1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RS0, 28 GPIO_RS1, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RS0 = BIT(GPIO_RS0), 36 SFP_F_RS1 = BIT(GPIO_RS1), 37 38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 39 40 SFP_E_INSERT = 0, 41 SFP_E_REMOVE, 42 SFP_E_DEV_ATTACH, 43 SFP_E_DEV_DETACH, 44 SFP_E_DEV_DOWN, 45 SFP_E_DEV_UP, 46 SFP_E_TX_FAULT, 47 SFP_E_TX_CLEAR, 48 SFP_E_LOS_HIGH, 49 SFP_E_LOS_LOW, 50 SFP_E_TIMEOUT, 51 52 SFP_MOD_EMPTY = 0, 53 SFP_MOD_ERROR, 54 SFP_MOD_PROBE, 55 SFP_MOD_WAITDEV, 56 SFP_MOD_HPOWER, 57 SFP_MOD_WAITPWR, 58 SFP_MOD_PRESENT, 59 60 SFP_DEV_DETACHED = 0, 61 SFP_DEV_DOWN, 62 SFP_DEV_UP, 63 64 SFP_S_DOWN = 0, 65 SFP_S_FAIL, 66 SFP_S_WAIT, 67 SFP_S_INIT, 68 SFP_S_INIT_PHY, 69 SFP_S_INIT_TX_FAULT, 70 SFP_S_WAIT_LOS, 71 SFP_S_LINK_UP, 72 SFP_S_TX_FAULT, 73 SFP_S_REINIT, 74 SFP_S_TX_DISABLE, 75 }; 76 77 static const char * const mod_state_strings[] = { 78 [SFP_MOD_EMPTY] = "empty", 79 [SFP_MOD_ERROR] = "error", 80 [SFP_MOD_PROBE] = "probe", 81 [SFP_MOD_WAITDEV] = "waitdev", 82 [SFP_MOD_HPOWER] = "hpower", 83 [SFP_MOD_WAITPWR] = "waitpwr", 84 [SFP_MOD_PRESENT] = "present", 85 }; 86 87 static const char *mod_state_to_str(unsigned short mod_state) 88 { 89 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 90 return "Unknown module state"; 91 return mod_state_strings[mod_state]; 92 } 93 94 static const char * const dev_state_strings[] = { 95 [SFP_DEV_DETACHED] = "detached", 96 [SFP_DEV_DOWN] = "down", 97 [SFP_DEV_UP] = "up", 98 }; 99 100 static const char *dev_state_to_str(unsigned short dev_state) 101 { 102 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 103 return "Unknown device state"; 104 return dev_state_strings[dev_state]; 105 } 106 107 static const char * const event_strings[] = { 108 [SFP_E_INSERT] = "insert", 109 [SFP_E_REMOVE] = "remove", 110 [SFP_E_DEV_ATTACH] = "dev_attach", 111 [SFP_E_DEV_DETACH] = "dev_detach", 112 [SFP_E_DEV_DOWN] = "dev_down", 113 [SFP_E_DEV_UP] = "dev_up", 114 [SFP_E_TX_FAULT] = "tx_fault", 115 [SFP_E_TX_CLEAR] = "tx_clear", 116 [SFP_E_LOS_HIGH] = "los_high", 117 [SFP_E_LOS_LOW] = "los_low", 118 [SFP_E_TIMEOUT] = "timeout", 119 }; 120 121 static const char *event_to_str(unsigned short event) 122 { 123 if (event >= ARRAY_SIZE(event_strings)) 124 return "Unknown event"; 125 return event_strings[event]; 126 } 127 128 static const char * const sm_state_strings[] = { 129 [SFP_S_DOWN] = "down", 130 [SFP_S_FAIL] = "fail", 131 [SFP_S_WAIT] = "wait", 132 [SFP_S_INIT] = "init", 133 [SFP_S_INIT_PHY] = "init_phy", 134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 135 [SFP_S_WAIT_LOS] = "wait_los", 136 [SFP_S_LINK_UP] = "link_up", 137 [SFP_S_TX_FAULT] = "tx_fault", 138 [SFP_S_REINIT] = "reinit", 139 [SFP_S_TX_DISABLE] = "tx_disable", 140 }; 141 142 static const char *sm_state_to_str(unsigned short sm_state) 143 { 144 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 145 return "Unknown state"; 146 return sm_state_strings[sm_state]; 147 } 148 149 static const char *gpio_names[] = { 150 "mod-def0", 151 "los", 152 "tx-fault", 153 "tx-disable", 154 "rate-select0", 155 "rate-select1", 156 }; 157 158 static const enum gpiod_flags gpio_flags[] = { 159 GPIOD_IN, 160 GPIOD_IN, 161 GPIOD_IN, 162 GPIOD_ASIS, 163 GPIOD_ASIS, 164 GPIOD_ASIS, 165 }; 166 167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 168 * non-cooled module to initialise its laser safety circuitry. We wait 169 * an initial T_WAIT period before we check the tx fault to give any PHY 170 * on board (for a copper SFP) time to initialise. 171 */ 172 #define T_WAIT msecs_to_jiffies(50) 173 #define T_START_UP msecs_to_jiffies(300) 174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 175 176 /* t_reset is the time required to assert the TX_DISABLE signal to reset 177 * an indicated TX_FAULT. 178 */ 179 #define T_RESET_US 10 180 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 181 182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 183 * time. If the TX_FAULT signal is not deasserted after this number of 184 * attempts at clearing it, we decide that the module is faulty. 185 * N_FAULT is the same but after the module has initialised. 186 */ 187 #define N_FAULT_INIT 5 188 #define N_FAULT 5 189 190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 191 * R_PHY_RETRY is the number of attempts. 192 */ 193 #define T_PHY_RETRY msecs_to_jiffies(50) 194 #define R_PHY_RETRY 25 195 196 /* SFP module presence detection is poor: the three MOD DEF signals are 197 * the same length on the PCB, which means it's possible for MOD DEF 0 to 198 * connect before the I2C bus on MOD DEF 1/2. 199 * 200 * The SFF-8472 specifies t_serial ("Time from power on until module is 201 * ready for data transmission over the two wire serial bus.") as 300ms. 202 */ 203 #define T_SERIAL msecs_to_jiffies(300) 204 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 206 #define R_PROBE_RETRY_INIT 10 207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 208 #define R_PROBE_RETRY_SLOW 12 209 210 /* SFP modules appear to always have their PHY configured for bus address 211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 214 */ 215 #define SFP_PHY_ADDR 22 216 #define SFP_PHY_ADDR_ROLLBALL 17 217 218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM 219 * at a time. Some SFP modules and also some Linux I2C drivers do not like 220 * reads longer than 16 bytes. 221 */ 222 #define SFP_EEPROM_BLOCK_SIZE 16 223 224 struct sff_data { 225 unsigned int gpios; 226 bool (*module_supported)(const struct sfp_eeprom_id *id); 227 }; 228 229 struct sfp { 230 struct device *dev; 231 struct i2c_adapter *i2c; 232 struct mii_bus *i2c_mii; 233 struct sfp_bus *sfp_bus; 234 enum mdio_i2c_proto mdio_protocol; 235 struct phy_device *mod_phy; 236 const struct sff_data *type; 237 size_t i2c_block_size; 238 u32 max_power_mW; 239 240 unsigned int (*get_state)(struct sfp *); 241 void (*set_state)(struct sfp *, unsigned int); 242 int (*read)(struct sfp *, bool, u8, void *, size_t); 243 int (*write)(struct sfp *, bool, u8, void *, size_t); 244 245 struct gpio_desc *gpio[GPIO_MAX]; 246 int gpio_irq[GPIO_MAX]; 247 248 bool need_poll; 249 250 /* Access rules: 251 * state_hw_drive: st_mutex held 252 * state_hw_mask: st_mutex held 253 * state_soft_mask: st_mutex held 254 * state: st_mutex held unless reading input bits 255 */ 256 struct mutex st_mutex; /* Protects state */ 257 unsigned int state_hw_drive; 258 unsigned int state_hw_mask; 259 unsigned int state_soft_mask; 260 unsigned int state_ignore_mask; 261 unsigned int state; 262 263 struct delayed_work poll; 264 struct delayed_work timeout; 265 struct mutex sm_mutex; /* Protects state machine */ 266 unsigned char sm_mod_state; 267 unsigned char sm_mod_tries_init; 268 unsigned char sm_mod_tries; 269 unsigned char sm_dev_state; 270 unsigned short sm_state; 271 unsigned char sm_fault_retries; 272 unsigned char sm_phy_retries; 273 274 struct sfp_eeprom_id id; 275 unsigned int module_power_mW; 276 unsigned int module_t_start_up; 277 unsigned int module_t_wait; 278 unsigned int phy_t_retry; 279 280 unsigned int rate_kbd; 281 unsigned int rs_threshold_kbd; 282 unsigned int rs_state_mask; 283 284 bool have_a2; 285 286 const struct sfp_quirk *quirk; 287 288 #if IS_ENABLED(CONFIG_HWMON) 289 struct sfp_diag diag; 290 struct delayed_work hwmon_probe; 291 unsigned int hwmon_tries; 292 struct device *hwmon_dev; 293 char *hwmon_name; 294 #endif 295 296 #if IS_ENABLED(CONFIG_DEBUG_FS) 297 struct dentry *debugfs_dir; 298 #endif 299 }; 300 301 static bool sff_module_supported(const struct sfp_eeprom_id *id) 302 { 303 return id->base.phys_id == SFF8024_ID_SFF_8472 && 304 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 305 } 306 307 static const struct sff_data sff_data = { 308 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 309 .module_supported = sff_module_supported, 310 }; 311 312 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 313 { 314 if (id->base.phys_id == SFF8024_ID_SFP && 315 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 316 return true; 317 318 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 319 * phys id SFF instead of SFP. Therefore mark this module explicitly 320 * as supported based on vendor name and pn match. 321 */ 322 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 323 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 324 !memcmp(id->base.vendor_name, "UBNT ", 16) && 325 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 326 return true; 327 328 return false; 329 } 330 331 static const struct sff_data sfp_data = { 332 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 333 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 334 .module_supported = sfp_module_supported, 335 }; 336 337 static const struct of_device_id sfp_of_match[] = { 338 { .compatible = "sff,sff", .data = &sff_data, }, 339 { .compatible = "sff,sfp", .data = &sfp_data, }, 340 { }, 341 }; 342 MODULE_DEVICE_TABLE(of, sfp_of_match); 343 344 static void sfp_fixup_long_startup(struct sfp *sfp) 345 { 346 sfp->module_t_start_up = T_START_UP_BAD_GPON; 347 } 348 349 static void sfp_fixup_ignore_los(struct sfp *sfp) 350 { 351 /* This forces LOS to zero, so we ignore transitions */ 352 sfp->state_ignore_mask |= SFP_F_LOS; 353 /* Make sure that LOS options are clear */ 354 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED | 355 SFP_OPTIONS_LOS_NORMAL); 356 } 357 358 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 359 { 360 sfp->state_ignore_mask |= SFP_F_TX_FAULT; 361 } 362 363 static void sfp_fixup_nokia(struct sfp *sfp) 364 { 365 sfp_fixup_long_startup(sfp); 366 sfp_fixup_ignore_los(sfp); 367 } 368 369 // For 10GBASE-T short-reach modules 370 static void sfp_fixup_10gbaset_30m(struct sfp *sfp) 371 { 372 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; 373 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; 374 } 375 376 static void sfp_fixup_rollball(struct sfp *sfp) 377 { 378 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 379 380 /* RollBall modules may disallow access to PHY registers for up to 25 381 * seconds, and the reads return 0xffff before that. Increase the time 382 * between PHY probe retries from 50ms to 1s so that we will wait for 383 * the PHY for a sufficient amount of time. 384 */ 385 sfp->phy_t_retry = msecs_to_jiffies(1000); 386 } 387 388 static void sfp_fixup_fs_2_5gt(struct sfp *sfp) 389 { 390 sfp_fixup_rollball(sfp); 391 392 /* The RollBall fixup is not enough for FS modules, the PHY chip inside 393 * them does not return 0xffff for PHY ID registers in all MMDs for the 394 * while initializing. They need a 4 second wait before accessing PHY. 395 */ 396 sfp->module_t_wait = msecs_to_jiffies(4000); 397 } 398 399 static void sfp_fixup_fs_10gt(struct sfp *sfp) 400 { 401 sfp_fixup_10gbaset_30m(sfp); 402 sfp_fixup_fs_2_5gt(sfp); 403 } 404 405 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 406 { 407 /* Ignore the TX_FAULT and LOS signals on this module. 408 * these are possibly used for other purposes on this 409 * module, e.g. a serial port. 410 */ 411 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 412 } 413 414 static void sfp_fixup_rollball_cc(struct sfp *sfp) 415 { 416 sfp_fixup_rollball(sfp); 417 418 /* Some RollBall SFPs may have wrong (zero) extended compliance code 419 * burned in EEPROM. For PHY probing we need the correct one. 420 */ 421 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 422 } 423 424 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 425 unsigned long *modes, 426 unsigned long *interfaces) 427 { 428 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 429 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 430 } 431 432 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, 433 unsigned long *modes, 434 unsigned long *interfaces) 435 { 436 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); 437 } 438 439 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, 440 unsigned long *modes, 441 unsigned long *interfaces) 442 { 443 /* Copper 2.5G SFP */ 444 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); 445 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 446 sfp_quirk_disable_autoneg(id, modes, interfaces); 447 } 448 449 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 450 unsigned long *modes, 451 unsigned long *interfaces) 452 { 453 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 454 * types including 10G Ethernet which is not truth. So clear all claimed 455 * modes and set only one mode which module supports: 1000baseX_Full. 456 */ 457 linkmode_zero(modes); 458 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 459 } 460 461 #define SFP_QUIRK(_v, _p, _m, _f) \ 462 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 463 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 464 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 465 466 static const struct sfp_quirk sfp_quirks[] = { 467 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 468 // report 2500MBd NRZ in their EEPROM 469 SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex, 470 sfp_fixup_ignore_tx_fault), 471 472 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 473 // NRZ in their EEPROM 474 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 475 sfp_fixup_nokia), 476 477 // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball 478 // protocol to talk to the PHY and needs 4 sec wait before probing the 479 // PHY. 480 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), 481 482 // Fiberstore SFP-2.5G-T uses Rollball protocol to talk to the PHY and 483 // needs 4 sec wait before probing the PHY. 484 SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_fs_2_5gt), 485 486 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd 487 // NRZ in their EEPROM 488 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, 489 sfp_fixup_ignore_tx_fault), 490 491 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 492 493 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports 494 // 2600MBd in their EERPOM 495 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), 496 497 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 498 // their EEPROM 499 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 500 sfp_fixup_ignore_tx_fault), 501 502 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 503 // 2500MBd NRZ in their EEPROM 504 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 505 506 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 507 508 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the 509 // Rollball protocol to talk to the PHY. 510 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), 511 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), 512 513 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator 514 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault), 515 516 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 517 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 518 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 519 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 520 SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball), 521 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 522 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 523 }; 524 525 static size_t sfp_strlen(const char *str, size_t maxlen) 526 { 527 size_t size, i; 528 529 /* Trailing characters should be filled with space chars, but 530 * some manufacturers can't read SFF-8472 and use NUL. 531 */ 532 for (i = 0, size = 0; i < maxlen; i++) 533 if (str[i] != ' ' && str[i] != '\0') 534 size = i + 1; 535 536 return size; 537 } 538 539 static bool sfp_match(const char *qs, const char *str, size_t len) 540 { 541 if (!qs) 542 return true; 543 if (strlen(qs) != len) 544 return false; 545 return !strncmp(qs, str, len); 546 } 547 548 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 549 { 550 const struct sfp_quirk *q; 551 unsigned int i; 552 size_t vs, ps; 553 554 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 555 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 556 557 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 558 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 559 sfp_match(q->part, id->base.vendor_pn, ps)) 560 return q; 561 562 return NULL; 563 } 564 565 static unsigned long poll_jiffies; 566 567 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 568 { 569 unsigned int i, state, v; 570 571 for (i = state = 0; i < GPIO_MAX; i++) { 572 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 573 continue; 574 575 v = gpiod_get_value_cansleep(sfp->gpio[i]); 576 if (v) 577 state |= BIT(i); 578 } 579 580 return state; 581 } 582 583 static unsigned int sff_gpio_get_state(struct sfp *sfp) 584 { 585 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 586 } 587 588 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 589 { 590 unsigned int drive; 591 592 if (state & SFP_F_PRESENT) 593 /* If the module is present, drive the requested signals */ 594 drive = sfp->state_hw_drive; 595 else 596 /* Otherwise, let them float to the pull-ups */ 597 drive = 0; 598 599 if (sfp->gpio[GPIO_TX_DISABLE]) { 600 if (drive & SFP_F_TX_DISABLE) 601 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 602 state & SFP_F_TX_DISABLE); 603 else 604 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 605 } 606 607 if (sfp->gpio[GPIO_RS0]) { 608 if (drive & SFP_F_RS0) 609 gpiod_direction_output(sfp->gpio[GPIO_RS0], 610 state & SFP_F_RS0); 611 else 612 gpiod_direction_input(sfp->gpio[GPIO_RS0]); 613 } 614 615 if (sfp->gpio[GPIO_RS1]) { 616 if (drive & SFP_F_RS1) 617 gpiod_direction_output(sfp->gpio[GPIO_RS1], 618 state & SFP_F_RS1); 619 else 620 gpiod_direction_input(sfp->gpio[GPIO_RS1]); 621 } 622 } 623 624 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 625 size_t len) 626 { 627 struct i2c_msg msgs[2]; 628 u8 bus_addr = a2 ? 0x51 : 0x50; 629 size_t block_size = sfp->i2c_block_size; 630 size_t this_len; 631 int ret; 632 633 msgs[0].addr = bus_addr; 634 msgs[0].flags = 0; 635 msgs[0].len = 1; 636 msgs[0].buf = &dev_addr; 637 msgs[1].addr = bus_addr; 638 msgs[1].flags = I2C_M_RD; 639 msgs[1].len = len; 640 msgs[1].buf = buf; 641 642 while (len) { 643 this_len = len; 644 if (this_len > block_size) 645 this_len = block_size; 646 647 msgs[1].len = this_len; 648 649 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 650 if (ret < 0) 651 return ret; 652 653 if (ret != ARRAY_SIZE(msgs)) 654 break; 655 656 msgs[1].buf += this_len; 657 dev_addr += this_len; 658 len -= this_len; 659 } 660 661 return msgs[1].buf - (u8 *)buf; 662 } 663 664 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 665 size_t len) 666 { 667 struct i2c_msg msgs[1]; 668 u8 bus_addr = a2 ? 0x51 : 0x50; 669 int ret; 670 671 msgs[0].addr = bus_addr; 672 msgs[0].flags = 0; 673 msgs[0].len = 1 + len; 674 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 675 if (!msgs[0].buf) 676 return -ENOMEM; 677 678 msgs[0].buf[0] = dev_addr; 679 memcpy(&msgs[0].buf[1], buf, len); 680 681 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 682 683 kfree(msgs[0].buf); 684 685 if (ret < 0) 686 return ret; 687 688 return ret == ARRAY_SIZE(msgs) ? len : 0; 689 } 690 691 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 692 { 693 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 694 return -EINVAL; 695 696 sfp->i2c = i2c; 697 sfp->read = sfp_i2c_read; 698 sfp->write = sfp_i2c_write; 699 700 return 0; 701 } 702 703 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 704 { 705 struct mii_bus *i2c_mii; 706 int ret; 707 708 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 709 if (IS_ERR(i2c_mii)) 710 return PTR_ERR(i2c_mii); 711 712 i2c_mii->name = "SFP I2C Bus"; 713 i2c_mii->phy_mask = ~0; 714 715 ret = mdiobus_register(i2c_mii); 716 if (ret < 0) { 717 mdiobus_free(i2c_mii); 718 return ret; 719 } 720 721 sfp->i2c_mii = i2c_mii; 722 723 return 0; 724 } 725 726 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 727 { 728 mdiobus_unregister(sfp->i2c_mii); 729 sfp->i2c_mii = NULL; 730 } 731 732 /* Interface */ 733 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 734 { 735 return sfp->read(sfp, a2, addr, buf, len); 736 } 737 738 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 739 { 740 return sfp->write(sfp, a2, addr, buf, len); 741 } 742 743 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 744 { 745 int ret; 746 u8 old, v; 747 748 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 749 if (ret != sizeof(old)) 750 return ret; 751 752 v = (old & ~mask) | (val & mask); 753 if (v == old) 754 return sizeof(v); 755 756 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 757 } 758 759 static unsigned int sfp_soft_get_state(struct sfp *sfp) 760 { 761 unsigned int state = 0; 762 u8 status; 763 int ret; 764 765 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 766 if (ret == sizeof(status)) { 767 if (status & SFP_STATUS_RX_LOS) 768 state |= SFP_F_LOS; 769 if (status & SFP_STATUS_TX_FAULT) 770 state |= SFP_F_TX_FAULT; 771 } else { 772 dev_err_ratelimited(sfp->dev, 773 "failed to read SFP soft status: %pe\n", 774 ERR_PTR(ret)); 775 /* Preserve the current state */ 776 state = sfp->state; 777 } 778 779 return state & sfp->state_soft_mask; 780 } 781 782 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, 783 unsigned int soft) 784 { 785 u8 mask = 0; 786 u8 val = 0; 787 788 if (soft & SFP_F_TX_DISABLE) 789 mask |= SFP_STATUS_TX_DISABLE_FORCE; 790 if (state & SFP_F_TX_DISABLE) 791 val |= SFP_STATUS_TX_DISABLE_FORCE; 792 793 if (soft & SFP_F_RS0) 794 mask |= SFP_STATUS_RS0_SELECT; 795 if (state & SFP_F_RS0) 796 val |= SFP_STATUS_RS0_SELECT; 797 798 if (mask) 799 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 800 801 val = mask = 0; 802 if (soft & SFP_F_RS1) 803 mask |= SFP_EXT_STATUS_RS1_SELECT; 804 if (state & SFP_F_RS1) 805 val |= SFP_EXT_STATUS_RS1_SELECT; 806 807 if (mask) 808 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); 809 } 810 811 static void sfp_soft_start_poll(struct sfp *sfp) 812 { 813 const struct sfp_eeprom_id *id = &sfp->id; 814 unsigned int mask = 0; 815 816 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 817 mask |= SFP_F_TX_DISABLE; 818 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 819 mask |= SFP_F_TX_FAULT; 820 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 821 mask |= SFP_F_LOS; 822 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) 823 mask |= sfp->rs_state_mask; 824 825 mutex_lock(&sfp->st_mutex); 826 // Poll the soft state for hardware pins we want to ignore 827 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask & 828 mask; 829 830 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 831 !sfp->need_poll) 832 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 833 mutex_unlock(&sfp->st_mutex); 834 } 835 836 static void sfp_soft_stop_poll(struct sfp *sfp) 837 { 838 mutex_lock(&sfp->st_mutex); 839 sfp->state_soft_mask = 0; 840 mutex_unlock(&sfp->st_mutex); 841 } 842 843 /* sfp_get_state() - must be called with st_mutex held, or in the 844 * initialisation path. 845 */ 846 static unsigned int sfp_get_state(struct sfp *sfp) 847 { 848 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 849 unsigned int state; 850 851 state = sfp->get_state(sfp) & sfp->state_hw_mask; 852 if (state & SFP_F_PRESENT && soft) 853 state |= sfp_soft_get_state(sfp); 854 855 return state; 856 } 857 858 /* sfp_set_state() - must be called with st_mutex held, or in the 859 * initialisation path. 860 */ 861 static void sfp_set_state(struct sfp *sfp, unsigned int state) 862 { 863 unsigned int soft; 864 865 sfp->set_state(sfp, state); 866 867 soft = sfp->state_soft_mask & SFP_F_OUTPUTS; 868 if (state & SFP_F_PRESENT && soft) 869 sfp_soft_set_state(sfp, state, soft); 870 } 871 872 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) 873 { 874 mutex_lock(&sfp->st_mutex); 875 sfp->state = (sfp->state & ~mask) | set; 876 sfp_set_state(sfp, sfp->state); 877 mutex_unlock(&sfp->st_mutex); 878 } 879 880 static unsigned int sfp_check(void *buf, size_t len) 881 { 882 u8 *p, check; 883 884 for (p = buf, check = 0; len; p++, len--) 885 check += *p; 886 887 return check; 888 } 889 890 /* hwmon */ 891 #if IS_ENABLED(CONFIG_HWMON) 892 static umode_t sfp_hwmon_is_visible(const void *data, 893 enum hwmon_sensor_types type, 894 u32 attr, int channel) 895 { 896 const struct sfp *sfp = data; 897 898 switch (type) { 899 case hwmon_temp: 900 switch (attr) { 901 case hwmon_temp_min_alarm: 902 case hwmon_temp_max_alarm: 903 case hwmon_temp_lcrit_alarm: 904 case hwmon_temp_crit_alarm: 905 case hwmon_temp_min: 906 case hwmon_temp_max: 907 case hwmon_temp_lcrit: 908 case hwmon_temp_crit: 909 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 910 return 0; 911 fallthrough; 912 case hwmon_temp_input: 913 case hwmon_temp_label: 914 return 0444; 915 default: 916 return 0; 917 } 918 case hwmon_in: 919 switch (attr) { 920 case hwmon_in_min_alarm: 921 case hwmon_in_max_alarm: 922 case hwmon_in_lcrit_alarm: 923 case hwmon_in_crit_alarm: 924 case hwmon_in_min: 925 case hwmon_in_max: 926 case hwmon_in_lcrit: 927 case hwmon_in_crit: 928 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 929 return 0; 930 fallthrough; 931 case hwmon_in_input: 932 case hwmon_in_label: 933 return 0444; 934 default: 935 return 0; 936 } 937 case hwmon_curr: 938 switch (attr) { 939 case hwmon_curr_min_alarm: 940 case hwmon_curr_max_alarm: 941 case hwmon_curr_lcrit_alarm: 942 case hwmon_curr_crit_alarm: 943 case hwmon_curr_min: 944 case hwmon_curr_max: 945 case hwmon_curr_lcrit: 946 case hwmon_curr_crit: 947 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 948 return 0; 949 fallthrough; 950 case hwmon_curr_input: 951 case hwmon_curr_label: 952 return 0444; 953 default: 954 return 0; 955 } 956 case hwmon_power: 957 /* External calibration of receive power requires 958 * floating point arithmetic. Doing that in the kernel 959 * is not easy, so just skip it. If the module does 960 * not require external calibration, we can however 961 * show receiver power, since FP is then not needed. 962 */ 963 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 964 channel == 1) 965 return 0; 966 switch (attr) { 967 case hwmon_power_min_alarm: 968 case hwmon_power_max_alarm: 969 case hwmon_power_lcrit_alarm: 970 case hwmon_power_crit_alarm: 971 case hwmon_power_min: 972 case hwmon_power_max: 973 case hwmon_power_lcrit: 974 case hwmon_power_crit: 975 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 976 return 0; 977 fallthrough; 978 case hwmon_power_input: 979 case hwmon_power_label: 980 return 0444; 981 default: 982 return 0; 983 } 984 default: 985 return 0; 986 } 987 } 988 989 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 990 { 991 __be16 val; 992 int err; 993 994 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 995 if (err < 0) 996 return err; 997 998 *value = be16_to_cpu(val); 999 1000 return 0; 1001 } 1002 1003 static void sfp_hwmon_to_rx_power(long *value) 1004 { 1005 *value = DIV_ROUND_CLOSEST(*value, 10); 1006 } 1007 1008 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 1009 long *value) 1010 { 1011 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 1012 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 1013 } 1014 1015 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 1016 { 1017 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 1018 be16_to_cpu(sfp->diag.cal_t_offset), value); 1019 1020 if (*value >= 0x8000) 1021 *value -= 0x10000; 1022 1023 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 1024 } 1025 1026 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 1027 { 1028 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 1029 be16_to_cpu(sfp->diag.cal_v_offset), value); 1030 1031 *value = DIV_ROUND_CLOSEST(*value, 10); 1032 } 1033 1034 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 1035 { 1036 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 1037 be16_to_cpu(sfp->diag.cal_txi_offset), value); 1038 1039 *value = DIV_ROUND_CLOSEST(*value, 500); 1040 } 1041 1042 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 1043 { 1044 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 1045 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 1046 1047 *value = DIV_ROUND_CLOSEST(*value, 10); 1048 } 1049 1050 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 1051 { 1052 int err; 1053 1054 err = sfp_hwmon_read_sensor(sfp, reg, value); 1055 if (err < 0) 1056 return err; 1057 1058 sfp_hwmon_calibrate_temp(sfp, value); 1059 1060 return 0; 1061 } 1062 1063 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 1064 { 1065 int err; 1066 1067 err = sfp_hwmon_read_sensor(sfp, reg, value); 1068 if (err < 0) 1069 return err; 1070 1071 sfp_hwmon_calibrate_vcc(sfp, value); 1072 1073 return 0; 1074 } 1075 1076 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 1077 { 1078 int err; 1079 1080 err = sfp_hwmon_read_sensor(sfp, reg, value); 1081 if (err < 0) 1082 return err; 1083 1084 sfp_hwmon_calibrate_bias(sfp, value); 1085 1086 return 0; 1087 } 1088 1089 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 1090 { 1091 int err; 1092 1093 err = sfp_hwmon_read_sensor(sfp, reg, value); 1094 if (err < 0) 1095 return err; 1096 1097 sfp_hwmon_calibrate_tx_power(sfp, value); 1098 1099 return 0; 1100 } 1101 1102 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 1103 { 1104 int err; 1105 1106 err = sfp_hwmon_read_sensor(sfp, reg, value); 1107 if (err < 0) 1108 return err; 1109 1110 sfp_hwmon_to_rx_power(value); 1111 1112 return 0; 1113 } 1114 1115 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 1116 { 1117 u8 status; 1118 int err; 1119 1120 switch (attr) { 1121 case hwmon_temp_input: 1122 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 1123 1124 case hwmon_temp_lcrit: 1125 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 1126 sfp_hwmon_calibrate_temp(sfp, value); 1127 return 0; 1128 1129 case hwmon_temp_min: 1130 *value = be16_to_cpu(sfp->diag.temp_low_warn); 1131 sfp_hwmon_calibrate_temp(sfp, value); 1132 return 0; 1133 case hwmon_temp_max: 1134 *value = be16_to_cpu(sfp->diag.temp_high_warn); 1135 sfp_hwmon_calibrate_temp(sfp, value); 1136 return 0; 1137 1138 case hwmon_temp_crit: 1139 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 1140 sfp_hwmon_calibrate_temp(sfp, value); 1141 return 0; 1142 1143 case hwmon_temp_lcrit_alarm: 1144 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1145 if (err < 0) 1146 return err; 1147 1148 *value = !!(status & SFP_ALARM0_TEMP_LOW); 1149 return 0; 1150 1151 case hwmon_temp_min_alarm: 1152 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1153 if (err < 0) 1154 return err; 1155 1156 *value = !!(status & SFP_WARN0_TEMP_LOW); 1157 return 0; 1158 1159 case hwmon_temp_max_alarm: 1160 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1161 if (err < 0) 1162 return err; 1163 1164 *value = !!(status & SFP_WARN0_TEMP_HIGH); 1165 return 0; 1166 1167 case hwmon_temp_crit_alarm: 1168 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1169 if (err < 0) 1170 return err; 1171 1172 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1173 return 0; 1174 default: 1175 return -EOPNOTSUPP; 1176 } 1177 1178 return -EOPNOTSUPP; 1179 } 1180 1181 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1182 { 1183 u8 status; 1184 int err; 1185 1186 switch (attr) { 1187 case hwmon_in_input: 1188 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1189 1190 case hwmon_in_lcrit: 1191 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1192 sfp_hwmon_calibrate_vcc(sfp, value); 1193 return 0; 1194 1195 case hwmon_in_min: 1196 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1197 sfp_hwmon_calibrate_vcc(sfp, value); 1198 return 0; 1199 1200 case hwmon_in_max: 1201 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1202 sfp_hwmon_calibrate_vcc(sfp, value); 1203 return 0; 1204 1205 case hwmon_in_crit: 1206 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1207 sfp_hwmon_calibrate_vcc(sfp, value); 1208 return 0; 1209 1210 case hwmon_in_lcrit_alarm: 1211 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1212 if (err < 0) 1213 return err; 1214 1215 *value = !!(status & SFP_ALARM0_VCC_LOW); 1216 return 0; 1217 1218 case hwmon_in_min_alarm: 1219 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1220 if (err < 0) 1221 return err; 1222 1223 *value = !!(status & SFP_WARN0_VCC_LOW); 1224 return 0; 1225 1226 case hwmon_in_max_alarm: 1227 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1228 if (err < 0) 1229 return err; 1230 1231 *value = !!(status & SFP_WARN0_VCC_HIGH); 1232 return 0; 1233 1234 case hwmon_in_crit_alarm: 1235 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1236 if (err < 0) 1237 return err; 1238 1239 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1240 return 0; 1241 default: 1242 return -EOPNOTSUPP; 1243 } 1244 1245 return -EOPNOTSUPP; 1246 } 1247 1248 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1249 { 1250 u8 status; 1251 int err; 1252 1253 switch (attr) { 1254 case hwmon_curr_input: 1255 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1256 1257 case hwmon_curr_lcrit: 1258 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1259 sfp_hwmon_calibrate_bias(sfp, value); 1260 return 0; 1261 1262 case hwmon_curr_min: 1263 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1264 sfp_hwmon_calibrate_bias(sfp, value); 1265 return 0; 1266 1267 case hwmon_curr_max: 1268 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1269 sfp_hwmon_calibrate_bias(sfp, value); 1270 return 0; 1271 1272 case hwmon_curr_crit: 1273 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1274 sfp_hwmon_calibrate_bias(sfp, value); 1275 return 0; 1276 1277 case hwmon_curr_lcrit_alarm: 1278 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1279 if (err < 0) 1280 return err; 1281 1282 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1283 return 0; 1284 1285 case hwmon_curr_min_alarm: 1286 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1287 if (err < 0) 1288 return err; 1289 1290 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1291 return 0; 1292 1293 case hwmon_curr_max_alarm: 1294 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1295 if (err < 0) 1296 return err; 1297 1298 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1299 return 0; 1300 1301 case hwmon_curr_crit_alarm: 1302 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1303 if (err < 0) 1304 return err; 1305 1306 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1307 return 0; 1308 default: 1309 return -EOPNOTSUPP; 1310 } 1311 1312 return -EOPNOTSUPP; 1313 } 1314 1315 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1316 { 1317 u8 status; 1318 int err; 1319 1320 switch (attr) { 1321 case hwmon_power_input: 1322 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1323 1324 case hwmon_power_lcrit: 1325 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1326 sfp_hwmon_calibrate_tx_power(sfp, value); 1327 return 0; 1328 1329 case hwmon_power_min: 1330 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1331 sfp_hwmon_calibrate_tx_power(sfp, value); 1332 return 0; 1333 1334 case hwmon_power_max: 1335 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1336 sfp_hwmon_calibrate_tx_power(sfp, value); 1337 return 0; 1338 1339 case hwmon_power_crit: 1340 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1341 sfp_hwmon_calibrate_tx_power(sfp, value); 1342 return 0; 1343 1344 case hwmon_power_lcrit_alarm: 1345 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1346 if (err < 0) 1347 return err; 1348 1349 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1350 return 0; 1351 1352 case hwmon_power_min_alarm: 1353 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1354 if (err < 0) 1355 return err; 1356 1357 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1358 return 0; 1359 1360 case hwmon_power_max_alarm: 1361 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1362 if (err < 0) 1363 return err; 1364 1365 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1366 return 0; 1367 1368 case hwmon_power_crit_alarm: 1369 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1370 if (err < 0) 1371 return err; 1372 1373 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1374 return 0; 1375 default: 1376 return -EOPNOTSUPP; 1377 } 1378 1379 return -EOPNOTSUPP; 1380 } 1381 1382 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1383 { 1384 u8 status; 1385 int err; 1386 1387 switch (attr) { 1388 case hwmon_power_input: 1389 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1390 1391 case hwmon_power_lcrit: 1392 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1393 sfp_hwmon_to_rx_power(value); 1394 return 0; 1395 1396 case hwmon_power_min: 1397 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1398 sfp_hwmon_to_rx_power(value); 1399 return 0; 1400 1401 case hwmon_power_max: 1402 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1403 sfp_hwmon_to_rx_power(value); 1404 return 0; 1405 1406 case hwmon_power_crit: 1407 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1408 sfp_hwmon_to_rx_power(value); 1409 return 0; 1410 1411 case hwmon_power_lcrit_alarm: 1412 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1413 if (err < 0) 1414 return err; 1415 1416 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1417 return 0; 1418 1419 case hwmon_power_min_alarm: 1420 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1421 if (err < 0) 1422 return err; 1423 1424 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1425 return 0; 1426 1427 case hwmon_power_max_alarm: 1428 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1429 if (err < 0) 1430 return err; 1431 1432 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1433 return 0; 1434 1435 case hwmon_power_crit_alarm: 1436 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1437 if (err < 0) 1438 return err; 1439 1440 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1441 return 0; 1442 default: 1443 return -EOPNOTSUPP; 1444 } 1445 1446 return -EOPNOTSUPP; 1447 } 1448 1449 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1450 u32 attr, int channel, long *value) 1451 { 1452 struct sfp *sfp = dev_get_drvdata(dev); 1453 1454 switch (type) { 1455 case hwmon_temp: 1456 return sfp_hwmon_temp(sfp, attr, value); 1457 case hwmon_in: 1458 return sfp_hwmon_vcc(sfp, attr, value); 1459 case hwmon_curr: 1460 return sfp_hwmon_bias(sfp, attr, value); 1461 case hwmon_power: 1462 switch (channel) { 1463 case 0: 1464 return sfp_hwmon_tx_power(sfp, attr, value); 1465 case 1: 1466 return sfp_hwmon_rx_power(sfp, attr, value); 1467 default: 1468 return -EOPNOTSUPP; 1469 } 1470 default: 1471 return -EOPNOTSUPP; 1472 } 1473 } 1474 1475 static const char *const sfp_hwmon_power_labels[] = { 1476 "TX_power", 1477 "RX_power", 1478 }; 1479 1480 static int sfp_hwmon_read_string(struct device *dev, 1481 enum hwmon_sensor_types type, 1482 u32 attr, int channel, const char **str) 1483 { 1484 switch (type) { 1485 case hwmon_curr: 1486 switch (attr) { 1487 case hwmon_curr_label: 1488 *str = "bias"; 1489 return 0; 1490 default: 1491 return -EOPNOTSUPP; 1492 } 1493 break; 1494 case hwmon_temp: 1495 switch (attr) { 1496 case hwmon_temp_label: 1497 *str = "temperature"; 1498 return 0; 1499 default: 1500 return -EOPNOTSUPP; 1501 } 1502 break; 1503 case hwmon_in: 1504 switch (attr) { 1505 case hwmon_in_label: 1506 *str = "VCC"; 1507 return 0; 1508 default: 1509 return -EOPNOTSUPP; 1510 } 1511 break; 1512 case hwmon_power: 1513 switch (attr) { 1514 case hwmon_power_label: 1515 *str = sfp_hwmon_power_labels[channel]; 1516 return 0; 1517 default: 1518 return -EOPNOTSUPP; 1519 } 1520 break; 1521 default: 1522 return -EOPNOTSUPP; 1523 } 1524 1525 return -EOPNOTSUPP; 1526 } 1527 1528 static const struct hwmon_ops sfp_hwmon_ops = { 1529 .is_visible = sfp_hwmon_is_visible, 1530 .read = sfp_hwmon_read, 1531 .read_string = sfp_hwmon_read_string, 1532 }; 1533 1534 static const struct hwmon_channel_info * const sfp_hwmon_info[] = { 1535 HWMON_CHANNEL_INFO(chip, 1536 HWMON_C_REGISTER_TZ), 1537 HWMON_CHANNEL_INFO(in, 1538 HWMON_I_INPUT | 1539 HWMON_I_MAX | HWMON_I_MIN | 1540 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1541 HWMON_I_CRIT | HWMON_I_LCRIT | 1542 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1543 HWMON_I_LABEL), 1544 HWMON_CHANNEL_INFO(temp, 1545 HWMON_T_INPUT | 1546 HWMON_T_MAX | HWMON_T_MIN | 1547 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1548 HWMON_T_CRIT | HWMON_T_LCRIT | 1549 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1550 HWMON_T_LABEL), 1551 HWMON_CHANNEL_INFO(curr, 1552 HWMON_C_INPUT | 1553 HWMON_C_MAX | HWMON_C_MIN | 1554 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1555 HWMON_C_CRIT | HWMON_C_LCRIT | 1556 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1557 HWMON_C_LABEL), 1558 HWMON_CHANNEL_INFO(power, 1559 /* Transmit power */ 1560 HWMON_P_INPUT | 1561 HWMON_P_MAX | HWMON_P_MIN | 1562 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1563 HWMON_P_CRIT | HWMON_P_LCRIT | 1564 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1565 HWMON_P_LABEL, 1566 /* Receive power */ 1567 HWMON_P_INPUT | 1568 HWMON_P_MAX | HWMON_P_MIN | 1569 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1570 HWMON_P_CRIT | HWMON_P_LCRIT | 1571 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1572 HWMON_P_LABEL), 1573 NULL, 1574 }; 1575 1576 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1577 .ops = &sfp_hwmon_ops, 1578 .info = sfp_hwmon_info, 1579 }; 1580 1581 static void sfp_hwmon_probe(struct work_struct *work) 1582 { 1583 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1584 int err; 1585 1586 /* hwmon interface needs to access 16bit registers in atomic way to 1587 * guarantee coherency of the diagnostic monitoring data. If it is not 1588 * possible to guarantee coherency because EEPROM is broken in such way 1589 * that does not support atomic 16bit read operation then we have to 1590 * skip registration of hwmon device. 1591 */ 1592 if (sfp->i2c_block_size < 2) { 1593 dev_info(sfp->dev, 1594 "skipping hwmon device registration due to broken EEPROM\n"); 1595 dev_info(sfp->dev, 1596 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1597 return; 1598 } 1599 1600 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1601 if (err < 0) { 1602 if (sfp->hwmon_tries--) { 1603 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1604 T_PROBE_RETRY_SLOW); 1605 } else { 1606 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1607 ERR_PTR(err)); 1608 } 1609 return; 1610 } 1611 1612 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1613 if (IS_ERR(sfp->hwmon_name)) { 1614 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1615 return; 1616 } 1617 1618 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1619 sfp->hwmon_name, sfp, 1620 &sfp_hwmon_chip_info, 1621 NULL); 1622 if (IS_ERR(sfp->hwmon_dev)) 1623 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1624 PTR_ERR(sfp->hwmon_dev)); 1625 } 1626 1627 static int sfp_hwmon_insert(struct sfp *sfp) 1628 { 1629 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { 1630 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1631 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1632 } 1633 1634 return 0; 1635 } 1636 1637 static void sfp_hwmon_remove(struct sfp *sfp) 1638 { 1639 cancel_delayed_work_sync(&sfp->hwmon_probe); 1640 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1641 hwmon_device_unregister(sfp->hwmon_dev); 1642 sfp->hwmon_dev = NULL; 1643 kfree(sfp->hwmon_name); 1644 } 1645 } 1646 1647 static int sfp_hwmon_init(struct sfp *sfp) 1648 { 1649 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1650 1651 return 0; 1652 } 1653 1654 static void sfp_hwmon_exit(struct sfp *sfp) 1655 { 1656 cancel_delayed_work_sync(&sfp->hwmon_probe); 1657 } 1658 #else 1659 static int sfp_hwmon_insert(struct sfp *sfp) 1660 { 1661 return 0; 1662 } 1663 1664 static void sfp_hwmon_remove(struct sfp *sfp) 1665 { 1666 } 1667 1668 static int sfp_hwmon_init(struct sfp *sfp) 1669 { 1670 return 0; 1671 } 1672 1673 static void sfp_hwmon_exit(struct sfp *sfp) 1674 { 1675 } 1676 #endif 1677 1678 /* Helpers */ 1679 static void sfp_module_tx_disable(struct sfp *sfp) 1680 { 1681 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1682 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1683 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); 1684 } 1685 1686 static void sfp_module_tx_enable(struct sfp *sfp) 1687 { 1688 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1689 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1690 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); 1691 } 1692 1693 #if IS_ENABLED(CONFIG_DEBUG_FS) 1694 static int sfp_debug_state_show(struct seq_file *s, void *data) 1695 { 1696 struct sfp *sfp = s->private; 1697 1698 seq_printf(s, "Module state: %s\n", 1699 mod_state_to_str(sfp->sm_mod_state)); 1700 seq_printf(s, "Module probe attempts: %d %d\n", 1701 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1702 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1703 seq_printf(s, "Device state: %s\n", 1704 dev_state_to_str(sfp->sm_dev_state)); 1705 seq_printf(s, "Main state: %s\n", 1706 sm_state_to_str(sfp->sm_state)); 1707 seq_printf(s, "Fault recovery remaining retries: %d\n", 1708 sfp->sm_fault_retries); 1709 seq_printf(s, "PHY probe remaining retries: %d\n", 1710 sfp->sm_phy_retries); 1711 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); 1712 seq_printf(s, "Rate select threshold: %u kBd\n", 1713 sfp->rs_threshold_kbd); 1714 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1715 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1716 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1717 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1718 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); 1719 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); 1720 return 0; 1721 } 1722 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1723 1724 static void sfp_debugfs_init(struct sfp *sfp) 1725 { 1726 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1727 1728 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1729 &sfp_debug_state_fops); 1730 } 1731 1732 static void sfp_debugfs_exit(struct sfp *sfp) 1733 { 1734 debugfs_remove_recursive(sfp->debugfs_dir); 1735 } 1736 #else 1737 static void sfp_debugfs_init(struct sfp *sfp) 1738 { 1739 } 1740 1741 static void sfp_debugfs_exit(struct sfp *sfp) 1742 { 1743 } 1744 #endif 1745 1746 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1747 { 1748 unsigned int state; 1749 1750 mutex_lock(&sfp->st_mutex); 1751 state = sfp->state; 1752 if (!(state & SFP_F_TX_DISABLE)) { 1753 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1754 1755 udelay(T_RESET_US); 1756 1757 sfp_set_state(sfp, state); 1758 } 1759 mutex_unlock(&sfp->st_mutex); 1760 } 1761 1762 /* SFP state machine */ 1763 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1764 { 1765 if (timeout) 1766 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1767 timeout); 1768 else 1769 cancel_delayed_work(&sfp->timeout); 1770 } 1771 1772 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1773 unsigned int timeout) 1774 { 1775 sfp->sm_state = state; 1776 sfp_sm_set_timer(sfp, timeout); 1777 } 1778 1779 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1780 unsigned int timeout) 1781 { 1782 sfp->sm_mod_state = state; 1783 sfp_sm_set_timer(sfp, timeout); 1784 } 1785 1786 static void sfp_sm_phy_detach(struct sfp *sfp) 1787 { 1788 sfp_remove_phy(sfp->sfp_bus); 1789 phy_device_remove(sfp->mod_phy); 1790 phy_device_free(sfp->mod_phy); 1791 sfp->mod_phy = NULL; 1792 } 1793 1794 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1795 { 1796 struct phy_device *phy; 1797 int err; 1798 1799 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1800 if (phy == ERR_PTR(-ENODEV)) 1801 return PTR_ERR(phy); 1802 if (IS_ERR(phy)) { 1803 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1804 return PTR_ERR(phy); 1805 } 1806 1807 /* Mark this PHY as being on a SFP module */ 1808 phy->is_on_sfp_module = true; 1809 1810 err = phy_device_register(phy); 1811 if (err) { 1812 phy_device_free(phy); 1813 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1814 ERR_PTR(err)); 1815 return err; 1816 } 1817 1818 err = sfp_add_phy(sfp->sfp_bus, phy); 1819 if (err) { 1820 phy_device_remove(phy); 1821 phy_device_free(phy); 1822 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1823 return err; 1824 } 1825 1826 sfp->mod_phy = phy; 1827 1828 return 0; 1829 } 1830 1831 static void sfp_sm_link_up(struct sfp *sfp) 1832 { 1833 sfp_link_up(sfp->sfp_bus); 1834 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1835 } 1836 1837 static void sfp_sm_link_down(struct sfp *sfp) 1838 { 1839 sfp_link_down(sfp->sfp_bus); 1840 } 1841 1842 static void sfp_sm_link_check_los(struct sfp *sfp) 1843 { 1844 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1845 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1846 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1847 bool los = false; 1848 1849 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1850 * are set, we assume that no LOS signal is available. If both are 1851 * set, we assume LOS is not implemented (and is meaningless.) 1852 */ 1853 if (los_options == los_inverted) 1854 los = !(sfp->state & SFP_F_LOS); 1855 else if (los_options == los_normal) 1856 los = !!(sfp->state & SFP_F_LOS); 1857 1858 if (los) 1859 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1860 else 1861 sfp_sm_link_up(sfp); 1862 } 1863 1864 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1865 { 1866 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1867 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1868 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1869 1870 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1871 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1872 } 1873 1874 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1875 { 1876 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1877 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1878 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1879 1880 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1881 (los_options == los_normal && event == SFP_E_LOS_LOW); 1882 } 1883 1884 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1885 { 1886 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1887 dev_err(sfp->dev, 1888 "module persistently indicates fault, disabling\n"); 1889 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1890 } else { 1891 if (warn) 1892 dev_err(sfp->dev, "module transmit fault indicated\n"); 1893 1894 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1895 } 1896 } 1897 1898 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1899 { 1900 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1901 return sfp_i2c_mdiobus_create(sfp); 1902 1903 return 0; 1904 } 1905 1906 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1907 * normally sits at I2C bus address 0x56, and may either be a clause 22 1908 * or clause 45 PHY. 1909 * 1910 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1911 * negotiation enabled, but some may be in 1000base-X - which is for the 1912 * PHY driver to determine. 1913 * 1914 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1915 * mode according to the negotiated line speed. 1916 */ 1917 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1918 { 1919 int err = 0; 1920 1921 switch (sfp->mdio_protocol) { 1922 case MDIO_I2C_NONE: 1923 break; 1924 1925 case MDIO_I2C_MARVELL_C22: 1926 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1927 break; 1928 1929 case MDIO_I2C_C45: 1930 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1931 break; 1932 1933 case MDIO_I2C_ROLLBALL: 1934 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1935 break; 1936 } 1937 1938 return err; 1939 } 1940 1941 static int sfp_module_parse_power(struct sfp *sfp) 1942 { 1943 u32 power_mW = 1000; 1944 bool supports_a2; 1945 1946 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1947 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1948 power_mW = 1500; 1949 /* Added in Rev 11.9, but there is no compliance code for this */ 1950 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1951 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1952 power_mW = 2000; 1953 1954 /* Power level 1 modules (max. 1W) are always supported. */ 1955 if (power_mW <= 1000) { 1956 sfp->module_power_mW = power_mW; 1957 return 0; 1958 } 1959 1960 supports_a2 = sfp->id.ext.sff8472_compliance != 1961 SFP_SFF8472_COMPLIANCE_NONE || 1962 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1963 1964 if (power_mW > sfp->max_power_mW) { 1965 /* Module power specification exceeds the allowed maximum. */ 1966 if (!supports_a2) { 1967 /* The module appears not to implement bus address 1968 * 0xa2, so assume that the module powers up in the 1969 * indicated mode. 1970 */ 1971 dev_err(sfp->dev, 1972 "Host does not support %u.%uW modules\n", 1973 power_mW / 1000, (power_mW / 100) % 10); 1974 return -EINVAL; 1975 } else { 1976 dev_warn(sfp->dev, 1977 "Host does not support %u.%uW modules, module left in power mode 1\n", 1978 power_mW / 1000, (power_mW / 100) % 10); 1979 return 0; 1980 } 1981 } 1982 1983 if (!supports_a2) { 1984 /* The module power level is below the host maximum and the 1985 * module appears not to implement bus address 0xa2, so assume 1986 * that the module powers up in the indicated mode. 1987 */ 1988 return 0; 1989 } 1990 1991 /* If the module requires a higher power mode, but also requires 1992 * an address change sequence, warn the user that the module may 1993 * not be functional. 1994 */ 1995 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1996 dev_warn(sfp->dev, 1997 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1998 power_mW / 1000, (power_mW / 100) % 10); 1999 return 0; 2000 } 2001 2002 sfp->module_power_mW = power_mW; 2003 2004 return 0; 2005 } 2006 2007 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 2008 { 2009 int err; 2010 2011 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 2012 SFP_EXT_STATUS_PWRLVL_SELECT, 2013 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 2014 if (err != sizeof(u8)) { 2015 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 2016 enable ? "en" : "dis", ERR_PTR(err)); 2017 return -EAGAIN; 2018 } 2019 2020 if (enable) 2021 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 2022 sfp->module_power_mW / 1000, 2023 (sfp->module_power_mW / 100) % 10); 2024 2025 return 0; 2026 } 2027 2028 static void sfp_module_parse_rate_select(struct sfp *sfp) 2029 { 2030 u8 rate_id; 2031 2032 sfp->rs_threshold_kbd = 0; 2033 sfp->rs_state_mask = 0; 2034 2035 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) 2036 /* No support for RateSelect */ 2037 return; 2038 2039 /* Default to INF-8074 RateSelect operation. The signalling threshold 2040 * rate is not well specified, so always select "Full Bandwidth", but 2041 * SFF-8079 reveals that it is understood that RS0 will be low for 2042 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. 2043 * This method exists prior to SFF-8472. 2044 */ 2045 sfp->rs_state_mask = SFP_F_RS0; 2046 sfp->rs_threshold_kbd = 1594; 2047 2048 /* Parse the rate identifier, which is complicated due to history: 2049 * SFF-8472 rev 9.5 marks this field as reserved. 2050 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 2051 * compliance is not required. 2052 * SFF-8472 rev 10.2 defines this field using values 0..4 2053 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 2054 * and even values. 2055 */ 2056 rate_id = sfp->id.base.rate_id; 2057 if (rate_id == 0) 2058 /* Unspecified */ 2059 return; 2060 2061 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, 2062 * and allocated value 3 to SFF-8431 independent tx/rx rate select. 2063 * Convert this to a SFF-8472 rev 11.0 rate identifier. 2064 */ 2065 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 2066 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && 2067 rate_id == 3) 2068 rate_id = SFF_RID_8431; 2069 2070 if (rate_id & SFF_RID_8079) { 2071 /* SFF-8079 RateSelect / Application Select in conjunction with 2072 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield 2073 * with only bit 0 used, which takes precedence over SFF-8472. 2074 */ 2075 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { 2076 /* SFF-8079 Part 1 - rate selection between Fibre 2077 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 2078 * is high for 2125, so we have to subtract 1 to 2079 * include it. 2080 */ 2081 sfp->rs_threshold_kbd = 2125 - 1; 2082 sfp->rs_state_mask = SFP_F_RS0; 2083 } 2084 return; 2085 } 2086 2087 /* SFF-8472 rev 9.5 does not define the rate identifier */ 2088 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) 2089 return; 2090 2091 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will 2092 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. 2093 */ 2094 switch (rate_id) { 2095 case SFF_RID_8431_RX_ONLY: 2096 sfp->rs_threshold_kbd = 4250; 2097 sfp->rs_state_mask = SFP_F_RS0; 2098 break; 2099 2100 case SFF_RID_8431_TX_ONLY: 2101 sfp->rs_threshold_kbd = 4250; 2102 sfp->rs_state_mask = SFP_F_RS1; 2103 break; 2104 2105 case SFF_RID_8431: 2106 sfp->rs_threshold_kbd = 4250; 2107 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2108 break; 2109 2110 case SFF_RID_10G8G: 2111 sfp->rs_threshold_kbd = 9000; 2112 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2113 break; 2114 } 2115 } 2116 2117 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 2118 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 2119 * not support multibyte reads from the EEPROM. Each multi-byte read 2120 * operation returns just one byte of EEPROM followed by zeros. There is 2121 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 2122 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 2123 * name and vendor id into EEPROM, so there is even no way to detect if 2124 * module is V-SOL V2801F. Therefore check for those zeros in the read 2125 * data and then based on check switch to reading EEPROM to one byte 2126 * at a time. 2127 */ 2128 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 2129 { 2130 size_t i, block_size = sfp->i2c_block_size; 2131 2132 /* Already using byte IO */ 2133 if (block_size == 1) 2134 return false; 2135 2136 for (i = 1; i < len; i += block_size) { 2137 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 2138 return false; 2139 } 2140 return true; 2141 } 2142 2143 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 2144 { 2145 u8 check; 2146 int err; 2147 2148 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 2149 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 2150 id->base.connector != SFF8024_CONNECTOR_LC) { 2151 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 2152 id->base.phys_id = SFF8024_ID_SFF_8472; 2153 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 2154 id->base.connector = SFF8024_CONNECTOR_LC; 2155 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 2156 if (err != 3) { 2157 dev_err(sfp->dev, 2158 "Failed to rewrite module EEPROM: %pe\n", 2159 ERR_PTR(err)); 2160 return err; 2161 } 2162 2163 /* Cotsworks modules have been found to require a delay between write operations. */ 2164 mdelay(50); 2165 2166 /* Update base structure checksum */ 2167 check = sfp_check(&id->base, sizeof(id->base) - 1); 2168 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 2169 if (err != 1) { 2170 dev_err(sfp->dev, 2171 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 2172 ERR_PTR(err)); 2173 return err; 2174 } 2175 } 2176 return 0; 2177 } 2178 2179 static int sfp_module_parse_sff8472(struct sfp *sfp) 2180 { 2181 /* If the module requires address swap mode, warn about it */ 2182 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2183 dev_warn(sfp->dev, 2184 "module address swap to access page 0xA2 is not supported.\n"); 2185 else 2186 sfp->have_a2 = true; 2187 2188 return 0; 2189 } 2190 2191 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 2192 { 2193 /* SFP module inserted - read I2C data */ 2194 struct sfp_eeprom_id id; 2195 bool cotsworks_sfbg; 2196 unsigned int mask; 2197 bool cotsworks; 2198 u8 check; 2199 int ret; 2200 2201 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2202 2203 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2204 if (ret < 0) { 2205 if (report) 2206 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2207 ERR_PTR(ret)); 2208 return -EAGAIN; 2209 } 2210 2211 if (ret != sizeof(id.base)) { 2212 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2213 return -EAGAIN; 2214 } 2215 2216 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 2217 * address 0x51 is just one byte at a time. Also SFF-8472 requires 2218 * that EEPROM supports atomic 16bit read operation for diagnostic 2219 * fields, so do not switch to one byte reading at a time unless it 2220 * is really required and we have no other option. 2221 */ 2222 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 2223 dev_info(sfp->dev, 2224 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 2225 dev_info(sfp->dev, 2226 "Switching to reading EEPROM to one byte at a time\n"); 2227 sfp->i2c_block_size = 1; 2228 2229 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2230 if (ret < 0) { 2231 if (report) 2232 dev_err(sfp->dev, 2233 "failed to read EEPROM: %pe\n", 2234 ERR_PTR(ret)); 2235 return -EAGAIN; 2236 } 2237 2238 if (ret != sizeof(id.base)) { 2239 dev_err(sfp->dev, "EEPROM short read: %pe\n", 2240 ERR_PTR(ret)); 2241 return -EAGAIN; 2242 } 2243 } 2244 2245 /* Cotsworks do not seem to update the checksums when they 2246 * do the final programming with the final module part number, 2247 * serial number and date code. 2248 */ 2249 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 2250 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 2251 2252 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 2253 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 2254 * Cotsworks PN matches and bytes are not correct. 2255 */ 2256 if (cotsworks && cotsworks_sfbg) { 2257 ret = sfp_cotsworks_fixup_check(sfp, &id); 2258 if (ret < 0) 2259 return ret; 2260 } 2261 2262 /* Validate the checksum over the base structure */ 2263 check = sfp_check(&id.base, sizeof(id.base) - 1); 2264 if (check != id.base.cc_base) { 2265 if (cotsworks) { 2266 dev_warn(sfp->dev, 2267 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2268 check, id.base.cc_base); 2269 } else { 2270 dev_err(sfp->dev, 2271 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2272 check, id.base.cc_base); 2273 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2274 16, 1, &id, sizeof(id), true); 2275 return -EINVAL; 2276 } 2277 } 2278 2279 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2280 if (ret < 0) { 2281 if (report) 2282 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2283 ERR_PTR(ret)); 2284 return -EAGAIN; 2285 } 2286 2287 if (ret != sizeof(id.ext)) { 2288 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2289 return -EAGAIN; 2290 } 2291 2292 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2293 if (check != id.ext.cc_ext) { 2294 if (cotsworks) { 2295 dev_warn(sfp->dev, 2296 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2297 check, id.ext.cc_ext); 2298 } else { 2299 dev_err(sfp->dev, 2300 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2301 check, id.ext.cc_ext); 2302 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2303 16, 1, &id, sizeof(id), true); 2304 memset(&id.ext, 0, sizeof(id.ext)); 2305 } 2306 } 2307 2308 sfp->id = id; 2309 2310 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2311 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2312 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2313 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2314 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2315 (int)sizeof(id.ext.datecode), id.ext.datecode); 2316 2317 /* Check whether we support this module */ 2318 if (!sfp->type->module_supported(&id)) { 2319 dev_err(sfp->dev, 2320 "module is not supported - phys id 0x%02x 0x%02x\n", 2321 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2322 return -EINVAL; 2323 } 2324 2325 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { 2326 ret = sfp_module_parse_sff8472(sfp); 2327 if (ret < 0) 2328 return ret; 2329 } 2330 2331 /* Parse the module power requirement */ 2332 ret = sfp_module_parse_power(sfp); 2333 if (ret < 0) 2334 return ret; 2335 2336 sfp_module_parse_rate_select(sfp); 2337 2338 mask = SFP_F_PRESENT; 2339 if (sfp->gpio[GPIO_TX_DISABLE]) 2340 mask |= SFP_F_TX_DISABLE; 2341 if (sfp->gpio[GPIO_TX_FAULT]) 2342 mask |= SFP_F_TX_FAULT; 2343 if (sfp->gpio[GPIO_LOS]) 2344 mask |= SFP_F_LOS; 2345 if (sfp->gpio[GPIO_RS0]) 2346 mask |= SFP_F_RS0; 2347 if (sfp->gpio[GPIO_RS1]) 2348 mask |= SFP_F_RS1; 2349 2350 sfp->module_t_start_up = T_START_UP; 2351 sfp->module_t_wait = T_WAIT; 2352 sfp->phy_t_retry = T_PHY_RETRY; 2353 2354 sfp->state_ignore_mask = 0; 2355 2356 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2357 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2358 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2359 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2360 sfp->mdio_protocol = MDIO_I2C_C45; 2361 else if (sfp->id.base.e1000_base_t) 2362 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2363 else 2364 sfp->mdio_protocol = MDIO_I2C_NONE; 2365 2366 sfp->quirk = sfp_lookup_quirk(&id); 2367 2368 mutex_lock(&sfp->st_mutex); 2369 /* Initialise state bits to use from hardware */ 2370 sfp->state_hw_mask = mask; 2371 2372 /* We want to drive the rate select pins that the module is using */ 2373 sfp->state_hw_drive |= sfp->rs_state_mask; 2374 2375 if (sfp->quirk && sfp->quirk->fixup) 2376 sfp->quirk->fixup(sfp); 2377 2378 sfp->state_hw_mask &= ~sfp->state_ignore_mask; 2379 mutex_unlock(&sfp->st_mutex); 2380 2381 return 0; 2382 } 2383 2384 static void sfp_sm_mod_remove(struct sfp *sfp) 2385 { 2386 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2387 sfp_module_remove(sfp->sfp_bus); 2388 2389 sfp_hwmon_remove(sfp); 2390 2391 memset(&sfp->id, 0, sizeof(sfp->id)); 2392 sfp->module_power_mW = 0; 2393 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2394 sfp->have_a2 = false; 2395 2396 dev_info(sfp->dev, "module removed\n"); 2397 } 2398 2399 /* This state machine tracks the upstream's state */ 2400 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2401 { 2402 switch (sfp->sm_dev_state) { 2403 default: 2404 if (event == SFP_E_DEV_ATTACH) 2405 sfp->sm_dev_state = SFP_DEV_DOWN; 2406 break; 2407 2408 case SFP_DEV_DOWN: 2409 if (event == SFP_E_DEV_DETACH) 2410 sfp->sm_dev_state = SFP_DEV_DETACHED; 2411 else if (event == SFP_E_DEV_UP) 2412 sfp->sm_dev_state = SFP_DEV_UP; 2413 break; 2414 2415 case SFP_DEV_UP: 2416 if (event == SFP_E_DEV_DETACH) 2417 sfp->sm_dev_state = SFP_DEV_DETACHED; 2418 else if (event == SFP_E_DEV_DOWN) 2419 sfp->sm_dev_state = SFP_DEV_DOWN; 2420 break; 2421 } 2422 } 2423 2424 /* This state machine tracks the insert/remove state of the module, probes 2425 * the on-board EEPROM, and sets up the power level. 2426 */ 2427 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2428 { 2429 int err; 2430 2431 /* Handle remove event globally, it resets this state machine */ 2432 if (event == SFP_E_REMOVE) { 2433 sfp_sm_mod_remove(sfp); 2434 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2435 return; 2436 } 2437 2438 /* Handle device detach globally */ 2439 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2440 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2441 if (sfp->module_power_mW > 1000 && 2442 sfp->sm_mod_state > SFP_MOD_HPOWER) 2443 sfp_sm_mod_hpower(sfp, false); 2444 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2445 return; 2446 } 2447 2448 switch (sfp->sm_mod_state) { 2449 default: 2450 if (event == SFP_E_INSERT) { 2451 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2452 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2453 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2454 } 2455 break; 2456 2457 case SFP_MOD_PROBE: 2458 /* Wait for T_PROBE_INIT to time out */ 2459 if (event != SFP_E_TIMEOUT) 2460 break; 2461 2462 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2463 if (err == -EAGAIN) { 2464 if (sfp->sm_mod_tries_init && 2465 --sfp->sm_mod_tries_init) { 2466 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2467 break; 2468 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2469 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2470 dev_warn(sfp->dev, 2471 "please wait, module slow to respond\n"); 2472 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2473 break; 2474 } 2475 } 2476 if (err < 0) { 2477 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2478 break; 2479 } 2480 2481 /* Force a poll to re-read the hardware signal state after 2482 * sfp_sm_mod_probe() changed state_hw_mask. 2483 */ 2484 mod_delayed_work(system_wq, &sfp->poll, 1); 2485 2486 err = sfp_hwmon_insert(sfp); 2487 if (err) 2488 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2489 ERR_PTR(err)); 2490 2491 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2492 fallthrough; 2493 case SFP_MOD_WAITDEV: 2494 /* Ensure that the device is attached before proceeding */ 2495 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2496 break; 2497 2498 /* Report the module insertion to the upstream device */ 2499 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2500 sfp->quirk); 2501 if (err < 0) { 2502 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2503 break; 2504 } 2505 2506 /* If this is a power level 1 module, we are done */ 2507 if (sfp->module_power_mW <= 1000) 2508 goto insert; 2509 2510 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2511 fallthrough; 2512 case SFP_MOD_HPOWER: 2513 /* Enable high power mode */ 2514 err = sfp_sm_mod_hpower(sfp, true); 2515 if (err < 0) { 2516 if (err != -EAGAIN) { 2517 sfp_module_remove(sfp->sfp_bus); 2518 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2519 } else { 2520 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2521 } 2522 break; 2523 } 2524 2525 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2526 break; 2527 2528 case SFP_MOD_WAITPWR: 2529 /* Wait for T_HPOWER_LEVEL to time out */ 2530 if (event != SFP_E_TIMEOUT) 2531 break; 2532 2533 insert: 2534 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2535 break; 2536 2537 case SFP_MOD_PRESENT: 2538 case SFP_MOD_ERROR: 2539 break; 2540 } 2541 } 2542 2543 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2544 { 2545 unsigned long timeout; 2546 int ret; 2547 2548 /* Some events are global */ 2549 if (sfp->sm_state != SFP_S_DOWN && 2550 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2551 sfp->sm_dev_state != SFP_DEV_UP)) { 2552 if (sfp->sm_state == SFP_S_LINK_UP && 2553 sfp->sm_dev_state == SFP_DEV_UP) 2554 sfp_sm_link_down(sfp); 2555 if (sfp->sm_state > SFP_S_INIT) 2556 sfp_module_stop(sfp->sfp_bus); 2557 if (sfp->mod_phy) 2558 sfp_sm_phy_detach(sfp); 2559 if (sfp->i2c_mii) 2560 sfp_i2c_mdiobus_destroy(sfp); 2561 sfp_module_tx_disable(sfp); 2562 sfp_soft_stop_poll(sfp); 2563 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2564 return; 2565 } 2566 2567 /* The main state machine */ 2568 switch (sfp->sm_state) { 2569 case SFP_S_DOWN: 2570 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2571 sfp->sm_dev_state != SFP_DEV_UP) 2572 break; 2573 2574 /* Only use the soft state bits if we have access to the A2h 2575 * memory, which implies that we have some level of SFF-8472 2576 * compliance. 2577 */ 2578 if (sfp->have_a2) 2579 sfp_soft_start_poll(sfp); 2580 2581 sfp_module_tx_enable(sfp); 2582 2583 /* Initialise the fault clearance retries */ 2584 sfp->sm_fault_retries = N_FAULT_INIT; 2585 2586 /* We need to check the TX_FAULT state, which is not defined 2587 * while TX_DISABLE is asserted. The earliest we want to do 2588 * anything (such as probe for a PHY) is 50ms (or more on 2589 * specific modules). 2590 */ 2591 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2592 break; 2593 2594 case SFP_S_WAIT: 2595 if (event != SFP_E_TIMEOUT) 2596 break; 2597 2598 if (sfp->state & SFP_F_TX_FAULT) { 2599 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2600 * from the TX_DISABLE deassertion for the module to 2601 * initialise, which is indicated by TX_FAULT 2602 * deasserting. 2603 */ 2604 timeout = sfp->module_t_start_up; 2605 if (timeout > sfp->module_t_wait) 2606 timeout -= sfp->module_t_wait; 2607 else 2608 timeout = 1; 2609 2610 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2611 } else { 2612 /* TX_FAULT is not asserted, assume the module has 2613 * finished initialising. 2614 */ 2615 goto init_done; 2616 } 2617 break; 2618 2619 case SFP_S_INIT: 2620 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2621 /* TX_FAULT is still asserted after t_init 2622 * or t_start_up, so assume there is a fault. 2623 */ 2624 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2625 sfp->sm_fault_retries == N_FAULT_INIT); 2626 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2627 init_done: 2628 /* Create mdiobus and start trying for PHY */ 2629 ret = sfp_sm_add_mdio_bus(sfp); 2630 if (ret < 0) { 2631 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2632 break; 2633 } 2634 sfp->sm_phy_retries = R_PHY_RETRY; 2635 goto phy_probe; 2636 } 2637 break; 2638 2639 case SFP_S_INIT_PHY: 2640 if (event != SFP_E_TIMEOUT) 2641 break; 2642 phy_probe: 2643 /* TX_FAULT deasserted or we timed out with TX_FAULT 2644 * clear. Probe for the PHY and check the LOS state. 2645 */ 2646 ret = sfp_sm_probe_for_phy(sfp); 2647 if (ret == -ENODEV) { 2648 if (--sfp->sm_phy_retries) { 2649 sfp_sm_next(sfp, SFP_S_INIT_PHY, 2650 sfp->phy_t_retry); 2651 dev_dbg(sfp->dev, 2652 "no PHY detected, %u tries left\n", 2653 sfp->sm_phy_retries); 2654 break; 2655 } else { 2656 dev_info(sfp->dev, "no PHY detected\n"); 2657 } 2658 } else if (ret) { 2659 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2660 break; 2661 } 2662 if (sfp_module_start(sfp->sfp_bus)) { 2663 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2664 break; 2665 } 2666 sfp_sm_link_check_los(sfp); 2667 2668 /* Reset the fault retry count */ 2669 sfp->sm_fault_retries = N_FAULT; 2670 break; 2671 2672 case SFP_S_INIT_TX_FAULT: 2673 if (event == SFP_E_TIMEOUT) { 2674 sfp_module_tx_fault_reset(sfp); 2675 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2676 } 2677 break; 2678 2679 case SFP_S_WAIT_LOS: 2680 if (event == SFP_E_TX_FAULT) 2681 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2682 else if (sfp_los_event_inactive(sfp, event)) 2683 sfp_sm_link_up(sfp); 2684 break; 2685 2686 case SFP_S_LINK_UP: 2687 if (event == SFP_E_TX_FAULT) { 2688 sfp_sm_link_down(sfp); 2689 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2690 } else if (sfp_los_event_active(sfp, event)) { 2691 sfp_sm_link_down(sfp); 2692 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2693 } 2694 break; 2695 2696 case SFP_S_TX_FAULT: 2697 if (event == SFP_E_TIMEOUT) { 2698 sfp_module_tx_fault_reset(sfp); 2699 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2700 } 2701 break; 2702 2703 case SFP_S_REINIT: 2704 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2705 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2706 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2707 dev_info(sfp->dev, "module transmit fault recovered\n"); 2708 sfp_sm_link_check_los(sfp); 2709 } 2710 break; 2711 2712 case SFP_S_TX_DISABLE: 2713 break; 2714 } 2715 } 2716 2717 static void __sfp_sm_event(struct sfp *sfp, unsigned int event) 2718 { 2719 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2720 mod_state_to_str(sfp->sm_mod_state), 2721 dev_state_to_str(sfp->sm_dev_state), 2722 sm_state_to_str(sfp->sm_state), 2723 event_to_str(event)); 2724 2725 sfp_sm_device(sfp, event); 2726 sfp_sm_module(sfp, event); 2727 sfp_sm_main(sfp, event); 2728 2729 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2730 mod_state_to_str(sfp->sm_mod_state), 2731 dev_state_to_str(sfp->sm_dev_state), 2732 sm_state_to_str(sfp->sm_state)); 2733 } 2734 2735 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2736 { 2737 mutex_lock(&sfp->sm_mutex); 2738 __sfp_sm_event(sfp, event); 2739 mutex_unlock(&sfp->sm_mutex); 2740 } 2741 2742 static void sfp_attach(struct sfp *sfp) 2743 { 2744 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2745 } 2746 2747 static void sfp_detach(struct sfp *sfp) 2748 { 2749 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2750 } 2751 2752 static void sfp_start(struct sfp *sfp) 2753 { 2754 sfp_sm_event(sfp, SFP_E_DEV_UP); 2755 } 2756 2757 static void sfp_stop(struct sfp *sfp) 2758 { 2759 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2760 } 2761 2762 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) 2763 { 2764 unsigned int set; 2765 2766 sfp->rate_kbd = rate_kbd; 2767 2768 if (rate_kbd > sfp->rs_threshold_kbd) 2769 set = sfp->rs_state_mask; 2770 else 2771 set = 0; 2772 2773 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); 2774 } 2775 2776 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2777 { 2778 /* locking... and check module is present */ 2779 2780 if (sfp->id.ext.sff8472_compliance && 2781 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2782 modinfo->type = ETH_MODULE_SFF_8472; 2783 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2784 } else { 2785 modinfo->type = ETH_MODULE_SFF_8079; 2786 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2787 } 2788 return 0; 2789 } 2790 2791 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2792 u8 *data) 2793 { 2794 unsigned int first, last, len; 2795 int ret; 2796 2797 if (!(sfp->state & SFP_F_PRESENT)) 2798 return -ENODEV; 2799 2800 if (ee->len == 0) 2801 return -EINVAL; 2802 2803 first = ee->offset; 2804 last = ee->offset + ee->len; 2805 if (first < ETH_MODULE_SFF_8079_LEN) { 2806 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2807 len -= first; 2808 2809 ret = sfp_read(sfp, false, first, data, len); 2810 if (ret < 0) 2811 return ret; 2812 2813 first += len; 2814 data += len; 2815 } 2816 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2817 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2818 len -= first; 2819 first -= ETH_MODULE_SFF_8079_LEN; 2820 2821 ret = sfp_read(sfp, true, first, data, len); 2822 if (ret < 0) 2823 return ret; 2824 } 2825 return 0; 2826 } 2827 2828 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2829 const struct ethtool_module_eeprom *page, 2830 struct netlink_ext_ack *extack) 2831 { 2832 if (!(sfp->state & SFP_F_PRESENT)) 2833 return -ENODEV; 2834 2835 if (page->bank) { 2836 NL_SET_ERR_MSG(extack, "Banks not supported"); 2837 return -EOPNOTSUPP; 2838 } 2839 2840 if (page->page) { 2841 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2842 return -EOPNOTSUPP; 2843 } 2844 2845 if (page->i2c_address != 0x50 && 2846 page->i2c_address != 0x51) { 2847 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2848 return -EOPNOTSUPP; 2849 } 2850 2851 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2852 page->data, page->length); 2853 }; 2854 2855 static const struct sfp_socket_ops sfp_module_ops = { 2856 .attach = sfp_attach, 2857 .detach = sfp_detach, 2858 .start = sfp_start, 2859 .stop = sfp_stop, 2860 .set_signal_rate = sfp_set_signal_rate, 2861 .module_info = sfp_module_info, 2862 .module_eeprom = sfp_module_eeprom, 2863 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2864 }; 2865 2866 static void sfp_timeout(struct work_struct *work) 2867 { 2868 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2869 2870 rtnl_lock(); 2871 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2872 rtnl_unlock(); 2873 } 2874 2875 static void sfp_check_state(struct sfp *sfp) 2876 { 2877 unsigned int state, i, changed; 2878 2879 rtnl_lock(); 2880 mutex_lock(&sfp->st_mutex); 2881 state = sfp_get_state(sfp); 2882 changed = state ^ sfp->state; 2883 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2884 2885 for (i = 0; i < GPIO_MAX; i++) 2886 if (changed & BIT(i)) 2887 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2888 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2889 2890 state |= sfp->state & SFP_F_OUTPUTS; 2891 sfp->state = state; 2892 mutex_unlock(&sfp->st_mutex); 2893 2894 mutex_lock(&sfp->sm_mutex); 2895 if (changed & SFP_F_PRESENT) 2896 __sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2897 SFP_E_INSERT : SFP_E_REMOVE); 2898 2899 if (changed & SFP_F_TX_FAULT) 2900 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2901 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2902 2903 if (changed & SFP_F_LOS) 2904 __sfp_sm_event(sfp, state & SFP_F_LOS ? 2905 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2906 mutex_unlock(&sfp->sm_mutex); 2907 rtnl_unlock(); 2908 } 2909 2910 static irqreturn_t sfp_irq(int irq, void *data) 2911 { 2912 struct sfp *sfp = data; 2913 2914 sfp_check_state(sfp); 2915 2916 return IRQ_HANDLED; 2917 } 2918 2919 static void sfp_poll(struct work_struct *work) 2920 { 2921 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2922 2923 sfp_check_state(sfp); 2924 2925 // st_mutex doesn't need to be held here for state_soft_mask, 2926 // it's unimportant if we race while reading this. 2927 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2928 sfp->need_poll) 2929 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2930 } 2931 2932 static struct sfp *sfp_alloc(struct device *dev) 2933 { 2934 struct sfp *sfp; 2935 2936 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2937 if (!sfp) 2938 return ERR_PTR(-ENOMEM); 2939 2940 sfp->dev = dev; 2941 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2942 2943 mutex_init(&sfp->sm_mutex); 2944 mutex_init(&sfp->st_mutex); 2945 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2946 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2947 2948 sfp_hwmon_init(sfp); 2949 2950 return sfp; 2951 } 2952 2953 static void sfp_cleanup(void *data) 2954 { 2955 struct sfp *sfp = data; 2956 2957 sfp_hwmon_exit(sfp); 2958 2959 cancel_delayed_work_sync(&sfp->poll); 2960 cancel_delayed_work_sync(&sfp->timeout); 2961 if (sfp->i2c_mii) { 2962 mdiobus_unregister(sfp->i2c_mii); 2963 mdiobus_free(sfp->i2c_mii); 2964 } 2965 if (sfp->i2c) 2966 i2c_put_adapter(sfp->i2c); 2967 kfree(sfp); 2968 } 2969 2970 static int sfp_i2c_get(struct sfp *sfp) 2971 { 2972 struct fwnode_handle *h; 2973 struct i2c_adapter *i2c; 2974 int err; 2975 2976 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2977 if (IS_ERR(h)) { 2978 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2979 return -ENODEV; 2980 } 2981 2982 i2c = i2c_get_adapter_by_fwnode(h); 2983 if (!i2c) { 2984 err = -EPROBE_DEFER; 2985 goto put; 2986 } 2987 2988 err = sfp_i2c_configure(sfp, i2c); 2989 if (err) 2990 i2c_put_adapter(i2c); 2991 put: 2992 fwnode_handle_put(h); 2993 return err; 2994 } 2995 2996 static int sfp_probe(struct platform_device *pdev) 2997 { 2998 const struct sff_data *sff; 2999 char *sfp_irq_name; 3000 struct sfp *sfp; 3001 int err, i; 3002 3003 sfp = sfp_alloc(&pdev->dev); 3004 if (IS_ERR(sfp)) 3005 return PTR_ERR(sfp); 3006 3007 platform_set_drvdata(pdev, sfp); 3008 3009 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 3010 if (err < 0) 3011 return err; 3012 3013 sff = device_get_match_data(sfp->dev); 3014 if (!sff) 3015 sff = &sfp_data; 3016 3017 sfp->type = sff; 3018 3019 err = sfp_i2c_get(sfp); 3020 if (err) 3021 return err; 3022 3023 for (i = 0; i < GPIO_MAX; i++) 3024 if (sff->gpios & BIT(i)) { 3025 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 3026 gpio_names[i], gpio_flags[i]); 3027 if (IS_ERR(sfp->gpio[i])) 3028 return PTR_ERR(sfp->gpio[i]); 3029 } 3030 3031 sfp->state_hw_mask = SFP_F_PRESENT; 3032 sfp->state_hw_drive = SFP_F_TX_DISABLE; 3033 3034 sfp->get_state = sfp_gpio_get_state; 3035 sfp->set_state = sfp_gpio_set_state; 3036 3037 /* Modules that have no detect signal are always present */ 3038 if (!(sfp->gpio[GPIO_MODDEF0])) 3039 sfp->get_state = sff_gpio_get_state; 3040 3041 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 3042 &sfp->max_power_mW); 3043 if (sfp->max_power_mW < 1000) { 3044 if (sfp->max_power_mW) 3045 dev_warn(sfp->dev, 3046 "Firmware bug: host maximum power should be at least 1W\n"); 3047 sfp->max_power_mW = 1000; 3048 } 3049 3050 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 3051 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 3052 3053 /* Get the initial state, and always signal TX disable, 3054 * since the network interface will not be up. 3055 */ 3056 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 3057 3058 if (sfp->gpio[GPIO_RS0] && 3059 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) 3060 sfp->state |= SFP_F_RS0; 3061 sfp_set_state(sfp, sfp->state); 3062 sfp_module_tx_disable(sfp); 3063 if (sfp->state & SFP_F_PRESENT) { 3064 rtnl_lock(); 3065 sfp_sm_event(sfp, SFP_E_INSERT); 3066 rtnl_unlock(); 3067 } 3068 3069 for (i = 0; i < GPIO_MAX; i++) { 3070 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 3071 continue; 3072 3073 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 3074 if (sfp->gpio_irq[i] < 0) { 3075 sfp->gpio_irq[i] = 0; 3076 sfp->need_poll = true; 3077 continue; 3078 } 3079 3080 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 3081 "%s-%s", dev_name(sfp->dev), 3082 gpio_names[i]); 3083 3084 if (!sfp_irq_name) 3085 return -ENOMEM; 3086 3087 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 3088 NULL, sfp_irq, 3089 IRQF_ONESHOT | 3090 IRQF_TRIGGER_RISING | 3091 IRQF_TRIGGER_FALLING, 3092 sfp_irq_name, sfp); 3093 if (err) { 3094 sfp->gpio_irq[i] = 0; 3095 sfp->need_poll = true; 3096 } 3097 } 3098 3099 if (sfp->need_poll) 3100 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 3101 3102 /* We could have an issue in cases no Tx disable pin is available or 3103 * wired as modules using a laser as their light source will continue to 3104 * be active when the fiber is removed. This could be a safety issue and 3105 * we should at least warn the user about that. 3106 */ 3107 if (!sfp->gpio[GPIO_TX_DISABLE]) 3108 dev_warn(sfp->dev, 3109 "No tx_disable pin: SFP modules will always be emitting.\n"); 3110 3111 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 3112 if (!sfp->sfp_bus) 3113 return -ENOMEM; 3114 3115 sfp_debugfs_init(sfp); 3116 3117 return 0; 3118 } 3119 3120 static void sfp_remove(struct platform_device *pdev) 3121 { 3122 struct sfp *sfp = platform_get_drvdata(pdev); 3123 3124 sfp_debugfs_exit(sfp); 3125 sfp_unregister_socket(sfp->sfp_bus); 3126 3127 rtnl_lock(); 3128 sfp_sm_event(sfp, SFP_E_REMOVE); 3129 rtnl_unlock(); 3130 } 3131 3132 static void sfp_shutdown(struct platform_device *pdev) 3133 { 3134 struct sfp *sfp = platform_get_drvdata(pdev); 3135 int i; 3136 3137 for (i = 0; i < GPIO_MAX; i++) { 3138 if (!sfp->gpio_irq[i]) 3139 continue; 3140 3141 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 3142 } 3143 3144 cancel_delayed_work_sync(&sfp->poll); 3145 cancel_delayed_work_sync(&sfp->timeout); 3146 } 3147 3148 static struct platform_driver sfp_driver = { 3149 .probe = sfp_probe, 3150 .remove = sfp_remove, 3151 .shutdown = sfp_shutdown, 3152 .driver = { 3153 .name = "sfp", 3154 .of_match_table = sfp_of_match, 3155 }, 3156 }; 3157 3158 static int sfp_init(void) 3159 { 3160 poll_jiffies = msecs_to_jiffies(100); 3161 3162 return platform_driver_register(&sfp_driver); 3163 } 3164 module_init(sfp_init); 3165 3166 static void sfp_exit(void) 3167 { 3168 platform_driver_unregister(&sfp_driver); 3169 } 3170 module_exit(sfp_exit); 3171 3172 MODULE_ALIAS("platform:sfp"); 3173 MODULE_AUTHOR("Russell King"); 3174 MODULE_LICENSE("GPL v2"); 3175 MODULE_DESCRIPTION("SFP cage support"); 3176