xref: /linux/drivers/net/phy/sfp.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RS0,
28 	GPIO_RS1,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RS0 = BIT(GPIO_RS0),
36 	SFP_F_RS1 = BIT(GPIO_RS1),
37 
38 	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39 
40 	SFP_E_INSERT = 0,
41 	SFP_E_REMOVE,
42 	SFP_E_DEV_ATTACH,
43 	SFP_E_DEV_DETACH,
44 	SFP_E_DEV_DOWN,
45 	SFP_E_DEV_UP,
46 	SFP_E_TX_FAULT,
47 	SFP_E_TX_CLEAR,
48 	SFP_E_LOS_HIGH,
49 	SFP_E_LOS_LOW,
50 	SFP_E_TIMEOUT,
51 
52 	SFP_MOD_EMPTY = 0,
53 	SFP_MOD_ERROR,
54 	SFP_MOD_PROBE,
55 	SFP_MOD_WAITDEV,
56 	SFP_MOD_HPOWER,
57 	SFP_MOD_WAITPWR,
58 	SFP_MOD_PRESENT,
59 
60 	SFP_DEV_DETACHED = 0,
61 	SFP_DEV_DOWN,
62 	SFP_DEV_UP,
63 
64 	SFP_S_DOWN = 0,
65 	SFP_S_FAIL,
66 	SFP_S_WAIT,
67 	SFP_S_INIT,
68 	SFP_S_INIT_PHY,
69 	SFP_S_INIT_TX_FAULT,
70 	SFP_S_WAIT_LOS,
71 	SFP_S_LINK_UP,
72 	SFP_S_TX_FAULT,
73 	SFP_S_REINIT,
74 	SFP_S_TX_DISABLE,
75 };
76 
77 static const char  * const mod_state_strings[] = {
78 	[SFP_MOD_EMPTY] = "empty",
79 	[SFP_MOD_ERROR] = "error",
80 	[SFP_MOD_PROBE] = "probe",
81 	[SFP_MOD_WAITDEV] = "waitdev",
82 	[SFP_MOD_HPOWER] = "hpower",
83 	[SFP_MOD_WAITPWR] = "waitpwr",
84 	[SFP_MOD_PRESENT] = "present",
85 };
86 
87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 		return "Unknown module state";
91 	return mod_state_strings[mod_state];
92 }
93 
94 static const char * const dev_state_strings[] = {
95 	[SFP_DEV_DETACHED] = "detached",
96 	[SFP_DEV_DOWN] = "down",
97 	[SFP_DEV_UP] = "up",
98 };
99 
100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 		return "Unknown device state";
104 	return dev_state_strings[dev_state];
105 }
106 
107 static const char * const event_strings[] = {
108 	[SFP_E_INSERT] = "insert",
109 	[SFP_E_REMOVE] = "remove",
110 	[SFP_E_DEV_ATTACH] = "dev_attach",
111 	[SFP_E_DEV_DETACH] = "dev_detach",
112 	[SFP_E_DEV_DOWN] = "dev_down",
113 	[SFP_E_DEV_UP] = "dev_up",
114 	[SFP_E_TX_FAULT] = "tx_fault",
115 	[SFP_E_TX_CLEAR] = "tx_clear",
116 	[SFP_E_LOS_HIGH] = "los_high",
117 	[SFP_E_LOS_LOW] = "los_low",
118 	[SFP_E_TIMEOUT] = "timeout",
119 };
120 
121 static const char *event_to_str(unsigned short event)
122 {
123 	if (event >= ARRAY_SIZE(event_strings))
124 		return "Unknown event";
125 	return event_strings[event];
126 }
127 
128 static const char * const sm_state_strings[] = {
129 	[SFP_S_DOWN] = "down",
130 	[SFP_S_FAIL] = "fail",
131 	[SFP_S_WAIT] = "wait",
132 	[SFP_S_INIT] = "init",
133 	[SFP_S_INIT_PHY] = "init_phy",
134 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 	[SFP_S_WAIT_LOS] = "wait_los",
136 	[SFP_S_LINK_UP] = "link_up",
137 	[SFP_S_TX_FAULT] = "tx_fault",
138 	[SFP_S_REINIT] = "reinit",
139 	[SFP_S_TX_DISABLE] = "tx_disable",
140 };
141 
142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 		return "Unknown state";
146 	return sm_state_strings[sm_state];
147 }
148 
149 static const char *gpio_names[] = {
150 	"mod-def0",
151 	"los",
152 	"tx-fault",
153 	"tx-disable",
154 	"rate-select0",
155 	"rate-select1",
156 };
157 
158 static const enum gpiod_flags gpio_flags[] = {
159 	GPIOD_IN,
160 	GPIOD_IN,
161 	GPIOD_IN,
162 	GPIOD_ASIS,
163 	GPIOD_ASIS,
164 	GPIOD_ASIS,
165 };
166 
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168  * non-cooled module to initialise its laser safety circuitry. We wait
169  * an initial T_WAIT period before we check the tx fault to give any PHY
170  * on board (for a copper SFP) time to initialise.
171  */
172 #define T_WAIT			msecs_to_jiffies(50)
173 #define T_START_UP		msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175 
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177  * an indicated TX_FAULT.
178  */
179 #define T_RESET_US		10
180 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181 
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183  * time. If the TX_FAULT signal is not deasserted after this number of
184  * attempts at clearing it, we decide that the module is faulty.
185  * N_FAULT is the same but after the module has initialised.
186  */
187 #define N_FAULT_INIT		5
188 #define N_FAULT			5
189 
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191  * R_PHY_RETRY is the number of attempts.
192  */
193 #define T_PHY_RETRY		msecs_to_jiffies(50)
194 #define R_PHY_RETRY		25
195 
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197  * the same length on the PCB, which means it's possible for MOD DEF 0 to
198  * connect before the I2C bus on MOD DEF 1/2.
199  *
200  * The SFF-8472 specifies t_serial ("Time from power on until module is
201  * ready for data transmission over the two wire serial bus.") as 300ms.
202  */
203 #define T_SERIAL		msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT	10
207 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW	12
209 
210 /* SFP modules appear to always have their PHY configured for bus address
211  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214  */
215 #define SFP_PHY_ADDR		22
216 #define SFP_PHY_ADDR_ROLLBALL	17
217 
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219  * at a time. Some SFP modules and also some Linux I2C drivers do not like
220  * reads longer than 16 bytes.
221  */
222 #define SFP_EEPROM_BLOCK_SIZE	16
223 
224 struct sff_data {
225 	unsigned int gpios;
226 	bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228 
229 struct sfp {
230 	struct device *dev;
231 	struct i2c_adapter *i2c;
232 	struct mii_bus *i2c_mii;
233 	struct sfp_bus *sfp_bus;
234 	enum mdio_i2c_proto mdio_protocol;
235 	struct phy_device *mod_phy;
236 	const struct sff_data *type;
237 	size_t i2c_block_size;
238 	u32 max_power_mW;
239 
240 	unsigned int (*get_state)(struct sfp *);
241 	void (*set_state)(struct sfp *, unsigned int);
242 	int (*read)(struct sfp *, bool, u8, void *, size_t);
243 	int (*write)(struct sfp *, bool, u8, void *, size_t);
244 
245 	struct gpio_desc *gpio[GPIO_MAX];
246 	int gpio_irq[GPIO_MAX];
247 
248 	bool need_poll;
249 
250 	/* Access rules:
251 	 * state_hw_drive: st_mutex held
252 	 * state_hw_mask: st_mutex held
253 	 * state_soft_mask: st_mutex held
254 	 * state: st_mutex held unless reading input bits
255 	 */
256 	struct mutex st_mutex;			/* Protects state */
257 	unsigned int state_hw_drive;
258 	unsigned int state_hw_mask;
259 	unsigned int state_soft_mask;
260 	unsigned int state_ignore_mask;
261 	unsigned int state;
262 
263 	struct delayed_work poll;
264 	struct delayed_work timeout;
265 	struct mutex sm_mutex;			/* Protects state machine */
266 	unsigned char sm_mod_state;
267 	unsigned char sm_mod_tries_init;
268 	unsigned char sm_mod_tries;
269 	unsigned char sm_dev_state;
270 	unsigned short sm_state;
271 	unsigned char sm_fault_retries;
272 	unsigned char sm_phy_retries;
273 
274 	struct sfp_eeprom_id id;
275 	unsigned int module_power_mW;
276 	unsigned int module_t_start_up;
277 	unsigned int module_t_wait;
278 	unsigned int phy_t_retry;
279 
280 	unsigned int rate_kbd;
281 	unsigned int rs_threshold_kbd;
282 	unsigned int rs_state_mask;
283 
284 	bool have_a2;
285 
286 	const struct sfp_quirk *quirk;
287 
288 #if IS_ENABLED(CONFIG_HWMON)
289 	struct sfp_diag diag;
290 	struct delayed_work hwmon_probe;
291 	unsigned int hwmon_tries;
292 	struct device *hwmon_dev;
293 	char *hwmon_name;
294 #endif
295 
296 #if IS_ENABLED(CONFIG_DEBUG_FS)
297 	struct dentry *debugfs_dir;
298 #endif
299 };
300 
301 static bool sff_module_supported(const struct sfp_eeprom_id *id)
302 {
303 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
304 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
305 }
306 
307 static const struct sff_data sff_data = {
308 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
309 	.module_supported = sff_module_supported,
310 };
311 
312 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
313 {
314 	if (id->base.phys_id == SFF8024_ID_SFP &&
315 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
316 		return true;
317 
318 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
319 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
320 	 * as supported based on vendor name and pn match.
321 	 */
322 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
323 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
324 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
325 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
326 		return true;
327 
328 	return false;
329 }
330 
331 static const struct sff_data sfp_data = {
332 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
333 		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
334 	.module_supported = sfp_module_supported,
335 };
336 
337 static const struct of_device_id sfp_of_match[] = {
338 	{ .compatible = "sff,sff", .data = &sff_data, },
339 	{ .compatible = "sff,sfp", .data = &sfp_data, },
340 	{ },
341 };
342 MODULE_DEVICE_TABLE(of, sfp_of_match);
343 
344 static void sfp_fixup_long_startup(struct sfp *sfp)
345 {
346 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
347 }
348 
349 static void sfp_fixup_ignore_los(struct sfp *sfp)
350 {
351 	/* This forces LOS to zero, so we ignore transitions */
352 	sfp->state_ignore_mask |= SFP_F_LOS;
353 	/* Make sure that LOS options are clear */
354 	sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
355 					    SFP_OPTIONS_LOS_NORMAL);
356 }
357 
358 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
359 {
360 	sfp->state_ignore_mask |= SFP_F_TX_FAULT;
361 }
362 
363 static void sfp_fixup_nokia(struct sfp *sfp)
364 {
365 	sfp_fixup_long_startup(sfp);
366 	sfp_fixup_ignore_los(sfp);
367 }
368 
369 // For 10GBASE-T short-reach modules
370 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
371 {
372 	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
373 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
374 }
375 
376 static void sfp_fixup_rollball(struct sfp *sfp)
377 {
378 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
379 
380 	/* RollBall modules may disallow access to PHY registers for up to 25
381 	 * seconds, and the reads return 0xffff before that. Increase the time
382 	 * between PHY probe retries from 50ms to 1s so that we will wait for
383 	 * the PHY for a sufficient amount of time.
384 	 */
385 	sfp->phy_t_retry = msecs_to_jiffies(1000);
386 }
387 
388 static void sfp_fixup_fs_2_5gt(struct sfp *sfp)
389 {
390 	sfp_fixup_rollball(sfp);
391 
392 	/* The RollBall fixup is not enough for FS modules, the PHY chip inside
393 	 * them does not return 0xffff for PHY ID registers in all MMDs for the
394 	 * while initializing. They need a 4 second wait before accessing PHY.
395 	 */
396 	sfp->module_t_wait = msecs_to_jiffies(4000);
397 }
398 
399 static void sfp_fixup_fs_10gt(struct sfp *sfp)
400 {
401 	sfp_fixup_10gbaset_30m(sfp);
402 	sfp_fixup_fs_2_5gt(sfp);
403 }
404 
405 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
406 {
407 	/* Ignore the TX_FAULT and LOS signals on this module.
408 	 * these are possibly used for other purposes on this
409 	 * module, e.g. a serial port.
410 	 */
411 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
412 }
413 
414 static void sfp_fixup_rollball_cc(struct sfp *sfp)
415 {
416 	sfp_fixup_rollball(sfp);
417 
418 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
419 	 * burned in EEPROM. For PHY probing we need the correct one.
420 	 */
421 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
422 }
423 
424 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
425 				unsigned long *modes,
426 				unsigned long *interfaces)
427 {
428 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
429 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
430 }
431 
432 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
433 				      unsigned long *modes,
434 				      unsigned long *interfaces)
435 {
436 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
437 }
438 
439 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
440 			       unsigned long *modes,
441 			       unsigned long *interfaces)
442 {
443 	/* Copper 2.5G SFP */
444 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
445 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
446 	sfp_quirk_disable_autoneg(id, modes, interfaces);
447 }
448 
449 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
450 				      unsigned long *modes,
451 				      unsigned long *interfaces)
452 {
453 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
454 	 * types including 10G Ethernet which is not truth. So clear all claimed
455 	 * modes and set only one mode which module supports: 1000baseX_Full.
456 	 */
457 	linkmode_zero(modes);
458 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
459 }
460 
461 #define SFP_QUIRK(_v, _p, _m, _f) \
462 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
463 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
464 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
465 
466 static const struct sfp_quirk sfp_quirks[] = {
467 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
468 	// report 2500MBd NRZ in their EEPROM
469 	SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex,
470 		  sfp_fixup_ignore_tx_fault),
471 
472 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
473 	// NRZ in their EEPROM
474 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
475 		  sfp_fixup_nokia),
476 
477 	// Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball
478 	// protocol to talk to the PHY and needs 4 sec wait before probing the
479 	// PHY.
480 	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
481 
482 	// Fiberstore SFP-2.5G-T uses Rollball protocol to talk to the PHY and
483 	// needs 4 sec wait before probing the PHY.
484 	SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_fs_2_5gt),
485 
486 	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
487 	// NRZ in their EEPROM
488 	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
489 		  sfp_fixup_ignore_tx_fault),
490 
491 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
492 
493 	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
494 	// 2600MBd in their EERPOM
495 	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
496 
497 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
498 	// their EEPROM
499 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
500 		  sfp_fixup_ignore_tx_fault),
501 
502 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
503 	// 2500MBd NRZ in their EEPROM
504 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
505 
506 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
507 
508 	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
509 	// Rollball protocol to talk to the PHY.
510 	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
511 	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
512 
513 	// OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
514 	SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
515 
516 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
517 	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
518 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
519 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
520 	SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball),
521 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
522 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
523 };
524 
525 static size_t sfp_strlen(const char *str, size_t maxlen)
526 {
527 	size_t size, i;
528 
529 	/* Trailing characters should be filled with space chars, but
530 	 * some manufacturers can't read SFF-8472 and use NUL.
531 	 */
532 	for (i = 0, size = 0; i < maxlen; i++)
533 		if (str[i] != ' ' && str[i] != '\0')
534 			size = i + 1;
535 
536 	return size;
537 }
538 
539 static bool sfp_match(const char *qs, const char *str, size_t len)
540 {
541 	if (!qs)
542 		return true;
543 	if (strlen(qs) != len)
544 		return false;
545 	return !strncmp(qs, str, len);
546 }
547 
548 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
549 {
550 	const struct sfp_quirk *q;
551 	unsigned int i;
552 	size_t vs, ps;
553 
554 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
555 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
556 
557 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
558 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
559 		    sfp_match(q->part, id->base.vendor_pn, ps))
560 			return q;
561 
562 	return NULL;
563 }
564 
565 static unsigned long poll_jiffies;
566 
567 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
568 {
569 	unsigned int i, state, v;
570 
571 	for (i = state = 0; i < GPIO_MAX; i++) {
572 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
573 			continue;
574 
575 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
576 		if (v)
577 			state |= BIT(i);
578 	}
579 
580 	return state;
581 }
582 
583 static unsigned int sff_gpio_get_state(struct sfp *sfp)
584 {
585 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
586 }
587 
588 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
589 {
590 	unsigned int drive;
591 
592 	if (state & SFP_F_PRESENT)
593 		/* If the module is present, drive the requested signals */
594 		drive = sfp->state_hw_drive;
595 	else
596 		/* Otherwise, let them float to the pull-ups */
597 		drive = 0;
598 
599 	if (sfp->gpio[GPIO_TX_DISABLE]) {
600 		if (drive & SFP_F_TX_DISABLE)
601 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
602 					       state & SFP_F_TX_DISABLE);
603 		else
604 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
605 	}
606 
607 	if (sfp->gpio[GPIO_RS0]) {
608 		if (drive & SFP_F_RS0)
609 			gpiod_direction_output(sfp->gpio[GPIO_RS0],
610 					       state & SFP_F_RS0);
611 		else
612 			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
613 	}
614 
615 	if (sfp->gpio[GPIO_RS1]) {
616 		if (drive & SFP_F_RS1)
617 			gpiod_direction_output(sfp->gpio[GPIO_RS1],
618 					       state & SFP_F_RS1);
619 		else
620 			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
621 	}
622 }
623 
624 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
625 			size_t len)
626 {
627 	struct i2c_msg msgs[2];
628 	u8 bus_addr = a2 ? 0x51 : 0x50;
629 	size_t block_size = sfp->i2c_block_size;
630 	size_t this_len;
631 	int ret;
632 
633 	msgs[0].addr = bus_addr;
634 	msgs[0].flags = 0;
635 	msgs[0].len = 1;
636 	msgs[0].buf = &dev_addr;
637 	msgs[1].addr = bus_addr;
638 	msgs[1].flags = I2C_M_RD;
639 	msgs[1].len = len;
640 	msgs[1].buf = buf;
641 
642 	while (len) {
643 		this_len = len;
644 		if (this_len > block_size)
645 			this_len = block_size;
646 
647 		msgs[1].len = this_len;
648 
649 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
650 		if (ret < 0)
651 			return ret;
652 
653 		if (ret != ARRAY_SIZE(msgs))
654 			break;
655 
656 		msgs[1].buf += this_len;
657 		dev_addr += this_len;
658 		len -= this_len;
659 	}
660 
661 	return msgs[1].buf - (u8 *)buf;
662 }
663 
664 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
665 	size_t len)
666 {
667 	struct i2c_msg msgs[1];
668 	u8 bus_addr = a2 ? 0x51 : 0x50;
669 	int ret;
670 
671 	msgs[0].addr = bus_addr;
672 	msgs[0].flags = 0;
673 	msgs[0].len = 1 + len;
674 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
675 	if (!msgs[0].buf)
676 		return -ENOMEM;
677 
678 	msgs[0].buf[0] = dev_addr;
679 	memcpy(&msgs[0].buf[1], buf, len);
680 
681 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
682 
683 	kfree(msgs[0].buf);
684 
685 	if (ret < 0)
686 		return ret;
687 
688 	return ret == ARRAY_SIZE(msgs) ? len : 0;
689 }
690 
691 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
692 {
693 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
694 		return -EINVAL;
695 
696 	sfp->i2c = i2c;
697 	sfp->read = sfp_i2c_read;
698 	sfp->write = sfp_i2c_write;
699 
700 	return 0;
701 }
702 
703 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
704 {
705 	struct mii_bus *i2c_mii;
706 	int ret;
707 
708 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
709 	if (IS_ERR(i2c_mii))
710 		return PTR_ERR(i2c_mii);
711 
712 	i2c_mii->name = "SFP I2C Bus";
713 	i2c_mii->phy_mask = ~0;
714 
715 	ret = mdiobus_register(i2c_mii);
716 	if (ret < 0) {
717 		mdiobus_free(i2c_mii);
718 		return ret;
719 	}
720 
721 	sfp->i2c_mii = i2c_mii;
722 
723 	return 0;
724 }
725 
726 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
727 {
728 	mdiobus_unregister(sfp->i2c_mii);
729 	sfp->i2c_mii = NULL;
730 }
731 
732 /* Interface */
733 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
734 {
735 	return sfp->read(sfp, a2, addr, buf, len);
736 }
737 
738 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
739 {
740 	return sfp->write(sfp, a2, addr, buf, len);
741 }
742 
743 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
744 {
745 	int ret;
746 	u8 old, v;
747 
748 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
749 	if (ret != sizeof(old))
750 		return ret;
751 
752 	v = (old & ~mask) | (val & mask);
753 	if (v == old)
754 		return sizeof(v);
755 
756 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
757 }
758 
759 static unsigned int sfp_soft_get_state(struct sfp *sfp)
760 {
761 	unsigned int state = 0;
762 	u8 status;
763 	int ret;
764 
765 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
766 	if (ret == sizeof(status)) {
767 		if (status & SFP_STATUS_RX_LOS)
768 			state |= SFP_F_LOS;
769 		if (status & SFP_STATUS_TX_FAULT)
770 			state |= SFP_F_TX_FAULT;
771 	} else {
772 		dev_err_ratelimited(sfp->dev,
773 				    "failed to read SFP soft status: %pe\n",
774 				    ERR_PTR(ret));
775 		/* Preserve the current state */
776 		state = sfp->state;
777 	}
778 
779 	return state & sfp->state_soft_mask;
780 }
781 
782 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
783 			       unsigned int soft)
784 {
785 	u8 mask = 0;
786 	u8 val = 0;
787 
788 	if (soft & SFP_F_TX_DISABLE)
789 		mask |= SFP_STATUS_TX_DISABLE_FORCE;
790 	if (state & SFP_F_TX_DISABLE)
791 		val |= SFP_STATUS_TX_DISABLE_FORCE;
792 
793 	if (soft & SFP_F_RS0)
794 		mask |= SFP_STATUS_RS0_SELECT;
795 	if (state & SFP_F_RS0)
796 		val |= SFP_STATUS_RS0_SELECT;
797 
798 	if (mask)
799 		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
800 
801 	val = mask = 0;
802 	if (soft & SFP_F_RS1)
803 		mask |= SFP_EXT_STATUS_RS1_SELECT;
804 	if (state & SFP_F_RS1)
805 		val |= SFP_EXT_STATUS_RS1_SELECT;
806 
807 	if (mask)
808 		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
809 }
810 
811 static void sfp_soft_start_poll(struct sfp *sfp)
812 {
813 	const struct sfp_eeprom_id *id = &sfp->id;
814 	unsigned int mask = 0;
815 
816 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
817 		mask |= SFP_F_TX_DISABLE;
818 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
819 		mask |= SFP_F_TX_FAULT;
820 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
821 		mask |= SFP_F_LOS;
822 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
823 		mask |= sfp->rs_state_mask;
824 
825 	mutex_lock(&sfp->st_mutex);
826 	// Poll the soft state for hardware pins we want to ignore
827 	sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
828 			       mask;
829 
830 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
831 	    !sfp->need_poll)
832 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
833 	mutex_unlock(&sfp->st_mutex);
834 }
835 
836 static void sfp_soft_stop_poll(struct sfp *sfp)
837 {
838 	mutex_lock(&sfp->st_mutex);
839 	sfp->state_soft_mask = 0;
840 	mutex_unlock(&sfp->st_mutex);
841 }
842 
843 /* sfp_get_state() - must be called with st_mutex held, or in the
844  * initialisation path.
845  */
846 static unsigned int sfp_get_state(struct sfp *sfp)
847 {
848 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
849 	unsigned int state;
850 
851 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
852 	if (state & SFP_F_PRESENT && soft)
853 		state |= sfp_soft_get_state(sfp);
854 
855 	return state;
856 }
857 
858 /* sfp_set_state() - must be called with st_mutex held, or in the
859  * initialisation path.
860  */
861 static void sfp_set_state(struct sfp *sfp, unsigned int state)
862 {
863 	unsigned int soft;
864 
865 	sfp->set_state(sfp, state);
866 
867 	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
868 	if (state & SFP_F_PRESENT && soft)
869 		sfp_soft_set_state(sfp, state, soft);
870 }
871 
872 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
873 {
874 	mutex_lock(&sfp->st_mutex);
875 	sfp->state = (sfp->state & ~mask) | set;
876 	sfp_set_state(sfp, sfp->state);
877 	mutex_unlock(&sfp->st_mutex);
878 }
879 
880 static unsigned int sfp_check(void *buf, size_t len)
881 {
882 	u8 *p, check;
883 
884 	for (p = buf, check = 0; len; p++, len--)
885 		check += *p;
886 
887 	return check;
888 }
889 
890 /* hwmon */
891 #if IS_ENABLED(CONFIG_HWMON)
892 static umode_t sfp_hwmon_is_visible(const void *data,
893 				    enum hwmon_sensor_types type,
894 				    u32 attr, int channel)
895 {
896 	const struct sfp *sfp = data;
897 
898 	switch (type) {
899 	case hwmon_temp:
900 		switch (attr) {
901 		case hwmon_temp_min_alarm:
902 		case hwmon_temp_max_alarm:
903 		case hwmon_temp_lcrit_alarm:
904 		case hwmon_temp_crit_alarm:
905 		case hwmon_temp_min:
906 		case hwmon_temp_max:
907 		case hwmon_temp_lcrit:
908 		case hwmon_temp_crit:
909 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
910 				return 0;
911 			fallthrough;
912 		case hwmon_temp_input:
913 		case hwmon_temp_label:
914 			return 0444;
915 		default:
916 			return 0;
917 		}
918 	case hwmon_in:
919 		switch (attr) {
920 		case hwmon_in_min_alarm:
921 		case hwmon_in_max_alarm:
922 		case hwmon_in_lcrit_alarm:
923 		case hwmon_in_crit_alarm:
924 		case hwmon_in_min:
925 		case hwmon_in_max:
926 		case hwmon_in_lcrit:
927 		case hwmon_in_crit:
928 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
929 				return 0;
930 			fallthrough;
931 		case hwmon_in_input:
932 		case hwmon_in_label:
933 			return 0444;
934 		default:
935 			return 0;
936 		}
937 	case hwmon_curr:
938 		switch (attr) {
939 		case hwmon_curr_min_alarm:
940 		case hwmon_curr_max_alarm:
941 		case hwmon_curr_lcrit_alarm:
942 		case hwmon_curr_crit_alarm:
943 		case hwmon_curr_min:
944 		case hwmon_curr_max:
945 		case hwmon_curr_lcrit:
946 		case hwmon_curr_crit:
947 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
948 				return 0;
949 			fallthrough;
950 		case hwmon_curr_input:
951 		case hwmon_curr_label:
952 			return 0444;
953 		default:
954 			return 0;
955 		}
956 	case hwmon_power:
957 		/* External calibration of receive power requires
958 		 * floating point arithmetic. Doing that in the kernel
959 		 * is not easy, so just skip it. If the module does
960 		 * not require external calibration, we can however
961 		 * show receiver power, since FP is then not needed.
962 		 */
963 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
964 		    channel == 1)
965 			return 0;
966 		switch (attr) {
967 		case hwmon_power_min_alarm:
968 		case hwmon_power_max_alarm:
969 		case hwmon_power_lcrit_alarm:
970 		case hwmon_power_crit_alarm:
971 		case hwmon_power_min:
972 		case hwmon_power_max:
973 		case hwmon_power_lcrit:
974 		case hwmon_power_crit:
975 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
976 				return 0;
977 			fallthrough;
978 		case hwmon_power_input:
979 		case hwmon_power_label:
980 			return 0444;
981 		default:
982 			return 0;
983 		}
984 	default:
985 		return 0;
986 	}
987 }
988 
989 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
990 {
991 	__be16 val;
992 	int err;
993 
994 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
995 	if (err < 0)
996 		return err;
997 
998 	*value = be16_to_cpu(val);
999 
1000 	return 0;
1001 }
1002 
1003 static void sfp_hwmon_to_rx_power(long *value)
1004 {
1005 	*value = DIV_ROUND_CLOSEST(*value, 10);
1006 }
1007 
1008 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
1009 				long *value)
1010 {
1011 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1012 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1013 }
1014 
1015 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1016 {
1017 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1018 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
1019 
1020 	if (*value >= 0x8000)
1021 		*value -= 0x10000;
1022 
1023 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1024 }
1025 
1026 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1027 {
1028 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1029 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
1030 
1031 	*value = DIV_ROUND_CLOSEST(*value, 10);
1032 }
1033 
1034 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1035 {
1036 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1037 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1038 
1039 	*value = DIV_ROUND_CLOSEST(*value, 500);
1040 }
1041 
1042 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1043 {
1044 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1045 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1046 
1047 	*value = DIV_ROUND_CLOSEST(*value, 10);
1048 }
1049 
1050 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1051 {
1052 	int err;
1053 
1054 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1055 	if (err < 0)
1056 		return err;
1057 
1058 	sfp_hwmon_calibrate_temp(sfp, value);
1059 
1060 	return 0;
1061 }
1062 
1063 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1064 {
1065 	int err;
1066 
1067 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1068 	if (err < 0)
1069 		return err;
1070 
1071 	sfp_hwmon_calibrate_vcc(sfp, value);
1072 
1073 	return 0;
1074 }
1075 
1076 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1077 {
1078 	int err;
1079 
1080 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1081 	if (err < 0)
1082 		return err;
1083 
1084 	sfp_hwmon_calibrate_bias(sfp, value);
1085 
1086 	return 0;
1087 }
1088 
1089 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1090 {
1091 	int err;
1092 
1093 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1094 	if (err < 0)
1095 		return err;
1096 
1097 	sfp_hwmon_calibrate_tx_power(sfp, value);
1098 
1099 	return 0;
1100 }
1101 
1102 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1103 {
1104 	int err;
1105 
1106 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1107 	if (err < 0)
1108 		return err;
1109 
1110 	sfp_hwmon_to_rx_power(value);
1111 
1112 	return 0;
1113 }
1114 
1115 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1116 {
1117 	u8 status;
1118 	int err;
1119 
1120 	switch (attr) {
1121 	case hwmon_temp_input:
1122 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1123 
1124 	case hwmon_temp_lcrit:
1125 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1126 		sfp_hwmon_calibrate_temp(sfp, value);
1127 		return 0;
1128 
1129 	case hwmon_temp_min:
1130 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1131 		sfp_hwmon_calibrate_temp(sfp, value);
1132 		return 0;
1133 	case hwmon_temp_max:
1134 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1135 		sfp_hwmon_calibrate_temp(sfp, value);
1136 		return 0;
1137 
1138 	case hwmon_temp_crit:
1139 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1140 		sfp_hwmon_calibrate_temp(sfp, value);
1141 		return 0;
1142 
1143 	case hwmon_temp_lcrit_alarm:
1144 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1145 		if (err < 0)
1146 			return err;
1147 
1148 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1149 		return 0;
1150 
1151 	case hwmon_temp_min_alarm:
1152 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1153 		if (err < 0)
1154 			return err;
1155 
1156 		*value = !!(status & SFP_WARN0_TEMP_LOW);
1157 		return 0;
1158 
1159 	case hwmon_temp_max_alarm:
1160 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1161 		if (err < 0)
1162 			return err;
1163 
1164 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1165 		return 0;
1166 
1167 	case hwmon_temp_crit_alarm:
1168 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1169 		if (err < 0)
1170 			return err;
1171 
1172 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1173 		return 0;
1174 	default:
1175 		return -EOPNOTSUPP;
1176 	}
1177 
1178 	return -EOPNOTSUPP;
1179 }
1180 
1181 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1182 {
1183 	u8 status;
1184 	int err;
1185 
1186 	switch (attr) {
1187 	case hwmon_in_input:
1188 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1189 
1190 	case hwmon_in_lcrit:
1191 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1192 		sfp_hwmon_calibrate_vcc(sfp, value);
1193 		return 0;
1194 
1195 	case hwmon_in_min:
1196 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1197 		sfp_hwmon_calibrate_vcc(sfp, value);
1198 		return 0;
1199 
1200 	case hwmon_in_max:
1201 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1202 		sfp_hwmon_calibrate_vcc(sfp, value);
1203 		return 0;
1204 
1205 	case hwmon_in_crit:
1206 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1207 		sfp_hwmon_calibrate_vcc(sfp, value);
1208 		return 0;
1209 
1210 	case hwmon_in_lcrit_alarm:
1211 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1212 		if (err < 0)
1213 			return err;
1214 
1215 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1216 		return 0;
1217 
1218 	case hwmon_in_min_alarm:
1219 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1220 		if (err < 0)
1221 			return err;
1222 
1223 		*value = !!(status & SFP_WARN0_VCC_LOW);
1224 		return 0;
1225 
1226 	case hwmon_in_max_alarm:
1227 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1228 		if (err < 0)
1229 			return err;
1230 
1231 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1232 		return 0;
1233 
1234 	case hwmon_in_crit_alarm:
1235 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1236 		if (err < 0)
1237 			return err;
1238 
1239 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1240 		return 0;
1241 	default:
1242 		return -EOPNOTSUPP;
1243 	}
1244 
1245 	return -EOPNOTSUPP;
1246 }
1247 
1248 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1249 {
1250 	u8 status;
1251 	int err;
1252 
1253 	switch (attr) {
1254 	case hwmon_curr_input:
1255 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1256 
1257 	case hwmon_curr_lcrit:
1258 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1259 		sfp_hwmon_calibrate_bias(sfp, value);
1260 		return 0;
1261 
1262 	case hwmon_curr_min:
1263 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1264 		sfp_hwmon_calibrate_bias(sfp, value);
1265 		return 0;
1266 
1267 	case hwmon_curr_max:
1268 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1269 		sfp_hwmon_calibrate_bias(sfp, value);
1270 		return 0;
1271 
1272 	case hwmon_curr_crit:
1273 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1274 		sfp_hwmon_calibrate_bias(sfp, value);
1275 		return 0;
1276 
1277 	case hwmon_curr_lcrit_alarm:
1278 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1279 		if (err < 0)
1280 			return err;
1281 
1282 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1283 		return 0;
1284 
1285 	case hwmon_curr_min_alarm:
1286 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1287 		if (err < 0)
1288 			return err;
1289 
1290 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1291 		return 0;
1292 
1293 	case hwmon_curr_max_alarm:
1294 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1295 		if (err < 0)
1296 			return err;
1297 
1298 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1299 		return 0;
1300 
1301 	case hwmon_curr_crit_alarm:
1302 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1303 		if (err < 0)
1304 			return err;
1305 
1306 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1307 		return 0;
1308 	default:
1309 		return -EOPNOTSUPP;
1310 	}
1311 
1312 	return -EOPNOTSUPP;
1313 }
1314 
1315 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1316 {
1317 	u8 status;
1318 	int err;
1319 
1320 	switch (attr) {
1321 	case hwmon_power_input:
1322 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1323 
1324 	case hwmon_power_lcrit:
1325 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1326 		sfp_hwmon_calibrate_tx_power(sfp, value);
1327 		return 0;
1328 
1329 	case hwmon_power_min:
1330 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1331 		sfp_hwmon_calibrate_tx_power(sfp, value);
1332 		return 0;
1333 
1334 	case hwmon_power_max:
1335 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1336 		sfp_hwmon_calibrate_tx_power(sfp, value);
1337 		return 0;
1338 
1339 	case hwmon_power_crit:
1340 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1341 		sfp_hwmon_calibrate_tx_power(sfp, value);
1342 		return 0;
1343 
1344 	case hwmon_power_lcrit_alarm:
1345 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1346 		if (err < 0)
1347 			return err;
1348 
1349 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1350 		return 0;
1351 
1352 	case hwmon_power_min_alarm:
1353 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1354 		if (err < 0)
1355 			return err;
1356 
1357 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1358 		return 0;
1359 
1360 	case hwmon_power_max_alarm:
1361 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1362 		if (err < 0)
1363 			return err;
1364 
1365 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1366 		return 0;
1367 
1368 	case hwmon_power_crit_alarm:
1369 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1370 		if (err < 0)
1371 			return err;
1372 
1373 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1374 		return 0;
1375 	default:
1376 		return -EOPNOTSUPP;
1377 	}
1378 
1379 	return -EOPNOTSUPP;
1380 }
1381 
1382 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1383 {
1384 	u8 status;
1385 	int err;
1386 
1387 	switch (attr) {
1388 	case hwmon_power_input:
1389 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1390 
1391 	case hwmon_power_lcrit:
1392 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1393 		sfp_hwmon_to_rx_power(value);
1394 		return 0;
1395 
1396 	case hwmon_power_min:
1397 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1398 		sfp_hwmon_to_rx_power(value);
1399 		return 0;
1400 
1401 	case hwmon_power_max:
1402 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1403 		sfp_hwmon_to_rx_power(value);
1404 		return 0;
1405 
1406 	case hwmon_power_crit:
1407 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1408 		sfp_hwmon_to_rx_power(value);
1409 		return 0;
1410 
1411 	case hwmon_power_lcrit_alarm:
1412 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1413 		if (err < 0)
1414 			return err;
1415 
1416 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1417 		return 0;
1418 
1419 	case hwmon_power_min_alarm:
1420 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1421 		if (err < 0)
1422 			return err;
1423 
1424 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1425 		return 0;
1426 
1427 	case hwmon_power_max_alarm:
1428 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1429 		if (err < 0)
1430 			return err;
1431 
1432 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1433 		return 0;
1434 
1435 	case hwmon_power_crit_alarm:
1436 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1437 		if (err < 0)
1438 			return err;
1439 
1440 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1441 		return 0;
1442 	default:
1443 		return -EOPNOTSUPP;
1444 	}
1445 
1446 	return -EOPNOTSUPP;
1447 }
1448 
1449 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1450 			  u32 attr, int channel, long *value)
1451 {
1452 	struct sfp *sfp = dev_get_drvdata(dev);
1453 
1454 	switch (type) {
1455 	case hwmon_temp:
1456 		return sfp_hwmon_temp(sfp, attr, value);
1457 	case hwmon_in:
1458 		return sfp_hwmon_vcc(sfp, attr, value);
1459 	case hwmon_curr:
1460 		return sfp_hwmon_bias(sfp, attr, value);
1461 	case hwmon_power:
1462 		switch (channel) {
1463 		case 0:
1464 			return sfp_hwmon_tx_power(sfp, attr, value);
1465 		case 1:
1466 			return sfp_hwmon_rx_power(sfp, attr, value);
1467 		default:
1468 			return -EOPNOTSUPP;
1469 		}
1470 	default:
1471 		return -EOPNOTSUPP;
1472 	}
1473 }
1474 
1475 static const char *const sfp_hwmon_power_labels[] = {
1476 	"TX_power",
1477 	"RX_power",
1478 };
1479 
1480 static int sfp_hwmon_read_string(struct device *dev,
1481 				 enum hwmon_sensor_types type,
1482 				 u32 attr, int channel, const char **str)
1483 {
1484 	switch (type) {
1485 	case hwmon_curr:
1486 		switch (attr) {
1487 		case hwmon_curr_label:
1488 			*str = "bias";
1489 			return 0;
1490 		default:
1491 			return -EOPNOTSUPP;
1492 		}
1493 		break;
1494 	case hwmon_temp:
1495 		switch (attr) {
1496 		case hwmon_temp_label:
1497 			*str = "temperature";
1498 			return 0;
1499 		default:
1500 			return -EOPNOTSUPP;
1501 		}
1502 		break;
1503 	case hwmon_in:
1504 		switch (attr) {
1505 		case hwmon_in_label:
1506 			*str = "VCC";
1507 			return 0;
1508 		default:
1509 			return -EOPNOTSUPP;
1510 		}
1511 		break;
1512 	case hwmon_power:
1513 		switch (attr) {
1514 		case hwmon_power_label:
1515 			*str = sfp_hwmon_power_labels[channel];
1516 			return 0;
1517 		default:
1518 			return -EOPNOTSUPP;
1519 		}
1520 		break;
1521 	default:
1522 		return -EOPNOTSUPP;
1523 	}
1524 
1525 	return -EOPNOTSUPP;
1526 }
1527 
1528 static const struct hwmon_ops sfp_hwmon_ops = {
1529 	.is_visible = sfp_hwmon_is_visible,
1530 	.read = sfp_hwmon_read,
1531 	.read_string = sfp_hwmon_read_string,
1532 };
1533 
1534 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1535 	HWMON_CHANNEL_INFO(chip,
1536 			   HWMON_C_REGISTER_TZ),
1537 	HWMON_CHANNEL_INFO(in,
1538 			   HWMON_I_INPUT |
1539 			   HWMON_I_MAX | HWMON_I_MIN |
1540 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1541 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1542 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1543 			   HWMON_I_LABEL),
1544 	HWMON_CHANNEL_INFO(temp,
1545 			   HWMON_T_INPUT |
1546 			   HWMON_T_MAX | HWMON_T_MIN |
1547 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1548 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1549 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1550 			   HWMON_T_LABEL),
1551 	HWMON_CHANNEL_INFO(curr,
1552 			   HWMON_C_INPUT |
1553 			   HWMON_C_MAX | HWMON_C_MIN |
1554 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1555 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1556 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1557 			   HWMON_C_LABEL),
1558 	HWMON_CHANNEL_INFO(power,
1559 			   /* Transmit power */
1560 			   HWMON_P_INPUT |
1561 			   HWMON_P_MAX | HWMON_P_MIN |
1562 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1563 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1564 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1565 			   HWMON_P_LABEL,
1566 			   /* Receive power */
1567 			   HWMON_P_INPUT |
1568 			   HWMON_P_MAX | HWMON_P_MIN |
1569 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1570 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1571 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1572 			   HWMON_P_LABEL),
1573 	NULL,
1574 };
1575 
1576 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1577 	.ops = &sfp_hwmon_ops,
1578 	.info = sfp_hwmon_info,
1579 };
1580 
1581 static void sfp_hwmon_probe(struct work_struct *work)
1582 {
1583 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1584 	int err;
1585 
1586 	/* hwmon interface needs to access 16bit registers in atomic way to
1587 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1588 	 * possible to guarantee coherency because EEPROM is broken in such way
1589 	 * that does not support atomic 16bit read operation then we have to
1590 	 * skip registration of hwmon device.
1591 	 */
1592 	if (sfp->i2c_block_size < 2) {
1593 		dev_info(sfp->dev,
1594 			 "skipping hwmon device registration due to broken EEPROM\n");
1595 		dev_info(sfp->dev,
1596 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1597 		return;
1598 	}
1599 
1600 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1601 	if (err < 0) {
1602 		if (sfp->hwmon_tries--) {
1603 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1604 					 T_PROBE_RETRY_SLOW);
1605 		} else {
1606 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1607 				 ERR_PTR(err));
1608 		}
1609 		return;
1610 	}
1611 
1612 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1613 	if (IS_ERR(sfp->hwmon_name)) {
1614 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1615 		return;
1616 	}
1617 
1618 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1619 							 sfp->hwmon_name, sfp,
1620 							 &sfp_hwmon_chip_info,
1621 							 NULL);
1622 	if (IS_ERR(sfp->hwmon_dev))
1623 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1624 			PTR_ERR(sfp->hwmon_dev));
1625 }
1626 
1627 static int sfp_hwmon_insert(struct sfp *sfp)
1628 {
1629 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1630 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1631 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1632 	}
1633 
1634 	return 0;
1635 }
1636 
1637 static void sfp_hwmon_remove(struct sfp *sfp)
1638 {
1639 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1640 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1641 		hwmon_device_unregister(sfp->hwmon_dev);
1642 		sfp->hwmon_dev = NULL;
1643 		kfree(sfp->hwmon_name);
1644 	}
1645 }
1646 
1647 static int sfp_hwmon_init(struct sfp *sfp)
1648 {
1649 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1650 
1651 	return 0;
1652 }
1653 
1654 static void sfp_hwmon_exit(struct sfp *sfp)
1655 {
1656 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1657 }
1658 #else
1659 static int sfp_hwmon_insert(struct sfp *sfp)
1660 {
1661 	return 0;
1662 }
1663 
1664 static void sfp_hwmon_remove(struct sfp *sfp)
1665 {
1666 }
1667 
1668 static int sfp_hwmon_init(struct sfp *sfp)
1669 {
1670 	return 0;
1671 }
1672 
1673 static void sfp_hwmon_exit(struct sfp *sfp)
1674 {
1675 }
1676 #endif
1677 
1678 /* Helpers */
1679 static void sfp_module_tx_disable(struct sfp *sfp)
1680 {
1681 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1682 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1683 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1684 }
1685 
1686 static void sfp_module_tx_enable(struct sfp *sfp)
1687 {
1688 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1689 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1690 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1691 }
1692 
1693 #if IS_ENABLED(CONFIG_DEBUG_FS)
1694 static int sfp_debug_state_show(struct seq_file *s, void *data)
1695 {
1696 	struct sfp *sfp = s->private;
1697 
1698 	seq_printf(s, "Module state: %s\n",
1699 		   mod_state_to_str(sfp->sm_mod_state));
1700 	seq_printf(s, "Module probe attempts: %d %d\n",
1701 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1702 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1703 	seq_printf(s, "Device state: %s\n",
1704 		   dev_state_to_str(sfp->sm_dev_state));
1705 	seq_printf(s, "Main state: %s\n",
1706 		   sm_state_to_str(sfp->sm_state));
1707 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1708 		   sfp->sm_fault_retries);
1709 	seq_printf(s, "PHY probe remaining retries: %d\n",
1710 		   sfp->sm_phy_retries);
1711 	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1712 	seq_printf(s, "Rate select threshold: %u kBd\n",
1713 		   sfp->rs_threshold_kbd);
1714 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1715 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1716 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1717 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1718 	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1719 	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1720 	return 0;
1721 }
1722 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1723 
1724 static void sfp_debugfs_init(struct sfp *sfp)
1725 {
1726 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1727 
1728 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1729 			    &sfp_debug_state_fops);
1730 }
1731 
1732 static void sfp_debugfs_exit(struct sfp *sfp)
1733 {
1734 	debugfs_remove_recursive(sfp->debugfs_dir);
1735 }
1736 #else
1737 static void sfp_debugfs_init(struct sfp *sfp)
1738 {
1739 }
1740 
1741 static void sfp_debugfs_exit(struct sfp *sfp)
1742 {
1743 }
1744 #endif
1745 
1746 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1747 {
1748 	unsigned int state;
1749 
1750 	mutex_lock(&sfp->st_mutex);
1751 	state = sfp->state;
1752 	if (!(state & SFP_F_TX_DISABLE)) {
1753 		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1754 
1755 		udelay(T_RESET_US);
1756 
1757 		sfp_set_state(sfp, state);
1758 	}
1759 	mutex_unlock(&sfp->st_mutex);
1760 }
1761 
1762 /* SFP state machine */
1763 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1764 {
1765 	if (timeout)
1766 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1767 				 timeout);
1768 	else
1769 		cancel_delayed_work(&sfp->timeout);
1770 }
1771 
1772 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1773 			unsigned int timeout)
1774 {
1775 	sfp->sm_state = state;
1776 	sfp_sm_set_timer(sfp, timeout);
1777 }
1778 
1779 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1780 			    unsigned int timeout)
1781 {
1782 	sfp->sm_mod_state = state;
1783 	sfp_sm_set_timer(sfp, timeout);
1784 }
1785 
1786 static void sfp_sm_phy_detach(struct sfp *sfp)
1787 {
1788 	sfp_remove_phy(sfp->sfp_bus);
1789 	phy_device_remove(sfp->mod_phy);
1790 	phy_device_free(sfp->mod_phy);
1791 	sfp->mod_phy = NULL;
1792 }
1793 
1794 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1795 {
1796 	struct phy_device *phy;
1797 	int err;
1798 
1799 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1800 	if (phy == ERR_PTR(-ENODEV))
1801 		return PTR_ERR(phy);
1802 	if (IS_ERR(phy)) {
1803 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1804 		return PTR_ERR(phy);
1805 	}
1806 
1807 	/* Mark this PHY as being on a SFP module */
1808 	phy->is_on_sfp_module = true;
1809 
1810 	err = phy_device_register(phy);
1811 	if (err) {
1812 		phy_device_free(phy);
1813 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1814 			ERR_PTR(err));
1815 		return err;
1816 	}
1817 
1818 	err = sfp_add_phy(sfp->sfp_bus, phy);
1819 	if (err) {
1820 		phy_device_remove(phy);
1821 		phy_device_free(phy);
1822 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1823 		return err;
1824 	}
1825 
1826 	sfp->mod_phy = phy;
1827 
1828 	return 0;
1829 }
1830 
1831 static void sfp_sm_link_up(struct sfp *sfp)
1832 {
1833 	sfp_link_up(sfp->sfp_bus);
1834 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1835 }
1836 
1837 static void sfp_sm_link_down(struct sfp *sfp)
1838 {
1839 	sfp_link_down(sfp->sfp_bus);
1840 }
1841 
1842 static void sfp_sm_link_check_los(struct sfp *sfp)
1843 {
1844 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1845 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1846 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1847 	bool los = false;
1848 
1849 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1850 	 * are set, we assume that no LOS signal is available. If both are
1851 	 * set, we assume LOS is not implemented (and is meaningless.)
1852 	 */
1853 	if (los_options == los_inverted)
1854 		los = !(sfp->state & SFP_F_LOS);
1855 	else if (los_options == los_normal)
1856 		los = !!(sfp->state & SFP_F_LOS);
1857 
1858 	if (los)
1859 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1860 	else
1861 		sfp_sm_link_up(sfp);
1862 }
1863 
1864 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1865 {
1866 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1867 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1868 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1869 
1870 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1871 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1872 }
1873 
1874 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1875 {
1876 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1877 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1878 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1879 
1880 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1881 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1882 }
1883 
1884 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1885 {
1886 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1887 		dev_err(sfp->dev,
1888 			"module persistently indicates fault, disabling\n");
1889 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1890 	} else {
1891 		if (warn)
1892 			dev_err(sfp->dev, "module transmit fault indicated\n");
1893 
1894 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1895 	}
1896 }
1897 
1898 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1899 {
1900 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1901 		return sfp_i2c_mdiobus_create(sfp);
1902 
1903 	return 0;
1904 }
1905 
1906 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1907  * normally sits at I2C bus address 0x56, and may either be a clause 22
1908  * or clause 45 PHY.
1909  *
1910  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1911  * negotiation enabled, but some may be in 1000base-X - which is for the
1912  * PHY driver to determine.
1913  *
1914  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1915  * mode according to the negotiated line speed.
1916  */
1917 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1918 {
1919 	int err = 0;
1920 
1921 	switch (sfp->mdio_protocol) {
1922 	case MDIO_I2C_NONE:
1923 		break;
1924 
1925 	case MDIO_I2C_MARVELL_C22:
1926 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1927 		break;
1928 
1929 	case MDIO_I2C_C45:
1930 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1931 		break;
1932 
1933 	case MDIO_I2C_ROLLBALL:
1934 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1935 		break;
1936 	}
1937 
1938 	return err;
1939 }
1940 
1941 static int sfp_module_parse_power(struct sfp *sfp)
1942 {
1943 	u32 power_mW = 1000;
1944 	bool supports_a2;
1945 
1946 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1947 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1948 		power_mW = 1500;
1949 	/* Added in Rev 11.9, but there is no compliance code for this */
1950 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1951 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1952 		power_mW = 2000;
1953 
1954 	/* Power level 1 modules (max. 1W) are always supported. */
1955 	if (power_mW <= 1000) {
1956 		sfp->module_power_mW = power_mW;
1957 		return 0;
1958 	}
1959 
1960 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1961 				SFP_SFF8472_COMPLIANCE_NONE ||
1962 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1963 
1964 	if (power_mW > sfp->max_power_mW) {
1965 		/* Module power specification exceeds the allowed maximum. */
1966 		if (!supports_a2) {
1967 			/* The module appears not to implement bus address
1968 			 * 0xa2, so assume that the module powers up in the
1969 			 * indicated mode.
1970 			 */
1971 			dev_err(sfp->dev,
1972 				"Host does not support %u.%uW modules\n",
1973 				power_mW / 1000, (power_mW / 100) % 10);
1974 			return -EINVAL;
1975 		} else {
1976 			dev_warn(sfp->dev,
1977 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1978 				 power_mW / 1000, (power_mW / 100) % 10);
1979 			return 0;
1980 		}
1981 	}
1982 
1983 	if (!supports_a2) {
1984 		/* The module power level is below the host maximum and the
1985 		 * module appears not to implement bus address 0xa2, so assume
1986 		 * that the module powers up in the indicated mode.
1987 		 */
1988 		return 0;
1989 	}
1990 
1991 	/* If the module requires a higher power mode, but also requires
1992 	 * an address change sequence, warn the user that the module may
1993 	 * not be functional.
1994 	 */
1995 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1996 		dev_warn(sfp->dev,
1997 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1998 			 power_mW / 1000, (power_mW / 100) % 10);
1999 		return 0;
2000 	}
2001 
2002 	sfp->module_power_mW = power_mW;
2003 
2004 	return 0;
2005 }
2006 
2007 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
2008 {
2009 	int err;
2010 
2011 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2012 			    SFP_EXT_STATUS_PWRLVL_SELECT,
2013 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2014 	if (err != sizeof(u8)) {
2015 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2016 			enable ? "en" : "dis", ERR_PTR(err));
2017 		return -EAGAIN;
2018 	}
2019 
2020 	if (enable)
2021 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2022 			 sfp->module_power_mW / 1000,
2023 			 (sfp->module_power_mW / 100) % 10);
2024 
2025 	return 0;
2026 }
2027 
2028 static void sfp_module_parse_rate_select(struct sfp *sfp)
2029 {
2030 	u8 rate_id;
2031 
2032 	sfp->rs_threshold_kbd = 0;
2033 	sfp->rs_state_mask = 0;
2034 
2035 	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2036 		/* No support for RateSelect */
2037 		return;
2038 
2039 	/* Default to INF-8074 RateSelect operation. The signalling threshold
2040 	 * rate is not well specified, so always select "Full Bandwidth", but
2041 	 * SFF-8079 reveals that it is understood that RS0 will be low for
2042 	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2043 	 * This method exists prior to SFF-8472.
2044 	 */
2045 	sfp->rs_state_mask = SFP_F_RS0;
2046 	sfp->rs_threshold_kbd = 1594;
2047 
2048 	/* Parse the rate identifier, which is complicated due to history:
2049 	 * SFF-8472 rev 9.5 marks this field as reserved.
2050 	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2051 	 *  compliance is not required.
2052 	 * SFF-8472 rev 10.2 defines this field using values 0..4
2053 	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2054 	 * and even values.
2055 	 */
2056 	rate_id = sfp->id.base.rate_id;
2057 	if (rate_id == 0)
2058 		/* Unspecified */
2059 		return;
2060 
2061 	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2062 	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2063 	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2064 	 */
2065 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2066 	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2067 	    rate_id == 3)
2068 		rate_id = SFF_RID_8431;
2069 
2070 	if (rate_id & SFF_RID_8079) {
2071 		/* SFF-8079 RateSelect / Application Select in conjunction with
2072 		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2073 		 * with only bit 0 used, which takes precedence over SFF-8472.
2074 		 */
2075 		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2076 			/* SFF-8079 Part 1 - rate selection between Fibre
2077 			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2078 			 * is high for 2125, so we have to subtract 1 to
2079 			 * include it.
2080 			 */
2081 			sfp->rs_threshold_kbd = 2125 - 1;
2082 			sfp->rs_state_mask = SFP_F_RS0;
2083 		}
2084 		return;
2085 	}
2086 
2087 	/* SFF-8472 rev 9.5 does not define the rate identifier */
2088 	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2089 		return;
2090 
2091 	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2092 	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2093 	 */
2094 	switch (rate_id) {
2095 	case SFF_RID_8431_RX_ONLY:
2096 		sfp->rs_threshold_kbd = 4250;
2097 		sfp->rs_state_mask = SFP_F_RS0;
2098 		break;
2099 
2100 	case SFF_RID_8431_TX_ONLY:
2101 		sfp->rs_threshold_kbd = 4250;
2102 		sfp->rs_state_mask = SFP_F_RS1;
2103 		break;
2104 
2105 	case SFF_RID_8431:
2106 		sfp->rs_threshold_kbd = 4250;
2107 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2108 		break;
2109 
2110 	case SFF_RID_10G8G:
2111 		sfp->rs_threshold_kbd = 9000;
2112 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2113 		break;
2114 	}
2115 }
2116 
2117 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2118  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2119  * not support multibyte reads from the EEPROM. Each multi-byte read
2120  * operation returns just one byte of EEPROM followed by zeros. There is
2121  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2122  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2123  * name and vendor id into EEPROM, so there is even no way to detect if
2124  * module is V-SOL V2801F. Therefore check for those zeros in the read
2125  * data and then based on check switch to reading EEPROM to one byte
2126  * at a time.
2127  */
2128 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2129 {
2130 	size_t i, block_size = sfp->i2c_block_size;
2131 
2132 	/* Already using byte IO */
2133 	if (block_size == 1)
2134 		return false;
2135 
2136 	for (i = 1; i < len; i += block_size) {
2137 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2138 			return false;
2139 	}
2140 	return true;
2141 }
2142 
2143 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2144 {
2145 	u8 check;
2146 	int err;
2147 
2148 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2149 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2150 	    id->base.connector != SFF8024_CONNECTOR_LC) {
2151 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2152 		id->base.phys_id = SFF8024_ID_SFF_8472;
2153 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2154 		id->base.connector = SFF8024_CONNECTOR_LC;
2155 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2156 		if (err != 3) {
2157 			dev_err(sfp->dev,
2158 				"Failed to rewrite module EEPROM: %pe\n",
2159 				ERR_PTR(err));
2160 			return err;
2161 		}
2162 
2163 		/* Cotsworks modules have been found to require a delay between write operations. */
2164 		mdelay(50);
2165 
2166 		/* Update base structure checksum */
2167 		check = sfp_check(&id->base, sizeof(id->base) - 1);
2168 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2169 		if (err != 1) {
2170 			dev_err(sfp->dev,
2171 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2172 				ERR_PTR(err));
2173 			return err;
2174 		}
2175 	}
2176 	return 0;
2177 }
2178 
2179 static int sfp_module_parse_sff8472(struct sfp *sfp)
2180 {
2181 	/* If the module requires address swap mode, warn about it */
2182 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2183 		dev_warn(sfp->dev,
2184 			 "module address swap to access page 0xA2 is not supported.\n");
2185 	else
2186 		sfp->have_a2 = true;
2187 
2188 	return 0;
2189 }
2190 
2191 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2192 {
2193 	/* SFP module inserted - read I2C data */
2194 	struct sfp_eeprom_id id;
2195 	bool cotsworks_sfbg;
2196 	unsigned int mask;
2197 	bool cotsworks;
2198 	u8 check;
2199 	int ret;
2200 
2201 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2202 
2203 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2204 	if (ret < 0) {
2205 		if (report)
2206 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2207 				ERR_PTR(ret));
2208 		return -EAGAIN;
2209 	}
2210 
2211 	if (ret != sizeof(id.base)) {
2212 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2213 		return -EAGAIN;
2214 	}
2215 
2216 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2217 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2218 	 * that EEPROM supports atomic 16bit read operation for diagnostic
2219 	 * fields, so do not switch to one byte reading at a time unless it
2220 	 * is really required and we have no other option.
2221 	 */
2222 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2223 		dev_info(sfp->dev,
2224 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2225 		dev_info(sfp->dev,
2226 			 "Switching to reading EEPROM to one byte at a time\n");
2227 		sfp->i2c_block_size = 1;
2228 
2229 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2230 		if (ret < 0) {
2231 			if (report)
2232 				dev_err(sfp->dev,
2233 					"failed to read EEPROM: %pe\n",
2234 					ERR_PTR(ret));
2235 			return -EAGAIN;
2236 		}
2237 
2238 		if (ret != sizeof(id.base)) {
2239 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2240 				ERR_PTR(ret));
2241 			return -EAGAIN;
2242 		}
2243 	}
2244 
2245 	/* Cotsworks do not seem to update the checksums when they
2246 	 * do the final programming with the final module part number,
2247 	 * serial number and date code.
2248 	 */
2249 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2250 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2251 
2252 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2253 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2254 	 * Cotsworks PN matches and bytes are not correct.
2255 	 */
2256 	if (cotsworks && cotsworks_sfbg) {
2257 		ret = sfp_cotsworks_fixup_check(sfp, &id);
2258 		if (ret < 0)
2259 			return ret;
2260 	}
2261 
2262 	/* Validate the checksum over the base structure */
2263 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2264 	if (check != id.base.cc_base) {
2265 		if (cotsworks) {
2266 			dev_warn(sfp->dev,
2267 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2268 				 check, id.base.cc_base);
2269 		} else {
2270 			dev_err(sfp->dev,
2271 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2272 				check, id.base.cc_base);
2273 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2274 				       16, 1, &id, sizeof(id), true);
2275 			return -EINVAL;
2276 		}
2277 	}
2278 
2279 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2280 	if (ret < 0) {
2281 		if (report)
2282 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2283 				ERR_PTR(ret));
2284 		return -EAGAIN;
2285 	}
2286 
2287 	if (ret != sizeof(id.ext)) {
2288 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2289 		return -EAGAIN;
2290 	}
2291 
2292 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2293 	if (check != id.ext.cc_ext) {
2294 		if (cotsworks) {
2295 			dev_warn(sfp->dev,
2296 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2297 				 check, id.ext.cc_ext);
2298 		} else {
2299 			dev_err(sfp->dev,
2300 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2301 				check, id.ext.cc_ext);
2302 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2303 				       16, 1, &id, sizeof(id), true);
2304 			memset(&id.ext, 0, sizeof(id.ext));
2305 		}
2306 	}
2307 
2308 	sfp->id = id;
2309 
2310 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2311 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2312 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2313 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2314 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2315 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2316 
2317 	/* Check whether we support this module */
2318 	if (!sfp->type->module_supported(&id)) {
2319 		dev_err(sfp->dev,
2320 			"module is not supported - phys id 0x%02x 0x%02x\n",
2321 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2322 		return -EINVAL;
2323 	}
2324 
2325 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2326 		ret = sfp_module_parse_sff8472(sfp);
2327 		if (ret < 0)
2328 			return ret;
2329 	}
2330 
2331 	/* Parse the module power requirement */
2332 	ret = sfp_module_parse_power(sfp);
2333 	if (ret < 0)
2334 		return ret;
2335 
2336 	sfp_module_parse_rate_select(sfp);
2337 
2338 	mask = SFP_F_PRESENT;
2339 	if (sfp->gpio[GPIO_TX_DISABLE])
2340 		mask |= SFP_F_TX_DISABLE;
2341 	if (sfp->gpio[GPIO_TX_FAULT])
2342 		mask |= SFP_F_TX_FAULT;
2343 	if (sfp->gpio[GPIO_LOS])
2344 		mask |= SFP_F_LOS;
2345 	if (sfp->gpio[GPIO_RS0])
2346 		mask |= SFP_F_RS0;
2347 	if (sfp->gpio[GPIO_RS1])
2348 		mask |= SFP_F_RS1;
2349 
2350 	sfp->module_t_start_up = T_START_UP;
2351 	sfp->module_t_wait = T_WAIT;
2352 	sfp->phy_t_retry = T_PHY_RETRY;
2353 
2354 	sfp->state_ignore_mask = 0;
2355 
2356 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2357 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2358 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2359 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2360 		sfp->mdio_protocol = MDIO_I2C_C45;
2361 	else if (sfp->id.base.e1000_base_t)
2362 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2363 	else
2364 		sfp->mdio_protocol = MDIO_I2C_NONE;
2365 
2366 	sfp->quirk = sfp_lookup_quirk(&id);
2367 
2368 	mutex_lock(&sfp->st_mutex);
2369 	/* Initialise state bits to use from hardware */
2370 	sfp->state_hw_mask = mask;
2371 
2372 	/* We want to drive the rate select pins that the module is using */
2373 	sfp->state_hw_drive |= sfp->rs_state_mask;
2374 
2375 	if (sfp->quirk && sfp->quirk->fixup)
2376 		sfp->quirk->fixup(sfp);
2377 
2378 	sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2379 	mutex_unlock(&sfp->st_mutex);
2380 
2381 	return 0;
2382 }
2383 
2384 static void sfp_sm_mod_remove(struct sfp *sfp)
2385 {
2386 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2387 		sfp_module_remove(sfp->sfp_bus);
2388 
2389 	sfp_hwmon_remove(sfp);
2390 
2391 	memset(&sfp->id, 0, sizeof(sfp->id));
2392 	sfp->module_power_mW = 0;
2393 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2394 	sfp->have_a2 = false;
2395 
2396 	dev_info(sfp->dev, "module removed\n");
2397 }
2398 
2399 /* This state machine tracks the upstream's state */
2400 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2401 {
2402 	switch (sfp->sm_dev_state) {
2403 	default:
2404 		if (event == SFP_E_DEV_ATTACH)
2405 			sfp->sm_dev_state = SFP_DEV_DOWN;
2406 		break;
2407 
2408 	case SFP_DEV_DOWN:
2409 		if (event == SFP_E_DEV_DETACH)
2410 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2411 		else if (event == SFP_E_DEV_UP)
2412 			sfp->sm_dev_state = SFP_DEV_UP;
2413 		break;
2414 
2415 	case SFP_DEV_UP:
2416 		if (event == SFP_E_DEV_DETACH)
2417 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2418 		else if (event == SFP_E_DEV_DOWN)
2419 			sfp->sm_dev_state = SFP_DEV_DOWN;
2420 		break;
2421 	}
2422 }
2423 
2424 /* This state machine tracks the insert/remove state of the module, probes
2425  * the on-board EEPROM, and sets up the power level.
2426  */
2427 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2428 {
2429 	int err;
2430 
2431 	/* Handle remove event globally, it resets this state machine */
2432 	if (event == SFP_E_REMOVE) {
2433 		sfp_sm_mod_remove(sfp);
2434 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2435 		return;
2436 	}
2437 
2438 	/* Handle device detach globally */
2439 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2440 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2441 		if (sfp->module_power_mW > 1000 &&
2442 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2443 			sfp_sm_mod_hpower(sfp, false);
2444 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2445 		return;
2446 	}
2447 
2448 	switch (sfp->sm_mod_state) {
2449 	default:
2450 		if (event == SFP_E_INSERT) {
2451 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2452 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2453 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2454 		}
2455 		break;
2456 
2457 	case SFP_MOD_PROBE:
2458 		/* Wait for T_PROBE_INIT to time out */
2459 		if (event != SFP_E_TIMEOUT)
2460 			break;
2461 
2462 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2463 		if (err == -EAGAIN) {
2464 			if (sfp->sm_mod_tries_init &&
2465 			   --sfp->sm_mod_tries_init) {
2466 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2467 				break;
2468 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2469 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2470 					dev_warn(sfp->dev,
2471 						 "please wait, module slow to respond\n");
2472 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2473 				break;
2474 			}
2475 		}
2476 		if (err < 0) {
2477 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2478 			break;
2479 		}
2480 
2481 		/* Force a poll to re-read the hardware signal state after
2482 		 * sfp_sm_mod_probe() changed state_hw_mask.
2483 		 */
2484 		mod_delayed_work(system_wq, &sfp->poll, 1);
2485 
2486 		err = sfp_hwmon_insert(sfp);
2487 		if (err)
2488 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2489 				 ERR_PTR(err));
2490 
2491 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2492 		fallthrough;
2493 	case SFP_MOD_WAITDEV:
2494 		/* Ensure that the device is attached before proceeding */
2495 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2496 			break;
2497 
2498 		/* Report the module insertion to the upstream device */
2499 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2500 					sfp->quirk);
2501 		if (err < 0) {
2502 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2503 			break;
2504 		}
2505 
2506 		/* If this is a power level 1 module, we are done */
2507 		if (sfp->module_power_mW <= 1000)
2508 			goto insert;
2509 
2510 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2511 		fallthrough;
2512 	case SFP_MOD_HPOWER:
2513 		/* Enable high power mode */
2514 		err = sfp_sm_mod_hpower(sfp, true);
2515 		if (err < 0) {
2516 			if (err != -EAGAIN) {
2517 				sfp_module_remove(sfp->sfp_bus);
2518 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2519 			} else {
2520 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2521 			}
2522 			break;
2523 		}
2524 
2525 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2526 		break;
2527 
2528 	case SFP_MOD_WAITPWR:
2529 		/* Wait for T_HPOWER_LEVEL to time out */
2530 		if (event != SFP_E_TIMEOUT)
2531 			break;
2532 
2533 	insert:
2534 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2535 		break;
2536 
2537 	case SFP_MOD_PRESENT:
2538 	case SFP_MOD_ERROR:
2539 		break;
2540 	}
2541 }
2542 
2543 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2544 {
2545 	unsigned long timeout;
2546 	int ret;
2547 
2548 	/* Some events are global */
2549 	if (sfp->sm_state != SFP_S_DOWN &&
2550 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2551 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2552 		if (sfp->sm_state == SFP_S_LINK_UP &&
2553 		    sfp->sm_dev_state == SFP_DEV_UP)
2554 			sfp_sm_link_down(sfp);
2555 		if (sfp->sm_state > SFP_S_INIT)
2556 			sfp_module_stop(sfp->sfp_bus);
2557 		if (sfp->mod_phy)
2558 			sfp_sm_phy_detach(sfp);
2559 		if (sfp->i2c_mii)
2560 			sfp_i2c_mdiobus_destroy(sfp);
2561 		sfp_module_tx_disable(sfp);
2562 		sfp_soft_stop_poll(sfp);
2563 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2564 		return;
2565 	}
2566 
2567 	/* The main state machine */
2568 	switch (sfp->sm_state) {
2569 	case SFP_S_DOWN:
2570 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2571 		    sfp->sm_dev_state != SFP_DEV_UP)
2572 			break;
2573 
2574 		/* Only use the soft state bits if we have access to the A2h
2575 		 * memory, which implies that we have some level of SFF-8472
2576 		 * compliance.
2577 		 */
2578 		if (sfp->have_a2)
2579 			sfp_soft_start_poll(sfp);
2580 
2581 		sfp_module_tx_enable(sfp);
2582 
2583 		/* Initialise the fault clearance retries */
2584 		sfp->sm_fault_retries = N_FAULT_INIT;
2585 
2586 		/* We need to check the TX_FAULT state, which is not defined
2587 		 * while TX_DISABLE is asserted. The earliest we want to do
2588 		 * anything (such as probe for a PHY) is 50ms (or more on
2589 		 * specific modules).
2590 		 */
2591 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2592 		break;
2593 
2594 	case SFP_S_WAIT:
2595 		if (event != SFP_E_TIMEOUT)
2596 			break;
2597 
2598 		if (sfp->state & SFP_F_TX_FAULT) {
2599 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2600 			 * from the TX_DISABLE deassertion for the module to
2601 			 * initialise, which is indicated by TX_FAULT
2602 			 * deasserting.
2603 			 */
2604 			timeout = sfp->module_t_start_up;
2605 			if (timeout > sfp->module_t_wait)
2606 				timeout -= sfp->module_t_wait;
2607 			else
2608 				timeout = 1;
2609 
2610 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2611 		} else {
2612 			/* TX_FAULT is not asserted, assume the module has
2613 			 * finished initialising.
2614 			 */
2615 			goto init_done;
2616 		}
2617 		break;
2618 
2619 	case SFP_S_INIT:
2620 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2621 			/* TX_FAULT is still asserted after t_init
2622 			 * or t_start_up, so assume there is a fault.
2623 			 */
2624 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2625 				     sfp->sm_fault_retries == N_FAULT_INIT);
2626 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2627 	init_done:
2628 			/* Create mdiobus and start trying for PHY */
2629 			ret = sfp_sm_add_mdio_bus(sfp);
2630 			if (ret < 0) {
2631 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2632 				break;
2633 			}
2634 			sfp->sm_phy_retries = R_PHY_RETRY;
2635 			goto phy_probe;
2636 		}
2637 		break;
2638 
2639 	case SFP_S_INIT_PHY:
2640 		if (event != SFP_E_TIMEOUT)
2641 			break;
2642 	phy_probe:
2643 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2644 		 * clear.  Probe for the PHY and check the LOS state.
2645 		 */
2646 		ret = sfp_sm_probe_for_phy(sfp);
2647 		if (ret == -ENODEV) {
2648 			if (--sfp->sm_phy_retries) {
2649 				sfp_sm_next(sfp, SFP_S_INIT_PHY,
2650 					    sfp->phy_t_retry);
2651 				dev_dbg(sfp->dev,
2652 					"no PHY detected, %u tries left\n",
2653 					sfp->sm_phy_retries);
2654 				break;
2655 			} else {
2656 				dev_info(sfp->dev, "no PHY detected\n");
2657 			}
2658 		} else if (ret) {
2659 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2660 			break;
2661 		}
2662 		if (sfp_module_start(sfp->sfp_bus)) {
2663 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2664 			break;
2665 		}
2666 		sfp_sm_link_check_los(sfp);
2667 
2668 		/* Reset the fault retry count */
2669 		sfp->sm_fault_retries = N_FAULT;
2670 		break;
2671 
2672 	case SFP_S_INIT_TX_FAULT:
2673 		if (event == SFP_E_TIMEOUT) {
2674 			sfp_module_tx_fault_reset(sfp);
2675 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2676 		}
2677 		break;
2678 
2679 	case SFP_S_WAIT_LOS:
2680 		if (event == SFP_E_TX_FAULT)
2681 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2682 		else if (sfp_los_event_inactive(sfp, event))
2683 			sfp_sm_link_up(sfp);
2684 		break;
2685 
2686 	case SFP_S_LINK_UP:
2687 		if (event == SFP_E_TX_FAULT) {
2688 			sfp_sm_link_down(sfp);
2689 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2690 		} else if (sfp_los_event_active(sfp, event)) {
2691 			sfp_sm_link_down(sfp);
2692 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2693 		}
2694 		break;
2695 
2696 	case SFP_S_TX_FAULT:
2697 		if (event == SFP_E_TIMEOUT) {
2698 			sfp_module_tx_fault_reset(sfp);
2699 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2700 		}
2701 		break;
2702 
2703 	case SFP_S_REINIT:
2704 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2705 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2706 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2707 			dev_info(sfp->dev, "module transmit fault recovered\n");
2708 			sfp_sm_link_check_los(sfp);
2709 		}
2710 		break;
2711 
2712 	case SFP_S_TX_DISABLE:
2713 		break;
2714 	}
2715 }
2716 
2717 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2718 {
2719 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2720 		mod_state_to_str(sfp->sm_mod_state),
2721 		dev_state_to_str(sfp->sm_dev_state),
2722 		sm_state_to_str(sfp->sm_state),
2723 		event_to_str(event));
2724 
2725 	sfp_sm_device(sfp, event);
2726 	sfp_sm_module(sfp, event);
2727 	sfp_sm_main(sfp, event);
2728 
2729 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2730 		mod_state_to_str(sfp->sm_mod_state),
2731 		dev_state_to_str(sfp->sm_dev_state),
2732 		sm_state_to_str(sfp->sm_state));
2733 }
2734 
2735 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2736 {
2737 	mutex_lock(&sfp->sm_mutex);
2738 	__sfp_sm_event(sfp, event);
2739 	mutex_unlock(&sfp->sm_mutex);
2740 }
2741 
2742 static void sfp_attach(struct sfp *sfp)
2743 {
2744 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2745 }
2746 
2747 static void sfp_detach(struct sfp *sfp)
2748 {
2749 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2750 }
2751 
2752 static void sfp_start(struct sfp *sfp)
2753 {
2754 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2755 }
2756 
2757 static void sfp_stop(struct sfp *sfp)
2758 {
2759 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2760 }
2761 
2762 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2763 {
2764 	unsigned int set;
2765 
2766 	sfp->rate_kbd = rate_kbd;
2767 
2768 	if (rate_kbd > sfp->rs_threshold_kbd)
2769 		set = sfp->rs_state_mask;
2770 	else
2771 		set = 0;
2772 
2773 	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2774 }
2775 
2776 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2777 {
2778 	/* locking... and check module is present */
2779 
2780 	if (sfp->id.ext.sff8472_compliance &&
2781 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2782 		modinfo->type = ETH_MODULE_SFF_8472;
2783 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2784 	} else {
2785 		modinfo->type = ETH_MODULE_SFF_8079;
2786 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2787 	}
2788 	return 0;
2789 }
2790 
2791 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2792 			     u8 *data)
2793 {
2794 	unsigned int first, last, len;
2795 	int ret;
2796 
2797 	if (!(sfp->state & SFP_F_PRESENT))
2798 		return -ENODEV;
2799 
2800 	if (ee->len == 0)
2801 		return -EINVAL;
2802 
2803 	first = ee->offset;
2804 	last = ee->offset + ee->len;
2805 	if (first < ETH_MODULE_SFF_8079_LEN) {
2806 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2807 		len -= first;
2808 
2809 		ret = sfp_read(sfp, false, first, data, len);
2810 		if (ret < 0)
2811 			return ret;
2812 
2813 		first += len;
2814 		data += len;
2815 	}
2816 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2817 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2818 		len -= first;
2819 		first -= ETH_MODULE_SFF_8079_LEN;
2820 
2821 		ret = sfp_read(sfp, true, first, data, len);
2822 		if (ret < 0)
2823 			return ret;
2824 	}
2825 	return 0;
2826 }
2827 
2828 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2829 				     const struct ethtool_module_eeprom *page,
2830 				     struct netlink_ext_ack *extack)
2831 {
2832 	if (!(sfp->state & SFP_F_PRESENT))
2833 		return -ENODEV;
2834 
2835 	if (page->bank) {
2836 		NL_SET_ERR_MSG(extack, "Banks not supported");
2837 		return -EOPNOTSUPP;
2838 	}
2839 
2840 	if (page->page) {
2841 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2842 		return -EOPNOTSUPP;
2843 	}
2844 
2845 	if (page->i2c_address != 0x50 &&
2846 	    page->i2c_address != 0x51) {
2847 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2848 		return -EOPNOTSUPP;
2849 	}
2850 
2851 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2852 			page->data, page->length);
2853 };
2854 
2855 static const struct sfp_socket_ops sfp_module_ops = {
2856 	.attach = sfp_attach,
2857 	.detach = sfp_detach,
2858 	.start = sfp_start,
2859 	.stop = sfp_stop,
2860 	.set_signal_rate = sfp_set_signal_rate,
2861 	.module_info = sfp_module_info,
2862 	.module_eeprom = sfp_module_eeprom,
2863 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2864 };
2865 
2866 static void sfp_timeout(struct work_struct *work)
2867 {
2868 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2869 
2870 	rtnl_lock();
2871 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2872 	rtnl_unlock();
2873 }
2874 
2875 static void sfp_check_state(struct sfp *sfp)
2876 {
2877 	unsigned int state, i, changed;
2878 
2879 	rtnl_lock();
2880 	mutex_lock(&sfp->st_mutex);
2881 	state = sfp_get_state(sfp);
2882 	changed = state ^ sfp->state;
2883 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2884 
2885 	for (i = 0; i < GPIO_MAX; i++)
2886 		if (changed & BIT(i))
2887 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2888 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2889 
2890 	state |= sfp->state & SFP_F_OUTPUTS;
2891 	sfp->state = state;
2892 	mutex_unlock(&sfp->st_mutex);
2893 
2894 	mutex_lock(&sfp->sm_mutex);
2895 	if (changed & SFP_F_PRESENT)
2896 		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2897 				    SFP_E_INSERT : SFP_E_REMOVE);
2898 
2899 	if (changed & SFP_F_TX_FAULT)
2900 		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2901 				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2902 
2903 	if (changed & SFP_F_LOS)
2904 		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2905 				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2906 	mutex_unlock(&sfp->sm_mutex);
2907 	rtnl_unlock();
2908 }
2909 
2910 static irqreturn_t sfp_irq(int irq, void *data)
2911 {
2912 	struct sfp *sfp = data;
2913 
2914 	sfp_check_state(sfp);
2915 
2916 	return IRQ_HANDLED;
2917 }
2918 
2919 static void sfp_poll(struct work_struct *work)
2920 {
2921 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2922 
2923 	sfp_check_state(sfp);
2924 
2925 	// st_mutex doesn't need to be held here for state_soft_mask,
2926 	// it's unimportant if we race while reading this.
2927 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2928 	    sfp->need_poll)
2929 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2930 }
2931 
2932 static struct sfp *sfp_alloc(struct device *dev)
2933 {
2934 	struct sfp *sfp;
2935 
2936 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2937 	if (!sfp)
2938 		return ERR_PTR(-ENOMEM);
2939 
2940 	sfp->dev = dev;
2941 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2942 
2943 	mutex_init(&sfp->sm_mutex);
2944 	mutex_init(&sfp->st_mutex);
2945 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2946 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2947 
2948 	sfp_hwmon_init(sfp);
2949 
2950 	return sfp;
2951 }
2952 
2953 static void sfp_cleanup(void *data)
2954 {
2955 	struct sfp *sfp = data;
2956 
2957 	sfp_hwmon_exit(sfp);
2958 
2959 	cancel_delayed_work_sync(&sfp->poll);
2960 	cancel_delayed_work_sync(&sfp->timeout);
2961 	if (sfp->i2c_mii) {
2962 		mdiobus_unregister(sfp->i2c_mii);
2963 		mdiobus_free(sfp->i2c_mii);
2964 	}
2965 	if (sfp->i2c)
2966 		i2c_put_adapter(sfp->i2c);
2967 	kfree(sfp);
2968 }
2969 
2970 static int sfp_i2c_get(struct sfp *sfp)
2971 {
2972 	struct fwnode_handle *h;
2973 	struct i2c_adapter *i2c;
2974 	int err;
2975 
2976 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2977 	if (IS_ERR(h)) {
2978 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2979 		return -ENODEV;
2980 	}
2981 
2982 	i2c = i2c_get_adapter_by_fwnode(h);
2983 	if (!i2c) {
2984 		err = -EPROBE_DEFER;
2985 		goto put;
2986 	}
2987 
2988 	err = sfp_i2c_configure(sfp, i2c);
2989 	if (err)
2990 		i2c_put_adapter(i2c);
2991 put:
2992 	fwnode_handle_put(h);
2993 	return err;
2994 }
2995 
2996 static int sfp_probe(struct platform_device *pdev)
2997 {
2998 	const struct sff_data *sff;
2999 	char *sfp_irq_name;
3000 	struct sfp *sfp;
3001 	int err, i;
3002 
3003 	sfp = sfp_alloc(&pdev->dev);
3004 	if (IS_ERR(sfp))
3005 		return PTR_ERR(sfp);
3006 
3007 	platform_set_drvdata(pdev, sfp);
3008 
3009 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
3010 	if (err < 0)
3011 		return err;
3012 
3013 	sff = device_get_match_data(sfp->dev);
3014 	if (!sff)
3015 		sff = &sfp_data;
3016 
3017 	sfp->type = sff;
3018 
3019 	err = sfp_i2c_get(sfp);
3020 	if (err)
3021 		return err;
3022 
3023 	for (i = 0; i < GPIO_MAX; i++)
3024 		if (sff->gpios & BIT(i)) {
3025 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3026 					   gpio_names[i], gpio_flags[i]);
3027 			if (IS_ERR(sfp->gpio[i]))
3028 				return PTR_ERR(sfp->gpio[i]);
3029 		}
3030 
3031 	sfp->state_hw_mask = SFP_F_PRESENT;
3032 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
3033 
3034 	sfp->get_state = sfp_gpio_get_state;
3035 	sfp->set_state = sfp_gpio_set_state;
3036 
3037 	/* Modules that have no detect signal are always present */
3038 	if (!(sfp->gpio[GPIO_MODDEF0]))
3039 		sfp->get_state = sff_gpio_get_state;
3040 
3041 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3042 				 &sfp->max_power_mW);
3043 	if (sfp->max_power_mW < 1000) {
3044 		if (sfp->max_power_mW)
3045 			dev_warn(sfp->dev,
3046 				 "Firmware bug: host maximum power should be at least 1W\n");
3047 		sfp->max_power_mW = 1000;
3048 	}
3049 
3050 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3051 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3052 
3053 	/* Get the initial state, and always signal TX disable,
3054 	 * since the network interface will not be up.
3055 	 */
3056 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3057 
3058 	if (sfp->gpio[GPIO_RS0] &&
3059 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3060 		sfp->state |= SFP_F_RS0;
3061 	sfp_set_state(sfp, sfp->state);
3062 	sfp_module_tx_disable(sfp);
3063 	if (sfp->state & SFP_F_PRESENT) {
3064 		rtnl_lock();
3065 		sfp_sm_event(sfp, SFP_E_INSERT);
3066 		rtnl_unlock();
3067 	}
3068 
3069 	for (i = 0; i < GPIO_MAX; i++) {
3070 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3071 			continue;
3072 
3073 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3074 		if (sfp->gpio_irq[i] < 0) {
3075 			sfp->gpio_irq[i] = 0;
3076 			sfp->need_poll = true;
3077 			continue;
3078 		}
3079 
3080 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3081 					      "%s-%s", dev_name(sfp->dev),
3082 					      gpio_names[i]);
3083 
3084 		if (!sfp_irq_name)
3085 			return -ENOMEM;
3086 
3087 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3088 						NULL, sfp_irq,
3089 						IRQF_ONESHOT |
3090 						IRQF_TRIGGER_RISING |
3091 						IRQF_TRIGGER_FALLING,
3092 						sfp_irq_name, sfp);
3093 		if (err) {
3094 			sfp->gpio_irq[i] = 0;
3095 			sfp->need_poll = true;
3096 		}
3097 	}
3098 
3099 	if (sfp->need_poll)
3100 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3101 
3102 	/* We could have an issue in cases no Tx disable pin is available or
3103 	 * wired as modules using a laser as their light source will continue to
3104 	 * be active when the fiber is removed. This could be a safety issue and
3105 	 * we should at least warn the user about that.
3106 	 */
3107 	if (!sfp->gpio[GPIO_TX_DISABLE])
3108 		dev_warn(sfp->dev,
3109 			 "No tx_disable pin: SFP modules will always be emitting.\n");
3110 
3111 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3112 	if (!sfp->sfp_bus)
3113 		return -ENOMEM;
3114 
3115 	sfp_debugfs_init(sfp);
3116 
3117 	return 0;
3118 }
3119 
3120 static void sfp_remove(struct platform_device *pdev)
3121 {
3122 	struct sfp *sfp = platform_get_drvdata(pdev);
3123 
3124 	sfp_debugfs_exit(sfp);
3125 	sfp_unregister_socket(sfp->sfp_bus);
3126 
3127 	rtnl_lock();
3128 	sfp_sm_event(sfp, SFP_E_REMOVE);
3129 	rtnl_unlock();
3130 }
3131 
3132 static void sfp_shutdown(struct platform_device *pdev)
3133 {
3134 	struct sfp *sfp = platform_get_drvdata(pdev);
3135 	int i;
3136 
3137 	for (i = 0; i < GPIO_MAX; i++) {
3138 		if (!sfp->gpio_irq[i])
3139 			continue;
3140 
3141 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3142 	}
3143 
3144 	cancel_delayed_work_sync(&sfp->poll);
3145 	cancel_delayed_work_sync(&sfp->timeout);
3146 }
3147 
3148 static struct platform_driver sfp_driver = {
3149 	.probe = sfp_probe,
3150 	.remove = sfp_remove,
3151 	.shutdown = sfp_shutdown,
3152 	.driver = {
3153 		.name = "sfp",
3154 		.of_match_table = sfp_of_match,
3155 	},
3156 };
3157 
3158 static int sfp_init(void)
3159 {
3160 	poll_jiffies = msecs_to_jiffies(100);
3161 
3162 	return platform_driver_register(&sfp_driver);
3163 }
3164 module_init(sfp_init);
3165 
3166 static void sfp_exit(void)
3167 {
3168 	platform_driver_unregister(&sfp_driver);
3169 }
3170 module_exit(sfp_exit);
3171 
3172 MODULE_ALIAS("platform:sfp");
3173 MODULE_AUTHOR("Russell King");
3174 MODULE_LICENSE("GPL v2");
3175 MODULE_DESCRIPTION("SFP cage support");
3176