1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RATE_SELECT, 28 GPIO_MAX, 29 30 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 31 SFP_F_LOS = BIT(GPIO_LOS), 32 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 33 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 34 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 35 36 SFP_E_INSERT = 0, 37 SFP_E_REMOVE, 38 SFP_E_DEV_ATTACH, 39 SFP_E_DEV_DETACH, 40 SFP_E_DEV_DOWN, 41 SFP_E_DEV_UP, 42 SFP_E_TX_FAULT, 43 SFP_E_TX_CLEAR, 44 SFP_E_LOS_HIGH, 45 SFP_E_LOS_LOW, 46 SFP_E_TIMEOUT, 47 48 SFP_MOD_EMPTY = 0, 49 SFP_MOD_ERROR, 50 SFP_MOD_PROBE, 51 SFP_MOD_WAITDEV, 52 SFP_MOD_HPOWER, 53 SFP_MOD_WAITPWR, 54 SFP_MOD_PRESENT, 55 56 SFP_DEV_DETACHED = 0, 57 SFP_DEV_DOWN, 58 SFP_DEV_UP, 59 60 SFP_S_DOWN = 0, 61 SFP_S_FAIL, 62 SFP_S_WAIT, 63 SFP_S_INIT, 64 SFP_S_INIT_PHY, 65 SFP_S_INIT_TX_FAULT, 66 SFP_S_WAIT_LOS, 67 SFP_S_LINK_UP, 68 SFP_S_TX_FAULT, 69 SFP_S_REINIT, 70 SFP_S_TX_DISABLE, 71 }; 72 73 static const char * const mod_state_strings[] = { 74 [SFP_MOD_EMPTY] = "empty", 75 [SFP_MOD_ERROR] = "error", 76 [SFP_MOD_PROBE] = "probe", 77 [SFP_MOD_WAITDEV] = "waitdev", 78 [SFP_MOD_HPOWER] = "hpower", 79 [SFP_MOD_WAITPWR] = "waitpwr", 80 [SFP_MOD_PRESENT] = "present", 81 }; 82 83 static const char *mod_state_to_str(unsigned short mod_state) 84 { 85 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 86 return "Unknown module state"; 87 return mod_state_strings[mod_state]; 88 } 89 90 static const char * const dev_state_strings[] = { 91 [SFP_DEV_DETACHED] = "detached", 92 [SFP_DEV_DOWN] = "down", 93 [SFP_DEV_UP] = "up", 94 }; 95 96 static const char *dev_state_to_str(unsigned short dev_state) 97 { 98 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 99 return "Unknown device state"; 100 return dev_state_strings[dev_state]; 101 } 102 103 static const char * const event_strings[] = { 104 [SFP_E_INSERT] = "insert", 105 [SFP_E_REMOVE] = "remove", 106 [SFP_E_DEV_ATTACH] = "dev_attach", 107 [SFP_E_DEV_DETACH] = "dev_detach", 108 [SFP_E_DEV_DOWN] = "dev_down", 109 [SFP_E_DEV_UP] = "dev_up", 110 [SFP_E_TX_FAULT] = "tx_fault", 111 [SFP_E_TX_CLEAR] = "tx_clear", 112 [SFP_E_LOS_HIGH] = "los_high", 113 [SFP_E_LOS_LOW] = "los_low", 114 [SFP_E_TIMEOUT] = "timeout", 115 }; 116 117 static const char *event_to_str(unsigned short event) 118 { 119 if (event >= ARRAY_SIZE(event_strings)) 120 return "Unknown event"; 121 return event_strings[event]; 122 } 123 124 static const char * const sm_state_strings[] = { 125 [SFP_S_DOWN] = "down", 126 [SFP_S_FAIL] = "fail", 127 [SFP_S_WAIT] = "wait", 128 [SFP_S_INIT] = "init", 129 [SFP_S_INIT_PHY] = "init_phy", 130 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 131 [SFP_S_WAIT_LOS] = "wait_los", 132 [SFP_S_LINK_UP] = "link_up", 133 [SFP_S_TX_FAULT] = "tx_fault", 134 [SFP_S_REINIT] = "reinit", 135 [SFP_S_TX_DISABLE] = "tx_disable", 136 }; 137 138 static const char *sm_state_to_str(unsigned short sm_state) 139 { 140 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 141 return "Unknown state"; 142 return sm_state_strings[sm_state]; 143 } 144 145 static const char *gpio_names[] = { 146 "mod-def0", 147 "los", 148 "tx-fault", 149 "tx-disable", 150 "rate-select0", 151 }; 152 153 static const enum gpiod_flags gpio_flags[] = { 154 GPIOD_IN, 155 GPIOD_IN, 156 GPIOD_IN, 157 GPIOD_ASIS, 158 GPIOD_ASIS, 159 }; 160 161 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 162 * non-cooled module to initialise its laser safety circuitry. We wait 163 * an initial T_WAIT period before we check the tx fault to give any PHY 164 * on board (for a copper SFP) time to initialise. 165 */ 166 #define T_WAIT msecs_to_jiffies(50) 167 #define T_WAIT_ROLLBALL msecs_to_jiffies(25000) 168 #define T_START_UP msecs_to_jiffies(300) 169 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 170 171 /* t_reset is the time required to assert the TX_DISABLE signal to reset 172 * an indicated TX_FAULT. 173 */ 174 #define T_RESET_US 10 175 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 176 177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 178 * time. If the TX_FAULT signal is not deasserted after this number of 179 * attempts at clearing it, we decide that the module is faulty. 180 * N_FAULT is the same but after the module has initialised. 181 */ 182 #define N_FAULT_INIT 5 183 #define N_FAULT 5 184 185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 186 * R_PHY_RETRY is the number of attempts. 187 */ 188 #define T_PHY_RETRY msecs_to_jiffies(50) 189 #define R_PHY_RETRY 12 190 191 /* SFP module presence detection is poor: the three MOD DEF signals are 192 * the same length on the PCB, which means it's possible for MOD DEF 0 to 193 * connect before the I2C bus on MOD DEF 1/2. 194 * 195 * The SFF-8472 specifies t_serial ("Time from power on until module is 196 * ready for data transmission over the two wire serial bus.") as 300ms. 197 */ 198 #define T_SERIAL msecs_to_jiffies(300) 199 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 200 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 201 #define R_PROBE_RETRY_INIT 10 202 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 203 #define R_PROBE_RETRY_SLOW 12 204 205 /* SFP modules appear to always have their PHY configured for bus address 206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 207 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 208 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 209 */ 210 #define SFP_PHY_ADDR 22 211 #define SFP_PHY_ADDR_ROLLBALL 17 212 213 struct sff_data { 214 unsigned int gpios; 215 bool (*module_supported)(const struct sfp_eeprom_id *id); 216 }; 217 218 struct sfp { 219 struct device *dev; 220 struct i2c_adapter *i2c; 221 struct mii_bus *i2c_mii; 222 struct sfp_bus *sfp_bus; 223 enum mdio_i2c_proto mdio_protocol; 224 struct phy_device *mod_phy; 225 const struct sff_data *type; 226 size_t i2c_block_size; 227 u32 max_power_mW; 228 229 unsigned int (*get_state)(struct sfp *); 230 void (*set_state)(struct sfp *, unsigned int); 231 int (*read)(struct sfp *, bool, u8, void *, size_t); 232 int (*write)(struct sfp *, bool, u8, void *, size_t); 233 234 struct gpio_desc *gpio[GPIO_MAX]; 235 int gpio_irq[GPIO_MAX]; 236 237 bool need_poll; 238 239 struct mutex st_mutex; /* Protects state */ 240 unsigned int state_hw_mask; 241 unsigned int state_soft_mask; 242 unsigned int state; 243 struct delayed_work poll; 244 struct delayed_work timeout; 245 struct mutex sm_mutex; /* Protects state machine */ 246 unsigned char sm_mod_state; 247 unsigned char sm_mod_tries_init; 248 unsigned char sm_mod_tries; 249 unsigned char sm_dev_state; 250 unsigned short sm_state; 251 unsigned char sm_fault_retries; 252 unsigned char sm_phy_retries; 253 254 struct sfp_eeprom_id id; 255 unsigned int module_power_mW; 256 unsigned int module_t_start_up; 257 unsigned int module_t_wait; 258 259 bool have_a2; 260 bool tx_fault_ignore; 261 262 const struct sfp_quirk *quirk; 263 264 #if IS_ENABLED(CONFIG_HWMON) 265 struct sfp_diag diag; 266 struct delayed_work hwmon_probe; 267 unsigned int hwmon_tries; 268 struct device *hwmon_dev; 269 char *hwmon_name; 270 #endif 271 272 #if IS_ENABLED(CONFIG_DEBUG_FS) 273 struct dentry *debugfs_dir; 274 #endif 275 }; 276 277 static bool sff_module_supported(const struct sfp_eeprom_id *id) 278 { 279 return id->base.phys_id == SFF8024_ID_SFF_8472 && 280 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 281 } 282 283 static const struct sff_data sff_data = { 284 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 285 .module_supported = sff_module_supported, 286 }; 287 288 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 289 { 290 if (id->base.phys_id == SFF8024_ID_SFP && 291 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 292 return true; 293 294 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 295 * phys id SFF instead of SFP. Therefore mark this module explicitly 296 * as supported based on vendor name and pn match. 297 */ 298 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 299 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 300 !memcmp(id->base.vendor_name, "UBNT ", 16) && 301 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 302 return true; 303 304 return false; 305 } 306 307 static const struct sff_data sfp_data = { 308 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 309 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 310 .module_supported = sfp_module_supported, 311 }; 312 313 static const struct of_device_id sfp_of_match[] = { 314 { .compatible = "sff,sff", .data = &sff_data, }, 315 { .compatible = "sff,sfp", .data = &sfp_data, }, 316 { }, 317 }; 318 MODULE_DEVICE_TABLE(of, sfp_of_match); 319 320 static void sfp_fixup_long_startup(struct sfp *sfp) 321 { 322 sfp->module_t_start_up = T_START_UP_BAD_GPON; 323 } 324 325 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 326 { 327 sfp->tx_fault_ignore = true; 328 } 329 330 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 331 { 332 /* Ignore the TX_FAULT and LOS signals on this module. 333 * these are possibly used for other purposes on this 334 * module, e.g. a serial port. 335 */ 336 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 337 } 338 339 static void sfp_fixup_rollball(struct sfp *sfp) 340 { 341 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 342 sfp->module_t_wait = T_WAIT_ROLLBALL; 343 } 344 345 static void sfp_fixup_rollball_cc(struct sfp *sfp) 346 { 347 sfp_fixup_rollball(sfp); 348 349 /* Some RollBall SFPs may have wrong (zero) extended compliance code 350 * burned in EEPROM. For PHY probing we need the correct one. 351 */ 352 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 353 } 354 355 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 356 unsigned long *modes, 357 unsigned long *interfaces) 358 { 359 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 360 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 361 } 362 363 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, 364 unsigned long *modes, 365 unsigned long *interfaces) 366 { 367 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); 368 } 369 370 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, 371 unsigned long *modes, 372 unsigned long *interfaces) 373 { 374 /* Copper 2.5G SFP */ 375 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); 376 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 377 sfp_quirk_disable_autoneg(id, modes, interfaces); 378 } 379 380 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 381 unsigned long *modes, 382 unsigned long *interfaces) 383 { 384 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 385 * types including 10G Ethernet which is not truth. So clear all claimed 386 * modes and set only one mode which module supports: 1000baseX_Full. 387 */ 388 linkmode_zero(modes); 389 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 390 } 391 392 #define SFP_QUIRK(_v, _p, _m, _f) \ 393 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 394 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 395 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 396 397 static const struct sfp_quirk sfp_quirks[] = { 398 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 399 // report 2500MBd NRZ in their EEPROM 400 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 401 402 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 403 // NRZ in their EEPROM 404 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 405 sfp_fixup_long_startup), 406 407 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 408 409 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 410 // their EEPROM 411 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 412 sfp_fixup_ignore_tx_fault), 413 414 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 415 // 2500MBd NRZ in their EEPROM 416 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 417 418 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 419 420 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 421 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 422 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 423 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 424 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 425 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 426 }; 427 428 static size_t sfp_strlen(const char *str, size_t maxlen) 429 { 430 size_t size, i; 431 432 /* Trailing characters should be filled with space chars, but 433 * some manufacturers can't read SFF-8472 and use NUL. 434 */ 435 for (i = 0, size = 0; i < maxlen; i++) 436 if (str[i] != ' ' && str[i] != '\0') 437 size = i + 1; 438 439 return size; 440 } 441 442 static bool sfp_match(const char *qs, const char *str, size_t len) 443 { 444 if (!qs) 445 return true; 446 if (strlen(qs) != len) 447 return false; 448 return !strncmp(qs, str, len); 449 } 450 451 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 452 { 453 const struct sfp_quirk *q; 454 unsigned int i; 455 size_t vs, ps; 456 457 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 458 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 459 460 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 461 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 462 sfp_match(q->part, id->base.vendor_pn, ps)) 463 return q; 464 465 return NULL; 466 } 467 468 static unsigned long poll_jiffies; 469 470 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 471 { 472 unsigned int i, state, v; 473 474 for (i = state = 0; i < GPIO_MAX; i++) { 475 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 476 continue; 477 478 v = gpiod_get_value_cansleep(sfp->gpio[i]); 479 if (v) 480 state |= BIT(i); 481 } 482 483 return state; 484 } 485 486 static unsigned int sff_gpio_get_state(struct sfp *sfp) 487 { 488 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 489 } 490 491 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 492 { 493 if (state & SFP_F_PRESENT) { 494 /* If the module is present, drive the signals */ 495 if (sfp->gpio[GPIO_TX_DISABLE]) 496 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 497 state & SFP_F_TX_DISABLE); 498 if (state & SFP_F_RATE_SELECT) 499 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 500 state & SFP_F_RATE_SELECT); 501 } else { 502 /* Otherwise, let them float to the pull-ups */ 503 if (sfp->gpio[GPIO_TX_DISABLE]) 504 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 505 if (state & SFP_F_RATE_SELECT) 506 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 507 } 508 } 509 510 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 511 size_t len) 512 { 513 struct i2c_msg msgs[2]; 514 u8 bus_addr = a2 ? 0x51 : 0x50; 515 size_t block_size = sfp->i2c_block_size; 516 size_t this_len; 517 int ret; 518 519 msgs[0].addr = bus_addr; 520 msgs[0].flags = 0; 521 msgs[0].len = 1; 522 msgs[0].buf = &dev_addr; 523 msgs[1].addr = bus_addr; 524 msgs[1].flags = I2C_M_RD; 525 msgs[1].len = len; 526 msgs[1].buf = buf; 527 528 while (len) { 529 this_len = len; 530 if (this_len > block_size) 531 this_len = block_size; 532 533 msgs[1].len = this_len; 534 535 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 536 if (ret < 0) 537 return ret; 538 539 if (ret != ARRAY_SIZE(msgs)) 540 break; 541 542 msgs[1].buf += this_len; 543 dev_addr += this_len; 544 len -= this_len; 545 } 546 547 return msgs[1].buf - (u8 *)buf; 548 } 549 550 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 551 size_t len) 552 { 553 struct i2c_msg msgs[1]; 554 u8 bus_addr = a2 ? 0x51 : 0x50; 555 int ret; 556 557 msgs[0].addr = bus_addr; 558 msgs[0].flags = 0; 559 msgs[0].len = 1 + len; 560 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 561 if (!msgs[0].buf) 562 return -ENOMEM; 563 564 msgs[0].buf[0] = dev_addr; 565 memcpy(&msgs[0].buf[1], buf, len); 566 567 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 568 569 kfree(msgs[0].buf); 570 571 if (ret < 0) 572 return ret; 573 574 return ret == ARRAY_SIZE(msgs) ? len : 0; 575 } 576 577 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 578 { 579 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 580 return -EINVAL; 581 582 sfp->i2c = i2c; 583 sfp->read = sfp_i2c_read; 584 sfp->write = sfp_i2c_write; 585 586 return 0; 587 } 588 589 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 590 { 591 struct mii_bus *i2c_mii; 592 int ret; 593 594 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 595 if (IS_ERR(i2c_mii)) 596 return PTR_ERR(i2c_mii); 597 598 i2c_mii->name = "SFP I2C Bus"; 599 i2c_mii->phy_mask = ~0; 600 601 ret = mdiobus_register(i2c_mii); 602 if (ret < 0) { 603 mdiobus_free(i2c_mii); 604 return ret; 605 } 606 607 sfp->i2c_mii = i2c_mii; 608 609 return 0; 610 } 611 612 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 613 { 614 mdiobus_unregister(sfp->i2c_mii); 615 sfp->i2c_mii = NULL; 616 } 617 618 /* Interface */ 619 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 620 { 621 return sfp->read(sfp, a2, addr, buf, len); 622 } 623 624 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 625 { 626 return sfp->write(sfp, a2, addr, buf, len); 627 } 628 629 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 630 { 631 int ret; 632 u8 old, v; 633 634 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 635 if (ret != sizeof(old)) 636 return ret; 637 638 v = (old & ~mask) | (val & mask); 639 if (v == old) 640 return sizeof(v); 641 642 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 643 } 644 645 static unsigned int sfp_soft_get_state(struct sfp *sfp) 646 { 647 unsigned int state = 0; 648 u8 status; 649 int ret; 650 651 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 652 if (ret == sizeof(status)) { 653 if (status & SFP_STATUS_RX_LOS) 654 state |= SFP_F_LOS; 655 if (status & SFP_STATUS_TX_FAULT) 656 state |= SFP_F_TX_FAULT; 657 } else { 658 dev_err_ratelimited(sfp->dev, 659 "failed to read SFP soft status: %pe\n", 660 ERR_PTR(ret)); 661 /* Preserve the current state */ 662 state = sfp->state; 663 } 664 665 return state & sfp->state_soft_mask; 666 } 667 668 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 669 { 670 u8 mask = SFP_STATUS_TX_DISABLE_FORCE; 671 u8 val = 0; 672 673 if (state & SFP_F_TX_DISABLE) 674 val |= SFP_STATUS_TX_DISABLE_FORCE; 675 676 677 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 678 } 679 680 static void sfp_soft_start_poll(struct sfp *sfp) 681 { 682 const struct sfp_eeprom_id *id = &sfp->id; 683 unsigned int mask = 0; 684 685 sfp->state_soft_mask = 0; 686 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 687 mask |= SFP_F_TX_DISABLE; 688 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 689 mask |= SFP_F_TX_FAULT; 690 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 691 mask |= SFP_F_LOS; 692 693 // Poll the soft state for hardware pins we want to ignore 694 sfp->state_soft_mask = ~sfp->state_hw_mask & mask; 695 696 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 697 !sfp->need_poll) 698 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 699 } 700 701 static void sfp_soft_stop_poll(struct sfp *sfp) 702 { 703 sfp->state_soft_mask = 0; 704 } 705 706 static unsigned int sfp_get_state(struct sfp *sfp) 707 { 708 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 709 unsigned int state; 710 711 state = sfp->get_state(sfp) & sfp->state_hw_mask; 712 if (state & SFP_F_PRESENT && soft) 713 state |= sfp_soft_get_state(sfp); 714 715 return state; 716 } 717 718 static void sfp_set_state(struct sfp *sfp, unsigned int state) 719 { 720 sfp->set_state(sfp, state); 721 722 if (state & SFP_F_PRESENT && 723 sfp->state_soft_mask & SFP_F_TX_DISABLE) 724 sfp_soft_set_state(sfp, state); 725 } 726 727 static unsigned int sfp_check(void *buf, size_t len) 728 { 729 u8 *p, check; 730 731 for (p = buf, check = 0; len; p++, len--) 732 check += *p; 733 734 return check; 735 } 736 737 /* hwmon */ 738 #if IS_ENABLED(CONFIG_HWMON) 739 static umode_t sfp_hwmon_is_visible(const void *data, 740 enum hwmon_sensor_types type, 741 u32 attr, int channel) 742 { 743 const struct sfp *sfp = data; 744 745 switch (type) { 746 case hwmon_temp: 747 switch (attr) { 748 case hwmon_temp_min_alarm: 749 case hwmon_temp_max_alarm: 750 case hwmon_temp_lcrit_alarm: 751 case hwmon_temp_crit_alarm: 752 case hwmon_temp_min: 753 case hwmon_temp_max: 754 case hwmon_temp_lcrit: 755 case hwmon_temp_crit: 756 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 757 return 0; 758 fallthrough; 759 case hwmon_temp_input: 760 case hwmon_temp_label: 761 return 0444; 762 default: 763 return 0; 764 } 765 case hwmon_in: 766 switch (attr) { 767 case hwmon_in_min_alarm: 768 case hwmon_in_max_alarm: 769 case hwmon_in_lcrit_alarm: 770 case hwmon_in_crit_alarm: 771 case hwmon_in_min: 772 case hwmon_in_max: 773 case hwmon_in_lcrit: 774 case hwmon_in_crit: 775 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 776 return 0; 777 fallthrough; 778 case hwmon_in_input: 779 case hwmon_in_label: 780 return 0444; 781 default: 782 return 0; 783 } 784 case hwmon_curr: 785 switch (attr) { 786 case hwmon_curr_min_alarm: 787 case hwmon_curr_max_alarm: 788 case hwmon_curr_lcrit_alarm: 789 case hwmon_curr_crit_alarm: 790 case hwmon_curr_min: 791 case hwmon_curr_max: 792 case hwmon_curr_lcrit: 793 case hwmon_curr_crit: 794 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 795 return 0; 796 fallthrough; 797 case hwmon_curr_input: 798 case hwmon_curr_label: 799 return 0444; 800 default: 801 return 0; 802 } 803 case hwmon_power: 804 /* External calibration of receive power requires 805 * floating point arithmetic. Doing that in the kernel 806 * is not easy, so just skip it. If the module does 807 * not require external calibration, we can however 808 * show receiver power, since FP is then not needed. 809 */ 810 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 811 channel == 1) 812 return 0; 813 switch (attr) { 814 case hwmon_power_min_alarm: 815 case hwmon_power_max_alarm: 816 case hwmon_power_lcrit_alarm: 817 case hwmon_power_crit_alarm: 818 case hwmon_power_min: 819 case hwmon_power_max: 820 case hwmon_power_lcrit: 821 case hwmon_power_crit: 822 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 823 return 0; 824 fallthrough; 825 case hwmon_power_input: 826 case hwmon_power_label: 827 return 0444; 828 default: 829 return 0; 830 } 831 default: 832 return 0; 833 } 834 } 835 836 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 837 { 838 __be16 val; 839 int err; 840 841 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 842 if (err < 0) 843 return err; 844 845 *value = be16_to_cpu(val); 846 847 return 0; 848 } 849 850 static void sfp_hwmon_to_rx_power(long *value) 851 { 852 *value = DIV_ROUND_CLOSEST(*value, 10); 853 } 854 855 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 856 long *value) 857 { 858 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 859 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 860 } 861 862 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 863 { 864 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 865 be16_to_cpu(sfp->diag.cal_t_offset), value); 866 867 if (*value >= 0x8000) 868 *value -= 0x10000; 869 870 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 871 } 872 873 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 874 { 875 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 876 be16_to_cpu(sfp->diag.cal_v_offset), value); 877 878 *value = DIV_ROUND_CLOSEST(*value, 10); 879 } 880 881 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 882 { 883 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 884 be16_to_cpu(sfp->diag.cal_txi_offset), value); 885 886 *value = DIV_ROUND_CLOSEST(*value, 500); 887 } 888 889 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 890 { 891 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 892 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 893 894 *value = DIV_ROUND_CLOSEST(*value, 10); 895 } 896 897 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 898 { 899 int err; 900 901 err = sfp_hwmon_read_sensor(sfp, reg, value); 902 if (err < 0) 903 return err; 904 905 sfp_hwmon_calibrate_temp(sfp, value); 906 907 return 0; 908 } 909 910 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 911 { 912 int err; 913 914 err = sfp_hwmon_read_sensor(sfp, reg, value); 915 if (err < 0) 916 return err; 917 918 sfp_hwmon_calibrate_vcc(sfp, value); 919 920 return 0; 921 } 922 923 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 924 { 925 int err; 926 927 err = sfp_hwmon_read_sensor(sfp, reg, value); 928 if (err < 0) 929 return err; 930 931 sfp_hwmon_calibrate_bias(sfp, value); 932 933 return 0; 934 } 935 936 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 937 { 938 int err; 939 940 err = sfp_hwmon_read_sensor(sfp, reg, value); 941 if (err < 0) 942 return err; 943 944 sfp_hwmon_calibrate_tx_power(sfp, value); 945 946 return 0; 947 } 948 949 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 950 { 951 int err; 952 953 err = sfp_hwmon_read_sensor(sfp, reg, value); 954 if (err < 0) 955 return err; 956 957 sfp_hwmon_to_rx_power(value); 958 959 return 0; 960 } 961 962 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 963 { 964 u8 status; 965 int err; 966 967 switch (attr) { 968 case hwmon_temp_input: 969 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 970 971 case hwmon_temp_lcrit: 972 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 973 sfp_hwmon_calibrate_temp(sfp, value); 974 return 0; 975 976 case hwmon_temp_min: 977 *value = be16_to_cpu(sfp->diag.temp_low_warn); 978 sfp_hwmon_calibrate_temp(sfp, value); 979 return 0; 980 case hwmon_temp_max: 981 *value = be16_to_cpu(sfp->diag.temp_high_warn); 982 sfp_hwmon_calibrate_temp(sfp, value); 983 return 0; 984 985 case hwmon_temp_crit: 986 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 987 sfp_hwmon_calibrate_temp(sfp, value); 988 return 0; 989 990 case hwmon_temp_lcrit_alarm: 991 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 992 if (err < 0) 993 return err; 994 995 *value = !!(status & SFP_ALARM0_TEMP_LOW); 996 return 0; 997 998 case hwmon_temp_min_alarm: 999 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1000 if (err < 0) 1001 return err; 1002 1003 *value = !!(status & SFP_WARN0_TEMP_LOW); 1004 return 0; 1005 1006 case hwmon_temp_max_alarm: 1007 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1008 if (err < 0) 1009 return err; 1010 1011 *value = !!(status & SFP_WARN0_TEMP_HIGH); 1012 return 0; 1013 1014 case hwmon_temp_crit_alarm: 1015 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1016 if (err < 0) 1017 return err; 1018 1019 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1020 return 0; 1021 default: 1022 return -EOPNOTSUPP; 1023 } 1024 1025 return -EOPNOTSUPP; 1026 } 1027 1028 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1029 { 1030 u8 status; 1031 int err; 1032 1033 switch (attr) { 1034 case hwmon_in_input: 1035 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1036 1037 case hwmon_in_lcrit: 1038 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1039 sfp_hwmon_calibrate_vcc(sfp, value); 1040 return 0; 1041 1042 case hwmon_in_min: 1043 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1044 sfp_hwmon_calibrate_vcc(sfp, value); 1045 return 0; 1046 1047 case hwmon_in_max: 1048 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1049 sfp_hwmon_calibrate_vcc(sfp, value); 1050 return 0; 1051 1052 case hwmon_in_crit: 1053 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1054 sfp_hwmon_calibrate_vcc(sfp, value); 1055 return 0; 1056 1057 case hwmon_in_lcrit_alarm: 1058 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1059 if (err < 0) 1060 return err; 1061 1062 *value = !!(status & SFP_ALARM0_VCC_LOW); 1063 return 0; 1064 1065 case hwmon_in_min_alarm: 1066 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1067 if (err < 0) 1068 return err; 1069 1070 *value = !!(status & SFP_WARN0_VCC_LOW); 1071 return 0; 1072 1073 case hwmon_in_max_alarm: 1074 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1075 if (err < 0) 1076 return err; 1077 1078 *value = !!(status & SFP_WARN0_VCC_HIGH); 1079 return 0; 1080 1081 case hwmon_in_crit_alarm: 1082 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1083 if (err < 0) 1084 return err; 1085 1086 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1087 return 0; 1088 default: 1089 return -EOPNOTSUPP; 1090 } 1091 1092 return -EOPNOTSUPP; 1093 } 1094 1095 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1096 { 1097 u8 status; 1098 int err; 1099 1100 switch (attr) { 1101 case hwmon_curr_input: 1102 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1103 1104 case hwmon_curr_lcrit: 1105 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1106 sfp_hwmon_calibrate_bias(sfp, value); 1107 return 0; 1108 1109 case hwmon_curr_min: 1110 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1111 sfp_hwmon_calibrate_bias(sfp, value); 1112 return 0; 1113 1114 case hwmon_curr_max: 1115 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1116 sfp_hwmon_calibrate_bias(sfp, value); 1117 return 0; 1118 1119 case hwmon_curr_crit: 1120 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1121 sfp_hwmon_calibrate_bias(sfp, value); 1122 return 0; 1123 1124 case hwmon_curr_lcrit_alarm: 1125 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1126 if (err < 0) 1127 return err; 1128 1129 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1130 return 0; 1131 1132 case hwmon_curr_min_alarm: 1133 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1134 if (err < 0) 1135 return err; 1136 1137 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1138 return 0; 1139 1140 case hwmon_curr_max_alarm: 1141 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1142 if (err < 0) 1143 return err; 1144 1145 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1146 return 0; 1147 1148 case hwmon_curr_crit_alarm: 1149 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1150 if (err < 0) 1151 return err; 1152 1153 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1154 return 0; 1155 default: 1156 return -EOPNOTSUPP; 1157 } 1158 1159 return -EOPNOTSUPP; 1160 } 1161 1162 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1163 { 1164 u8 status; 1165 int err; 1166 1167 switch (attr) { 1168 case hwmon_power_input: 1169 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1170 1171 case hwmon_power_lcrit: 1172 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1173 sfp_hwmon_calibrate_tx_power(sfp, value); 1174 return 0; 1175 1176 case hwmon_power_min: 1177 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1178 sfp_hwmon_calibrate_tx_power(sfp, value); 1179 return 0; 1180 1181 case hwmon_power_max: 1182 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1183 sfp_hwmon_calibrate_tx_power(sfp, value); 1184 return 0; 1185 1186 case hwmon_power_crit: 1187 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1188 sfp_hwmon_calibrate_tx_power(sfp, value); 1189 return 0; 1190 1191 case hwmon_power_lcrit_alarm: 1192 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1193 if (err < 0) 1194 return err; 1195 1196 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1197 return 0; 1198 1199 case hwmon_power_min_alarm: 1200 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1201 if (err < 0) 1202 return err; 1203 1204 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1205 return 0; 1206 1207 case hwmon_power_max_alarm: 1208 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1209 if (err < 0) 1210 return err; 1211 1212 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1213 return 0; 1214 1215 case hwmon_power_crit_alarm: 1216 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1217 if (err < 0) 1218 return err; 1219 1220 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1221 return 0; 1222 default: 1223 return -EOPNOTSUPP; 1224 } 1225 1226 return -EOPNOTSUPP; 1227 } 1228 1229 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1230 { 1231 u8 status; 1232 int err; 1233 1234 switch (attr) { 1235 case hwmon_power_input: 1236 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1237 1238 case hwmon_power_lcrit: 1239 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1240 sfp_hwmon_to_rx_power(value); 1241 return 0; 1242 1243 case hwmon_power_min: 1244 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1245 sfp_hwmon_to_rx_power(value); 1246 return 0; 1247 1248 case hwmon_power_max: 1249 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1250 sfp_hwmon_to_rx_power(value); 1251 return 0; 1252 1253 case hwmon_power_crit: 1254 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1255 sfp_hwmon_to_rx_power(value); 1256 return 0; 1257 1258 case hwmon_power_lcrit_alarm: 1259 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1260 if (err < 0) 1261 return err; 1262 1263 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1264 return 0; 1265 1266 case hwmon_power_min_alarm: 1267 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1268 if (err < 0) 1269 return err; 1270 1271 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1272 return 0; 1273 1274 case hwmon_power_max_alarm: 1275 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1276 if (err < 0) 1277 return err; 1278 1279 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1280 return 0; 1281 1282 case hwmon_power_crit_alarm: 1283 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1284 if (err < 0) 1285 return err; 1286 1287 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1288 return 0; 1289 default: 1290 return -EOPNOTSUPP; 1291 } 1292 1293 return -EOPNOTSUPP; 1294 } 1295 1296 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1297 u32 attr, int channel, long *value) 1298 { 1299 struct sfp *sfp = dev_get_drvdata(dev); 1300 1301 switch (type) { 1302 case hwmon_temp: 1303 return sfp_hwmon_temp(sfp, attr, value); 1304 case hwmon_in: 1305 return sfp_hwmon_vcc(sfp, attr, value); 1306 case hwmon_curr: 1307 return sfp_hwmon_bias(sfp, attr, value); 1308 case hwmon_power: 1309 switch (channel) { 1310 case 0: 1311 return sfp_hwmon_tx_power(sfp, attr, value); 1312 case 1: 1313 return sfp_hwmon_rx_power(sfp, attr, value); 1314 default: 1315 return -EOPNOTSUPP; 1316 } 1317 default: 1318 return -EOPNOTSUPP; 1319 } 1320 } 1321 1322 static const char *const sfp_hwmon_power_labels[] = { 1323 "TX_power", 1324 "RX_power", 1325 }; 1326 1327 static int sfp_hwmon_read_string(struct device *dev, 1328 enum hwmon_sensor_types type, 1329 u32 attr, int channel, const char **str) 1330 { 1331 switch (type) { 1332 case hwmon_curr: 1333 switch (attr) { 1334 case hwmon_curr_label: 1335 *str = "bias"; 1336 return 0; 1337 default: 1338 return -EOPNOTSUPP; 1339 } 1340 break; 1341 case hwmon_temp: 1342 switch (attr) { 1343 case hwmon_temp_label: 1344 *str = "temperature"; 1345 return 0; 1346 default: 1347 return -EOPNOTSUPP; 1348 } 1349 break; 1350 case hwmon_in: 1351 switch (attr) { 1352 case hwmon_in_label: 1353 *str = "VCC"; 1354 return 0; 1355 default: 1356 return -EOPNOTSUPP; 1357 } 1358 break; 1359 case hwmon_power: 1360 switch (attr) { 1361 case hwmon_power_label: 1362 *str = sfp_hwmon_power_labels[channel]; 1363 return 0; 1364 default: 1365 return -EOPNOTSUPP; 1366 } 1367 break; 1368 default: 1369 return -EOPNOTSUPP; 1370 } 1371 1372 return -EOPNOTSUPP; 1373 } 1374 1375 static const struct hwmon_ops sfp_hwmon_ops = { 1376 .is_visible = sfp_hwmon_is_visible, 1377 .read = sfp_hwmon_read, 1378 .read_string = sfp_hwmon_read_string, 1379 }; 1380 1381 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1382 HWMON_CHANNEL_INFO(chip, 1383 HWMON_C_REGISTER_TZ), 1384 HWMON_CHANNEL_INFO(in, 1385 HWMON_I_INPUT | 1386 HWMON_I_MAX | HWMON_I_MIN | 1387 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1388 HWMON_I_CRIT | HWMON_I_LCRIT | 1389 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1390 HWMON_I_LABEL), 1391 HWMON_CHANNEL_INFO(temp, 1392 HWMON_T_INPUT | 1393 HWMON_T_MAX | HWMON_T_MIN | 1394 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1395 HWMON_T_CRIT | HWMON_T_LCRIT | 1396 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1397 HWMON_T_LABEL), 1398 HWMON_CHANNEL_INFO(curr, 1399 HWMON_C_INPUT | 1400 HWMON_C_MAX | HWMON_C_MIN | 1401 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1402 HWMON_C_CRIT | HWMON_C_LCRIT | 1403 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1404 HWMON_C_LABEL), 1405 HWMON_CHANNEL_INFO(power, 1406 /* Transmit power */ 1407 HWMON_P_INPUT | 1408 HWMON_P_MAX | HWMON_P_MIN | 1409 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1410 HWMON_P_CRIT | HWMON_P_LCRIT | 1411 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1412 HWMON_P_LABEL, 1413 /* Receive power */ 1414 HWMON_P_INPUT | 1415 HWMON_P_MAX | HWMON_P_MIN | 1416 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1417 HWMON_P_CRIT | HWMON_P_LCRIT | 1418 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1419 HWMON_P_LABEL), 1420 NULL, 1421 }; 1422 1423 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1424 .ops = &sfp_hwmon_ops, 1425 .info = sfp_hwmon_info, 1426 }; 1427 1428 static void sfp_hwmon_probe(struct work_struct *work) 1429 { 1430 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1431 int err; 1432 1433 /* hwmon interface needs to access 16bit registers in atomic way to 1434 * guarantee coherency of the diagnostic monitoring data. If it is not 1435 * possible to guarantee coherency because EEPROM is broken in such way 1436 * that does not support atomic 16bit read operation then we have to 1437 * skip registration of hwmon device. 1438 */ 1439 if (sfp->i2c_block_size < 2) { 1440 dev_info(sfp->dev, 1441 "skipping hwmon device registration due to broken EEPROM\n"); 1442 dev_info(sfp->dev, 1443 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1444 return; 1445 } 1446 1447 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1448 if (err < 0) { 1449 if (sfp->hwmon_tries--) { 1450 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1451 T_PROBE_RETRY_SLOW); 1452 } else { 1453 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1454 ERR_PTR(err)); 1455 } 1456 return; 1457 } 1458 1459 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1460 if (IS_ERR(sfp->hwmon_name)) { 1461 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1462 return; 1463 } 1464 1465 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1466 sfp->hwmon_name, sfp, 1467 &sfp_hwmon_chip_info, 1468 NULL); 1469 if (IS_ERR(sfp->hwmon_dev)) 1470 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1471 PTR_ERR(sfp->hwmon_dev)); 1472 } 1473 1474 static int sfp_hwmon_insert(struct sfp *sfp) 1475 { 1476 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { 1477 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1478 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static void sfp_hwmon_remove(struct sfp *sfp) 1485 { 1486 cancel_delayed_work_sync(&sfp->hwmon_probe); 1487 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1488 hwmon_device_unregister(sfp->hwmon_dev); 1489 sfp->hwmon_dev = NULL; 1490 kfree(sfp->hwmon_name); 1491 } 1492 } 1493 1494 static int sfp_hwmon_init(struct sfp *sfp) 1495 { 1496 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1497 1498 return 0; 1499 } 1500 1501 static void sfp_hwmon_exit(struct sfp *sfp) 1502 { 1503 cancel_delayed_work_sync(&sfp->hwmon_probe); 1504 } 1505 #else 1506 static int sfp_hwmon_insert(struct sfp *sfp) 1507 { 1508 return 0; 1509 } 1510 1511 static void sfp_hwmon_remove(struct sfp *sfp) 1512 { 1513 } 1514 1515 static int sfp_hwmon_init(struct sfp *sfp) 1516 { 1517 return 0; 1518 } 1519 1520 static void sfp_hwmon_exit(struct sfp *sfp) 1521 { 1522 } 1523 #endif 1524 1525 /* Helpers */ 1526 static void sfp_module_tx_disable(struct sfp *sfp) 1527 { 1528 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1529 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1530 sfp->state |= SFP_F_TX_DISABLE; 1531 sfp_set_state(sfp, sfp->state); 1532 } 1533 1534 static void sfp_module_tx_enable(struct sfp *sfp) 1535 { 1536 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1537 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1538 sfp->state &= ~SFP_F_TX_DISABLE; 1539 sfp_set_state(sfp, sfp->state); 1540 } 1541 1542 #if IS_ENABLED(CONFIG_DEBUG_FS) 1543 static int sfp_debug_state_show(struct seq_file *s, void *data) 1544 { 1545 struct sfp *sfp = s->private; 1546 1547 seq_printf(s, "Module state: %s\n", 1548 mod_state_to_str(sfp->sm_mod_state)); 1549 seq_printf(s, "Module probe attempts: %d %d\n", 1550 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1551 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1552 seq_printf(s, "Device state: %s\n", 1553 dev_state_to_str(sfp->sm_dev_state)); 1554 seq_printf(s, "Main state: %s\n", 1555 sm_state_to_str(sfp->sm_state)); 1556 seq_printf(s, "Fault recovery remaining retries: %d\n", 1557 sfp->sm_fault_retries); 1558 seq_printf(s, "PHY probe remaining retries: %d\n", 1559 sfp->sm_phy_retries); 1560 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1561 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1562 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1563 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1564 return 0; 1565 } 1566 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1567 1568 static void sfp_debugfs_init(struct sfp *sfp) 1569 { 1570 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1571 1572 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1573 &sfp_debug_state_fops); 1574 } 1575 1576 static void sfp_debugfs_exit(struct sfp *sfp) 1577 { 1578 debugfs_remove_recursive(sfp->debugfs_dir); 1579 } 1580 #else 1581 static void sfp_debugfs_init(struct sfp *sfp) 1582 { 1583 } 1584 1585 static void sfp_debugfs_exit(struct sfp *sfp) 1586 { 1587 } 1588 #endif 1589 1590 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1591 { 1592 unsigned int state = sfp->state; 1593 1594 if (state & SFP_F_TX_DISABLE) 1595 return; 1596 1597 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1598 1599 udelay(T_RESET_US); 1600 1601 sfp_set_state(sfp, state); 1602 } 1603 1604 /* SFP state machine */ 1605 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1606 { 1607 if (timeout) 1608 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1609 timeout); 1610 else 1611 cancel_delayed_work(&sfp->timeout); 1612 } 1613 1614 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1615 unsigned int timeout) 1616 { 1617 sfp->sm_state = state; 1618 sfp_sm_set_timer(sfp, timeout); 1619 } 1620 1621 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1622 unsigned int timeout) 1623 { 1624 sfp->sm_mod_state = state; 1625 sfp_sm_set_timer(sfp, timeout); 1626 } 1627 1628 static void sfp_sm_phy_detach(struct sfp *sfp) 1629 { 1630 sfp_remove_phy(sfp->sfp_bus); 1631 phy_device_remove(sfp->mod_phy); 1632 phy_device_free(sfp->mod_phy); 1633 sfp->mod_phy = NULL; 1634 } 1635 1636 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1637 { 1638 struct phy_device *phy; 1639 int err; 1640 1641 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1642 if (phy == ERR_PTR(-ENODEV)) 1643 return PTR_ERR(phy); 1644 if (IS_ERR(phy)) { 1645 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1646 return PTR_ERR(phy); 1647 } 1648 1649 err = phy_device_register(phy); 1650 if (err) { 1651 phy_device_free(phy); 1652 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1653 ERR_PTR(err)); 1654 return err; 1655 } 1656 1657 err = sfp_add_phy(sfp->sfp_bus, phy); 1658 if (err) { 1659 phy_device_remove(phy); 1660 phy_device_free(phy); 1661 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1662 return err; 1663 } 1664 1665 sfp->mod_phy = phy; 1666 1667 return 0; 1668 } 1669 1670 static void sfp_sm_link_up(struct sfp *sfp) 1671 { 1672 sfp_link_up(sfp->sfp_bus); 1673 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1674 } 1675 1676 static void sfp_sm_link_down(struct sfp *sfp) 1677 { 1678 sfp_link_down(sfp->sfp_bus); 1679 } 1680 1681 static void sfp_sm_link_check_los(struct sfp *sfp) 1682 { 1683 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1684 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1685 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1686 bool los = false; 1687 1688 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1689 * are set, we assume that no LOS signal is available. If both are 1690 * set, we assume LOS is not implemented (and is meaningless.) 1691 */ 1692 if (los_options == los_inverted) 1693 los = !(sfp->state & SFP_F_LOS); 1694 else if (los_options == los_normal) 1695 los = !!(sfp->state & SFP_F_LOS); 1696 1697 if (los) 1698 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1699 else 1700 sfp_sm_link_up(sfp); 1701 } 1702 1703 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1704 { 1705 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1706 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1707 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1708 1709 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1710 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1711 } 1712 1713 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1714 { 1715 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1716 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1717 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1718 1719 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1720 (los_options == los_normal && event == SFP_E_LOS_LOW); 1721 } 1722 1723 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1724 { 1725 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1726 dev_err(sfp->dev, 1727 "module persistently indicates fault, disabling\n"); 1728 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1729 } else { 1730 if (warn) 1731 dev_err(sfp->dev, "module transmit fault indicated\n"); 1732 1733 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1734 } 1735 } 1736 1737 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1738 { 1739 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1740 return sfp_i2c_mdiobus_create(sfp); 1741 1742 return 0; 1743 } 1744 1745 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1746 * normally sits at I2C bus address 0x56, and may either be a clause 22 1747 * or clause 45 PHY. 1748 * 1749 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1750 * negotiation enabled, but some may be in 1000base-X - which is for the 1751 * PHY driver to determine. 1752 * 1753 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1754 * mode according to the negotiated line speed. 1755 */ 1756 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1757 { 1758 int err = 0; 1759 1760 switch (sfp->mdio_protocol) { 1761 case MDIO_I2C_NONE: 1762 break; 1763 1764 case MDIO_I2C_MARVELL_C22: 1765 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1766 break; 1767 1768 case MDIO_I2C_C45: 1769 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1770 break; 1771 1772 case MDIO_I2C_ROLLBALL: 1773 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1774 break; 1775 } 1776 1777 return err; 1778 } 1779 1780 static int sfp_module_parse_power(struct sfp *sfp) 1781 { 1782 u32 power_mW = 1000; 1783 bool supports_a2; 1784 1785 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1786 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1787 power_mW = 1500; 1788 /* Added in Rev 11.9, but there is no compliance code for this */ 1789 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1790 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1791 power_mW = 2000; 1792 1793 /* Power level 1 modules (max. 1W) are always supported. */ 1794 if (power_mW <= 1000) { 1795 sfp->module_power_mW = power_mW; 1796 return 0; 1797 } 1798 1799 supports_a2 = sfp->id.ext.sff8472_compliance != 1800 SFP_SFF8472_COMPLIANCE_NONE || 1801 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1802 1803 if (power_mW > sfp->max_power_mW) { 1804 /* Module power specification exceeds the allowed maximum. */ 1805 if (!supports_a2) { 1806 /* The module appears not to implement bus address 1807 * 0xa2, so assume that the module powers up in the 1808 * indicated mode. 1809 */ 1810 dev_err(sfp->dev, 1811 "Host does not support %u.%uW modules\n", 1812 power_mW / 1000, (power_mW / 100) % 10); 1813 return -EINVAL; 1814 } else { 1815 dev_warn(sfp->dev, 1816 "Host does not support %u.%uW modules, module left in power mode 1\n", 1817 power_mW / 1000, (power_mW / 100) % 10); 1818 return 0; 1819 } 1820 } 1821 1822 if (!supports_a2) { 1823 /* The module power level is below the host maximum and the 1824 * module appears not to implement bus address 0xa2, so assume 1825 * that the module powers up in the indicated mode. 1826 */ 1827 return 0; 1828 } 1829 1830 /* If the module requires a higher power mode, but also requires 1831 * an address change sequence, warn the user that the module may 1832 * not be functional. 1833 */ 1834 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1835 dev_warn(sfp->dev, 1836 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1837 power_mW / 1000, (power_mW / 100) % 10); 1838 return 0; 1839 } 1840 1841 sfp->module_power_mW = power_mW; 1842 1843 return 0; 1844 } 1845 1846 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1847 { 1848 int err; 1849 1850 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 1851 SFP_EXT_STATUS_PWRLVL_SELECT, 1852 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 1853 if (err != sizeof(u8)) { 1854 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 1855 enable ? "en" : "dis", ERR_PTR(err)); 1856 return -EAGAIN; 1857 } 1858 1859 if (enable) 1860 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1861 sfp->module_power_mW / 1000, 1862 (sfp->module_power_mW / 100) % 10); 1863 1864 return 0; 1865 } 1866 1867 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 1868 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 1869 * not support multibyte reads from the EEPROM. Each multi-byte read 1870 * operation returns just one byte of EEPROM followed by zeros. There is 1871 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 1872 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 1873 * name and vendor id into EEPROM, so there is even no way to detect if 1874 * module is V-SOL V2801F. Therefore check for those zeros in the read 1875 * data and then based on check switch to reading EEPROM to one byte 1876 * at a time. 1877 */ 1878 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 1879 { 1880 size_t i, block_size = sfp->i2c_block_size; 1881 1882 /* Already using byte IO */ 1883 if (block_size == 1) 1884 return false; 1885 1886 for (i = 1; i < len; i += block_size) { 1887 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 1888 return false; 1889 } 1890 return true; 1891 } 1892 1893 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1894 { 1895 u8 check; 1896 int err; 1897 1898 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1899 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1900 id->base.connector != SFF8024_CONNECTOR_LC) { 1901 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1902 id->base.phys_id = SFF8024_ID_SFF_8472; 1903 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1904 id->base.connector = SFF8024_CONNECTOR_LC; 1905 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1906 if (err != 3) { 1907 dev_err(sfp->dev, 1908 "Failed to rewrite module EEPROM: %pe\n", 1909 ERR_PTR(err)); 1910 return err; 1911 } 1912 1913 /* Cotsworks modules have been found to require a delay between write operations. */ 1914 mdelay(50); 1915 1916 /* Update base structure checksum */ 1917 check = sfp_check(&id->base, sizeof(id->base) - 1); 1918 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1919 if (err != 1) { 1920 dev_err(sfp->dev, 1921 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 1922 ERR_PTR(err)); 1923 return err; 1924 } 1925 } 1926 return 0; 1927 } 1928 1929 static int sfp_module_parse_sff8472(struct sfp *sfp) 1930 { 1931 /* If the module requires address swap mode, warn about it */ 1932 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1933 dev_warn(sfp->dev, 1934 "module address swap to access page 0xA2 is not supported.\n"); 1935 else 1936 sfp->have_a2 = true; 1937 1938 return 0; 1939 } 1940 1941 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1942 { 1943 /* SFP module inserted - read I2C data */ 1944 struct sfp_eeprom_id id; 1945 bool cotsworks_sfbg; 1946 bool cotsworks; 1947 u8 check; 1948 int ret; 1949 1950 /* Some SFP modules and also some Linux I2C drivers do not like reads 1951 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at 1952 * a time. 1953 */ 1954 sfp->i2c_block_size = 16; 1955 1956 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1957 if (ret < 0) { 1958 if (report) 1959 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1960 ERR_PTR(ret)); 1961 return -EAGAIN; 1962 } 1963 1964 if (ret != sizeof(id.base)) { 1965 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1966 return -EAGAIN; 1967 } 1968 1969 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 1970 * address 0x51 is just one byte at a time. Also SFF-8472 requires 1971 * that EEPROM supports atomic 16bit read operation for diagnostic 1972 * fields, so do not switch to one byte reading at a time unless it 1973 * is really required and we have no other option. 1974 */ 1975 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 1976 dev_info(sfp->dev, 1977 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 1978 dev_info(sfp->dev, 1979 "Switching to reading EEPROM to one byte at a time\n"); 1980 sfp->i2c_block_size = 1; 1981 1982 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1983 if (ret < 0) { 1984 if (report) 1985 dev_err(sfp->dev, 1986 "failed to read EEPROM: %pe\n", 1987 ERR_PTR(ret)); 1988 return -EAGAIN; 1989 } 1990 1991 if (ret != sizeof(id.base)) { 1992 dev_err(sfp->dev, "EEPROM short read: %pe\n", 1993 ERR_PTR(ret)); 1994 return -EAGAIN; 1995 } 1996 } 1997 1998 /* Cotsworks do not seem to update the checksums when they 1999 * do the final programming with the final module part number, 2000 * serial number and date code. 2001 */ 2002 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 2003 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 2004 2005 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 2006 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 2007 * Cotsworks PN matches and bytes are not correct. 2008 */ 2009 if (cotsworks && cotsworks_sfbg) { 2010 ret = sfp_cotsworks_fixup_check(sfp, &id); 2011 if (ret < 0) 2012 return ret; 2013 } 2014 2015 /* Validate the checksum over the base structure */ 2016 check = sfp_check(&id.base, sizeof(id.base) - 1); 2017 if (check != id.base.cc_base) { 2018 if (cotsworks) { 2019 dev_warn(sfp->dev, 2020 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2021 check, id.base.cc_base); 2022 } else { 2023 dev_err(sfp->dev, 2024 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2025 check, id.base.cc_base); 2026 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2027 16, 1, &id, sizeof(id), true); 2028 return -EINVAL; 2029 } 2030 } 2031 2032 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2033 if (ret < 0) { 2034 if (report) 2035 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2036 ERR_PTR(ret)); 2037 return -EAGAIN; 2038 } 2039 2040 if (ret != sizeof(id.ext)) { 2041 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2042 return -EAGAIN; 2043 } 2044 2045 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2046 if (check != id.ext.cc_ext) { 2047 if (cotsworks) { 2048 dev_warn(sfp->dev, 2049 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2050 check, id.ext.cc_ext); 2051 } else { 2052 dev_err(sfp->dev, 2053 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2054 check, id.ext.cc_ext); 2055 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2056 16, 1, &id, sizeof(id), true); 2057 memset(&id.ext, 0, sizeof(id.ext)); 2058 } 2059 } 2060 2061 sfp->id = id; 2062 2063 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2064 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2065 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2066 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2067 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2068 (int)sizeof(id.ext.datecode), id.ext.datecode); 2069 2070 /* Check whether we support this module */ 2071 if (!sfp->type->module_supported(&id)) { 2072 dev_err(sfp->dev, 2073 "module is not supported - phys id 0x%02x 0x%02x\n", 2074 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2075 return -EINVAL; 2076 } 2077 2078 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { 2079 ret = sfp_module_parse_sff8472(sfp); 2080 if (ret < 0) 2081 return ret; 2082 } 2083 2084 /* Parse the module power requirement */ 2085 ret = sfp_module_parse_power(sfp); 2086 if (ret < 0) 2087 return ret; 2088 2089 /* Initialise state bits to use from hardware */ 2090 sfp->state_hw_mask = SFP_F_PRESENT; 2091 if (sfp->gpio[GPIO_TX_DISABLE]) 2092 sfp->state_hw_mask |= SFP_F_TX_DISABLE; 2093 if (sfp->gpio[GPIO_TX_FAULT]) 2094 sfp->state_hw_mask |= SFP_F_TX_FAULT; 2095 if (sfp->gpio[GPIO_LOS]) 2096 sfp->state_hw_mask |= SFP_F_LOS; 2097 2098 sfp->module_t_start_up = T_START_UP; 2099 sfp->module_t_wait = T_WAIT; 2100 2101 sfp->tx_fault_ignore = false; 2102 2103 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2104 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2105 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2106 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2107 sfp->mdio_protocol = MDIO_I2C_C45; 2108 else if (sfp->id.base.e1000_base_t) 2109 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2110 else 2111 sfp->mdio_protocol = MDIO_I2C_NONE; 2112 2113 sfp->quirk = sfp_lookup_quirk(&id); 2114 if (sfp->quirk && sfp->quirk->fixup) 2115 sfp->quirk->fixup(sfp); 2116 2117 return 0; 2118 } 2119 2120 static void sfp_sm_mod_remove(struct sfp *sfp) 2121 { 2122 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2123 sfp_module_remove(sfp->sfp_bus); 2124 2125 sfp_hwmon_remove(sfp); 2126 2127 memset(&sfp->id, 0, sizeof(sfp->id)); 2128 sfp->module_power_mW = 0; 2129 sfp->have_a2 = false; 2130 2131 dev_info(sfp->dev, "module removed\n"); 2132 } 2133 2134 /* This state machine tracks the upstream's state */ 2135 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2136 { 2137 switch (sfp->sm_dev_state) { 2138 default: 2139 if (event == SFP_E_DEV_ATTACH) 2140 sfp->sm_dev_state = SFP_DEV_DOWN; 2141 break; 2142 2143 case SFP_DEV_DOWN: 2144 if (event == SFP_E_DEV_DETACH) 2145 sfp->sm_dev_state = SFP_DEV_DETACHED; 2146 else if (event == SFP_E_DEV_UP) 2147 sfp->sm_dev_state = SFP_DEV_UP; 2148 break; 2149 2150 case SFP_DEV_UP: 2151 if (event == SFP_E_DEV_DETACH) 2152 sfp->sm_dev_state = SFP_DEV_DETACHED; 2153 else if (event == SFP_E_DEV_DOWN) 2154 sfp->sm_dev_state = SFP_DEV_DOWN; 2155 break; 2156 } 2157 } 2158 2159 /* This state machine tracks the insert/remove state of the module, probes 2160 * the on-board EEPROM, and sets up the power level. 2161 */ 2162 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2163 { 2164 int err; 2165 2166 /* Handle remove event globally, it resets this state machine */ 2167 if (event == SFP_E_REMOVE) { 2168 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2169 sfp_sm_mod_remove(sfp); 2170 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2171 return; 2172 } 2173 2174 /* Handle device detach globally */ 2175 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2176 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2177 if (sfp->module_power_mW > 1000 && 2178 sfp->sm_mod_state > SFP_MOD_HPOWER) 2179 sfp_sm_mod_hpower(sfp, false); 2180 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2181 return; 2182 } 2183 2184 switch (sfp->sm_mod_state) { 2185 default: 2186 if (event == SFP_E_INSERT) { 2187 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2188 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2189 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2190 } 2191 break; 2192 2193 case SFP_MOD_PROBE: 2194 /* Wait for T_PROBE_INIT to time out */ 2195 if (event != SFP_E_TIMEOUT) 2196 break; 2197 2198 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2199 if (err == -EAGAIN) { 2200 if (sfp->sm_mod_tries_init && 2201 --sfp->sm_mod_tries_init) { 2202 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2203 break; 2204 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2205 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2206 dev_warn(sfp->dev, 2207 "please wait, module slow to respond\n"); 2208 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2209 break; 2210 } 2211 } 2212 if (err < 0) { 2213 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2214 break; 2215 } 2216 2217 err = sfp_hwmon_insert(sfp); 2218 if (err) 2219 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2220 ERR_PTR(err)); 2221 2222 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2223 fallthrough; 2224 case SFP_MOD_WAITDEV: 2225 /* Ensure that the device is attached before proceeding */ 2226 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2227 break; 2228 2229 /* Report the module insertion to the upstream device */ 2230 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2231 sfp->quirk); 2232 if (err < 0) { 2233 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2234 break; 2235 } 2236 2237 /* If this is a power level 1 module, we are done */ 2238 if (sfp->module_power_mW <= 1000) 2239 goto insert; 2240 2241 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2242 fallthrough; 2243 case SFP_MOD_HPOWER: 2244 /* Enable high power mode */ 2245 err = sfp_sm_mod_hpower(sfp, true); 2246 if (err < 0) { 2247 if (err != -EAGAIN) { 2248 sfp_module_remove(sfp->sfp_bus); 2249 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2250 } else { 2251 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2252 } 2253 break; 2254 } 2255 2256 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2257 break; 2258 2259 case SFP_MOD_WAITPWR: 2260 /* Wait for T_HPOWER_LEVEL to time out */ 2261 if (event != SFP_E_TIMEOUT) 2262 break; 2263 2264 insert: 2265 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2266 break; 2267 2268 case SFP_MOD_PRESENT: 2269 case SFP_MOD_ERROR: 2270 break; 2271 } 2272 } 2273 2274 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2275 { 2276 unsigned long timeout; 2277 int ret; 2278 2279 /* Some events are global */ 2280 if (sfp->sm_state != SFP_S_DOWN && 2281 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2282 sfp->sm_dev_state != SFP_DEV_UP)) { 2283 if (sfp->sm_state == SFP_S_LINK_UP && 2284 sfp->sm_dev_state == SFP_DEV_UP) 2285 sfp_sm_link_down(sfp); 2286 if (sfp->sm_state > SFP_S_INIT) 2287 sfp_module_stop(sfp->sfp_bus); 2288 if (sfp->mod_phy) 2289 sfp_sm_phy_detach(sfp); 2290 if (sfp->i2c_mii) 2291 sfp_i2c_mdiobus_destroy(sfp); 2292 sfp_module_tx_disable(sfp); 2293 sfp_soft_stop_poll(sfp); 2294 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2295 return; 2296 } 2297 2298 /* The main state machine */ 2299 switch (sfp->sm_state) { 2300 case SFP_S_DOWN: 2301 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2302 sfp->sm_dev_state != SFP_DEV_UP) 2303 break; 2304 2305 /* Only use the soft state bits if we have access to the A2h 2306 * memory, which implies that we have some level of SFF-8472 2307 * compliance. 2308 */ 2309 if (sfp->have_a2) 2310 sfp_soft_start_poll(sfp); 2311 2312 sfp_module_tx_enable(sfp); 2313 2314 /* Initialise the fault clearance retries */ 2315 sfp->sm_fault_retries = N_FAULT_INIT; 2316 2317 /* We need to check the TX_FAULT state, which is not defined 2318 * while TX_DISABLE is asserted. The earliest we want to do 2319 * anything (such as probe for a PHY) is 50ms (or more on 2320 * specific modules). 2321 */ 2322 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2323 break; 2324 2325 case SFP_S_WAIT: 2326 if (event != SFP_E_TIMEOUT) 2327 break; 2328 2329 if (sfp->state & SFP_F_TX_FAULT) { 2330 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2331 * from the TX_DISABLE deassertion for the module to 2332 * initialise, which is indicated by TX_FAULT 2333 * deasserting. 2334 */ 2335 timeout = sfp->module_t_start_up; 2336 if (timeout > sfp->module_t_wait) 2337 timeout -= sfp->module_t_wait; 2338 else 2339 timeout = 1; 2340 2341 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2342 } else { 2343 /* TX_FAULT is not asserted, assume the module has 2344 * finished initialising. 2345 */ 2346 goto init_done; 2347 } 2348 break; 2349 2350 case SFP_S_INIT: 2351 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2352 /* TX_FAULT is still asserted after t_init 2353 * or t_start_up, so assume there is a fault. 2354 */ 2355 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2356 sfp->sm_fault_retries == N_FAULT_INIT); 2357 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2358 init_done: 2359 /* Create mdiobus and start trying for PHY */ 2360 ret = sfp_sm_add_mdio_bus(sfp); 2361 if (ret < 0) { 2362 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2363 break; 2364 } 2365 sfp->sm_phy_retries = R_PHY_RETRY; 2366 goto phy_probe; 2367 } 2368 break; 2369 2370 case SFP_S_INIT_PHY: 2371 if (event != SFP_E_TIMEOUT) 2372 break; 2373 phy_probe: 2374 /* TX_FAULT deasserted or we timed out with TX_FAULT 2375 * clear. Probe for the PHY and check the LOS state. 2376 */ 2377 ret = sfp_sm_probe_for_phy(sfp); 2378 if (ret == -ENODEV) { 2379 if (--sfp->sm_phy_retries) { 2380 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2381 break; 2382 } else { 2383 dev_info(sfp->dev, "no PHY detected\n"); 2384 } 2385 } else if (ret) { 2386 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2387 break; 2388 } 2389 if (sfp_module_start(sfp->sfp_bus)) { 2390 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2391 break; 2392 } 2393 sfp_sm_link_check_los(sfp); 2394 2395 /* Reset the fault retry count */ 2396 sfp->sm_fault_retries = N_FAULT; 2397 break; 2398 2399 case SFP_S_INIT_TX_FAULT: 2400 if (event == SFP_E_TIMEOUT) { 2401 sfp_module_tx_fault_reset(sfp); 2402 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2403 } 2404 break; 2405 2406 case SFP_S_WAIT_LOS: 2407 if (event == SFP_E_TX_FAULT) 2408 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2409 else if (sfp_los_event_inactive(sfp, event)) 2410 sfp_sm_link_up(sfp); 2411 break; 2412 2413 case SFP_S_LINK_UP: 2414 if (event == SFP_E_TX_FAULT) { 2415 sfp_sm_link_down(sfp); 2416 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2417 } else if (sfp_los_event_active(sfp, event)) { 2418 sfp_sm_link_down(sfp); 2419 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2420 } 2421 break; 2422 2423 case SFP_S_TX_FAULT: 2424 if (event == SFP_E_TIMEOUT) { 2425 sfp_module_tx_fault_reset(sfp); 2426 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2427 } 2428 break; 2429 2430 case SFP_S_REINIT: 2431 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2432 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2433 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2434 dev_info(sfp->dev, "module transmit fault recovered\n"); 2435 sfp_sm_link_check_los(sfp); 2436 } 2437 break; 2438 2439 case SFP_S_TX_DISABLE: 2440 break; 2441 } 2442 } 2443 2444 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2445 { 2446 mutex_lock(&sfp->sm_mutex); 2447 2448 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2449 mod_state_to_str(sfp->sm_mod_state), 2450 dev_state_to_str(sfp->sm_dev_state), 2451 sm_state_to_str(sfp->sm_state), 2452 event_to_str(event)); 2453 2454 sfp_sm_device(sfp, event); 2455 sfp_sm_module(sfp, event); 2456 sfp_sm_main(sfp, event); 2457 2458 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2459 mod_state_to_str(sfp->sm_mod_state), 2460 dev_state_to_str(sfp->sm_dev_state), 2461 sm_state_to_str(sfp->sm_state)); 2462 2463 mutex_unlock(&sfp->sm_mutex); 2464 } 2465 2466 static void sfp_attach(struct sfp *sfp) 2467 { 2468 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2469 } 2470 2471 static void sfp_detach(struct sfp *sfp) 2472 { 2473 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2474 } 2475 2476 static void sfp_start(struct sfp *sfp) 2477 { 2478 sfp_sm_event(sfp, SFP_E_DEV_UP); 2479 } 2480 2481 static void sfp_stop(struct sfp *sfp) 2482 { 2483 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2484 } 2485 2486 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2487 { 2488 /* locking... and check module is present */ 2489 2490 if (sfp->id.ext.sff8472_compliance && 2491 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2492 modinfo->type = ETH_MODULE_SFF_8472; 2493 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2494 } else { 2495 modinfo->type = ETH_MODULE_SFF_8079; 2496 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2497 } 2498 return 0; 2499 } 2500 2501 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2502 u8 *data) 2503 { 2504 unsigned int first, last, len; 2505 int ret; 2506 2507 if (ee->len == 0) 2508 return -EINVAL; 2509 2510 first = ee->offset; 2511 last = ee->offset + ee->len; 2512 if (first < ETH_MODULE_SFF_8079_LEN) { 2513 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2514 len -= first; 2515 2516 ret = sfp_read(sfp, false, first, data, len); 2517 if (ret < 0) 2518 return ret; 2519 2520 first += len; 2521 data += len; 2522 } 2523 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2524 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2525 len -= first; 2526 first -= ETH_MODULE_SFF_8079_LEN; 2527 2528 ret = sfp_read(sfp, true, first, data, len); 2529 if (ret < 0) 2530 return ret; 2531 } 2532 return 0; 2533 } 2534 2535 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2536 const struct ethtool_module_eeprom *page, 2537 struct netlink_ext_ack *extack) 2538 { 2539 if (page->bank) { 2540 NL_SET_ERR_MSG(extack, "Banks not supported"); 2541 return -EOPNOTSUPP; 2542 } 2543 2544 if (page->page) { 2545 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2546 return -EOPNOTSUPP; 2547 } 2548 2549 if (page->i2c_address != 0x50 && 2550 page->i2c_address != 0x51) { 2551 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2552 return -EOPNOTSUPP; 2553 } 2554 2555 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2556 page->data, page->length); 2557 }; 2558 2559 static const struct sfp_socket_ops sfp_module_ops = { 2560 .attach = sfp_attach, 2561 .detach = sfp_detach, 2562 .start = sfp_start, 2563 .stop = sfp_stop, 2564 .module_info = sfp_module_info, 2565 .module_eeprom = sfp_module_eeprom, 2566 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2567 }; 2568 2569 static void sfp_timeout(struct work_struct *work) 2570 { 2571 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2572 2573 rtnl_lock(); 2574 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2575 rtnl_unlock(); 2576 } 2577 2578 static void sfp_check_state(struct sfp *sfp) 2579 { 2580 unsigned int state, i, changed; 2581 2582 mutex_lock(&sfp->st_mutex); 2583 state = sfp_get_state(sfp); 2584 changed = state ^ sfp->state; 2585 if (sfp->tx_fault_ignore) 2586 changed &= SFP_F_PRESENT | SFP_F_LOS; 2587 else 2588 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2589 2590 for (i = 0; i < GPIO_MAX; i++) 2591 if (changed & BIT(i)) 2592 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2593 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2594 2595 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2596 sfp->state = state; 2597 2598 rtnl_lock(); 2599 if (changed & SFP_F_PRESENT) 2600 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2601 SFP_E_INSERT : SFP_E_REMOVE); 2602 2603 if (changed & SFP_F_TX_FAULT) 2604 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2605 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2606 2607 if (changed & SFP_F_LOS) 2608 sfp_sm_event(sfp, state & SFP_F_LOS ? 2609 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2610 rtnl_unlock(); 2611 mutex_unlock(&sfp->st_mutex); 2612 } 2613 2614 static irqreturn_t sfp_irq(int irq, void *data) 2615 { 2616 struct sfp *sfp = data; 2617 2618 sfp_check_state(sfp); 2619 2620 return IRQ_HANDLED; 2621 } 2622 2623 static void sfp_poll(struct work_struct *work) 2624 { 2625 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2626 2627 sfp_check_state(sfp); 2628 2629 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2630 sfp->need_poll) 2631 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2632 } 2633 2634 static struct sfp *sfp_alloc(struct device *dev) 2635 { 2636 struct sfp *sfp; 2637 2638 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2639 if (!sfp) 2640 return ERR_PTR(-ENOMEM); 2641 2642 sfp->dev = dev; 2643 2644 mutex_init(&sfp->sm_mutex); 2645 mutex_init(&sfp->st_mutex); 2646 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2647 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2648 2649 sfp_hwmon_init(sfp); 2650 2651 return sfp; 2652 } 2653 2654 static void sfp_cleanup(void *data) 2655 { 2656 struct sfp *sfp = data; 2657 2658 sfp_hwmon_exit(sfp); 2659 2660 cancel_delayed_work_sync(&sfp->poll); 2661 cancel_delayed_work_sync(&sfp->timeout); 2662 if (sfp->i2c_mii) { 2663 mdiobus_unregister(sfp->i2c_mii); 2664 mdiobus_free(sfp->i2c_mii); 2665 } 2666 if (sfp->i2c) 2667 i2c_put_adapter(sfp->i2c); 2668 kfree(sfp); 2669 } 2670 2671 static int sfp_i2c_get(struct sfp *sfp) 2672 { 2673 struct fwnode_handle *h; 2674 struct i2c_adapter *i2c; 2675 int err; 2676 2677 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2678 if (IS_ERR(h)) { 2679 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2680 return -ENODEV; 2681 } 2682 2683 i2c = i2c_get_adapter_by_fwnode(h); 2684 if (!i2c) { 2685 err = -EPROBE_DEFER; 2686 goto put; 2687 } 2688 2689 err = sfp_i2c_configure(sfp, i2c); 2690 if (err) 2691 i2c_put_adapter(i2c); 2692 put: 2693 fwnode_handle_put(h); 2694 return err; 2695 } 2696 2697 static int sfp_probe(struct platform_device *pdev) 2698 { 2699 const struct sff_data *sff; 2700 char *sfp_irq_name; 2701 struct sfp *sfp; 2702 int err, i; 2703 2704 sfp = sfp_alloc(&pdev->dev); 2705 if (IS_ERR(sfp)) 2706 return PTR_ERR(sfp); 2707 2708 platform_set_drvdata(pdev, sfp); 2709 2710 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2711 if (err < 0) 2712 return err; 2713 2714 sff = device_get_match_data(sfp->dev); 2715 if (!sff) 2716 sff = &sfp_data; 2717 2718 sfp->type = sff; 2719 2720 err = sfp_i2c_get(sfp); 2721 if (err) 2722 return err; 2723 2724 for (i = 0; i < GPIO_MAX; i++) 2725 if (sff->gpios & BIT(i)) { 2726 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2727 gpio_names[i], gpio_flags[i]); 2728 if (IS_ERR(sfp->gpio[i])) 2729 return PTR_ERR(sfp->gpio[i]); 2730 } 2731 2732 sfp->state_hw_mask = SFP_F_PRESENT; 2733 2734 sfp->get_state = sfp_gpio_get_state; 2735 sfp->set_state = sfp_gpio_set_state; 2736 2737 /* Modules that have no detect signal are always present */ 2738 if (!(sfp->gpio[GPIO_MODDEF0])) 2739 sfp->get_state = sff_gpio_get_state; 2740 2741 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2742 &sfp->max_power_mW); 2743 if (sfp->max_power_mW < 1000) { 2744 if (sfp->max_power_mW) 2745 dev_warn(sfp->dev, 2746 "Firmware bug: host maximum power should be at least 1W\n"); 2747 sfp->max_power_mW = 1000; 2748 } 2749 2750 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2751 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2752 2753 /* Get the initial state, and always signal TX disable, 2754 * since the network interface will not be up. 2755 */ 2756 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2757 2758 if (sfp->gpio[GPIO_RATE_SELECT] && 2759 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2760 sfp->state |= SFP_F_RATE_SELECT; 2761 sfp_set_state(sfp, sfp->state); 2762 sfp_module_tx_disable(sfp); 2763 if (sfp->state & SFP_F_PRESENT) { 2764 rtnl_lock(); 2765 sfp_sm_event(sfp, SFP_E_INSERT); 2766 rtnl_unlock(); 2767 } 2768 2769 for (i = 0; i < GPIO_MAX; i++) { 2770 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2771 continue; 2772 2773 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2774 if (sfp->gpio_irq[i] < 0) { 2775 sfp->gpio_irq[i] = 0; 2776 sfp->need_poll = true; 2777 continue; 2778 } 2779 2780 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2781 "%s-%s", dev_name(sfp->dev), 2782 gpio_names[i]); 2783 2784 if (!sfp_irq_name) 2785 return -ENOMEM; 2786 2787 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2788 NULL, sfp_irq, 2789 IRQF_ONESHOT | 2790 IRQF_TRIGGER_RISING | 2791 IRQF_TRIGGER_FALLING, 2792 sfp_irq_name, sfp); 2793 if (err) { 2794 sfp->gpio_irq[i] = 0; 2795 sfp->need_poll = true; 2796 } 2797 } 2798 2799 if (sfp->need_poll) 2800 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2801 2802 /* We could have an issue in cases no Tx disable pin is available or 2803 * wired as modules using a laser as their light source will continue to 2804 * be active when the fiber is removed. This could be a safety issue and 2805 * we should at least warn the user about that. 2806 */ 2807 if (!sfp->gpio[GPIO_TX_DISABLE]) 2808 dev_warn(sfp->dev, 2809 "No tx_disable pin: SFP modules will always be emitting.\n"); 2810 2811 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2812 if (!sfp->sfp_bus) 2813 return -ENOMEM; 2814 2815 sfp_debugfs_init(sfp); 2816 2817 return 0; 2818 } 2819 2820 static int sfp_remove(struct platform_device *pdev) 2821 { 2822 struct sfp *sfp = platform_get_drvdata(pdev); 2823 2824 sfp_debugfs_exit(sfp); 2825 sfp_unregister_socket(sfp->sfp_bus); 2826 2827 rtnl_lock(); 2828 sfp_sm_event(sfp, SFP_E_REMOVE); 2829 rtnl_unlock(); 2830 2831 return 0; 2832 } 2833 2834 static void sfp_shutdown(struct platform_device *pdev) 2835 { 2836 struct sfp *sfp = platform_get_drvdata(pdev); 2837 int i; 2838 2839 for (i = 0; i < GPIO_MAX; i++) { 2840 if (!sfp->gpio_irq[i]) 2841 continue; 2842 2843 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2844 } 2845 2846 cancel_delayed_work_sync(&sfp->poll); 2847 cancel_delayed_work_sync(&sfp->timeout); 2848 } 2849 2850 static struct platform_driver sfp_driver = { 2851 .probe = sfp_probe, 2852 .remove = sfp_remove, 2853 .shutdown = sfp_shutdown, 2854 .driver = { 2855 .name = "sfp", 2856 .of_match_table = sfp_of_match, 2857 }, 2858 }; 2859 2860 static int sfp_init(void) 2861 { 2862 poll_jiffies = msecs_to_jiffies(100); 2863 2864 return platform_driver_register(&sfp_driver); 2865 } 2866 module_init(sfp_init); 2867 2868 static void sfp_exit(void) 2869 { 2870 platform_driver_unregister(&sfp_driver); 2871 } 2872 module_exit(sfp_exit); 2873 2874 MODULE_ALIAS("platform:sfp"); 2875 MODULE_AUTHOR("Russell King"); 2876 MODULE_LICENSE("GPL v2"); 2877