1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RS0, 28 GPIO_RS1, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RS0 = BIT(GPIO_RS0), 36 SFP_F_RS1 = BIT(GPIO_RS1), 37 38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 39 40 SFP_E_INSERT = 0, 41 SFP_E_REMOVE, 42 SFP_E_DEV_ATTACH, 43 SFP_E_DEV_DETACH, 44 SFP_E_DEV_DOWN, 45 SFP_E_DEV_UP, 46 SFP_E_TX_FAULT, 47 SFP_E_TX_CLEAR, 48 SFP_E_LOS_HIGH, 49 SFP_E_LOS_LOW, 50 SFP_E_TIMEOUT, 51 52 SFP_MOD_EMPTY = 0, 53 SFP_MOD_ERROR, 54 SFP_MOD_PROBE, 55 SFP_MOD_WAITDEV, 56 SFP_MOD_HPOWER, 57 SFP_MOD_WAITPWR, 58 SFP_MOD_PRESENT, 59 60 SFP_DEV_DETACHED = 0, 61 SFP_DEV_DOWN, 62 SFP_DEV_UP, 63 64 SFP_S_DOWN = 0, 65 SFP_S_FAIL, 66 SFP_S_WAIT, 67 SFP_S_INIT, 68 SFP_S_INIT_PHY, 69 SFP_S_INIT_TX_FAULT, 70 SFP_S_WAIT_LOS, 71 SFP_S_LINK_UP, 72 SFP_S_TX_FAULT, 73 SFP_S_REINIT, 74 SFP_S_TX_DISABLE, 75 }; 76 77 static const char * const mod_state_strings[] = { 78 [SFP_MOD_EMPTY] = "empty", 79 [SFP_MOD_ERROR] = "error", 80 [SFP_MOD_PROBE] = "probe", 81 [SFP_MOD_WAITDEV] = "waitdev", 82 [SFP_MOD_HPOWER] = "hpower", 83 [SFP_MOD_WAITPWR] = "waitpwr", 84 [SFP_MOD_PRESENT] = "present", 85 }; 86 87 static const char *mod_state_to_str(unsigned short mod_state) 88 { 89 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 90 return "Unknown module state"; 91 return mod_state_strings[mod_state]; 92 } 93 94 static const char * const dev_state_strings[] = { 95 [SFP_DEV_DETACHED] = "detached", 96 [SFP_DEV_DOWN] = "down", 97 [SFP_DEV_UP] = "up", 98 }; 99 100 static const char *dev_state_to_str(unsigned short dev_state) 101 { 102 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 103 return "Unknown device state"; 104 return dev_state_strings[dev_state]; 105 } 106 107 static const char * const event_strings[] = { 108 [SFP_E_INSERT] = "insert", 109 [SFP_E_REMOVE] = "remove", 110 [SFP_E_DEV_ATTACH] = "dev_attach", 111 [SFP_E_DEV_DETACH] = "dev_detach", 112 [SFP_E_DEV_DOWN] = "dev_down", 113 [SFP_E_DEV_UP] = "dev_up", 114 [SFP_E_TX_FAULT] = "tx_fault", 115 [SFP_E_TX_CLEAR] = "tx_clear", 116 [SFP_E_LOS_HIGH] = "los_high", 117 [SFP_E_LOS_LOW] = "los_low", 118 [SFP_E_TIMEOUT] = "timeout", 119 }; 120 121 static const char *event_to_str(unsigned short event) 122 { 123 if (event >= ARRAY_SIZE(event_strings)) 124 return "Unknown event"; 125 return event_strings[event]; 126 } 127 128 static const char * const sm_state_strings[] = { 129 [SFP_S_DOWN] = "down", 130 [SFP_S_FAIL] = "fail", 131 [SFP_S_WAIT] = "wait", 132 [SFP_S_INIT] = "init", 133 [SFP_S_INIT_PHY] = "init_phy", 134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 135 [SFP_S_WAIT_LOS] = "wait_los", 136 [SFP_S_LINK_UP] = "link_up", 137 [SFP_S_TX_FAULT] = "tx_fault", 138 [SFP_S_REINIT] = "reinit", 139 [SFP_S_TX_DISABLE] = "tx_disable", 140 }; 141 142 static const char *sm_state_to_str(unsigned short sm_state) 143 { 144 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 145 return "Unknown state"; 146 return sm_state_strings[sm_state]; 147 } 148 149 static const char *gpio_names[] = { 150 "mod-def0", 151 "los", 152 "tx-fault", 153 "tx-disable", 154 "rate-select0", 155 "rate-select1", 156 }; 157 158 static const enum gpiod_flags gpio_flags[] = { 159 GPIOD_IN, 160 GPIOD_IN, 161 GPIOD_IN, 162 GPIOD_ASIS, 163 GPIOD_ASIS, 164 GPIOD_ASIS, 165 }; 166 167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 168 * non-cooled module to initialise its laser safety circuitry. We wait 169 * an initial T_WAIT period before we check the tx fault to give any PHY 170 * on board (for a copper SFP) time to initialise. 171 */ 172 #define T_WAIT msecs_to_jiffies(50) 173 #define T_START_UP msecs_to_jiffies(300) 174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 175 176 /* t_reset is the time required to assert the TX_DISABLE signal to reset 177 * an indicated TX_FAULT. 178 */ 179 #define T_RESET_US 10 180 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 181 182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 183 * time. If the TX_FAULT signal is not deasserted after this number of 184 * attempts at clearing it, we decide that the module is faulty. 185 * N_FAULT is the same but after the module has initialised. 186 */ 187 #define N_FAULT_INIT 5 188 #define N_FAULT 5 189 190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 191 * R_PHY_RETRY is the number of attempts. 192 */ 193 #define T_PHY_RETRY msecs_to_jiffies(50) 194 #define R_PHY_RETRY 25 195 196 /* SFP module presence detection is poor: the three MOD DEF signals are 197 * the same length on the PCB, which means it's possible for MOD DEF 0 to 198 * connect before the I2C bus on MOD DEF 1/2. 199 * 200 * The SFF-8472 specifies t_serial ("Time from power on until module is 201 * ready for data transmission over the two wire serial bus.") as 300ms. 202 */ 203 #define T_SERIAL msecs_to_jiffies(300) 204 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 206 #define R_PROBE_RETRY_INIT 10 207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 208 #define R_PROBE_RETRY_SLOW 12 209 210 /* SFP modules appear to always have their PHY configured for bus address 211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 214 */ 215 #define SFP_PHY_ADDR 22 216 #define SFP_PHY_ADDR_ROLLBALL 17 217 218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM 219 * at a time. Some SFP modules and also some Linux I2C drivers do not like 220 * reads longer than 16 bytes. 221 */ 222 #define SFP_EEPROM_BLOCK_SIZE 16 223 224 struct sff_data { 225 unsigned int gpios; 226 bool (*module_supported)(const struct sfp_eeprom_id *id); 227 }; 228 229 struct sfp { 230 struct device *dev; 231 struct i2c_adapter *i2c; 232 struct mii_bus *i2c_mii; 233 struct sfp_bus *sfp_bus; 234 enum mdio_i2c_proto mdio_protocol; 235 struct phy_device *mod_phy; 236 const struct sff_data *type; 237 size_t i2c_block_size; 238 u32 max_power_mW; 239 240 unsigned int (*get_state)(struct sfp *); 241 void (*set_state)(struct sfp *, unsigned int); 242 int (*read)(struct sfp *, bool, u8, void *, size_t); 243 int (*write)(struct sfp *, bool, u8, void *, size_t); 244 245 struct gpio_desc *gpio[GPIO_MAX]; 246 int gpio_irq[GPIO_MAX]; 247 248 bool need_poll; 249 250 /* Access rules: 251 * state_hw_drive: st_mutex held 252 * state_hw_mask: st_mutex held 253 * state_soft_mask: st_mutex held 254 * state: st_mutex held unless reading input bits 255 */ 256 struct mutex st_mutex; /* Protects state */ 257 unsigned int state_hw_drive; 258 unsigned int state_hw_mask; 259 unsigned int state_soft_mask; 260 unsigned int state_ignore_mask; 261 unsigned int state; 262 263 struct delayed_work poll; 264 struct delayed_work timeout; 265 struct mutex sm_mutex; /* Protects state machine */ 266 unsigned char sm_mod_state; 267 unsigned char sm_mod_tries_init; 268 unsigned char sm_mod_tries; 269 unsigned char sm_dev_state; 270 unsigned short sm_state; 271 unsigned char sm_fault_retries; 272 unsigned char sm_phy_retries; 273 274 struct sfp_eeprom_id id; 275 unsigned int module_power_mW; 276 unsigned int module_t_start_up; 277 unsigned int module_t_wait; 278 unsigned int phy_t_retry; 279 280 unsigned int rate_kbd; 281 unsigned int rs_threshold_kbd; 282 unsigned int rs_state_mask; 283 284 bool have_a2; 285 286 const struct sfp_quirk *quirk; 287 288 #if IS_ENABLED(CONFIG_HWMON) 289 struct sfp_diag diag; 290 struct delayed_work hwmon_probe; 291 unsigned int hwmon_tries; 292 struct device *hwmon_dev; 293 char *hwmon_name; 294 #endif 295 296 #if IS_ENABLED(CONFIG_DEBUG_FS) 297 struct dentry *debugfs_dir; 298 #endif 299 }; 300 301 static bool sff_module_supported(const struct sfp_eeprom_id *id) 302 { 303 return id->base.phys_id == SFF8024_ID_SFF_8472 && 304 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 305 } 306 307 static const struct sff_data sff_data = { 308 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 309 .module_supported = sff_module_supported, 310 }; 311 312 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 313 { 314 if (id->base.phys_id == SFF8024_ID_SFP && 315 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 316 return true; 317 318 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 319 * phys id SFF instead of SFP. Therefore mark this module explicitly 320 * as supported based on vendor name and pn match. 321 */ 322 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 323 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 324 !memcmp(id->base.vendor_name, "UBNT ", 16) && 325 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 326 return true; 327 328 return false; 329 } 330 331 static const struct sff_data sfp_data = { 332 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 333 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 334 .module_supported = sfp_module_supported, 335 }; 336 337 static const struct of_device_id sfp_of_match[] = { 338 { .compatible = "sff,sff", .data = &sff_data, }, 339 { .compatible = "sff,sfp", .data = &sfp_data, }, 340 { }, 341 }; 342 MODULE_DEVICE_TABLE(of, sfp_of_match); 343 344 static void sfp_fixup_long_startup(struct sfp *sfp) 345 { 346 sfp->module_t_start_up = T_START_UP_BAD_GPON; 347 } 348 349 static void sfp_fixup_ignore_los(struct sfp *sfp) 350 { 351 /* This forces LOS to zero, so we ignore transitions */ 352 sfp->state_ignore_mask |= SFP_F_LOS; 353 /* Make sure that LOS options are clear */ 354 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED | 355 SFP_OPTIONS_LOS_NORMAL); 356 } 357 358 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 359 { 360 sfp->state_ignore_mask |= SFP_F_TX_FAULT; 361 } 362 363 static void sfp_fixup_nokia(struct sfp *sfp) 364 { 365 sfp_fixup_long_startup(sfp); 366 sfp_fixup_ignore_los(sfp); 367 } 368 369 // For 10GBASE-T short-reach modules 370 static void sfp_fixup_10gbaset_30m(struct sfp *sfp) 371 { 372 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; 373 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; 374 } 375 376 static void sfp_fixup_rollball(struct sfp *sfp) 377 { 378 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 379 380 /* RollBall modules may disallow access to PHY registers for up to 25 381 * seconds, and the reads return 0xffff before that. Increase the time 382 * between PHY probe retries from 50ms to 1s so that we will wait for 383 * the PHY for a sufficient amount of time. 384 */ 385 sfp->phy_t_retry = msecs_to_jiffies(1000); 386 } 387 388 static void sfp_fixup_fs_10gt(struct sfp *sfp) 389 { 390 sfp_fixup_10gbaset_30m(sfp); 391 sfp_fixup_rollball(sfp); 392 393 /* The RollBall fixup is not enough for FS modules, the AQR chip inside 394 * them does not return 0xffff for PHY ID registers in all MMDs for the 395 * while initializing. They need a 4 second wait before accessing PHY. 396 */ 397 sfp->module_t_wait = msecs_to_jiffies(4000); 398 } 399 400 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 401 { 402 /* Ignore the TX_FAULT and LOS signals on this module. 403 * these are possibly used for other purposes on this 404 * module, e.g. a serial port. 405 */ 406 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 407 } 408 409 static void sfp_fixup_rollball_cc(struct sfp *sfp) 410 { 411 sfp_fixup_rollball(sfp); 412 413 /* Some RollBall SFPs may have wrong (zero) extended compliance code 414 * burned in EEPROM. For PHY probing we need the correct one. 415 */ 416 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 417 } 418 419 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 420 unsigned long *modes, 421 unsigned long *interfaces) 422 { 423 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 424 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 425 } 426 427 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, 428 unsigned long *modes, 429 unsigned long *interfaces) 430 { 431 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); 432 } 433 434 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, 435 unsigned long *modes, 436 unsigned long *interfaces) 437 { 438 /* Copper 2.5G SFP */ 439 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); 440 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 441 sfp_quirk_disable_autoneg(id, modes, interfaces); 442 } 443 444 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 445 unsigned long *modes, 446 unsigned long *interfaces) 447 { 448 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 449 * types including 10G Ethernet which is not truth. So clear all claimed 450 * modes and set only one mode which module supports: 1000baseX_Full. 451 */ 452 linkmode_zero(modes); 453 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 454 } 455 456 #define SFP_QUIRK(_v, _p, _m, _f) \ 457 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 458 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 459 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 460 461 static const struct sfp_quirk sfp_quirks[] = { 462 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 463 // report 2500MBd NRZ in their EEPROM 464 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 465 466 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 467 // NRZ in their EEPROM 468 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 469 sfp_fixup_nokia), 470 471 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the 472 // Rollball protocol to talk to the PHY. 473 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), 474 475 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd 476 // NRZ in their EEPROM 477 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, 478 sfp_fixup_ignore_tx_fault), 479 480 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 481 482 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports 483 // 2600MBd in their EERPOM 484 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), 485 486 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 487 // their EEPROM 488 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 489 sfp_fixup_ignore_tx_fault), 490 491 // FS 2.5G Base-T 492 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 493 494 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 495 // 2500MBd NRZ in their EEPROM 496 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 497 498 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 499 500 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the 501 // Rollball protocol to talk to the PHY. 502 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), 503 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), 504 505 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 506 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 507 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 508 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 509 SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball), 510 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 511 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 512 }; 513 514 static size_t sfp_strlen(const char *str, size_t maxlen) 515 { 516 size_t size, i; 517 518 /* Trailing characters should be filled with space chars, but 519 * some manufacturers can't read SFF-8472 and use NUL. 520 */ 521 for (i = 0, size = 0; i < maxlen; i++) 522 if (str[i] != ' ' && str[i] != '\0') 523 size = i + 1; 524 525 return size; 526 } 527 528 static bool sfp_match(const char *qs, const char *str, size_t len) 529 { 530 if (!qs) 531 return true; 532 if (strlen(qs) != len) 533 return false; 534 return !strncmp(qs, str, len); 535 } 536 537 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 538 { 539 const struct sfp_quirk *q; 540 unsigned int i; 541 size_t vs, ps; 542 543 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 544 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 545 546 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 547 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 548 sfp_match(q->part, id->base.vendor_pn, ps)) 549 return q; 550 551 return NULL; 552 } 553 554 static unsigned long poll_jiffies; 555 556 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 557 { 558 unsigned int i, state, v; 559 560 for (i = state = 0; i < GPIO_MAX; i++) { 561 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 562 continue; 563 564 v = gpiod_get_value_cansleep(sfp->gpio[i]); 565 if (v) 566 state |= BIT(i); 567 } 568 569 return state; 570 } 571 572 static unsigned int sff_gpio_get_state(struct sfp *sfp) 573 { 574 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 575 } 576 577 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 578 { 579 unsigned int drive; 580 581 if (state & SFP_F_PRESENT) 582 /* If the module is present, drive the requested signals */ 583 drive = sfp->state_hw_drive; 584 else 585 /* Otherwise, let them float to the pull-ups */ 586 drive = 0; 587 588 if (sfp->gpio[GPIO_TX_DISABLE]) { 589 if (drive & SFP_F_TX_DISABLE) 590 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 591 state & SFP_F_TX_DISABLE); 592 else 593 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 594 } 595 596 if (sfp->gpio[GPIO_RS0]) { 597 if (drive & SFP_F_RS0) 598 gpiod_direction_output(sfp->gpio[GPIO_RS0], 599 state & SFP_F_RS0); 600 else 601 gpiod_direction_input(sfp->gpio[GPIO_RS0]); 602 } 603 604 if (sfp->gpio[GPIO_RS1]) { 605 if (drive & SFP_F_RS1) 606 gpiod_direction_output(sfp->gpio[GPIO_RS1], 607 state & SFP_F_RS1); 608 else 609 gpiod_direction_input(sfp->gpio[GPIO_RS1]); 610 } 611 } 612 613 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 614 size_t len) 615 { 616 struct i2c_msg msgs[2]; 617 u8 bus_addr = a2 ? 0x51 : 0x50; 618 size_t block_size = sfp->i2c_block_size; 619 size_t this_len; 620 int ret; 621 622 msgs[0].addr = bus_addr; 623 msgs[0].flags = 0; 624 msgs[0].len = 1; 625 msgs[0].buf = &dev_addr; 626 msgs[1].addr = bus_addr; 627 msgs[1].flags = I2C_M_RD; 628 msgs[1].len = len; 629 msgs[1].buf = buf; 630 631 while (len) { 632 this_len = len; 633 if (this_len > block_size) 634 this_len = block_size; 635 636 msgs[1].len = this_len; 637 638 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 639 if (ret < 0) 640 return ret; 641 642 if (ret != ARRAY_SIZE(msgs)) 643 break; 644 645 msgs[1].buf += this_len; 646 dev_addr += this_len; 647 len -= this_len; 648 } 649 650 return msgs[1].buf - (u8 *)buf; 651 } 652 653 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 654 size_t len) 655 { 656 struct i2c_msg msgs[1]; 657 u8 bus_addr = a2 ? 0x51 : 0x50; 658 int ret; 659 660 msgs[0].addr = bus_addr; 661 msgs[0].flags = 0; 662 msgs[0].len = 1 + len; 663 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 664 if (!msgs[0].buf) 665 return -ENOMEM; 666 667 msgs[0].buf[0] = dev_addr; 668 memcpy(&msgs[0].buf[1], buf, len); 669 670 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 671 672 kfree(msgs[0].buf); 673 674 if (ret < 0) 675 return ret; 676 677 return ret == ARRAY_SIZE(msgs) ? len : 0; 678 } 679 680 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 681 { 682 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 683 return -EINVAL; 684 685 sfp->i2c = i2c; 686 sfp->read = sfp_i2c_read; 687 sfp->write = sfp_i2c_write; 688 689 return 0; 690 } 691 692 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 693 { 694 struct mii_bus *i2c_mii; 695 int ret; 696 697 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 698 if (IS_ERR(i2c_mii)) 699 return PTR_ERR(i2c_mii); 700 701 i2c_mii->name = "SFP I2C Bus"; 702 i2c_mii->phy_mask = ~0; 703 704 ret = mdiobus_register(i2c_mii); 705 if (ret < 0) { 706 mdiobus_free(i2c_mii); 707 return ret; 708 } 709 710 sfp->i2c_mii = i2c_mii; 711 712 return 0; 713 } 714 715 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 716 { 717 mdiobus_unregister(sfp->i2c_mii); 718 sfp->i2c_mii = NULL; 719 } 720 721 /* Interface */ 722 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 723 { 724 return sfp->read(sfp, a2, addr, buf, len); 725 } 726 727 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 728 { 729 return sfp->write(sfp, a2, addr, buf, len); 730 } 731 732 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 733 { 734 int ret; 735 u8 old, v; 736 737 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 738 if (ret != sizeof(old)) 739 return ret; 740 741 v = (old & ~mask) | (val & mask); 742 if (v == old) 743 return sizeof(v); 744 745 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 746 } 747 748 static unsigned int sfp_soft_get_state(struct sfp *sfp) 749 { 750 unsigned int state = 0; 751 u8 status; 752 int ret; 753 754 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 755 if (ret == sizeof(status)) { 756 if (status & SFP_STATUS_RX_LOS) 757 state |= SFP_F_LOS; 758 if (status & SFP_STATUS_TX_FAULT) 759 state |= SFP_F_TX_FAULT; 760 } else { 761 dev_err_ratelimited(sfp->dev, 762 "failed to read SFP soft status: %pe\n", 763 ERR_PTR(ret)); 764 /* Preserve the current state */ 765 state = sfp->state; 766 } 767 768 return state & sfp->state_soft_mask; 769 } 770 771 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, 772 unsigned int soft) 773 { 774 u8 mask = 0; 775 u8 val = 0; 776 777 if (soft & SFP_F_TX_DISABLE) 778 mask |= SFP_STATUS_TX_DISABLE_FORCE; 779 if (state & SFP_F_TX_DISABLE) 780 val |= SFP_STATUS_TX_DISABLE_FORCE; 781 782 if (soft & SFP_F_RS0) 783 mask |= SFP_STATUS_RS0_SELECT; 784 if (state & SFP_F_RS0) 785 val |= SFP_STATUS_RS0_SELECT; 786 787 if (mask) 788 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 789 790 val = mask = 0; 791 if (soft & SFP_F_RS1) 792 mask |= SFP_EXT_STATUS_RS1_SELECT; 793 if (state & SFP_F_RS1) 794 val |= SFP_EXT_STATUS_RS1_SELECT; 795 796 if (mask) 797 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); 798 } 799 800 static void sfp_soft_start_poll(struct sfp *sfp) 801 { 802 const struct sfp_eeprom_id *id = &sfp->id; 803 unsigned int mask = 0; 804 805 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 806 mask |= SFP_F_TX_DISABLE; 807 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 808 mask |= SFP_F_TX_FAULT; 809 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 810 mask |= SFP_F_LOS; 811 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) 812 mask |= sfp->rs_state_mask; 813 814 mutex_lock(&sfp->st_mutex); 815 // Poll the soft state for hardware pins we want to ignore 816 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask & 817 mask; 818 819 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 820 !sfp->need_poll) 821 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 822 mutex_unlock(&sfp->st_mutex); 823 } 824 825 static void sfp_soft_stop_poll(struct sfp *sfp) 826 { 827 mutex_lock(&sfp->st_mutex); 828 sfp->state_soft_mask = 0; 829 mutex_unlock(&sfp->st_mutex); 830 } 831 832 /* sfp_get_state() - must be called with st_mutex held, or in the 833 * initialisation path. 834 */ 835 static unsigned int sfp_get_state(struct sfp *sfp) 836 { 837 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 838 unsigned int state; 839 840 state = sfp->get_state(sfp) & sfp->state_hw_mask; 841 if (state & SFP_F_PRESENT && soft) 842 state |= sfp_soft_get_state(sfp); 843 844 return state; 845 } 846 847 /* sfp_set_state() - must be called with st_mutex held, or in the 848 * initialisation path. 849 */ 850 static void sfp_set_state(struct sfp *sfp, unsigned int state) 851 { 852 unsigned int soft; 853 854 sfp->set_state(sfp, state); 855 856 soft = sfp->state_soft_mask & SFP_F_OUTPUTS; 857 if (state & SFP_F_PRESENT && soft) 858 sfp_soft_set_state(sfp, state, soft); 859 } 860 861 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) 862 { 863 mutex_lock(&sfp->st_mutex); 864 sfp->state = (sfp->state & ~mask) | set; 865 sfp_set_state(sfp, sfp->state); 866 mutex_unlock(&sfp->st_mutex); 867 } 868 869 static unsigned int sfp_check(void *buf, size_t len) 870 { 871 u8 *p, check; 872 873 for (p = buf, check = 0; len; p++, len--) 874 check += *p; 875 876 return check; 877 } 878 879 /* hwmon */ 880 #if IS_ENABLED(CONFIG_HWMON) 881 static umode_t sfp_hwmon_is_visible(const void *data, 882 enum hwmon_sensor_types type, 883 u32 attr, int channel) 884 { 885 const struct sfp *sfp = data; 886 887 switch (type) { 888 case hwmon_temp: 889 switch (attr) { 890 case hwmon_temp_min_alarm: 891 case hwmon_temp_max_alarm: 892 case hwmon_temp_lcrit_alarm: 893 case hwmon_temp_crit_alarm: 894 case hwmon_temp_min: 895 case hwmon_temp_max: 896 case hwmon_temp_lcrit: 897 case hwmon_temp_crit: 898 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 899 return 0; 900 fallthrough; 901 case hwmon_temp_input: 902 case hwmon_temp_label: 903 return 0444; 904 default: 905 return 0; 906 } 907 case hwmon_in: 908 switch (attr) { 909 case hwmon_in_min_alarm: 910 case hwmon_in_max_alarm: 911 case hwmon_in_lcrit_alarm: 912 case hwmon_in_crit_alarm: 913 case hwmon_in_min: 914 case hwmon_in_max: 915 case hwmon_in_lcrit: 916 case hwmon_in_crit: 917 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 918 return 0; 919 fallthrough; 920 case hwmon_in_input: 921 case hwmon_in_label: 922 return 0444; 923 default: 924 return 0; 925 } 926 case hwmon_curr: 927 switch (attr) { 928 case hwmon_curr_min_alarm: 929 case hwmon_curr_max_alarm: 930 case hwmon_curr_lcrit_alarm: 931 case hwmon_curr_crit_alarm: 932 case hwmon_curr_min: 933 case hwmon_curr_max: 934 case hwmon_curr_lcrit: 935 case hwmon_curr_crit: 936 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 937 return 0; 938 fallthrough; 939 case hwmon_curr_input: 940 case hwmon_curr_label: 941 return 0444; 942 default: 943 return 0; 944 } 945 case hwmon_power: 946 /* External calibration of receive power requires 947 * floating point arithmetic. Doing that in the kernel 948 * is not easy, so just skip it. If the module does 949 * not require external calibration, we can however 950 * show receiver power, since FP is then not needed. 951 */ 952 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 953 channel == 1) 954 return 0; 955 switch (attr) { 956 case hwmon_power_min_alarm: 957 case hwmon_power_max_alarm: 958 case hwmon_power_lcrit_alarm: 959 case hwmon_power_crit_alarm: 960 case hwmon_power_min: 961 case hwmon_power_max: 962 case hwmon_power_lcrit: 963 case hwmon_power_crit: 964 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 965 return 0; 966 fallthrough; 967 case hwmon_power_input: 968 case hwmon_power_label: 969 return 0444; 970 default: 971 return 0; 972 } 973 default: 974 return 0; 975 } 976 } 977 978 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 979 { 980 __be16 val; 981 int err; 982 983 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 984 if (err < 0) 985 return err; 986 987 *value = be16_to_cpu(val); 988 989 return 0; 990 } 991 992 static void sfp_hwmon_to_rx_power(long *value) 993 { 994 *value = DIV_ROUND_CLOSEST(*value, 10); 995 } 996 997 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 998 long *value) 999 { 1000 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 1001 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 1002 } 1003 1004 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 1005 { 1006 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 1007 be16_to_cpu(sfp->diag.cal_t_offset), value); 1008 1009 if (*value >= 0x8000) 1010 *value -= 0x10000; 1011 1012 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 1013 } 1014 1015 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 1016 { 1017 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 1018 be16_to_cpu(sfp->diag.cal_v_offset), value); 1019 1020 *value = DIV_ROUND_CLOSEST(*value, 10); 1021 } 1022 1023 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 1024 { 1025 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 1026 be16_to_cpu(sfp->diag.cal_txi_offset), value); 1027 1028 *value = DIV_ROUND_CLOSEST(*value, 500); 1029 } 1030 1031 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 1032 { 1033 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 1034 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 1035 1036 *value = DIV_ROUND_CLOSEST(*value, 10); 1037 } 1038 1039 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 1040 { 1041 int err; 1042 1043 err = sfp_hwmon_read_sensor(sfp, reg, value); 1044 if (err < 0) 1045 return err; 1046 1047 sfp_hwmon_calibrate_temp(sfp, value); 1048 1049 return 0; 1050 } 1051 1052 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 1053 { 1054 int err; 1055 1056 err = sfp_hwmon_read_sensor(sfp, reg, value); 1057 if (err < 0) 1058 return err; 1059 1060 sfp_hwmon_calibrate_vcc(sfp, value); 1061 1062 return 0; 1063 } 1064 1065 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 1066 { 1067 int err; 1068 1069 err = sfp_hwmon_read_sensor(sfp, reg, value); 1070 if (err < 0) 1071 return err; 1072 1073 sfp_hwmon_calibrate_bias(sfp, value); 1074 1075 return 0; 1076 } 1077 1078 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 1079 { 1080 int err; 1081 1082 err = sfp_hwmon_read_sensor(sfp, reg, value); 1083 if (err < 0) 1084 return err; 1085 1086 sfp_hwmon_calibrate_tx_power(sfp, value); 1087 1088 return 0; 1089 } 1090 1091 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 1092 { 1093 int err; 1094 1095 err = sfp_hwmon_read_sensor(sfp, reg, value); 1096 if (err < 0) 1097 return err; 1098 1099 sfp_hwmon_to_rx_power(value); 1100 1101 return 0; 1102 } 1103 1104 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 1105 { 1106 u8 status; 1107 int err; 1108 1109 switch (attr) { 1110 case hwmon_temp_input: 1111 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 1112 1113 case hwmon_temp_lcrit: 1114 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 1115 sfp_hwmon_calibrate_temp(sfp, value); 1116 return 0; 1117 1118 case hwmon_temp_min: 1119 *value = be16_to_cpu(sfp->diag.temp_low_warn); 1120 sfp_hwmon_calibrate_temp(sfp, value); 1121 return 0; 1122 case hwmon_temp_max: 1123 *value = be16_to_cpu(sfp->diag.temp_high_warn); 1124 sfp_hwmon_calibrate_temp(sfp, value); 1125 return 0; 1126 1127 case hwmon_temp_crit: 1128 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 1129 sfp_hwmon_calibrate_temp(sfp, value); 1130 return 0; 1131 1132 case hwmon_temp_lcrit_alarm: 1133 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1134 if (err < 0) 1135 return err; 1136 1137 *value = !!(status & SFP_ALARM0_TEMP_LOW); 1138 return 0; 1139 1140 case hwmon_temp_min_alarm: 1141 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1142 if (err < 0) 1143 return err; 1144 1145 *value = !!(status & SFP_WARN0_TEMP_LOW); 1146 return 0; 1147 1148 case hwmon_temp_max_alarm: 1149 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1150 if (err < 0) 1151 return err; 1152 1153 *value = !!(status & SFP_WARN0_TEMP_HIGH); 1154 return 0; 1155 1156 case hwmon_temp_crit_alarm: 1157 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1158 if (err < 0) 1159 return err; 1160 1161 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1162 return 0; 1163 default: 1164 return -EOPNOTSUPP; 1165 } 1166 1167 return -EOPNOTSUPP; 1168 } 1169 1170 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1171 { 1172 u8 status; 1173 int err; 1174 1175 switch (attr) { 1176 case hwmon_in_input: 1177 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1178 1179 case hwmon_in_lcrit: 1180 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1181 sfp_hwmon_calibrate_vcc(sfp, value); 1182 return 0; 1183 1184 case hwmon_in_min: 1185 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1186 sfp_hwmon_calibrate_vcc(sfp, value); 1187 return 0; 1188 1189 case hwmon_in_max: 1190 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1191 sfp_hwmon_calibrate_vcc(sfp, value); 1192 return 0; 1193 1194 case hwmon_in_crit: 1195 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1196 sfp_hwmon_calibrate_vcc(sfp, value); 1197 return 0; 1198 1199 case hwmon_in_lcrit_alarm: 1200 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1201 if (err < 0) 1202 return err; 1203 1204 *value = !!(status & SFP_ALARM0_VCC_LOW); 1205 return 0; 1206 1207 case hwmon_in_min_alarm: 1208 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1209 if (err < 0) 1210 return err; 1211 1212 *value = !!(status & SFP_WARN0_VCC_LOW); 1213 return 0; 1214 1215 case hwmon_in_max_alarm: 1216 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1217 if (err < 0) 1218 return err; 1219 1220 *value = !!(status & SFP_WARN0_VCC_HIGH); 1221 return 0; 1222 1223 case hwmon_in_crit_alarm: 1224 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1225 if (err < 0) 1226 return err; 1227 1228 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1229 return 0; 1230 default: 1231 return -EOPNOTSUPP; 1232 } 1233 1234 return -EOPNOTSUPP; 1235 } 1236 1237 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1238 { 1239 u8 status; 1240 int err; 1241 1242 switch (attr) { 1243 case hwmon_curr_input: 1244 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1245 1246 case hwmon_curr_lcrit: 1247 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1248 sfp_hwmon_calibrate_bias(sfp, value); 1249 return 0; 1250 1251 case hwmon_curr_min: 1252 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1253 sfp_hwmon_calibrate_bias(sfp, value); 1254 return 0; 1255 1256 case hwmon_curr_max: 1257 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1258 sfp_hwmon_calibrate_bias(sfp, value); 1259 return 0; 1260 1261 case hwmon_curr_crit: 1262 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1263 sfp_hwmon_calibrate_bias(sfp, value); 1264 return 0; 1265 1266 case hwmon_curr_lcrit_alarm: 1267 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1268 if (err < 0) 1269 return err; 1270 1271 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1272 return 0; 1273 1274 case hwmon_curr_min_alarm: 1275 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1276 if (err < 0) 1277 return err; 1278 1279 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1280 return 0; 1281 1282 case hwmon_curr_max_alarm: 1283 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1284 if (err < 0) 1285 return err; 1286 1287 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1288 return 0; 1289 1290 case hwmon_curr_crit_alarm: 1291 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1292 if (err < 0) 1293 return err; 1294 1295 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1296 return 0; 1297 default: 1298 return -EOPNOTSUPP; 1299 } 1300 1301 return -EOPNOTSUPP; 1302 } 1303 1304 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1305 { 1306 u8 status; 1307 int err; 1308 1309 switch (attr) { 1310 case hwmon_power_input: 1311 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1312 1313 case hwmon_power_lcrit: 1314 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1315 sfp_hwmon_calibrate_tx_power(sfp, value); 1316 return 0; 1317 1318 case hwmon_power_min: 1319 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1320 sfp_hwmon_calibrate_tx_power(sfp, value); 1321 return 0; 1322 1323 case hwmon_power_max: 1324 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1325 sfp_hwmon_calibrate_tx_power(sfp, value); 1326 return 0; 1327 1328 case hwmon_power_crit: 1329 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1330 sfp_hwmon_calibrate_tx_power(sfp, value); 1331 return 0; 1332 1333 case hwmon_power_lcrit_alarm: 1334 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1335 if (err < 0) 1336 return err; 1337 1338 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1339 return 0; 1340 1341 case hwmon_power_min_alarm: 1342 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1343 if (err < 0) 1344 return err; 1345 1346 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1347 return 0; 1348 1349 case hwmon_power_max_alarm: 1350 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1351 if (err < 0) 1352 return err; 1353 1354 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1355 return 0; 1356 1357 case hwmon_power_crit_alarm: 1358 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1359 if (err < 0) 1360 return err; 1361 1362 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1363 return 0; 1364 default: 1365 return -EOPNOTSUPP; 1366 } 1367 1368 return -EOPNOTSUPP; 1369 } 1370 1371 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1372 { 1373 u8 status; 1374 int err; 1375 1376 switch (attr) { 1377 case hwmon_power_input: 1378 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1379 1380 case hwmon_power_lcrit: 1381 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1382 sfp_hwmon_to_rx_power(value); 1383 return 0; 1384 1385 case hwmon_power_min: 1386 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1387 sfp_hwmon_to_rx_power(value); 1388 return 0; 1389 1390 case hwmon_power_max: 1391 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1392 sfp_hwmon_to_rx_power(value); 1393 return 0; 1394 1395 case hwmon_power_crit: 1396 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1397 sfp_hwmon_to_rx_power(value); 1398 return 0; 1399 1400 case hwmon_power_lcrit_alarm: 1401 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1402 if (err < 0) 1403 return err; 1404 1405 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1406 return 0; 1407 1408 case hwmon_power_min_alarm: 1409 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1410 if (err < 0) 1411 return err; 1412 1413 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1414 return 0; 1415 1416 case hwmon_power_max_alarm: 1417 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1418 if (err < 0) 1419 return err; 1420 1421 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1422 return 0; 1423 1424 case hwmon_power_crit_alarm: 1425 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1426 if (err < 0) 1427 return err; 1428 1429 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1430 return 0; 1431 default: 1432 return -EOPNOTSUPP; 1433 } 1434 1435 return -EOPNOTSUPP; 1436 } 1437 1438 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1439 u32 attr, int channel, long *value) 1440 { 1441 struct sfp *sfp = dev_get_drvdata(dev); 1442 1443 switch (type) { 1444 case hwmon_temp: 1445 return sfp_hwmon_temp(sfp, attr, value); 1446 case hwmon_in: 1447 return sfp_hwmon_vcc(sfp, attr, value); 1448 case hwmon_curr: 1449 return sfp_hwmon_bias(sfp, attr, value); 1450 case hwmon_power: 1451 switch (channel) { 1452 case 0: 1453 return sfp_hwmon_tx_power(sfp, attr, value); 1454 case 1: 1455 return sfp_hwmon_rx_power(sfp, attr, value); 1456 default: 1457 return -EOPNOTSUPP; 1458 } 1459 default: 1460 return -EOPNOTSUPP; 1461 } 1462 } 1463 1464 static const char *const sfp_hwmon_power_labels[] = { 1465 "TX_power", 1466 "RX_power", 1467 }; 1468 1469 static int sfp_hwmon_read_string(struct device *dev, 1470 enum hwmon_sensor_types type, 1471 u32 attr, int channel, const char **str) 1472 { 1473 switch (type) { 1474 case hwmon_curr: 1475 switch (attr) { 1476 case hwmon_curr_label: 1477 *str = "bias"; 1478 return 0; 1479 default: 1480 return -EOPNOTSUPP; 1481 } 1482 break; 1483 case hwmon_temp: 1484 switch (attr) { 1485 case hwmon_temp_label: 1486 *str = "temperature"; 1487 return 0; 1488 default: 1489 return -EOPNOTSUPP; 1490 } 1491 break; 1492 case hwmon_in: 1493 switch (attr) { 1494 case hwmon_in_label: 1495 *str = "VCC"; 1496 return 0; 1497 default: 1498 return -EOPNOTSUPP; 1499 } 1500 break; 1501 case hwmon_power: 1502 switch (attr) { 1503 case hwmon_power_label: 1504 *str = sfp_hwmon_power_labels[channel]; 1505 return 0; 1506 default: 1507 return -EOPNOTSUPP; 1508 } 1509 break; 1510 default: 1511 return -EOPNOTSUPP; 1512 } 1513 1514 return -EOPNOTSUPP; 1515 } 1516 1517 static const struct hwmon_ops sfp_hwmon_ops = { 1518 .is_visible = sfp_hwmon_is_visible, 1519 .read = sfp_hwmon_read, 1520 .read_string = sfp_hwmon_read_string, 1521 }; 1522 1523 static const struct hwmon_channel_info * const sfp_hwmon_info[] = { 1524 HWMON_CHANNEL_INFO(chip, 1525 HWMON_C_REGISTER_TZ), 1526 HWMON_CHANNEL_INFO(in, 1527 HWMON_I_INPUT | 1528 HWMON_I_MAX | HWMON_I_MIN | 1529 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1530 HWMON_I_CRIT | HWMON_I_LCRIT | 1531 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1532 HWMON_I_LABEL), 1533 HWMON_CHANNEL_INFO(temp, 1534 HWMON_T_INPUT | 1535 HWMON_T_MAX | HWMON_T_MIN | 1536 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1537 HWMON_T_CRIT | HWMON_T_LCRIT | 1538 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1539 HWMON_T_LABEL), 1540 HWMON_CHANNEL_INFO(curr, 1541 HWMON_C_INPUT | 1542 HWMON_C_MAX | HWMON_C_MIN | 1543 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1544 HWMON_C_CRIT | HWMON_C_LCRIT | 1545 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1546 HWMON_C_LABEL), 1547 HWMON_CHANNEL_INFO(power, 1548 /* Transmit power */ 1549 HWMON_P_INPUT | 1550 HWMON_P_MAX | HWMON_P_MIN | 1551 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1552 HWMON_P_CRIT | HWMON_P_LCRIT | 1553 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1554 HWMON_P_LABEL, 1555 /* Receive power */ 1556 HWMON_P_INPUT | 1557 HWMON_P_MAX | HWMON_P_MIN | 1558 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1559 HWMON_P_CRIT | HWMON_P_LCRIT | 1560 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1561 HWMON_P_LABEL), 1562 NULL, 1563 }; 1564 1565 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1566 .ops = &sfp_hwmon_ops, 1567 .info = sfp_hwmon_info, 1568 }; 1569 1570 static void sfp_hwmon_probe(struct work_struct *work) 1571 { 1572 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1573 int err; 1574 1575 /* hwmon interface needs to access 16bit registers in atomic way to 1576 * guarantee coherency of the diagnostic monitoring data. If it is not 1577 * possible to guarantee coherency because EEPROM is broken in such way 1578 * that does not support atomic 16bit read operation then we have to 1579 * skip registration of hwmon device. 1580 */ 1581 if (sfp->i2c_block_size < 2) { 1582 dev_info(sfp->dev, 1583 "skipping hwmon device registration due to broken EEPROM\n"); 1584 dev_info(sfp->dev, 1585 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1586 return; 1587 } 1588 1589 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1590 if (err < 0) { 1591 if (sfp->hwmon_tries--) { 1592 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1593 T_PROBE_RETRY_SLOW); 1594 } else { 1595 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1596 ERR_PTR(err)); 1597 } 1598 return; 1599 } 1600 1601 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1602 if (IS_ERR(sfp->hwmon_name)) { 1603 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1604 return; 1605 } 1606 1607 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1608 sfp->hwmon_name, sfp, 1609 &sfp_hwmon_chip_info, 1610 NULL); 1611 if (IS_ERR(sfp->hwmon_dev)) 1612 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1613 PTR_ERR(sfp->hwmon_dev)); 1614 } 1615 1616 static int sfp_hwmon_insert(struct sfp *sfp) 1617 { 1618 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { 1619 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1620 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1621 } 1622 1623 return 0; 1624 } 1625 1626 static void sfp_hwmon_remove(struct sfp *sfp) 1627 { 1628 cancel_delayed_work_sync(&sfp->hwmon_probe); 1629 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1630 hwmon_device_unregister(sfp->hwmon_dev); 1631 sfp->hwmon_dev = NULL; 1632 kfree(sfp->hwmon_name); 1633 } 1634 } 1635 1636 static int sfp_hwmon_init(struct sfp *sfp) 1637 { 1638 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1639 1640 return 0; 1641 } 1642 1643 static void sfp_hwmon_exit(struct sfp *sfp) 1644 { 1645 cancel_delayed_work_sync(&sfp->hwmon_probe); 1646 } 1647 #else 1648 static int sfp_hwmon_insert(struct sfp *sfp) 1649 { 1650 return 0; 1651 } 1652 1653 static void sfp_hwmon_remove(struct sfp *sfp) 1654 { 1655 } 1656 1657 static int sfp_hwmon_init(struct sfp *sfp) 1658 { 1659 return 0; 1660 } 1661 1662 static void sfp_hwmon_exit(struct sfp *sfp) 1663 { 1664 } 1665 #endif 1666 1667 /* Helpers */ 1668 static void sfp_module_tx_disable(struct sfp *sfp) 1669 { 1670 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1671 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1672 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); 1673 } 1674 1675 static void sfp_module_tx_enable(struct sfp *sfp) 1676 { 1677 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1678 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1679 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); 1680 } 1681 1682 #if IS_ENABLED(CONFIG_DEBUG_FS) 1683 static int sfp_debug_state_show(struct seq_file *s, void *data) 1684 { 1685 struct sfp *sfp = s->private; 1686 1687 seq_printf(s, "Module state: %s\n", 1688 mod_state_to_str(sfp->sm_mod_state)); 1689 seq_printf(s, "Module probe attempts: %d %d\n", 1690 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1691 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1692 seq_printf(s, "Device state: %s\n", 1693 dev_state_to_str(sfp->sm_dev_state)); 1694 seq_printf(s, "Main state: %s\n", 1695 sm_state_to_str(sfp->sm_state)); 1696 seq_printf(s, "Fault recovery remaining retries: %d\n", 1697 sfp->sm_fault_retries); 1698 seq_printf(s, "PHY probe remaining retries: %d\n", 1699 sfp->sm_phy_retries); 1700 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); 1701 seq_printf(s, "Rate select threshold: %u kBd\n", 1702 sfp->rs_threshold_kbd); 1703 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1704 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1705 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1706 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1707 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); 1708 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); 1709 return 0; 1710 } 1711 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1712 1713 static void sfp_debugfs_init(struct sfp *sfp) 1714 { 1715 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1716 1717 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1718 &sfp_debug_state_fops); 1719 } 1720 1721 static void sfp_debugfs_exit(struct sfp *sfp) 1722 { 1723 debugfs_remove_recursive(sfp->debugfs_dir); 1724 } 1725 #else 1726 static void sfp_debugfs_init(struct sfp *sfp) 1727 { 1728 } 1729 1730 static void sfp_debugfs_exit(struct sfp *sfp) 1731 { 1732 } 1733 #endif 1734 1735 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1736 { 1737 unsigned int state; 1738 1739 mutex_lock(&sfp->st_mutex); 1740 state = sfp->state; 1741 if (!(state & SFP_F_TX_DISABLE)) { 1742 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1743 1744 udelay(T_RESET_US); 1745 1746 sfp_set_state(sfp, state); 1747 } 1748 mutex_unlock(&sfp->st_mutex); 1749 } 1750 1751 /* SFP state machine */ 1752 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1753 { 1754 if (timeout) 1755 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1756 timeout); 1757 else 1758 cancel_delayed_work(&sfp->timeout); 1759 } 1760 1761 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1762 unsigned int timeout) 1763 { 1764 sfp->sm_state = state; 1765 sfp_sm_set_timer(sfp, timeout); 1766 } 1767 1768 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1769 unsigned int timeout) 1770 { 1771 sfp->sm_mod_state = state; 1772 sfp_sm_set_timer(sfp, timeout); 1773 } 1774 1775 static void sfp_sm_phy_detach(struct sfp *sfp) 1776 { 1777 sfp_remove_phy(sfp->sfp_bus); 1778 phy_device_remove(sfp->mod_phy); 1779 phy_device_free(sfp->mod_phy); 1780 sfp->mod_phy = NULL; 1781 } 1782 1783 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1784 { 1785 struct phy_device *phy; 1786 int err; 1787 1788 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1789 if (phy == ERR_PTR(-ENODEV)) 1790 return PTR_ERR(phy); 1791 if (IS_ERR(phy)) { 1792 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1793 return PTR_ERR(phy); 1794 } 1795 1796 /* Mark this PHY as being on a SFP module */ 1797 phy->is_on_sfp_module = true; 1798 1799 err = phy_device_register(phy); 1800 if (err) { 1801 phy_device_free(phy); 1802 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1803 ERR_PTR(err)); 1804 return err; 1805 } 1806 1807 err = sfp_add_phy(sfp->sfp_bus, phy); 1808 if (err) { 1809 phy_device_remove(phy); 1810 phy_device_free(phy); 1811 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1812 return err; 1813 } 1814 1815 sfp->mod_phy = phy; 1816 1817 return 0; 1818 } 1819 1820 static void sfp_sm_link_up(struct sfp *sfp) 1821 { 1822 sfp_link_up(sfp->sfp_bus); 1823 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1824 } 1825 1826 static void sfp_sm_link_down(struct sfp *sfp) 1827 { 1828 sfp_link_down(sfp->sfp_bus); 1829 } 1830 1831 static void sfp_sm_link_check_los(struct sfp *sfp) 1832 { 1833 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1834 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1835 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1836 bool los = false; 1837 1838 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1839 * are set, we assume that no LOS signal is available. If both are 1840 * set, we assume LOS is not implemented (and is meaningless.) 1841 */ 1842 if (los_options == los_inverted) 1843 los = !(sfp->state & SFP_F_LOS); 1844 else if (los_options == los_normal) 1845 los = !!(sfp->state & SFP_F_LOS); 1846 1847 if (los) 1848 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1849 else 1850 sfp_sm_link_up(sfp); 1851 } 1852 1853 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1854 { 1855 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1856 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1857 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1858 1859 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1860 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1861 } 1862 1863 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1864 { 1865 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1866 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1867 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1868 1869 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1870 (los_options == los_normal && event == SFP_E_LOS_LOW); 1871 } 1872 1873 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1874 { 1875 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1876 dev_err(sfp->dev, 1877 "module persistently indicates fault, disabling\n"); 1878 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1879 } else { 1880 if (warn) 1881 dev_err(sfp->dev, "module transmit fault indicated\n"); 1882 1883 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1884 } 1885 } 1886 1887 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1888 { 1889 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1890 return sfp_i2c_mdiobus_create(sfp); 1891 1892 return 0; 1893 } 1894 1895 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1896 * normally sits at I2C bus address 0x56, and may either be a clause 22 1897 * or clause 45 PHY. 1898 * 1899 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1900 * negotiation enabled, but some may be in 1000base-X - which is for the 1901 * PHY driver to determine. 1902 * 1903 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1904 * mode according to the negotiated line speed. 1905 */ 1906 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1907 { 1908 int err = 0; 1909 1910 switch (sfp->mdio_protocol) { 1911 case MDIO_I2C_NONE: 1912 break; 1913 1914 case MDIO_I2C_MARVELL_C22: 1915 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1916 break; 1917 1918 case MDIO_I2C_C45: 1919 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1920 break; 1921 1922 case MDIO_I2C_ROLLBALL: 1923 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1924 break; 1925 } 1926 1927 return err; 1928 } 1929 1930 static int sfp_module_parse_power(struct sfp *sfp) 1931 { 1932 u32 power_mW = 1000; 1933 bool supports_a2; 1934 1935 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1936 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1937 power_mW = 1500; 1938 /* Added in Rev 11.9, but there is no compliance code for this */ 1939 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1940 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1941 power_mW = 2000; 1942 1943 /* Power level 1 modules (max. 1W) are always supported. */ 1944 if (power_mW <= 1000) { 1945 sfp->module_power_mW = power_mW; 1946 return 0; 1947 } 1948 1949 supports_a2 = sfp->id.ext.sff8472_compliance != 1950 SFP_SFF8472_COMPLIANCE_NONE || 1951 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1952 1953 if (power_mW > sfp->max_power_mW) { 1954 /* Module power specification exceeds the allowed maximum. */ 1955 if (!supports_a2) { 1956 /* The module appears not to implement bus address 1957 * 0xa2, so assume that the module powers up in the 1958 * indicated mode. 1959 */ 1960 dev_err(sfp->dev, 1961 "Host does not support %u.%uW modules\n", 1962 power_mW / 1000, (power_mW / 100) % 10); 1963 return -EINVAL; 1964 } else { 1965 dev_warn(sfp->dev, 1966 "Host does not support %u.%uW modules, module left in power mode 1\n", 1967 power_mW / 1000, (power_mW / 100) % 10); 1968 return 0; 1969 } 1970 } 1971 1972 if (!supports_a2) { 1973 /* The module power level is below the host maximum and the 1974 * module appears not to implement bus address 0xa2, so assume 1975 * that the module powers up in the indicated mode. 1976 */ 1977 return 0; 1978 } 1979 1980 /* If the module requires a higher power mode, but also requires 1981 * an address change sequence, warn the user that the module may 1982 * not be functional. 1983 */ 1984 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1985 dev_warn(sfp->dev, 1986 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1987 power_mW / 1000, (power_mW / 100) % 10); 1988 return 0; 1989 } 1990 1991 sfp->module_power_mW = power_mW; 1992 1993 return 0; 1994 } 1995 1996 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1997 { 1998 int err; 1999 2000 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 2001 SFP_EXT_STATUS_PWRLVL_SELECT, 2002 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 2003 if (err != sizeof(u8)) { 2004 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 2005 enable ? "en" : "dis", ERR_PTR(err)); 2006 return -EAGAIN; 2007 } 2008 2009 if (enable) 2010 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 2011 sfp->module_power_mW / 1000, 2012 (sfp->module_power_mW / 100) % 10); 2013 2014 return 0; 2015 } 2016 2017 static void sfp_module_parse_rate_select(struct sfp *sfp) 2018 { 2019 u8 rate_id; 2020 2021 sfp->rs_threshold_kbd = 0; 2022 sfp->rs_state_mask = 0; 2023 2024 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) 2025 /* No support for RateSelect */ 2026 return; 2027 2028 /* Default to INF-8074 RateSelect operation. The signalling threshold 2029 * rate is not well specified, so always select "Full Bandwidth", but 2030 * SFF-8079 reveals that it is understood that RS0 will be low for 2031 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. 2032 * This method exists prior to SFF-8472. 2033 */ 2034 sfp->rs_state_mask = SFP_F_RS0; 2035 sfp->rs_threshold_kbd = 1594; 2036 2037 /* Parse the rate identifier, which is complicated due to history: 2038 * SFF-8472 rev 9.5 marks this field as reserved. 2039 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 2040 * compliance is not required. 2041 * SFF-8472 rev 10.2 defines this field using values 0..4 2042 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 2043 * and even values. 2044 */ 2045 rate_id = sfp->id.base.rate_id; 2046 if (rate_id == 0) 2047 /* Unspecified */ 2048 return; 2049 2050 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, 2051 * and allocated value 3 to SFF-8431 independent tx/rx rate select. 2052 * Convert this to a SFF-8472 rev 11.0 rate identifier. 2053 */ 2054 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 2055 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && 2056 rate_id == 3) 2057 rate_id = SFF_RID_8431; 2058 2059 if (rate_id & SFF_RID_8079) { 2060 /* SFF-8079 RateSelect / Application Select in conjunction with 2061 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield 2062 * with only bit 0 used, which takes precedence over SFF-8472. 2063 */ 2064 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { 2065 /* SFF-8079 Part 1 - rate selection between Fibre 2066 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 2067 * is high for 2125, so we have to subtract 1 to 2068 * include it. 2069 */ 2070 sfp->rs_threshold_kbd = 2125 - 1; 2071 sfp->rs_state_mask = SFP_F_RS0; 2072 } 2073 return; 2074 } 2075 2076 /* SFF-8472 rev 9.5 does not define the rate identifier */ 2077 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) 2078 return; 2079 2080 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will 2081 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. 2082 */ 2083 switch (rate_id) { 2084 case SFF_RID_8431_RX_ONLY: 2085 sfp->rs_threshold_kbd = 4250; 2086 sfp->rs_state_mask = SFP_F_RS0; 2087 break; 2088 2089 case SFF_RID_8431_TX_ONLY: 2090 sfp->rs_threshold_kbd = 4250; 2091 sfp->rs_state_mask = SFP_F_RS1; 2092 break; 2093 2094 case SFF_RID_8431: 2095 sfp->rs_threshold_kbd = 4250; 2096 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2097 break; 2098 2099 case SFF_RID_10G8G: 2100 sfp->rs_threshold_kbd = 9000; 2101 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2102 break; 2103 } 2104 } 2105 2106 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 2107 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 2108 * not support multibyte reads from the EEPROM. Each multi-byte read 2109 * operation returns just one byte of EEPROM followed by zeros. There is 2110 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 2111 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 2112 * name and vendor id into EEPROM, so there is even no way to detect if 2113 * module is V-SOL V2801F. Therefore check for those zeros in the read 2114 * data and then based on check switch to reading EEPROM to one byte 2115 * at a time. 2116 */ 2117 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 2118 { 2119 size_t i, block_size = sfp->i2c_block_size; 2120 2121 /* Already using byte IO */ 2122 if (block_size == 1) 2123 return false; 2124 2125 for (i = 1; i < len; i += block_size) { 2126 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 2127 return false; 2128 } 2129 return true; 2130 } 2131 2132 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 2133 { 2134 u8 check; 2135 int err; 2136 2137 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 2138 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 2139 id->base.connector != SFF8024_CONNECTOR_LC) { 2140 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 2141 id->base.phys_id = SFF8024_ID_SFF_8472; 2142 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 2143 id->base.connector = SFF8024_CONNECTOR_LC; 2144 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 2145 if (err != 3) { 2146 dev_err(sfp->dev, 2147 "Failed to rewrite module EEPROM: %pe\n", 2148 ERR_PTR(err)); 2149 return err; 2150 } 2151 2152 /* Cotsworks modules have been found to require a delay between write operations. */ 2153 mdelay(50); 2154 2155 /* Update base structure checksum */ 2156 check = sfp_check(&id->base, sizeof(id->base) - 1); 2157 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 2158 if (err != 1) { 2159 dev_err(sfp->dev, 2160 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 2161 ERR_PTR(err)); 2162 return err; 2163 } 2164 } 2165 return 0; 2166 } 2167 2168 static int sfp_module_parse_sff8472(struct sfp *sfp) 2169 { 2170 /* If the module requires address swap mode, warn about it */ 2171 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2172 dev_warn(sfp->dev, 2173 "module address swap to access page 0xA2 is not supported.\n"); 2174 else 2175 sfp->have_a2 = true; 2176 2177 return 0; 2178 } 2179 2180 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 2181 { 2182 /* SFP module inserted - read I2C data */ 2183 struct sfp_eeprom_id id; 2184 bool cotsworks_sfbg; 2185 unsigned int mask; 2186 bool cotsworks; 2187 u8 check; 2188 int ret; 2189 2190 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2191 2192 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2193 if (ret < 0) { 2194 if (report) 2195 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2196 ERR_PTR(ret)); 2197 return -EAGAIN; 2198 } 2199 2200 if (ret != sizeof(id.base)) { 2201 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2202 return -EAGAIN; 2203 } 2204 2205 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 2206 * address 0x51 is just one byte at a time. Also SFF-8472 requires 2207 * that EEPROM supports atomic 16bit read operation for diagnostic 2208 * fields, so do not switch to one byte reading at a time unless it 2209 * is really required and we have no other option. 2210 */ 2211 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 2212 dev_info(sfp->dev, 2213 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 2214 dev_info(sfp->dev, 2215 "Switching to reading EEPROM to one byte at a time\n"); 2216 sfp->i2c_block_size = 1; 2217 2218 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2219 if (ret < 0) { 2220 if (report) 2221 dev_err(sfp->dev, 2222 "failed to read EEPROM: %pe\n", 2223 ERR_PTR(ret)); 2224 return -EAGAIN; 2225 } 2226 2227 if (ret != sizeof(id.base)) { 2228 dev_err(sfp->dev, "EEPROM short read: %pe\n", 2229 ERR_PTR(ret)); 2230 return -EAGAIN; 2231 } 2232 } 2233 2234 /* Cotsworks do not seem to update the checksums when they 2235 * do the final programming with the final module part number, 2236 * serial number and date code. 2237 */ 2238 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 2239 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 2240 2241 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 2242 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 2243 * Cotsworks PN matches and bytes are not correct. 2244 */ 2245 if (cotsworks && cotsworks_sfbg) { 2246 ret = sfp_cotsworks_fixup_check(sfp, &id); 2247 if (ret < 0) 2248 return ret; 2249 } 2250 2251 /* Validate the checksum over the base structure */ 2252 check = sfp_check(&id.base, sizeof(id.base) - 1); 2253 if (check != id.base.cc_base) { 2254 if (cotsworks) { 2255 dev_warn(sfp->dev, 2256 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2257 check, id.base.cc_base); 2258 } else { 2259 dev_err(sfp->dev, 2260 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2261 check, id.base.cc_base); 2262 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2263 16, 1, &id, sizeof(id), true); 2264 return -EINVAL; 2265 } 2266 } 2267 2268 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2269 if (ret < 0) { 2270 if (report) 2271 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2272 ERR_PTR(ret)); 2273 return -EAGAIN; 2274 } 2275 2276 if (ret != sizeof(id.ext)) { 2277 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2278 return -EAGAIN; 2279 } 2280 2281 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2282 if (check != id.ext.cc_ext) { 2283 if (cotsworks) { 2284 dev_warn(sfp->dev, 2285 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2286 check, id.ext.cc_ext); 2287 } else { 2288 dev_err(sfp->dev, 2289 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2290 check, id.ext.cc_ext); 2291 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2292 16, 1, &id, sizeof(id), true); 2293 memset(&id.ext, 0, sizeof(id.ext)); 2294 } 2295 } 2296 2297 sfp->id = id; 2298 2299 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2300 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2301 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2302 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2303 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2304 (int)sizeof(id.ext.datecode), id.ext.datecode); 2305 2306 /* Check whether we support this module */ 2307 if (!sfp->type->module_supported(&id)) { 2308 dev_err(sfp->dev, 2309 "module is not supported - phys id 0x%02x 0x%02x\n", 2310 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2311 return -EINVAL; 2312 } 2313 2314 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { 2315 ret = sfp_module_parse_sff8472(sfp); 2316 if (ret < 0) 2317 return ret; 2318 } 2319 2320 /* Parse the module power requirement */ 2321 ret = sfp_module_parse_power(sfp); 2322 if (ret < 0) 2323 return ret; 2324 2325 sfp_module_parse_rate_select(sfp); 2326 2327 mask = SFP_F_PRESENT; 2328 if (sfp->gpio[GPIO_TX_DISABLE]) 2329 mask |= SFP_F_TX_DISABLE; 2330 if (sfp->gpio[GPIO_TX_FAULT]) 2331 mask |= SFP_F_TX_FAULT; 2332 if (sfp->gpio[GPIO_LOS]) 2333 mask |= SFP_F_LOS; 2334 if (sfp->gpio[GPIO_RS0]) 2335 mask |= SFP_F_RS0; 2336 if (sfp->gpio[GPIO_RS1]) 2337 mask |= SFP_F_RS1; 2338 2339 sfp->module_t_start_up = T_START_UP; 2340 sfp->module_t_wait = T_WAIT; 2341 sfp->phy_t_retry = T_PHY_RETRY; 2342 2343 sfp->state_ignore_mask = 0; 2344 2345 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2346 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2347 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2348 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2349 sfp->mdio_protocol = MDIO_I2C_C45; 2350 else if (sfp->id.base.e1000_base_t) 2351 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2352 else 2353 sfp->mdio_protocol = MDIO_I2C_NONE; 2354 2355 sfp->quirk = sfp_lookup_quirk(&id); 2356 2357 mutex_lock(&sfp->st_mutex); 2358 /* Initialise state bits to use from hardware */ 2359 sfp->state_hw_mask = mask; 2360 2361 /* We want to drive the rate select pins that the module is using */ 2362 sfp->state_hw_drive |= sfp->rs_state_mask; 2363 2364 if (sfp->quirk && sfp->quirk->fixup) 2365 sfp->quirk->fixup(sfp); 2366 2367 sfp->state_hw_mask &= ~sfp->state_ignore_mask; 2368 mutex_unlock(&sfp->st_mutex); 2369 2370 return 0; 2371 } 2372 2373 static void sfp_sm_mod_remove(struct sfp *sfp) 2374 { 2375 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2376 sfp_module_remove(sfp->sfp_bus); 2377 2378 sfp_hwmon_remove(sfp); 2379 2380 memset(&sfp->id, 0, sizeof(sfp->id)); 2381 sfp->module_power_mW = 0; 2382 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2383 sfp->have_a2 = false; 2384 2385 dev_info(sfp->dev, "module removed\n"); 2386 } 2387 2388 /* This state machine tracks the upstream's state */ 2389 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2390 { 2391 switch (sfp->sm_dev_state) { 2392 default: 2393 if (event == SFP_E_DEV_ATTACH) 2394 sfp->sm_dev_state = SFP_DEV_DOWN; 2395 break; 2396 2397 case SFP_DEV_DOWN: 2398 if (event == SFP_E_DEV_DETACH) 2399 sfp->sm_dev_state = SFP_DEV_DETACHED; 2400 else if (event == SFP_E_DEV_UP) 2401 sfp->sm_dev_state = SFP_DEV_UP; 2402 break; 2403 2404 case SFP_DEV_UP: 2405 if (event == SFP_E_DEV_DETACH) 2406 sfp->sm_dev_state = SFP_DEV_DETACHED; 2407 else if (event == SFP_E_DEV_DOWN) 2408 sfp->sm_dev_state = SFP_DEV_DOWN; 2409 break; 2410 } 2411 } 2412 2413 /* This state machine tracks the insert/remove state of the module, probes 2414 * the on-board EEPROM, and sets up the power level. 2415 */ 2416 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2417 { 2418 int err; 2419 2420 /* Handle remove event globally, it resets this state machine */ 2421 if (event == SFP_E_REMOVE) { 2422 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2423 sfp_sm_mod_remove(sfp); 2424 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2425 return; 2426 } 2427 2428 /* Handle device detach globally */ 2429 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2430 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2431 if (sfp->module_power_mW > 1000 && 2432 sfp->sm_mod_state > SFP_MOD_HPOWER) 2433 sfp_sm_mod_hpower(sfp, false); 2434 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2435 return; 2436 } 2437 2438 switch (sfp->sm_mod_state) { 2439 default: 2440 if (event == SFP_E_INSERT) { 2441 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2442 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2443 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2444 } 2445 break; 2446 2447 case SFP_MOD_PROBE: 2448 /* Wait for T_PROBE_INIT to time out */ 2449 if (event != SFP_E_TIMEOUT) 2450 break; 2451 2452 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2453 if (err == -EAGAIN) { 2454 if (sfp->sm_mod_tries_init && 2455 --sfp->sm_mod_tries_init) { 2456 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2457 break; 2458 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2459 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2460 dev_warn(sfp->dev, 2461 "please wait, module slow to respond\n"); 2462 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2463 break; 2464 } 2465 } 2466 if (err < 0) { 2467 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2468 break; 2469 } 2470 2471 /* Force a poll to re-read the hardware signal state after 2472 * sfp_sm_mod_probe() changed state_hw_mask. 2473 */ 2474 mod_delayed_work(system_wq, &sfp->poll, 1); 2475 2476 err = sfp_hwmon_insert(sfp); 2477 if (err) 2478 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2479 ERR_PTR(err)); 2480 2481 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2482 fallthrough; 2483 case SFP_MOD_WAITDEV: 2484 /* Ensure that the device is attached before proceeding */ 2485 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2486 break; 2487 2488 /* Report the module insertion to the upstream device */ 2489 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2490 sfp->quirk); 2491 if (err < 0) { 2492 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2493 break; 2494 } 2495 2496 /* If this is a power level 1 module, we are done */ 2497 if (sfp->module_power_mW <= 1000) 2498 goto insert; 2499 2500 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2501 fallthrough; 2502 case SFP_MOD_HPOWER: 2503 /* Enable high power mode */ 2504 err = sfp_sm_mod_hpower(sfp, true); 2505 if (err < 0) { 2506 if (err != -EAGAIN) { 2507 sfp_module_remove(sfp->sfp_bus); 2508 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2509 } else { 2510 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2511 } 2512 break; 2513 } 2514 2515 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2516 break; 2517 2518 case SFP_MOD_WAITPWR: 2519 /* Wait for T_HPOWER_LEVEL to time out */ 2520 if (event != SFP_E_TIMEOUT) 2521 break; 2522 2523 insert: 2524 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2525 break; 2526 2527 case SFP_MOD_PRESENT: 2528 case SFP_MOD_ERROR: 2529 break; 2530 } 2531 } 2532 2533 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2534 { 2535 unsigned long timeout; 2536 int ret; 2537 2538 /* Some events are global */ 2539 if (sfp->sm_state != SFP_S_DOWN && 2540 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2541 sfp->sm_dev_state != SFP_DEV_UP)) { 2542 if (sfp->sm_state == SFP_S_LINK_UP && 2543 sfp->sm_dev_state == SFP_DEV_UP) 2544 sfp_sm_link_down(sfp); 2545 if (sfp->sm_state > SFP_S_INIT) 2546 sfp_module_stop(sfp->sfp_bus); 2547 if (sfp->mod_phy) 2548 sfp_sm_phy_detach(sfp); 2549 if (sfp->i2c_mii) 2550 sfp_i2c_mdiobus_destroy(sfp); 2551 sfp_module_tx_disable(sfp); 2552 sfp_soft_stop_poll(sfp); 2553 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2554 return; 2555 } 2556 2557 /* The main state machine */ 2558 switch (sfp->sm_state) { 2559 case SFP_S_DOWN: 2560 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2561 sfp->sm_dev_state != SFP_DEV_UP) 2562 break; 2563 2564 /* Only use the soft state bits if we have access to the A2h 2565 * memory, which implies that we have some level of SFF-8472 2566 * compliance. 2567 */ 2568 if (sfp->have_a2) 2569 sfp_soft_start_poll(sfp); 2570 2571 sfp_module_tx_enable(sfp); 2572 2573 /* Initialise the fault clearance retries */ 2574 sfp->sm_fault_retries = N_FAULT_INIT; 2575 2576 /* We need to check the TX_FAULT state, which is not defined 2577 * while TX_DISABLE is asserted. The earliest we want to do 2578 * anything (such as probe for a PHY) is 50ms (or more on 2579 * specific modules). 2580 */ 2581 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2582 break; 2583 2584 case SFP_S_WAIT: 2585 if (event != SFP_E_TIMEOUT) 2586 break; 2587 2588 if (sfp->state & SFP_F_TX_FAULT) { 2589 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2590 * from the TX_DISABLE deassertion for the module to 2591 * initialise, which is indicated by TX_FAULT 2592 * deasserting. 2593 */ 2594 timeout = sfp->module_t_start_up; 2595 if (timeout > sfp->module_t_wait) 2596 timeout -= sfp->module_t_wait; 2597 else 2598 timeout = 1; 2599 2600 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2601 } else { 2602 /* TX_FAULT is not asserted, assume the module has 2603 * finished initialising. 2604 */ 2605 goto init_done; 2606 } 2607 break; 2608 2609 case SFP_S_INIT: 2610 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2611 /* TX_FAULT is still asserted after t_init 2612 * or t_start_up, so assume there is a fault. 2613 */ 2614 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2615 sfp->sm_fault_retries == N_FAULT_INIT); 2616 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2617 init_done: 2618 /* Create mdiobus and start trying for PHY */ 2619 ret = sfp_sm_add_mdio_bus(sfp); 2620 if (ret < 0) { 2621 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2622 break; 2623 } 2624 sfp->sm_phy_retries = R_PHY_RETRY; 2625 goto phy_probe; 2626 } 2627 break; 2628 2629 case SFP_S_INIT_PHY: 2630 if (event != SFP_E_TIMEOUT) 2631 break; 2632 phy_probe: 2633 /* TX_FAULT deasserted or we timed out with TX_FAULT 2634 * clear. Probe for the PHY and check the LOS state. 2635 */ 2636 ret = sfp_sm_probe_for_phy(sfp); 2637 if (ret == -ENODEV) { 2638 if (--sfp->sm_phy_retries) { 2639 sfp_sm_next(sfp, SFP_S_INIT_PHY, 2640 sfp->phy_t_retry); 2641 dev_dbg(sfp->dev, 2642 "no PHY detected, %u tries left\n", 2643 sfp->sm_phy_retries); 2644 break; 2645 } else { 2646 dev_info(sfp->dev, "no PHY detected\n"); 2647 } 2648 } else if (ret) { 2649 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2650 break; 2651 } 2652 if (sfp_module_start(sfp->sfp_bus)) { 2653 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2654 break; 2655 } 2656 sfp_sm_link_check_los(sfp); 2657 2658 /* Reset the fault retry count */ 2659 sfp->sm_fault_retries = N_FAULT; 2660 break; 2661 2662 case SFP_S_INIT_TX_FAULT: 2663 if (event == SFP_E_TIMEOUT) { 2664 sfp_module_tx_fault_reset(sfp); 2665 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2666 } 2667 break; 2668 2669 case SFP_S_WAIT_LOS: 2670 if (event == SFP_E_TX_FAULT) 2671 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2672 else if (sfp_los_event_inactive(sfp, event)) 2673 sfp_sm_link_up(sfp); 2674 break; 2675 2676 case SFP_S_LINK_UP: 2677 if (event == SFP_E_TX_FAULT) { 2678 sfp_sm_link_down(sfp); 2679 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2680 } else if (sfp_los_event_active(sfp, event)) { 2681 sfp_sm_link_down(sfp); 2682 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2683 } 2684 break; 2685 2686 case SFP_S_TX_FAULT: 2687 if (event == SFP_E_TIMEOUT) { 2688 sfp_module_tx_fault_reset(sfp); 2689 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2690 } 2691 break; 2692 2693 case SFP_S_REINIT: 2694 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2695 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2696 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2697 dev_info(sfp->dev, "module transmit fault recovered\n"); 2698 sfp_sm_link_check_los(sfp); 2699 } 2700 break; 2701 2702 case SFP_S_TX_DISABLE: 2703 break; 2704 } 2705 } 2706 2707 static void __sfp_sm_event(struct sfp *sfp, unsigned int event) 2708 { 2709 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2710 mod_state_to_str(sfp->sm_mod_state), 2711 dev_state_to_str(sfp->sm_dev_state), 2712 sm_state_to_str(sfp->sm_state), 2713 event_to_str(event)); 2714 2715 sfp_sm_device(sfp, event); 2716 sfp_sm_module(sfp, event); 2717 sfp_sm_main(sfp, event); 2718 2719 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2720 mod_state_to_str(sfp->sm_mod_state), 2721 dev_state_to_str(sfp->sm_dev_state), 2722 sm_state_to_str(sfp->sm_state)); 2723 } 2724 2725 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2726 { 2727 mutex_lock(&sfp->sm_mutex); 2728 __sfp_sm_event(sfp, event); 2729 mutex_unlock(&sfp->sm_mutex); 2730 } 2731 2732 static void sfp_attach(struct sfp *sfp) 2733 { 2734 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2735 } 2736 2737 static void sfp_detach(struct sfp *sfp) 2738 { 2739 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2740 } 2741 2742 static void sfp_start(struct sfp *sfp) 2743 { 2744 sfp_sm_event(sfp, SFP_E_DEV_UP); 2745 } 2746 2747 static void sfp_stop(struct sfp *sfp) 2748 { 2749 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2750 } 2751 2752 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) 2753 { 2754 unsigned int set; 2755 2756 sfp->rate_kbd = rate_kbd; 2757 2758 if (rate_kbd > sfp->rs_threshold_kbd) 2759 set = sfp->rs_state_mask; 2760 else 2761 set = 0; 2762 2763 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); 2764 } 2765 2766 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2767 { 2768 /* locking... and check module is present */ 2769 2770 if (sfp->id.ext.sff8472_compliance && 2771 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2772 modinfo->type = ETH_MODULE_SFF_8472; 2773 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2774 } else { 2775 modinfo->type = ETH_MODULE_SFF_8079; 2776 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2777 } 2778 return 0; 2779 } 2780 2781 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2782 u8 *data) 2783 { 2784 unsigned int first, last, len; 2785 int ret; 2786 2787 if (!(sfp->state & SFP_F_PRESENT)) 2788 return -ENODEV; 2789 2790 if (ee->len == 0) 2791 return -EINVAL; 2792 2793 first = ee->offset; 2794 last = ee->offset + ee->len; 2795 if (first < ETH_MODULE_SFF_8079_LEN) { 2796 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2797 len -= first; 2798 2799 ret = sfp_read(sfp, false, first, data, len); 2800 if (ret < 0) 2801 return ret; 2802 2803 first += len; 2804 data += len; 2805 } 2806 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2807 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2808 len -= first; 2809 first -= ETH_MODULE_SFF_8079_LEN; 2810 2811 ret = sfp_read(sfp, true, first, data, len); 2812 if (ret < 0) 2813 return ret; 2814 } 2815 return 0; 2816 } 2817 2818 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2819 const struct ethtool_module_eeprom *page, 2820 struct netlink_ext_ack *extack) 2821 { 2822 if (!(sfp->state & SFP_F_PRESENT)) 2823 return -ENODEV; 2824 2825 if (page->bank) { 2826 NL_SET_ERR_MSG(extack, "Banks not supported"); 2827 return -EOPNOTSUPP; 2828 } 2829 2830 if (page->page) { 2831 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2832 return -EOPNOTSUPP; 2833 } 2834 2835 if (page->i2c_address != 0x50 && 2836 page->i2c_address != 0x51) { 2837 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2838 return -EOPNOTSUPP; 2839 } 2840 2841 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2842 page->data, page->length); 2843 }; 2844 2845 static const struct sfp_socket_ops sfp_module_ops = { 2846 .attach = sfp_attach, 2847 .detach = sfp_detach, 2848 .start = sfp_start, 2849 .stop = sfp_stop, 2850 .set_signal_rate = sfp_set_signal_rate, 2851 .module_info = sfp_module_info, 2852 .module_eeprom = sfp_module_eeprom, 2853 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2854 }; 2855 2856 static void sfp_timeout(struct work_struct *work) 2857 { 2858 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2859 2860 rtnl_lock(); 2861 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2862 rtnl_unlock(); 2863 } 2864 2865 static void sfp_check_state(struct sfp *sfp) 2866 { 2867 unsigned int state, i, changed; 2868 2869 rtnl_lock(); 2870 mutex_lock(&sfp->st_mutex); 2871 state = sfp_get_state(sfp); 2872 changed = state ^ sfp->state; 2873 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2874 2875 for (i = 0; i < GPIO_MAX; i++) 2876 if (changed & BIT(i)) 2877 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2878 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2879 2880 state |= sfp->state & SFP_F_OUTPUTS; 2881 sfp->state = state; 2882 mutex_unlock(&sfp->st_mutex); 2883 2884 mutex_lock(&sfp->sm_mutex); 2885 if (changed & SFP_F_PRESENT) 2886 __sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2887 SFP_E_INSERT : SFP_E_REMOVE); 2888 2889 if (changed & SFP_F_TX_FAULT) 2890 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2891 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2892 2893 if (changed & SFP_F_LOS) 2894 __sfp_sm_event(sfp, state & SFP_F_LOS ? 2895 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2896 mutex_unlock(&sfp->sm_mutex); 2897 rtnl_unlock(); 2898 } 2899 2900 static irqreturn_t sfp_irq(int irq, void *data) 2901 { 2902 struct sfp *sfp = data; 2903 2904 sfp_check_state(sfp); 2905 2906 return IRQ_HANDLED; 2907 } 2908 2909 static void sfp_poll(struct work_struct *work) 2910 { 2911 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2912 2913 sfp_check_state(sfp); 2914 2915 // st_mutex doesn't need to be held here for state_soft_mask, 2916 // it's unimportant if we race while reading this. 2917 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2918 sfp->need_poll) 2919 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2920 } 2921 2922 static struct sfp *sfp_alloc(struct device *dev) 2923 { 2924 struct sfp *sfp; 2925 2926 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2927 if (!sfp) 2928 return ERR_PTR(-ENOMEM); 2929 2930 sfp->dev = dev; 2931 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2932 2933 mutex_init(&sfp->sm_mutex); 2934 mutex_init(&sfp->st_mutex); 2935 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2936 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2937 2938 sfp_hwmon_init(sfp); 2939 2940 return sfp; 2941 } 2942 2943 static void sfp_cleanup(void *data) 2944 { 2945 struct sfp *sfp = data; 2946 2947 sfp_hwmon_exit(sfp); 2948 2949 cancel_delayed_work_sync(&sfp->poll); 2950 cancel_delayed_work_sync(&sfp->timeout); 2951 if (sfp->i2c_mii) { 2952 mdiobus_unregister(sfp->i2c_mii); 2953 mdiobus_free(sfp->i2c_mii); 2954 } 2955 if (sfp->i2c) 2956 i2c_put_adapter(sfp->i2c); 2957 kfree(sfp); 2958 } 2959 2960 static int sfp_i2c_get(struct sfp *sfp) 2961 { 2962 struct fwnode_handle *h; 2963 struct i2c_adapter *i2c; 2964 int err; 2965 2966 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2967 if (IS_ERR(h)) { 2968 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2969 return -ENODEV; 2970 } 2971 2972 i2c = i2c_get_adapter_by_fwnode(h); 2973 if (!i2c) { 2974 err = -EPROBE_DEFER; 2975 goto put; 2976 } 2977 2978 err = sfp_i2c_configure(sfp, i2c); 2979 if (err) 2980 i2c_put_adapter(i2c); 2981 put: 2982 fwnode_handle_put(h); 2983 return err; 2984 } 2985 2986 static int sfp_probe(struct platform_device *pdev) 2987 { 2988 const struct sff_data *sff; 2989 char *sfp_irq_name; 2990 struct sfp *sfp; 2991 int err, i; 2992 2993 sfp = sfp_alloc(&pdev->dev); 2994 if (IS_ERR(sfp)) 2995 return PTR_ERR(sfp); 2996 2997 platform_set_drvdata(pdev, sfp); 2998 2999 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 3000 if (err < 0) 3001 return err; 3002 3003 sff = device_get_match_data(sfp->dev); 3004 if (!sff) 3005 sff = &sfp_data; 3006 3007 sfp->type = sff; 3008 3009 err = sfp_i2c_get(sfp); 3010 if (err) 3011 return err; 3012 3013 for (i = 0; i < GPIO_MAX; i++) 3014 if (sff->gpios & BIT(i)) { 3015 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 3016 gpio_names[i], gpio_flags[i]); 3017 if (IS_ERR(sfp->gpio[i])) 3018 return PTR_ERR(sfp->gpio[i]); 3019 } 3020 3021 sfp->state_hw_mask = SFP_F_PRESENT; 3022 sfp->state_hw_drive = SFP_F_TX_DISABLE; 3023 3024 sfp->get_state = sfp_gpio_get_state; 3025 sfp->set_state = sfp_gpio_set_state; 3026 3027 /* Modules that have no detect signal are always present */ 3028 if (!(sfp->gpio[GPIO_MODDEF0])) 3029 sfp->get_state = sff_gpio_get_state; 3030 3031 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 3032 &sfp->max_power_mW); 3033 if (sfp->max_power_mW < 1000) { 3034 if (sfp->max_power_mW) 3035 dev_warn(sfp->dev, 3036 "Firmware bug: host maximum power should be at least 1W\n"); 3037 sfp->max_power_mW = 1000; 3038 } 3039 3040 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 3041 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 3042 3043 /* Get the initial state, and always signal TX disable, 3044 * since the network interface will not be up. 3045 */ 3046 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 3047 3048 if (sfp->gpio[GPIO_RS0] && 3049 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) 3050 sfp->state |= SFP_F_RS0; 3051 sfp_set_state(sfp, sfp->state); 3052 sfp_module_tx_disable(sfp); 3053 if (sfp->state & SFP_F_PRESENT) { 3054 rtnl_lock(); 3055 sfp_sm_event(sfp, SFP_E_INSERT); 3056 rtnl_unlock(); 3057 } 3058 3059 for (i = 0; i < GPIO_MAX; i++) { 3060 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 3061 continue; 3062 3063 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 3064 if (sfp->gpio_irq[i] < 0) { 3065 sfp->gpio_irq[i] = 0; 3066 sfp->need_poll = true; 3067 continue; 3068 } 3069 3070 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 3071 "%s-%s", dev_name(sfp->dev), 3072 gpio_names[i]); 3073 3074 if (!sfp_irq_name) 3075 return -ENOMEM; 3076 3077 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 3078 NULL, sfp_irq, 3079 IRQF_ONESHOT | 3080 IRQF_TRIGGER_RISING | 3081 IRQF_TRIGGER_FALLING, 3082 sfp_irq_name, sfp); 3083 if (err) { 3084 sfp->gpio_irq[i] = 0; 3085 sfp->need_poll = true; 3086 } 3087 } 3088 3089 if (sfp->need_poll) 3090 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 3091 3092 /* We could have an issue in cases no Tx disable pin is available or 3093 * wired as modules using a laser as their light source will continue to 3094 * be active when the fiber is removed. This could be a safety issue and 3095 * we should at least warn the user about that. 3096 */ 3097 if (!sfp->gpio[GPIO_TX_DISABLE]) 3098 dev_warn(sfp->dev, 3099 "No tx_disable pin: SFP modules will always be emitting.\n"); 3100 3101 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 3102 if (!sfp->sfp_bus) 3103 return -ENOMEM; 3104 3105 sfp_debugfs_init(sfp); 3106 3107 return 0; 3108 } 3109 3110 static void sfp_remove(struct platform_device *pdev) 3111 { 3112 struct sfp *sfp = platform_get_drvdata(pdev); 3113 3114 sfp_debugfs_exit(sfp); 3115 sfp_unregister_socket(sfp->sfp_bus); 3116 3117 rtnl_lock(); 3118 sfp_sm_event(sfp, SFP_E_REMOVE); 3119 rtnl_unlock(); 3120 } 3121 3122 static void sfp_shutdown(struct platform_device *pdev) 3123 { 3124 struct sfp *sfp = platform_get_drvdata(pdev); 3125 int i; 3126 3127 for (i = 0; i < GPIO_MAX; i++) { 3128 if (!sfp->gpio_irq[i]) 3129 continue; 3130 3131 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 3132 } 3133 3134 cancel_delayed_work_sync(&sfp->poll); 3135 cancel_delayed_work_sync(&sfp->timeout); 3136 } 3137 3138 static struct platform_driver sfp_driver = { 3139 .probe = sfp_probe, 3140 .remove_new = sfp_remove, 3141 .shutdown = sfp_shutdown, 3142 .driver = { 3143 .name = "sfp", 3144 .of_match_table = sfp_of_match, 3145 }, 3146 }; 3147 3148 static int sfp_init(void) 3149 { 3150 poll_jiffies = msecs_to_jiffies(100); 3151 3152 return platform_driver_register(&sfp_driver); 3153 } 3154 module_init(sfp_init); 3155 3156 static void sfp_exit(void) 3157 { 3158 platform_driver_unregister(&sfp_driver); 3159 } 3160 module_exit(sfp_exit); 3161 3162 MODULE_ALIAS("platform:sfp"); 3163 MODULE_AUTHOR("Russell King"); 3164 MODULE_LICENSE("GPL v2"); 3165 MODULE_DESCRIPTION("SFP cage support"); 3166