xref: /linux/drivers/net/phy/sfp.c (revision 79ac11393328fb1717d17c12e3c0eef0e9fa0647)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RS0,
28 	GPIO_RS1,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RS0 = BIT(GPIO_RS0),
36 	SFP_F_RS1 = BIT(GPIO_RS1),
37 
38 	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39 
40 	SFP_E_INSERT = 0,
41 	SFP_E_REMOVE,
42 	SFP_E_DEV_ATTACH,
43 	SFP_E_DEV_DETACH,
44 	SFP_E_DEV_DOWN,
45 	SFP_E_DEV_UP,
46 	SFP_E_TX_FAULT,
47 	SFP_E_TX_CLEAR,
48 	SFP_E_LOS_HIGH,
49 	SFP_E_LOS_LOW,
50 	SFP_E_TIMEOUT,
51 
52 	SFP_MOD_EMPTY = 0,
53 	SFP_MOD_ERROR,
54 	SFP_MOD_PROBE,
55 	SFP_MOD_WAITDEV,
56 	SFP_MOD_HPOWER,
57 	SFP_MOD_WAITPWR,
58 	SFP_MOD_PRESENT,
59 
60 	SFP_DEV_DETACHED = 0,
61 	SFP_DEV_DOWN,
62 	SFP_DEV_UP,
63 
64 	SFP_S_DOWN = 0,
65 	SFP_S_FAIL,
66 	SFP_S_WAIT,
67 	SFP_S_INIT,
68 	SFP_S_INIT_PHY,
69 	SFP_S_INIT_TX_FAULT,
70 	SFP_S_WAIT_LOS,
71 	SFP_S_LINK_UP,
72 	SFP_S_TX_FAULT,
73 	SFP_S_REINIT,
74 	SFP_S_TX_DISABLE,
75 };
76 
77 static const char  * const mod_state_strings[] = {
78 	[SFP_MOD_EMPTY] = "empty",
79 	[SFP_MOD_ERROR] = "error",
80 	[SFP_MOD_PROBE] = "probe",
81 	[SFP_MOD_WAITDEV] = "waitdev",
82 	[SFP_MOD_HPOWER] = "hpower",
83 	[SFP_MOD_WAITPWR] = "waitpwr",
84 	[SFP_MOD_PRESENT] = "present",
85 };
86 
87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 		return "Unknown module state";
91 	return mod_state_strings[mod_state];
92 }
93 
94 static const char * const dev_state_strings[] = {
95 	[SFP_DEV_DETACHED] = "detached",
96 	[SFP_DEV_DOWN] = "down",
97 	[SFP_DEV_UP] = "up",
98 };
99 
100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 		return "Unknown device state";
104 	return dev_state_strings[dev_state];
105 }
106 
107 static const char * const event_strings[] = {
108 	[SFP_E_INSERT] = "insert",
109 	[SFP_E_REMOVE] = "remove",
110 	[SFP_E_DEV_ATTACH] = "dev_attach",
111 	[SFP_E_DEV_DETACH] = "dev_detach",
112 	[SFP_E_DEV_DOWN] = "dev_down",
113 	[SFP_E_DEV_UP] = "dev_up",
114 	[SFP_E_TX_FAULT] = "tx_fault",
115 	[SFP_E_TX_CLEAR] = "tx_clear",
116 	[SFP_E_LOS_HIGH] = "los_high",
117 	[SFP_E_LOS_LOW] = "los_low",
118 	[SFP_E_TIMEOUT] = "timeout",
119 };
120 
121 static const char *event_to_str(unsigned short event)
122 {
123 	if (event >= ARRAY_SIZE(event_strings))
124 		return "Unknown event";
125 	return event_strings[event];
126 }
127 
128 static const char * const sm_state_strings[] = {
129 	[SFP_S_DOWN] = "down",
130 	[SFP_S_FAIL] = "fail",
131 	[SFP_S_WAIT] = "wait",
132 	[SFP_S_INIT] = "init",
133 	[SFP_S_INIT_PHY] = "init_phy",
134 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 	[SFP_S_WAIT_LOS] = "wait_los",
136 	[SFP_S_LINK_UP] = "link_up",
137 	[SFP_S_TX_FAULT] = "tx_fault",
138 	[SFP_S_REINIT] = "reinit",
139 	[SFP_S_TX_DISABLE] = "tx_disable",
140 };
141 
142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 		return "Unknown state";
146 	return sm_state_strings[sm_state];
147 }
148 
149 static const char *gpio_names[] = {
150 	"mod-def0",
151 	"los",
152 	"tx-fault",
153 	"tx-disable",
154 	"rate-select0",
155 	"rate-select1",
156 };
157 
158 static const enum gpiod_flags gpio_flags[] = {
159 	GPIOD_IN,
160 	GPIOD_IN,
161 	GPIOD_IN,
162 	GPIOD_ASIS,
163 	GPIOD_ASIS,
164 	GPIOD_ASIS,
165 };
166 
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168  * non-cooled module to initialise its laser safety circuitry. We wait
169  * an initial T_WAIT period before we check the tx fault to give any PHY
170  * on board (for a copper SFP) time to initialise.
171  */
172 #define T_WAIT			msecs_to_jiffies(50)
173 #define T_START_UP		msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175 
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177  * an indicated TX_FAULT.
178  */
179 #define T_RESET_US		10
180 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181 
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183  * time. If the TX_FAULT signal is not deasserted after this number of
184  * attempts at clearing it, we decide that the module is faulty.
185  * N_FAULT is the same but after the module has initialised.
186  */
187 #define N_FAULT_INIT		5
188 #define N_FAULT			5
189 
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191  * R_PHY_RETRY is the number of attempts.
192  */
193 #define T_PHY_RETRY		msecs_to_jiffies(50)
194 #define R_PHY_RETRY		25
195 
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197  * the same length on the PCB, which means it's possible for MOD DEF 0 to
198  * connect before the I2C bus on MOD DEF 1/2.
199  *
200  * The SFF-8472 specifies t_serial ("Time from power on until module is
201  * ready for data transmission over the two wire serial bus.") as 300ms.
202  */
203 #define T_SERIAL		msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT	10
207 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW	12
209 
210 /* SFP modules appear to always have their PHY configured for bus address
211  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214  */
215 #define SFP_PHY_ADDR		22
216 #define SFP_PHY_ADDR_ROLLBALL	17
217 
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219  * at a time. Some SFP modules and also some Linux I2C drivers do not like
220  * reads longer than 16 bytes.
221  */
222 #define SFP_EEPROM_BLOCK_SIZE	16
223 
224 struct sff_data {
225 	unsigned int gpios;
226 	bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228 
229 struct sfp {
230 	struct device *dev;
231 	struct i2c_adapter *i2c;
232 	struct mii_bus *i2c_mii;
233 	struct sfp_bus *sfp_bus;
234 	enum mdio_i2c_proto mdio_protocol;
235 	struct phy_device *mod_phy;
236 	const struct sff_data *type;
237 	size_t i2c_block_size;
238 	u32 max_power_mW;
239 
240 	unsigned int (*get_state)(struct sfp *);
241 	void (*set_state)(struct sfp *, unsigned int);
242 	int (*read)(struct sfp *, bool, u8, void *, size_t);
243 	int (*write)(struct sfp *, bool, u8, void *, size_t);
244 
245 	struct gpio_desc *gpio[GPIO_MAX];
246 	int gpio_irq[GPIO_MAX];
247 
248 	bool need_poll;
249 
250 	/* Access rules:
251 	 * state_hw_drive: st_mutex held
252 	 * state_hw_mask: st_mutex held
253 	 * state_soft_mask: st_mutex held
254 	 * state: st_mutex held unless reading input bits
255 	 */
256 	struct mutex st_mutex;			/* Protects state */
257 	unsigned int state_hw_drive;
258 	unsigned int state_hw_mask;
259 	unsigned int state_soft_mask;
260 	unsigned int state_ignore_mask;
261 	unsigned int state;
262 
263 	struct delayed_work poll;
264 	struct delayed_work timeout;
265 	struct mutex sm_mutex;			/* Protects state machine */
266 	unsigned char sm_mod_state;
267 	unsigned char sm_mod_tries_init;
268 	unsigned char sm_mod_tries;
269 	unsigned char sm_dev_state;
270 	unsigned short sm_state;
271 	unsigned char sm_fault_retries;
272 	unsigned char sm_phy_retries;
273 
274 	struct sfp_eeprom_id id;
275 	unsigned int module_power_mW;
276 	unsigned int module_t_start_up;
277 	unsigned int phy_t_retry;
278 
279 	unsigned int rate_kbd;
280 	unsigned int rs_threshold_kbd;
281 	unsigned int rs_state_mask;
282 
283 	bool have_a2;
284 
285 	const struct sfp_quirk *quirk;
286 
287 #if IS_ENABLED(CONFIG_HWMON)
288 	struct sfp_diag diag;
289 	struct delayed_work hwmon_probe;
290 	unsigned int hwmon_tries;
291 	struct device *hwmon_dev;
292 	char *hwmon_name;
293 #endif
294 
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 	struct dentry *debugfs_dir;
297 #endif
298 };
299 
300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305 
306 static const struct sff_data sff_data = {
307 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 	.module_supported = sff_module_supported,
309 };
310 
311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 	if (id->base.phys_id == SFF8024_ID_SFP &&
314 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 		return true;
316 
317 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 	 * as supported based on vendor name and pn match.
320 	 */
321 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
324 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
325 		return true;
326 
327 	return false;
328 }
329 
330 static const struct sff_data sfp_data = {
331 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 	.module_supported = sfp_module_supported,
334 };
335 
336 static const struct of_device_id sfp_of_match[] = {
337 	{ .compatible = "sff,sff", .data = &sff_data, },
338 	{ .compatible = "sff,sfp", .data = &sfp_data, },
339 	{ },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342 
343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347 
348 static void sfp_fixup_ignore_los(struct sfp *sfp)
349 {
350 	/* This forces LOS to zero, so we ignore transitions */
351 	sfp->state_ignore_mask |= SFP_F_LOS;
352 	/* Make sure that LOS options are clear */
353 	sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
354 					    SFP_OPTIONS_LOS_NORMAL);
355 }
356 
357 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
358 {
359 	sfp->state_ignore_mask |= SFP_F_TX_FAULT;
360 }
361 
362 static void sfp_fixup_nokia(struct sfp *sfp)
363 {
364 	sfp_fixup_long_startup(sfp);
365 	sfp_fixup_ignore_los(sfp);
366 }
367 
368 // For 10GBASE-T short-reach modules
369 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
370 {
371 	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
372 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
373 }
374 
375 static void sfp_fixup_rollball(struct sfp *sfp)
376 {
377 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
378 
379 	/* RollBall modules may disallow access to PHY registers for up to 25
380 	 * seconds, and the reads return 0xffff before that. Increase the time
381 	 * between PHY probe retries from 50ms to 1s so that we will wait for
382 	 * the PHY for a sufficient amount of time.
383 	 */
384 	sfp->phy_t_retry = msecs_to_jiffies(1000);
385 }
386 
387 static void sfp_fixup_fs_10gt(struct sfp *sfp)
388 {
389 	sfp_fixup_10gbaset_30m(sfp);
390 	sfp_fixup_rollball(sfp);
391 }
392 
393 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
394 {
395 	/* Ignore the TX_FAULT and LOS signals on this module.
396 	 * these are possibly used for other purposes on this
397 	 * module, e.g. a serial port.
398 	 */
399 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
400 }
401 
402 static void sfp_fixup_rollball_cc(struct sfp *sfp)
403 {
404 	sfp_fixup_rollball(sfp);
405 
406 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
407 	 * burned in EEPROM. For PHY probing we need the correct one.
408 	 */
409 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
410 }
411 
412 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
413 				unsigned long *modes,
414 				unsigned long *interfaces)
415 {
416 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
417 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
418 }
419 
420 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
421 				      unsigned long *modes,
422 				      unsigned long *interfaces)
423 {
424 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
425 }
426 
427 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
428 			       unsigned long *modes,
429 			       unsigned long *interfaces)
430 {
431 	/* Copper 2.5G SFP */
432 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
433 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
434 	sfp_quirk_disable_autoneg(id, modes, interfaces);
435 }
436 
437 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
438 				      unsigned long *modes,
439 				      unsigned long *interfaces)
440 {
441 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
442 	 * types including 10G Ethernet which is not truth. So clear all claimed
443 	 * modes and set only one mode which module supports: 1000baseX_Full.
444 	 */
445 	linkmode_zero(modes);
446 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
447 }
448 
449 #define SFP_QUIRK(_v, _p, _m, _f) \
450 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
451 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
452 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
453 
454 static const struct sfp_quirk sfp_quirks[] = {
455 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
456 	// report 2500MBd NRZ in their EEPROM
457 	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
458 
459 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
460 	// NRZ in their EEPROM
461 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
462 		  sfp_fixup_nokia),
463 
464 	// Fiberstore SFP-10G-T doesn't identify as copper, and uses the
465 	// Rollball protocol to talk to the PHY.
466 	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
467 
468 	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
469 	// NRZ in their EEPROM
470 	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
471 		  sfp_fixup_ignore_tx_fault),
472 
473 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
474 
475 	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
476 	// 2600MBd in their EERPOM
477 	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
478 
479 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
480 	// their EEPROM
481 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
482 		  sfp_fixup_ignore_tx_fault),
483 
484 	// FS 2.5G Base-T
485 	SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
486 
487 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
488 	// 2500MBd NRZ in their EEPROM
489 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
490 
491 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
492 
493 	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
494 	// Rollball protocol to talk to the PHY.
495 	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
496 	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
497 
498 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
499 	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
500 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
501 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
502 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
503 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
504 };
505 
506 static size_t sfp_strlen(const char *str, size_t maxlen)
507 {
508 	size_t size, i;
509 
510 	/* Trailing characters should be filled with space chars, but
511 	 * some manufacturers can't read SFF-8472 and use NUL.
512 	 */
513 	for (i = 0, size = 0; i < maxlen; i++)
514 		if (str[i] != ' ' && str[i] != '\0')
515 			size = i + 1;
516 
517 	return size;
518 }
519 
520 static bool sfp_match(const char *qs, const char *str, size_t len)
521 {
522 	if (!qs)
523 		return true;
524 	if (strlen(qs) != len)
525 		return false;
526 	return !strncmp(qs, str, len);
527 }
528 
529 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
530 {
531 	const struct sfp_quirk *q;
532 	unsigned int i;
533 	size_t vs, ps;
534 
535 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
536 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
537 
538 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
539 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
540 		    sfp_match(q->part, id->base.vendor_pn, ps))
541 			return q;
542 
543 	return NULL;
544 }
545 
546 static unsigned long poll_jiffies;
547 
548 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
549 {
550 	unsigned int i, state, v;
551 
552 	for (i = state = 0; i < GPIO_MAX; i++) {
553 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
554 			continue;
555 
556 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
557 		if (v)
558 			state |= BIT(i);
559 	}
560 
561 	return state;
562 }
563 
564 static unsigned int sff_gpio_get_state(struct sfp *sfp)
565 {
566 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
567 }
568 
569 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
570 {
571 	unsigned int drive;
572 
573 	if (state & SFP_F_PRESENT)
574 		/* If the module is present, drive the requested signals */
575 		drive = sfp->state_hw_drive;
576 	else
577 		/* Otherwise, let them float to the pull-ups */
578 		drive = 0;
579 
580 	if (sfp->gpio[GPIO_TX_DISABLE]) {
581 		if (drive & SFP_F_TX_DISABLE)
582 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
583 					       state & SFP_F_TX_DISABLE);
584 		else
585 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
586 	}
587 
588 	if (sfp->gpio[GPIO_RS0]) {
589 		if (drive & SFP_F_RS0)
590 			gpiod_direction_output(sfp->gpio[GPIO_RS0],
591 					       state & SFP_F_RS0);
592 		else
593 			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
594 	}
595 
596 	if (sfp->gpio[GPIO_RS1]) {
597 		if (drive & SFP_F_RS1)
598 			gpiod_direction_output(sfp->gpio[GPIO_RS1],
599 					       state & SFP_F_RS1);
600 		else
601 			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
602 	}
603 }
604 
605 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
606 			size_t len)
607 {
608 	struct i2c_msg msgs[2];
609 	u8 bus_addr = a2 ? 0x51 : 0x50;
610 	size_t block_size = sfp->i2c_block_size;
611 	size_t this_len;
612 	int ret;
613 
614 	msgs[0].addr = bus_addr;
615 	msgs[0].flags = 0;
616 	msgs[0].len = 1;
617 	msgs[0].buf = &dev_addr;
618 	msgs[1].addr = bus_addr;
619 	msgs[1].flags = I2C_M_RD;
620 	msgs[1].len = len;
621 	msgs[1].buf = buf;
622 
623 	while (len) {
624 		this_len = len;
625 		if (this_len > block_size)
626 			this_len = block_size;
627 
628 		msgs[1].len = this_len;
629 
630 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
631 		if (ret < 0)
632 			return ret;
633 
634 		if (ret != ARRAY_SIZE(msgs))
635 			break;
636 
637 		msgs[1].buf += this_len;
638 		dev_addr += this_len;
639 		len -= this_len;
640 	}
641 
642 	return msgs[1].buf - (u8 *)buf;
643 }
644 
645 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
646 	size_t len)
647 {
648 	struct i2c_msg msgs[1];
649 	u8 bus_addr = a2 ? 0x51 : 0x50;
650 	int ret;
651 
652 	msgs[0].addr = bus_addr;
653 	msgs[0].flags = 0;
654 	msgs[0].len = 1 + len;
655 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
656 	if (!msgs[0].buf)
657 		return -ENOMEM;
658 
659 	msgs[0].buf[0] = dev_addr;
660 	memcpy(&msgs[0].buf[1], buf, len);
661 
662 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
663 
664 	kfree(msgs[0].buf);
665 
666 	if (ret < 0)
667 		return ret;
668 
669 	return ret == ARRAY_SIZE(msgs) ? len : 0;
670 }
671 
672 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
673 {
674 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
675 		return -EINVAL;
676 
677 	sfp->i2c = i2c;
678 	sfp->read = sfp_i2c_read;
679 	sfp->write = sfp_i2c_write;
680 
681 	return 0;
682 }
683 
684 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
685 {
686 	struct mii_bus *i2c_mii;
687 	int ret;
688 
689 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
690 	if (IS_ERR(i2c_mii))
691 		return PTR_ERR(i2c_mii);
692 
693 	i2c_mii->name = "SFP I2C Bus";
694 	i2c_mii->phy_mask = ~0;
695 
696 	ret = mdiobus_register(i2c_mii);
697 	if (ret < 0) {
698 		mdiobus_free(i2c_mii);
699 		return ret;
700 	}
701 
702 	sfp->i2c_mii = i2c_mii;
703 
704 	return 0;
705 }
706 
707 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
708 {
709 	mdiobus_unregister(sfp->i2c_mii);
710 	sfp->i2c_mii = NULL;
711 }
712 
713 /* Interface */
714 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
715 {
716 	return sfp->read(sfp, a2, addr, buf, len);
717 }
718 
719 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
720 {
721 	return sfp->write(sfp, a2, addr, buf, len);
722 }
723 
724 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
725 {
726 	int ret;
727 	u8 old, v;
728 
729 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
730 	if (ret != sizeof(old))
731 		return ret;
732 
733 	v = (old & ~mask) | (val & mask);
734 	if (v == old)
735 		return sizeof(v);
736 
737 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
738 }
739 
740 static unsigned int sfp_soft_get_state(struct sfp *sfp)
741 {
742 	unsigned int state = 0;
743 	u8 status;
744 	int ret;
745 
746 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
747 	if (ret == sizeof(status)) {
748 		if (status & SFP_STATUS_RX_LOS)
749 			state |= SFP_F_LOS;
750 		if (status & SFP_STATUS_TX_FAULT)
751 			state |= SFP_F_TX_FAULT;
752 	} else {
753 		dev_err_ratelimited(sfp->dev,
754 				    "failed to read SFP soft status: %pe\n",
755 				    ERR_PTR(ret));
756 		/* Preserve the current state */
757 		state = sfp->state;
758 	}
759 
760 	return state & sfp->state_soft_mask;
761 }
762 
763 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
764 			       unsigned int soft)
765 {
766 	u8 mask = 0;
767 	u8 val = 0;
768 
769 	if (soft & SFP_F_TX_DISABLE)
770 		mask |= SFP_STATUS_TX_DISABLE_FORCE;
771 	if (state & SFP_F_TX_DISABLE)
772 		val |= SFP_STATUS_TX_DISABLE_FORCE;
773 
774 	if (soft & SFP_F_RS0)
775 		mask |= SFP_STATUS_RS0_SELECT;
776 	if (state & SFP_F_RS0)
777 		val |= SFP_STATUS_RS0_SELECT;
778 
779 	if (mask)
780 		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
781 
782 	val = mask = 0;
783 	if (soft & SFP_F_RS1)
784 		mask |= SFP_EXT_STATUS_RS1_SELECT;
785 	if (state & SFP_F_RS1)
786 		val |= SFP_EXT_STATUS_RS1_SELECT;
787 
788 	if (mask)
789 		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
790 }
791 
792 static void sfp_soft_start_poll(struct sfp *sfp)
793 {
794 	const struct sfp_eeprom_id *id = &sfp->id;
795 	unsigned int mask = 0;
796 
797 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
798 		mask |= SFP_F_TX_DISABLE;
799 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
800 		mask |= SFP_F_TX_FAULT;
801 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
802 		mask |= SFP_F_LOS;
803 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
804 		mask |= sfp->rs_state_mask;
805 
806 	mutex_lock(&sfp->st_mutex);
807 	// Poll the soft state for hardware pins we want to ignore
808 	sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
809 			       mask;
810 
811 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
812 	    !sfp->need_poll)
813 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
814 	mutex_unlock(&sfp->st_mutex);
815 }
816 
817 static void sfp_soft_stop_poll(struct sfp *sfp)
818 {
819 	mutex_lock(&sfp->st_mutex);
820 	sfp->state_soft_mask = 0;
821 	mutex_unlock(&sfp->st_mutex);
822 }
823 
824 /* sfp_get_state() - must be called with st_mutex held, or in the
825  * initialisation path.
826  */
827 static unsigned int sfp_get_state(struct sfp *sfp)
828 {
829 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
830 	unsigned int state;
831 
832 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
833 	if (state & SFP_F_PRESENT && soft)
834 		state |= sfp_soft_get_state(sfp);
835 
836 	return state;
837 }
838 
839 /* sfp_set_state() - must be called with st_mutex held, or in the
840  * initialisation path.
841  */
842 static void sfp_set_state(struct sfp *sfp, unsigned int state)
843 {
844 	unsigned int soft;
845 
846 	sfp->set_state(sfp, state);
847 
848 	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
849 	if (state & SFP_F_PRESENT && soft)
850 		sfp_soft_set_state(sfp, state, soft);
851 }
852 
853 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
854 {
855 	mutex_lock(&sfp->st_mutex);
856 	sfp->state = (sfp->state & ~mask) | set;
857 	sfp_set_state(sfp, sfp->state);
858 	mutex_unlock(&sfp->st_mutex);
859 }
860 
861 static unsigned int sfp_check(void *buf, size_t len)
862 {
863 	u8 *p, check;
864 
865 	for (p = buf, check = 0; len; p++, len--)
866 		check += *p;
867 
868 	return check;
869 }
870 
871 /* hwmon */
872 #if IS_ENABLED(CONFIG_HWMON)
873 static umode_t sfp_hwmon_is_visible(const void *data,
874 				    enum hwmon_sensor_types type,
875 				    u32 attr, int channel)
876 {
877 	const struct sfp *sfp = data;
878 
879 	switch (type) {
880 	case hwmon_temp:
881 		switch (attr) {
882 		case hwmon_temp_min_alarm:
883 		case hwmon_temp_max_alarm:
884 		case hwmon_temp_lcrit_alarm:
885 		case hwmon_temp_crit_alarm:
886 		case hwmon_temp_min:
887 		case hwmon_temp_max:
888 		case hwmon_temp_lcrit:
889 		case hwmon_temp_crit:
890 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
891 				return 0;
892 			fallthrough;
893 		case hwmon_temp_input:
894 		case hwmon_temp_label:
895 			return 0444;
896 		default:
897 			return 0;
898 		}
899 	case hwmon_in:
900 		switch (attr) {
901 		case hwmon_in_min_alarm:
902 		case hwmon_in_max_alarm:
903 		case hwmon_in_lcrit_alarm:
904 		case hwmon_in_crit_alarm:
905 		case hwmon_in_min:
906 		case hwmon_in_max:
907 		case hwmon_in_lcrit:
908 		case hwmon_in_crit:
909 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
910 				return 0;
911 			fallthrough;
912 		case hwmon_in_input:
913 		case hwmon_in_label:
914 			return 0444;
915 		default:
916 			return 0;
917 		}
918 	case hwmon_curr:
919 		switch (attr) {
920 		case hwmon_curr_min_alarm:
921 		case hwmon_curr_max_alarm:
922 		case hwmon_curr_lcrit_alarm:
923 		case hwmon_curr_crit_alarm:
924 		case hwmon_curr_min:
925 		case hwmon_curr_max:
926 		case hwmon_curr_lcrit:
927 		case hwmon_curr_crit:
928 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
929 				return 0;
930 			fallthrough;
931 		case hwmon_curr_input:
932 		case hwmon_curr_label:
933 			return 0444;
934 		default:
935 			return 0;
936 		}
937 	case hwmon_power:
938 		/* External calibration of receive power requires
939 		 * floating point arithmetic. Doing that in the kernel
940 		 * is not easy, so just skip it. If the module does
941 		 * not require external calibration, we can however
942 		 * show receiver power, since FP is then not needed.
943 		 */
944 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
945 		    channel == 1)
946 			return 0;
947 		switch (attr) {
948 		case hwmon_power_min_alarm:
949 		case hwmon_power_max_alarm:
950 		case hwmon_power_lcrit_alarm:
951 		case hwmon_power_crit_alarm:
952 		case hwmon_power_min:
953 		case hwmon_power_max:
954 		case hwmon_power_lcrit:
955 		case hwmon_power_crit:
956 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
957 				return 0;
958 			fallthrough;
959 		case hwmon_power_input:
960 		case hwmon_power_label:
961 			return 0444;
962 		default:
963 			return 0;
964 		}
965 	default:
966 		return 0;
967 	}
968 }
969 
970 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
971 {
972 	__be16 val;
973 	int err;
974 
975 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
976 	if (err < 0)
977 		return err;
978 
979 	*value = be16_to_cpu(val);
980 
981 	return 0;
982 }
983 
984 static void sfp_hwmon_to_rx_power(long *value)
985 {
986 	*value = DIV_ROUND_CLOSEST(*value, 10);
987 }
988 
989 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
990 				long *value)
991 {
992 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
993 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
994 }
995 
996 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
997 {
998 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
999 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
1000 
1001 	if (*value >= 0x8000)
1002 		*value -= 0x10000;
1003 
1004 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1005 }
1006 
1007 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1008 {
1009 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1010 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
1011 
1012 	*value = DIV_ROUND_CLOSEST(*value, 10);
1013 }
1014 
1015 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1016 {
1017 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1018 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1019 
1020 	*value = DIV_ROUND_CLOSEST(*value, 500);
1021 }
1022 
1023 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1024 {
1025 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1026 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1027 
1028 	*value = DIV_ROUND_CLOSEST(*value, 10);
1029 }
1030 
1031 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1032 {
1033 	int err;
1034 
1035 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1036 	if (err < 0)
1037 		return err;
1038 
1039 	sfp_hwmon_calibrate_temp(sfp, value);
1040 
1041 	return 0;
1042 }
1043 
1044 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1045 {
1046 	int err;
1047 
1048 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1049 	if (err < 0)
1050 		return err;
1051 
1052 	sfp_hwmon_calibrate_vcc(sfp, value);
1053 
1054 	return 0;
1055 }
1056 
1057 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1058 {
1059 	int err;
1060 
1061 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1062 	if (err < 0)
1063 		return err;
1064 
1065 	sfp_hwmon_calibrate_bias(sfp, value);
1066 
1067 	return 0;
1068 }
1069 
1070 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1071 {
1072 	int err;
1073 
1074 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1075 	if (err < 0)
1076 		return err;
1077 
1078 	sfp_hwmon_calibrate_tx_power(sfp, value);
1079 
1080 	return 0;
1081 }
1082 
1083 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1084 {
1085 	int err;
1086 
1087 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1088 	if (err < 0)
1089 		return err;
1090 
1091 	sfp_hwmon_to_rx_power(value);
1092 
1093 	return 0;
1094 }
1095 
1096 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1097 {
1098 	u8 status;
1099 	int err;
1100 
1101 	switch (attr) {
1102 	case hwmon_temp_input:
1103 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1104 
1105 	case hwmon_temp_lcrit:
1106 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1107 		sfp_hwmon_calibrate_temp(sfp, value);
1108 		return 0;
1109 
1110 	case hwmon_temp_min:
1111 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1112 		sfp_hwmon_calibrate_temp(sfp, value);
1113 		return 0;
1114 	case hwmon_temp_max:
1115 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1116 		sfp_hwmon_calibrate_temp(sfp, value);
1117 		return 0;
1118 
1119 	case hwmon_temp_crit:
1120 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1121 		sfp_hwmon_calibrate_temp(sfp, value);
1122 		return 0;
1123 
1124 	case hwmon_temp_lcrit_alarm:
1125 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1126 		if (err < 0)
1127 			return err;
1128 
1129 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1130 		return 0;
1131 
1132 	case hwmon_temp_min_alarm:
1133 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1134 		if (err < 0)
1135 			return err;
1136 
1137 		*value = !!(status & SFP_WARN0_TEMP_LOW);
1138 		return 0;
1139 
1140 	case hwmon_temp_max_alarm:
1141 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1142 		if (err < 0)
1143 			return err;
1144 
1145 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1146 		return 0;
1147 
1148 	case hwmon_temp_crit_alarm:
1149 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1150 		if (err < 0)
1151 			return err;
1152 
1153 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1154 		return 0;
1155 	default:
1156 		return -EOPNOTSUPP;
1157 	}
1158 
1159 	return -EOPNOTSUPP;
1160 }
1161 
1162 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1163 {
1164 	u8 status;
1165 	int err;
1166 
1167 	switch (attr) {
1168 	case hwmon_in_input:
1169 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1170 
1171 	case hwmon_in_lcrit:
1172 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1173 		sfp_hwmon_calibrate_vcc(sfp, value);
1174 		return 0;
1175 
1176 	case hwmon_in_min:
1177 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1178 		sfp_hwmon_calibrate_vcc(sfp, value);
1179 		return 0;
1180 
1181 	case hwmon_in_max:
1182 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1183 		sfp_hwmon_calibrate_vcc(sfp, value);
1184 		return 0;
1185 
1186 	case hwmon_in_crit:
1187 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1188 		sfp_hwmon_calibrate_vcc(sfp, value);
1189 		return 0;
1190 
1191 	case hwmon_in_lcrit_alarm:
1192 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1193 		if (err < 0)
1194 			return err;
1195 
1196 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1197 		return 0;
1198 
1199 	case hwmon_in_min_alarm:
1200 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1201 		if (err < 0)
1202 			return err;
1203 
1204 		*value = !!(status & SFP_WARN0_VCC_LOW);
1205 		return 0;
1206 
1207 	case hwmon_in_max_alarm:
1208 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1209 		if (err < 0)
1210 			return err;
1211 
1212 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1213 		return 0;
1214 
1215 	case hwmon_in_crit_alarm:
1216 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1217 		if (err < 0)
1218 			return err;
1219 
1220 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1221 		return 0;
1222 	default:
1223 		return -EOPNOTSUPP;
1224 	}
1225 
1226 	return -EOPNOTSUPP;
1227 }
1228 
1229 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1230 {
1231 	u8 status;
1232 	int err;
1233 
1234 	switch (attr) {
1235 	case hwmon_curr_input:
1236 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1237 
1238 	case hwmon_curr_lcrit:
1239 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1240 		sfp_hwmon_calibrate_bias(sfp, value);
1241 		return 0;
1242 
1243 	case hwmon_curr_min:
1244 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1245 		sfp_hwmon_calibrate_bias(sfp, value);
1246 		return 0;
1247 
1248 	case hwmon_curr_max:
1249 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1250 		sfp_hwmon_calibrate_bias(sfp, value);
1251 		return 0;
1252 
1253 	case hwmon_curr_crit:
1254 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1255 		sfp_hwmon_calibrate_bias(sfp, value);
1256 		return 0;
1257 
1258 	case hwmon_curr_lcrit_alarm:
1259 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1260 		if (err < 0)
1261 			return err;
1262 
1263 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1264 		return 0;
1265 
1266 	case hwmon_curr_min_alarm:
1267 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1268 		if (err < 0)
1269 			return err;
1270 
1271 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1272 		return 0;
1273 
1274 	case hwmon_curr_max_alarm:
1275 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1276 		if (err < 0)
1277 			return err;
1278 
1279 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1280 		return 0;
1281 
1282 	case hwmon_curr_crit_alarm:
1283 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1284 		if (err < 0)
1285 			return err;
1286 
1287 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1288 		return 0;
1289 	default:
1290 		return -EOPNOTSUPP;
1291 	}
1292 
1293 	return -EOPNOTSUPP;
1294 }
1295 
1296 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1297 {
1298 	u8 status;
1299 	int err;
1300 
1301 	switch (attr) {
1302 	case hwmon_power_input:
1303 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1304 
1305 	case hwmon_power_lcrit:
1306 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1307 		sfp_hwmon_calibrate_tx_power(sfp, value);
1308 		return 0;
1309 
1310 	case hwmon_power_min:
1311 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1312 		sfp_hwmon_calibrate_tx_power(sfp, value);
1313 		return 0;
1314 
1315 	case hwmon_power_max:
1316 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1317 		sfp_hwmon_calibrate_tx_power(sfp, value);
1318 		return 0;
1319 
1320 	case hwmon_power_crit:
1321 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1322 		sfp_hwmon_calibrate_tx_power(sfp, value);
1323 		return 0;
1324 
1325 	case hwmon_power_lcrit_alarm:
1326 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1327 		if (err < 0)
1328 			return err;
1329 
1330 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1331 		return 0;
1332 
1333 	case hwmon_power_min_alarm:
1334 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1335 		if (err < 0)
1336 			return err;
1337 
1338 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1339 		return 0;
1340 
1341 	case hwmon_power_max_alarm:
1342 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1343 		if (err < 0)
1344 			return err;
1345 
1346 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1347 		return 0;
1348 
1349 	case hwmon_power_crit_alarm:
1350 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1351 		if (err < 0)
1352 			return err;
1353 
1354 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1355 		return 0;
1356 	default:
1357 		return -EOPNOTSUPP;
1358 	}
1359 
1360 	return -EOPNOTSUPP;
1361 }
1362 
1363 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1364 {
1365 	u8 status;
1366 	int err;
1367 
1368 	switch (attr) {
1369 	case hwmon_power_input:
1370 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1371 
1372 	case hwmon_power_lcrit:
1373 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1374 		sfp_hwmon_to_rx_power(value);
1375 		return 0;
1376 
1377 	case hwmon_power_min:
1378 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1379 		sfp_hwmon_to_rx_power(value);
1380 		return 0;
1381 
1382 	case hwmon_power_max:
1383 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1384 		sfp_hwmon_to_rx_power(value);
1385 		return 0;
1386 
1387 	case hwmon_power_crit:
1388 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1389 		sfp_hwmon_to_rx_power(value);
1390 		return 0;
1391 
1392 	case hwmon_power_lcrit_alarm:
1393 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1394 		if (err < 0)
1395 			return err;
1396 
1397 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1398 		return 0;
1399 
1400 	case hwmon_power_min_alarm:
1401 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1402 		if (err < 0)
1403 			return err;
1404 
1405 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1406 		return 0;
1407 
1408 	case hwmon_power_max_alarm:
1409 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1410 		if (err < 0)
1411 			return err;
1412 
1413 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1414 		return 0;
1415 
1416 	case hwmon_power_crit_alarm:
1417 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1418 		if (err < 0)
1419 			return err;
1420 
1421 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1422 		return 0;
1423 	default:
1424 		return -EOPNOTSUPP;
1425 	}
1426 
1427 	return -EOPNOTSUPP;
1428 }
1429 
1430 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1431 			  u32 attr, int channel, long *value)
1432 {
1433 	struct sfp *sfp = dev_get_drvdata(dev);
1434 
1435 	switch (type) {
1436 	case hwmon_temp:
1437 		return sfp_hwmon_temp(sfp, attr, value);
1438 	case hwmon_in:
1439 		return sfp_hwmon_vcc(sfp, attr, value);
1440 	case hwmon_curr:
1441 		return sfp_hwmon_bias(sfp, attr, value);
1442 	case hwmon_power:
1443 		switch (channel) {
1444 		case 0:
1445 			return sfp_hwmon_tx_power(sfp, attr, value);
1446 		case 1:
1447 			return sfp_hwmon_rx_power(sfp, attr, value);
1448 		default:
1449 			return -EOPNOTSUPP;
1450 		}
1451 	default:
1452 		return -EOPNOTSUPP;
1453 	}
1454 }
1455 
1456 static const char *const sfp_hwmon_power_labels[] = {
1457 	"TX_power",
1458 	"RX_power",
1459 };
1460 
1461 static int sfp_hwmon_read_string(struct device *dev,
1462 				 enum hwmon_sensor_types type,
1463 				 u32 attr, int channel, const char **str)
1464 {
1465 	switch (type) {
1466 	case hwmon_curr:
1467 		switch (attr) {
1468 		case hwmon_curr_label:
1469 			*str = "bias";
1470 			return 0;
1471 		default:
1472 			return -EOPNOTSUPP;
1473 		}
1474 		break;
1475 	case hwmon_temp:
1476 		switch (attr) {
1477 		case hwmon_temp_label:
1478 			*str = "temperature";
1479 			return 0;
1480 		default:
1481 			return -EOPNOTSUPP;
1482 		}
1483 		break;
1484 	case hwmon_in:
1485 		switch (attr) {
1486 		case hwmon_in_label:
1487 			*str = "VCC";
1488 			return 0;
1489 		default:
1490 			return -EOPNOTSUPP;
1491 		}
1492 		break;
1493 	case hwmon_power:
1494 		switch (attr) {
1495 		case hwmon_power_label:
1496 			*str = sfp_hwmon_power_labels[channel];
1497 			return 0;
1498 		default:
1499 			return -EOPNOTSUPP;
1500 		}
1501 		break;
1502 	default:
1503 		return -EOPNOTSUPP;
1504 	}
1505 
1506 	return -EOPNOTSUPP;
1507 }
1508 
1509 static const struct hwmon_ops sfp_hwmon_ops = {
1510 	.is_visible = sfp_hwmon_is_visible,
1511 	.read = sfp_hwmon_read,
1512 	.read_string = sfp_hwmon_read_string,
1513 };
1514 
1515 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1516 	HWMON_CHANNEL_INFO(chip,
1517 			   HWMON_C_REGISTER_TZ),
1518 	HWMON_CHANNEL_INFO(in,
1519 			   HWMON_I_INPUT |
1520 			   HWMON_I_MAX | HWMON_I_MIN |
1521 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1522 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1523 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1524 			   HWMON_I_LABEL),
1525 	HWMON_CHANNEL_INFO(temp,
1526 			   HWMON_T_INPUT |
1527 			   HWMON_T_MAX | HWMON_T_MIN |
1528 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1529 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1530 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1531 			   HWMON_T_LABEL),
1532 	HWMON_CHANNEL_INFO(curr,
1533 			   HWMON_C_INPUT |
1534 			   HWMON_C_MAX | HWMON_C_MIN |
1535 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1536 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1537 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1538 			   HWMON_C_LABEL),
1539 	HWMON_CHANNEL_INFO(power,
1540 			   /* Transmit power */
1541 			   HWMON_P_INPUT |
1542 			   HWMON_P_MAX | HWMON_P_MIN |
1543 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1544 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1545 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1546 			   HWMON_P_LABEL,
1547 			   /* Receive power */
1548 			   HWMON_P_INPUT |
1549 			   HWMON_P_MAX | HWMON_P_MIN |
1550 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1551 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1552 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1553 			   HWMON_P_LABEL),
1554 	NULL,
1555 };
1556 
1557 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1558 	.ops = &sfp_hwmon_ops,
1559 	.info = sfp_hwmon_info,
1560 };
1561 
1562 static void sfp_hwmon_probe(struct work_struct *work)
1563 {
1564 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1565 	int err;
1566 
1567 	/* hwmon interface needs to access 16bit registers in atomic way to
1568 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1569 	 * possible to guarantee coherency because EEPROM is broken in such way
1570 	 * that does not support atomic 16bit read operation then we have to
1571 	 * skip registration of hwmon device.
1572 	 */
1573 	if (sfp->i2c_block_size < 2) {
1574 		dev_info(sfp->dev,
1575 			 "skipping hwmon device registration due to broken EEPROM\n");
1576 		dev_info(sfp->dev,
1577 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1578 		return;
1579 	}
1580 
1581 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1582 	if (err < 0) {
1583 		if (sfp->hwmon_tries--) {
1584 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1585 					 T_PROBE_RETRY_SLOW);
1586 		} else {
1587 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1588 				 ERR_PTR(err));
1589 		}
1590 		return;
1591 	}
1592 
1593 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1594 	if (IS_ERR(sfp->hwmon_name)) {
1595 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1596 		return;
1597 	}
1598 
1599 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1600 							 sfp->hwmon_name, sfp,
1601 							 &sfp_hwmon_chip_info,
1602 							 NULL);
1603 	if (IS_ERR(sfp->hwmon_dev))
1604 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1605 			PTR_ERR(sfp->hwmon_dev));
1606 }
1607 
1608 static int sfp_hwmon_insert(struct sfp *sfp)
1609 {
1610 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1611 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1612 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 static void sfp_hwmon_remove(struct sfp *sfp)
1619 {
1620 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1621 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1622 		hwmon_device_unregister(sfp->hwmon_dev);
1623 		sfp->hwmon_dev = NULL;
1624 		kfree(sfp->hwmon_name);
1625 	}
1626 }
1627 
1628 static int sfp_hwmon_init(struct sfp *sfp)
1629 {
1630 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1631 
1632 	return 0;
1633 }
1634 
1635 static void sfp_hwmon_exit(struct sfp *sfp)
1636 {
1637 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1638 }
1639 #else
1640 static int sfp_hwmon_insert(struct sfp *sfp)
1641 {
1642 	return 0;
1643 }
1644 
1645 static void sfp_hwmon_remove(struct sfp *sfp)
1646 {
1647 }
1648 
1649 static int sfp_hwmon_init(struct sfp *sfp)
1650 {
1651 	return 0;
1652 }
1653 
1654 static void sfp_hwmon_exit(struct sfp *sfp)
1655 {
1656 }
1657 #endif
1658 
1659 /* Helpers */
1660 static void sfp_module_tx_disable(struct sfp *sfp)
1661 {
1662 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1663 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1664 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1665 }
1666 
1667 static void sfp_module_tx_enable(struct sfp *sfp)
1668 {
1669 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1670 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1671 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1672 }
1673 
1674 #if IS_ENABLED(CONFIG_DEBUG_FS)
1675 static int sfp_debug_state_show(struct seq_file *s, void *data)
1676 {
1677 	struct sfp *sfp = s->private;
1678 
1679 	seq_printf(s, "Module state: %s\n",
1680 		   mod_state_to_str(sfp->sm_mod_state));
1681 	seq_printf(s, "Module probe attempts: %d %d\n",
1682 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1683 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1684 	seq_printf(s, "Device state: %s\n",
1685 		   dev_state_to_str(sfp->sm_dev_state));
1686 	seq_printf(s, "Main state: %s\n",
1687 		   sm_state_to_str(sfp->sm_state));
1688 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1689 		   sfp->sm_fault_retries);
1690 	seq_printf(s, "PHY probe remaining retries: %d\n",
1691 		   sfp->sm_phy_retries);
1692 	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1693 	seq_printf(s, "Rate select threshold: %u kBd\n",
1694 		   sfp->rs_threshold_kbd);
1695 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1696 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1697 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1698 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1699 	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1700 	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1701 	return 0;
1702 }
1703 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1704 
1705 static void sfp_debugfs_init(struct sfp *sfp)
1706 {
1707 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1708 
1709 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1710 			    &sfp_debug_state_fops);
1711 }
1712 
1713 static void sfp_debugfs_exit(struct sfp *sfp)
1714 {
1715 	debugfs_remove_recursive(sfp->debugfs_dir);
1716 }
1717 #else
1718 static void sfp_debugfs_init(struct sfp *sfp)
1719 {
1720 }
1721 
1722 static void sfp_debugfs_exit(struct sfp *sfp)
1723 {
1724 }
1725 #endif
1726 
1727 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1728 {
1729 	unsigned int state;
1730 
1731 	mutex_lock(&sfp->st_mutex);
1732 	state = sfp->state;
1733 	if (!(state & SFP_F_TX_DISABLE)) {
1734 		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1735 
1736 		udelay(T_RESET_US);
1737 
1738 		sfp_set_state(sfp, state);
1739 	}
1740 	mutex_unlock(&sfp->st_mutex);
1741 }
1742 
1743 /* SFP state machine */
1744 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1745 {
1746 	if (timeout)
1747 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1748 				 timeout);
1749 	else
1750 		cancel_delayed_work(&sfp->timeout);
1751 }
1752 
1753 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1754 			unsigned int timeout)
1755 {
1756 	sfp->sm_state = state;
1757 	sfp_sm_set_timer(sfp, timeout);
1758 }
1759 
1760 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1761 			    unsigned int timeout)
1762 {
1763 	sfp->sm_mod_state = state;
1764 	sfp_sm_set_timer(sfp, timeout);
1765 }
1766 
1767 static void sfp_sm_phy_detach(struct sfp *sfp)
1768 {
1769 	sfp_remove_phy(sfp->sfp_bus);
1770 	phy_device_remove(sfp->mod_phy);
1771 	phy_device_free(sfp->mod_phy);
1772 	sfp->mod_phy = NULL;
1773 }
1774 
1775 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1776 {
1777 	struct phy_device *phy;
1778 	int err;
1779 
1780 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1781 	if (phy == ERR_PTR(-ENODEV))
1782 		return PTR_ERR(phy);
1783 	if (IS_ERR(phy)) {
1784 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1785 		return PTR_ERR(phy);
1786 	}
1787 
1788 	/* Mark this PHY as being on a SFP module */
1789 	phy->is_on_sfp_module = true;
1790 
1791 	err = phy_device_register(phy);
1792 	if (err) {
1793 		phy_device_free(phy);
1794 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1795 			ERR_PTR(err));
1796 		return err;
1797 	}
1798 
1799 	err = sfp_add_phy(sfp->sfp_bus, phy);
1800 	if (err) {
1801 		phy_device_remove(phy);
1802 		phy_device_free(phy);
1803 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1804 		return err;
1805 	}
1806 
1807 	sfp->mod_phy = phy;
1808 
1809 	return 0;
1810 }
1811 
1812 static void sfp_sm_link_up(struct sfp *sfp)
1813 {
1814 	sfp_link_up(sfp->sfp_bus);
1815 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1816 }
1817 
1818 static void sfp_sm_link_down(struct sfp *sfp)
1819 {
1820 	sfp_link_down(sfp->sfp_bus);
1821 }
1822 
1823 static void sfp_sm_link_check_los(struct sfp *sfp)
1824 {
1825 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1826 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1827 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1828 	bool los = false;
1829 
1830 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1831 	 * are set, we assume that no LOS signal is available. If both are
1832 	 * set, we assume LOS is not implemented (and is meaningless.)
1833 	 */
1834 	if (los_options == los_inverted)
1835 		los = !(sfp->state & SFP_F_LOS);
1836 	else if (los_options == los_normal)
1837 		los = !!(sfp->state & SFP_F_LOS);
1838 
1839 	if (los)
1840 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1841 	else
1842 		sfp_sm_link_up(sfp);
1843 }
1844 
1845 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1846 {
1847 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1848 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1849 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1850 
1851 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1852 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1853 }
1854 
1855 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1856 {
1857 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1858 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1859 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1860 
1861 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1862 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1863 }
1864 
1865 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1866 {
1867 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1868 		dev_err(sfp->dev,
1869 			"module persistently indicates fault, disabling\n");
1870 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1871 	} else {
1872 		if (warn)
1873 			dev_err(sfp->dev, "module transmit fault indicated\n");
1874 
1875 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1876 	}
1877 }
1878 
1879 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1880 {
1881 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1882 		return sfp_i2c_mdiobus_create(sfp);
1883 
1884 	return 0;
1885 }
1886 
1887 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1888  * normally sits at I2C bus address 0x56, and may either be a clause 22
1889  * or clause 45 PHY.
1890  *
1891  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1892  * negotiation enabled, but some may be in 1000base-X - which is for the
1893  * PHY driver to determine.
1894  *
1895  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1896  * mode according to the negotiated line speed.
1897  */
1898 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1899 {
1900 	int err = 0;
1901 
1902 	switch (sfp->mdio_protocol) {
1903 	case MDIO_I2C_NONE:
1904 		break;
1905 
1906 	case MDIO_I2C_MARVELL_C22:
1907 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1908 		break;
1909 
1910 	case MDIO_I2C_C45:
1911 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1912 		break;
1913 
1914 	case MDIO_I2C_ROLLBALL:
1915 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1916 		break;
1917 	}
1918 
1919 	return err;
1920 }
1921 
1922 static int sfp_module_parse_power(struct sfp *sfp)
1923 {
1924 	u32 power_mW = 1000;
1925 	bool supports_a2;
1926 
1927 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1928 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1929 		power_mW = 1500;
1930 	/* Added in Rev 11.9, but there is no compliance code for this */
1931 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1932 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1933 		power_mW = 2000;
1934 
1935 	/* Power level 1 modules (max. 1W) are always supported. */
1936 	if (power_mW <= 1000) {
1937 		sfp->module_power_mW = power_mW;
1938 		return 0;
1939 	}
1940 
1941 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1942 				SFP_SFF8472_COMPLIANCE_NONE ||
1943 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1944 
1945 	if (power_mW > sfp->max_power_mW) {
1946 		/* Module power specification exceeds the allowed maximum. */
1947 		if (!supports_a2) {
1948 			/* The module appears not to implement bus address
1949 			 * 0xa2, so assume that the module powers up in the
1950 			 * indicated mode.
1951 			 */
1952 			dev_err(sfp->dev,
1953 				"Host does not support %u.%uW modules\n",
1954 				power_mW / 1000, (power_mW / 100) % 10);
1955 			return -EINVAL;
1956 		} else {
1957 			dev_warn(sfp->dev,
1958 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1959 				 power_mW / 1000, (power_mW / 100) % 10);
1960 			return 0;
1961 		}
1962 	}
1963 
1964 	if (!supports_a2) {
1965 		/* The module power level is below the host maximum and the
1966 		 * module appears not to implement bus address 0xa2, so assume
1967 		 * that the module powers up in the indicated mode.
1968 		 */
1969 		return 0;
1970 	}
1971 
1972 	/* If the module requires a higher power mode, but also requires
1973 	 * an address change sequence, warn the user that the module may
1974 	 * not be functional.
1975 	 */
1976 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1977 		dev_warn(sfp->dev,
1978 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1979 			 power_mW / 1000, (power_mW / 100) % 10);
1980 		return 0;
1981 	}
1982 
1983 	sfp->module_power_mW = power_mW;
1984 
1985 	return 0;
1986 }
1987 
1988 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1989 {
1990 	int err;
1991 
1992 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1993 			    SFP_EXT_STATUS_PWRLVL_SELECT,
1994 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1995 	if (err != sizeof(u8)) {
1996 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1997 			enable ? "en" : "dis", ERR_PTR(err));
1998 		return -EAGAIN;
1999 	}
2000 
2001 	if (enable)
2002 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2003 			 sfp->module_power_mW / 1000,
2004 			 (sfp->module_power_mW / 100) % 10);
2005 
2006 	return 0;
2007 }
2008 
2009 static void sfp_module_parse_rate_select(struct sfp *sfp)
2010 {
2011 	u8 rate_id;
2012 
2013 	sfp->rs_threshold_kbd = 0;
2014 	sfp->rs_state_mask = 0;
2015 
2016 	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2017 		/* No support for RateSelect */
2018 		return;
2019 
2020 	/* Default to INF-8074 RateSelect operation. The signalling threshold
2021 	 * rate is not well specified, so always select "Full Bandwidth", but
2022 	 * SFF-8079 reveals that it is understood that RS0 will be low for
2023 	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2024 	 * This method exists prior to SFF-8472.
2025 	 */
2026 	sfp->rs_state_mask = SFP_F_RS0;
2027 	sfp->rs_threshold_kbd = 1594;
2028 
2029 	/* Parse the rate identifier, which is complicated due to history:
2030 	 * SFF-8472 rev 9.5 marks this field as reserved.
2031 	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2032 	 *  compliance is not required.
2033 	 * SFF-8472 rev 10.2 defines this field using values 0..4
2034 	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2035 	 * and even values.
2036 	 */
2037 	rate_id = sfp->id.base.rate_id;
2038 	if (rate_id == 0)
2039 		/* Unspecified */
2040 		return;
2041 
2042 	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2043 	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2044 	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2045 	 */
2046 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2047 	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2048 	    rate_id == 3)
2049 		rate_id = SFF_RID_8431;
2050 
2051 	if (rate_id & SFF_RID_8079) {
2052 		/* SFF-8079 RateSelect / Application Select in conjunction with
2053 		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2054 		 * with only bit 0 used, which takes precedence over SFF-8472.
2055 		 */
2056 		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2057 			/* SFF-8079 Part 1 - rate selection between Fibre
2058 			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2059 			 * is high for 2125, so we have to subtract 1 to
2060 			 * include it.
2061 			 */
2062 			sfp->rs_threshold_kbd = 2125 - 1;
2063 			sfp->rs_state_mask = SFP_F_RS0;
2064 		}
2065 		return;
2066 	}
2067 
2068 	/* SFF-8472 rev 9.5 does not define the rate identifier */
2069 	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2070 		return;
2071 
2072 	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2073 	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2074 	 */
2075 	switch (rate_id) {
2076 	case SFF_RID_8431_RX_ONLY:
2077 		sfp->rs_threshold_kbd = 4250;
2078 		sfp->rs_state_mask = SFP_F_RS0;
2079 		break;
2080 
2081 	case SFF_RID_8431_TX_ONLY:
2082 		sfp->rs_threshold_kbd = 4250;
2083 		sfp->rs_state_mask = SFP_F_RS1;
2084 		break;
2085 
2086 	case SFF_RID_8431:
2087 		sfp->rs_threshold_kbd = 4250;
2088 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2089 		break;
2090 
2091 	case SFF_RID_10G8G:
2092 		sfp->rs_threshold_kbd = 9000;
2093 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2094 		break;
2095 	}
2096 }
2097 
2098 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2099  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2100  * not support multibyte reads from the EEPROM. Each multi-byte read
2101  * operation returns just one byte of EEPROM followed by zeros. There is
2102  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2103  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2104  * name and vendor id into EEPROM, so there is even no way to detect if
2105  * module is V-SOL V2801F. Therefore check for those zeros in the read
2106  * data and then based on check switch to reading EEPROM to one byte
2107  * at a time.
2108  */
2109 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2110 {
2111 	size_t i, block_size = sfp->i2c_block_size;
2112 
2113 	/* Already using byte IO */
2114 	if (block_size == 1)
2115 		return false;
2116 
2117 	for (i = 1; i < len; i += block_size) {
2118 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2119 			return false;
2120 	}
2121 	return true;
2122 }
2123 
2124 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2125 {
2126 	u8 check;
2127 	int err;
2128 
2129 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2130 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2131 	    id->base.connector != SFF8024_CONNECTOR_LC) {
2132 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2133 		id->base.phys_id = SFF8024_ID_SFF_8472;
2134 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2135 		id->base.connector = SFF8024_CONNECTOR_LC;
2136 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2137 		if (err != 3) {
2138 			dev_err(sfp->dev,
2139 				"Failed to rewrite module EEPROM: %pe\n",
2140 				ERR_PTR(err));
2141 			return err;
2142 		}
2143 
2144 		/* Cotsworks modules have been found to require a delay between write operations. */
2145 		mdelay(50);
2146 
2147 		/* Update base structure checksum */
2148 		check = sfp_check(&id->base, sizeof(id->base) - 1);
2149 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2150 		if (err != 1) {
2151 			dev_err(sfp->dev,
2152 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2153 				ERR_PTR(err));
2154 			return err;
2155 		}
2156 	}
2157 	return 0;
2158 }
2159 
2160 static int sfp_module_parse_sff8472(struct sfp *sfp)
2161 {
2162 	/* If the module requires address swap mode, warn about it */
2163 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2164 		dev_warn(sfp->dev,
2165 			 "module address swap to access page 0xA2 is not supported.\n");
2166 	else
2167 		sfp->have_a2 = true;
2168 
2169 	return 0;
2170 }
2171 
2172 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2173 {
2174 	/* SFP module inserted - read I2C data */
2175 	struct sfp_eeprom_id id;
2176 	bool cotsworks_sfbg;
2177 	unsigned int mask;
2178 	bool cotsworks;
2179 	u8 check;
2180 	int ret;
2181 
2182 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2183 
2184 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2185 	if (ret < 0) {
2186 		if (report)
2187 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2188 				ERR_PTR(ret));
2189 		return -EAGAIN;
2190 	}
2191 
2192 	if (ret != sizeof(id.base)) {
2193 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2194 		return -EAGAIN;
2195 	}
2196 
2197 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2198 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2199 	 * that EEPROM supports atomic 16bit read operation for diagnostic
2200 	 * fields, so do not switch to one byte reading at a time unless it
2201 	 * is really required and we have no other option.
2202 	 */
2203 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2204 		dev_info(sfp->dev,
2205 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2206 		dev_info(sfp->dev,
2207 			 "Switching to reading EEPROM to one byte at a time\n");
2208 		sfp->i2c_block_size = 1;
2209 
2210 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2211 		if (ret < 0) {
2212 			if (report)
2213 				dev_err(sfp->dev,
2214 					"failed to read EEPROM: %pe\n",
2215 					ERR_PTR(ret));
2216 			return -EAGAIN;
2217 		}
2218 
2219 		if (ret != sizeof(id.base)) {
2220 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2221 				ERR_PTR(ret));
2222 			return -EAGAIN;
2223 		}
2224 	}
2225 
2226 	/* Cotsworks do not seem to update the checksums when they
2227 	 * do the final programming with the final module part number,
2228 	 * serial number and date code.
2229 	 */
2230 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2231 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2232 
2233 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2234 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2235 	 * Cotsworks PN matches and bytes are not correct.
2236 	 */
2237 	if (cotsworks && cotsworks_sfbg) {
2238 		ret = sfp_cotsworks_fixup_check(sfp, &id);
2239 		if (ret < 0)
2240 			return ret;
2241 	}
2242 
2243 	/* Validate the checksum over the base structure */
2244 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2245 	if (check != id.base.cc_base) {
2246 		if (cotsworks) {
2247 			dev_warn(sfp->dev,
2248 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2249 				 check, id.base.cc_base);
2250 		} else {
2251 			dev_err(sfp->dev,
2252 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2253 				check, id.base.cc_base);
2254 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2255 				       16, 1, &id, sizeof(id), true);
2256 			return -EINVAL;
2257 		}
2258 	}
2259 
2260 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2261 	if (ret < 0) {
2262 		if (report)
2263 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2264 				ERR_PTR(ret));
2265 		return -EAGAIN;
2266 	}
2267 
2268 	if (ret != sizeof(id.ext)) {
2269 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2270 		return -EAGAIN;
2271 	}
2272 
2273 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2274 	if (check != id.ext.cc_ext) {
2275 		if (cotsworks) {
2276 			dev_warn(sfp->dev,
2277 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2278 				 check, id.ext.cc_ext);
2279 		} else {
2280 			dev_err(sfp->dev,
2281 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2282 				check, id.ext.cc_ext);
2283 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2284 				       16, 1, &id, sizeof(id), true);
2285 			memset(&id.ext, 0, sizeof(id.ext));
2286 		}
2287 	}
2288 
2289 	sfp->id = id;
2290 
2291 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2292 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2293 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2294 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2295 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2296 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2297 
2298 	/* Check whether we support this module */
2299 	if (!sfp->type->module_supported(&id)) {
2300 		dev_err(sfp->dev,
2301 			"module is not supported - phys id 0x%02x 0x%02x\n",
2302 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2303 		return -EINVAL;
2304 	}
2305 
2306 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2307 		ret = sfp_module_parse_sff8472(sfp);
2308 		if (ret < 0)
2309 			return ret;
2310 	}
2311 
2312 	/* Parse the module power requirement */
2313 	ret = sfp_module_parse_power(sfp);
2314 	if (ret < 0)
2315 		return ret;
2316 
2317 	sfp_module_parse_rate_select(sfp);
2318 
2319 	mask = SFP_F_PRESENT;
2320 	if (sfp->gpio[GPIO_TX_DISABLE])
2321 		mask |= SFP_F_TX_DISABLE;
2322 	if (sfp->gpio[GPIO_TX_FAULT])
2323 		mask |= SFP_F_TX_FAULT;
2324 	if (sfp->gpio[GPIO_LOS])
2325 		mask |= SFP_F_LOS;
2326 	if (sfp->gpio[GPIO_RS0])
2327 		mask |= SFP_F_RS0;
2328 	if (sfp->gpio[GPIO_RS1])
2329 		mask |= SFP_F_RS1;
2330 
2331 	sfp->module_t_start_up = T_START_UP;
2332 	sfp->phy_t_retry = T_PHY_RETRY;
2333 
2334 	sfp->state_ignore_mask = 0;
2335 
2336 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2337 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2338 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2339 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2340 		sfp->mdio_protocol = MDIO_I2C_C45;
2341 	else if (sfp->id.base.e1000_base_t)
2342 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2343 	else
2344 		sfp->mdio_protocol = MDIO_I2C_NONE;
2345 
2346 	sfp->quirk = sfp_lookup_quirk(&id);
2347 
2348 	mutex_lock(&sfp->st_mutex);
2349 	/* Initialise state bits to use from hardware */
2350 	sfp->state_hw_mask = mask;
2351 
2352 	/* We want to drive the rate select pins that the module is using */
2353 	sfp->state_hw_drive |= sfp->rs_state_mask;
2354 
2355 	if (sfp->quirk && sfp->quirk->fixup)
2356 		sfp->quirk->fixup(sfp);
2357 
2358 	sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2359 	mutex_unlock(&sfp->st_mutex);
2360 
2361 	return 0;
2362 }
2363 
2364 static void sfp_sm_mod_remove(struct sfp *sfp)
2365 {
2366 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2367 		sfp_module_remove(sfp->sfp_bus);
2368 
2369 	sfp_hwmon_remove(sfp);
2370 
2371 	memset(&sfp->id, 0, sizeof(sfp->id));
2372 	sfp->module_power_mW = 0;
2373 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2374 	sfp->have_a2 = false;
2375 
2376 	dev_info(sfp->dev, "module removed\n");
2377 }
2378 
2379 /* This state machine tracks the upstream's state */
2380 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2381 {
2382 	switch (sfp->sm_dev_state) {
2383 	default:
2384 		if (event == SFP_E_DEV_ATTACH)
2385 			sfp->sm_dev_state = SFP_DEV_DOWN;
2386 		break;
2387 
2388 	case SFP_DEV_DOWN:
2389 		if (event == SFP_E_DEV_DETACH)
2390 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2391 		else if (event == SFP_E_DEV_UP)
2392 			sfp->sm_dev_state = SFP_DEV_UP;
2393 		break;
2394 
2395 	case SFP_DEV_UP:
2396 		if (event == SFP_E_DEV_DETACH)
2397 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2398 		else if (event == SFP_E_DEV_DOWN)
2399 			sfp->sm_dev_state = SFP_DEV_DOWN;
2400 		break;
2401 	}
2402 }
2403 
2404 /* This state machine tracks the insert/remove state of the module, probes
2405  * the on-board EEPROM, and sets up the power level.
2406  */
2407 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2408 {
2409 	int err;
2410 
2411 	/* Handle remove event globally, it resets this state machine */
2412 	if (event == SFP_E_REMOVE) {
2413 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2414 			sfp_sm_mod_remove(sfp);
2415 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2416 		return;
2417 	}
2418 
2419 	/* Handle device detach globally */
2420 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2421 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2422 		if (sfp->module_power_mW > 1000 &&
2423 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2424 			sfp_sm_mod_hpower(sfp, false);
2425 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2426 		return;
2427 	}
2428 
2429 	switch (sfp->sm_mod_state) {
2430 	default:
2431 		if (event == SFP_E_INSERT) {
2432 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2433 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2434 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2435 		}
2436 		break;
2437 
2438 	case SFP_MOD_PROBE:
2439 		/* Wait for T_PROBE_INIT to time out */
2440 		if (event != SFP_E_TIMEOUT)
2441 			break;
2442 
2443 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2444 		if (err == -EAGAIN) {
2445 			if (sfp->sm_mod_tries_init &&
2446 			   --sfp->sm_mod_tries_init) {
2447 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2448 				break;
2449 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2450 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2451 					dev_warn(sfp->dev,
2452 						 "please wait, module slow to respond\n");
2453 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2454 				break;
2455 			}
2456 		}
2457 		if (err < 0) {
2458 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2459 			break;
2460 		}
2461 
2462 		/* Force a poll to re-read the hardware signal state after
2463 		 * sfp_sm_mod_probe() changed state_hw_mask.
2464 		 */
2465 		mod_delayed_work(system_wq, &sfp->poll, 1);
2466 
2467 		err = sfp_hwmon_insert(sfp);
2468 		if (err)
2469 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2470 				 ERR_PTR(err));
2471 
2472 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2473 		fallthrough;
2474 	case SFP_MOD_WAITDEV:
2475 		/* Ensure that the device is attached before proceeding */
2476 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2477 			break;
2478 
2479 		/* Report the module insertion to the upstream device */
2480 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2481 					sfp->quirk);
2482 		if (err < 0) {
2483 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2484 			break;
2485 		}
2486 
2487 		/* If this is a power level 1 module, we are done */
2488 		if (sfp->module_power_mW <= 1000)
2489 			goto insert;
2490 
2491 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2492 		fallthrough;
2493 	case SFP_MOD_HPOWER:
2494 		/* Enable high power mode */
2495 		err = sfp_sm_mod_hpower(sfp, true);
2496 		if (err < 0) {
2497 			if (err != -EAGAIN) {
2498 				sfp_module_remove(sfp->sfp_bus);
2499 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2500 			} else {
2501 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2502 			}
2503 			break;
2504 		}
2505 
2506 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2507 		break;
2508 
2509 	case SFP_MOD_WAITPWR:
2510 		/* Wait for T_HPOWER_LEVEL to time out */
2511 		if (event != SFP_E_TIMEOUT)
2512 			break;
2513 
2514 	insert:
2515 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2516 		break;
2517 
2518 	case SFP_MOD_PRESENT:
2519 	case SFP_MOD_ERROR:
2520 		break;
2521 	}
2522 }
2523 
2524 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2525 {
2526 	unsigned long timeout;
2527 	int ret;
2528 
2529 	/* Some events are global */
2530 	if (sfp->sm_state != SFP_S_DOWN &&
2531 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2532 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2533 		if (sfp->sm_state == SFP_S_LINK_UP &&
2534 		    sfp->sm_dev_state == SFP_DEV_UP)
2535 			sfp_sm_link_down(sfp);
2536 		if (sfp->sm_state > SFP_S_INIT)
2537 			sfp_module_stop(sfp->sfp_bus);
2538 		if (sfp->mod_phy)
2539 			sfp_sm_phy_detach(sfp);
2540 		if (sfp->i2c_mii)
2541 			sfp_i2c_mdiobus_destroy(sfp);
2542 		sfp_module_tx_disable(sfp);
2543 		sfp_soft_stop_poll(sfp);
2544 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2545 		return;
2546 	}
2547 
2548 	/* The main state machine */
2549 	switch (sfp->sm_state) {
2550 	case SFP_S_DOWN:
2551 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2552 		    sfp->sm_dev_state != SFP_DEV_UP)
2553 			break;
2554 
2555 		/* Only use the soft state bits if we have access to the A2h
2556 		 * memory, which implies that we have some level of SFF-8472
2557 		 * compliance.
2558 		 */
2559 		if (sfp->have_a2)
2560 			sfp_soft_start_poll(sfp);
2561 
2562 		sfp_module_tx_enable(sfp);
2563 
2564 		/* Initialise the fault clearance retries */
2565 		sfp->sm_fault_retries = N_FAULT_INIT;
2566 
2567 		/* We need to check the TX_FAULT state, which is not defined
2568 		 * while TX_DISABLE is asserted. The earliest we want to do
2569 		 * anything (such as probe for a PHY) is 50ms.
2570 		 */
2571 		sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2572 		break;
2573 
2574 	case SFP_S_WAIT:
2575 		if (event != SFP_E_TIMEOUT)
2576 			break;
2577 
2578 		if (sfp->state & SFP_F_TX_FAULT) {
2579 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2580 			 * from the TX_DISABLE deassertion for the module to
2581 			 * initialise, which is indicated by TX_FAULT
2582 			 * deasserting.
2583 			 */
2584 			timeout = sfp->module_t_start_up;
2585 			if (timeout > T_WAIT)
2586 				timeout -= T_WAIT;
2587 			else
2588 				timeout = 1;
2589 
2590 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2591 		} else {
2592 			/* TX_FAULT is not asserted, assume the module has
2593 			 * finished initialising.
2594 			 */
2595 			goto init_done;
2596 		}
2597 		break;
2598 
2599 	case SFP_S_INIT:
2600 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2601 			/* TX_FAULT is still asserted after t_init
2602 			 * or t_start_up, so assume there is a fault.
2603 			 */
2604 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2605 				     sfp->sm_fault_retries == N_FAULT_INIT);
2606 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2607 	init_done:
2608 			/* Create mdiobus and start trying for PHY */
2609 			ret = sfp_sm_add_mdio_bus(sfp);
2610 			if (ret < 0) {
2611 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2612 				break;
2613 			}
2614 			sfp->sm_phy_retries = R_PHY_RETRY;
2615 			goto phy_probe;
2616 		}
2617 		break;
2618 
2619 	case SFP_S_INIT_PHY:
2620 		if (event != SFP_E_TIMEOUT)
2621 			break;
2622 	phy_probe:
2623 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2624 		 * clear.  Probe for the PHY and check the LOS state.
2625 		 */
2626 		ret = sfp_sm_probe_for_phy(sfp);
2627 		if (ret == -ENODEV) {
2628 			if (--sfp->sm_phy_retries) {
2629 				sfp_sm_next(sfp, SFP_S_INIT_PHY,
2630 					    sfp->phy_t_retry);
2631 				dev_dbg(sfp->dev,
2632 					"no PHY detected, %u tries left\n",
2633 					sfp->sm_phy_retries);
2634 				break;
2635 			} else {
2636 				dev_info(sfp->dev, "no PHY detected\n");
2637 			}
2638 		} else if (ret) {
2639 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2640 			break;
2641 		}
2642 		if (sfp_module_start(sfp->sfp_bus)) {
2643 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2644 			break;
2645 		}
2646 		sfp_sm_link_check_los(sfp);
2647 
2648 		/* Reset the fault retry count */
2649 		sfp->sm_fault_retries = N_FAULT;
2650 		break;
2651 
2652 	case SFP_S_INIT_TX_FAULT:
2653 		if (event == SFP_E_TIMEOUT) {
2654 			sfp_module_tx_fault_reset(sfp);
2655 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2656 		}
2657 		break;
2658 
2659 	case SFP_S_WAIT_LOS:
2660 		if (event == SFP_E_TX_FAULT)
2661 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2662 		else if (sfp_los_event_inactive(sfp, event))
2663 			sfp_sm_link_up(sfp);
2664 		break;
2665 
2666 	case SFP_S_LINK_UP:
2667 		if (event == SFP_E_TX_FAULT) {
2668 			sfp_sm_link_down(sfp);
2669 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2670 		} else if (sfp_los_event_active(sfp, event)) {
2671 			sfp_sm_link_down(sfp);
2672 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2673 		}
2674 		break;
2675 
2676 	case SFP_S_TX_FAULT:
2677 		if (event == SFP_E_TIMEOUT) {
2678 			sfp_module_tx_fault_reset(sfp);
2679 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2680 		}
2681 		break;
2682 
2683 	case SFP_S_REINIT:
2684 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2685 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2686 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2687 			dev_info(sfp->dev, "module transmit fault recovered\n");
2688 			sfp_sm_link_check_los(sfp);
2689 		}
2690 		break;
2691 
2692 	case SFP_S_TX_DISABLE:
2693 		break;
2694 	}
2695 }
2696 
2697 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2698 {
2699 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2700 		mod_state_to_str(sfp->sm_mod_state),
2701 		dev_state_to_str(sfp->sm_dev_state),
2702 		sm_state_to_str(sfp->sm_state),
2703 		event_to_str(event));
2704 
2705 	sfp_sm_device(sfp, event);
2706 	sfp_sm_module(sfp, event);
2707 	sfp_sm_main(sfp, event);
2708 
2709 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2710 		mod_state_to_str(sfp->sm_mod_state),
2711 		dev_state_to_str(sfp->sm_dev_state),
2712 		sm_state_to_str(sfp->sm_state));
2713 }
2714 
2715 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2716 {
2717 	mutex_lock(&sfp->sm_mutex);
2718 	__sfp_sm_event(sfp, event);
2719 	mutex_unlock(&sfp->sm_mutex);
2720 }
2721 
2722 static void sfp_attach(struct sfp *sfp)
2723 {
2724 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2725 }
2726 
2727 static void sfp_detach(struct sfp *sfp)
2728 {
2729 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2730 }
2731 
2732 static void sfp_start(struct sfp *sfp)
2733 {
2734 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2735 }
2736 
2737 static void sfp_stop(struct sfp *sfp)
2738 {
2739 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2740 }
2741 
2742 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2743 {
2744 	unsigned int set;
2745 
2746 	sfp->rate_kbd = rate_kbd;
2747 
2748 	if (rate_kbd > sfp->rs_threshold_kbd)
2749 		set = sfp->rs_state_mask;
2750 	else
2751 		set = 0;
2752 
2753 	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2754 }
2755 
2756 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2757 {
2758 	/* locking... and check module is present */
2759 
2760 	if (sfp->id.ext.sff8472_compliance &&
2761 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2762 		modinfo->type = ETH_MODULE_SFF_8472;
2763 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2764 	} else {
2765 		modinfo->type = ETH_MODULE_SFF_8079;
2766 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2767 	}
2768 	return 0;
2769 }
2770 
2771 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2772 			     u8 *data)
2773 {
2774 	unsigned int first, last, len;
2775 	int ret;
2776 
2777 	if (!(sfp->state & SFP_F_PRESENT))
2778 		return -ENODEV;
2779 
2780 	if (ee->len == 0)
2781 		return -EINVAL;
2782 
2783 	first = ee->offset;
2784 	last = ee->offset + ee->len;
2785 	if (first < ETH_MODULE_SFF_8079_LEN) {
2786 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2787 		len -= first;
2788 
2789 		ret = sfp_read(sfp, false, first, data, len);
2790 		if (ret < 0)
2791 			return ret;
2792 
2793 		first += len;
2794 		data += len;
2795 	}
2796 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2797 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2798 		len -= first;
2799 		first -= ETH_MODULE_SFF_8079_LEN;
2800 
2801 		ret = sfp_read(sfp, true, first, data, len);
2802 		if (ret < 0)
2803 			return ret;
2804 	}
2805 	return 0;
2806 }
2807 
2808 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2809 				     const struct ethtool_module_eeprom *page,
2810 				     struct netlink_ext_ack *extack)
2811 {
2812 	if (!(sfp->state & SFP_F_PRESENT))
2813 		return -ENODEV;
2814 
2815 	if (page->bank) {
2816 		NL_SET_ERR_MSG(extack, "Banks not supported");
2817 		return -EOPNOTSUPP;
2818 	}
2819 
2820 	if (page->page) {
2821 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2822 		return -EOPNOTSUPP;
2823 	}
2824 
2825 	if (page->i2c_address != 0x50 &&
2826 	    page->i2c_address != 0x51) {
2827 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2828 		return -EOPNOTSUPP;
2829 	}
2830 
2831 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2832 			page->data, page->length);
2833 };
2834 
2835 static const struct sfp_socket_ops sfp_module_ops = {
2836 	.attach = sfp_attach,
2837 	.detach = sfp_detach,
2838 	.start = sfp_start,
2839 	.stop = sfp_stop,
2840 	.set_signal_rate = sfp_set_signal_rate,
2841 	.module_info = sfp_module_info,
2842 	.module_eeprom = sfp_module_eeprom,
2843 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2844 };
2845 
2846 static void sfp_timeout(struct work_struct *work)
2847 {
2848 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2849 
2850 	rtnl_lock();
2851 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2852 	rtnl_unlock();
2853 }
2854 
2855 static void sfp_check_state(struct sfp *sfp)
2856 {
2857 	unsigned int state, i, changed;
2858 
2859 	rtnl_lock();
2860 	mutex_lock(&sfp->st_mutex);
2861 	state = sfp_get_state(sfp);
2862 	changed = state ^ sfp->state;
2863 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2864 
2865 	for (i = 0; i < GPIO_MAX; i++)
2866 		if (changed & BIT(i))
2867 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2868 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2869 
2870 	state |= sfp->state & SFP_F_OUTPUTS;
2871 	sfp->state = state;
2872 	mutex_unlock(&sfp->st_mutex);
2873 
2874 	mutex_lock(&sfp->sm_mutex);
2875 	if (changed & SFP_F_PRESENT)
2876 		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2877 				    SFP_E_INSERT : SFP_E_REMOVE);
2878 
2879 	if (changed & SFP_F_TX_FAULT)
2880 		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2881 				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2882 
2883 	if (changed & SFP_F_LOS)
2884 		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2885 				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2886 	mutex_unlock(&sfp->sm_mutex);
2887 	rtnl_unlock();
2888 }
2889 
2890 static irqreturn_t sfp_irq(int irq, void *data)
2891 {
2892 	struct sfp *sfp = data;
2893 
2894 	sfp_check_state(sfp);
2895 
2896 	return IRQ_HANDLED;
2897 }
2898 
2899 static void sfp_poll(struct work_struct *work)
2900 {
2901 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2902 
2903 	sfp_check_state(sfp);
2904 
2905 	// st_mutex doesn't need to be held here for state_soft_mask,
2906 	// it's unimportant if we race while reading this.
2907 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2908 	    sfp->need_poll)
2909 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2910 }
2911 
2912 static struct sfp *sfp_alloc(struct device *dev)
2913 {
2914 	struct sfp *sfp;
2915 
2916 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2917 	if (!sfp)
2918 		return ERR_PTR(-ENOMEM);
2919 
2920 	sfp->dev = dev;
2921 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2922 
2923 	mutex_init(&sfp->sm_mutex);
2924 	mutex_init(&sfp->st_mutex);
2925 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2926 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2927 
2928 	sfp_hwmon_init(sfp);
2929 
2930 	return sfp;
2931 }
2932 
2933 static void sfp_cleanup(void *data)
2934 {
2935 	struct sfp *sfp = data;
2936 
2937 	sfp_hwmon_exit(sfp);
2938 
2939 	cancel_delayed_work_sync(&sfp->poll);
2940 	cancel_delayed_work_sync(&sfp->timeout);
2941 	if (sfp->i2c_mii) {
2942 		mdiobus_unregister(sfp->i2c_mii);
2943 		mdiobus_free(sfp->i2c_mii);
2944 	}
2945 	if (sfp->i2c)
2946 		i2c_put_adapter(sfp->i2c);
2947 	kfree(sfp);
2948 }
2949 
2950 static int sfp_i2c_get(struct sfp *sfp)
2951 {
2952 	struct fwnode_handle *h;
2953 	struct i2c_adapter *i2c;
2954 	int err;
2955 
2956 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2957 	if (IS_ERR(h)) {
2958 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2959 		return -ENODEV;
2960 	}
2961 
2962 	i2c = i2c_get_adapter_by_fwnode(h);
2963 	if (!i2c) {
2964 		err = -EPROBE_DEFER;
2965 		goto put;
2966 	}
2967 
2968 	err = sfp_i2c_configure(sfp, i2c);
2969 	if (err)
2970 		i2c_put_adapter(i2c);
2971 put:
2972 	fwnode_handle_put(h);
2973 	return err;
2974 }
2975 
2976 static int sfp_probe(struct platform_device *pdev)
2977 {
2978 	const struct sff_data *sff;
2979 	char *sfp_irq_name;
2980 	struct sfp *sfp;
2981 	int err, i;
2982 
2983 	sfp = sfp_alloc(&pdev->dev);
2984 	if (IS_ERR(sfp))
2985 		return PTR_ERR(sfp);
2986 
2987 	platform_set_drvdata(pdev, sfp);
2988 
2989 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2990 	if (err < 0)
2991 		return err;
2992 
2993 	sff = device_get_match_data(sfp->dev);
2994 	if (!sff)
2995 		sff = &sfp_data;
2996 
2997 	sfp->type = sff;
2998 
2999 	err = sfp_i2c_get(sfp);
3000 	if (err)
3001 		return err;
3002 
3003 	for (i = 0; i < GPIO_MAX; i++)
3004 		if (sff->gpios & BIT(i)) {
3005 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3006 					   gpio_names[i], gpio_flags[i]);
3007 			if (IS_ERR(sfp->gpio[i]))
3008 				return PTR_ERR(sfp->gpio[i]);
3009 		}
3010 
3011 	sfp->state_hw_mask = SFP_F_PRESENT;
3012 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
3013 
3014 	sfp->get_state = sfp_gpio_get_state;
3015 	sfp->set_state = sfp_gpio_set_state;
3016 
3017 	/* Modules that have no detect signal are always present */
3018 	if (!(sfp->gpio[GPIO_MODDEF0]))
3019 		sfp->get_state = sff_gpio_get_state;
3020 
3021 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3022 				 &sfp->max_power_mW);
3023 	if (sfp->max_power_mW < 1000) {
3024 		if (sfp->max_power_mW)
3025 			dev_warn(sfp->dev,
3026 				 "Firmware bug: host maximum power should be at least 1W\n");
3027 		sfp->max_power_mW = 1000;
3028 	}
3029 
3030 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3031 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3032 
3033 	/* Get the initial state, and always signal TX disable,
3034 	 * since the network interface will not be up.
3035 	 */
3036 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3037 
3038 	if (sfp->gpio[GPIO_RS0] &&
3039 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3040 		sfp->state |= SFP_F_RS0;
3041 	sfp_set_state(sfp, sfp->state);
3042 	sfp_module_tx_disable(sfp);
3043 	if (sfp->state & SFP_F_PRESENT) {
3044 		rtnl_lock();
3045 		sfp_sm_event(sfp, SFP_E_INSERT);
3046 		rtnl_unlock();
3047 	}
3048 
3049 	for (i = 0; i < GPIO_MAX; i++) {
3050 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3051 			continue;
3052 
3053 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3054 		if (sfp->gpio_irq[i] < 0) {
3055 			sfp->gpio_irq[i] = 0;
3056 			sfp->need_poll = true;
3057 			continue;
3058 		}
3059 
3060 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3061 					      "%s-%s", dev_name(sfp->dev),
3062 					      gpio_names[i]);
3063 
3064 		if (!sfp_irq_name)
3065 			return -ENOMEM;
3066 
3067 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3068 						NULL, sfp_irq,
3069 						IRQF_ONESHOT |
3070 						IRQF_TRIGGER_RISING |
3071 						IRQF_TRIGGER_FALLING,
3072 						sfp_irq_name, sfp);
3073 		if (err) {
3074 			sfp->gpio_irq[i] = 0;
3075 			sfp->need_poll = true;
3076 		}
3077 	}
3078 
3079 	if (sfp->need_poll)
3080 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3081 
3082 	/* We could have an issue in cases no Tx disable pin is available or
3083 	 * wired as modules using a laser as their light source will continue to
3084 	 * be active when the fiber is removed. This could be a safety issue and
3085 	 * we should at least warn the user about that.
3086 	 */
3087 	if (!sfp->gpio[GPIO_TX_DISABLE])
3088 		dev_warn(sfp->dev,
3089 			 "No tx_disable pin: SFP modules will always be emitting.\n");
3090 
3091 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3092 	if (!sfp->sfp_bus)
3093 		return -ENOMEM;
3094 
3095 	sfp_debugfs_init(sfp);
3096 
3097 	return 0;
3098 }
3099 
3100 static void sfp_remove(struct platform_device *pdev)
3101 {
3102 	struct sfp *sfp = platform_get_drvdata(pdev);
3103 
3104 	sfp_debugfs_exit(sfp);
3105 	sfp_unregister_socket(sfp->sfp_bus);
3106 
3107 	rtnl_lock();
3108 	sfp_sm_event(sfp, SFP_E_REMOVE);
3109 	rtnl_unlock();
3110 }
3111 
3112 static void sfp_shutdown(struct platform_device *pdev)
3113 {
3114 	struct sfp *sfp = platform_get_drvdata(pdev);
3115 	int i;
3116 
3117 	for (i = 0; i < GPIO_MAX; i++) {
3118 		if (!sfp->gpio_irq[i])
3119 			continue;
3120 
3121 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3122 	}
3123 
3124 	cancel_delayed_work_sync(&sfp->poll);
3125 	cancel_delayed_work_sync(&sfp->timeout);
3126 }
3127 
3128 static struct platform_driver sfp_driver = {
3129 	.probe = sfp_probe,
3130 	.remove_new = sfp_remove,
3131 	.shutdown = sfp_shutdown,
3132 	.driver = {
3133 		.name = "sfp",
3134 		.of_match_table = sfp_of_match,
3135 	},
3136 };
3137 
3138 static int sfp_init(void)
3139 {
3140 	poll_jiffies = msecs_to_jiffies(100);
3141 
3142 	return platform_driver_register(&sfp_driver);
3143 }
3144 module_init(sfp_init);
3145 
3146 static void sfp_exit(void)
3147 {
3148 	platform_driver_unregister(&sfp_driver);
3149 }
3150 module_exit(sfp_exit);
3151 
3152 MODULE_ALIAS("platform:sfp");
3153 MODULE_AUTHOR("Russell King");
3154 MODULE_LICENSE("GPL v2");
3155 MODULE_DESCRIPTION("SFP cage support");
3156