in_crit_alarm: 1238 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1239 if (err < 0) 1240 return err; 1241 1242 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1243 return 0; 1244 default: 1245 return -EOPNOTSUPP; 1246 } 1247 1248 return -EOPNOTSUPP; 1249 } 1250 1251 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1252 { 1253 u8 status; 1254 int err; 1255 1256 switch (attr) { 1257 case hwmon_curr_input: 1258 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1259 1260 case hwmon_curr_lcrit: 1261 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1262 sfp_hwmon_calibrate_bias(sfp, value); 1263 return 0; 1264 1265 case hwmon_curr_min: 1266 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1267 sfp_hwmon_calibrate_bias(sfp, value); 1268 return 0; 1269 1270 case hwmon_curr_max: 1271 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1272 sfp_hwmon_calibrate_bias(sfp, value); 1273 return 0; 1274 1275 case hwmon_curr_crit: 1276 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1277 sfp_hwmon_calibrate_bias(sfp, value); 1278 return 0; 1279 1280 case hwmon_curr_lcrit_alarm: 1281 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1282 if (err < 0) 1283 return err; 1284 1285 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1286 return 0; 1287 1288 case hwmon_curr_min_alarm: 1289 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1290 if (err < 0) 1291 return err; 1292 1293 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1294 return 0; 1295 1296 case hwmon_curr_max_alarm: 1297 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1298 if (err < 0) 1299 return err; 1300 1301 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1302 return 0; 1303 1304 case hwmon_curr_crit_alarm: 1305 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1306 if (err < 0) 1307 return err; 1308 1309 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1310 return 0; 1311 default: 1312 return -EOPNOTSUPP; 1313 } 1314 1315 return -EOPNOTSUPP; 1316 } 1317 1318 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1319 { 1320 u8 status; 1321 int err; 1322 1323 switch (attr) { 1324 case hwmon_power_input: 1325 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1326 1327 case hwmon_power_lcrit: 1328 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1329 sfp_hwmon_calibrate_tx_power(sfp, value); 1330 return 0; 1331 1332 case hwmon_power_min: 1333 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1334 sfp_hwmon_calibrate_tx_power(sfp, value); 1335 return 0; 1336 1337 case hwmon_power_max: 1338 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1339 sfp_hwmon_calibrate_tx_power(sfp, value); 1340 return 0; 1341 1342 case hwmon_power_crit: 1343 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1344 sfp_hwmon_calibrate_tx_power(sfp, value); 1345 return 0; 1346 1347 case hwmon_power_lcrit_alarm: 1348 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1349 if (err < 0) 1350 return err; 1351 1352 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1353 return 0; 1354 1355 case hwmon_power_min_alarm: 1356 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1357 if (err < 0) 1358 return err; 1359 1360 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1361 return 0; 1362 1363 case hwmon_power_max_alarm: 1364 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1365 if (err < 0) 1366 return err; 1367 1368 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1369 return 0; 1370 1371 case hwmon_power_crit_alarm: 1372 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1373 if (err < 0) 1374 return err; 1375 1376 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1377 return 0; 1378 default: 1379 return -EOPNOTSUPP; 1380 } 1381 1382 return -EOPNOTSUPP; 1383 } 1384 1385 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1386 { 1387 u8 status; 1388 int err; 1389 1390 switch (attr) { 1391 case hwmon_power_input: 1392 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1393 1394 case hwmon_power_lcrit: 1395 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1396 sfp_hwmon_to_rx_power(value); 1397 return 0; 1398 1399 case hwmon_power_min: 1400 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1401 sfp_hwmon_to_rx_power(value); 1402 return 0; 1403 1404 case hwmon_power_max: 1405 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1406 sfp_hwmon_to_rx_power(value); 1407 return 0; 1408 1409 case hwmon_power_crit: 1410 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1411 sfp_hwmon_to_rx_power(value); 1412 return 0; 1413 1414 case hwmon_power_lcrit_alarm: 1415 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1416 if (err < 0) 1417 return err; 1418 1419 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1420 return 0; 1421 1422 case hwmon_power_min_alarm: 1423 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1424 if (err < 0) 1425 return err; 1426 1427 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1428 return 0; 1429 1430 case hwmon_power_max_alarm: 1431 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1432 if (err < 0) 1433 return err; 1434 1435 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1436 return 0; 1437 1438 case hwmon_power_crit_alarm: 1439 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1440 if (err < 0) 1441 return err; 1442 1443 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1444 return 0; 1445 default: 1446 return -EOPNOTSUPP; 1447 } 1448 1449 return -EOPNOTSUPP; 1450 } 1451 1452 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1453 u32 attr, int channel, long *value) 1454 { 1455 struct sfp *sfp = dev_get_drvdata(dev); 1456 1457 switch (type) { 1458 case hwmon_temp: 1459 return sfp_hwmon_temp(sfp, attr, value); 1460 case hwmon_in: 1461 return sfp_hwmon_vcc(sfp, attr, value); 1462 case hwmon_curr: 1463 return sfp_hwmon_bias(sfp, attr, value); 1464 case hwmon_power: 1465 switch (channel) { 1466 case 0: 1467 return sfp_hwmon_tx_power(sfp, attr, value); 1468 case 1: 1469 return sfp_hwmon_rx_power(sfp, attr, value); 1470 default: 1471 return -EOPNOTSUPP; 1472 } 1473 default: 1474 return -EOPNOTSUPP; 1475 } 1476 } 1477 1478 static const char *const sfp_hwmon_power_labels[] = { 1479 "TX_power", 1480 "RX_power", 1481 }; 1482 1483 static int sfp_hwmon_read_string(struct device *dev, 1484 enum hwmon_sensor_types type, 1485 u32 attr, int channel, const char **str) 1486 { 1487 switch (type) { 1488 case hwmon_curr: 1489 switch (attr) { 1490 case hwmon_curr_label: 1491 *str = "bias"; 1492 return 0; 1493 default: 1494 return -EOPNOTSUPP; 1495 } 1496 break; 1497 case hwmon_temp: 1498 switch (attr) { 1499 case hwmon_temp_label: 1500 *str = "temperature"; 1501 return 0; 1502 default: 1503 return -EOPNOTSUPP; 1504 } 1505 break; 1506 case hwmon_in: 1507 switch (attr) { 1508 case hwmon_in_label: 1509 *str = "VCC"; 1510 return 0; 1511 default: 1512 return -EOPNOTSUPP; 1513 } 1514 break; 1515 case hwmon_power: 1516 switch (attr) { 1517 case hwmon_power_label: 1518 *str = sfp_hwmon_power_labels[channel]; 1519 return 0; 1520 default: 1521 return -EOPNOTSUPP; 1522 } 1523 break; 1524 default: 1525 return -EOPNOTSUPP; 1526 } 1527 1528 return -EOPNOTSUPP; 1529 } 1530 1531 static const struct hwmon_ops sfp_hwmon_ops = { 1532 .is_visible = sfp_hwmon_is_visible, 1533 .read = sfp_hwmon_read, 1534 .read_string = sfp_hwmon_read_string, 1535 }; 1536 1537 static const struct hwmon_channel_info * const sfp_hwmon_info[] = { 1538 HWMON_CHANNEL_INFO(chip, 1539 HWMON_C_REGISTER_TZ), 1540 HWMON_CHANNEL_INFO(in, 1541 HWMON_I_INPUT | 1542 HWMON_I_MAX | HWMON_I_MIN | 1543 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1544 HWMON_I_CRIT | HWMON_I_LCRIT | 1545 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1546 HWMON_I_LABEL), 1547 HWMON_CHANNEL_INFO(temp, 1548 HWMON_T_INPUT | 1549 HWMON_T_MAX | HWMON_T_MIN | 1550 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1551 HWMON_T_CRIT | HWMON_T_LCRIT | 1552 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1553 HWMON_T_LABEL), 1554 HWMON_CHANNEL_INFO(curr, 1555 HWMON_C_INPUT | 1556 HWMON_C_MAX | HWMON_C_MIN | 1557 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1558 HWMON_C_CRIT | HWMON_C_LCRIT | 1559 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1560 HWMON_C_LABEL), 1561 HWMON_CHANNEL_INFO(power, 1562 /* Transmit power */ 1563 HWMON_P_INPUT | 1564 HWMON_P_MAX | HWMON_P_MIN | 1565 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1566 HWMON_P_CRIT | HWMON_P_LCRIT | 1567 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1568 HWMON_P_LABEL, 1569 /* Receive power */ 1570 HWMON_P_INPUT | 1571 HWMON_P_MAX | HWMON_P_MIN | 1572 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1573 HWMON_P_CRIT | HWMON_P_LCRIT | 1574 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1575 HWMON_P_LABEL), 1576 NULL, 1577 }; 1578 1579 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1580 .ops = &sfp_hwmon_ops, 1581 .info = sfp_hwmon_info, 1582 }; 1583 1584 static void sfp_hwmon_probe(struct work_struct *work) 1585 { 1586 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1587 int err; 1588 1589 /* hwmon interface needs to access 16bit registers in atomic way to 1590 * guarantee coherency of the diagnostic monitoring data. If it is not 1591 * possible to guarantee coherency because EEPROM is broken in such way 1592 * that does not support atomic 16bit read operation then we have to 1593 * skip registration of hwmon device. 1594 */ 1595 if (sfp->i2c_block_size < 2) { 1596 dev_info(sfp->dev, 1597 "skipping hwmon device registration due to broken EEPROM\n"); 1598 dev_info(sfp->dev, 1599 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1600 return; 1601 } 1602 1603 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1604 if (err < 0) { 1605 if (sfp->hwmon_tries--) { 1606 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1607 T_PROBE_RETRY_SLOW); 1608 } else { 1609 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1610 ERR_PTR(err)); 1611 } 1612 return; 1613 } 1614 1615 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1616 if (IS_ERR(sfp->hwmon_name)) { 1617 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1618 return; 1619 } 1620 1621 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1622 sfp->hwmon_name, sfp, 1623 &sfp_hwmon_chip_info, 1624 NULL); 1625 if (IS_ERR(sfp->hwmon_dev)) 1626 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1627 PTR_ERR(sfp->hwmon_dev)); 1628 } 1629 1630 static int sfp_hwmon_insert(struct sfp *sfp) 1631 { 1632 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { 1633 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1634 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1635 } 1636 1637 return 0; 1638 } 1639 1640 static void sfp_hwmon_remove(struct sfp *sfp) 1641 { 1642 cancel_delayed_work_sync(&sfp->hwmon_probe); 1643 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1644 hwmon_device_unregister(sfp->hwmon_dev); 1645 sfp->hwmon_dev = NULL; 1646 kfree(sfp->hwmon_name); 1647 } 1648 } 1649 1650 static int sfp_hwmon_init(struct sfp *sfp) 1651 { 1652 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1653 1654 return 0; 1655 } 1656 1657 static void sfp_hwmon_exit(struct sfp *sfp) 1658 { 1659 cancel_delayed_work_sync(&sfp->hwmon_probe); 1660 } 1661 #else 1662 static int sfp_hwmon_insert(struct sfp *sfp) 1663 { 1664 return 0; 1665 } 1666 1667 static void sfp_hwmon_remove(struct sfp *sfp) 1668 { 1669 } 1670 1671 static int sfp_hwmon_init(struct sfp *sfp) 1672 { 1673 return 0; 1674 } 1675 1676 static void sfp_hwmon_exit(struct sfp *sfp) 1677 { 1678 } 1679 #endif 1680 1681 /* Helpers */ 1682 static void sfp_module_tx_disable(struct sfp *sfp) 1683 { 1684 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1685 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1686 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); 1687 } 1688 1689 static void sfp_module_tx_enable(struct sfp *sfp) 1690 { 1691 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1692 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1693 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); 1694 } 1695 1696 #if IS_ENABLED(CONFIG_DEBUG_FS) 1697 static int sfp_debug_state_show(struct seq_file *s, void *data) 1698 { 1699 struct sfp *sfp = s->private; 1700 1701 seq_printf(s, "Module state: %s\n", 1702 mod_state_to_str(sfp->sm_mod_state)); 1703 seq_printf(s, "Module probe attempts: %d %d\n", 1704 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1705 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1706 seq_printf(s, "Device state: %s\n", 1707 dev_state_to_str(sfp->sm_dev_state)); 1708 seq_printf(s, "Main state: %s\n", 1709 sm_state_to_str(sfp->sm_state)); 1710 seq_printf(s, "Fault recovery remaining retries: %d\n", 1711 sfp->sm_fault_retries); 1712 seq_printf(s, "PHY probe remaining retries: %d\n", 1713 sfp->sm_phy_retries); 1714 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); 1715 seq_printf(s, "Rate select threshold: %u kBd\n", 1716 sfp->rs_threshold_kbd); 1717 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1718 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1719 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1720 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1721 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); 1722 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); 1723 return 0; 1724 } 1725 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1726 1727 static void sfp_debugfs_init(struct sfp *sfp) 1728 { 1729 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1730 1731 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1732 &sfp_debug_state_fops); 1733 } 1734 1735 static void sfp_debugfs_exit(struct sfp *sfp) 1736 { 1737 debugfs_remove_recursive(sfp->debugfs_dir); 1738 } 1739 #else 1740 static void sfp_debugfs_init(struct sfp *sfp) 1741 { 1742 } 1743 1744 static void sfp_debugfs_exit(struct sfp *sfp) 1745 { 1746 } 1747 #endif 1748 1749 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1750 { 1751 unsigned int state; 1752 1753 mutex_lock(&sfp->st_mutex); 1754 state = sfp->state; 1755 if (!(state & SFP_F_TX_DISABLE)) { 1756 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1757 1758 udelay(T_RESET_US); 1759 1760 sfp_set_state(sfp, state); 1761 } 1762 mutex_unlock(&sfp->st_mutex); 1763 } 1764 1765 /* SFP state machine */ 1766 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1767 { 1768 if (timeout) 1769 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1770 timeout); 1771 else 1772 cancel_delayed_work(&sfp->timeout); 1773 } 1774 1775 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1776 unsigned int timeout) 1777 { 1778 sfp->sm_state = state; 1779 sfp_sm_set_timer(sfp, timeout); 1780 } 1781 1782 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1783 unsigned int timeout) 1784 { 1785 sfp->sm_mod_state = state; 1786 sfp_sm_set_timer(sfp, timeout); 1787 } 1788 1789 static void sfp_sm_phy_detach(struct sfp *sfp) 1790 { 1791 sfp_remove_phy(sfp->sfp_bus); 1792 phy_device_remove(sfp->mod_phy); 1793 phy_device_free(sfp->mod_phy); 1794 sfp->mod_phy = NULL; 1795 } 1796 1797 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1798 { 1799 struct phy_device *phy; 1800 int err; 1801 1802 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1803 if (phy == ERR_PTR(-ENODEV)) 1804 return PTR_ERR(phy); 1805 if (IS_ERR(phy)) { 1806 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1807 return PTR_ERR(phy); 1808 } 1809 1810 /* Mark this PHY as being on a SFP module */ 1811 phy->is_on_sfp_module = true; 1812 1813 err = phy_device_register(phy); 1814 if (err) { 1815 phy_device_free(phy); 1816 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1817 ERR_PTR(err)); 1818 return err; 1819 } 1820 1821 err = sfp_add_phy(sfp->sfp_bus, phy); 1822 if (err) { 1823 phy_device_remove(phy); 1824 phy_device_free(phy); 1825 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1826 return err; 1827 } 1828 1829 sfp->mod_phy = phy; 1830 1831 return 0; 1832 } 1833 1834 static void sfp_sm_link_up(struct sfp *sfp) 1835 { 1836 sfp_link_up(sfp->sfp_bus); 1837 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1838 } 1839 1840 static void sfp_sm_link_down(struct sfp *sfp) 1841 { 1842 sfp_link_down(sfp->sfp_bus); 1843 } 1844 1845 static void sfp_sm_link_check_los(struct sfp *sfp) 1846 { 1847 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1848 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1849 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1850 bool los = false; 1851 1852 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1853 * are set, we assume that no LOS signal is available. If both are 1854 * set, we assume LOS is not implemented (and is meaningless.) 1855 */ 1856 if (los_options == los_inverted) 1857 los = !(sfp->state & SFP_F_LOS); 1858 else if (los_options == los_normal) 1859 los = !!(sfp->state & SFP_F_LOS); 1860 1861 if (los) 1862 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1863 else 1864 sfp_sm_link_up(sfp); 1865 } 1866 1867 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1868 { 1869 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1870 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1871 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1872 1873 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1874 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1875 } 1876 1877 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1878 { 1879 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1880 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1881 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1882 1883 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1884 (los_options == los_normal && event == SFP_E_LOS_LOW); 1885 } 1886 1887 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1888 { 1889 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1890 dev_err(sfp->dev, 1891 "module persistently indicates fault, disabling\n"); 1892 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1893 } else { 1894 if (warn) 1895 dev_err(sfp->dev, "module transmit fault indicated\n"); 1896 1897 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1898 } 1899 } 1900 1901 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1902 { 1903 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1904 return sfp_i2c_mdiobus_create(sfp); 1905 1906 return 0; 1907 } 1908 1909 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1910 * normally sits at I2C bus address 0x56, and may either be a clause 22 1911 * or clause 45 PHY. 1912 * 1913 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1914 * negotiation enabled, but some may be in 1000base-X - which is for the 1915 * PHY driver to determine. 1916 * 1917 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1918 * mode according to the negotiated line speed. 1919 */ 1920 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1921 { 1922 int err = 0; 1923 1924 switch (sfp->mdio_protocol) { 1925 case MDIO_I2C_NONE: 1926 break; 1927 1928 case MDIO_I2C_MARVELL_C22: 1929 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1930 break; 1931 1932 case MDIO_I2C_C45: 1933 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1934 break; 1935 1936 case MDIO_I2C_ROLLBALL: 1937 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1938 break; 1939 } 1940 1941 return err; 1942 } 1943 1944 static int sfp_module_parse_power(struct sfp *sfp) 1945 { 1946 u32 power_mW = 1000; 1947 bool supports_a2; 1948 1949 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1950 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1951 power_mW = 1500; 1952 /* Added in Rev 11.9, but there is no compliance code for this */ 1953 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1954 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1955 power_mW = 2000; 1956 1957 /* Power level 1 modules (max. 1W) are always supported. */ 1958 if (power_mW <= 1000) { 1959 sfp->module_power_mW = power_mW; 1960 return 0; 1961 } 1962 1963 supports_a2 = sfp->id.ext.sff8472_compliance != 1964 SFP_SFF8472_COMPLIANCE_NONE || 1965 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1966 1967 if (power_mW > sfp->max_power_mW) { 1968 /* Module power specification exceeds the allowed maximum. */ 1969 if (!supports_a2) { 1970 /* The module appears not to implement bus address 1971 * 0xa2, so assume that the module powers up in the 1972 * indicated mode. 1973 */ 1974 dev_err(sfp->dev, 1975 "Host does not support %u.%uW modules\n", 1976 power_mW / 1000, (power_mW / 100) % 10); 1977 return -EINVAL; 1978 } else { 1979 dev_warn(sfp->dev, 1980 "Host does not support %u.%uW modules, module left in power mode 1\n", 1981 power_mW / 1000, (power_mW / 100) % 10); 1982 return 0; 1983 } 1984 } 1985 1986 if (!supports_a2) { 1987 /* The module power level is below the host maximum and the 1988 * module appears not to implement bus address 0xa2, so assume 1989 * that the module powers up in the indicated mode. 1990 */ 1991 return 0; 1992 } 1993 1994 /* If the module requires a higher power mode, but also requires 1995 * an address change sequence, warn the user that the module may 1996 * not be functional. 1997 */ 1998 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1999 dev_warn(sfp->dev, 2000 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 2001 power_mW / 1000, (power_mW / 100) % 10); 2002 return 0; 2003 } 2004 2005 sfp->module_power_mW = power_mW; 2006 2007 return 0; 2008 } 2009 2010 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 2011 { 2012 int err; 2013 2014 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 2015 SFP_EXT_STATUS_PWRLVL_SELECT, 2016 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 2017 if (err != sizeof(u8)) { 2018 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 2019 enable ? "en" : "dis", ERR_PTR(err)); 2020 return -EAGAIN; 2021 } 2022 2023 if (enable) 2024 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 2025 sfp->module_power_mW / 1000, 2026 (sfp->module_power_mW / 100) % 10); 2027 2028 return 0; 2029 } 2030 2031 static void sfp_module_parse_rate_select(struct sfp *sfp) 2032 { 2033 u8 rate_id; 2034 2035 sfp->rs_threshold_kbd = 0; 2036 sfp->rs_state_mask = 0; 2037 2038 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) 2039 /* No support for RateSelect */ 2040 return; 2041 2042 /* Default to INF-8074 RateSelect operation. The signalling threshold 2043 * rate is not well specified, so always select "Full Bandwidth", but 2044 * SFF-8079 reveals that it is understood that RS0 will be low for 2045 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. 2046 * This method exists prior to SFF-8472. 2047 */ 2048 sfp->rs_state_mask = SFP_F_RS0; 2049 sfp->rs_threshold_kbd = 1594; 2050 2051 /* Parse the rate identifier, which is complicated due to history: 2052 * SFF-8472 rev 9.5 marks this field as reserved. 2053 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 2054 * compliance is not required. 2055 * SFF-8472 rev 10.2 defines this field using values 0..4 2056 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 2057 * and even values. 2058 */ 2059 rate_id = sfp->id.base.rate_id; 2060 if (rate_id == 0) 2061 /* Unspecified */ 2062 return; 2063 2064 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, 2065 * and allocated value 3 to SFF-8431 independent tx/rx rate select. 2066 * Convert this to a SFF-8472 rev 11.0 rate identifier. 2067 */ 2068 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 2069 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && 2070 rate_id == 3) 2071 rate_id = SFF_RID_8431; 2072 2073 if (rate_id & SFF_RID_8079) { 2074 /* SFF-8079 RateSelect / Application Select in conjunction with 2075 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield 2076 * with only bit 0 used, which takes precedence over SFF-8472. 2077 */ 2078 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { 2079 /* SFF-8079 Part 1 - rate selection between Fibre 2080 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 2081 * is high for 2125, so we have to subtract 1 to 2082 * include it. 2083 */ 2084 sfp->rs_threshold_kbd = 2125 - 1; 2085 sfp->rs_state_mask = SFP_F_RS0; 2086 } 2087 return; 2088 } 2089 2090 /* SFF-8472 rev 9.5 does not define the rate identifier */ 2091 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) 2092 return; 2093 2094 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will 2095 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. 2096 */ 2097 switch (rate_id) { 2098 case SFF_RID_8431_RX_ONLY: 2099 sfp->rs_threshold_kbd = 4250; 2100 sfp->rs_state_mask = SFP_F_RS0; 2101 break; 2102 2103 case SFF_RID_8431_TX_ONLY: 2104 sfp->rs_threshold_kbd = 4250; 2105 sfp->rs_state_mask = SFP_F_RS1; 2106 break; 2107 2108 case SFF_RID_8431: 2109 sfp->rs_threshold_kbd = 4250; 2110 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2111 break; 2112 2113 case SFF_RID_10G8G: 2114 sfp->rs_threshold_kbd = 9000; 2115 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2116 break; 2117 } 2118 } 2119 2120 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 2121 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 2122 * not support multibyte reads from the EEPROM. Each multi-byte read 2123 * operation returns just one byte of EEPROM followed by zeros. There is 2124 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 2125 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 2126 * name and vendor id into EEPROM, so there is even no way to detect if 2127 * module is V-SOL V2801F. Therefore check for those zeros in the read 2128 * data and then based on check switch to reading EEPROM to one byte 2129 * at a time. 2130 */ 2131 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 2132 { 2133 size_t i, block_size = sfp->i2c_block_size; 2134 2135 /* Already using byte IO */ 2136 if (block_size == 1) 2137 return false; 2138 2139 for (i = 1; i < len; i += block_size) { 2140 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 2141 return false; 2142 } 2143 return true; 2144 } 2145 2146 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 2147 { 2148 u8 check; 2149 int err; 2150 2151 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 2152 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 2153 id->base.connector != SFF8024_CONNECTOR_LC) { 2154 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 2155 id->base.phys_id = SFF8024_ID_SFF_8472; 2156 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 2157 id->base.connector = SFF8024_CONNECTOR_LC; 2158 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 2159 if (err != 3) { 2160 dev_err(sfp->dev, 2161 "Failed to rewrite module EEPROM: %pe\n", 2162 ERR_PTR(err)); 2163 return err; 2164 } 2165 2166 /* Cotsworks modules have been found to require a delay between write operations. */ 2167 mdelay(50); 2168 2169 /* Update base structure checksum */ 2170 check = sfp_check(&id->base, sizeof(id->base) - 1); 2171 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 2172 if (err != 1) { 2173 dev_err(sfp->dev, 2174 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 2175 ERR_PTR(err)); 2176 return err; 2177 } 2178 } 2179 return 0; 2180 } 2181 2182 static int sfp_module_parse_sff8472(struct sfp *sfp) 2183 { 2184 /* If the module requires address swap mode, warn about it */ 2185 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2186 dev_warn(sfp->dev, 2187 "module address swap to access page 0xA2 is not supported.\n"); 2188 else 2189 sfp->have_a2 = true; 2190 2191 return 0; 2192 } 2193 2194 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 2195 { 2196 /* SFP module inserted - read I2C data */ 2197 struct sfp_eeprom_id id; 2198 bool cotsworks_sfbg; 2199 unsigned int mask; 2200 bool cotsworks; 2201 u8 check; 2202 int ret; 2203 2204 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2205 2206 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2207 if (ret < 0) { 2208 if (report) 2209 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2210 ERR_PTR(ret)); 2211 return -EAGAIN; 2212 } 2213 2214 if (ret != sizeof(id.base)) { 2215 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2216 return -EAGAIN; 2217 } 2218 2219 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 2220 * address 0x51 is just one byte at a time. Also SFF-8472 requires 2221 * that EEPROM supports atomic 16bit read operation for diagnostic 2222 * fields, so do not switch to one byte reading at a time unless it 2223 * is really required and we have no other option. 2224 */ 2225 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 2226 dev_info(sfp->dev, 2227 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 2228 dev_info(sfp->dev, 2229 "Switching to reading EEPROM to one byte at a time\n"); 2230 sfp->i2c_block_size = 1; 2231 2232 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2233 if (ret < 0) { 2234 if (report) 2235 dev_err(sfp->dev, 2236 "failed to read EEPROM: %pe\n", 2237 ERR_PTR(ret)); 2238 return -EAGAIN; 2239 } 2240 2241 if (ret != sizeof(id.base)) { 2242 dev_err(sfp->dev, "EEPROM short read: %pe\n", 2243 ERR_PTR(ret)); 2244 return -EAGAIN; 2245 } 2246 } 2247 2248 /* Cotsworks do not seem to update the checksums when they 2249 * do the final programming with the final module part number, 2250 * serial number and date code. 2251 */ 2252 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 2253 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 2254 2255 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 2256 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 2257 * Cotsworks PN matches and bytes are not correct. 2258 */ 2259 if (cotsworks && cotsworks_sfbg) { 2260 ret = sfp_cotsworks_fixup_check(sfp, &id); 2261 if (ret < 0) 2262 return ret; 2263 } 2264 2265 /* Validate the checksum over the base structure */ 2266 check = sfp_check(&id.base, sizeof(id.base) - 1); 2267 if (check != id.base.cc_base) { 2268 if (cotsworks) { 2269 dev_warn(sfp->dev, 2270 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2271 check, id.base.cc_base); 2272 } else { 2273 dev_err(sfp->dev, 2274 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2275 check, id.base.cc_base); 2276 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2277 16, 1, &id, sizeof(id), true); 2278 return -EINVAL; 2279 } 2280 } 2281 2282 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2283 if (ret < 0) { 2284 if (report) 2285 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2286 ERR_PTR(ret)); 2287 return -EAGAIN; 2288 } 2289 2290 if (ret != sizeof(id.ext)) { 2291 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2292 return -EAGAIN; 2293 } 2294 2295 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2296 if (check != id.ext.cc_ext) { 2297 if (cotsworks) { 2298 dev_warn(sfp->dev, 2299 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2300 check, id.ext.cc_ext); 2301 } else { 2302 dev_err(sfp->dev, 2303 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2304 check, id.ext.cc_ext); 2305 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2306 16, 1, &id, sizeof(id), true); 2307 memset(&id.ext, 0, sizeof(id.ext)); 2308 } 2309 } 2310 2311 sfp->id = id; 2312 2313 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2314 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2315 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2316 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2317 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2318 (int)sizeof(id.ext.datecode), id.ext.datecode); 2319 2320 /* Check whether we support this module */ 2321 if (!sfp->type->module_supported(&id)) { 2322 dev_err(sfp->dev, 2323 "module is not supported - phys id 0x%02x 0x%02x\n", 2324 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2325 return -EINVAL; 2326 } 2327 2328 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { 2329 ret = sfp_module_parse_sff8472(sfp); 2330 if (ret < 0) 2331 return ret; 2332 } 2333 2334 /* Parse the module power requirement */ 2335 ret = sfp_module_parse_power(sfp); 2336 if (ret < 0) 2337 return ret; 2338 2339 sfp_module_parse_rate_select(sfp); 2340 2341 mask = SFP_F_PRESENT; 2342 if (sfp->gpio[GPIO_TX_DISABLE]) 2343 mask |= SFP_F_TX_DISABLE; 2344 if (sfp->gpio[GPIO_TX_FAULT]) 2345 mask |= SFP_F_TX_FAULT; 2346 if (sfp->gpio[GPIO_LOS]) 2347 mask |= SFP_F_LOS; 2348 if (sfp->gpio[GPIO_RS0]) 2349 mask |= SFP_F_RS0; 2350 if (sfp->gpio[GPIO_RS1]) 2351 mask |= SFP_F_RS1; 2352 2353 sfp->module_t_start_up = T_START_UP; 2354 sfp->module_t_wait = T_WAIT; 2355 sfp->phy_t_retry = T_PHY_RETRY; 2356 2357 sfp->state_ignore_mask = 0; 2358 2359 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2360 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2361 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2362 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2363 sfp->mdio_protocol = MDIO_I2C_C45; 2364 else if (sfp->id.base.e1000_base_t) 2365 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2366 else 2367 sfp->mdio_protocol = MDIO_I2C_NONE; 2368 2369 sfp->quirk = sfp_lookup_quirk(&id); 2370 2371 mutex_lock(&sfp->st_mutex); 2372 /* Initialise state bits to use from hardware */ 2373 sfp->state_hw_mask = mask; 2374 2375 /* We want to drive the rate select pins that the module is using */ 2376 sfp->state_hw_drive |= sfp->rs_state_mask; 2377 2378 if (sfp->quirk && sfp->quirk->fixup) 2379 sfp->quirk->fixup(sfp); 2380 2381 sfp->state_hw_mask &= ~sfp->state_ignore_mask; 2382 mutex_unlock(&sfp->st_mutex); 2383 2384 return 0; 2385 } 2386 2387 static void sfp_sm_mod_remove(struct sfp *sfp) 2388 { 2389 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2390 sfp_module_remove(sfp->sfp_bus); 2391 2392 sfp_hwmon_remove(sfp); 2393 2394 memset(&sfp->id, 0, sizeof(sfp->id)); 2395 sfp->module_power_mW = 0; 2396 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2397 sfp->have_a2 = false; 2398 2399 dev_info(sfp->dev, "module removed\n"); 2400 } 2401 2402 /* This state machine tracks the upstream's state */ 2403 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2404 { 2405 switch (sfp->sm_dev_state) { 2406 default: 2407 if (event == SFP_E_DEV_ATTACH) 2408 sfp->sm_dev_state = SFP_DEV_DOWN; 2409 break; 2410 2411 case SFP_DEV_DOWN: 2412 if (event == SFP_E_DEV_DETACH) 2413 sfp->sm_dev_state = SFP_DEV_DETACHED; 2414 else if (event == SFP_E_DEV_UP) 2415 sfp->sm_dev_state = SFP_DEV_UP; 2416 break; 2417 2418 case SFP_DEV_UP: 2419 if (event == SFP_E_DEV_DETACH) 2420 sfp->sm_dev_state = SFP_DEV_DETACHED; 2421 else if (event == SFP_E_DEV_DOWN) 2422 sfp->sm_dev_state = SFP_DEV_DOWN; 2423 break; 2424 } 2425 } 2426 2427 /* This state machine tracks the insert/remove state of the module, probes 2428 * the on-board EEPROM, and sets up the power level. 2429 */ 2430 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2431 { 2432 int err; 2433 2434 /* Handle remove event globally, it resets this state machine */ 2435 if (event == SFP_E_REMOVE) { 2436 sfp_sm_mod_remove(sfp); 2437 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2438 return; 2439 } 2440 2441 /* Handle device detach globally */ 2442 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2443 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2444 if (sfp->module_power_mW > 1000 && 2445 sfp->sm_mod_state > SFP_MOD_HPOWER) 2446 sfp_sm_mod_hpower(sfp, false); 2447 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2448 return; 2449 } 2450 2451 switch (sfp->sm_mod_state) { 2452 default: 2453 if (event == SFP_E_INSERT) { 2454 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2455 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2456 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2457 } 2458 break; 2459 2460 case SFP_MOD_PROBE: 2461 /* Wait for T_PROBE_INIT to time out */ 2462 if (event != SFP_E_TIMEOUT) 2463 break; 2464 2465 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2466 if (err == -EAGAIN) { 2467 if (sfp->sm_mod_tries_init && 2468 --sfp->sm_mod_tries_init) { 2469 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2470 break; 2471 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2472 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2473 dev_warn(sfp->dev, 2474 "please wait, module slow to respond\n"); 2475 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2476 break; 2477 } 2478 } 2479 if (err < 0) { 2480 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2481 break; 2482 } 2483 2484 /* Force a poll to re-read the hardware signal state after 2485 * sfp_sm_mod_probe() changed state_hw_mask. 2486 */ 2487 mod_delayed_work(system_wq, &sfp->poll, 1); 2488 2489 err = sfp_hwmon_insert(sfp); 2490 if (err) 2491 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2492 ERR_PTR(err)); 2493 2494 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2495 fallthrough; 2496 case SFP_MOD_WAITDEV: 2497 /* Ensure that the device is attached before proceeding */ 2498 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2499 break; 2500 2501 /* Report the module insertion to the upstream device */ 2502 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2503 sfp->quirk); 2504 if (err < 0) { 2505 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2506 break; 2507 } 2508 2509 /* If this is a power level 1 module, we are done */ 2510 if (sfp->module_power_mW <= 1000) 2511 goto insert; 2512 2513 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2514 fallthrough; 2515 case SFP_MOD_HPOWER: 2516 /* Enable high power mode */ 2517 err = sfp_sm_mod_hpower(sfp, true); 2518 if (err < 0) { 2519 if (err != -EAGAIN) { 2520 sfp_module_remove(sfp->sfp_bus); 2521 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2522 } else { 2523 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2524 } 2525 break; 2526 } 2527 2528 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2529 break; 2530 2531 case SFP_MOD_WAITPWR: 2532 /* Wait for T_HPOWER_LEVEL to time out */ 2533 if (event != SFP_E_TIMEOUT) 2534 break; 2535 2536 insert: 2537 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2538 break; 2539 2540 case SFP_MOD_PRESENT: 2541 case SFP_MOD_ERROR: 2542 break; 2543 } 2544 } 2545 2546 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2547 { 2548 unsigned long timeout; 2549 int ret; 2550 2551 /* Some events are global */ 2552 if (sfp->sm_state != SFP_S_DOWN && 2553 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2554 sfp->sm_dev_state != SFP_DEV_UP)) { 2555 if (sfp->sm_state == SFP_S_LINK_UP && 2556 sfp->sm_dev_state == SFP_DEV_UP) 2557 sfp_sm_link_down(sfp); 2558 if (sfp->sm_state > SFP_S_INIT) 2559 sfp_module_stop(sfp->sfp_bus); 2560 if (sfp->mod_phy) 2561 sfp_sm_phy_detach(sfp); 2562 if (sfp->i2c_mii) 2563 sfp_i2c_mdiobus_destroy(sfp); 2564 sfp_module_tx_disable(sfp); 2565 sfp_soft_stop_poll(sfp); 2566 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2567 return; 2568 } 2569 2570 /* The main state machine */ 2571 switch (sfp->sm_state) { 2572 case SFP_S_DOWN: 2573 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2574 sfp->sm_dev_state != SFP_DEV_UP) 2575 break; 2576 2577 /* Only use the soft state bits if we have access to the A2h 2578 * memory, which implies that we have some level of SFF-8472 2579 * compliance. 2580 */ 2581 if (sfp->have_a2) 2582 sfp_soft_start_poll(sfp); 2583 2584 sfp_module_tx_enable(sfp); 2585 2586 /* Initialise the fault clearance retries */ 2587 sfp->sm_fault_retries = N_FAULT_INIT; 2588 2589 /* We need to check the TX_FAULT state, which is not defined 2590 * while TX_DISABLE is asserted. The earliest we want to do 2591 * anything (such as probe for a PHY) is 50ms (or more on 2592 * specific modules). 2593 */ 2594 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2595 break; 2596 2597 case SFP_S_WAIT: 2598 if (event != SFP_E_TIMEOUT) 2599 break; 2600 2601 if (sfp->state & SFP_F_TX_FAULT) { 2602 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2603 * from the TX_DISABLE deassertion for the module to 2604 * initialise, which is indicated by TX_FAULT 2605 * deasserting. 2606 */ 2607 timeout = sfp->module_t_start_up; 2608 if (timeout > sfp->module_t_wait) 2609 timeout -= sfp->module_t_wait; 2610 else 2611 timeout = 1; 2612 2613 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2614 } else { 2615 /* TX_FAULT is not asserted, assume the module has 2616 * finished initialising. 2617 */ 2618 goto init_done; 2619 } 2620 break; 2621 2622 case SFP_S_INIT: 2623 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2624 /* TX_FAULT is still asserted after t_init 2625 * or t_start_up, so assume there is a fault. 2626 */ 2627 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2628 sfp->sm_fault_retries == N_FAULT_INIT); 2629 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2630 init_done: 2631 /* Create mdiobus and start trying for PHY */ 2632 ret = sfp_sm_add_mdio_bus(sfp); 2633 if (ret < 0) { 2634 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2635 break; 2636 } 2637 sfp->sm_phy_retries = R_PHY_RETRY; 2638 goto phy_probe; 2639 } 2640 break; 2641 2642 case SFP_S_INIT_PHY: 2643 if (event != SFP_E_TIMEOUT) 2644 break; 2645 phy_probe: 2646 /* TX_FAULT deasserted or we timed out with TX_FAULT 2647 * clear. Probe for the PHY and check the LOS state. 2648 */ 2649 ret = sfp_sm_probe_for_phy(sfp); 2650 if (ret == -ENODEV) { 2651 if (--sfp->sm_phy_retries) { 2652 sfp_sm_next(sfp, SFP_S_INIT_PHY, 2653 sfp->phy_t_retry); 2654 dev_dbg(sfp->dev, 2655 "no PHY detected, %u tries left\n", 2656 sfp->sm_phy_retries); 2657 break; 2658 } else { 2659 dev_info(sfp->dev, "no PHY detected\n"); 2660 } 2661 } else if (ret) { 2662 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2663 break; 2664 } 2665 if (sfp_module_start(sfp->sfp_bus)) { 2666 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2667 break; 2668 } 2669 sfp_sm_link_check_los(sfp); 2670 2671 /* Reset the fault retry count */ 2672 sfp->sm_fault_retries = N_FAULT; 2673 break; 2674 2675 case SFP_S_INIT_TX_FAULT: 2676 if (event == SFP_E_TIMEOUT) { 2677 sfp_module_tx_fault_reset(sfp); 2678 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2679 } 2680 break; 2681 2682 case SFP_S_WAIT_LOS: 2683 if (event == SFP_E_TX_FAULT) 2684 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2685 else if (sfp_los_event_inactive(sfp, event)) 2686 sfp_sm_link_up(sfp); 2687 break; 2688 2689 case SFP_S_LINK_UP: 2690 if (event == SFP_E_TX_FAULT) { 2691 sfp_sm_link_down(sfp); 2692 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2693 } else if (sfp_los_event_active(sfp, event)) { 2694 sfp_sm_link_down(sfp); 2695 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2696 } 2697 break; 2698 2699 case SFP_S_TX_FAULT: 2700 if (event == SFP_E_TIMEOUT) { 2701 sfp_module_tx_fault_reset(sfp); 2702 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2703 } 2704 break; 2705 2706 case SFP_S_REINIT: 2707 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2708 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2709 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2710 dev_info(sfp->dev, "module transmit fault recovered\n"); 2711 sfp_sm_link_check_los(sfp); 2712 } 2713 break; 2714 2715 case SFP_S_TX_DISABLE: 2716 break; 2717 } 2718 } 2719 2720 static void __sfp_sm_event(struct sfp *sfp, unsigned int event) 2721 { 2722 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2723 mod_state_to_str(sfp->sm_mod_state), 2724 dev_state_to_str(sfp->sm_dev_state), 2725 sm_state_to_str(sfp->sm_state), 2726 event_to_str(event)); 2727 2728 sfp_sm_device(sfp, event); 2729 sfp_sm_module(sfp, event); 2730 sfp_sm_main(sfp, event); 2731 2732 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2733 mod_state_to_str(sfp->sm_mod_state), 2734 dev_state_to_str(sfp->sm_dev_state), 2735 sm_state_to_str(sfp->sm_state)); 2736 } 2737 2738 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2739 { 2740 mutex_lock(&sfp->sm_mutex); 2741 __sfp_sm_event(sfp, event); 2742 mutex_unlock(&sfp->sm_mutex); 2743 } 2744 2745 static void sfp_attach(struct sfp *sfp) 2746 { 2747 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2748 } 2749 2750 static void sfp_detach(struct sfp *sfp) 2751 { 2752 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2753 } 2754 2755 static void sfp_start(struct sfp *sfp) 2756 { 2757 sfp_sm_event(sfp, SFP_E_DEV_UP); 2758 } 2759 2760 static void sfp_stop(struct sfp *sfp) 2761 { 2762 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2763 } 2764 2765 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) 2766 { 2767 unsigned int set; 2768 2769 sfp->rate_kbd = rate_kbd; 2770 2771 if (rate_kbd > sfp->rs_threshold_kbd) 2772 set = sfp->rs_state_mask; 2773 else 2774 set = 0; 2775 2776 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); 2777 } 2778 2779 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2780 { 2781 /* locking... and check module is present */ 2782 2783 if (sfp->id.ext.sff8472_compliance && 2784 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2785 modinfo->type = ETH_MODULE_SFF_8472; 2786 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2787 } else { 2788 modinfo->type = ETH_MODULE_SFF_8079; 2789 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2790 } 2791 return 0; 2792 } 2793 2794 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2795 u8 *data) 2796 { 2797 unsigned int first, last, len; 2798 int ret; 2799 2800 if (!(sfp->state & SFP_F_PRESENT)) 2801 return -ENODEV; 2802 2803 if (ee->len == 0) 2804 return -EINVAL; 2805 2806 first = ee->offset; 2807 last = ee->offset + ee->len; 2808 if (first < ETH_MODULE_SFF_8079_LEN) { 2809 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2810 len -= first; 2811 2812 ret = sfp_read(sfp, false, first, data, len); 2813 if (ret < 0) 2814 return ret; 2815 2816 first += len; 2817 data += len; 2818 } 2819 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2820 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2821 len -= first; 2822 first -= ETH_MODULE_SFF_8079_LEN; 2823 2824 ret = sfp_read(sfp, true, first, data, len); 2825 if (ret < 0) 2826 return ret; 2827 } 2828 return 0; 2829 } 2830 2831 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2832 const struct ethtool_module_eeprom *page, 2833 struct netlink_ext_ack *extack) 2834 { 2835 if (!(sfp->state & SFP_F_PRESENT)) 2836 return -ENODEV; 2837 2838 if (page->bank) { 2839 NL_SET_ERR_MSG(extack, "Banks not supported"); 2840 return -EOPNOTSUPP; 2841 } 2842 2843 if (page->page) { 2844 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2845 return -EOPNOTSUPP; 2846 } 2847 2848 if (page->i2c_address != 0x50 && 2849 page->i2c_address != 0x51) { 2850 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2851 return -EOPNOTSUPP; 2852 } 2853 2854 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2855 page->data, page->length); 2856 }; 2857 2858 static const struct sfp_socket_ops sfp_module_ops = { 2859 .attach = sfp_attach, 2860 .detach = sfp_detach, 2861 .start = sfp_start, 2862 .stop = sfp_stop, 2863 .set_signal_rate = sfp_set_signal_rate, 2864 .module_info = sfp_module_info, 2865 .module_eeprom = sfp_module_eeprom, 2866 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2867 }; 2868 2869 static void sfp_timeout(struct work_struct *work) 2870 { 2871 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2872 2873 rtnl_lock(); 2874 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2875 rtnl_unlock(); 2876 } 2877 2878 static void sfp_check_state(struct sfp *sfp) 2879 { 2880 unsigned int state, i, changed; 2881 2882 rtnl_lock(); 2883 mutex_lock(&sfp->st_mutex); 2884 state = sfp_get_state(sfp); 2885 changed = state ^ sfp->state; 2886 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2887 2888 for (i = 0; i < GPIO_MAX; i++) 2889 if (changed & BIT(i)) 2890 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2891 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2892 2893 state |= sfp->state & SFP_F_OUTPUTS; 2894 sfp->state = state; 2895 mutex_unlock(&sfp->st_mutex); 2896 2897 mutex_lock(&sfp->sm_mutex); 2898 if (changed & SFP_F_PRESENT) 2899 __sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2900 SFP_E_INSERT : SFP_E_REMOVE); 2901 2902 if (changed & SFP_F_TX_FAULT) 2903 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2904 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2905 2906 if (changed & SFP_F_LOS) 2907 __sfp_sm_event(sfp, state & SFP_F_LOS ? 2908 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2909 mutex_unlock(&sfp->sm_mutex); 2910 rtnl_unlock(); 2911 } 2912 2913 static irqreturn_t sfp_irq(int irq, void *data) 2914 { 2915 struct sfp *sfp = data; 2916 2917 sfp_check_state(sfp); 2918 2919 return IRQ_HANDLED; 2920 } 2921 2922 static void sfp_poll(struct work_struct *work) 2923 { 2924 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2925 2926 sfp_check_state(sfp); 2927 2928 // st_mutex doesn't need to be held here for state_soft_mask, 2929 // it's unimportant if we race while reading this. 2930 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2931 sfp->need_poll) 2932 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2933 } 2934 2935 static struct sfp *sfp_alloc(struct device *dev) 2936 { 2937 struct sfp *sfp; 2938 2939 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2940 if (!sfp) 2941 return ERR_PTR(-ENOMEM); 2942 2943 sfp->dev = dev; 2944 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2945 2946 mutex_init(&sfp->sm_mutex); 2947 mutex_init(&sfp->st_mutex); 2948 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2949 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2950 2951 sfp_hwmon_init(sfp); 2952 2953 return sfp; 2954 } 2955 2956 static void sfp_cleanup(void *data) 2957 { 2958 struct sfp *sfp = data; 2959 2960 sfp_hwmon_exit(sfp); 2961 2962 cancel_delayed_work_sync(&sfp->poll); 2963 cancel_delayed_work_sync(&sfp->timeout); 2964 if (sfp->i2c_mii) { 2965 mdiobus_unregister(sfp->i2c_mii); 2966 mdiobus_free(sfp->i2c_mii); 2967 } 2968 if (sfp->i2c) 2969 i2c_put_adapter(sfp->i2c); 2970 kfree(sfp); 2971 } 2972 2973 static int sfp_i2c_get(struct sfp *sfp) 2974 { 2975 struct fwnode_handle *h; 2976 struct i2c_adapter *i2c; 2977 int err; 2978 2979 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2980 if (IS_ERR(h)) { 2981 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2982 return -ENODEV; 2983 } 2984 2985 i2c = i2c_get_adapter_by_fwnode(h); 2986 if (!i2c) { 2987 err = -EPROBE_DEFER; 2988 goto put; 2989 } 2990 2991 err = sfp_i2c_configure(sfp, i2c); 2992 if (err) 2993 i2c_put_adapter(i2c); 2994 put: 2995 fwnode_handle_put(h); 2996 return err; 2997 } 2998 2999 static int sfp_probe(struct platform_device *pdev) 3000 { 3001 const struct sff_data *sff; 3002 char *sfp_irq_name; 3003 struct sfp *sfp; 3004 int err, i; 3005 3006 sfp = sfp_alloc(&pdev->dev); 3007 if (IS_ERR(sfp)) 3008 return PTR_ERR(sfp); 3009 3010 platform_set_drvdata(pdev, sfp); 3011 3012 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 3013 if (err < 0) 3014 return err; 3015 3016 sff = device_get_match_data(sfp->dev); 3017 if (!sff) 3018 sff = &sfp_data; 3019 3020 sfp->type = sff; 3021 3022 err = sfp_i2c_get(sfp); 3023 if (err) 3024 return err; 3025 3026 for (i = 0; i < GPIO_MAX; i++) 3027 if (sff->gpios & BIT(i)) { 3028 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 3029 gpio_names[i], gpio_flags[i]); 3030 if (IS_ERR(sfp->gpio[i])) 3031 return PTR_ERR(sfp->gpio[i]); 3032 } 3033 3034 sfp->state_hw_mask = SFP_F_PRESENT; 3035 sfp->state_hw_drive = SFP_F_TX_DISABLE; 3036 3037 sfp->get_state = sfp_gpio_get_state; 3038 sfp->set_state = sfp_gpio_set_state; 3039 3040 /* Modules that have no detect signal are always present */ 3041 if (!(sfp->gpio[GPIO_MODDEF0])) 3042 sfp->get_state = sff_gpio_get_state; 3043 3044 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 3045 &sfp->max_power_mW); 3046 if (sfp->max_power_mW < 1000) { 3047 if (sfp->max_power_mW) 3048 dev_warn(sfp->dev, 3049 "Firmware bug: host maximum power should be at least 1W\n"); 3050 sfp->max_power_mW = 1000; 3051 } 3052 3053 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 3054 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 3055 3056 /* Get the initial state, and always signal TX disable, 3057 * since the network interface will not be up. 3058 */ 3059 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 3060 3061 if (sfp->gpio[GPIO_RS0] && 3062 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) 3063 sfp->state |= SFP_F_RS0; 3064 sfp_set_state(sfp, sfp->state); 3065 sfp_module_tx_disable(sfp); 3066 if (sfp->state & SFP_F_PRESENT) { 3067 rtnl_lock(); 3068 sfp_sm_event(sfp, SFP_E_INSERT); 3069 rtnl_unlock(); 3070 } 3071 3072 for (i = 0; i < GPIO_MAX; i++) { 3073 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 3074 continue; 3075 3076 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 3077 if (sfp->gpio_irq[i] < 0) { 3078 sfp->gpio_irq[i] = 0; 3079 sfp->need_poll = true; 3080 continue; 3081 } 3082 3083 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 3084 "%s-%s", dev_name(sfp->dev), 3085 gpio_names[i]); 3086 3087 if (!sfp_irq_name) 3088 return -ENOMEM; 3089 3090 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 3091 NULL, sfp_irq, 3092 IRQF_ONESHOT | 3093 IRQF_TRIGGER_RISING | 3094 IRQF_TRIGGER_FALLING, 3095 sfp_irq_name, sfp); 3096 if (err) { 3097 sfp->gpio_irq[i] = 0; 3098 sfp->need_poll = true; 3099 } 3100 } 3101 3102 if (sfp->need_poll) 3103 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 3104 3105 /* We could have an issue in cases no Tx disable pin is available or 3106 * wired as modules using a laser as their light source will continue to 3107 * be active when the fiber is removed. This could be a safety issue and 3108 * we should at least warn the user about that. 3109 */ 3110 if (!sfp->gpio[GPIO_TX_DISABLE]) 3111 dev_warn(sfp->dev, 3112 "No tx_disable pin: SFP modules will always be emitting.\n"); 3113 3114 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 3115 if (!sfp->sfp_bus) 3116 return -ENOMEM; 3117 3118 sfp_debugfs_init(sfp); 3119 3120 return 0; 3121 } 3122 3123 static void sfp_remove(struct platform_device *pdev) 3124 { 3125 struct sfp *sfp = platform_get_drvdata(pdev); 3126 3127 sfp_debugfs_exit(sfp); 3128 sfp_unregister_socket(sfp->sfp_bus); 3129 3130 rtnl_lock(); 3131 sfp_sm_event(sfp, SFP_E_REMOVE); 3132 rtnl_unlock(); 3133 } 3134 3135 static void sfp_shutdown(struct platform_device *pdev) 3136 { 3137 struct sfp *sfp = platform_get_drvdata(pdev); 3138 int i; 3139 3140 for (i = 0; i < GPIO_MAX; i++) { 3141 if (!sfp->gpio_irq[i]) 3142 continue; 3143 3144 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 3145 } 3146 3147 cancel_delayed_work_sync(&sfp->poll); 3148 cancel_delayed_work_sync(&sfp->timeout); 3149 } 3150 3151 static struct platform_driver sfp_driver = { 3152 .probe = sfp_probe, 3153 .remove = sfp_remove, 3154 .shutdown = sfp_shutdown, 3155 .driver = { 3156 .name = "sfp", 3157 .of_match_table = sfp_of_match, 3158 }, 3159 }; 3160 3161 static int sfp_init(void) 3162 { 3163 poll_jiffies = msecs_to_jiffies(100); 3164 3165 return platform_driver_register(&sfp_driver); 3166 } 3167 module_init(sfp_init); 3168 3169 static void sfp_exit(void) 3170 { 3171 platform_driver_unregister(&sfp_driver); 3172 } 3173 module_exit(sfp_exit); 3174 3175 MODULE_ALIAS("platform:sfp"); 3176 MODULE_AUTHOR("Russell King"); 3177 MODULE_LICENSE("GPL v2"); 3178 MODULE_DESCRIPTION("SFP cage support"); 3179