1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/acpi.h> 3 #include <linux/ctype.h> 4 #include <linux/debugfs.h> 5 #include <linux/delay.h> 6 #include <linux/gpio/consumer.h> 7 #include <linux/hwmon.h> 8 #include <linux/i2c.h> 9 #include <linux/interrupt.h> 10 #include <linux/jiffies.h> 11 #include <linux/mdio/mdio-i2c.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/of.h> 15 #include <linux/phy.h> 16 #include <linux/platform_device.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "sfp.h" 22 #include "swphy.h" 23 24 enum { 25 GPIO_MODDEF0, 26 GPIO_LOS, 27 GPIO_TX_FAULT, 28 GPIO_TX_DISABLE, 29 GPIO_RATE_SELECT, 30 GPIO_MAX, 31 32 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 33 SFP_F_LOS = BIT(GPIO_LOS), 34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 37 38 SFP_E_INSERT = 0, 39 SFP_E_REMOVE, 40 SFP_E_DEV_ATTACH, 41 SFP_E_DEV_DETACH, 42 SFP_E_DEV_DOWN, 43 SFP_E_DEV_UP, 44 SFP_E_TX_FAULT, 45 SFP_E_TX_CLEAR, 46 SFP_E_LOS_HIGH, 47 SFP_E_LOS_LOW, 48 SFP_E_TIMEOUT, 49 50 SFP_MOD_EMPTY = 0, 51 SFP_MOD_ERROR, 52 SFP_MOD_PROBE, 53 SFP_MOD_WAITDEV, 54 SFP_MOD_HPOWER, 55 SFP_MOD_WAITPWR, 56 SFP_MOD_PRESENT, 57 58 SFP_DEV_DETACHED = 0, 59 SFP_DEV_DOWN, 60 SFP_DEV_UP, 61 62 SFP_S_DOWN = 0, 63 SFP_S_FAIL, 64 SFP_S_WAIT, 65 SFP_S_INIT, 66 SFP_S_INIT_PHY, 67 SFP_S_INIT_TX_FAULT, 68 SFP_S_WAIT_LOS, 69 SFP_S_LINK_UP, 70 SFP_S_TX_FAULT, 71 SFP_S_REINIT, 72 SFP_S_TX_DISABLE, 73 }; 74 75 static const char * const mod_state_strings[] = { 76 [SFP_MOD_EMPTY] = "empty", 77 [SFP_MOD_ERROR] = "error", 78 [SFP_MOD_PROBE] = "probe", 79 [SFP_MOD_WAITDEV] = "waitdev", 80 [SFP_MOD_HPOWER] = "hpower", 81 [SFP_MOD_WAITPWR] = "waitpwr", 82 [SFP_MOD_PRESENT] = "present", 83 }; 84 85 static const char *mod_state_to_str(unsigned short mod_state) 86 { 87 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 88 return "Unknown module state"; 89 return mod_state_strings[mod_state]; 90 } 91 92 static const char * const dev_state_strings[] = { 93 [SFP_DEV_DETACHED] = "detached", 94 [SFP_DEV_DOWN] = "down", 95 [SFP_DEV_UP] = "up", 96 }; 97 98 static const char *dev_state_to_str(unsigned short dev_state) 99 { 100 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 101 return "Unknown device state"; 102 return dev_state_strings[dev_state]; 103 } 104 105 static const char * const event_strings[] = { 106 [SFP_E_INSERT] = "insert", 107 [SFP_E_REMOVE] = "remove", 108 [SFP_E_DEV_ATTACH] = "dev_attach", 109 [SFP_E_DEV_DETACH] = "dev_detach", 110 [SFP_E_DEV_DOWN] = "dev_down", 111 [SFP_E_DEV_UP] = "dev_up", 112 [SFP_E_TX_FAULT] = "tx_fault", 113 [SFP_E_TX_CLEAR] = "tx_clear", 114 [SFP_E_LOS_HIGH] = "los_high", 115 [SFP_E_LOS_LOW] = "los_low", 116 [SFP_E_TIMEOUT] = "timeout", 117 }; 118 119 static const char *event_to_str(unsigned short event) 120 { 121 if (event >= ARRAY_SIZE(event_strings)) 122 return "Unknown event"; 123 return event_strings[event]; 124 } 125 126 static const char * const sm_state_strings[] = { 127 [SFP_S_DOWN] = "down", 128 [SFP_S_FAIL] = "fail", 129 [SFP_S_WAIT] = "wait", 130 [SFP_S_INIT] = "init", 131 [SFP_S_INIT_PHY] = "init_phy", 132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 133 [SFP_S_WAIT_LOS] = "wait_los", 134 [SFP_S_LINK_UP] = "link_up", 135 [SFP_S_TX_FAULT] = "tx_fault", 136 [SFP_S_REINIT] = "reinit", 137 [SFP_S_TX_DISABLE] = "tx_disable", 138 }; 139 140 static const char *sm_state_to_str(unsigned short sm_state) 141 { 142 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 143 return "Unknown state"; 144 return sm_state_strings[sm_state]; 145 } 146 147 static const char *gpio_of_names[] = { 148 "mod-def0", 149 "los", 150 "tx-fault", 151 "tx-disable", 152 "rate-select0", 153 }; 154 155 static const enum gpiod_flags gpio_flags[] = { 156 GPIOD_IN, 157 GPIOD_IN, 158 GPIOD_IN, 159 GPIOD_ASIS, 160 GPIOD_ASIS, 161 }; 162 163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 164 * non-cooled module to initialise its laser safety circuitry. We wait 165 * an initial T_WAIT period before we check the tx fault to give any PHY 166 * on board (for a copper SFP) time to initialise. 167 */ 168 #define T_WAIT msecs_to_jiffies(50) 169 #define T_WAIT_ROLLBALL msecs_to_jiffies(25000) 170 #define T_START_UP msecs_to_jiffies(300) 171 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 172 173 /* t_reset is the time required to assert the TX_DISABLE signal to reset 174 * an indicated TX_FAULT. 175 */ 176 #define T_RESET_US 10 177 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 178 179 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 180 * time. If the TX_FAULT signal is not deasserted after this number of 181 * attempts at clearing it, we decide that the module is faulty. 182 * N_FAULT is the same but after the module has initialised. 183 */ 184 #define N_FAULT_INIT 5 185 #define N_FAULT 5 186 187 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 188 * R_PHY_RETRY is the number of attempts. 189 */ 190 #define T_PHY_RETRY msecs_to_jiffies(50) 191 #define R_PHY_RETRY 12 192 193 /* SFP module presence detection is poor: the three MOD DEF signals are 194 * the same length on the PCB, which means it's possible for MOD DEF 0 to 195 * connect before the I2C bus on MOD DEF 1/2. 196 * 197 * The SFF-8472 specifies t_serial ("Time from power on until module is 198 * ready for data transmission over the two wire serial bus.") as 300ms. 199 */ 200 #define T_SERIAL msecs_to_jiffies(300) 201 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 202 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 203 #define R_PROBE_RETRY_INIT 10 204 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 205 #define R_PROBE_RETRY_SLOW 12 206 207 /* SFP modules appear to always have their PHY configured for bus address 208 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 209 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 210 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 211 */ 212 #define SFP_PHY_ADDR 22 213 #define SFP_PHY_ADDR_ROLLBALL 17 214 215 struct sff_data { 216 unsigned int gpios; 217 bool (*module_supported)(const struct sfp_eeprom_id *id); 218 }; 219 220 struct sfp { 221 struct device *dev; 222 struct i2c_adapter *i2c; 223 struct mii_bus *i2c_mii; 224 struct sfp_bus *sfp_bus; 225 enum mdio_i2c_proto mdio_protocol; 226 struct phy_device *mod_phy; 227 const struct sff_data *type; 228 size_t i2c_block_size; 229 u32 max_power_mW; 230 231 unsigned int (*get_state)(struct sfp *); 232 void (*set_state)(struct sfp *, unsigned int); 233 int (*read)(struct sfp *, bool, u8, void *, size_t); 234 int (*write)(struct sfp *, bool, u8, void *, size_t); 235 236 struct gpio_desc *gpio[GPIO_MAX]; 237 int gpio_irq[GPIO_MAX]; 238 239 bool need_poll; 240 241 struct mutex st_mutex; /* Protects state */ 242 unsigned int state_hw_mask; 243 unsigned int state_soft_mask; 244 unsigned int state; 245 struct delayed_work poll; 246 struct delayed_work timeout; 247 struct mutex sm_mutex; /* Protects state machine */ 248 unsigned char sm_mod_state; 249 unsigned char sm_mod_tries_init; 250 unsigned char sm_mod_tries; 251 unsigned char sm_dev_state; 252 unsigned short sm_state; 253 unsigned char sm_fault_retries; 254 unsigned char sm_phy_retries; 255 256 struct sfp_eeprom_id id; 257 unsigned int module_power_mW; 258 unsigned int module_t_start_up; 259 unsigned int module_t_wait; 260 bool tx_fault_ignore; 261 262 const struct sfp_quirk *quirk; 263 264 #if IS_ENABLED(CONFIG_HWMON) 265 struct sfp_diag diag; 266 struct delayed_work hwmon_probe; 267 unsigned int hwmon_tries; 268 struct device *hwmon_dev; 269 char *hwmon_name; 270 #endif 271 272 #if IS_ENABLED(CONFIG_DEBUG_FS) 273 struct dentry *debugfs_dir; 274 #endif 275 }; 276 277 static bool sff_module_supported(const struct sfp_eeprom_id *id) 278 { 279 return id->base.phys_id == SFF8024_ID_SFF_8472 && 280 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 281 } 282 283 static const struct sff_data sff_data = { 284 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 285 .module_supported = sff_module_supported, 286 }; 287 288 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 289 { 290 if (id->base.phys_id == SFF8024_ID_SFP && 291 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 292 return true; 293 294 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 295 * phys id SFF instead of SFP. Therefore mark this module explicitly 296 * as supported based on vendor name and pn match. 297 */ 298 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 299 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 300 !memcmp(id->base.vendor_name, "UBNT ", 16) && 301 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 302 return true; 303 304 return false; 305 } 306 307 static const struct sff_data sfp_data = { 308 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 309 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 310 .module_supported = sfp_module_supported, 311 }; 312 313 static const struct of_device_id sfp_of_match[] = { 314 { .compatible = "sff,sff", .data = &sff_data, }, 315 { .compatible = "sff,sfp", .data = &sfp_data, }, 316 { }, 317 }; 318 MODULE_DEVICE_TABLE(of, sfp_of_match); 319 320 static void sfp_fixup_long_startup(struct sfp *sfp) 321 { 322 sfp->module_t_start_up = T_START_UP_BAD_GPON; 323 } 324 325 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 326 { 327 sfp->tx_fault_ignore = true; 328 } 329 330 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 331 { 332 /* Ignore the TX_FAULT and LOS signals on this module. 333 * these are possibly used for other purposes on this 334 * module, e.g. a serial port. 335 */ 336 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 337 } 338 339 static void sfp_fixup_rollball(struct sfp *sfp) 340 { 341 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 342 sfp->module_t_wait = T_WAIT_ROLLBALL; 343 } 344 345 static void sfp_fixup_rollball_cc(struct sfp *sfp) 346 { 347 sfp_fixup_rollball(sfp); 348 349 /* Some RollBall SFPs may have wrong (zero) extended compliance code 350 * burned in EEPROM. For PHY probing we need the correct one. 351 */ 352 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 353 } 354 355 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 356 unsigned long *modes, 357 unsigned long *interfaces) 358 { 359 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 360 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 361 } 362 363 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 364 unsigned long *modes, 365 unsigned long *interfaces) 366 { 367 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 368 * types including 10G Ethernet which is not truth. So clear all claimed 369 * modes and set only one mode which module supports: 1000baseX_Full. 370 */ 371 linkmode_zero(modes); 372 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 373 } 374 375 #define SFP_QUIRK(_v, _p, _m, _f) \ 376 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 377 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 378 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 379 380 static const struct sfp_quirk sfp_quirks[] = { 381 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 382 // report 2500MBd NRZ in their EEPROM 383 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 384 385 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 386 // NRZ in their EEPROM 387 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 388 sfp_fixup_long_startup), 389 390 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 391 392 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 393 // their EEPROM 394 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 395 sfp_fixup_ignore_tx_fault), 396 397 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 398 // 2500MBd NRZ in their EEPROM 399 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 400 401 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 402 403 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 404 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 405 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 406 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 407 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 408 }; 409 410 static size_t sfp_strlen(const char *str, size_t maxlen) 411 { 412 size_t size, i; 413 414 /* Trailing characters should be filled with space chars, but 415 * some manufacturers can't read SFF-8472 and use NUL. 416 */ 417 for (i = 0, size = 0; i < maxlen; i++) 418 if (str[i] != ' ' && str[i] != '\0') 419 size = i + 1; 420 421 return size; 422 } 423 424 static bool sfp_match(const char *qs, const char *str, size_t len) 425 { 426 if (!qs) 427 return true; 428 if (strlen(qs) != len) 429 return false; 430 return !strncmp(qs, str, len); 431 } 432 433 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 434 { 435 const struct sfp_quirk *q; 436 unsigned int i; 437 size_t vs, ps; 438 439 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 440 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 441 442 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 443 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 444 sfp_match(q->part, id->base.vendor_pn, ps)) 445 return q; 446 447 return NULL; 448 } 449 450 static unsigned long poll_jiffies; 451 452 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 453 { 454 unsigned int i, state, v; 455 456 for (i = state = 0; i < GPIO_MAX; i++) { 457 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 458 continue; 459 460 v = gpiod_get_value_cansleep(sfp->gpio[i]); 461 if (v) 462 state |= BIT(i); 463 } 464 465 return state; 466 } 467 468 static unsigned int sff_gpio_get_state(struct sfp *sfp) 469 { 470 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 471 } 472 473 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 474 { 475 if (state & SFP_F_PRESENT) { 476 /* If the module is present, drive the signals */ 477 if (sfp->gpio[GPIO_TX_DISABLE]) 478 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 479 state & SFP_F_TX_DISABLE); 480 if (state & SFP_F_RATE_SELECT) 481 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 482 state & SFP_F_RATE_SELECT); 483 } else { 484 /* Otherwise, let them float to the pull-ups */ 485 if (sfp->gpio[GPIO_TX_DISABLE]) 486 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 487 if (state & SFP_F_RATE_SELECT) 488 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 489 } 490 } 491 492 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 493 size_t len) 494 { 495 struct i2c_msg msgs[2]; 496 u8 bus_addr = a2 ? 0x51 : 0x50; 497 size_t block_size = sfp->i2c_block_size; 498 size_t this_len; 499 int ret; 500 501 msgs[0].addr = bus_addr; 502 msgs[0].flags = 0; 503 msgs[0].len = 1; 504 msgs[0].buf = &dev_addr; 505 msgs[1].addr = bus_addr; 506 msgs[1].flags = I2C_M_RD; 507 msgs[1].len = len; 508 msgs[1].buf = buf; 509 510 while (len) { 511 this_len = len; 512 if (this_len > block_size) 513 this_len = block_size; 514 515 msgs[1].len = this_len; 516 517 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 518 if (ret < 0) 519 return ret; 520 521 if (ret != ARRAY_SIZE(msgs)) 522 break; 523 524 msgs[1].buf += this_len; 525 dev_addr += this_len; 526 len -= this_len; 527 } 528 529 return msgs[1].buf - (u8 *)buf; 530 } 531 532 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 533 size_t len) 534 { 535 struct i2c_msg msgs[1]; 536 u8 bus_addr = a2 ? 0x51 : 0x50; 537 int ret; 538 539 msgs[0].addr = bus_addr; 540 msgs[0].flags = 0; 541 msgs[0].len = 1 + len; 542 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 543 if (!msgs[0].buf) 544 return -ENOMEM; 545 546 msgs[0].buf[0] = dev_addr; 547 memcpy(&msgs[0].buf[1], buf, len); 548 549 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 550 551 kfree(msgs[0].buf); 552 553 if (ret < 0) 554 return ret; 555 556 return ret == ARRAY_SIZE(msgs) ? len : 0; 557 } 558 559 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 560 { 561 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 562 return -EINVAL; 563 564 sfp->i2c = i2c; 565 sfp->read = sfp_i2c_read; 566 sfp->write = sfp_i2c_write; 567 568 return 0; 569 } 570 571 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 572 { 573 struct mii_bus *i2c_mii; 574 int ret; 575 576 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 577 if (IS_ERR(i2c_mii)) 578 return PTR_ERR(i2c_mii); 579 580 i2c_mii->name = "SFP I2C Bus"; 581 i2c_mii->phy_mask = ~0; 582 583 ret = mdiobus_register(i2c_mii); 584 if (ret < 0) { 585 mdiobus_free(i2c_mii); 586 return ret; 587 } 588 589 sfp->i2c_mii = i2c_mii; 590 591 return 0; 592 } 593 594 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 595 { 596 mdiobus_unregister(sfp->i2c_mii); 597 sfp->i2c_mii = NULL; 598 } 599 600 /* Interface */ 601 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 602 { 603 return sfp->read(sfp, a2, addr, buf, len); 604 } 605 606 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 607 { 608 return sfp->write(sfp, a2, addr, buf, len); 609 } 610 611 static unsigned int sfp_soft_get_state(struct sfp *sfp) 612 { 613 unsigned int state = 0; 614 u8 status; 615 int ret; 616 617 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 618 if (ret == sizeof(status)) { 619 if (status & SFP_STATUS_RX_LOS) 620 state |= SFP_F_LOS; 621 if (status & SFP_STATUS_TX_FAULT) 622 state |= SFP_F_TX_FAULT; 623 } else { 624 dev_err_ratelimited(sfp->dev, 625 "failed to read SFP soft status: %pe\n", 626 ERR_PTR(ret)); 627 /* Preserve the current state */ 628 state = sfp->state; 629 } 630 631 return state & sfp->state_soft_mask; 632 } 633 634 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 635 { 636 u8 status; 637 638 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) == 639 sizeof(status)) { 640 if (state & SFP_F_TX_DISABLE) 641 status |= SFP_STATUS_TX_DISABLE_FORCE; 642 else 643 status &= ~SFP_STATUS_TX_DISABLE_FORCE; 644 645 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status)); 646 } 647 } 648 649 static void sfp_soft_start_poll(struct sfp *sfp) 650 { 651 const struct sfp_eeprom_id *id = &sfp->id; 652 unsigned int mask = 0; 653 654 sfp->state_soft_mask = 0; 655 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 656 mask |= SFP_F_TX_DISABLE; 657 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 658 mask |= SFP_F_TX_FAULT; 659 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 660 mask |= SFP_F_LOS; 661 662 // Poll the soft state for hardware pins we want to ignore 663 sfp->state_soft_mask = ~sfp->state_hw_mask & mask; 664 665 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 666 !sfp->need_poll) 667 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 668 } 669 670 static void sfp_soft_stop_poll(struct sfp *sfp) 671 { 672 sfp->state_soft_mask = 0; 673 } 674 675 static unsigned int sfp_get_state(struct sfp *sfp) 676 { 677 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 678 unsigned int state; 679 680 state = sfp->get_state(sfp) & sfp->state_hw_mask; 681 if (state & SFP_F_PRESENT && soft) 682 state |= sfp_soft_get_state(sfp); 683 684 return state; 685 } 686 687 static void sfp_set_state(struct sfp *sfp, unsigned int state) 688 { 689 sfp->set_state(sfp, state); 690 691 if (state & SFP_F_PRESENT && 692 sfp->state_soft_mask & SFP_F_TX_DISABLE) 693 sfp_soft_set_state(sfp, state); 694 } 695 696 static unsigned int sfp_check(void *buf, size_t len) 697 { 698 u8 *p, check; 699 700 for (p = buf, check = 0; len; p++, len--) 701 check += *p; 702 703 return check; 704 } 705 706 /* hwmon */ 707 #if IS_ENABLED(CONFIG_HWMON) 708 static umode_t sfp_hwmon_is_visible(const void *data, 709 enum hwmon_sensor_types type, 710 u32 attr, int channel) 711 { 712 const struct sfp *sfp = data; 713 714 switch (type) { 715 case hwmon_temp: 716 switch (attr) { 717 case hwmon_temp_min_alarm: 718 case hwmon_temp_max_alarm: 719 case hwmon_temp_lcrit_alarm: 720 case hwmon_temp_crit_alarm: 721 case hwmon_temp_min: 722 case hwmon_temp_max: 723 case hwmon_temp_lcrit: 724 case hwmon_temp_crit: 725 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 726 return 0; 727 fallthrough; 728 case hwmon_temp_input: 729 case hwmon_temp_label: 730 return 0444; 731 default: 732 return 0; 733 } 734 case hwmon_in: 735 switch (attr) { 736 case hwmon_in_min_alarm: 737 case hwmon_in_max_alarm: 738 case hwmon_in_lcrit_alarm: 739 case hwmon_in_crit_alarm: 740 case hwmon_in_min: 741 case hwmon_in_max: 742 case hwmon_in_lcrit: 743 case hwmon_in_crit: 744 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 745 return 0; 746 fallthrough; 747 case hwmon_in_input: 748 case hwmon_in_label: 749 return 0444; 750 default: 751 return 0; 752 } 753 case hwmon_curr: 754 switch (attr) { 755 case hwmon_curr_min_alarm: 756 case hwmon_curr_max_alarm: 757 case hwmon_curr_lcrit_alarm: 758 case hwmon_curr_crit_alarm: 759 case hwmon_curr_min: 760 case hwmon_curr_max: 761 case hwmon_curr_lcrit: 762 case hwmon_curr_crit: 763 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 764 return 0; 765 fallthrough; 766 case hwmon_curr_input: 767 case hwmon_curr_label: 768 return 0444; 769 default: 770 return 0; 771 } 772 case hwmon_power: 773 /* External calibration of receive power requires 774 * floating point arithmetic. Doing that in the kernel 775 * is not easy, so just skip it. If the module does 776 * not require external calibration, we can however 777 * show receiver power, since FP is then not needed. 778 */ 779 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 780 channel == 1) 781 return 0; 782 switch (attr) { 783 case hwmon_power_min_alarm: 784 case hwmon_power_max_alarm: 785 case hwmon_power_lcrit_alarm: 786 case hwmon_power_crit_alarm: 787 case hwmon_power_min: 788 case hwmon_power_max: 789 case hwmon_power_lcrit: 790 case hwmon_power_crit: 791 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 792 return 0; 793 fallthrough; 794 case hwmon_power_input: 795 case hwmon_power_label: 796 return 0444; 797 default: 798 return 0; 799 } 800 default: 801 return 0; 802 } 803 } 804 805 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 806 { 807 __be16 val; 808 int err; 809 810 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 811 if (err < 0) 812 return err; 813 814 *value = be16_to_cpu(val); 815 816 return 0; 817 } 818 819 static void sfp_hwmon_to_rx_power(long *value) 820 { 821 *value = DIV_ROUND_CLOSEST(*value, 10); 822 } 823 824 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 825 long *value) 826 { 827 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 828 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 829 } 830 831 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 832 { 833 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 834 be16_to_cpu(sfp->diag.cal_t_offset), value); 835 836 if (*value >= 0x8000) 837 *value -= 0x10000; 838 839 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 840 } 841 842 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 843 { 844 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 845 be16_to_cpu(sfp->diag.cal_v_offset), value); 846 847 *value = DIV_ROUND_CLOSEST(*value, 10); 848 } 849 850 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 851 { 852 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 853 be16_to_cpu(sfp->diag.cal_txi_offset), value); 854 855 *value = DIV_ROUND_CLOSEST(*value, 500); 856 } 857 858 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 859 { 860 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 861 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 862 863 *value = DIV_ROUND_CLOSEST(*value, 10); 864 } 865 866 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 867 { 868 int err; 869 870 err = sfp_hwmon_read_sensor(sfp, reg, value); 871 if (err < 0) 872 return err; 873 874 sfp_hwmon_calibrate_temp(sfp, value); 875 876 return 0; 877 } 878 879 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 880 { 881 int err; 882 883 err = sfp_hwmon_read_sensor(sfp, reg, value); 884 if (err < 0) 885 return err; 886 887 sfp_hwmon_calibrate_vcc(sfp, value); 888 889 return 0; 890 } 891 892 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 893 { 894 int err; 895 896 err = sfp_hwmon_read_sensor(sfp, reg, value); 897 if (err < 0) 898 return err; 899 900 sfp_hwmon_calibrate_bias(sfp, value); 901 902 return 0; 903 } 904 905 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 906 { 907 int err; 908 909 err = sfp_hwmon_read_sensor(sfp, reg, value); 910 if (err < 0) 911 return err; 912 913 sfp_hwmon_calibrate_tx_power(sfp, value); 914 915 return 0; 916 } 917 918 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 919 { 920 int err; 921 922 err = sfp_hwmon_read_sensor(sfp, reg, value); 923 if (err < 0) 924 return err; 925 926 sfp_hwmon_to_rx_power(value); 927 928 return 0; 929 } 930 931 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 932 { 933 u8 status; 934 int err; 935 936 switch (attr) { 937 case hwmon_temp_input: 938 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 939 940 case hwmon_temp_lcrit: 941 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 942 sfp_hwmon_calibrate_temp(sfp, value); 943 return 0; 944 945 case hwmon_temp_min: 946 *value = be16_to_cpu(sfp->diag.temp_low_warn); 947 sfp_hwmon_calibrate_temp(sfp, value); 948 return 0; 949 case hwmon_temp_max: 950 *value = be16_to_cpu(sfp->diag.temp_high_warn); 951 sfp_hwmon_calibrate_temp(sfp, value); 952 return 0; 953 954 case hwmon_temp_crit: 955 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 956 sfp_hwmon_calibrate_temp(sfp, value); 957 return 0; 958 959 case hwmon_temp_lcrit_alarm: 960 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 961 if (err < 0) 962 return err; 963 964 *value = !!(status & SFP_ALARM0_TEMP_LOW); 965 return 0; 966 967 case hwmon_temp_min_alarm: 968 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 969 if (err < 0) 970 return err; 971 972 *value = !!(status & SFP_WARN0_TEMP_LOW); 973 return 0; 974 975 case hwmon_temp_max_alarm: 976 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 977 if (err < 0) 978 return err; 979 980 *value = !!(status & SFP_WARN0_TEMP_HIGH); 981 return 0; 982 983 case hwmon_temp_crit_alarm: 984 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 985 if (err < 0) 986 return err; 987 988 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 989 return 0; 990 default: 991 return -EOPNOTSUPP; 992 } 993 994 return -EOPNOTSUPP; 995 } 996 997 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 998 { 999 u8 status; 1000 int err; 1001 1002 switch (attr) { 1003 case hwmon_in_input: 1004 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1005 1006 case hwmon_in_lcrit: 1007 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1008 sfp_hwmon_calibrate_vcc(sfp, value); 1009 return 0; 1010 1011 case hwmon_in_min: 1012 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1013 sfp_hwmon_calibrate_vcc(sfp, value); 1014 return 0; 1015 1016 case hwmon_in_max: 1017 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1018 sfp_hwmon_calibrate_vcc(sfp, value); 1019 return 0; 1020 1021 case hwmon_in_crit: 1022 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1023 sfp_hwmon_calibrate_vcc(sfp, value); 1024 return 0; 1025 1026 case hwmon_in_lcrit_alarm: 1027 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1028 if (err < 0) 1029 return err; 1030 1031 *value = !!(status & SFP_ALARM0_VCC_LOW); 1032 return 0; 1033 1034 case hwmon_in_min_alarm: 1035 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1036 if (err < 0) 1037 return err; 1038 1039 *value = !!(status & SFP_WARN0_VCC_LOW); 1040 return 0; 1041 1042 case hwmon_in_max_alarm: 1043 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1044 if (err < 0) 1045 return err; 1046 1047 *value = !!(status & SFP_WARN0_VCC_HIGH); 1048 return 0; 1049 1050 case hwmon_in_crit_alarm: 1051 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1052 if (err < 0) 1053 return err; 1054 1055 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1056 return 0; 1057 default: 1058 return -EOPNOTSUPP; 1059 } 1060 1061 return -EOPNOTSUPP; 1062 } 1063 1064 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1065 { 1066 u8 status; 1067 int err; 1068 1069 switch (attr) { 1070 case hwmon_curr_input: 1071 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1072 1073 case hwmon_curr_lcrit: 1074 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1075 sfp_hwmon_calibrate_bias(sfp, value); 1076 return 0; 1077 1078 case hwmon_curr_min: 1079 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1080 sfp_hwmon_calibrate_bias(sfp, value); 1081 return 0; 1082 1083 case hwmon_curr_max: 1084 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1085 sfp_hwmon_calibrate_bias(sfp, value); 1086 return 0; 1087 1088 case hwmon_curr_crit: 1089 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1090 sfp_hwmon_calibrate_bias(sfp, value); 1091 return 0; 1092 1093 case hwmon_curr_lcrit_alarm: 1094 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1095 if (err < 0) 1096 return err; 1097 1098 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1099 return 0; 1100 1101 case hwmon_curr_min_alarm: 1102 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1103 if (err < 0) 1104 return err; 1105 1106 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1107 return 0; 1108 1109 case hwmon_curr_max_alarm: 1110 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1111 if (err < 0) 1112 return err; 1113 1114 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1115 return 0; 1116 1117 case hwmon_curr_crit_alarm: 1118 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1119 if (err < 0) 1120 return err; 1121 1122 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1123 return 0; 1124 default: 1125 return -EOPNOTSUPP; 1126 } 1127 1128 return -EOPNOTSUPP; 1129 } 1130 1131 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1132 { 1133 u8 status; 1134 int err; 1135 1136 switch (attr) { 1137 case hwmon_power_input: 1138 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1139 1140 case hwmon_power_lcrit: 1141 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1142 sfp_hwmon_calibrate_tx_power(sfp, value); 1143 return 0; 1144 1145 case hwmon_power_min: 1146 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1147 sfp_hwmon_calibrate_tx_power(sfp, value); 1148 return 0; 1149 1150 case hwmon_power_max: 1151 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1152 sfp_hwmon_calibrate_tx_power(sfp, value); 1153 return 0; 1154 1155 case hwmon_power_crit: 1156 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1157 sfp_hwmon_calibrate_tx_power(sfp, value); 1158 return 0; 1159 1160 case hwmon_power_lcrit_alarm: 1161 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1162 if (err < 0) 1163 return err; 1164 1165 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1166 return 0; 1167 1168 case hwmon_power_min_alarm: 1169 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1170 if (err < 0) 1171 return err; 1172 1173 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1174 return 0; 1175 1176 case hwmon_power_max_alarm: 1177 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1178 if (err < 0) 1179 return err; 1180 1181 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1182 return 0; 1183 1184 case hwmon_power_crit_alarm: 1185 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1186 if (err < 0) 1187 return err; 1188 1189 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1190 return 0; 1191 default: 1192 return -EOPNOTSUPP; 1193 } 1194 1195 return -EOPNOTSUPP; 1196 } 1197 1198 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1199 { 1200 u8 status; 1201 int err; 1202 1203 switch (attr) { 1204 case hwmon_power_input: 1205 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1206 1207 case hwmon_power_lcrit: 1208 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1209 sfp_hwmon_to_rx_power(value); 1210 return 0; 1211 1212 case hwmon_power_min: 1213 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1214 sfp_hwmon_to_rx_power(value); 1215 return 0; 1216 1217 case hwmon_power_max: 1218 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1219 sfp_hwmon_to_rx_power(value); 1220 return 0; 1221 1222 case hwmon_power_crit: 1223 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1224 sfp_hwmon_to_rx_power(value); 1225 return 0; 1226 1227 case hwmon_power_lcrit_alarm: 1228 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1229 if (err < 0) 1230 return err; 1231 1232 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1233 return 0; 1234 1235 case hwmon_power_min_alarm: 1236 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1237 if (err < 0) 1238 return err; 1239 1240 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1241 return 0; 1242 1243 case hwmon_power_max_alarm: 1244 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1245 if (err < 0) 1246 return err; 1247 1248 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1249 return 0; 1250 1251 case hwmon_power_crit_alarm: 1252 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1253 if (err < 0) 1254 return err; 1255 1256 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1257 return 0; 1258 default: 1259 return -EOPNOTSUPP; 1260 } 1261 1262 return -EOPNOTSUPP; 1263 } 1264 1265 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1266 u32 attr, int channel, long *value) 1267 { 1268 struct sfp *sfp = dev_get_drvdata(dev); 1269 1270 switch (type) { 1271 case hwmon_temp: 1272 return sfp_hwmon_temp(sfp, attr, value); 1273 case hwmon_in: 1274 return sfp_hwmon_vcc(sfp, attr, value); 1275 case hwmon_curr: 1276 return sfp_hwmon_bias(sfp, attr, value); 1277 case hwmon_power: 1278 switch (channel) { 1279 case 0: 1280 return sfp_hwmon_tx_power(sfp, attr, value); 1281 case 1: 1282 return sfp_hwmon_rx_power(sfp, attr, value); 1283 default: 1284 return -EOPNOTSUPP; 1285 } 1286 default: 1287 return -EOPNOTSUPP; 1288 } 1289 } 1290 1291 static const char *const sfp_hwmon_power_labels[] = { 1292 "TX_power", 1293 "RX_power", 1294 }; 1295 1296 static int sfp_hwmon_read_string(struct device *dev, 1297 enum hwmon_sensor_types type, 1298 u32 attr, int channel, const char **str) 1299 { 1300 switch (type) { 1301 case hwmon_curr: 1302 switch (attr) { 1303 case hwmon_curr_label: 1304 *str = "bias"; 1305 return 0; 1306 default: 1307 return -EOPNOTSUPP; 1308 } 1309 break; 1310 case hwmon_temp: 1311 switch (attr) { 1312 case hwmon_temp_label: 1313 *str = "temperature"; 1314 return 0; 1315 default: 1316 return -EOPNOTSUPP; 1317 } 1318 break; 1319 case hwmon_in: 1320 switch (attr) { 1321 case hwmon_in_label: 1322 *str = "VCC"; 1323 return 0; 1324 default: 1325 return -EOPNOTSUPP; 1326 } 1327 break; 1328 case hwmon_power: 1329 switch (attr) { 1330 case hwmon_power_label: 1331 *str = sfp_hwmon_power_labels[channel]; 1332 return 0; 1333 default: 1334 return -EOPNOTSUPP; 1335 } 1336 break; 1337 default: 1338 return -EOPNOTSUPP; 1339 } 1340 1341 return -EOPNOTSUPP; 1342 } 1343 1344 static const struct hwmon_ops sfp_hwmon_ops = { 1345 .is_visible = sfp_hwmon_is_visible, 1346 .read = sfp_hwmon_read, 1347 .read_string = sfp_hwmon_read_string, 1348 }; 1349 1350 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1351 HWMON_CHANNEL_INFO(chip, 1352 HWMON_C_REGISTER_TZ), 1353 HWMON_CHANNEL_INFO(in, 1354 HWMON_I_INPUT | 1355 HWMON_I_MAX | HWMON_I_MIN | 1356 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1357 HWMON_I_CRIT | HWMON_I_LCRIT | 1358 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1359 HWMON_I_LABEL), 1360 HWMON_CHANNEL_INFO(temp, 1361 HWMON_T_INPUT | 1362 HWMON_T_MAX | HWMON_T_MIN | 1363 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1364 HWMON_T_CRIT | HWMON_T_LCRIT | 1365 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1366 HWMON_T_LABEL), 1367 HWMON_CHANNEL_INFO(curr, 1368 HWMON_C_INPUT | 1369 HWMON_C_MAX | HWMON_C_MIN | 1370 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1371 HWMON_C_CRIT | HWMON_C_LCRIT | 1372 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1373 HWMON_C_LABEL), 1374 HWMON_CHANNEL_INFO(power, 1375 /* Transmit power */ 1376 HWMON_P_INPUT | 1377 HWMON_P_MAX | HWMON_P_MIN | 1378 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1379 HWMON_P_CRIT | HWMON_P_LCRIT | 1380 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1381 HWMON_P_LABEL, 1382 /* Receive power */ 1383 HWMON_P_INPUT | 1384 HWMON_P_MAX | HWMON_P_MIN | 1385 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1386 HWMON_P_CRIT | HWMON_P_LCRIT | 1387 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1388 HWMON_P_LABEL), 1389 NULL, 1390 }; 1391 1392 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1393 .ops = &sfp_hwmon_ops, 1394 .info = sfp_hwmon_info, 1395 }; 1396 1397 static void sfp_hwmon_probe(struct work_struct *work) 1398 { 1399 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1400 int err; 1401 1402 /* hwmon interface needs to access 16bit registers in atomic way to 1403 * guarantee coherency of the diagnostic monitoring data. If it is not 1404 * possible to guarantee coherency because EEPROM is broken in such way 1405 * that does not support atomic 16bit read operation then we have to 1406 * skip registration of hwmon device. 1407 */ 1408 if (sfp->i2c_block_size < 2) { 1409 dev_info(sfp->dev, 1410 "skipping hwmon device registration due to broken EEPROM\n"); 1411 dev_info(sfp->dev, 1412 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1413 return; 1414 } 1415 1416 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1417 if (err < 0) { 1418 if (sfp->hwmon_tries--) { 1419 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1420 T_PROBE_RETRY_SLOW); 1421 } else { 1422 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1423 ERR_PTR(err)); 1424 } 1425 return; 1426 } 1427 1428 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1429 if (IS_ERR(sfp->hwmon_name)) { 1430 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1431 return; 1432 } 1433 1434 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1435 sfp->hwmon_name, sfp, 1436 &sfp_hwmon_chip_info, 1437 NULL); 1438 if (IS_ERR(sfp->hwmon_dev)) 1439 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1440 PTR_ERR(sfp->hwmon_dev)); 1441 } 1442 1443 static int sfp_hwmon_insert(struct sfp *sfp) 1444 { 1445 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1446 return 0; 1447 1448 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1449 return 0; 1450 1451 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1452 /* This driver in general does not support address 1453 * change. 1454 */ 1455 return 0; 1456 1457 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1458 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1459 1460 return 0; 1461 } 1462 1463 static void sfp_hwmon_remove(struct sfp *sfp) 1464 { 1465 cancel_delayed_work_sync(&sfp->hwmon_probe); 1466 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1467 hwmon_device_unregister(sfp->hwmon_dev); 1468 sfp->hwmon_dev = NULL; 1469 kfree(sfp->hwmon_name); 1470 } 1471 } 1472 1473 static int sfp_hwmon_init(struct sfp *sfp) 1474 { 1475 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1476 1477 return 0; 1478 } 1479 1480 static void sfp_hwmon_exit(struct sfp *sfp) 1481 { 1482 cancel_delayed_work_sync(&sfp->hwmon_probe); 1483 } 1484 #else 1485 static int sfp_hwmon_insert(struct sfp *sfp) 1486 { 1487 return 0; 1488 } 1489 1490 static void sfp_hwmon_remove(struct sfp *sfp) 1491 { 1492 } 1493 1494 static int sfp_hwmon_init(struct sfp *sfp) 1495 { 1496 return 0; 1497 } 1498 1499 static void sfp_hwmon_exit(struct sfp *sfp) 1500 { 1501 } 1502 #endif 1503 1504 /* Helpers */ 1505 static void sfp_module_tx_disable(struct sfp *sfp) 1506 { 1507 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1508 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1509 sfp->state |= SFP_F_TX_DISABLE; 1510 sfp_set_state(sfp, sfp->state); 1511 } 1512 1513 static void sfp_module_tx_enable(struct sfp *sfp) 1514 { 1515 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1516 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1517 sfp->state &= ~SFP_F_TX_DISABLE; 1518 sfp_set_state(sfp, sfp->state); 1519 } 1520 1521 #if IS_ENABLED(CONFIG_DEBUG_FS) 1522 static int sfp_debug_state_show(struct seq_file *s, void *data) 1523 { 1524 struct sfp *sfp = s->private; 1525 1526 seq_printf(s, "Module state: %s\n", 1527 mod_state_to_str(sfp->sm_mod_state)); 1528 seq_printf(s, "Module probe attempts: %d %d\n", 1529 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1530 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1531 seq_printf(s, "Device state: %s\n", 1532 dev_state_to_str(sfp->sm_dev_state)); 1533 seq_printf(s, "Main state: %s\n", 1534 sm_state_to_str(sfp->sm_state)); 1535 seq_printf(s, "Fault recovery remaining retries: %d\n", 1536 sfp->sm_fault_retries); 1537 seq_printf(s, "PHY probe remaining retries: %d\n", 1538 sfp->sm_phy_retries); 1539 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1540 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1541 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1542 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1543 return 0; 1544 } 1545 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1546 1547 static void sfp_debugfs_init(struct sfp *sfp) 1548 { 1549 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1550 1551 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1552 &sfp_debug_state_fops); 1553 } 1554 1555 static void sfp_debugfs_exit(struct sfp *sfp) 1556 { 1557 debugfs_remove_recursive(sfp->debugfs_dir); 1558 } 1559 #else 1560 static void sfp_debugfs_init(struct sfp *sfp) 1561 { 1562 } 1563 1564 static void sfp_debugfs_exit(struct sfp *sfp) 1565 { 1566 } 1567 #endif 1568 1569 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1570 { 1571 unsigned int state = sfp->state; 1572 1573 if (state & SFP_F_TX_DISABLE) 1574 return; 1575 1576 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1577 1578 udelay(T_RESET_US); 1579 1580 sfp_set_state(sfp, state); 1581 } 1582 1583 /* SFP state machine */ 1584 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1585 { 1586 if (timeout) 1587 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1588 timeout); 1589 else 1590 cancel_delayed_work(&sfp->timeout); 1591 } 1592 1593 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1594 unsigned int timeout) 1595 { 1596 sfp->sm_state = state; 1597 sfp_sm_set_timer(sfp, timeout); 1598 } 1599 1600 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1601 unsigned int timeout) 1602 { 1603 sfp->sm_mod_state = state; 1604 sfp_sm_set_timer(sfp, timeout); 1605 } 1606 1607 static void sfp_sm_phy_detach(struct sfp *sfp) 1608 { 1609 sfp_remove_phy(sfp->sfp_bus); 1610 phy_device_remove(sfp->mod_phy); 1611 phy_device_free(sfp->mod_phy); 1612 sfp->mod_phy = NULL; 1613 } 1614 1615 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1616 { 1617 struct phy_device *phy; 1618 int err; 1619 1620 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1621 if (phy == ERR_PTR(-ENODEV)) 1622 return PTR_ERR(phy); 1623 if (IS_ERR(phy)) { 1624 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1625 return PTR_ERR(phy); 1626 } 1627 1628 err = phy_device_register(phy); 1629 if (err) { 1630 phy_device_free(phy); 1631 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1632 ERR_PTR(err)); 1633 return err; 1634 } 1635 1636 err = sfp_add_phy(sfp->sfp_bus, phy); 1637 if (err) { 1638 phy_device_remove(phy); 1639 phy_device_free(phy); 1640 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1641 return err; 1642 } 1643 1644 sfp->mod_phy = phy; 1645 1646 return 0; 1647 } 1648 1649 static void sfp_sm_link_up(struct sfp *sfp) 1650 { 1651 sfp_link_up(sfp->sfp_bus); 1652 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1653 } 1654 1655 static void sfp_sm_link_down(struct sfp *sfp) 1656 { 1657 sfp_link_down(sfp->sfp_bus); 1658 } 1659 1660 static void sfp_sm_link_check_los(struct sfp *sfp) 1661 { 1662 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1663 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1664 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1665 bool los = false; 1666 1667 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1668 * are set, we assume that no LOS signal is available. If both are 1669 * set, we assume LOS is not implemented (and is meaningless.) 1670 */ 1671 if (los_options == los_inverted) 1672 los = !(sfp->state & SFP_F_LOS); 1673 else if (los_options == los_normal) 1674 los = !!(sfp->state & SFP_F_LOS); 1675 1676 if (los) 1677 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1678 else 1679 sfp_sm_link_up(sfp); 1680 } 1681 1682 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1683 { 1684 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1685 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1686 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1687 1688 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1689 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1690 } 1691 1692 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1693 { 1694 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1695 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1696 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1697 1698 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1699 (los_options == los_normal && event == SFP_E_LOS_LOW); 1700 } 1701 1702 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1703 { 1704 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1705 dev_err(sfp->dev, 1706 "module persistently indicates fault, disabling\n"); 1707 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1708 } else { 1709 if (warn) 1710 dev_err(sfp->dev, "module transmit fault indicated\n"); 1711 1712 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1713 } 1714 } 1715 1716 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1717 { 1718 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1719 return sfp_i2c_mdiobus_create(sfp); 1720 1721 return 0; 1722 } 1723 1724 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1725 * normally sits at I2C bus address 0x56, and may either be a clause 22 1726 * or clause 45 PHY. 1727 * 1728 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1729 * negotiation enabled, but some may be in 1000base-X - which is for the 1730 * PHY driver to determine. 1731 * 1732 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1733 * mode according to the negotiated line speed. 1734 */ 1735 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1736 { 1737 int err = 0; 1738 1739 switch (sfp->mdio_protocol) { 1740 case MDIO_I2C_NONE: 1741 break; 1742 1743 case MDIO_I2C_MARVELL_C22: 1744 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1745 break; 1746 1747 case MDIO_I2C_C45: 1748 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1749 break; 1750 1751 case MDIO_I2C_ROLLBALL: 1752 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1753 break; 1754 } 1755 1756 return err; 1757 } 1758 1759 static int sfp_module_parse_power(struct sfp *sfp) 1760 { 1761 u32 power_mW = 1000; 1762 bool supports_a2; 1763 1764 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1765 power_mW = 1500; 1766 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1767 power_mW = 2000; 1768 1769 supports_a2 = sfp->id.ext.sff8472_compliance != 1770 SFP_SFF8472_COMPLIANCE_NONE || 1771 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1772 1773 if (power_mW > sfp->max_power_mW) { 1774 /* Module power specification exceeds the allowed maximum. */ 1775 if (!supports_a2) { 1776 /* The module appears not to implement bus address 1777 * 0xa2, so assume that the module powers up in the 1778 * indicated mode. 1779 */ 1780 dev_err(sfp->dev, 1781 "Host does not support %u.%uW modules\n", 1782 power_mW / 1000, (power_mW / 100) % 10); 1783 return -EINVAL; 1784 } else { 1785 dev_warn(sfp->dev, 1786 "Host does not support %u.%uW modules, module left in power mode 1\n", 1787 power_mW / 1000, (power_mW / 100) % 10); 1788 return 0; 1789 } 1790 } 1791 1792 if (power_mW <= 1000) { 1793 /* Modules below 1W do not require a power change sequence */ 1794 sfp->module_power_mW = power_mW; 1795 return 0; 1796 } 1797 1798 if (!supports_a2) { 1799 /* The module power level is below the host maximum and the 1800 * module appears not to implement bus address 0xa2, so assume 1801 * that the module powers up in the indicated mode. 1802 */ 1803 return 0; 1804 } 1805 1806 /* If the module requires a higher power mode, but also requires 1807 * an address change sequence, warn the user that the module may 1808 * not be functional. 1809 */ 1810 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1811 dev_warn(sfp->dev, 1812 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1813 power_mW / 1000, (power_mW / 100) % 10); 1814 return 0; 1815 } 1816 1817 sfp->module_power_mW = power_mW; 1818 1819 return 0; 1820 } 1821 1822 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1823 { 1824 u8 val; 1825 int err; 1826 1827 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1828 if (err != sizeof(val)) { 1829 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err)); 1830 return -EAGAIN; 1831 } 1832 1833 /* DM7052 reports as a high power module, responds to reads (with 1834 * all bytes 0xff) at 0x51 but does not accept writes. In any case, 1835 * if the bit is already set, we're already in high power mode. 1836 */ 1837 if (!!(val & BIT(0)) == enable) 1838 return 0; 1839 1840 if (enable) 1841 val |= BIT(0); 1842 else 1843 val &= ~BIT(0); 1844 1845 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1846 if (err != sizeof(val)) { 1847 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n", 1848 ERR_PTR(err)); 1849 return -EAGAIN; 1850 } 1851 1852 if (enable) 1853 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1854 sfp->module_power_mW / 1000, 1855 (sfp->module_power_mW / 100) % 10); 1856 1857 return 0; 1858 } 1859 1860 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 1861 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 1862 * not support multibyte reads from the EEPROM. Each multi-byte read 1863 * operation returns just one byte of EEPROM followed by zeros. There is 1864 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 1865 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 1866 * name and vendor id into EEPROM, so there is even no way to detect if 1867 * module is V-SOL V2801F. Therefore check for those zeros in the read 1868 * data and then based on check switch to reading EEPROM to one byte 1869 * at a time. 1870 */ 1871 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 1872 { 1873 size_t i, block_size = sfp->i2c_block_size; 1874 1875 /* Already using byte IO */ 1876 if (block_size == 1) 1877 return false; 1878 1879 for (i = 1; i < len; i += block_size) { 1880 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 1881 return false; 1882 } 1883 return true; 1884 } 1885 1886 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1887 { 1888 u8 check; 1889 int err; 1890 1891 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1892 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1893 id->base.connector != SFF8024_CONNECTOR_LC) { 1894 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1895 id->base.phys_id = SFF8024_ID_SFF_8472; 1896 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1897 id->base.connector = SFF8024_CONNECTOR_LC; 1898 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1899 if (err != 3) { 1900 dev_err(sfp->dev, 1901 "Failed to rewrite module EEPROM: %pe\n", 1902 ERR_PTR(err)); 1903 return err; 1904 } 1905 1906 /* Cotsworks modules have been found to require a delay between write operations. */ 1907 mdelay(50); 1908 1909 /* Update base structure checksum */ 1910 check = sfp_check(&id->base, sizeof(id->base) - 1); 1911 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1912 if (err != 1) { 1913 dev_err(sfp->dev, 1914 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 1915 ERR_PTR(err)); 1916 return err; 1917 } 1918 } 1919 return 0; 1920 } 1921 1922 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1923 { 1924 /* SFP module inserted - read I2C data */ 1925 struct sfp_eeprom_id id; 1926 bool cotsworks_sfbg; 1927 bool cotsworks; 1928 u8 check; 1929 int ret; 1930 1931 /* Some SFP modules and also some Linux I2C drivers do not like reads 1932 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at 1933 * a time. 1934 */ 1935 sfp->i2c_block_size = 16; 1936 1937 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1938 if (ret < 0) { 1939 if (report) 1940 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1941 ERR_PTR(ret)); 1942 return -EAGAIN; 1943 } 1944 1945 if (ret != sizeof(id.base)) { 1946 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1947 return -EAGAIN; 1948 } 1949 1950 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 1951 * address 0x51 is just one byte at a time. Also SFF-8472 requires 1952 * that EEPROM supports atomic 16bit read operation for diagnostic 1953 * fields, so do not switch to one byte reading at a time unless it 1954 * is really required and we have no other option. 1955 */ 1956 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 1957 dev_info(sfp->dev, 1958 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 1959 dev_info(sfp->dev, 1960 "Switching to reading EEPROM to one byte at a time\n"); 1961 sfp->i2c_block_size = 1; 1962 1963 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1964 if (ret < 0) { 1965 if (report) 1966 dev_err(sfp->dev, 1967 "failed to read EEPROM: %pe\n", 1968 ERR_PTR(ret)); 1969 return -EAGAIN; 1970 } 1971 1972 if (ret != sizeof(id.base)) { 1973 dev_err(sfp->dev, "EEPROM short read: %pe\n", 1974 ERR_PTR(ret)); 1975 return -EAGAIN; 1976 } 1977 } 1978 1979 /* Cotsworks do not seem to update the checksums when they 1980 * do the final programming with the final module part number, 1981 * serial number and date code. 1982 */ 1983 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1984 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 1985 1986 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 1987 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 1988 * Cotsworks PN matches and bytes are not correct. 1989 */ 1990 if (cotsworks && cotsworks_sfbg) { 1991 ret = sfp_cotsworks_fixup_check(sfp, &id); 1992 if (ret < 0) 1993 return ret; 1994 } 1995 1996 /* Validate the checksum over the base structure */ 1997 check = sfp_check(&id.base, sizeof(id.base) - 1); 1998 if (check != id.base.cc_base) { 1999 if (cotsworks) { 2000 dev_warn(sfp->dev, 2001 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2002 check, id.base.cc_base); 2003 } else { 2004 dev_err(sfp->dev, 2005 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2006 check, id.base.cc_base); 2007 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2008 16, 1, &id, sizeof(id), true); 2009 return -EINVAL; 2010 } 2011 } 2012 2013 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2014 if (ret < 0) { 2015 if (report) 2016 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2017 ERR_PTR(ret)); 2018 return -EAGAIN; 2019 } 2020 2021 if (ret != sizeof(id.ext)) { 2022 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2023 return -EAGAIN; 2024 } 2025 2026 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2027 if (check != id.ext.cc_ext) { 2028 if (cotsworks) { 2029 dev_warn(sfp->dev, 2030 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2031 check, id.ext.cc_ext); 2032 } else { 2033 dev_err(sfp->dev, 2034 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2035 check, id.ext.cc_ext); 2036 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2037 16, 1, &id, sizeof(id), true); 2038 memset(&id.ext, 0, sizeof(id.ext)); 2039 } 2040 } 2041 2042 sfp->id = id; 2043 2044 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2045 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2046 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2047 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2048 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2049 (int)sizeof(id.ext.datecode), id.ext.datecode); 2050 2051 /* Check whether we support this module */ 2052 if (!sfp->type->module_supported(&id)) { 2053 dev_err(sfp->dev, 2054 "module is not supported - phys id 0x%02x 0x%02x\n", 2055 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2056 return -EINVAL; 2057 } 2058 2059 /* If the module requires address swap mode, warn about it */ 2060 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2061 dev_warn(sfp->dev, 2062 "module address swap to access page 0xA2 is not supported.\n"); 2063 2064 /* Parse the module power requirement */ 2065 ret = sfp_module_parse_power(sfp); 2066 if (ret < 0) 2067 return ret; 2068 2069 /* Initialise state bits to use from hardware */ 2070 sfp->state_hw_mask = SFP_F_PRESENT; 2071 if (sfp->gpio[GPIO_TX_DISABLE]) 2072 sfp->state_hw_mask |= SFP_F_TX_DISABLE; 2073 if (sfp->gpio[GPIO_TX_FAULT]) 2074 sfp->state_hw_mask |= SFP_F_TX_FAULT; 2075 if (sfp->gpio[GPIO_LOS]) 2076 sfp->state_hw_mask |= SFP_F_LOS; 2077 2078 sfp->module_t_start_up = T_START_UP; 2079 sfp->module_t_wait = T_WAIT; 2080 2081 sfp->tx_fault_ignore = false; 2082 2083 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2084 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2085 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2086 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2087 sfp->mdio_protocol = MDIO_I2C_C45; 2088 else if (sfp->id.base.e1000_base_t) 2089 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2090 else 2091 sfp->mdio_protocol = MDIO_I2C_NONE; 2092 2093 sfp->quirk = sfp_lookup_quirk(&id); 2094 if (sfp->quirk && sfp->quirk->fixup) 2095 sfp->quirk->fixup(sfp); 2096 2097 return 0; 2098 } 2099 2100 static void sfp_sm_mod_remove(struct sfp *sfp) 2101 { 2102 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2103 sfp_module_remove(sfp->sfp_bus); 2104 2105 sfp_hwmon_remove(sfp); 2106 2107 memset(&sfp->id, 0, sizeof(sfp->id)); 2108 sfp->module_power_mW = 0; 2109 2110 dev_info(sfp->dev, "module removed\n"); 2111 } 2112 2113 /* This state machine tracks the upstream's state */ 2114 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2115 { 2116 switch (sfp->sm_dev_state) { 2117 default: 2118 if (event == SFP_E_DEV_ATTACH) 2119 sfp->sm_dev_state = SFP_DEV_DOWN; 2120 break; 2121 2122 case SFP_DEV_DOWN: 2123 if (event == SFP_E_DEV_DETACH) 2124 sfp->sm_dev_state = SFP_DEV_DETACHED; 2125 else if (event == SFP_E_DEV_UP) 2126 sfp->sm_dev_state = SFP_DEV_UP; 2127 break; 2128 2129 case SFP_DEV_UP: 2130 if (event == SFP_E_DEV_DETACH) 2131 sfp->sm_dev_state = SFP_DEV_DETACHED; 2132 else if (event == SFP_E_DEV_DOWN) 2133 sfp->sm_dev_state = SFP_DEV_DOWN; 2134 break; 2135 } 2136 } 2137 2138 /* This state machine tracks the insert/remove state of the module, probes 2139 * the on-board EEPROM, and sets up the power level. 2140 */ 2141 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2142 { 2143 int err; 2144 2145 /* Handle remove event globally, it resets this state machine */ 2146 if (event == SFP_E_REMOVE) { 2147 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2148 sfp_sm_mod_remove(sfp); 2149 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2150 return; 2151 } 2152 2153 /* Handle device detach globally */ 2154 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2155 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2156 if (sfp->module_power_mW > 1000 && 2157 sfp->sm_mod_state > SFP_MOD_HPOWER) 2158 sfp_sm_mod_hpower(sfp, false); 2159 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2160 return; 2161 } 2162 2163 switch (sfp->sm_mod_state) { 2164 default: 2165 if (event == SFP_E_INSERT) { 2166 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2167 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2168 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2169 } 2170 break; 2171 2172 case SFP_MOD_PROBE: 2173 /* Wait for T_PROBE_INIT to time out */ 2174 if (event != SFP_E_TIMEOUT) 2175 break; 2176 2177 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2178 if (err == -EAGAIN) { 2179 if (sfp->sm_mod_tries_init && 2180 --sfp->sm_mod_tries_init) { 2181 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2182 break; 2183 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2184 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2185 dev_warn(sfp->dev, 2186 "please wait, module slow to respond\n"); 2187 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2188 break; 2189 } 2190 } 2191 if (err < 0) { 2192 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2193 break; 2194 } 2195 2196 err = sfp_hwmon_insert(sfp); 2197 if (err) 2198 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2199 ERR_PTR(err)); 2200 2201 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2202 fallthrough; 2203 case SFP_MOD_WAITDEV: 2204 /* Ensure that the device is attached before proceeding */ 2205 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2206 break; 2207 2208 /* Report the module insertion to the upstream device */ 2209 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2210 sfp->quirk); 2211 if (err < 0) { 2212 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2213 break; 2214 } 2215 2216 /* If this is a power level 1 module, we are done */ 2217 if (sfp->module_power_mW <= 1000) 2218 goto insert; 2219 2220 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2221 fallthrough; 2222 case SFP_MOD_HPOWER: 2223 /* Enable high power mode */ 2224 err = sfp_sm_mod_hpower(sfp, true); 2225 if (err < 0) { 2226 if (err != -EAGAIN) { 2227 sfp_module_remove(sfp->sfp_bus); 2228 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2229 } else { 2230 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2231 } 2232 break; 2233 } 2234 2235 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2236 break; 2237 2238 case SFP_MOD_WAITPWR: 2239 /* Wait for T_HPOWER_LEVEL to time out */ 2240 if (event != SFP_E_TIMEOUT) 2241 break; 2242 2243 insert: 2244 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2245 break; 2246 2247 case SFP_MOD_PRESENT: 2248 case SFP_MOD_ERROR: 2249 break; 2250 } 2251 } 2252 2253 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2254 { 2255 unsigned long timeout; 2256 int ret; 2257 2258 /* Some events are global */ 2259 if (sfp->sm_state != SFP_S_DOWN && 2260 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2261 sfp->sm_dev_state != SFP_DEV_UP)) { 2262 if (sfp->sm_state == SFP_S_LINK_UP && 2263 sfp->sm_dev_state == SFP_DEV_UP) 2264 sfp_sm_link_down(sfp); 2265 if (sfp->sm_state > SFP_S_INIT) 2266 sfp_module_stop(sfp->sfp_bus); 2267 if (sfp->mod_phy) 2268 sfp_sm_phy_detach(sfp); 2269 if (sfp->i2c_mii) 2270 sfp_i2c_mdiobus_destroy(sfp); 2271 sfp_module_tx_disable(sfp); 2272 sfp_soft_stop_poll(sfp); 2273 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2274 return; 2275 } 2276 2277 /* The main state machine */ 2278 switch (sfp->sm_state) { 2279 case SFP_S_DOWN: 2280 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2281 sfp->sm_dev_state != SFP_DEV_UP) 2282 break; 2283 2284 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) 2285 sfp_soft_start_poll(sfp); 2286 2287 sfp_module_tx_enable(sfp); 2288 2289 /* Initialise the fault clearance retries */ 2290 sfp->sm_fault_retries = N_FAULT_INIT; 2291 2292 /* We need to check the TX_FAULT state, which is not defined 2293 * while TX_DISABLE is asserted. The earliest we want to do 2294 * anything (such as probe for a PHY) is 50ms (or more on 2295 * specific modules). 2296 */ 2297 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2298 break; 2299 2300 case SFP_S_WAIT: 2301 if (event != SFP_E_TIMEOUT) 2302 break; 2303 2304 if (sfp->state & SFP_F_TX_FAULT) { 2305 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2306 * from the TX_DISABLE deassertion for the module to 2307 * initialise, which is indicated by TX_FAULT 2308 * deasserting. 2309 */ 2310 timeout = sfp->module_t_start_up; 2311 if (timeout > sfp->module_t_wait) 2312 timeout -= sfp->module_t_wait; 2313 else 2314 timeout = 1; 2315 2316 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2317 } else { 2318 /* TX_FAULT is not asserted, assume the module has 2319 * finished initialising. 2320 */ 2321 goto init_done; 2322 } 2323 break; 2324 2325 case SFP_S_INIT: 2326 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2327 /* TX_FAULT is still asserted after t_init 2328 * or t_start_up, so assume there is a fault. 2329 */ 2330 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2331 sfp->sm_fault_retries == N_FAULT_INIT); 2332 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2333 init_done: 2334 /* Create mdiobus and start trying for PHY */ 2335 ret = sfp_sm_add_mdio_bus(sfp); 2336 if (ret < 0) { 2337 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2338 break; 2339 } 2340 sfp->sm_phy_retries = R_PHY_RETRY; 2341 goto phy_probe; 2342 } 2343 break; 2344 2345 case SFP_S_INIT_PHY: 2346 if (event != SFP_E_TIMEOUT) 2347 break; 2348 phy_probe: 2349 /* TX_FAULT deasserted or we timed out with TX_FAULT 2350 * clear. Probe for the PHY and check the LOS state. 2351 */ 2352 ret = sfp_sm_probe_for_phy(sfp); 2353 if (ret == -ENODEV) { 2354 if (--sfp->sm_phy_retries) { 2355 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2356 break; 2357 } else { 2358 dev_info(sfp->dev, "no PHY detected\n"); 2359 } 2360 } else if (ret) { 2361 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2362 break; 2363 } 2364 if (sfp_module_start(sfp->sfp_bus)) { 2365 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2366 break; 2367 } 2368 sfp_sm_link_check_los(sfp); 2369 2370 /* Reset the fault retry count */ 2371 sfp->sm_fault_retries = N_FAULT; 2372 break; 2373 2374 case SFP_S_INIT_TX_FAULT: 2375 if (event == SFP_E_TIMEOUT) { 2376 sfp_module_tx_fault_reset(sfp); 2377 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2378 } 2379 break; 2380 2381 case SFP_S_WAIT_LOS: 2382 if (event == SFP_E_TX_FAULT) 2383 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2384 else if (sfp_los_event_inactive(sfp, event)) 2385 sfp_sm_link_up(sfp); 2386 break; 2387 2388 case SFP_S_LINK_UP: 2389 if (event == SFP_E_TX_FAULT) { 2390 sfp_sm_link_down(sfp); 2391 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2392 } else if (sfp_los_event_active(sfp, event)) { 2393 sfp_sm_link_down(sfp); 2394 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2395 } 2396 break; 2397 2398 case SFP_S_TX_FAULT: 2399 if (event == SFP_E_TIMEOUT) { 2400 sfp_module_tx_fault_reset(sfp); 2401 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2402 } 2403 break; 2404 2405 case SFP_S_REINIT: 2406 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2407 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2408 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2409 dev_info(sfp->dev, "module transmit fault recovered\n"); 2410 sfp_sm_link_check_los(sfp); 2411 } 2412 break; 2413 2414 case SFP_S_TX_DISABLE: 2415 break; 2416 } 2417 } 2418 2419 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2420 { 2421 mutex_lock(&sfp->sm_mutex); 2422 2423 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2424 mod_state_to_str(sfp->sm_mod_state), 2425 dev_state_to_str(sfp->sm_dev_state), 2426 sm_state_to_str(sfp->sm_state), 2427 event_to_str(event)); 2428 2429 sfp_sm_device(sfp, event); 2430 sfp_sm_module(sfp, event); 2431 sfp_sm_main(sfp, event); 2432 2433 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2434 mod_state_to_str(sfp->sm_mod_state), 2435 dev_state_to_str(sfp->sm_dev_state), 2436 sm_state_to_str(sfp->sm_state)); 2437 2438 mutex_unlock(&sfp->sm_mutex); 2439 } 2440 2441 static void sfp_attach(struct sfp *sfp) 2442 { 2443 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2444 } 2445 2446 static void sfp_detach(struct sfp *sfp) 2447 { 2448 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2449 } 2450 2451 static void sfp_start(struct sfp *sfp) 2452 { 2453 sfp_sm_event(sfp, SFP_E_DEV_UP); 2454 } 2455 2456 static void sfp_stop(struct sfp *sfp) 2457 { 2458 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2459 } 2460 2461 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2462 { 2463 /* locking... and check module is present */ 2464 2465 if (sfp->id.ext.sff8472_compliance && 2466 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2467 modinfo->type = ETH_MODULE_SFF_8472; 2468 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2469 } else { 2470 modinfo->type = ETH_MODULE_SFF_8079; 2471 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2472 } 2473 return 0; 2474 } 2475 2476 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2477 u8 *data) 2478 { 2479 unsigned int first, last, len; 2480 int ret; 2481 2482 if (ee->len == 0) 2483 return -EINVAL; 2484 2485 first = ee->offset; 2486 last = ee->offset + ee->len; 2487 if (first < ETH_MODULE_SFF_8079_LEN) { 2488 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2489 len -= first; 2490 2491 ret = sfp_read(sfp, false, first, data, len); 2492 if (ret < 0) 2493 return ret; 2494 2495 first += len; 2496 data += len; 2497 } 2498 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2499 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2500 len -= first; 2501 first -= ETH_MODULE_SFF_8079_LEN; 2502 2503 ret = sfp_read(sfp, true, first, data, len); 2504 if (ret < 0) 2505 return ret; 2506 } 2507 return 0; 2508 } 2509 2510 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2511 const struct ethtool_module_eeprom *page, 2512 struct netlink_ext_ack *extack) 2513 { 2514 if (page->bank) { 2515 NL_SET_ERR_MSG(extack, "Banks not supported"); 2516 return -EOPNOTSUPP; 2517 } 2518 2519 if (page->page) { 2520 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2521 return -EOPNOTSUPP; 2522 } 2523 2524 if (page->i2c_address != 0x50 && 2525 page->i2c_address != 0x51) { 2526 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2527 return -EOPNOTSUPP; 2528 } 2529 2530 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2531 page->data, page->length); 2532 }; 2533 2534 static const struct sfp_socket_ops sfp_module_ops = { 2535 .attach = sfp_attach, 2536 .detach = sfp_detach, 2537 .start = sfp_start, 2538 .stop = sfp_stop, 2539 .module_info = sfp_module_info, 2540 .module_eeprom = sfp_module_eeprom, 2541 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2542 }; 2543 2544 static void sfp_timeout(struct work_struct *work) 2545 { 2546 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2547 2548 rtnl_lock(); 2549 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2550 rtnl_unlock(); 2551 } 2552 2553 static void sfp_check_state(struct sfp *sfp) 2554 { 2555 unsigned int state, i, changed; 2556 2557 mutex_lock(&sfp->st_mutex); 2558 state = sfp_get_state(sfp); 2559 changed = state ^ sfp->state; 2560 if (sfp->tx_fault_ignore) 2561 changed &= SFP_F_PRESENT | SFP_F_LOS; 2562 else 2563 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2564 2565 for (i = 0; i < GPIO_MAX; i++) 2566 if (changed & BIT(i)) 2567 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 2568 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2569 2570 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2571 sfp->state = state; 2572 2573 rtnl_lock(); 2574 if (changed & SFP_F_PRESENT) 2575 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2576 SFP_E_INSERT : SFP_E_REMOVE); 2577 2578 if (changed & SFP_F_TX_FAULT) 2579 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2580 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2581 2582 if (changed & SFP_F_LOS) 2583 sfp_sm_event(sfp, state & SFP_F_LOS ? 2584 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2585 rtnl_unlock(); 2586 mutex_unlock(&sfp->st_mutex); 2587 } 2588 2589 static irqreturn_t sfp_irq(int irq, void *data) 2590 { 2591 struct sfp *sfp = data; 2592 2593 sfp_check_state(sfp); 2594 2595 return IRQ_HANDLED; 2596 } 2597 2598 static void sfp_poll(struct work_struct *work) 2599 { 2600 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2601 2602 sfp_check_state(sfp); 2603 2604 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2605 sfp->need_poll) 2606 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2607 } 2608 2609 static struct sfp *sfp_alloc(struct device *dev) 2610 { 2611 struct sfp *sfp; 2612 2613 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2614 if (!sfp) 2615 return ERR_PTR(-ENOMEM); 2616 2617 sfp->dev = dev; 2618 2619 mutex_init(&sfp->sm_mutex); 2620 mutex_init(&sfp->st_mutex); 2621 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2622 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2623 2624 sfp_hwmon_init(sfp); 2625 2626 return sfp; 2627 } 2628 2629 static void sfp_cleanup(void *data) 2630 { 2631 struct sfp *sfp = data; 2632 2633 sfp_hwmon_exit(sfp); 2634 2635 cancel_delayed_work_sync(&sfp->poll); 2636 cancel_delayed_work_sync(&sfp->timeout); 2637 if (sfp->i2c_mii) { 2638 mdiobus_unregister(sfp->i2c_mii); 2639 mdiobus_free(sfp->i2c_mii); 2640 } 2641 if (sfp->i2c) 2642 i2c_put_adapter(sfp->i2c); 2643 kfree(sfp); 2644 } 2645 2646 static int sfp_probe(struct platform_device *pdev) 2647 { 2648 const struct sff_data *sff; 2649 struct i2c_adapter *i2c; 2650 char *sfp_irq_name; 2651 struct sfp *sfp; 2652 int err, i; 2653 2654 sfp = sfp_alloc(&pdev->dev); 2655 if (IS_ERR(sfp)) 2656 return PTR_ERR(sfp); 2657 2658 platform_set_drvdata(pdev, sfp); 2659 2660 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2661 if (err < 0) 2662 return err; 2663 2664 sff = sfp->type = &sfp_data; 2665 2666 if (pdev->dev.of_node) { 2667 struct device_node *node = pdev->dev.of_node; 2668 const struct of_device_id *id; 2669 struct device_node *np; 2670 2671 id = of_match_node(sfp_of_match, node); 2672 if (WARN_ON(!id)) 2673 return -EINVAL; 2674 2675 sff = sfp->type = id->data; 2676 2677 np = of_parse_phandle(node, "i2c-bus", 0); 2678 if (!np) { 2679 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2680 return -ENODEV; 2681 } 2682 2683 i2c = of_find_i2c_adapter_by_node(np); 2684 of_node_put(np); 2685 } else if (has_acpi_companion(&pdev->dev)) { 2686 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); 2687 struct fwnode_handle *fw = acpi_fwnode_handle(adev); 2688 struct fwnode_reference_args args; 2689 struct acpi_handle *acpi_handle; 2690 int ret; 2691 2692 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); 2693 if (ret || !is_acpi_device_node(args.fwnode)) { 2694 dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); 2695 return -ENODEV; 2696 } 2697 2698 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); 2699 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); 2700 } else { 2701 return -EINVAL; 2702 } 2703 2704 if (!i2c) 2705 return -EPROBE_DEFER; 2706 2707 err = sfp_i2c_configure(sfp, i2c); 2708 if (err < 0) { 2709 i2c_put_adapter(i2c); 2710 return err; 2711 } 2712 2713 for (i = 0; i < GPIO_MAX; i++) 2714 if (sff->gpios & BIT(i)) { 2715 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2716 gpio_of_names[i], gpio_flags[i]); 2717 if (IS_ERR(sfp->gpio[i])) 2718 return PTR_ERR(sfp->gpio[i]); 2719 } 2720 2721 sfp->state_hw_mask = SFP_F_PRESENT; 2722 2723 sfp->get_state = sfp_gpio_get_state; 2724 sfp->set_state = sfp_gpio_set_state; 2725 2726 /* Modules that have no detect signal are always present */ 2727 if (!(sfp->gpio[GPIO_MODDEF0])) 2728 sfp->get_state = sff_gpio_get_state; 2729 2730 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2731 &sfp->max_power_mW); 2732 if (!sfp->max_power_mW) 2733 sfp->max_power_mW = 1000; 2734 2735 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2736 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2737 2738 /* Get the initial state, and always signal TX disable, 2739 * since the network interface will not be up. 2740 */ 2741 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2742 2743 if (sfp->gpio[GPIO_RATE_SELECT] && 2744 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2745 sfp->state |= SFP_F_RATE_SELECT; 2746 sfp_set_state(sfp, sfp->state); 2747 sfp_module_tx_disable(sfp); 2748 if (sfp->state & SFP_F_PRESENT) { 2749 rtnl_lock(); 2750 sfp_sm_event(sfp, SFP_E_INSERT); 2751 rtnl_unlock(); 2752 } 2753 2754 for (i = 0; i < GPIO_MAX; i++) { 2755 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2756 continue; 2757 2758 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2759 if (sfp->gpio_irq[i] < 0) { 2760 sfp->gpio_irq[i] = 0; 2761 sfp->need_poll = true; 2762 continue; 2763 } 2764 2765 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2766 "%s-%s", dev_name(sfp->dev), 2767 gpio_of_names[i]); 2768 2769 if (!sfp_irq_name) 2770 return -ENOMEM; 2771 2772 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2773 NULL, sfp_irq, 2774 IRQF_ONESHOT | 2775 IRQF_TRIGGER_RISING | 2776 IRQF_TRIGGER_FALLING, 2777 sfp_irq_name, sfp); 2778 if (err) { 2779 sfp->gpio_irq[i] = 0; 2780 sfp->need_poll = true; 2781 } 2782 } 2783 2784 if (sfp->need_poll) 2785 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2786 2787 /* We could have an issue in cases no Tx disable pin is available or 2788 * wired as modules using a laser as their light source will continue to 2789 * be active when the fiber is removed. This could be a safety issue and 2790 * we should at least warn the user about that. 2791 */ 2792 if (!sfp->gpio[GPIO_TX_DISABLE]) 2793 dev_warn(sfp->dev, 2794 "No tx_disable pin: SFP modules will always be emitting.\n"); 2795 2796 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2797 if (!sfp->sfp_bus) 2798 return -ENOMEM; 2799 2800 sfp_debugfs_init(sfp); 2801 2802 return 0; 2803 } 2804 2805 static int sfp_remove(struct platform_device *pdev) 2806 { 2807 struct sfp *sfp = platform_get_drvdata(pdev); 2808 2809 sfp_debugfs_exit(sfp); 2810 sfp_unregister_socket(sfp->sfp_bus); 2811 2812 rtnl_lock(); 2813 sfp_sm_event(sfp, SFP_E_REMOVE); 2814 rtnl_unlock(); 2815 2816 return 0; 2817 } 2818 2819 static void sfp_shutdown(struct platform_device *pdev) 2820 { 2821 struct sfp *sfp = platform_get_drvdata(pdev); 2822 int i; 2823 2824 for (i = 0; i < GPIO_MAX; i++) { 2825 if (!sfp->gpio_irq[i]) 2826 continue; 2827 2828 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2829 } 2830 2831 cancel_delayed_work_sync(&sfp->poll); 2832 cancel_delayed_work_sync(&sfp->timeout); 2833 } 2834 2835 static struct platform_driver sfp_driver = { 2836 .probe = sfp_probe, 2837 .remove = sfp_remove, 2838 .shutdown = sfp_shutdown, 2839 .driver = { 2840 .name = "sfp", 2841 .of_match_table = sfp_of_match, 2842 }, 2843 }; 2844 2845 static int sfp_init(void) 2846 { 2847 poll_jiffies = msecs_to_jiffies(100); 2848 2849 return platform_driver_register(&sfp_driver); 2850 } 2851 module_init(sfp_init); 2852 2853 static void sfp_exit(void) 2854 { 2855 platform_driver_unregister(&sfp_driver); 2856 } 2857 module_exit(sfp_exit); 2858 2859 MODULE_ALIAS("platform:sfp"); 2860 MODULE_AUTHOR("Russell King"); 2861 MODULE_LICENSE("GPL v2"); 2862