1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RS0, 28 GPIO_RS1, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RS0 = BIT(GPIO_RS0), 36 SFP_F_RS1 = BIT(GPIO_RS1), 37 38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 39 40 SFP_E_INSERT = 0, 41 SFP_E_REMOVE, 42 SFP_E_DEV_ATTACH, 43 SFP_E_DEV_DETACH, 44 SFP_E_DEV_DOWN, 45 SFP_E_DEV_UP, 46 SFP_E_TX_FAULT, 47 SFP_E_TX_CLEAR, 48 SFP_E_LOS_HIGH, 49 SFP_E_LOS_LOW, 50 SFP_E_TIMEOUT, 51 52 SFP_MOD_EMPTY = 0, 53 SFP_MOD_ERROR, 54 SFP_MOD_PROBE, 55 SFP_MOD_WAITDEV, 56 SFP_MOD_HPOWER, 57 SFP_MOD_WAITPWR, 58 SFP_MOD_PRESENT, 59 60 SFP_DEV_DETACHED = 0, 61 SFP_DEV_DOWN, 62 SFP_DEV_UP, 63 64 SFP_S_DOWN = 0, 65 SFP_S_FAIL, 66 SFP_S_WAIT, 67 SFP_S_INIT, 68 SFP_S_INIT_PHY, 69 SFP_S_INIT_TX_FAULT, 70 SFP_S_WAIT_LOS, 71 SFP_S_LINK_UP, 72 SFP_S_TX_FAULT, 73 SFP_S_REINIT, 74 SFP_S_TX_DISABLE, 75 }; 76 77 static const char * const mod_state_strings[] = { 78 [SFP_MOD_EMPTY] = "empty", 79 [SFP_MOD_ERROR] = "error", 80 [SFP_MOD_PROBE] = "probe", 81 [SFP_MOD_WAITDEV] = "waitdev", 82 [SFP_MOD_HPOWER] = "hpower", 83 [SFP_MOD_WAITPWR] = "waitpwr", 84 [SFP_MOD_PRESENT] = "present", 85 }; 86 87 static const char *mod_state_to_str(unsigned short mod_state) 88 { 89 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 90 return "Unknown module state"; 91 return mod_state_strings[mod_state]; 92 } 93 94 static const char * const dev_state_strings[] = { 95 [SFP_DEV_DETACHED] = "detached", 96 [SFP_DEV_DOWN] = "down", 97 [SFP_DEV_UP] = "up", 98 }; 99 100 static const char *dev_state_to_str(unsigned short dev_state) 101 { 102 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 103 return "Unknown device state"; 104 return dev_state_strings[dev_state]; 105 } 106 107 static const char * const event_strings[] = { 108 [SFP_E_INSERT] = "insert", 109 [SFP_E_REMOVE] = "remove", 110 [SFP_E_DEV_ATTACH] = "dev_attach", 111 [SFP_E_DEV_DETACH] = "dev_detach", 112 [SFP_E_DEV_DOWN] = "dev_down", 113 [SFP_E_DEV_UP] = "dev_up", 114 [SFP_E_TX_FAULT] = "tx_fault", 115 [SFP_E_TX_CLEAR] = "tx_clear", 116 [SFP_E_LOS_HIGH] = "los_high", 117 [SFP_E_LOS_LOW] = "los_low", 118 [SFP_E_TIMEOUT] = "timeout", 119 }; 120 121 static const char *event_to_str(unsigned short event) 122 { 123 if (event >= ARRAY_SIZE(event_strings)) 124 return "Unknown event"; 125 return event_strings[event]; 126 } 127 128 static const char * const sm_state_strings[] = { 129 [SFP_S_DOWN] = "down", 130 [SFP_S_FAIL] = "fail", 131 [SFP_S_WAIT] = "wait", 132 [SFP_S_INIT] = "init", 133 [SFP_S_INIT_PHY] = "init_phy", 134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 135 [SFP_S_WAIT_LOS] = "wait_los", 136 [SFP_S_LINK_UP] = "link_up", 137 [SFP_S_TX_FAULT] = "tx_fault", 138 [SFP_S_REINIT] = "reinit", 139 [SFP_S_TX_DISABLE] = "tx_disable", 140 }; 141 142 static const char *sm_state_to_str(unsigned short sm_state) 143 { 144 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 145 return "Unknown state"; 146 return sm_state_strings[sm_state]; 147 } 148 149 static const char *gpio_names[] = { 150 "mod-def0", 151 "los", 152 "tx-fault", 153 "tx-disable", 154 "rate-select0", 155 "rate-select1", 156 }; 157 158 static const enum gpiod_flags gpio_flags[] = { 159 GPIOD_IN, 160 GPIOD_IN, 161 GPIOD_IN, 162 GPIOD_ASIS, 163 GPIOD_ASIS, 164 GPIOD_ASIS, 165 }; 166 167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 168 * non-cooled module to initialise its laser safety circuitry. We wait 169 * an initial T_WAIT period before we check the tx fault to give any PHY 170 * on board (for a copper SFP) time to initialise. 171 */ 172 #define T_WAIT msecs_to_jiffies(50) 173 #define T_START_UP msecs_to_jiffies(300) 174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 175 176 /* t_reset is the time required to assert the TX_DISABLE signal to reset 177 * an indicated TX_FAULT. 178 */ 179 #define T_RESET_US 10 180 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 181 182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 183 * time. If the TX_FAULT signal is not deasserted after this number of 184 * attempts at clearing it, we decide that the module is faulty. 185 * N_FAULT is the same but after the module has initialised. 186 */ 187 #define N_FAULT_INIT 5 188 #define N_FAULT 5 189 190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 191 * R_PHY_RETRY is the number of attempts. 192 */ 193 #define T_PHY_RETRY msecs_to_jiffies(50) 194 #define R_PHY_RETRY 25 195 196 /* SFP module presence detection is poor: the three MOD DEF signals are 197 * the same length on the PCB, which means it's possible for MOD DEF 0 to 198 * connect before the I2C bus on MOD DEF 1/2. 199 * 200 * The SFF-8472 specifies t_serial ("Time from power on until module is 201 * ready for data transmission over the two wire serial bus.") as 300ms. 202 */ 203 #define T_SERIAL msecs_to_jiffies(300) 204 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 206 #define R_PROBE_RETRY_INIT 10 207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 208 #define R_PROBE_RETRY_SLOW 12 209 210 /* SFP modules appear to always have their PHY configured for bus address 211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 214 */ 215 #define SFP_PHY_ADDR 22 216 #define SFP_PHY_ADDR_ROLLBALL 17 217 218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM 219 * at a time. Some SFP modules and also some Linux I2C drivers do not like 220 * reads longer than 16 bytes. 221 */ 222 #define SFP_EEPROM_BLOCK_SIZE 16 223 224 struct sff_data { 225 unsigned int gpios; 226 bool (*module_supported)(const struct sfp_eeprom_id *id); 227 }; 228 229 struct sfp { 230 struct device *dev; 231 struct i2c_adapter *i2c; 232 struct mii_bus *i2c_mii; 233 struct sfp_bus *sfp_bus; 234 enum mdio_i2c_proto mdio_protocol; 235 struct phy_device *mod_phy; 236 const struct sff_data *type; 237 size_t i2c_block_size; 238 u32 max_power_mW; 239 240 unsigned int (*get_state)(struct sfp *); 241 void (*set_state)(struct sfp *, unsigned int); 242 int (*read)(struct sfp *, bool, u8, void *, size_t); 243 int (*write)(struct sfp *, bool, u8, void *, size_t); 244 245 struct gpio_desc *gpio[GPIO_MAX]; 246 int gpio_irq[GPIO_MAX]; 247 248 bool need_poll; 249 250 /* Access rules: 251 * state_hw_drive: st_mutex held 252 * state_hw_mask: st_mutex held 253 * state_soft_mask: st_mutex held 254 * state: st_mutex held unless reading input bits 255 */ 256 struct mutex st_mutex; /* Protects state */ 257 unsigned int state_hw_drive; 258 unsigned int state_hw_mask; 259 unsigned int state_soft_mask; 260 unsigned int state_ignore_mask; 261 unsigned int state; 262 263 struct delayed_work poll; 264 struct delayed_work timeout; 265 struct mutex sm_mutex; /* Protects state machine */ 266 unsigned char sm_mod_state; 267 unsigned char sm_mod_tries_init; 268 unsigned char sm_mod_tries; 269 unsigned char sm_dev_state; 270 unsigned short sm_state; 271 unsigned char sm_fault_retries; 272 unsigned char sm_phy_retries; 273 274 struct sfp_eeprom_id id; 275 unsigned int module_power_mW; 276 unsigned int module_t_start_up; 277 unsigned int module_t_wait; 278 unsigned int phy_t_retry; 279 280 unsigned int rate_kbd; 281 unsigned int rs_threshold_kbd; 282 unsigned int rs_state_mask; 283 284 bool have_a2; 285 286 const struct sfp_quirk *quirk; 287 288 #if IS_ENABLED(CONFIG_HWMON) 289 struct sfp_diag diag; 290 struct delayed_work hwmon_probe; 291 unsigned int hwmon_tries; 292 struct device *hwmon_dev; 293 char *hwmon_name; 294 #endif 295 296 #if IS_ENABLED(CONFIG_DEBUG_FS) 297 struct dentry *debugfs_dir; 298 #endif 299 }; 300 301 static bool sff_module_supported(const struct sfp_eeprom_id *id) 302 { 303 return id->base.phys_id == SFF8024_ID_SFF_8472 && 304 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 305 } 306 307 static const struct sff_data sff_data = { 308 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 309 .module_supported = sff_module_supported, 310 }; 311 312 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 313 { 314 if (id->base.phys_id == SFF8024_ID_SFP && 315 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 316 return true; 317 318 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 319 * phys id SFF instead of SFP. Therefore mark this module explicitly 320 * as supported based on vendor name and pn match. 321 */ 322 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 323 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 324 !memcmp(id->base.vendor_name, "UBNT ", 16) && 325 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 326 return true; 327 328 return false; 329 } 330 331 static const struct sff_data sfp_data = { 332 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 333 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 334 .module_supported = sfp_module_supported, 335 }; 336 337 static const struct of_device_id sfp_of_match[] = { 338 { .compatible = "sff,sff", .data = &sff_data, }, 339 { .compatible = "sff,sfp", .data = &sfp_data, }, 340 { }, 341 }; 342 MODULE_DEVICE_TABLE(of, sfp_of_match); 343 344 static void sfp_fixup_long_startup(struct sfp *sfp) 345 { 346 sfp->module_t_start_up = T_START_UP_BAD_GPON; 347 } 348 349 static void sfp_fixup_ignore_los(struct sfp *sfp) 350 { 351 /* This forces LOS to zero, so we ignore transitions */ 352 sfp->state_ignore_mask |= SFP_F_LOS; 353 /* Make sure that LOS options are clear */ 354 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED | 355 SFP_OPTIONS_LOS_NORMAL); 356 } 357 358 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 359 { 360 sfp->state_ignore_mask |= SFP_F_TX_FAULT; 361 } 362 363 static void sfp_fixup_nokia(struct sfp *sfp) 364 { 365 sfp_fixup_long_startup(sfp); 366 sfp_fixup_ignore_los(sfp); 367 } 368 369 // For 10GBASE-T short-reach modules 370 static void sfp_fixup_10gbaset_30m(struct sfp *sfp) 371 { 372 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; 373 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; 374 } 375 376 static void sfp_fixup_rollball(struct sfp *sfp) 377 { 378 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 379 380 /* RollBall modules may disallow access to PHY registers for up to 25 381 * seconds, and the reads return 0xffff before that. Increase the time 382 * between PHY probe retries from 50ms to 1s so that we will wait for 383 * the PHY for a sufficient amount of time. 384 */ 385 sfp->phy_t_retry = msecs_to_jiffies(1000); 386 } 387 388 static void sfp_fixup_fs_2_5gt(struct sfp *sfp) 389 { 390 sfp_fixup_rollball(sfp); 391 392 /* The RollBall fixup is not enough for FS modules, the PHY chip inside 393 * them does not return 0xffff for PHY ID registers in all MMDs for the 394 * while initializing. They need a 4 second wait before accessing PHY. 395 */ 396 sfp->module_t_wait = msecs_to_jiffies(4000); 397 } 398 399 static void sfp_fixup_fs_10gt(struct sfp *sfp) 400 { 401 sfp_fixup_10gbaset_30m(sfp); 402 sfp_fixup_fs_2_5gt(sfp); 403 } 404 405 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 406 { 407 /* Ignore the TX_FAULT and LOS signals on this module. 408 * these are possibly used for other purposes on this 409 * module, e.g. a serial port. 410 */ 411 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 412 } 413 414 static void sfp_fixup_rollball_cc(struct sfp *sfp) 415 { 416 sfp_fixup_rollball(sfp); 417 418 /* Some RollBall SFPs may have wrong (zero) extended compliance code 419 * burned in EEPROM. For PHY probing we need the correct one. 420 */ 421 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 422 } 423 424 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 425 unsigned long *modes, 426 unsigned long *interfaces) 427 { 428 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 429 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 430 } 431 432 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, 433 unsigned long *modes, 434 unsigned long *interfaces) 435 { 436 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); 437 } 438 439 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, 440 unsigned long *modes, 441 unsigned long *interfaces) 442 { 443 /* Copper 2.5G SFP */ 444 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); 445 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 446 sfp_quirk_disable_autoneg(id, modes, interfaces); 447 } 448 449 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 450 unsigned long *modes, 451 unsigned long *interfaces) 452 { 453 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 454 * types including 10G Ethernet which is not truth. So clear all claimed 455 * modes and set only one mode which module supports: 1000baseX_Full. 456 */ 457 linkmode_zero(modes); 458 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 459 } 460 461 #define SFP_QUIRK(_v, _p, _m, _f) \ 462 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 463 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 464 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 465 466 static const struct sfp_quirk sfp_quirks[] = { 467 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 468 // report 2500MBd NRZ in their EEPROM 469 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 470 471 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 472 // NRZ in their EEPROM 473 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 474 sfp_fixup_nokia), 475 476 // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball 477 // protocol to talk to the PHY and needs 4 sec wait before probing the 478 // PHY. 479 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), 480 481 // Fiberstore SFP-2.5G-T uses Rollball protocol to talk to the PHY and 482 // needs 4 sec wait before probing the PHY. 483 SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_fs_2_5gt), 484 485 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd 486 // NRZ in their EEPROM 487 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, 488 sfp_fixup_ignore_tx_fault), 489 490 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 491 492 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports 493 // 2600MBd in their EERPOM 494 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), 495 496 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 497 // their EEPROM 498 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 499 sfp_fixup_ignore_tx_fault), 500 501 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 502 // 2500MBd NRZ in their EEPROM 503 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 504 505 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 506 507 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the 508 // Rollball protocol to talk to the PHY. 509 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), 510 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), 511 512 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator 513 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault), 514 515 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 516 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 517 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 518 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 519 SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball), 520 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 521 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 522 }; 523 524 static size_t sfp_strlen(const char *str, size_t maxlen) 525 { 526 size_t size, i; 527 528 /* Trailing characters should be filled with space chars, but 529 * some manufacturers can't read SFF-8472 and use NUL. 530 */ 531 for (i = 0, size = 0; i < maxlen; i++) 532 if (str[i] != ' ' && str[i] != '\0') 533 size = i + 1; 534 535 return size; 536 } 537 538 static bool sfp_match(const char *qs, const char *str, size_t len) 539 { 540 if (!qs) 541 return true; 542 if (strlen(qs) != len) 543 return false; 544 return !strncmp(qs, str, len); 545 } 546 547 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 548 { 549 const struct sfp_quirk *q; 550 unsigned int i; 551 size_t vs, ps; 552 553 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 554 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 555 556 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 557 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 558 sfp_match(q->part, id->base.vendor_pn, ps)) 559 return q; 560 561 return NULL; 562 } 563 564 static unsigned long poll_jiffies; 565 566 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 567 { 568 unsigned int i, state, v; 569 570 for (i = state = 0; i < GPIO_MAX; i++) { 571 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 572 continue; 573 574 v = gpiod_get_value_cansleep(sfp->gpio[i]); 575 if (v) 576 state |= BIT(i); 577 } 578 579 return state; 580 } 581 582 static unsigned int sff_gpio_get_state(struct sfp *sfp) 583 { 584 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 585 } 586 587 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 588 { 589 unsigned int drive; 590 591 if (state & SFP_F_PRESENT) 592 /* If the module is present, drive the requested signals */ 593 drive = sfp->state_hw_drive; 594 else 595 /* Otherwise, let them float to the pull-ups */ 596 drive = 0; 597 598 if (sfp->gpio[GPIO_TX_DISABLE]) { 599 if (drive & SFP_F_TX_DISABLE) 600 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 601 state & SFP_F_TX_DISABLE); 602 else 603 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 604 } 605 606 if (sfp->gpio[GPIO_RS0]) { 607 if (drive & SFP_F_RS0) 608 gpiod_direction_output(sfp->gpio[GPIO_RS0], 609 state & SFP_F_RS0); 610 else 611 gpiod_direction_input(sfp->gpio[GPIO_RS0]); 612 } 613 614 if (sfp->gpio[GPIO_RS1]) { 615 if (drive & SFP_F_RS1) 616 gpiod_direction_output(sfp->gpio[GPIO_RS1], 617 state & SFP_F_RS1); 618 else 619 gpiod_direction_input(sfp->gpio[GPIO_RS1]); 620 } 621 } 622 623 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 624 size_t len) 625 { 626 struct i2c_msg msgs[2]; 627 u8 bus_addr = a2 ? 0x51 : 0x50; 628 size_t block_size = sfp->i2c_block_size; 629 size_t this_len; 630 int ret; 631 632 msgs[0].addr = bus_addr; 633 msgs[0].flags = 0; 634 msgs[0].len = 1; 635 msgs[0].buf = &dev_addr; 636 msgs[1].addr = bus_addr; 637 msgs[1].flags = I2C_M_RD; 638 msgs[1].len = len; 639 msgs[1].buf = buf; 640 641 while (len) { 642 this_len = len; 643 if (this_len > block_size) 644 this_len = block_size; 645 646 msgs[1].len = this_len; 647 648 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 649 if (ret < 0) 650 return ret; 651 652 if (ret != ARRAY_SIZE(msgs)) 653 break; 654 655 msgs[1].buf += this_len; 656 dev_addr += this_len; 657 len -= this_len; 658 } 659 660 return msgs[1].buf - (u8 *)buf; 661 } 662 663 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 664 size_t len) 665 { 666 struct i2c_msg msgs[1]; 667 u8 bus_addr = a2 ? 0x51 : 0x50; 668 int ret; 669 670 msgs[0].addr = bus_addr; 671 msgs[0].flags = 0; 672 msgs[0].len = 1 + len; 673 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 674 if (!msgs[0].buf) 675 return -ENOMEM; 676 677 msgs[0].buf[0] = dev_addr; 678 memcpy(&msgs[0].buf[1], buf, len); 679 680 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 681 682 kfree(msgs[0].buf); 683 684 if (ret < 0) 685 return ret; 686 687 return ret == ARRAY_SIZE(msgs) ? len : 0; 688 } 689 690 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 691 { 692 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 693 return -EINVAL; 694 695 sfp->i2c = i2c; 696 sfp->read = sfp_i2c_read; 697 sfp->write = sfp_i2c_write; 698 699 return 0; 700 } 701 702 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 703 { 704 struct mii_bus *i2c_mii; 705 int ret; 706 707 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 708 if (IS_ERR(i2c_mii)) 709 return PTR_ERR(i2c_mii); 710 711 i2c_mii->name = "SFP I2C Bus"; 712 i2c_mii->phy_mask = ~0; 713 714 ret = mdiobus_register(i2c_mii); 715 if (ret < 0) { 716 mdiobus_free(i2c_mii); 717 return ret; 718 } 719 720 sfp->i2c_mii = i2c_mii; 721 722 return 0; 723 } 724 725 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 726 { 727 mdiobus_unregister(sfp->i2c_mii); 728 sfp->i2c_mii = NULL; 729 } 730 731 /* Interface */ 732 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 733 { 734 return sfp->read(sfp, a2, addr, buf, len); 735 } 736 737 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 738 { 739 return sfp->write(sfp, a2, addr, buf, len); 740 } 741 742 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 743 { 744 int ret; 745 u8 old, v; 746 747 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 748 if (ret != sizeof(old)) 749 return ret; 750 751 v = (old & ~mask) | (val & mask); 752 if (v == old) 753 return sizeof(v); 754 755 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 756 } 757 758 static unsigned int sfp_soft_get_state(struct sfp *sfp) 759 { 760 unsigned int state = 0; 761 u8 status; 762 int ret; 763 764 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 765 if (ret == sizeof(status)) { 766 if (status & SFP_STATUS_RX_LOS) 767 state |= SFP_F_LOS; 768 if (status & SFP_STATUS_TX_FAULT) 769 state |= SFP_F_TX_FAULT; 770 } else { 771 dev_err_ratelimited(sfp->dev, 772 "failed to read SFP soft status: %pe\n", 773 ERR_PTR(ret)); 774 /* Preserve the current state */ 775 state = sfp->state; 776 } 777 778 return state & sfp->state_soft_mask; 779 } 780 781 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, 782 unsigned int soft) 783 { 784 u8 mask = 0; 785 u8 val = 0; 786 787 if (soft & SFP_F_TX_DISABLE) 788 mask |= SFP_STATUS_TX_DISABLE_FORCE; 789 if (state & SFP_F_TX_DISABLE) 790 val |= SFP_STATUS_TX_DISABLE_FORCE; 791 792 if (soft & SFP_F_RS0) 793 mask |= SFP_STATUS_RS0_SELECT; 794 if (state & SFP_F_RS0) 795 val |= SFP_STATUS_RS0_SELECT; 796 797 if (mask) 798 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 799 800 val = mask = 0; 801 if (soft & SFP_F_RS1) 802 mask |= SFP_EXT_STATUS_RS1_SELECT; 803 if (state & SFP_F_RS1) 804 val |= SFP_EXT_STATUS_RS1_SELECT; 805 806 if (mask) 807 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); 808 } 809 810 static void sfp_soft_start_poll(struct sfp *sfp) 811 { 812 const struct sfp_eeprom_id *id = &sfp->id; 813 unsigned int mask = 0; 814 815 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 816 mask |= SFP_F_TX_DISABLE; 817 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 818 mask |= SFP_F_TX_FAULT; 819 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 820 mask |= SFP_F_LOS; 821 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) 822 mask |= sfp->rs_state_mask; 823 824 mutex_lock(&sfp->st_mutex); 825 // Poll the soft state for hardware pins we want to ignore 826 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask & 827 mask; 828 829 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 830 !sfp->need_poll) 831 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 832 mutex_unlock(&sfp->st_mutex); 833 } 834 835 static void sfp_soft_stop_poll(struct sfp *sfp) 836 { 837 mutex_lock(&sfp->st_mutex); 838 sfp->state_soft_mask = 0; 839 mutex_unlock(&sfp->st_mutex); 840 } 841 842 /* sfp_get_state() - must be called with st_mutex held, or in the 843 * initialisation path. 844 */ 845 static unsigned int sfp_get_state(struct sfp *sfp) 846 { 847 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 848 unsigned int state; 849 850 state = sfp->get_state(sfp) & sfp->state_hw_mask; 851 if (state & SFP_F_PRESENT && soft) 852 state |= sfp_soft_get_state(sfp); 853 854 return state; 855 } 856 857 /* sfp_set_state() - must be called with st_mutex held, or in the 858 * initialisation path. 859 */ 860 static void sfp_set_state(struct sfp *sfp, unsigned int state) 861 { 862 unsigned int soft; 863 864 sfp->set_state(sfp, state); 865 866 soft = sfp->state_soft_mask & SFP_F_OUTPUTS; 867 if (state & SFP_F_PRESENT && soft) 868 sfp_soft_set_state(sfp, state, soft); 869 } 870 871 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) 872 { 873 mutex_lock(&sfp->st_mutex); 874 sfp->state = (sfp->state & ~mask) | set; 875 sfp_set_state(sfp, sfp->state); 876 mutex_unlock(&sfp->st_mutex); 877 } 878 879 static unsigned int sfp_check(void *buf, size_t len) 880 { 881 u8 *p, check; 882 883 for (p = buf, check = 0; len; p++, len--) 884 check += *p; 885 886 return check; 887 } 888 889 /* hwmon */ 890 #if IS_ENABLED(CONFIG_HWMON) 891 static umode_t sfp_hwmon_is_visible(const void *data, 892 enum hwmon_sensor_types type, 893 u32 attr, int channel) 894 { 895 const struct sfp *sfp = data; 896 897 switch (type) { 898 case hwmon_temp: 899 switch (attr) { 900 case hwmon_temp_min_alarm: 901 case hwmon_temp_max_alarm: 902 case hwmon_temp_lcrit_alarm: 903 case hwmon_temp_crit_alarm: 904 case hwmon_temp_min: 905 case hwmon_temp_max: 906 case hwmon_temp_lcrit: 907 case hwmon_temp_crit: 908 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 909 return 0; 910 fallthrough; 911 case hwmon_temp_input: 912 case hwmon_temp_label: 913 return 0444; 914 default: 915 return 0; 916 } 917 case hwmon_in: 918 switch (attr) { 919 case hwmon_in_min_alarm: 920 case hwmon_in_max_alarm: 921 case hwmon_in_lcrit_alarm: 922 case hwmon_in_crit_alarm: 923 case hwmon_in_min: 924 case hwmon_in_max: 925 case hwmon_in_lcrit: 926 case hwmon_in_crit: 927 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 928 return 0; 929 fallthrough; 930 case hwmon_in_input: 931 case hwmon_in_label: 932 return 0444; 933 default: 934 return 0; 935 } 936 case hwmon_curr: 937 switch (attr) { 938 case hwmon_curr_min_alarm: 939 case hwmon_curr_max_alarm: 940 case hwmon_curr_lcrit_alarm: 941 case hwmon_curr_crit_alarm: 942 case hwmon_curr_min: 943 case hwmon_curr_max: 944 case hwmon_curr_lcrit: 945 case hwmon_curr_crit: 946 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 947 return 0; 948 fallthrough; 949 case hwmon_curr_input: 950 case hwmon_curr_label: 951 return 0444; 952 default: 953 return 0; 954 } 955 case hwmon_power: 956 /* External calibration of receive power requires 957 * floating point arithmetic. Doing that in the kernel 958 * is not easy, so just skip it. If the module does 959 * not require external calibration, we can however 960 * show receiver power, since FP is then not needed. 961 */ 962 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 963 channel == 1) 964 return 0; 965 switch (attr) { 966 case hwmon_power_min_alarm: 967 case hwmon_power_max_alarm: 968 case hwmon_power_lcrit_alarm: 969 case hwmon_power_crit_alarm: 970 case hwmon_power_min: 971 case hwmon_power_max: 972 case hwmon_power_lcrit: 973 case hwmon_power_crit: 974 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 975 return 0; 976 fallthrough; 977 case hwmon_power_input: 978 case hwmon_power_label: 979 return 0444; 980 default: 981 return 0; 982 } 983 default: 984 return 0; 985 } 986 } 987 988 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 989 { 990 __be16 val; 991 int err; 992 993 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 994 if (err < 0) 995 return err; 996 997 *value = be16_to_cpu(val); 998 999 return 0; 1000 } 1001 1002 static void sfp_hwmon_to_rx_power(long *value) 1003 { 1004 *value = DIV_ROUND_CLOSEST(*value, 10); 1005 } 1006 1007 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 1008 long *value) 1009 { 1010 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 1011 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 1012 } 1013 1014 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 1015 { 1016 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 1017 be16_to_cpu(sfp->diag.cal_t_offset), value); 1018 1019 if (*value >= 0x8000) 1020 *value -= 0x10000; 1021 1022 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 1023 } 1024 1025 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 1026 { 1027 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 1028 be16_to_cpu(sfp->diag.cal_v_offset), value); 1029 1030 *value = DIV_ROUND_CLOSEST(*value, 10); 1031 } 1032 1033 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 1034 { 1035 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 1036 be16_to_cpu(sfp->diag.cal_txi_offset), value); 1037 1038 *value = DIV_ROUND_CLOSEST(*value, 500); 1039 } 1040 1041 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 1042 { 1043 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 1044 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 1045 1046 *value = DIV_ROUND_CLOSEST(*value, 10); 1047 } 1048 1049 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 1050 { 1051 int err; 1052 1053 err = sfp_hwmon_read_sensor(sfp, reg, value); 1054 if (err < 0) 1055 return err; 1056 1057 sfp_hwmon_calibrate_temp(sfp, value); 1058 1059 return 0; 1060 } 1061 1062 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 1063 { 1064 int err; 1065 1066 err = sfp_hwmon_read_sensor(sfp, reg, value); 1067 if (err < 0) 1068 return err; 1069 1070 sfp_hwmon_calibrate_vcc(sfp, value); 1071 1072 return 0; 1073 } 1074 1075 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 1076 { 1077 int err; 1078 1079 err = sfp_hwmon_read_sensor(sfp, reg, value); 1080 if (err < 0) 1081 return err; 1082 1083 sfp_hwmon_calibrate_bias(sfp, value); 1084 1085 return 0; 1086 } 1087 1088 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 1089 { 1090 int err; 1091 1092 err = sfp_hwmon_read_sensor(sfp, reg, value); 1093 if (err < 0) 1094 return err; 1095 1096 sfp_hwmon_calibrate_tx_power(sfp, value); 1097 1098 return 0; 1099 } 1100 1101 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 1102 { 1103 int err; 1104 1105 err = sfp_hwmon_read_sensor(sfp, reg, value); 1106 if (err < 0) 1107 return err; 1108 1109 sfp_hwmon_to_rx_power(value); 1110 1111 return 0; 1112 } 1113 1114 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 1115 { 1116 u8 status; 1117 int err; 1118 1119 switch (attr) { 1120 case hwmon_temp_input: 1121 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 1122 1123 case hwmon_temp_lcrit: 1124 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 1125 sfp_hwmon_calibrate_temp(sfp, value); 1126 return 0; 1127 1128 case hwmon_temp_min: 1129 *value = be16_to_cpu(sfp->diag.temp_low_warn); 1130 sfp_hwmon_calibrate_temp(sfp, value); 1131 return 0; 1132 case hwmon_temp_max: 1133 *value = be16_to_cpu(sfp->diag.temp_high_warn); 1134 sfp_hwmon_calibrate_temp(sfp, value); 1135 return 0; 1136 1137 case hwmon_temp_crit: 1138 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 1139 sfp_hwmon_calibrate_temp(sfp, value); 1140 return 0; 1141 1142 case hwmon_temp_lcrit_alarm: 1143 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1144 if (err < 0) 1145 return err; 1146 1147 *value = !!(status & SFP_ALARM0_TEMP_LOW); 1148 return 0; 1149 1150 case hwmon_temp_min_alarm: 1151 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1152 if (err < 0) 1153 return err; 1154 1155 *value = !!(status & SFP_WARN0_TEMP_LOW); 1156 return 0; 1157 1158 case hwmon_temp_max_alarm: 1159 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1160 if (err < 0) 1161 return err; 1162 1163 *value = !!(status & SFP_WARN0_TEMP_HIGH); 1164 return 0; 1165 1166 case hwmon_temp_crit_alarm: 1167 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1168 if (err < 0) 1169 return err; 1170 1171 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1172 return 0; 1173 default: 1174 return -EOPNOTSUPP; 1175 } 1176 1177 return -EOPNOTSUPP; 1178 } 1179 1180 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1181 { 1182 u8 status; 1183 int err; 1184 1185 switch (attr) { 1186 case hwmon_in_input: 1187 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1188 1189 case hwmon_in_lcrit: 1190 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1191 sfp_hwmon_calibrate_vcc(sfp, value); 1192 return 0; 1193 1194 case hwmon_in_min: 1195 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1196 sfp_hwmon_calibrate_vcc(sfp, value); 1197 return 0; 1198 1199 case hwmon_in_max: 1200 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1201 sfp_hwmon_calibrate_vcc(sfp, value); 1202 return 0; 1203 1204 case hwmon_in_crit: 1205 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1206 sfp_hwmon_calibrate_vcc(sfp, value); 1207 return 0; 1208 1209 case hwmon_in_lcrit_alarm: 1210 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1211 if (err < 0) 1212 return err; 1213 1214 *value = !!(status & SFP_ALARM0_VCC_LOW); 1215 return 0; 1216 1217 case hwmon_in_min_alarm: 1218 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1219 if (err < 0) 1220 return err; 1221 1222 *value = !!(status & SFP_WARN0_VCC_LOW); 1223 return 0; 1224 1225 case hwmon_in_max_alarm: 1226 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1227 if (err < 0) 1228 return err; 1229 1230 *value = !!(status & SFP_WARN0_VCC_HIGH); 1231 return 0; 1232 1233 case hwmon_in_crit_alarm: 1234 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1235 if (err < 0) 1236 return err; 1237 1238 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1239 return 0; 1240 default: 1241 return -EOPNOTSUPP; 1242 } 1243 1244 return -EOPNOTSUPP; 1245 } 1246 1247 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1248 { 1249 u8 status; 1250 int err; 1251 1252 switch (attr) { 1253 case hwmon_curr_input: 1254 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1255 1256 case hwmon_curr_lcrit: 1257 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1258 sfp_hwmon_calibrate_bias(sfp, value); 1259 return 0; 1260 1261 case hwmon_curr_min: 1262 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1263 sfp_hwmon_calibrate_bias(sfp, value); 1264 return 0; 1265 1266 case hwmon_curr_max: 1267 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1268 sfp_hwmon_calibrate_bias(sfp, value); 1269 return 0; 1270 1271 case hwmon_curr_crit: 1272 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1273 sfp_hwmon_calibrate_bias(sfp, value); 1274 return 0; 1275 1276 case hwmon_curr_lcrit_alarm: 1277 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1278 if (err < 0) 1279 return err; 1280 1281 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1282 return 0; 1283 1284 case hwmon_curr_min_alarm: 1285 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1286 if (err < 0) 1287 return err; 1288 1289 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1290 return 0; 1291 1292 case hwmon_curr_max_alarm: 1293 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1294 if (err < 0) 1295 return err; 1296 1297 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1298 return 0; 1299 1300 case hwmon_curr_crit_alarm: 1301 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1302 if (err < 0) 1303 return err; 1304 1305 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1306 return 0; 1307 default: 1308 return -EOPNOTSUPP; 1309 } 1310 1311 return -EOPNOTSUPP; 1312 } 1313 1314 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1315 { 1316 u8 status; 1317 int err; 1318 1319 switch (attr) { 1320 case hwmon_power_input: 1321 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1322 1323 case hwmon_power_lcrit: 1324 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1325 sfp_hwmon_calibrate_tx_power(sfp, value); 1326 return 0; 1327 1328 case hwmon_power_min: 1329 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1330 sfp_hwmon_calibrate_tx_power(sfp, value); 1331 return 0; 1332 1333 case hwmon_power_max: 1334 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1335 sfp_hwmon_calibrate_tx_power(sfp, value); 1336 return 0; 1337 1338 case hwmon_power_crit: 1339 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1340 sfp_hwmon_calibrate_tx_power(sfp, value); 1341 return 0; 1342 1343 case hwmon_power_lcrit_alarm: 1344 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1345 if (err < 0) 1346 return err; 1347 1348 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1349 return 0; 1350 1351 case hwmon_power_min_alarm: 1352 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1353 if (err < 0) 1354 return err; 1355 1356 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1357 return 0; 1358 1359 case hwmon_power_max_alarm: 1360 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1361 if (err < 0) 1362 return err; 1363 1364 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1365 return 0; 1366 1367 case hwmon_power_crit_alarm: 1368 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1369 if (err < 0) 1370 return err; 1371 1372 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1373 return 0; 1374 default: 1375 return -EOPNOTSUPP; 1376 } 1377 1378 return -EOPNOTSUPP; 1379 } 1380 1381 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1382 { 1383 u8 status; 1384 int err; 1385 1386 switch (attr) { 1387 case hwmon_power_input: 1388 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1389 1390 case hwmon_power_lcrit: 1391 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1392 sfp_hwmon_to_rx_power(value); 1393 return 0; 1394 1395 case hwmon_power_min: 1396 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1397 sfp_hwmon_to_rx_power(value); 1398 return 0; 1399 1400 case hwmon_power_max: 1401 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1402 sfp_hwmon_to_rx_power(value); 1403 return 0; 1404 1405 case hwmon_power_crit: 1406 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1407 sfp_hwmon_to_rx_power(value); 1408 return 0; 1409 1410 case hwmon_power_lcrit_alarm: 1411 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1412 if (err < 0) 1413 return err; 1414 1415 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1416 return 0; 1417 1418 case hwmon_power_min_alarm: 1419 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1420 if (err < 0) 1421 return err; 1422 1423 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1424 return 0; 1425 1426 case hwmon_power_max_alarm: 1427 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1428 if (err < 0) 1429 return err; 1430 1431 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1432 return 0; 1433 1434 case hwmon_power_crit_alarm: 1435 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1436 if (err < 0) 1437 return err; 1438 1439 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1440 return 0; 1441 default: 1442 return -EOPNOTSUPP; 1443 } 1444 1445 return -EOPNOTSUPP; 1446 } 1447 1448 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1449 u32 attr, int channel, long *value) 1450 { 1451 struct sfp *sfp = dev_get_drvdata(dev); 1452 1453 switch (type) { 1454 case hwmon_temp: 1455 return sfp_hwmon_temp(sfp, attr, value); 1456 case hwmon_in: 1457 return sfp_hwmon_vcc(sfp, attr, value); 1458 case hwmon_curr: 1459 return sfp_hwmon_bias(sfp, attr, value); 1460 case hwmon_power: 1461 switch (channel) { 1462 case 0: 1463 return sfp_hwmon_tx_power(sfp, attr, value); 1464 case 1: 1465 return sfp_hwmon_rx_power(sfp, attr, value); 1466 default: 1467 return -EOPNOTSUPP; 1468 } 1469 default: 1470 return -EOPNOTSUPP; 1471 } 1472 } 1473 1474 static const char *const sfp_hwmon_power_labels[] = { 1475 "TX_power", 1476 "RX_power", 1477 }; 1478 1479 static int sfp_hwmon_read_string(struct device *dev, 1480 enum hwmon_sensor_types type, 1481 u32 attr, int channel, const char **str) 1482 { 1483 switch (type) { 1484 case hwmon_curr: 1485 switch (attr) { 1486 case hwmon_curr_label: 1487 *str = "bias"; 1488 return 0; 1489 default: 1490 return -EOPNOTSUPP; 1491 } 1492 break; 1493 case hwmon_temp: 1494 switch (attr) { 1495 case hwmon_temp_label: 1496 *str = "temperature"; 1497 return 0; 1498 default: 1499 return -EOPNOTSUPP; 1500 } 1501 break; 1502 case hwmon_in: 1503 switch (attr) { 1504 case hwmon_in_label: 1505 *str = "VCC"; 1506 return 0; 1507 default: 1508 return -EOPNOTSUPP; 1509 } 1510 break; 1511 case hwmon_power: 1512 switch (attr) { 1513 case hwmon_power_label: 1514 *str = sfp_hwmon_power_labels[channel]; 1515 return 0; 1516 default: 1517 return -EOPNOTSUPP; 1518 } 1519 break; 1520 default: 1521 return -EOPNOTSUPP; 1522 } 1523 1524 return -EOPNOTSUPP; 1525 } 1526 1527 static const struct hwmon_ops sfp_hwmon_ops = { 1528 .is_visible = sfp_hwmon_is_visible, 1529 .read = sfp_hwmon_read, 1530 .read_string = sfp_hwmon_read_string, 1531 }; 1532 1533 static const struct hwmon_channel_info * const sfp_hwmon_info[] = { 1534 HWMON_CHANNEL_INFO(chip, 1535 HWMON_C_REGISTER_TZ), 1536 HWMON_CHANNEL_INFO(in, 1537 HWMON_I_INPUT | 1538 HWMON_I_MAX | HWMON_I_MIN | 1539 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1540 HWMON_I_CRIT | HWMON_I_LCRIT | 1541 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1542 HWMON_I_LABEL), 1543 HWMON_CHANNEL_INFO(temp, 1544 HWMON_T_INPUT | 1545 HWMON_T_MAX | HWMON_T_MIN | 1546 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1547 HWMON_T_CRIT | HWMON_T_LCRIT | 1548 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1549 HWMON_T_LABEL), 1550 HWMON_CHANNEL_INFO(curr, 1551 HWMON_C_INPUT | 1552 HWMON_C_MAX | HWMON_C_MIN | 1553 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1554 HWMON_C_CRIT | HWMON_C_LCRIT | 1555 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1556 HWMON_C_LABEL), 1557 HWMON_CHANNEL_INFO(power, 1558 /* Transmit power */ 1559 HWMON_P_INPUT | 1560 HWMON_P_MAX | HWMON_P_MIN | 1561 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1562 HWMON_P_CRIT | HWMON_P_LCRIT | 1563 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1564 HWMON_P_LABEL, 1565 /* Receive power */ 1566 HWMON_P_INPUT | 1567 HWMON_P_MAX | HWMON_P_MIN | 1568 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1569 HWMON_P_CRIT | HWMON_P_LCRIT | 1570 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1571 HWMON_P_LABEL), 1572 NULL, 1573 }; 1574 1575 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1576 .ops = &sfp_hwmon_ops, 1577 .info = sfp_hwmon_info, 1578 }; 1579 1580 static void sfp_hwmon_probe(struct work_struct *work) 1581 { 1582 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1583 int err; 1584 1585 /* hwmon interface needs to access 16bit registers in atomic way to 1586 * guarantee coherency of the diagnostic monitoring data. If it is not 1587 * possible to guarantee coherency because EEPROM is broken in such way 1588 * that does not support atomic 16bit read operation then we have to 1589 * skip registration of hwmon device. 1590 */ 1591 if (sfp->i2c_block_size < 2) { 1592 dev_info(sfp->dev, 1593 "skipping hwmon device registration due to broken EEPROM\n"); 1594 dev_info(sfp->dev, 1595 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1596 return; 1597 } 1598 1599 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1600 if (err < 0) { 1601 if (sfp->hwmon_tries--) { 1602 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1603 T_PROBE_RETRY_SLOW); 1604 } else { 1605 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1606 ERR_PTR(err)); 1607 } 1608 return; 1609 } 1610 1611 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1612 if (IS_ERR(sfp->hwmon_name)) { 1613 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1614 return; 1615 } 1616 1617 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1618 sfp->hwmon_name, sfp, 1619 &sfp_hwmon_chip_info, 1620 NULL); 1621 if (IS_ERR(sfp->hwmon_dev)) 1622 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1623 PTR_ERR(sfp->hwmon_dev)); 1624 } 1625 1626 static int sfp_hwmon_insert(struct sfp *sfp) 1627 { 1628 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { 1629 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1630 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1631 } 1632 1633 return 0; 1634 } 1635 1636 static void sfp_hwmon_remove(struct sfp *sfp) 1637 { 1638 cancel_delayed_work_sync(&sfp->hwmon_probe); 1639 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1640 hwmon_device_unregister(sfp->hwmon_dev); 1641 sfp->hwmon_dev = NULL; 1642 kfree(sfp->hwmon_name); 1643 } 1644 } 1645 1646 static int sfp_hwmon_init(struct sfp *sfp) 1647 { 1648 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1649 1650 return 0; 1651 } 1652 1653 static void sfp_hwmon_exit(struct sfp *sfp) 1654 { 1655 cancel_delayed_work_sync(&sfp->hwmon_probe); 1656 } 1657 #else 1658 static int sfp_hwmon_insert(struct sfp *sfp) 1659 { 1660 return 0; 1661 } 1662 1663 static void sfp_hwmon_remove(struct sfp *sfp) 1664 { 1665 } 1666 1667 static int sfp_hwmon_init(struct sfp *sfp) 1668 { 1669 return 0; 1670 } 1671 1672 static void sfp_hwmon_exit(struct sfp *sfp) 1673 { 1674 } 1675 #endif 1676 1677 /* Helpers */ 1678 static void sfp_module_tx_disable(struct sfp *sfp) 1679 { 1680 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1681 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1682 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); 1683 } 1684 1685 static void sfp_module_tx_enable(struct sfp *sfp) 1686 { 1687 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1688 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1689 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); 1690 } 1691 1692 #if IS_ENABLED(CONFIG_DEBUG_FS) 1693 static int sfp_debug_state_show(struct seq_file *s, void *data) 1694 { 1695 struct sfp *sfp = s->private; 1696 1697 seq_printf(s, "Module state: %s\n", 1698 mod_state_to_str(sfp->sm_mod_state)); 1699 seq_printf(s, "Module probe attempts: %d %d\n", 1700 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1701 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1702 seq_printf(s, "Device state: %s\n", 1703 dev_state_to_str(sfp->sm_dev_state)); 1704 seq_printf(s, "Main state: %s\n", 1705 sm_state_to_str(sfp->sm_state)); 1706 seq_printf(s, "Fault recovery remaining retries: %d\n", 1707 sfp->sm_fault_retries); 1708 seq_printf(s, "PHY probe remaining retries: %d\n", 1709 sfp->sm_phy_retries); 1710 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); 1711 seq_printf(s, "Rate select threshold: %u kBd\n", 1712 sfp->rs_threshold_kbd); 1713 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1714 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1715 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1716 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1717 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); 1718 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); 1719 return 0; 1720 } 1721 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1722 1723 static void sfp_debugfs_init(struct sfp *sfp) 1724 { 1725 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1726 1727 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1728 &sfp_debug_state_fops); 1729 } 1730 1731 static void sfp_debugfs_exit(struct sfp *sfp) 1732 { 1733 debugfs_remove_recursive(sfp->debugfs_dir); 1734 } 1735 #else 1736 static void sfp_debugfs_init(struct sfp *sfp) 1737 { 1738 } 1739 1740 static void sfp_debugfs_exit(struct sfp *sfp) 1741 { 1742 } 1743 #endif 1744 1745 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1746 { 1747 unsigned int state; 1748 1749 mutex_lock(&sfp->st_mutex); 1750 state = sfp->state; 1751 if (!(state & SFP_F_TX_DISABLE)) { 1752 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1753 1754 udelay(T_RESET_US); 1755 1756 sfp_set_state(sfp, state); 1757 } 1758 mutex_unlock(&sfp->st_mutex); 1759 } 1760 1761 /* SFP state machine */ 1762 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1763 { 1764 if (timeout) 1765 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1766 timeout); 1767 else 1768 cancel_delayed_work(&sfp->timeout); 1769 } 1770 1771 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1772 unsigned int timeout) 1773 { 1774 sfp->sm_state = state; 1775 sfp_sm_set_timer(sfp, timeout); 1776 } 1777 1778 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1779 unsigned int timeout) 1780 { 1781 sfp->sm_mod_state = state; 1782 sfp_sm_set_timer(sfp, timeout); 1783 } 1784 1785 static void sfp_sm_phy_detach(struct sfp *sfp) 1786 { 1787 sfp_remove_phy(sfp->sfp_bus); 1788 phy_device_remove(sfp->mod_phy); 1789 phy_device_free(sfp->mod_phy); 1790 sfp->mod_phy = NULL; 1791 } 1792 1793 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1794 { 1795 struct phy_device *phy; 1796 int err; 1797 1798 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1799 if (phy == ERR_PTR(-ENODEV)) 1800 return PTR_ERR(phy); 1801 if (IS_ERR(phy)) { 1802 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1803 return PTR_ERR(phy); 1804 } 1805 1806 /* Mark this PHY as being on a SFP module */ 1807 phy->is_on_sfp_module = true; 1808 1809 err = phy_device_register(phy); 1810 if (err) { 1811 phy_device_free(phy); 1812 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1813 ERR_PTR(err)); 1814 return err; 1815 } 1816 1817 err = sfp_add_phy(sfp->sfp_bus, phy); 1818 if (err) { 1819 phy_device_remove(phy); 1820 phy_device_free(phy); 1821 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1822 return err; 1823 } 1824 1825 sfp->mod_phy = phy; 1826 1827 return 0; 1828 } 1829 1830 static void sfp_sm_link_up(struct sfp *sfp) 1831 { 1832 sfp_link_up(sfp->sfp_bus); 1833 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1834 } 1835 1836 static void sfp_sm_link_down(struct sfp *sfp) 1837 { 1838 sfp_link_down(sfp->sfp_bus); 1839 } 1840 1841 static void sfp_sm_link_check_los(struct sfp *sfp) 1842 { 1843 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1844 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1845 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1846 bool los = false; 1847 1848 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1849 * are set, we assume that no LOS signal is available. If both are 1850 * set, we assume LOS is not implemented (and is meaningless.) 1851 */ 1852 if (los_options == los_inverted) 1853 los = !(sfp->state & SFP_F_LOS); 1854 else if (los_options == los_normal) 1855 los = !!(sfp->state & SFP_F_LOS); 1856 1857 if (los) 1858 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1859 else 1860 sfp_sm_link_up(sfp); 1861 } 1862 1863 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1864 { 1865 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1866 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1867 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1868 1869 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1870 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1871 } 1872 1873 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1874 { 1875 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1876 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1877 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1878 1879 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1880 (los_options == los_normal && event == SFP_E_LOS_LOW); 1881 } 1882 1883 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1884 { 1885 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1886 dev_err(sfp->dev, 1887 "module persistently indicates fault, disabling\n"); 1888 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1889 } else { 1890 if (warn) 1891 dev_err(sfp->dev, "module transmit fault indicated\n"); 1892 1893 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1894 } 1895 } 1896 1897 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1898 { 1899 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1900 return sfp_i2c_mdiobus_create(sfp); 1901 1902 return 0; 1903 } 1904 1905 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1906 * normally sits at I2C bus address 0x56, and may either be a clause 22 1907 * or clause 45 PHY. 1908 * 1909 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1910 * negotiation enabled, but some may be in 1000base-X - which is for the 1911 * PHY driver to determine. 1912 * 1913 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1914 * mode according to the negotiated line speed. 1915 */ 1916 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1917 { 1918 int err = 0; 1919 1920 switch (sfp->mdio_protocol) { 1921 case MDIO_I2C_NONE: 1922 break; 1923 1924 case MDIO_I2C_MARVELL_C22: 1925 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1926 break; 1927 1928 case MDIO_I2C_C45: 1929 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1930 break; 1931 1932 case MDIO_I2C_ROLLBALL: 1933 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1934 break; 1935 } 1936 1937 return err; 1938 } 1939 1940 static int sfp_module_parse_power(struct sfp *sfp) 1941 { 1942 u32 power_mW = 1000; 1943 bool supports_a2; 1944 1945 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1946 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1947 power_mW = 1500; 1948 /* Added in Rev 11.9, but there is no compliance code for this */ 1949 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1950 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1951 power_mW = 2000; 1952 1953 /* Power level 1 modules (max. 1W) are always supported. */ 1954 if (power_mW <= 1000) { 1955 sfp->module_power_mW = power_mW; 1956 return 0; 1957 } 1958 1959 supports_a2 = sfp->id.ext.sff8472_compliance != 1960 SFP_SFF8472_COMPLIANCE_NONE || 1961 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1962 1963 if (power_mW > sfp->max_power_mW) { 1964 /* Module power specification exceeds the allowed maximum. */ 1965 if (!supports_a2) { 1966 /* The module appears not to implement bus address 1967 * 0xa2, so assume that the module powers up in the 1968 * indicated mode. 1969 */ 1970 dev_err(sfp->dev, 1971 "Host does not support %u.%uW modules\n", 1972 power_mW / 1000, (power_mW / 100) % 10); 1973 return -EINVAL; 1974 } else { 1975 dev_warn(sfp->dev, 1976 "Host does not support %u.%uW modules, module left in power mode 1\n", 1977 power_mW / 1000, (power_mW / 100) % 10); 1978 return 0; 1979 } 1980 } 1981 1982 if (!supports_a2) { 1983 /* The module power level is below the host maximum and the 1984 * module appears not to implement bus address 0xa2, so assume 1985 * that the module powers up in the indicated mode. 1986 */ 1987 return 0; 1988 } 1989 1990 /* If the module requires a higher power mode, but also requires 1991 * an address change sequence, warn the user that the module may 1992 * not be functional. 1993 */ 1994 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1995 dev_warn(sfp->dev, 1996 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1997 power_mW / 1000, (power_mW / 100) % 10); 1998 return 0; 1999 } 2000 2001 sfp->module_power_mW = power_mW; 2002 2003 return 0; 2004 } 2005 2006 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 2007 { 2008 int err; 2009 2010 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 2011 SFP_EXT_STATUS_PWRLVL_SELECT, 2012 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 2013 if (err != sizeof(u8)) { 2014 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 2015 enable ? "en" : "dis", ERR_PTR(err)); 2016 return -EAGAIN; 2017 } 2018 2019 if (enable) 2020 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 2021 sfp->module_power_mW / 1000, 2022 (sfp->module_power_mW / 100) % 10); 2023 2024 return 0; 2025 } 2026 2027 static void sfp_module_parse_rate_select(struct sfp *sfp) 2028 { 2029 u8 rate_id; 2030 2031 sfp->rs_threshold_kbd = 0; 2032 sfp->rs_state_mask = 0; 2033 2034 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) 2035 /* No support for RateSelect */ 2036 return; 2037 2038 /* Default to INF-8074 RateSelect operation. The signalling threshold 2039 * rate is not well specified, so always select "Full Bandwidth", but 2040 * SFF-8079 reveals that it is understood that RS0 will be low for 2041 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. 2042 * This method exists prior to SFF-8472. 2043 */ 2044 sfp->rs_state_mask = SFP_F_RS0; 2045 sfp->rs_threshold_kbd = 1594; 2046 2047 /* Parse the rate identifier, which is complicated due to history: 2048 * SFF-8472 rev 9.5 marks this field as reserved. 2049 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 2050 * compliance is not required. 2051 * SFF-8472 rev 10.2 defines this field using values 0..4 2052 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 2053 * and even values. 2054 */ 2055 rate_id = sfp->id.base.rate_id; 2056 if (rate_id == 0) 2057 /* Unspecified */ 2058 return; 2059 2060 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, 2061 * and allocated value 3 to SFF-8431 independent tx/rx rate select. 2062 * Convert this to a SFF-8472 rev 11.0 rate identifier. 2063 */ 2064 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 2065 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && 2066 rate_id == 3) 2067 rate_id = SFF_RID_8431; 2068 2069 if (rate_id & SFF_RID_8079) { 2070 /* SFF-8079 RateSelect / Application Select in conjunction with 2071 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield 2072 * with only bit 0 used, which takes precedence over SFF-8472. 2073 */ 2074 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { 2075 /* SFF-8079 Part 1 - rate selection between Fibre 2076 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 2077 * is high for 2125, so we have to subtract 1 to 2078 * include it. 2079 */ 2080 sfp->rs_threshold_kbd = 2125 - 1; 2081 sfp->rs_state_mask = SFP_F_RS0; 2082 } 2083 return; 2084 } 2085 2086 /* SFF-8472 rev 9.5 does not define the rate identifier */ 2087 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) 2088 return; 2089 2090 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will 2091 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. 2092 */ 2093 switch (rate_id) { 2094 case SFF_RID_8431_RX_ONLY: 2095 sfp->rs_threshold_kbd = 4250; 2096 sfp->rs_state_mask = SFP_F_RS0; 2097 break; 2098 2099 case SFF_RID_8431_TX_ONLY: 2100 sfp->rs_threshold_kbd = 4250; 2101 sfp->rs_state_mask = SFP_F_RS1; 2102 break; 2103 2104 case SFF_RID_8431: 2105 sfp->rs_threshold_kbd = 4250; 2106 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2107 break; 2108 2109 case SFF_RID_10G8G: 2110 sfp->rs_threshold_kbd = 9000; 2111 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2112 break; 2113 } 2114 } 2115 2116 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 2117 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 2118 * not support multibyte reads from the EEPROM. Each multi-byte read 2119 * operation returns just one byte of EEPROM followed by zeros. There is 2120 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 2121 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 2122 * name and vendor id into EEPROM, so there is even no way to detect if 2123 * module is V-SOL V2801F. Therefore check for those zeros in the read 2124 * data and then based on check switch to reading EEPROM to one byte 2125 * at a time. 2126 */ 2127 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 2128 { 2129 size_t i, block_size = sfp->i2c_block_size; 2130 2131 /* Already using byte IO */ 2132 if (block_size == 1) 2133 return false; 2134 2135 for (i = 1; i < len; i += block_size) { 2136 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 2137 return false; 2138 } 2139 return true; 2140 } 2141 2142 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 2143 { 2144 u8 check; 2145 int err; 2146 2147 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 2148 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 2149 id->base.connector != SFF8024_CONNECTOR_LC) { 2150 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 2151 id->base.phys_id = SFF8024_ID_SFF_8472; 2152 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 2153 id->base.connector = SFF8024_CONNECTOR_LC; 2154 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 2155 if (err != 3) { 2156 dev_err(sfp->dev, 2157 "Failed to rewrite module EEPROM: %pe\n", 2158 ERR_PTR(err)); 2159 return err; 2160 } 2161 2162 /* Cotsworks modules have been found to require a delay between write operations. */ 2163 mdelay(50); 2164 2165 /* Update base structure checksum */ 2166 check = sfp_check(&id->base, sizeof(id->base) - 1); 2167 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 2168 if (err != 1) { 2169 dev_err(sfp->dev, 2170 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 2171 ERR_PTR(err)); 2172 return err; 2173 } 2174 } 2175 return 0; 2176 } 2177 2178 static int sfp_module_parse_sff8472(struct sfp *sfp) 2179 { 2180 /* If the module requires address swap mode, warn about it */ 2181 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2182 dev_warn(sfp->dev, 2183 "module address swap to access page 0xA2 is not supported.\n"); 2184 else 2185 sfp->have_a2 = true; 2186 2187 return 0; 2188 } 2189 2190 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 2191 { 2192 /* SFP module inserted - read I2C data */ 2193 struct sfp_eeprom_id id; 2194 bool cotsworks_sfbg; 2195 unsigned int mask; 2196 bool cotsworks; 2197 u8 check; 2198 int ret; 2199 2200 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2201 2202 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2203 if (ret < 0) { 2204 if (report) 2205 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2206 ERR_PTR(ret)); 2207 return -EAGAIN; 2208 } 2209 2210 if (ret != sizeof(id.base)) { 2211 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2212 return -EAGAIN; 2213 } 2214 2215 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 2216 * address 0x51 is just one byte at a time. Also SFF-8472 requires 2217 * that EEPROM supports atomic 16bit read operation for diagnostic 2218 * fields, so do not switch to one byte reading at a time unless it 2219 * is really required and we have no other option. 2220 */ 2221 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 2222 dev_info(sfp->dev, 2223 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 2224 dev_info(sfp->dev, 2225 "Switching to reading EEPROM to one byte at a time\n"); 2226 sfp->i2c_block_size = 1; 2227 2228 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2229 if (ret < 0) { 2230 if (report) 2231 dev_err(sfp->dev, 2232 "failed to read EEPROM: %pe\n", 2233 ERR_PTR(ret)); 2234 return -EAGAIN; 2235 } 2236 2237 if (ret != sizeof(id.base)) { 2238 dev_err(sfp->dev, "EEPROM short read: %pe\n", 2239 ERR_PTR(ret)); 2240 return -EAGAIN; 2241 } 2242 } 2243 2244 /* Cotsworks do not seem to update the checksums when they 2245 * do the final programming with the final module part number, 2246 * serial number and date code. 2247 */ 2248 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 2249 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 2250 2251 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 2252 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 2253 * Cotsworks PN matches and bytes are not correct. 2254 */ 2255 if (cotsworks && cotsworks_sfbg) { 2256 ret = sfp_cotsworks_fixup_check(sfp, &id); 2257 if (ret < 0) 2258 return ret; 2259 } 2260 2261 /* Validate the checksum over the base structure */ 2262 check = sfp_check(&id.base, sizeof(id.base) - 1); 2263 if (check != id.base.cc_base) { 2264 if (cotsworks) { 2265 dev_warn(sfp->dev, 2266 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2267 check, id.base.cc_base); 2268 } else { 2269 dev_err(sfp->dev, 2270 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2271 check, id.base.cc_base); 2272 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2273 16, 1, &id, sizeof(id), true); 2274 return -EINVAL; 2275 } 2276 } 2277 2278 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2279 if (ret < 0) { 2280 if (report) 2281 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2282 ERR_PTR(ret)); 2283 return -EAGAIN; 2284 } 2285 2286 if (ret != sizeof(id.ext)) { 2287 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2288 return -EAGAIN; 2289 } 2290 2291 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2292 if (check != id.ext.cc_ext) { 2293 if (cotsworks) { 2294 dev_warn(sfp->dev, 2295 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2296 check, id.ext.cc_ext); 2297 } else { 2298 dev_err(sfp->dev, 2299 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2300 check, id.ext.cc_ext); 2301 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2302 16, 1, &id, sizeof(id), true); 2303 memset(&id.ext, 0, sizeof(id.ext)); 2304 } 2305 } 2306 2307 sfp->id = id; 2308 2309 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2310 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2311 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2312 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2313 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2314 (int)sizeof(id.ext.datecode), id.ext.datecode); 2315 2316 /* Check whether we support this module */ 2317 if (!sfp->type->module_supported(&id)) { 2318 dev_err(sfp->dev, 2319 "module is not supported - phys id 0x%02x 0x%02x\n", 2320 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2321 return -EINVAL; 2322 } 2323 2324 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { 2325 ret = sfp_module_parse_sff8472(sfp); 2326 if (ret < 0) 2327 return ret; 2328 } 2329 2330 /* Parse the module power requirement */ 2331 ret = sfp_module_parse_power(sfp); 2332 if (ret < 0) 2333 return ret; 2334 2335 sfp_module_parse_rate_select(sfp); 2336 2337 mask = SFP_F_PRESENT; 2338 if (sfp->gpio[GPIO_TX_DISABLE]) 2339 mask |= SFP_F_TX_DISABLE; 2340 if (sfp->gpio[GPIO_TX_FAULT]) 2341 mask |= SFP_F_TX_FAULT; 2342 if (sfp->gpio[GPIO_LOS]) 2343 mask |= SFP_F_LOS; 2344 if (sfp->gpio[GPIO_RS0]) 2345 mask |= SFP_F_RS0; 2346 if (sfp->gpio[GPIO_RS1]) 2347 mask |= SFP_F_RS1; 2348 2349 sfp->module_t_start_up = T_START_UP; 2350 sfp->module_t_wait = T_WAIT; 2351 sfp->phy_t_retry = T_PHY_RETRY; 2352 2353 sfp->state_ignore_mask = 0; 2354 2355 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2356 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2357 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2358 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2359 sfp->mdio_protocol = MDIO_I2C_C45; 2360 else if (sfp->id.base.e1000_base_t) 2361 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2362 else 2363 sfp->mdio_protocol = MDIO_I2C_NONE; 2364 2365 sfp->quirk = sfp_lookup_quirk(&id); 2366 2367 mutex_lock(&sfp->st_mutex); 2368 /* Initialise state bits to use from hardware */ 2369 sfp->state_hw_mask = mask; 2370 2371 /* We want to drive the rate select pins that the module is using */ 2372 sfp->state_hw_drive |= sfp->rs_state_mask; 2373 2374 if (sfp->quirk && sfp->quirk->fixup) 2375 sfp->quirk->fixup(sfp); 2376 2377 sfp->state_hw_mask &= ~sfp->state_ignore_mask; 2378 mutex_unlock(&sfp->st_mutex); 2379 2380 return 0; 2381 } 2382 2383 static void sfp_sm_mod_remove(struct sfp *sfp) 2384 { 2385 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2386 sfp_module_remove(sfp->sfp_bus); 2387 2388 sfp_hwmon_remove(sfp); 2389 2390 memset(&sfp->id, 0, sizeof(sfp->id)); 2391 sfp->module_power_mW = 0; 2392 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2393 sfp->have_a2 = false; 2394 2395 dev_info(sfp->dev, "module removed\n"); 2396 } 2397 2398 /* This state machine tracks the upstream's state */ 2399 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2400 { 2401 switch (sfp->sm_dev_state) { 2402 default: 2403 if (event == SFP_E_DEV_ATTACH) 2404 sfp->sm_dev_state = SFP_DEV_DOWN; 2405 break; 2406 2407 case SFP_DEV_DOWN: 2408 if (event == SFP_E_DEV_DETACH) 2409 sfp->sm_dev_state = SFP_DEV_DETACHED; 2410 else if (event == SFP_E_DEV_UP) 2411 sfp->sm_dev_state = SFP_DEV_UP; 2412 break; 2413 2414 case SFP_DEV_UP: 2415 if (event == SFP_E_DEV_DETACH) 2416 sfp->sm_dev_state = SFP_DEV_DETACHED; 2417 else if (event == SFP_E_DEV_DOWN) 2418 sfp->sm_dev_state = SFP_DEV_DOWN; 2419 break; 2420 } 2421 } 2422 2423 /* This state machine tracks the insert/remove state of the module, probes 2424 * the on-board EEPROM, and sets up the power level. 2425 */ 2426 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2427 { 2428 int err; 2429 2430 /* Handle remove event globally, it resets this state machine */ 2431 if (event == SFP_E_REMOVE) { 2432 sfp_sm_mod_remove(sfp); 2433 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2434 return; 2435 } 2436 2437 /* Handle device detach globally */ 2438 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2439 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2440 if (sfp->module_power_mW > 1000 && 2441 sfp->sm_mod_state > SFP_MOD_HPOWER) 2442 sfp_sm_mod_hpower(sfp, false); 2443 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2444 return; 2445 } 2446 2447 switch (sfp->sm_mod_state) { 2448 default: 2449 if (event == SFP_E_INSERT) { 2450 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2451 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2452 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2453 } 2454 break; 2455 2456 case SFP_MOD_PROBE: 2457 /* Wait for T_PROBE_INIT to time out */ 2458 if (event != SFP_E_TIMEOUT) 2459 break; 2460 2461 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2462 if (err == -EAGAIN) { 2463 if (sfp->sm_mod_tries_init && 2464 --sfp->sm_mod_tries_init) { 2465 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2466 break; 2467 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2468 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2469 dev_warn(sfp->dev, 2470 "please wait, module slow to respond\n"); 2471 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2472 break; 2473 } 2474 } 2475 if (err < 0) { 2476 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2477 break; 2478 } 2479 2480 /* Force a poll to re-read the hardware signal state after 2481 * sfp_sm_mod_probe() changed state_hw_mask. 2482 */ 2483 mod_delayed_work(system_wq, &sfp->poll, 1); 2484 2485 err = sfp_hwmon_insert(sfp); 2486 if (err) 2487 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2488 ERR_PTR(err)); 2489 2490 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2491 fallthrough; 2492 case SFP_MOD_WAITDEV: 2493 /* Ensure that the device is attached before proceeding */ 2494 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2495 break; 2496 2497 /* Report the module insertion to the upstream device */ 2498 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2499 sfp->quirk); 2500 if (err < 0) { 2501 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2502 break; 2503 } 2504 2505 /* If this is a power level 1 module, we are done */ 2506 if (sfp->module_power_mW <= 1000) 2507 goto insert; 2508 2509 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2510 fallthrough; 2511 case SFP_MOD_HPOWER: 2512 /* Enable high power mode */ 2513 err = sfp_sm_mod_hpower(sfp, true); 2514 if (err < 0) { 2515 if (err != -EAGAIN) { 2516 sfp_module_remove(sfp->sfp_bus); 2517 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2518 } else { 2519 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2520 } 2521 break; 2522 } 2523 2524 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2525 break; 2526 2527 case SFP_MOD_WAITPWR: 2528 /* Wait for T_HPOWER_LEVEL to time out */ 2529 if (event != SFP_E_TIMEOUT) 2530 break; 2531 2532 insert: 2533 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2534 break; 2535 2536 case SFP_MOD_PRESENT: 2537 case SFP_MOD_ERROR: 2538 break; 2539 } 2540 } 2541 2542 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2543 { 2544 unsigned long timeout; 2545 int ret; 2546 2547 /* Some events are global */ 2548 if (sfp->sm_state != SFP_S_DOWN && 2549 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2550 sfp->sm_dev_state != SFP_DEV_UP)) { 2551 if (sfp->sm_state == SFP_S_LINK_UP && 2552 sfp->sm_dev_state == SFP_DEV_UP) 2553 sfp_sm_link_down(sfp); 2554 if (sfp->sm_state > SFP_S_INIT) 2555 sfp_module_stop(sfp->sfp_bus); 2556 if (sfp->mod_phy) 2557 sfp_sm_phy_detach(sfp); 2558 if (sfp->i2c_mii) 2559 sfp_i2c_mdiobus_destroy(sfp); 2560 sfp_module_tx_disable(sfp); 2561 sfp_soft_stop_poll(sfp); 2562 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2563 return; 2564 } 2565 2566 /* The main state machine */ 2567 switch (sfp->sm_state) { 2568 case SFP_S_DOWN: 2569 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2570 sfp->sm_dev_state != SFP_DEV_UP) 2571 break; 2572 2573 /* Only use the soft state bits if we have access to the A2h 2574 * memory, which implies that we have some level of SFF-8472 2575 * compliance. 2576 */ 2577 if (sfp->have_a2) 2578 sfp_soft_start_poll(sfp); 2579 2580 sfp_module_tx_enable(sfp); 2581 2582 /* Initialise the fault clearance retries */ 2583 sfp->sm_fault_retries = N_FAULT_INIT; 2584 2585 /* We need to check the TX_FAULT state, which is not defined 2586 * while TX_DISABLE is asserted. The earliest we want to do 2587 * anything (such as probe for a PHY) is 50ms (or more on 2588 * specific modules). 2589 */ 2590 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2591 break; 2592 2593 case SFP_S_WAIT: 2594 if (event != SFP_E_TIMEOUT) 2595 break; 2596 2597 if (sfp->state & SFP_F_TX_FAULT) { 2598 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2599 * from the TX_DISABLE deassertion for the module to 2600 * initialise, which is indicated by TX_FAULT 2601 * deasserting. 2602 */ 2603 timeout = sfp->module_t_start_up; 2604 if (timeout > sfp->module_t_wait) 2605 timeout -= sfp->module_t_wait; 2606 else 2607 timeout = 1; 2608 2609 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2610 } else { 2611 /* TX_FAULT is not asserted, assume the module has 2612 * finished initialising. 2613 */ 2614 goto init_done; 2615 } 2616 break; 2617 2618 case SFP_S_INIT: 2619 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2620 /* TX_FAULT is still asserted after t_init 2621 * or t_start_up, so assume there is a fault. 2622 */ 2623 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2624 sfp->sm_fault_retries == N_FAULT_INIT); 2625 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2626 init_done: 2627 /* Create mdiobus and start trying for PHY */ 2628 ret = sfp_sm_add_mdio_bus(sfp); 2629 if (ret < 0) { 2630 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2631 break; 2632 } 2633 sfp->sm_phy_retries = R_PHY_RETRY; 2634 goto phy_probe; 2635 } 2636 break; 2637 2638 case SFP_S_INIT_PHY: 2639 if (event != SFP_E_TIMEOUT) 2640 break; 2641 phy_probe: 2642 /* TX_FAULT deasserted or we timed out with TX_FAULT 2643 * clear. Probe for the PHY and check the LOS state. 2644 */ 2645 ret = sfp_sm_probe_for_phy(sfp); 2646 if (ret == -ENODEV) { 2647 if (--sfp->sm_phy_retries) { 2648 sfp_sm_next(sfp, SFP_S_INIT_PHY, 2649 sfp->phy_t_retry); 2650 dev_dbg(sfp->dev, 2651 "no PHY detected, %u tries left\n", 2652 sfp->sm_phy_retries); 2653 break; 2654 } else { 2655 dev_info(sfp->dev, "no PHY detected\n"); 2656 } 2657 } else if (ret) { 2658 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2659 break; 2660 } 2661 if (sfp_module_start(sfp->sfp_bus)) { 2662 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2663 break; 2664 } 2665 sfp_sm_link_check_los(sfp); 2666 2667 /* Reset the fault retry count */ 2668 sfp->sm_fault_retries = N_FAULT; 2669 break; 2670 2671 case SFP_S_INIT_TX_FAULT: 2672 if (event == SFP_E_TIMEOUT) { 2673 sfp_module_tx_fault_reset(sfp); 2674 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2675 } 2676 break; 2677 2678 case SFP_S_WAIT_LOS: 2679 if (event == SFP_E_TX_FAULT) 2680 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2681 else if (sfp_los_event_inactive(sfp, event)) 2682 sfp_sm_link_up(sfp); 2683 break; 2684 2685 case SFP_S_LINK_UP: 2686 if (event == SFP_E_TX_FAULT) { 2687 sfp_sm_link_down(sfp); 2688 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2689 } else if (sfp_los_event_active(sfp, event)) { 2690 sfp_sm_link_down(sfp); 2691 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2692 } 2693 break; 2694 2695 case SFP_S_TX_FAULT: 2696 if (event == SFP_E_TIMEOUT) { 2697 sfp_module_tx_fault_reset(sfp); 2698 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2699 } 2700 break; 2701 2702 case SFP_S_REINIT: 2703 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2704 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2705 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2706 dev_info(sfp->dev, "module transmit fault recovered\n"); 2707 sfp_sm_link_check_los(sfp); 2708 } 2709 break; 2710 2711 case SFP_S_TX_DISABLE: 2712 break; 2713 } 2714 } 2715 2716 static void __sfp_sm_event(struct sfp *sfp, unsigned int event) 2717 { 2718 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2719 mod_state_to_str(sfp->sm_mod_state), 2720 dev_state_to_str(sfp->sm_dev_state), 2721 sm_state_to_str(sfp->sm_state), 2722 event_to_str(event)); 2723 2724 sfp_sm_device(sfp, event); 2725 sfp_sm_module(sfp, event); 2726 sfp_sm_main(sfp, event); 2727 2728 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2729 mod_state_to_str(sfp->sm_mod_state), 2730 dev_state_to_str(sfp->sm_dev_state), 2731 sm_state_to_str(sfp->sm_state)); 2732 } 2733 2734 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2735 { 2736 mutex_lock(&sfp->sm_mutex); 2737 __sfp_sm_event(sfp, event); 2738 mutex_unlock(&sfp->sm_mutex); 2739 } 2740 2741 static void sfp_attach(struct sfp *sfp) 2742 { 2743 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2744 } 2745 2746 static void sfp_detach(struct sfp *sfp) 2747 { 2748 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2749 } 2750 2751 static void sfp_start(struct sfp *sfp) 2752 { 2753 sfp_sm_event(sfp, SFP_E_DEV_UP); 2754 } 2755 2756 static void sfp_stop(struct sfp *sfp) 2757 { 2758 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2759 } 2760 2761 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) 2762 { 2763 unsigned int set; 2764 2765 sfp->rate_kbd = rate_kbd; 2766 2767 if (rate_kbd > sfp->rs_threshold_kbd) 2768 set = sfp->rs_state_mask; 2769 else 2770 set = 0; 2771 2772 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); 2773 } 2774 2775 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2776 { 2777 /* locking... and check module is present */ 2778 2779 if (sfp->id.ext.sff8472_compliance && 2780 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2781 modinfo->type = ETH_MODULE_SFF_8472; 2782 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2783 } else { 2784 modinfo->type = ETH_MODULE_SFF_8079; 2785 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2786 } 2787 return 0; 2788 } 2789 2790 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2791 u8 *data) 2792 { 2793 unsigned int first, last, len; 2794 int ret; 2795 2796 if (!(sfp->state & SFP_F_PRESENT)) 2797 return -ENODEV; 2798 2799 if (ee->len == 0) 2800 return -EINVAL; 2801 2802 first = ee->offset; 2803 last = ee->offset + ee->len; 2804 if (first < ETH_MODULE_SFF_8079_LEN) { 2805 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2806 len -= first; 2807 2808 ret = sfp_read(sfp, false, first, data, len); 2809 if (ret < 0) 2810 return ret; 2811 2812 first += len; 2813 data += len; 2814 } 2815 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2816 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2817 len -= first; 2818 first -= ETH_MODULE_SFF_8079_LEN; 2819 2820 ret = sfp_read(sfp, true, first, data, len); 2821 if (ret < 0) 2822 return ret; 2823 } 2824 return 0; 2825 } 2826 2827 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2828 const struct ethtool_module_eeprom *page, 2829 struct netlink_ext_ack *extack) 2830 { 2831 if (!(sfp->state & SFP_F_PRESENT)) 2832 return -ENODEV; 2833 2834 if (page->bank) { 2835 NL_SET_ERR_MSG(extack, "Banks not supported"); 2836 return -EOPNOTSUPP; 2837 } 2838 2839 if (page->page) { 2840 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2841 return -EOPNOTSUPP; 2842 } 2843 2844 if (page->i2c_address != 0x50 && 2845 page->i2c_address != 0x51) { 2846 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2847 return -EOPNOTSUPP; 2848 } 2849 2850 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2851 page->data, page->length); 2852 }; 2853 2854 static const struct sfp_socket_ops sfp_module_ops = { 2855 .attach = sfp_attach, 2856 .detach = sfp_detach, 2857 .start = sfp_start, 2858 .stop = sfp_stop, 2859 .set_signal_rate = sfp_set_signal_rate, 2860 .module_info = sfp_module_info, 2861 .module_eeprom = sfp_module_eeprom, 2862 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2863 }; 2864 2865 static void sfp_timeout(struct work_struct *work) 2866 { 2867 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2868 2869 rtnl_lock(); 2870 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2871 rtnl_unlock(); 2872 } 2873 2874 static void sfp_check_state(struct sfp *sfp) 2875 { 2876 unsigned int state, i, changed; 2877 2878 rtnl_lock(); 2879 mutex_lock(&sfp->st_mutex); 2880 state = sfp_get_state(sfp); 2881 changed = state ^ sfp->state; 2882 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2883 2884 for (i = 0; i < GPIO_MAX; i++) 2885 if (changed & BIT(i)) 2886 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2887 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2888 2889 state |= sfp->state & SFP_F_OUTPUTS; 2890 sfp->state = state; 2891 mutex_unlock(&sfp->st_mutex); 2892 2893 mutex_lock(&sfp->sm_mutex); 2894 if (changed & SFP_F_PRESENT) 2895 __sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2896 SFP_E_INSERT : SFP_E_REMOVE); 2897 2898 if (changed & SFP_F_TX_FAULT) 2899 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2900 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2901 2902 if (changed & SFP_F_LOS) 2903 __sfp_sm_event(sfp, state & SFP_F_LOS ? 2904 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2905 mutex_unlock(&sfp->sm_mutex); 2906 rtnl_unlock(); 2907 } 2908 2909 static irqreturn_t sfp_irq(int irq, void *data) 2910 { 2911 struct sfp *sfp = data; 2912 2913 sfp_check_state(sfp); 2914 2915 return IRQ_HANDLED; 2916 } 2917 2918 static void sfp_poll(struct work_struct *work) 2919 { 2920 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2921 2922 sfp_check_state(sfp); 2923 2924 // st_mutex doesn't need to be held here for state_soft_mask, 2925 // it's unimportant if we race while reading this. 2926 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2927 sfp->need_poll) 2928 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2929 } 2930 2931 static struct sfp *sfp_alloc(struct device *dev) 2932 { 2933 struct sfp *sfp; 2934 2935 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2936 if (!sfp) 2937 return ERR_PTR(-ENOMEM); 2938 2939 sfp->dev = dev; 2940 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2941 2942 mutex_init(&sfp->sm_mutex); 2943 mutex_init(&sfp->st_mutex); 2944 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2945 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2946 2947 sfp_hwmon_init(sfp); 2948 2949 return sfp; 2950 } 2951 2952 static void sfp_cleanup(void *data) 2953 { 2954 struct sfp *sfp = data; 2955 2956 sfp_hwmon_exit(sfp); 2957 2958 cancel_delayed_work_sync(&sfp->poll); 2959 cancel_delayed_work_sync(&sfp->timeout); 2960 if (sfp->i2c_mii) { 2961 mdiobus_unregister(sfp->i2c_mii); 2962 mdiobus_free(sfp->i2c_mii); 2963 } 2964 if (sfp->i2c) 2965 i2c_put_adapter(sfp->i2c); 2966 kfree(sfp); 2967 } 2968 2969 static int sfp_i2c_get(struct sfp *sfp) 2970 { 2971 struct fwnode_handle *h; 2972 struct i2c_adapter *i2c; 2973 int err; 2974 2975 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2976 if (IS_ERR(h)) { 2977 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2978 return -ENODEV; 2979 } 2980 2981 i2c = i2c_get_adapter_by_fwnode(h); 2982 if (!i2c) { 2983 err = -EPROBE_DEFER; 2984 goto put; 2985 } 2986 2987 err = sfp_i2c_configure(sfp, i2c); 2988 if (err) 2989 i2c_put_adapter(i2c); 2990 put: 2991 fwnode_handle_put(h); 2992 return err; 2993 } 2994 2995 static int sfp_probe(struct platform_device *pdev) 2996 { 2997 const struct sff_data *sff; 2998 char *sfp_irq_name; 2999 struct sfp *sfp; 3000 int err, i; 3001 3002 sfp = sfp_alloc(&pdev->dev); 3003 if (IS_ERR(sfp)) 3004 return PTR_ERR(sfp); 3005 3006 platform_set_drvdata(pdev, sfp); 3007 3008 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 3009 if (err < 0) 3010 return err; 3011 3012 sff = device_get_match_data(sfp->dev); 3013 if (!sff) 3014 sff = &sfp_data; 3015 3016 sfp->type = sff; 3017 3018 err = sfp_i2c_get(sfp); 3019 if (err) 3020 return err; 3021 3022 for (i = 0; i < GPIO_MAX; i++) 3023 if (sff->gpios & BIT(i)) { 3024 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 3025 gpio_names[i], gpio_flags[i]); 3026 if (IS_ERR(sfp->gpio[i])) 3027 return PTR_ERR(sfp->gpio[i]); 3028 } 3029 3030 sfp->state_hw_mask = SFP_F_PRESENT; 3031 sfp->state_hw_drive = SFP_F_TX_DISABLE; 3032 3033 sfp->get_state = sfp_gpio_get_state; 3034 sfp->set_state = sfp_gpio_set_state; 3035 3036 /* Modules that have no detect signal are always present */ 3037 if (!(sfp->gpio[GPIO_MODDEF0])) 3038 sfp->get_state = sff_gpio_get_state; 3039 3040 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 3041 &sfp->max_power_mW); 3042 if (sfp->max_power_mW < 1000) { 3043 if (sfp->max_power_mW) 3044 dev_warn(sfp->dev, 3045 "Firmware bug: host maximum power should be at least 1W\n"); 3046 sfp->max_power_mW = 1000; 3047 } 3048 3049 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 3050 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 3051 3052 /* Get the initial state, and always signal TX disable, 3053 * since the network interface will not be up. 3054 */ 3055 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 3056 3057 if (sfp->gpio[GPIO_RS0] && 3058 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) 3059 sfp->state |= SFP_F_RS0; 3060 sfp_set_state(sfp, sfp->state); 3061 sfp_module_tx_disable(sfp); 3062 if (sfp->state & SFP_F_PRESENT) { 3063 rtnl_lock(); 3064 sfp_sm_event(sfp, SFP_E_INSERT); 3065 rtnl_unlock(); 3066 } 3067 3068 for (i = 0; i < GPIO_MAX; i++) { 3069 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 3070 continue; 3071 3072 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 3073 if (sfp->gpio_irq[i] < 0) { 3074 sfp->gpio_irq[i] = 0; 3075 sfp->need_poll = true; 3076 continue; 3077 } 3078 3079 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 3080 "%s-%s", dev_name(sfp->dev), 3081 gpio_names[i]); 3082 3083 if (!sfp_irq_name) 3084 return -ENOMEM; 3085 3086 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 3087 NULL, sfp_irq, 3088 IRQF_ONESHOT | 3089 IRQF_TRIGGER_RISING | 3090 IRQF_TRIGGER_FALLING, 3091 sfp_irq_name, sfp); 3092 if (err) { 3093 sfp->gpio_irq[i] = 0; 3094 sfp->need_poll = true; 3095 } 3096 } 3097 3098 if (sfp->need_poll) 3099 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 3100 3101 /* We could have an issue in cases no Tx disable pin is available or 3102 * wired as modules using a laser as their light source will continue to 3103 * be active when the fiber is removed. This could be a safety issue and 3104 * we should at least warn the user about that. 3105 */ 3106 if (!sfp->gpio[GPIO_TX_DISABLE]) 3107 dev_warn(sfp->dev, 3108 "No tx_disable pin: SFP modules will always be emitting.\n"); 3109 3110 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 3111 if (!sfp->sfp_bus) 3112 return -ENOMEM; 3113 3114 sfp_debugfs_init(sfp); 3115 3116 return 0; 3117 } 3118 3119 static void sfp_remove(struct platform_device *pdev) 3120 { 3121 struct sfp *sfp = platform_get_drvdata(pdev); 3122 3123 sfp_debugfs_exit(sfp); 3124 sfp_unregister_socket(sfp->sfp_bus); 3125 3126 rtnl_lock(); 3127 sfp_sm_event(sfp, SFP_E_REMOVE); 3128 rtnl_unlock(); 3129 } 3130 3131 static void sfp_shutdown(struct platform_device *pdev) 3132 { 3133 struct sfp *sfp = platform_get_drvdata(pdev); 3134 int i; 3135 3136 for (i = 0; i < GPIO_MAX; i++) { 3137 if (!sfp->gpio_irq[i]) 3138 continue; 3139 3140 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 3141 } 3142 3143 cancel_delayed_work_sync(&sfp->poll); 3144 cancel_delayed_work_sync(&sfp->timeout); 3145 } 3146 3147 static struct platform_driver sfp_driver = { 3148 .probe = sfp_probe, 3149 .remove_new = sfp_remove, 3150 .shutdown = sfp_shutdown, 3151 .driver = { 3152 .name = "sfp", 3153 .of_match_table = sfp_of_match, 3154 }, 3155 }; 3156 3157 static int sfp_init(void) 3158 { 3159 poll_jiffies = msecs_to_jiffies(100); 3160 3161 return platform_driver_register(&sfp_driver); 3162 } 3163 module_init(sfp_init); 3164 3165 static void sfp_exit(void) 3166 { 3167 platform_driver_unregister(&sfp_driver); 3168 } 3169 module_exit(sfp_exit); 3170 3171 MODULE_ALIAS("platform:sfp"); 3172 MODULE_AUTHOR("Russell King"); 3173 MODULE_LICENSE("GPL v2"); 3174 MODULE_DESCRIPTION("SFP cage support"); 3175