xref: /linux/drivers/net/phy/sfp.c (revision a6cdeeb16bff89c8486324f53577db058cbe81ba)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "mdio-i2c.h"
20 #include "sfp.h"
21 #include "swphy.h"
22 
23 enum {
24 	GPIO_MODDEF0,
25 	GPIO_LOS,
26 	GPIO_TX_FAULT,
27 	GPIO_TX_DISABLE,
28 	GPIO_RATE_SELECT,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36 
37 	SFP_E_INSERT = 0,
38 	SFP_E_REMOVE,
39 	SFP_E_DEV_DOWN,
40 	SFP_E_DEV_UP,
41 	SFP_E_TX_FAULT,
42 	SFP_E_TX_CLEAR,
43 	SFP_E_LOS_HIGH,
44 	SFP_E_LOS_LOW,
45 	SFP_E_TIMEOUT,
46 
47 	SFP_MOD_EMPTY = 0,
48 	SFP_MOD_PROBE,
49 	SFP_MOD_HPOWER,
50 	SFP_MOD_PRESENT,
51 	SFP_MOD_ERROR,
52 
53 	SFP_DEV_DOWN = 0,
54 	SFP_DEV_UP,
55 
56 	SFP_S_DOWN = 0,
57 	SFP_S_INIT,
58 	SFP_S_WAIT_LOS,
59 	SFP_S_LINK_UP,
60 	SFP_S_TX_FAULT,
61 	SFP_S_REINIT,
62 	SFP_S_TX_DISABLE,
63 };
64 
65 static const char  * const mod_state_strings[] = {
66 	[SFP_MOD_EMPTY] = "empty",
67 	[SFP_MOD_PROBE] = "probe",
68 	[SFP_MOD_HPOWER] = "hpower",
69 	[SFP_MOD_PRESENT] = "present",
70 	[SFP_MOD_ERROR] = "error",
71 };
72 
73 static const char *mod_state_to_str(unsigned short mod_state)
74 {
75 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
76 		return "Unknown module state";
77 	return mod_state_strings[mod_state];
78 }
79 
80 static const char * const dev_state_strings[] = {
81 	[SFP_DEV_DOWN] = "down",
82 	[SFP_DEV_UP] = "up",
83 };
84 
85 static const char *dev_state_to_str(unsigned short dev_state)
86 {
87 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
88 		return "Unknown device state";
89 	return dev_state_strings[dev_state];
90 }
91 
92 static const char * const event_strings[] = {
93 	[SFP_E_INSERT] = "insert",
94 	[SFP_E_REMOVE] = "remove",
95 	[SFP_E_DEV_DOWN] = "dev_down",
96 	[SFP_E_DEV_UP] = "dev_up",
97 	[SFP_E_TX_FAULT] = "tx_fault",
98 	[SFP_E_TX_CLEAR] = "tx_clear",
99 	[SFP_E_LOS_HIGH] = "los_high",
100 	[SFP_E_LOS_LOW] = "los_low",
101 	[SFP_E_TIMEOUT] = "timeout",
102 };
103 
104 static const char *event_to_str(unsigned short event)
105 {
106 	if (event >= ARRAY_SIZE(event_strings))
107 		return "Unknown event";
108 	return event_strings[event];
109 }
110 
111 static const char * const sm_state_strings[] = {
112 	[SFP_S_DOWN] = "down",
113 	[SFP_S_INIT] = "init",
114 	[SFP_S_WAIT_LOS] = "wait_los",
115 	[SFP_S_LINK_UP] = "link_up",
116 	[SFP_S_TX_FAULT] = "tx_fault",
117 	[SFP_S_REINIT] = "reinit",
118 	[SFP_S_TX_DISABLE] = "rx_disable",
119 };
120 
121 static const char *sm_state_to_str(unsigned short sm_state)
122 {
123 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
124 		return "Unknown state";
125 	return sm_state_strings[sm_state];
126 }
127 
128 static const char *gpio_of_names[] = {
129 	"mod-def0",
130 	"los",
131 	"tx-fault",
132 	"tx-disable",
133 	"rate-select0",
134 };
135 
136 static const enum gpiod_flags gpio_flags[] = {
137 	GPIOD_IN,
138 	GPIOD_IN,
139 	GPIOD_IN,
140 	GPIOD_ASIS,
141 	GPIOD_ASIS,
142 };
143 
144 #define T_INIT_JIFFIES	msecs_to_jiffies(300)
145 #define T_RESET_US	10
146 #define T_FAULT_RECOVER	msecs_to_jiffies(1000)
147 
148 /* SFP module presence detection is poor: the three MOD DEF signals are
149  * the same length on the PCB, which means it's possible for MOD DEF 0 to
150  * connect before the I2C bus on MOD DEF 1/2.
151  *
152  * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to
153  * be deasserted) but makes no mention of the earliest time before we can
154  * access the I2C EEPROM.  However, Avago modules require 300ms.
155  */
156 #define T_PROBE_INIT	msecs_to_jiffies(300)
157 #define T_HPOWER_LEVEL	msecs_to_jiffies(300)
158 #define T_PROBE_RETRY	msecs_to_jiffies(100)
159 
160 /* SFP modules appear to always have their PHY configured for bus address
161  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
162  */
163 #define SFP_PHY_ADDR	22
164 
165 /* Give this long for the PHY to reset. */
166 #define T_PHY_RESET_MS	50
167 
168 struct sff_data {
169 	unsigned int gpios;
170 	bool (*module_supported)(const struct sfp_eeprom_id *id);
171 };
172 
173 struct sfp {
174 	struct device *dev;
175 	struct i2c_adapter *i2c;
176 	struct mii_bus *i2c_mii;
177 	struct sfp_bus *sfp_bus;
178 	struct phy_device *mod_phy;
179 	const struct sff_data *type;
180 	u32 max_power_mW;
181 
182 	unsigned int (*get_state)(struct sfp *);
183 	void (*set_state)(struct sfp *, unsigned int);
184 	int (*read)(struct sfp *, bool, u8, void *, size_t);
185 	int (*write)(struct sfp *, bool, u8, void *, size_t);
186 
187 	struct gpio_desc *gpio[GPIO_MAX];
188 
189 	bool attached;
190 	unsigned int state;
191 	struct delayed_work poll;
192 	struct delayed_work timeout;
193 	struct mutex sm_mutex;
194 	unsigned char sm_mod_state;
195 	unsigned char sm_dev_state;
196 	unsigned short sm_state;
197 	unsigned int sm_retries;
198 
199 	struct sfp_eeprom_id id;
200 #if IS_ENABLED(CONFIG_HWMON)
201 	struct sfp_diag diag;
202 	struct device *hwmon_dev;
203 	char *hwmon_name;
204 #endif
205 
206 };
207 
208 static bool sff_module_supported(const struct sfp_eeprom_id *id)
209 {
210 	return id->base.phys_id == SFP_PHYS_ID_SFF &&
211 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
212 }
213 
214 static const struct sff_data sff_data = {
215 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
216 	.module_supported = sff_module_supported,
217 };
218 
219 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
220 {
221 	return id->base.phys_id == SFP_PHYS_ID_SFP &&
222 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
223 }
224 
225 static const struct sff_data sfp_data = {
226 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
227 		 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
228 	.module_supported = sfp_module_supported,
229 };
230 
231 static const struct of_device_id sfp_of_match[] = {
232 	{ .compatible = "sff,sff", .data = &sff_data, },
233 	{ .compatible = "sff,sfp", .data = &sfp_data, },
234 	{ },
235 };
236 MODULE_DEVICE_TABLE(of, sfp_of_match);
237 
238 static unsigned long poll_jiffies;
239 
240 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
241 {
242 	unsigned int i, state, v;
243 
244 	for (i = state = 0; i < GPIO_MAX; i++) {
245 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
246 			continue;
247 
248 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
249 		if (v)
250 			state |= BIT(i);
251 	}
252 
253 	return state;
254 }
255 
256 static unsigned int sff_gpio_get_state(struct sfp *sfp)
257 {
258 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
259 }
260 
261 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
262 {
263 	if (state & SFP_F_PRESENT) {
264 		/* If the module is present, drive the signals */
265 		if (sfp->gpio[GPIO_TX_DISABLE])
266 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
267 					       state & SFP_F_TX_DISABLE);
268 		if (state & SFP_F_RATE_SELECT)
269 			gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
270 					       state & SFP_F_RATE_SELECT);
271 	} else {
272 		/* Otherwise, let them float to the pull-ups */
273 		if (sfp->gpio[GPIO_TX_DISABLE])
274 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
275 		if (state & SFP_F_RATE_SELECT)
276 			gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
277 	}
278 }
279 
280 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
281 			size_t len)
282 {
283 	struct i2c_msg msgs[2];
284 	u8 bus_addr = a2 ? 0x51 : 0x50;
285 	size_t this_len;
286 	int ret;
287 
288 	msgs[0].addr = bus_addr;
289 	msgs[0].flags = 0;
290 	msgs[0].len = 1;
291 	msgs[0].buf = &dev_addr;
292 	msgs[1].addr = bus_addr;
293 	msgs[1].flags = I2C_M_RD;
294 	msgs[1].len = len;
295 	msgs[1].buf = buf;
296 
297 	while (len) {
298 		this_len = len;
299 		if (this_len > 16)
300 			this_len = 16;
301 
302 		msgs[1].len = this_len;
303 
304 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
305 		if (ret < 0)
306 			return ret;
307 
308 		if (ret != ARRAY_SIZE(msgs))
309 			break;
310 
311 		msgs[1].buf += this_len;
312 		dev_addr += this_len;
313 		len -= this_len;
314 	}
315 
316 	return msgs[1].buf - (u8 *)buf;
317 }
318 
319 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
320 	size_t len)
321 {
322 	struct i2c_msg msgs[1];
323 	u8 bus_addr = a2 ? 0x51 : 0x50;
324 	int ret;
325 
326 	msgs[0].addr = bus_addr;
327 	msgs[0].flags = 0;
328 	msgs[0].len = 1 + len;
329 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
330 	if (!msgs[0].buf)
331 		return -ENOMEM;
332 
333 	msgs[0].buf[0] = dev_addr;
334 	memcpy(&msgs[0].buf[1], buf, len);
335 
336 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
337 
338 	kfree(msgs[0].buf);
339 
340 	if (ret < 0)
341 		return ret;
342 
343 	return ret == ARRAY_SIZE(msgs) ? len : 0;
344 }
345 
346 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
347 {
348 	struct mii_bus *i2c_mii;
349 	int ret;
350 
351 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
352 		return -EINVAL;
353 
354 	sfp->i2c = i2c;
355 	sfp->read = sfp_i2c_read;
356 	sfp->write = sfp_i2c_write;
357 
358 	i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
359 	if (IS_ERR(i2c_mii))
360 		return PTR_ERR(i2c_mii);
361 
362 	i2c_mii->name = "SFP I2C Bus";
363 	i2c_mii->phy_mask = ~0;
364 
365 	ret = mdiobus_register(i2c_mii);
366 	if (ret < 0) {
367 		mdiobus_free(i2c_mii);
368 		return ret;
369 	}
370 
371 	sfp->i2c_mii = i2c_mii;
372 
373 	return 0;
374 }
375 
376 /* Interface */
377 static unsigned int sfp_get_state(struct sfp *sfp)
378 {
379 	return sfp->get_state(sfp);
380 }
381 
382 static void sfp_set_state(struct sfp *sfp, unsigned int state)
383 {
384 	sfp->set_state(sfp, state);
385 }
386 
387 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
388 {
389 	return sfp->read(sfp, a2, addr, buf, len);
390 }
391 
392 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
393 {
394 	return sfp->write(sfp, a2, addr, buf, len);
395 }
396 
397 static unsigned int sfp_check(void *buf, size_t len)
398 {
399 	u8 *p, check;
400 
401 	for (p = buf, check = 0; len; p++, len--)
402 		check += *p;
403 
404 	return check;
405 }
406 
407 /* hwmon */
408 #if IS_ENABLED(CONFIG_HWMON)
409 static umode_t sfp_hwmon_is_visible(const void *data,
410 				    enum hwmon_sensor_types type,
411 				    u32 attr, int channel)
412 {
413 	const struct sfp *sfp = data;
414 
415 	switch (type) {
416 	case hwmon_temp:
417 		switch (attr) {
418 		case hwmon_temp_min_alarm:
419 		case hwmon_temp_max_alarm:
420 		case hwmon_temp_lcrit_alarm:
421 		case hwmon_temp_crit_alarm:
422 		case hwmon_temp_min:
423 		case hwmon_temp_max:
424 		case hwmon_temp_lcrit:
425 		case hwmon_temp_crit:
426 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
427 				return 0;
428 			/* fall through */
429 		case hwmon_temp_input:
430 			return 0444;
431 		default:
432 			return 0;
433 		}
434 	case hwmon_in:
435 		switch (attr) {
436 		case hwmon_in_min_alarm:
437 		case hwmon_in_max_alarm:
438 		case hwmon_in_lcrit_alarm:
439 		case hwmon_in_crit_alarm:
440 		case hwmon_in_min:
441 		case hwmon_in_max:
442 		case hwmon_in_lcrit:
443 		case hwmon_in_crit:
444 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
445 				return 0;
446 			/* fall through */
447 		case hwmon_in_input:
448 			return 0444;
449 		default:
450 			return 0;
451 		}
452 	case hwmon_curr:
453 		switch (attr) {
454 		case hwmon_curr_min_alarm:
455 		case hwmon_curr_max_alarm:
456 		case hwmon_curr_lcrit_alarm:
457 		case hwmon_curr_crit_alarm:
458 		case hwmon_curr_min:
459 		case hwmon_curr_max:
460 		case hwmon_curr_lcrit:
461 		case hwmon_curr_crit:
462 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
463 				return 0;
464 			/* fall through */
465 		case hwmon_curr_input:
466 			return 0444;
467 		default:
468 			return 0;
469 		}
470 	case hwmon_power:
471 		/* External calibration of receive power requires
472 		 * floating point arithmetic. Doing that in the kernel
473 		 * is not easy, so just skip it. If the module does
474 		 * not require external calibration, we can however
475 		 * show receiver power, since FP is then not needed.
476 		 */
477 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
478 		    channel == 1)
479 			return 0;
480 		switch (attr) {
481 		case hwmon_power_min_alarm:
482 		case hwmon_power_max_alarm:
483 		case hwmon_power_lcrit_alarm:
484 		case hwmon_power_crit_alarm:
485 		case hwmon_power_min:
486 		case hwmon_power_max:
487 		case hwmon_power_lcrit:
488 		case hwmon_power_crit:
489 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
490 				return 0;
491 			/* fall through */
492 		case hwmon_power_input:
493 			return 0444;
494 		default:
495 			return 0;
496 		}
497 	default:
498 		return 0;
499 	}
500 }
501 
502 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
503 {
504 	__be16 val;
505 	int err;
506 
507 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
508 	if (err < 0)
509 		return err;
510 
511 	*value = be16_to_cpu(val);
512 
513 	return 0;
514 }
515 
516 static void sfp_hwmon_to_rx_power(long *value)
517 {
518 	*value = DIV_ROUND_CLOSEST(*value, 100);
519 }
520 
521 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
522 				long *value)
523 {
524 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
525 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
526 }
527 
528 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
529 {
530 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
531 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
532 
533 	if (*value >= 0x8000)
534 		*value -= 0x10000;
535 
536 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
537 }
538 
539 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
540 {
541 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
542 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
543 
544 	*value = DIV_ROUND_CLOSEST(*value, 10);
545 }
546 
547 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
548 {
549 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
550 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
551 
552 	*value = DIV_ROUND_CLOSEST(*value, 500);
553 }
554 
555 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
556 {
557 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
558 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
559 
560 	*value = DIV_ROUND_CLOSEST(*value, 10);
561 }
562 
563 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
564 {
565 	int err;
566 
567 	err = sfp_hwmon_read_sensor(sfp, reg, value);
568 	if (err < 0)
569 		return err;
570 
571 	sfp_hwmon_calibrate_temp(sfp, value);
572 
573 	return 0;
574 }
575 
576 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
577 {
578 	int err;
579 
580 	err = sfp_hwmon_read_sensor(sfp, reg, value);
581 	if (err < 0)
582 		return err;
583 
584 	sfp_hwmon_calibrate_vcc(sfp, value);
585 
586 	return 0;
587 }
588 
589 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
590 {
591 	int err;
592 
593 	err = sfp_hwmon_read_sensor(sfp, reg, value);
594 	if (err < 0)
595 		return err;
596 
597 	sfp_hwmon_calibrate_bias(sfp, value);
598 
599 	return 0;
600 }
601 
602 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
603 {
604 	int err;
605 
606 	err = sfp_hwmon_read_sensor(sfp, reg, value);
607 	if (err < 0)
608 		return err;
609 
610 	sfp_hwmon_calibrate_tx_power(sfp, value);
611 
612 	return 0;
613 }
614 
615 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
616 {
617 	int err;
618 
619 	err = sfp_hwmon_read_sensor(sfp, reg, value);
620 	if (err < 0)
621 		return err;
622 
623 	sfp_hwmon_to_rx_power(value);
624 
625 	return 0;
626 }
627 
628 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
629 {
630 	u8 status;
631 	int err;
632 
633 	switch (attr) {
634 	case hwmon_temp_input:
635 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
636 
637 	case hwmon_temp_lcrit:
638 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
639 		sfp_hwmon_calibrate_temp(sfp, value);
640 		return 0;
641 
642 	case hwmon_temp_min:
643 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
644 		sfp_hwmon_calibrate_temp(sfp, value);
645 		return 0;
646 	case hwmon_temp_max:
647 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
648 		sfp_hwmon_calibrate_temp(sfp, value);
649 		return 0;
650 
651 	case hwmon_temp_crit:
652 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
653 		sfp_hwmon_calibrate_temp(sfp, value);
654 		return 0;
655 
656 	case hwmon_temp_lcrit_alarm:
657 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
658 		if (err < 0)
659 			return err;
660 
661 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
662 		return 0;
663 
664 	case hwmon_temp_min_alarm:
665 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
666 		if (err < 0)
667 			return err;
668 
669 		*value = !!(status & SFP_WARN0_TEMP_LOW);
670 		return 0;
671 
672 	case hwmon_temp_max_alarm:
673 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
674 		if (err < 0)
675 			return err;
676 
677 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
678 		return 0;
679 
680 	case hwmon_temp_crit_alarm:
681 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
682 		if (err < 0)
683 			return err;
684 
685 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
686 		return 0;
687 	default:
688 		return -EOPNOTSUPP;
689 	}
690 
691 	return -EOPNOTSUPP;
692 }
693 
694 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
695 {
696 	u8 status;
697 	int err;
698 
699 	switch (attr) {
700 	case hwmon_in_input:
701 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
702 
703 	case hwmon_in_lcrit:
704 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
705 		sfp_hwmon_calibrate_vcc(sfp, value);
706 		return 0;
707 
708 	case hwmon_in_min:
709 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
710 		sfp_hwmon_calibrate_vcc(sfp, value);
711 		return 0;
712 
713 	case hwmon_in_max:
714 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
715 		sfp_hwmon_calibrate_vcc(sfp, value);
716 		return 0;
717 
718 	case hwmon_in_crit:
719 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
720 		sfp_hwmon_calibrate_vcc(sfp, value);
721 		return 0;
722 
723 	case hwmon_in_lcrit_alarm:
724 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
725 		if (err < 0)
726 			return err;
727 
728 		*value = !!(status & SFP_ALARM0_VCC_LOW);
729 		return 0;
730 
731 	case hwmon_in_min_alarm:
732 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
733 		if (err < 0)
734 			return err;
735 
736 		*value = !!(status & SFP_WARN0_VCC_LOW);
737 		return 0;
738 
739 	case hwmon_in_max_alarm:
740 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
741 		if (err < 0)
742 			return err;
743 
744 		*value = !!(status & SFP_WARN0_VCC_HIGH);
745 		return 0;
746 
747 	case hwmon_in_crit_alarm:
748 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
749 		if (err < 0)
750 			return err;
751 
752 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
753 		return 0;
754 	default:
755 		return -EOPNOTSUPP;
756 	}
757 
758 	return -EOPNOTSUPP;
759 }
760 
761 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
762 {
763 	u8 status;
764 	int err;
765 
766 	switch (attr) {
767 	case hwmon_curr_input:
768 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
769 
770 	case hwmon_curr_lcrit:
771 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
772 		sfp_hwmon_calibrate_bias(sfp, value);
773 		return 0;
774 
775 	case hwmon_curr_min:
776 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
777 		sfp_hwmon_calibrate_bias(sfp, value);
778 		return 0;
779 
780 	case hwmon_curr_max:
781 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
782 		sfp_hwmon_calibrate_bias(sfp, value);
783 		return 0;
784 
785 	case hwmon_curr_crit:
786 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
787 		sfp_hwmon_calibrate_bias(sfp, value);
788 		return 0;
789 
790 	case hwmon_curr_lcrit_alarm:
791 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
792 		if (err < 0)
793 			return err;
794 
795 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
796 		return 0;
797 
798 	case hwmon_curr_min_alarm:
799 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
800 		if (err < 0)
801 			return err;
802 
803 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
804 		return 0;
805 
806 	case hwmon_curr_max_alarm:
807 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
808 		if (err < 0)
809 			return err;
810 
811 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
812 		return 0;
813 
814 	case hwmon_curr_crit_alarm:
815 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
816 		if (err < 0)
817 			return err;
818 
819 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
820 		return 0;
821 	default:
822 		return -EOPNOTSUPP;
823 	}
824 
825 	return -EOPNOTSUPP;
826 }
827 
828 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
829 {
830 	u8 status;
831 	int err;
832 
833 	switch (attr) {
834 	case hwmon_power_input:
835 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
836 
837 	case hwmon_power_lcrit:
838 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
839 		sfp_hwmon_calibrate_tx_power(sfp, value);
840 		return 0;
841 
842 	case hwmon_power_min:
843 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
844 		sfp_hwmon_calibrate_tx_power(sfp, value);
845 		return 0;
846 
847 	case hwmon_power_max:
848 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
849 		sfp_hwmon_calibrate_tx_power(sfp, value);
850 		return 0;
851 
852 	case hwmon_power_crit:
853 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
854 		sfp_hwmon_calibrate_tx_power(sfp, value);
855 		return 0;
856 
857 	case hwmon_power_lcrit_alarm:
858 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
859 		if (err < 0)
860 			return err;
861 
862 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
863 		return 0;
864 
865 	case hwmon_power_min_alarm:
866 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
867 		if (err < 0)
868 			return err;
869 
870 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
871 		return 0;
872 
873 	case hwmon_power_max_alarm:
874 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
875 		if (err < 0)
876 			return err;
877 
878 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
879 		return 0;
880 
881 	case hwmon_power_crit_alarm:
882 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
883 		if (err < 0)
884 			return err;
885 
886 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
887 		return 0;
888 	default:
889 		return -EOPNOTSUPP;
890 	}
891 
892 	return -EOPNOTSUPP;
893 }
894 
895 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
896 {
897 	u8 status;
898 	int err;
899 
900 	switch (attr) {
901 	case hwmon_power_input:
902 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
903 
904 	case hwmon_power_lcrit:
905 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
906 		sfp_hwmon_to_rx_power(value);
907 		return 0;
908 
909 	case hwmon_power_min:
910 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
911 		sfp_hwmon_to_rx_power(value);
912 		return 0;
913 
914 	case hwmon_power_max:
915 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
916 		sfp_hwmon_to_rx_power(value);
917 		return 0;
918 
919 	case hwmon_power_crit:
920 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
921 		sfp_hwmon_to_rx_power(value);
922 		return 0;
923 
924 	case hwmon_power_lcrit_alarm:
925 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
926 		if (err < 0)
927 			return err;
928 
929 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
930 		return 0;
931 
932 	case hwmon_power_min_alarm:
933 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
934 		if (err < 0)
935 			return err;
936 
937 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
938 		return 0;
939 
940 	case hwmon_power_max_alarm:
941 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
942 		if (err < 0)
943 			return err;
944 
945 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
946 		return 0;
947 
948 	case hwmon_power_crit_alarm:
949 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
950 		if (err < 0)
951 			return err;
952 
953 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
954 		return 0;
955 	default:
956 		return -EOPNOTSUPP;
957 	}
958 
959 	return -EOPNOTSUPP;
960 }
961 
962 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
963 			  u32 attr, int channel, long *value)
964 {
965 	struct sfp *sfp = dev_get_drvdata(dev);
966 
967 	switch (type) {
968 	case hwmon_temp:
969 		return sfp_hwmon_temp(sfp, attr, value);
970 	case hwmon_in:
971 		return sfp_hwmon_vcc(sfp, attr, value);
972 	case hwmon_curr:
973 		return sfp_hwmon_bias(sfp, attr, value);
974 	case hwmon_power:
975 		switch (channel) {
976 		case 0:
977 			return sfp_hwmon_tx_power(sfp, attr, value);
978 		case 1:
979 			return sfp_hwmon_rx_power(sfp, attr, value);
980 		default:
981 			return -EOPNOTSUPP;
982 		}
983 	default:
984 		return -EOPNOTSUPP;
985 	}
986 }
987 
988 static const struct hwmon_ops sfp_hwmon_ops = {
989 	.is_visible = sfp_hwmon_is_visible,
990 	.read = sfp_hwmon_read,
991 };
992 
993 static u32 sfp_hwmon_chip_config[] = {
994 	HWMON_C_REGISTER_TZ,
995 	0,
996 };
997 
998 static const struct hwmon_channel_info sfp_hwmon_chip = {
999 	.type = hwmon_chip,
1000 	.config = sfp_hwmon_chip_config,
1001 };
1002 
1003 static u32 sfp_hwmon_temp_config[] = {
1004 	HWMON_T_INPUT |
1005 	HWMON_T_MAX | HWMON_T_MIN |
1006 	HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1007 	HWMON_T_CRIT | HWMON_T_LCRIT |
1008 	HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM,
1009 	0,
1010 };
1011 
1012 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1013 	.type = hwmon_temp,
1014 	.config = sfp_hwmon_temp_config,
1015 };
1016 
1017 static u32 sfp_hwmon_vcc_config[] = {
1018 	HWMON_I_INPUT |
1019 	HWMON_I_MAX | HWMON_I_MIN |
1020 	HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1021 	HWMON_I_CRIT | HWMON_I_LCRIT |
1022 	HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM,
1023 	0,
1024 };
1025 
1026 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1027 	.type = hwmon_in,
1028 	.config = sfp_hwmon_vcc_config,
1029 };
1030 
1031 static u32 sfp_hwmon_bias_config[] = {
1032 	HWMON_C_INPUT |
1033 	HWMON_C_MAX | HWMON_C_MIN |
1034 	HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1035 	HWMON_C_CRIT | HWMON_C_LCRIT |
1036 	HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM,
1037 	0,
1038 };
1039 
1040 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1041 	.type = hwmon_curr,
1042 	.config = sfp_hwmon_bias_config,
1043 };
1044 
1045 static u32 sfp_hwmon_power_config[] = {
1046 	/* Transmit power */
1047 	HWMON_P_INPUT |
1048 	HWMON_P_MAX | HWMON_P_MIN |
1049 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1050 	HWMON_P_CRIT | HWMON_P_LCRIT |
1051 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1052 	/* Receive power */
1053 	HWMON_P_INPUT |
1054 	HWMON_P_MAX | HWMON_P_MIN |
1055 	HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1056 	HWMON_P_CRIT | HWMON_P_LCRIT |
1057 	HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM,
1058 	0,
1059 };
1060 
1061 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1062 	.type = hwmon_power,
1063 	.config = sfp_hwmon_power_config,
1064 };
1065 
1066 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1067 	&sfp_hwmon_chip,
1068 	&sfp_hwmon_vcc_channel_info,
1069 	&sfp_hwmon_temp_channel_info,
1070 	&sfp_hwmon_bias_channel_info,
1071 	&sfp_hwmon_power_channel_info,
1072 	NULL,
1073 };
1074 
1075 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1076 	.ops = &sfp_hwmon_ops,
1077 	.info = sfp_hwmon_info,
1078 };
1079 
1080 static int sfp_hwmon_insert(struct sfp *sfp)
1081 {
1082 	int err, i;
1083 
1084 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1085 		return 0;
1086 
1087 	if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1088 		return 0;
1089 
1090 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1091 		/* This driver in general does not support address
1092 		 * change.
1093 		 */
1094 		return 0;
1095 
1096 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1097 	if (err < 0)
1098 		return err;
1099 
1100 	sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1101 	if (!sfp->hwmon_name)
1102 		return -ENODEV;
1103 
1104 	for (i = 0; sfp->hwmon_name[i]; i++)
1105 		if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1106 			sfp->hwmon_name[i] = '_';
1107 
1108 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1109 							 sfp->hwmon_name, sfp,
1110 							 &sfp_hwmon_chip_info,
1111 							 NULL);
1112 
1113 	return PTR_ERR_OR_ZERO(sfp->hwmon_dev);
1114 }
1115 
1116 static void sfp_hwmon_remove(struct sfp *sfp)
1117 {
1118 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1119 		hwmon_device_unregister(sfp->hwmon_dev);
1120 		sfp->hwmon_dev = NULL;
1121 		kfree(sfp->hwmon_name);
1122 	}
1123 }
1124 #else
1125 static int sfp_hwmon_insert(struct sfp *sfp)
1126 {
1127 	return 0;
1128 }
1129 
1130 static void sfp_hwmon_remove(struct sfp *sfp)
1131 {
1132 }
1133 #endif
1134 
1135 /* Helpers */
1136 static void sfp_module_tx_disable(struct sfp *sfp)
1137 {
1138 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1139 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1140 	sfp->state |= SFP_F_TX_DISABLE;
1141 	sfp_set_state(sfp, sfp->state);
1142 }
1143 
1144 static void sfp_module_tx_enable(struct sfp *sfp)
1145 {
1146 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1147 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1148 	sfp->state &= ~SFP_F_TX_DISABLE;
1149 	sfp_set_state(sfp, sfp->state);
1150 }
1151 
1152 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1153 {
1154 	unsigned int state = sfp->state;
1155 
1156 	if (state & SFP_F_TX_DISABLE)
1157 		return;
1158 
1159 	sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1160 
1161 	udelay(T_RESET_US);
1162 
1163 	sfp_set_state(sfp, state);
1164 }
1165 
1166 /* SFP state machine */
1167 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1168 {
1169 	if (timeout)
1170 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1171 				 timeout);
1172 	else
1173 		cancel_delayed_work(&sfp->timeout);
1174 }
1175 
1176 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1177 			unsigned int timeout)
1178 {
1179 	sfp->sm_state = state;
1180 	sfp_sm_set_timer(sfp, timeout);
1181 }
1182 
1183 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state,
1184 			    unsigned int timeout)
1185 {
1186 	sfp->sm_mod_state = state;
1187 	sfp_sm_set_timer(sfp, timeout);
1188 }
1189 
1190 static void sfp_sm_phy_detach(struct sfp *sfp)
1191 {
1192 	phy_stop(sfp->mod_phy);
1193 	sfp_remove_phy(sfp->sfp_bus);
1194 	phy_device_remove(sfp->mod_phy);
1195 	phy_device_free(sfp->mod_phy);
1196 	sfp->mod_phy = NULL;
1197 }
1198 
1199 static void sfp_sm_probe_phy(struct sfp *sfp)
1200 {
1201 	struct phy_device *phy;
1202 	int err;
1203 
1204 	msleep(T_PHY_RESET_MS);
1205 
1206 	phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1207 	if (phy == ERR_PTR(-ENODEV)) {
1208 		dev_info(sfp->dev, "no PHY detected\n");
1209 		return;
1210 	}
1211 	if (IS_ERR(phy)) {
1212 		dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1213 		return;
1214 	}
1215 
1216 	err = sfp_add_phy(sfp->sfp_bus, phy);
1217 	if (err) {
1218 		phy_device_remove(phy);
1219 		phy_device_free(phy);
1220 		dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1221 		return;
1222 	}
1223 
1224 	sfp->mod_phy = phy;
1225 	phy_start(phy);
1226 }
1227 
1228 static void sfp_sm_link_up(struct sfp *sfp)
1229 {
1230 	sfp_link_up(sfp->sfp_bus);
1231 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1232 }
1233 
1234 static void sfp_sm_link_down(struct sfp *sfp)
1235 {
1236 	sfp_link_down(sfp->sfp_bus);
1237 }
1238 
1239 static void sfp_sm_link_check_los(struct sfp *sfp)
1240 {
1241 	unsigned int los = sfp->state & SFP_F_LOS;
1242 
1243 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1244 	 * are set, we assume that no LOS signal is available.
1245 	 */
1246 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1247 		los ^= SFP_F_LOS;
1248 	else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1249 		los = 0;
1250 
1251 	if (los)
1252 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1253 	else
1254 		sfp_sm_link_up(sfp);
1255 }
1256 
1257 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1258 {
1259 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1260 		event == SFP_E_LOS_LOW) ||
1261 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1262 		event == SFP_E_LOS_HIGH);
1263 }
1264 
1265 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1266 {
1267 	return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1268 		event == SFP_E_LOS_HIGH) ||
1269 	       (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1270 		event == SFP_E_LOS_LOW);
1271 }
1272 
1273 static void sfp_sm_fault(struct sfp *sfp, bool warn)
1274 {
1275 	if (sfp->sm_retries && !--sfp->sm_retries) {
1276 		dev_err(sfp->dev,
1277 			"module persistently indicates fault, disabling\n");
1278 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1279 	} else {
1280 		if (warn)
1281 			dev_err(sfp->dev, "module transmit fault indicated\n");
1282 
1283 		sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER);
1284 	}
1285 }
1286 
1287 static void sfp_sm_mod_init(struct sfp *sfp)
1288 {
1289 	sfp_module_tx_enable(sfp);
1290 
1291 	/* Wait t_init before indicating that the link is up, provided the
1292 	 * current state indicates no TX_FAULT.  If TX_FAULT clears before
1293 	 * this time, that's fine too.
1294 	 */
1295 	sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1296 	sfp->sm_retries = 5;
1297 
1298 	/* Setting the serdes link mode is guesswork: there's no
1299 	 * field in the EEPROM which indicates what mode should
1300 	 * be used.
1301 	 *
1302 	 * If it's a gigabit-only fiber module, it probably does
1303 	 * not have a PHY, so switch to 802.3z negotiation mode.
1304 	 * Otherwise, switch to SGMII mode (which is required to
1305 	 * support non-gigabit speeds) and probe for a PHY.
1306 	 */
1307 	if (sfp->id.base.e1000_base_t ||
1308 	    sfp->id.base.e100_base_lx ||
1309 	    sfp->id.base.e100_base_fx)
1310 		sfp_sm_probe_phy(sfp);
1311 }
1312 
1313 static int sfp_sm_mod_hpower(struct sfp *sfp)
1314 {
1315 	u32 power;
1316 	u8 val;
1317 	int err;
1318 
1319 	power = 1000;
1320 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1321 		power = 1500;
1322 	if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1323 		power = 2000;
1324 
1325 	if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE &&
1326 	    (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) !=
1327 	    SFP_DIAGMON_DDM) {
1328 		/* The module appears not to implement bus address 0xa2,
1329 		 * or requires an address change sequence, so assume that
1330 		 * the module powers up in the indicated power mode.
1331 		 */
1332 		if (power > sfp->max_power_mW) {
1333 			dev_err(sfp->dev,
1334 				"Host does not support %u.%uW modules\n",
1335 				power / 1000, (power / 100) % 10);
1336 			return -EINVAL;
1337 		}
1338 		return 0;
1339 	}
1340 
1341 	if (power > sfp->max_power_mW) {
1342 		dev_warn(sfp->dev,
1343 			 "Host does not support %u.%uW modules, module left in power mode 1\n",
1344 			 power / 1000, (power / 100) % 10);
1345 		return 0;
1346 	}
1347 
1348 	if (power <= 1000)
1349 		return 0;
1350 
1351 	err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1352 	if (err != sizeof(val)) {
1353 		dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1354 		err = -EAGAIN;
1355 		goto err;
1356 	}
1357 
1358 	val |= BIT(0);
1359 
1360 	err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1361 	if (err != sizeof(val)) {
1362 		dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1363 		err = -EAGAIN;
1364 		goto err;
1365 	}
1366 
1367 	dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1368 		 power / 1000, (power / 100) % 10);
1369 	return T_HPOWER_LEVEL;
1370 
1371 err:
1372 	return err;
1373 }
1374 
1375 static int sfp_sm_mod_probe(struct sfp *sfp)
1376 {
1377 	/* SFP module inserted - read I2C data */
1378 	struct sfp_eeprom_id id;
1379 	bool cotsworks;
1380 	u8 check;
1381 	int ret;
1382 
1383 	ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1384 	if (ret < 0) {
1385 		dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1386 		return -EAGAIN;
1387 	}
1388 
1389 	if (ret != sizeof(id)) {
1390 		dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1391 		return -EAGAIN;
1392 	}
1393 
1394 	/* Cotsworks do not seem to update the checksums when they
1395 	 * do the final programming with the final module part number,
1396 	 * serial number and date code.
1397 	 */
1398 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1399 
1400 	/* Validate the checksum over the base structure */
1401 	check = sfp_check(&id.base, sizeof(id.base) - 1);
1402 	if (check != id.base.cc_base) {
1403 		if (cotsworks) {
1404 			dev_warn(sfp->dev,
1405 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1406 				 check, id.base.cc_base);
1407 		} else {
1408 			dev_err(sfp->dev,
1409 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1410 				check, id.base.cc_base);
1411 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1412 				       16, 1, &id, sizeof(id), true);
1413 			return -EINVAL;
1414 		}
1415 	}
1416 
1417 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1418 	if (check != id.ext.cc_ext) {
1419 		if (cotsworks) {
1420 			dev_warn(sfp->dev,
1421 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1422 				 check, id.ext.cc_ext);
1423 		} else {
1424 			dev_err(sfp->dev,
1425 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1426 				check, id.ext.cc_ext);
1427 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1428 				       16, 1, &id, sizeof(id), true);
1429 			memset(&id.ext, 0, sizeof(id.ext));
1430 		}
1431 	}
1432 
1433 	sfp->id = id;
1434 
1435 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1436 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1437 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1438 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1439 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1440 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
1441 
1442 	/* Check whether we support this module */
1443 	if (!sfp->type->module_supported(&sfp->id)) {
1444 		dev_err(sfp->dev,
1445 			"module is not supported - phys id 0x%02x 0x%02x\n",
1446 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1447 		return -EINVAL;
1448 	}
1449 
1450 	/* If the module requires address swap mode, warn about it */
1451 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1452 		dev_warn(sfp->dev,
1453 			 "module address swap to access page 0xA2 is not supported.\n");
1454 
1455 	ret = sfp_hwmon_insert(sfp);
1456 	if (ret < 0)
1457 		return ret;
1458 
1459 	ret = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1460 	if (ret < 0)
1461 		return ret;
1462 
1463 	return sfp_sm_mod_hpower(sfp);
1464 }
1465 
1466 static void sfp_sm_mod_remove(struct sfp *sfp)
1467 {
1468 	sfp_module_remove(sfp->sfp_bus);
1469 
1470 	sfp_hwmon_remove(sfp);
1471 
1472 	if (sfp->mod_phy)
1473 		sfp_sm_phy_detach(sfp);
1474 
1475 	sfp_module_tx_disable(sfp);
1476 
1477 	memset(&sfp->id, 0, sizeof(sfp->id));
1478 
1479 	dev_info(sfp->dev, "module removed\n");
1480 }
1481 
1482 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1483 {
1484 	mutex_lock(&sfp->sm_mutex);
1485 
1486 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1487 		mod_state_to_str(sfp->sm_mod_state),
1488 		dev_state_to_str(sfp->sm_dev_state),
1489 		sm_state_to_str(sfp->sm_state),
1490 		event_to_str(event));
1491 
1492 	/* This state machine tracks the insert/remove state of
1493 	 * the module, and handles probing the on-board EEPROM.
1494 	 */
1495 	switch (sfp->sm_mod_state) {
1496 	default:
1497 		if (event == SFP_E_INSERT && sfp->attached) {
1498 			sfp_module_tx_disable(sfp);
1499 			sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT);
1500 		}
1501 		break;
1502 
1503 	case SFP_MOD_PROBE:
1504 		if (event == SFP_E_REMOVE) {
1505 			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1506 		} else if (event == SFP_E_TIMEOUT) {
1507 			int val = sfp_sm_mod_probe(sfp);
1508 
1509 			if (val == 0)
1510 				sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1511 			else if (val > 0)
1512 				sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val);
1513 			else if (val != -EAGAIN)
1514 				sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0);
1515 			else
1516 				sfp_sm_set_timer(sfp, T_PROBE_RETRY);
1517 		}
1518 		break;
1519 
1520 	case SFP_MOD_HPOWER:
1521 		if (event == SFP_E_TIMEOUT) {
1522 			sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0);
1523 			break;
1524 		}
1525 		/* fallthrough */
1526 	case SFP_MOD_PRESENT:
1527 	case SFP_MOD_ERROR:
1528 		if (event == SFP_E_REMOVE) {
1529 			sfp_sm_mod_remove(sfp);
1530 			sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0);
1531 		}
1532 		break;
1533 	}
1534 
1535 	/* This state machine tracks the netdev up/down state */
1536 	switch (sfp->sm_dev_state) {
1537 	default:
1538 		if (event == SFP_E_DEV_UP)
1539 			sfp->sm_dev_state = SFP_DEV_UP;
1540 		break;
1541 
1542 	case SFP_DEV_UP:
1543 		if (event == SFP_E_DEV_DOWN) {
1544 			/* If the module has a PHY, avoid raising TX disable
1545 			 * as this resets the PHY. Otherwise, raise it to
1546 			 * turn the laser off.
1547 			 */
1548 			if (!sfp->mod_phy)
1549 				sfp_module_tx_disable(sfp);
1550 			sfp->sm_dev_state = SFP_DEV_DOWN;
1551 		}
1552 		break;
1553 	}
1554 
1555 	/* Some events are global */
1556 	if (sfp->sm_state != SFP_S_DOWN &&
1557 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1558 	     sfp->sm_dev_state != SFP_DEV_UP)) {
1559 		if (sfp->sm_state == SFP_S_LINK_UP &&
1560 		    sfp->sm_dev_state == SFP_DEV_UP)
1561 			sfp_sm_link_down(sfp);
1562 		if (sfp->mod_phy)
1563 			sfp_sm_phy_detach(sfp);
1564 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
1565 		mutex_unlock(&sfp->sm_mutex);
1566 		return;
1567 	}
1568 
1569 	/* The main state machine */
1570 	switch (sfp->sm_state) {
1571 	case SFP_S_DOWN:
1572 		if (sfp->sm_mod_state == SFP_MOD_PRESENT &&
1573 		    sfp->sm_dev_state == SFP_DEV_UP)
1574 			sfp_sm_mod_init(sfp);
1575 		break;
1576 
1577 	case SFP_S_INIT:
1578 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT)
1579 			sfp_sm_fault(sfp, true);
1580 		else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR)
1581 			sfp_sm_link_check_los(sfp);
1582 		break;
1583 
1584 	case SFP_S_WAIT_LOS:
1585 		if (event == SFP_E_TX_FAULT)
1586 			sfp_sm_fault(sfp, true);
1587 		else if (sfp_los_event_inactive(sfp, event))
1588 			sfp_sm_link_up(sfp);
1589 		break;
1590 
1591 	case SFP_S_LINK_UP:
1592 		if (event == SFP_E_TX_FAULT) {
1593 			sfp_sm_link_down(sfp);
1594 			sfp_sm_fault(sfp, true);
1595 		} else if (sfp_los_event_active(sfp, event)) {
1596 			sfp_sm_link_down(sfp);
1597 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1598 		}
1599 		break;
1600 
1601 	case SFP_S_TX_FAULT:
1602 		if (event == SFP_E_TIMEOUT) {
1603 			sfp_module_tx_fault_reset(sfp);
1604 			sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1605 		}
1606 		break;
1607 
1608 	case SFP_S_REINIT:
1609 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1610 			sfp_sm_fault(sfp, false);
1611 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1612 			dev_info(sfp->dev, "module transmit fault recovered\n");
1613 			sfp_sm_link_check_los(sfp);
1614 		}
1615 		break;
1616 
1617 	case SFP_S_TX_DISABLE:
1618 		break;
1619 	}
1620 
1621 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1622 		mod_state_to_str(sfp->sm_mod_state),
1623 		dev_state_to_str(sfp->sm_dev_state),
1624 		sm_state_to_str(sfp->sm_state));
1625 
1626 	mutex_unlock(&sfp->sm_mutex);
1627 }
1628 
1629 static void sfp_attach(struct sfp *sfp)
1630 {
1631 	sfp->attached = true;
1632 	if (sfp->state & SFP_F_PRESENT)
1633 		sfp_sm_event(sfp, SFP_E_INSERT);
1634 }
1635 
1636 static void sfp_detach(struct sfp *sfp)
1637 {
1638 	sfp->attached = false;
1639 	sfp_sm_event(sfp, SFP_E_REMOVE);
1640 }
1641 
1642 static void sfp_start(struct sfp *sfp)
1643 {
1644 	sfp_sm_event(sfp, SFP_E_DEV_UP);
1645 }
1646 
1647 static void sfp_stop(struct sfp *sfp)
1648 {
1649 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1650 }
1651 
1652 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1653 {
1654 	/* locking... and check module is present */
1655 
1656 	if (sfp->id.ext.sff8472_compliance &&
1657 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1658 		modinfo->type = ETH_MODULE_SFF_8472;
1659 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1660 	} else {
1661 		modinfo->type = ETH_MODULE_SFF_8079;
1662 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1663 	}
1664 	return 0;
1665 }
1666 
1667 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
1668 			     u8 *data)
1669 {
1670 	unsigned int first, last, len;
1671 	int ret;
1672 
1673 	if (ee->len == 0)
1674 		return -EINVAL;
1675 
1676 	first = ee->offset;
1677 	last = ee->offset + ee->len;
1678 	if (first < ETH_MODULE_SFF_8079_LEN) {
1679 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
1680 		len -= first;
1681 
1682 		ret = sfp_read(sfp, false, first, data, len);
1683 		if (ret < 0)
1684 			return ret;
1685 
1686 		first += len;
1687 		data += len;
1688 	}
1689 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
1690 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
1691 		len -= first;
1692 		first -= ETH_MODULE_SFF_8079_LEN;
1693 
1694 		ret = sfp_read(sfp, true, first, data, len);
1695 		if (ret < 0)
1696 			return ret;
1697 	}
1698 	return 0;
1699 }
1700 
1701 static const struct sfp_socket_ops sfp_module_ops = {
1702 	.attach = sfp_attach,
1703 	.detach = sfp_detach,
1704 	.start = sfp_start,
1705 	.stop = sfp_stop,
1706 	.module_info = sfp_module_info,
1707 	.module_eeprom = sfp_module_eeprom,
1708 };
1709 
1710 static void sfp_timeout(struct work_struct *work)
1711 {
1712 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
1713 
1714 	rtnl_lock();
1715 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
1716 	rtnl_unlock();
1717 }
1718 
1719 static void sfp_check_state(struct sfp *sfp)
1720 {
1721 	unsigned int state, i, changed;
1722 
1723 	state = sfp_get_state(sfp);
1724 	changed = state ^ sfp->state;
1725 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
1726 
1727 	for (i = 0; i < GPIO_MAX; i++)
1728 		if (changed & BIT(i))
1729 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
1730 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
1731 
1732 	state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
1733 	sfp->state = state;
1734 
1735 	rtnl_lock();
1736 	if (changed & SFP_F_PRESENT)
1737 		sfp_sm_event(sfp, state & SFP_F_PRESENT ?
1738 				SFP_E_INSERT : SFP_E_REMOVE);
1739 
1740 	if (changed & SFP_F_TX_FAULT)
1741 		sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
1742 				SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
1743 
1744 	if (changed & SFP_F_LOS)
1745 		sfp_sm_event(sfp, state & SFP_F_LOS ?
1746 				SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
1747 	rtnl_unlock();
1748 }
1749 
1750 static irqreturn_t sfp_irq(int irq, void *data)
1751 {
1752 	struct sfp *sfp = data;
1753 
1754 	sfp_check_state(sfp);
1755 
1756 	return IRQ_HANDLED;
1757 }
1758 
1759 static void sfp_poll(struct work_struct *work)
1760 {
1761 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
1762 
1763 	sfp_check_state(sfp);
1764 	mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1765 }
1766 
1767 static struct sfp *sfp_alloc(struct device *dev)
1768 {
1769 	struct sfp *sfp;
1770 
1771 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
1772 	if (!sfp)
1773 		return ERR_PTR(-ENOMEM);
1774 
1775 	sfp->dev = dev;
1776 
1777 	mutex_init(&sfp->sm_mutex);
1778 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
1779 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
1780 
1781 	return sfp;
1782 }
1783 
1784 static void sfp_cleanup(void *data)
1785 {
1786 	struct sfp *sfp = data;
1787 
1788 	cancel_delayed_work_sync(&sfp->poll);
1789 	cancel_delayed_work_sync(&sfp->timeout);
1790 	if (sfp->i2c_mii) {
1791 		mdiobus_unregister(sfp->i2c_mii);
1792 		mdiobus_free(sfp->i2c_mii);
1793 	}
1794 	if (sfp->i2c)
1795 		i2c_put_adapter(sfp->i2c);
1796 	kfree(sfp);
1797 }
1798 
1799 static int sfp_probe(struct platform_device *pdev)
1800 {
1801 	const struct sff_data *sff;
1802 	struct i2c_adapter *i2c;
1803 	struct sfp *sfp;
1804 	bool poll = false;
1805 	int irq, err, i;
1806 
1807 	sfp = sfp_alloc(&pdev->dev);
1808 	if (IS_ERR(sfp))
1809 		return PTR_ERR(sfp);
1810 
1811 	platform_set_drvdata(pdev, sfp);
1812 
1813 	err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
1814 	if (err < 0)
1815 		return err;
1816 
1817 	sff = sfp->type = &sfp_data;
1818 
1819 	if (pdev->dev.of_node) {
1820 		struct device_node *node = pdev->dev.of_node;
1821 		const struct of_device_id *id;
1822 		struct device_node *np;
1823 
1824 		id = of_match_node(sfp_of_match, node);
1825 		if (WARN_ON(!id))
1826 			return -EINVAL;
1827 
1828 		sff = sfp->type = id->data;
1829 
1830 		np = of_parse_phandle(node, "i2c-bus", 0);
1831 		if (!np) {
1832 			dev_err(sfp->dev, "missing 'i2c-bus' property\n");
1833 			return -ENODEV;
1834 		}
1835 
1836 		i2c = of_find_i2c_adapter_by_node(np);
1837 		of_node_put(np);
1838 	} else if (has_acpi_companion(&pdev->dev)) {
1839 		struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
1840 		struct fwnode_handle *fw = acpi_fwnode_handle(adev);
1841 		struct fwnode_reference_args args;
1842 		struct acpi_handle *acpi_handle;
1843 		int ret;
1844 
1845 		ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
1846 		if (ACPI_FAILURE(ret) || !is_acpi_device_node(args.fwnode)) {
1847 			dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
1848 			return -ENODEV;
1849 		}
1850 
1851 		acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
1852 		i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
1853 	} else {
1854 		return -EINVAL;
1855 	}
1856 
1857 	if (!i2c)
1858 		return -EPROBE_DEFER;
1859 
1860 	err = sfp_i2c_configure(sfp, i2c);
1861 	if (err < 0) {
1862 		i2c_put_adapter(i2c);
1863 		return err;
1864 	}
1865 
1866 	for (i = 0; i < GPIO_MAX; i++)
1867 		if (sff->gpios & BIT(i)) {
1868 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
1869 					   gpio_of_names[i], gpio_flags[i]);
1870 			if (IS_ERR(sfp->gpio[i]))
1871 				return PTR_ERR(sfp->gpio[i]);
1872 		}
1873 
1874 	sfp->get_state = sfp_gpio_get_state;
1875 	sfp->set_state = sfp_gpio_set_state;
1876 
1877 	/* Modules that have no detect signal are always present */
1878 	if (!(sfp->gpio[GPIO_MODDEF0]))
1879 		sfp->get_state = sff_gpio_get_state;
1880 
1881 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
1882 				 &sfp->max_power_mW);
1883 	if (!sfp->max_power_mW)
1884 		sfp->max_power_mW = 1000;
1885 
1886 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
1887 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
1888 
1889 	/* Get the initial state, and always signal TX disable,
1890 	 * since the network interface will not be up.
1891 	 */
1892 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
1893 
1894 	if (sfp->gpio[GPIO_RATE_SELECT] &&
1895 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
1896 		sfp->state |= SFP_F_RATE_SELECT;
1897 	sfp_set_state(sfp, sfp->state);
1898 	sfp_module_tx_disable(sfp);
1899 
1900 	for (i = 0; i < GPIO_MAX; i++) {
1901 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
1902 			continue;
1903 
1904 		irq = gpiod_to_irq(sfp->gpio[i]);
1905 		if (!irq) {
1906 			poll = true;
1907 			continue;
1908 		}
1909 
1910 		err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq,
1911 						IRQF_ONESHOT |
1912 						IRQF_TRIGGER_RISING |
1913 						IRQF_TRIGGER_FALLING,
1914 						dev_name(sfp->dev), sfp);
1915 		if (err)
1916 			poll = true;
1917 	}
1918 
1919 	if (poll)
1920 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
1921 
1922 	/* We could have an issue in cases no Tx disable pin is available or
1923 	 * wired as modules using a laser as their light source will continue to
1924 	 * be active when the fiber is removed. This could be a safety issue and
1925 	 * we should at least warn the user about that.
1926 	 */
1927 	if (!sfp->gpio[GPIO_TX_DISABLE])
1928 		dev_warn(sfp->dev,
1929 			 "No tx_disable pin: SFP modules will always be emitting.\n");
1930 
1931 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
1932 	if (!sfp->sfp_bus)
1933 		return -ENOMEM;
1934 
1935 	return 0;
1936 }
1937 
1938 static int sfp_remove(struct platform_device *pdev)
1939 {
1940 	struct sfp *sfp = platform_get_drvdata(pdev);
1941 
1942 	sfp_unregister_socket(sfp->sfp_bus);
1943 
1944 	return 0;
1945 }
1946 
1947 static struct platform_driver sfp_driver = {
1948 	.probe = sfp_probe,
1949 	.remove = sfp_remove,
1950 	.driver = {
1951 		.name = "sfp",
1952 		.of_match_table = sfp_of_match,
1953 	},
1954 };
1955 
1956 static int sfp_init(void)
1957 {
1958 	poll_jiffies = msecs_to_jiffies(100);
1959 
1960 	return platform_driver_register(&sfp_driver);
1961 }
1962 module_init(sfp_init);
1963 
1964 static void sfp_exit(void)
1965 {
1966 	platform_driver_unregister(&sfp_driver);
1967 }
1968 module_exit(sfp_exit);
1969 
1970 MODULE_ALIAS("platform:sfp");
1971 MODULE_AUTHOR("Russell King");
1972 MODULE_LICENSE("GPL v2");
1973