1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RS0, 28 GPIO_RS1, 29 GPIO_MAX, 30 31 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 32 SFP_F_LOS = BIT(GPIO_LOS), 33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 35 SFP_F_RS0 = BIT(GPIO_RS0), 36 SFP_F_RS1 = BIT(GPIO_RS1), 37 38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 39 40 SFP_E_INSERT = 0, 41 SFP_E_REMOVE, 42 SFP_E_DEV_ATTACH, 43 SFP_E_DEV_DETACH, 44 SFP_E_DEV_DOWN, 45 SFP_E_DEV_UP, 46 SFP_E_TX_FAULT, 47 SFP_E_TX_CLEAR, 48 SFP_E_LOS_HIGH, 49 SFP_E_LOS_LOW, 50 SFP_E_TIMEOUT, 51 52 SFP_MOD_EMPTY = 0, 53 SFP_MOD_ERROR, 54 SFP_MOD_PROBE, 55 SFP_MOD_WAITDEV, 56 SFP_MOD_HPOWER, 57 SFP_MOD_WAITPWR, 58 SFP_MOD_PRESENT, 59 60 SFP_DEV_DETACHED = 0, 61 SFP_DEV_DOWN, 62 SFP_DEV_UP, 63 64 SFP_S_DOWN = 0, 65 SFP_S_FAIL, 66 SFP_S_WAIT, 67 SFP_S_INIT, 68 SFP_S_INIT_PHY, 69 SFP_S_INIT_TX_FAULT, 70 SFP_S_WAIT_LOS, 71 SFP_S_LINK_UP, 72 SFP_S_TX_FAULT, 73 SFP_S_REINIT, 74 SFP_S_TX_DISABLE, 75 }; 76 77 static const char * const mod_state_strings[] = { 78 [SFP_MOD_EMPTY] = "empty", 79 [SFP_MOD_ERROR] = "error", 80 [SFP_MOD_PROBE] = "probe", 81 [SFP_MOD_WAITDEV] = "waitdev", 82 [SFP_MOD_HPOWER] = "hpower", 83 [SFP_MOD_WAITPWR] = "waitpwr", 84 [SFP_MOD_PRESENT] = "present", 85 }; 86 87 static const char *mod_state_to_str(unsigned short mod_state) 88 { 89 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 90 return "Unknown module state"; 91 return mod_state_strings[mod_state]; 92 } 93 94 static const char * const dev_state_strings[] = { 95 [SFP_DEV_DETACHED] = "detached", 96 [SFP_DEV_DOWN] = "down", 97 [SFP_DEV_UP] = "up", 98 }; 99 100 static const char *dev_state_to_str(unsigned short dev_state) 101 { 102 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 103 return "Unknown device state"; 104 return dev_state_strings[dev_state]; 105 } 106 107 static const char * const event_strings[] = { 108 [SFP_E_INSERT] = "insert", 109 [SFP_E_REMOVE] = "remove", 110 [SFP_E_DEV_ATTACH] = "dev_attach", 111 [SFP_E_DEV_DETACH] = "dev_detach", 112 [SFP_E_DEV_DOWN] = "dev_down", 113 [SFP_E_DEV_UP] = "dev_up", 114 [SFP_E_TX_FAULT] = "tx_fault", 115 [SFP_E_TX_CLEAR] = "tx_clear", 116 [SFP_E_LOS_HIGH] = "los_high", 117 [SFP_E_LOS_LOW] = "los_low", 118 [SFP_E_TIMEOUT] = "timeout", 119 }; 120 121 static const char *event_to_str(unsigned short event) 122 { 123 if (event >= ARRAY_SIZE(event_strings)) 124 return "Unknown event"; 125 return event_strings[event]; 126 } 127 128 static const char * const sm_state_strings[] = { 129 [SFP_S_DOWN] = "down", 130 [SFP_S_FAIL] = "fail", 131 [SFP_S_WAIT] = "wait", 132 [SFP_S_INIT] = "init", 133 [SFP_S_INIT_PHY] = "init_phy", 134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 135 [SFP_S_WAIT_LOS] = "wait_los", 136 [SFP_S_LINK_UP] = "link_up", 137 [SFP_S_TX_FAULT] = "tx_fault", 138 [SFP_S_REINIT] = "reinit", 139 [SFP_S_TX_DISABLE] = "tx_disable", 140 }; 141 142 static const char *sm_state_to_str(unsigned short sm_state) 143 { 144 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 145 return "Unknown state"; 146 return sm_state_strings[sm_state]; 147 } 148 149 static const char *gpio_names[] = { 150 "mod-def0", 151 "los", 152 "tx-fault", 153 "tx-disable", 154 "rate-select0", 155 "rate-select1", 156 }; 157 158 static const enum gpiod_flags gpio_flags[] = { 159 GPIOD_IN, 160 GPIOD_IN, 161 GPIOD_IN, 162 GPIOD_ASIS, 163 GPIOD_ASIS, 164 GPIOD_ASIS, 165 }; 166 167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 168 * non-cooled module to initialise its laser safety circuitry. We wait 169 * an initial T_WAIT period before we check the tx fault to give any PHY 170 * on board (for a copper SFP) time to initialise. 171 */ 172 #define T_WAIT msecs_to_jiffies(50) 173 #define T_START_UP msecs_to_jiffies(300) 174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 175 176 /* t_reset is the time required to assert the TX_DISABLE signal to reset 177 * an indicated TX_FAULT. 178 */ 179 #define T_RESET_US 10 180 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 181 182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 183 * time. If the TX_FAULT signal is not deasserted after this number of 184 * attempts at clearing it, we decide that the module is faulty. 185 * N_FAULT is the same but after the module has initialised. 186 */ 187 #define N_FAULT_INIT 5 188 #define N_FAULT 5 189 190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 191 * R_PHY_RETRY is the number of attempts. 192 */ 193 #define T_PHY_RETRY msecs_to_jiffies(50) 194 #define R_PHY_RETRY 12 195 196 /* SFP module presence detection is poor: the three MOD DEF signals are 197 * the same length on the PCB, which means it's possible for MOD DEF 0 to 198 * connect before the I2C bus on MOD DEF 1/2. 199 * 200 * The SFF-8472 specifies t_serial ("Time from power on until module is 201 * ready for data transmission over the two wire serial bus.") as 300ms. 202 */ 203 #define T_SERIAL msecs_to_jiffies(300) 204 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 206 #define R_PROBE_RETRY_INIT 10 207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 208 #define R_PROBE_RETRY_SLOW 12 209 210 /* SFP modules appear to always have their PHY configured for bus address 211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 214 */ 215 #define SFP_PHY_ADDR 22 216 #define SFP_PHY_ADDR_ROLLBALL 17 217 218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM 219 * at a time. Some SFP modules and also some Linux I2C drivers do not like 220 * reads longer than 16 bytes. 221 */ 222 #define SFP_EEPROM_BLOCK_SIZE 16 223 224 struct sff_data { 225 unsigned int gpios; 226 bool (*module_supported)(const struct sfp_eeprom_id *id); 227 }; 228 229 struct sfp { 230 struct device *dev; 231 struct i2c_adapter *i2c; 232 struct mii_bus *i2c_mii; 233 struct sfp_bus *sfp_bus; 234 enum mdio_i2c_proto mdio_protocol; 235 struct phy_device *mod_phy; 236 const struct sff_data *type; 237 size_t i2c_block_size; 238 u32 max_power_mW; 239 240 unsigned int (*get_state)(struct sfp *); 241 void (*set_state)(struct sfp *, unsigned int); 242 int (*read)(struct sfp *, bool, u8, void *, size_t); 243 int (*write)(struct sfp *, bool, u8, void *, size_t); 244 245 struct gpio_desc *gpio[GPIO_MAX]; 246 int gpio_irq[GPIO_MAX]; 247 248 bool need_poll; 249 250 /* Access rules: 251 * state_hw_drive: st_mutex held 252 * state_hw_mask: st_mutex held 253 * state_soft_mask: st_mutex held 254 * state: st_mutex held unless reading input bits 255 */ 256 struct mutex st_mutex; /* Protects state */ 257 unsigned int state_hw_drive; 258 unsigned int state_hw_mask; 259 unsigned int state_soft_mask; 260 unsigned int state_ignore_mask; 261 unsigned int state; 262 263 struct delayed_work poll; 264 struct delayed_work timeout; 265 struct mutex sm_mutex; /* Protects state machine */ 266 unsigned char sm_mod_state; 267 unsigned char sm_mod_tries_init; 268 unsigned char sm_mod_tries; 269 unsigned char sm_dev_state; 270 unsigned short sm_state; 271 unsigned char sm_fault_retries; 272 unsigned char sm_phy_retries; 273 274 struct sfp_eeprom_id id; 275 unsigned int module_power_mW; 276 unsigned int module_t_start_up; 277 unsigned int module_t_wait; 278 279 unsigned int rate_kbd; 280 unsigned int rs_threshold_kbd; 281 unsigned int rs_state_mask; 282 283 bool have_a2; 284 285 const struct sfp_quirk *quirk; 286 287 #if IS_ENABLED(CONFIG_HWMON) 288 struct sfp_diag diag; 289 struct delayed_work hwmon_probe; 290 unsigned int hwmon_tries; 291 struct device *hwmon_dev; 292 char *hwmon_name; 293 #endif 294 295 #if IS_ENABLED(CONFIG_DEBUG_FS) 296 struct dentry *debugfs_dir; 297 #endif 298 }; 299 300 static bool sff_module_supported(const struct sfp_eeprom_id *id) 301 { 302 return id->base.phys_id == SFF8024_ID_SFF_8472 && 303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 304 } 305 306 static const struct sff_data sff_data = { 307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 308 .module_supported = sff_module_supported, 309 }; 310 311 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 312 { 313 if (id->base.phys_id == SFF8024_ID_SFP && 314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 315 return true; 316 317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 318 * phys id SFF instead of SFP. Therefore mark this module explicitly 319 * as supported based on vendor name and pn match. 320 */ 321 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 323 !memcmp(id->base.vendor_name, "UBNT ", 16) && 324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 325 return true; 326 327 return false; 328 } 329 330 static const struct sff_data sfp_data = { 331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, 333 .module_supported = sfp_module_supported, 334 }; 335 336 static const struct of_device_id sfp_of_match[] = { 337 { .compatible = "sff,sff", .data = &sff_data, }, 338 { .compatible = "sff,sfp", .data = &sfp_data, }, 339 { }, 340 }; 341 MODULE_DEVICE_TABLE(of, sfp_of_match); 342 343 static void sfp_fixup_long_startup(struct sfp *sfp) 344 { 345 sfp->module_t_start_up = T_START_UP_BAD_GPON; 346 } 347 348 static void sfp_fixup_ignore_los(struct sfp *sfp) 349 { 350 /* This forces LOS to zero, so we ignore transitions */ 351 sfp->state_ignore_mask |= SFP_F_LOS; 352 /* Make sure that LOS options are clear */ 353 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED | 354 SFP_OPTIONS_LOS_NORMAL); 355 } 356 357 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 358 { 359 sfp->state_ignore_mask |= SFP_F_TX_FAULT; 360 } 361 362 static void sfp_fixup_nokia(struct sfp *sfp) 363 { 364 sfp_fixup_long_startup(sfp); 365 sfp_fixup_ignore_los(sfp); 366 } 367 368 // For 10GBASE-T short-reach modules 369 static void sfp_fixup_10gbaset_30m(struct sfp *sfp) 370 { 371 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; 372 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; 373 } 374 375 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs) 376 { 377 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 378 sfp->module_t_wait = msecs_to_jiffies(secs * 1000); 379 } 380 381 static void sfp_fixup_fs_10gt(struct sfp *sfp) 382 { 383 sfp_fixup_10gbaset_30m(sfp); 384 385 // These SFPs need 4 seconds before the PHY can be accessed 386 sfp_fixup_rollball_proto(sfp, 4); 387 } 388 389 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 390 { 391 /* Ignore the TX_FAULT and LOS signals on this module. 392 * these are possibly used for other purposes on this 393 * module, e.g. a serial port. 394 */ 395 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 396 } 397 398 static void sfp_fixup_rollball(struct sfp *sfp) 399 { 400 // Rollball SFPs need 25 seconds before the PHY can be accessed 401 sfp_fixup_rollball_proto(sfp, 25); 402 } 403 404 static void sfp_fixup_rollball_cc(struct sfp *sfp) 405 { 406 sfp_fixup_rollball(sfp); 407 408 /* Some RollBall SFPs may have wrong (zero) extended compliance code 409 * burned in EEPROM. For PHY probing we need the correct one. 410 */ 411 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 412 } 413 414 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 415 unsigned long *modes, 416 unsigned long *interfaces) 417 { 418 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 419 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 420 } 421 422 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, 423 unsigned long *modes, 424 unsigned long *interfaces) 425 { 426 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); 427 } 428 429 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, 430 unsigned long *modes, 431 unsigned long *interfaces) 432 { 433 /* Copper 2.5G SFP */ 434 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); 435 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 436 sfp_quirk_disable_autoneg(id, modes, interfaces); 437 } 438 439 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 440 unsigned long *modes, 441 unsigned long *interfaces) 442 { 443 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 444 * types including 10G Ethernet which is not truth. So clear all claimed 445 * modes and set only one mode which module supports: 1000baseX_Full. 446 */ 447 linkmode_zero(modes); 448 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 449 } 450 451 #define SFP_QUIRK(_v, _p, _m, _f) \ 452 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 453 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 454 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 455 456 static const struct sfp_quirk sfp_quirks[] = { 457 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 458 // report 2500MBd NRZ in their EEPROM 459 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 460 461 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 462 // NRZ in their EEPROM 463 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 464 sfp_fixup_nokia), 465 466 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the 467 // Rollball protocol to talk to the PHY. 468 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), 469 470 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd 471 // NRZ in their EEPROM 472 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, 473 sfp_fixup_ignore_tx_fault), 474 475 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 476 477 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports 478 // 2600MBd in their EERPOM 479 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), 480 481 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 482 // their EEPROM 483 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 484 sfp_fixup_ignore_tx_fault), 485 486 // FS 2.5G Base-T 487 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 488 489 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 490 // 2500MBd NRZ in their EEPROM 491 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 492 493 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 494 495 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the 496 // Rollball protocol to talk to the PHY. 497 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), 498 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), 499 500 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 501 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), 502 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 503 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 504 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 505 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 506 }; 507 508 static size_t sfp_strlen(const char *str, size_t maxlen) 509 { 510 size_t size, i; 511 512 /* Trailing characters should be filled with space chars, but 513 * some manufacturers can't read SFF-8472 and use NUL. 514 */ 515 for (i = 0, size = 0; i < maxlen; i++) 516 if (str[i] != ' ' && str[i] != '\0') 517 size = i + 1; 518 519 return size; 520 } 521 522 static bool sfp_match(const char *qs, const char *str, size_t len) 523 { 524 if (!qs) 525 return true; 526 if (strlen(qs) != len) 527 return false; 528 return !strncmp(qs, str, len); 529 } 530 531 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 532 { 533 const struct sfp_quirk *q; 534 unsigned int i; 535 size_t vs, ps; 536 537 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 538 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 539 540 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 541 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 542 sfp_match(q->part, id->base.vendor_pn, ps)) 543 return q; 544 545 return NULL; 546 } 547 548 static unsigned long poll_jiffies; 549 550 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 551 { 552 unsigned int i, state, v; 553 554 for (i = state = 0; i < GPIO_MAX; i++) { 555 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 556 continue; 557 558 v = gpiod_get_value_cansleep(sfp->gpio[i]); 559 if (v) 560 state |= BIT(i); 561 } 562 563 return state; 564 } 565 566 static unsigned int sff_gpio_get_state(struct sfp *sfp) 567 { 568 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 569 } 570 571 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 572 { 573 unsigned int drive; 574 575 if (state & SFP_F_PRESENT) 576 /* If the module is present, drive the requested signals */ 577 drive = sfp->state_hw_drive; 578 else 579 /* Otherwise, let them float to the pull-ups */ 580 drive = 0; 581 582 if (sfp->gpio[GPIO_TX_DISABLE]) { 583 if (drive & SFP_F_TX_DISABLE) 584 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 585 state & SFP_F_TX_DISABLE); 586 else 587 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 588 } 589 590 if (sfp->gpio[GPIO_RS0]) { 591 if (drive & SFP_F_RS0) 592 gpiod_direction_output(sfp->gpio[GPIO_RS0], 593 state & SFP_F_RS0); 594 else 595 gpiod_direction_input(sfp->gpio[GPIO_RS0]); 596 } 597 598 if (sfp->gpio[GPIO_RS1]) { 599 if (drive & SFP_F_RS1) 600 gpiod_direction_output(sfp->gpio[GPIO_RS1], 601 state & SFP_F_RS1); 602 else 603 gpiod_direction_input(sfp->gpio[GPIO_RS1]); 604 } 605 } 606 607 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 608 size_t len) 609 { 610 struct i2c_msg msgs[2]; 611 u8 bus_addr = a2 ? 0x51 : 0x50; 612 size_t block_size = sfp->i2c_block_size; 613 size_t this_len; 614 int ret; 615 616 msgs[0].addr = bus_addr; 617 msgs[0].flags = 0; 618 msgs[0].len = 1; 619 msgs[0].buf = &dev_addr; 620 msgs[1].addr = bus_addr; 621 msgs[1].flags = I2C_M_RD; 622 msgs[1].len = len; 623 msgs[1].buf = buf; 624 625 while (len) { 626 this_len = len; 627 if (this_len > block_size) 628 this_len = block_size; 629 630 msgs[1].len = this_len; 631 632 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 633 if (ret < 0) 634 return ret; 635 636 if (ret != ARRAY_SIZE(msgs)) 637 break; 638 639 msgs[1].buf += this_len; 640 dev_addr += this_len; 641 len -= this_len; 642 } 643 644 return msgs[1].buf - (u8 *)buf; 645 } 646 647 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 648 size_t len) 649 { 650 struct i2c_msg msgs[1]; 651 u8 bus_addr = a2 ? 0x51 : 0x50; 652 int ret; 653 654 msgs[0].addr = bus_addr; 655 msgs[0].flags = 0; 656 msgs[0].len = 1 + len; 657 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 658 if (!msgs[0].buf) 659 return -ENOMEM; 660 661 msgs[0].buf[0] = dev_addr; 662 memcpy(&msgs[0].buf[1], buf, len); 663 664 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 665 666 kfree(msgs[0].buf); 667 668 if (ret < 0) 669 return ret; 670 671 return ret == ARRAY_SIZE(msgs) ? len : 0; 672 } 673 674 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 675 { 676 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 677 return -EINVAL; 678 679 sfp->i2c = i2c; 680 sfp->read = sfp_i2c_read; 681 sfp->write = sfp_i2c_write; 682 683 return 0; 684 } 685 686 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 687 { 688 struct mii_bus *i2c_mii; 689 int ret; 690 691 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 692 if (IS_ERR(i2c_mii)) 693 return PTR_ERR(i2c_mii); 694 695 i2c_mii->name = "SFP I2C Bus"; 696 i2c_mii->phy_mask = ~0; 697 698 ret = mdiobus_register(i2c_mii); 699 if (ret < 0) { 700 mdiobus_free(i2c_mii); 701 return ret; 702 } 703 704 sfp->i2c_mii = i2c_mii; 705 706 return 0; 707 } 708 709 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 710 { 711 mdiobus_unregister(sfp->i2c_mii); 712 sfp->i2c_mii = NULL; 713 } 714 715 /* Interface */ 716 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 717 { 718 return sfp->read(sfp, a2, addr, buf, len); 719 } 720 721 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 722 { 723 return sfp->write(sfp, a2, addr, buf, len); 724 } 725 726 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 727 { 728 int ret; 729 u8 old, v; 730 731 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 732 if (ret != sizeof(old)) 733 return ret; 734 735 v = (old & ~mask) | (val & mask); 736 if (v == old) 737 return sizeof(v); 738 739 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 740 } 741 742 static unsigned int sfp_soft_get_state(struct sfp *sfp) 743 { 744 unsigned int state = 0; 745 u8 status; 746 int ret; 747 748 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 749 if (ret == sizeof(status)) { 750 if (status & SFP_STATUS_RX_LOS) 751 state |= SFP_F_LOS; 752 if (status & SFP_STATUS_TX_FAULT) 753 state |= SFP_F_TX_FAULT; 754 } else { 755 dev_err_ratelimited(sfp->dev, 756 "failed to read SFP soft status: %pe\n", 757 ERR_PTR(ret)); 758 /* Preserve the current state */ 759 state = sfp->state; 760 } 761 762 return state & sfp->state_soft_mask; 763 } 764 765 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, 766 unsigned int soft) 767 { 768 u8 mask = 0; 769 u8 val = 0; 770 771 if (soft & SFP_F_TX_DISABLE) 772 mask |= SFP_STATUS_TX_DISABLE_FORCE; 773 if (state & SFP_F_TX_DISABLE) 774 val |= SFP_STATUS_TX_DISABLE_FORCE; 775 776 if (soft & SFP_F_RS0) 777 mask |= SFP_STATUS_RS0_SELECT; 778 if (state & SFP_F_RS0) 779 val |= SFP_STATUS_RS0_SELECT; 780 781 if (mask) 782 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 783 784 val = mask = 0; 785 if (soft & SFP_F_RS1) 786 mask |= SFP_EXT_STATUS_RS1_SELECT; 787 if (state & SFP_F_RS1) 788 val |= SFP_EXT_STATUS_RS1_SELECT; 789 790 if (mask) 791 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); 792 } 793 794 static void sfp_soft_start_poll(struct sfp *sfp) 795 { 796 const struct sfp_eeprom_id *id = &sfp->id; 797 unsigned int mask = 0; 798 799 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 800 mask |= SFP_F_TX_DISABLE; 801 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 802 mask |= SFP_F_TX_FAULT; 803 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 804 mask |= SFP_F_LOS; 805 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) 806 mask |= sfp->rs_state_mask; 807 808 mutex_lock(&sfp->st_mutex); 809 // Poll the soft state for hardware pins we want to ignore 810 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask & 811 mask; 812 813 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 814 !sfp->need_poll) 815 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 816 mutex_unlock(&sfp->st_mutex); 817 } 818 819 static void sfp_soft_stop_poll(struct sfp *sfp) 820 { 821 mutex_lock(&sfp->st_mutex); 822 sfp->state_soft_mask = 0; 823 mutex_unlock(&sfp->st_mutex); 824 } 825 826 /* sfp_get_state() - must be called with st_mutex held, or in the 827 * initialisation path. 828 */ 829 static unsigned int sfp_get_state(struct sfp *sfp) 830 { 831 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 832 unsigned int state; 833 834 state = sfp->get_state(sfp) & sfp->state_hw_mask; 835 if (state & SFP_F_PRESENT && soft) 836 state |= sfp_soft_get_state(sfp); 837 838 return state; 839 } 840 841 /* sfp_set_state() - must be called with st_mutex held, or in the 842 * initialisation path. 843 */ 844 static void sfp_set_state(struct sfp *sfp, unsigned int state) 845 { 846 unsigned int soft; 847 848 sfp->set_state(sfp, state); 849 850 soft = sfp->state_soft_mask & SFP_F_OUTPUTS; 851 if (state & SFP_F_PRESENT && soft) 852 sfp_soft_set_state(sfp, state, soft); 853 } 854 855 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) 856 { 857 mutex_lock(&sfp->st_mutex); 858 sfp->state = (sfp->state & ~mask) | set; 859 sfp_set_state(sfp, sfp->state); 860 mutex_unlock(&sfp->st_mutex); 861 } 862 863 static unsigned int sfp_check(void *buf, size_t len) 864 { 865 u8 *p, check; 866 867 for (p = buf, check = 0; len; p++, len--) 868 check += *p; 869 870 return check; 871 } 872 873 /* hwmon */ 874 #if IS_ENABLED(CONFIG_HWMON) 875 static umode_t sfp_hwmon_is_visible(const void *data, 876 enum hwmon_sensor_types type, 877 u32 attr, int channel) 878 { 879 const struct sfp *sfp = data; 880 881 switch (type) { 882 case hwmon_temp: 883 switch (attr) { 884 case hwmon_temp_min_alarm: 885 case hwmon_temp_max_alarm: 886 case hwmon_temp_lcrit_alarm: 887 case hwmon_temp_crit_alarm: 888 case hwmon_temp_min: 889 case hwmon_temp_max: 890 case hwmon_temp_lcrit: 891 case hwmon_temp_crit: 892 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 893 return 0; 894 fallthrough; 895 case hwmon_temp_input: 896 case hwmon_temp_label: 897 return 0444; 898 default: 899 return 0; 900 } 901 case hwmon_in: 902 switch (attr) { 903 case hwmon_in_min_alarm: 904 case hwmon_in_max_alarm: 905 case hwmon_in_lcrit_alarm: 906 case hwmon_in_crit_alarm: 907 case hwmon_in_min: 908 case hwmon_in_max: 909 case hwmon_in_lcrit: 910 case hwmon_in_crit: 911 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 912 return 0; 913 fallthrough; 914 case hwmon_in_input: 915 case hwmon_in_label: 916 return 0444; 917 default: 918 return 0; 919 } 920 case hwmon_curr: 921 switch (attr) { 922 case hwmon_curr_min_alarm: 923 case hwmon_curr_max_alarm: 924 case hwmon_curr_lcrit_alarm: 925 case hwmon_curr_crit_alarm: 926 case hwmon_curr_min: 927 case hwmon_curr_max: 928 case hwmon_curr_lcrit: 929 case hwmon_curr_crit: 930 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 931 return 0; 932 fallthrough; 933 case hwmon_curr_input: 934 case hwmon_curr_label: 935 return 0444; 936 default: 937 return 0; 938 } 939 case hwmon_power: 940 /* External calibration of receive power requires 941 * floating point arithmetic. Doing that in the kernel 942 * is not easy, so just skip it. If the module does 943 * not require external calibration, we can however 944 * show receiver power, since FP is then not needed. 945 */ 946 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 947 channel == 1) 948 return 0; 949 switch (attr) { 950 case hwmon_power_min_alarm: 951 case hwmon_power_max_alarm: 952 case hwmon_power_lcrit_alarm: 953 case hwmon_power_crit_alarm: 954 case hwmon_power_min: 955 case hwmon_power_max: 956 case hwmon_power_lcrit: 957 case hwmon_power_crit: 958 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 959 return 0; 960 fallthrough; 961 case hwmon_power_input: 962 case hwmon_power_label: 963 return 0444; 964 default: 965 return 0; 966 } 967 default: 968 return 0; 969 } 970 } 971 972 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 973 { 974 __be16 val; 975 int err; 976 977 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 978 if (err < 0) 979 return err; 980 981 *value = be16_to_cpu(val); 982 983 return 0; 984 } 985 986 static void sfp_hwmon_to_rx_power(long *value) 987 { 988 *value = DIV_ROUND_CLOSEST(*value, 10); 989 } 990 991 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 992 long *value) 993 { 994 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 995 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 996 } 997 998 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 999 { 1000 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 1001 be16_to_cpu(sfp->diag.cal_t_offset), value); 1002 1003 if (*value >= 0x8000) 1004 *value -= 0x10000; 1005 1006 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 1007 } 1008 1009 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 1010 { 1011 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 1012 be16_to_cpu(sfp->diag.cal_v_offset), value); 1013 1014 *value = DIV_ROUND_CLOSEST(*value, 10); 1015 } 1016 1017 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 1018 { 1019 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 1020 be16_to_cpu(sfp->diag.cal_txi_offset), value); 1021 1022 *value = DIV_ROUND_CLOSEST(*value, 500); 1023 } 1024 1025 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 1026 { 1027 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 1028 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 1029 1030 *value = DIV_ROUND_CLOSEST(*value, 10); 1031 } 1032 1033 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 1034 { 1035 int err; 1036 1037 err = sfp_hwmon_read_sensor(sfp, reg, value); 1038 if (err < 0) 1039 return err; 1040 1041 sfp_hwmon_calibrate_temp(sfp, value); 1042 1043 return 0; 1044 } 1045 1046 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 1047 { 1048 int err; 1049 1050 err = sfp_hwmon_read_sensor(sfp, reg, value); 1051 if (err < 0) 1052 return err; 1053 1054 sfp_hwmon_calibrate_vcc(sfp, value); 1055 1056 return 0; 1057 } 1058 1059 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 1060 { 1061 int err; 1062 1063 err = sfp_hwmon_read_sensor(sfp, reg, value); 1064 if (err < 0) 1065 return err; 1066 1067 sfp_hwmon_calibrate_bias(sfp, value); 1068 1069 return 0; 1070 } 1071 1072 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 1073 { 1074 int err; 1075 1076 err = sfp_hwmon_read_sensor(sfp, reg, value); 1077 if (err < 0) 1078 return err; 1079 1080 sfp_hwmon_calibrate_tx_power(sfp, value); 1081 1082 return 0; 1083 } 1084 1085 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 1086 { 1087 int err; 1088 1089 err = sfp_hwmon_read_sensor(sfp, reg, value); 1090 if (err < 0) 1091 return err; 1092 1093 sfp_hwmon_to_rx_power(value); 1094 1095 return 0; 1096 } 1097 1098 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 1099 { 1100 u8 status; 1101 int err; 1102 1103 switch (attr) { 1104 case hwmon_temp_input: 1105 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 1106 1107 case hwmon_temp_lcrit: 1108 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 1109 sfp_hwmon_calibrate_temp(sfp, value); 1110 return 0; 1111 1112 case hwmon_temp_min: 1113 *value = be16_to_cpu(sfp->diag.temp_low_warn); 1114 sfp_hwmon_calibrate_temp(sfp, value); 1115 return 0; 1116 case hwmon_temp_max: 1117 *value = be16_to_cpu(sfp->diag.temp_high_warn); 1118 sfp_hwmon_calibrate_temp(sfp, value); 1119 return 0; 1120 1121 case hwmon_temp_crit: 1122 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 1123 sfp_hwmon_calibrate_temp(sfp, value); 1124 return 0; 1125 1126 case hwmon_temp_lcrit_alarm: 1127 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1128 if (err < 0) 1129 return err; 1130 1131 *value = !!(status & SFP_ALARM0_TEMP_LOW); 1132 return 0; 1133 1134 case hwmon_temp_min_alarm: 1135 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1136 if (err < 0) 1137 return err; 1138 1139 *value = !!(status & SFP_WARN0_TEMP_LOW); 1140 return 0; 1141 1142 case hwmon_temp_max_alarm: 1143 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1144 if (err < 0) 1145 return err; 1146 1147 *value = !!(status & SFP_WARN0_TEMP_HIGH); 1148 return 0; 1149 1150 case hwmon_temp_crit_alarm: 1151 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1152 if (err < 0) 1153 return err; 1154 1155 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1156 return 0; 1157 default: 1158 return -EOPNOTSUPP; 1159 } 1160 1161 return -EOPNOTSUPP; 1162 } 1163 1164 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1165 { 1166 u8 status; 1167 int err; 1168 1169 switch (attr) { 1170 case hwmon_in_input: 1171 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1172 1173 case hwmon_in_lcrit: 1174 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1175 sfp_hwmon_calibrate_vcc(sfp, value); 1176 return 0; 1177 1178 case hwmon_in_min: 1179 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1180 sfp_hwmon_calibrate_vcc(sfp, value); 1181 return 0; 1182 1183 case hwmon_in_max: 1184 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1185 sfp_hwmon_calibrate_vcc(sfp, value); 1186 return 0; 1187 1188 case hwmon_in_crit: 1189 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1190 sfp_hwmon_calibrate_vcc(sfp, value); 1191 return 0; 1192 1193 case hwmon_in_lcrit_alarm: 1194 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1195 if (err < 0) 1196 return err; 1197 1198 *value = !!(status & SFP_ALARM0_VCC_LOW); 1199 return 0; 1200 1201 case hwmon_in_min_alarm: 1202 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1203 if (err < 0) 1204 return err; 1205 1206 *value = !!(status & SFP_WARN0_VCC_LOW); 1207 return 0; 1208 1209 case hwmon_in_max_alarm: 1210 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1211 if (err < 0) 1212 return err; 1213 1214 *value = !!(status & SFP_WARN0_VCC_HIGH); 1215 return 0; 1216 1217 case hwmon_in_crit_alarm: 1218 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1219 if (err < 0) 1220 return err; 1221 1222 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1223 return 0; 1224 default: 1225 return -EOPNOTSUPP; 1226 } 1227 1228 return -EOPNOTSUPP; 1229 } 1230 1231 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1232 { 1233 u8 status; 1234 int err; 1235 1236 switch (attr) { 1237 case hwmon_curr_input: 1238 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1239 1240 case hwmon_curr_lcrit: 1241 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1242 sfp_hwmon_calibrate_bias(sfp, value); 1243 return 0; 1244 1245 case hwmon_curr_min: 1246 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1247 sfp_hwmon_calibrate_bias(sfp, value); 1248 return 0; 1249 1250 case hwmon_curr_max: 1251 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1252 sfp_hwmon_calibrate_bias(sfp, value); 1253 return 0; 1254 1255 case hwmon_curr_crit: 1256 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1257 sfp_hwmon_calibrate_bias(sfp, value); 1258 return 0; 1259 1260 case hwmon_curr_lcrit_alarm: 1261 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1262 if (err < 0) 1263 return err; 1264 1265 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1266 return 0; 1267 1268 case hwmon_curr_min_alarm: 1269 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1270 if (err < 0) 1271 return err; 1272 1273 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1274 return 0; 1275 1276 case hwmon_curr_max_alarm: 1277 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1278 if (err < 0) 1279 return err; 1280 1281 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1282 return 0; 1283 1284 case hwmon_curr_crit_alarm: 1285 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1286 if (err < 0) 1287 return err; 1288 1289 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1290 return 0; 1291 default: 1292 return -EOPNOTSUPP; 1293 } 1294 1295 return -EOPNOTSUPP; 1296 } 1297 1298 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1299 { 1300 u8 status; 1301 int err; 1302 1303 switch (attr) { 1304 case hwmon_power_input: 1305 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1306 1307 case hwmon_power_lcrit: 1308 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1309 sfp_hwmon_calibrate_tx_power(sfp, value); 1310 return 0; 1311 1312 case hwmon_power_min: 1313 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1314 sfp_hwmon_calibrate_tx_power(sfp, value); 1315 return 0; 1316 1317 case hwmon_power_max: 1318 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1319 sfp_hwmon_calibrate_tx_power(sfp, value); 1320 return 0; 1321 1322 case hwmon_power_crit: 1323 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1324 sfp_hwmon_calibrate_tx_power(sfp, value); 1325 return 0; 1326 1327 case hwmon_power_lcrit_alarm: 1328 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1329 if (err < 0) 1330 return err; 1331 1332 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1333 return 0; 1334 1335 case hwmon_power_min_alarm: 1336 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1337 if (err < 0) 1338 return err; 1339 1340 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1341 return 0; 1342 1343 case hwmon_power_max_alarm: 1344 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1345 if (err < 0) 1346 return err; 1347 1348 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1349 return 0; 1350 1351 case hwmon_power_crit_alarm: 1352 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1353 if (err < 0) 1354 return err; 1355 1356 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1357 return 0; 1358 default: 1359 return -EOPNOTSUPP; 1360 } 1361 1362 return -EOPNOTSUPP; 1363 } 1364 1365 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1366 { 1367 u8 status; 1368 int err; 1369 1370 switch (attr) { 1371 case hwmon_power_input: 1372 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1373 1374 case hwmon_power_lcrit: 1375 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1376 sfp_hwmon_to_rx_power(value); 1377 return 0; 1378 1379 case hwmon_power_min: 1380 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1381 sfp_hwmon_to_rx_power(value); 1382 return 0; 1383 1384 case hwmon_power_max: 1385 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1386 sfp_hwmon_to_rx_power(value); 1387 return 0; 1388 1389 case hwmon_power_crit: 1390 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1391 sfp_hwmon_to_rx_power(value); 1392 return 0; 1393 1394 case hwmon_power_lcrit_alarm: 1395 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1396 if (err < 0) 1397 return err; 1398 1399 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1400 return 0; 1401 1402 case hwmon_power_min_alarm: 1403 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1404 if (err < 0) 1405 return err; 1406 1407 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1408 return 0; 1409 1410 case hwmon_power_max_alarm: 1411 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1412 if (err < 0) 1413 return err; 1414 1415 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1416 return 0; 1417 1418 case hwmon_power_crit_alarm: 1419 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1420 if (err < 0) 1421 return err; 1422 1423 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1424 return 0; 1425 default: 1426 return -EOPNOTSUPP; 1427 } 1428 1429 return -EOPNOTSUPP; 1430 } 1431 1432 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1433 u32 attr, int channel, long *value) 1434 { 1435 struct sfp *sfp = dev_get_drvdata(dev); 1436 1437 switch (type) { 1438 case hwmon_temp: 1439 return sfp_hwmon_temp(sfp, attr, value); 1440 case hwmon_in: 1441 return sfp_hwmon_vcc(sfp, attr, value); 1442 case hwmon_curr: 1443 return sfp_hwmon_bias(sfp, attr, value); 1444 case hwmon_power: 1445 switch (channel) { 1446 case 0: 1447 return sfp_hwmon_tx_power(sfp, attr, value); 1448 case 1: 1449 return sfp_hwmon_rx_power(sfp, attr, value); 1450 default: 1451 return -EOPNOTSUPP; 1452 } 1453 default: 1454 return -EOPNOTSUPP; 1455 } 1456 } 1457 1458 static const char *const sfp_hwmon_power_labels[] = { 1459 "TX_power", 1460 "RX_power", 1461 }; 1462 1463 static int sfp_hwmon_read_string(struct device *dev, 1464 enum hwmon_sensor_types type, 1465 u32 attr, int channel, const char **str) 1466 { 1467 switch (type) { 1468 case hwmon_curr: 1469 switch (attr) { 1470 case hwmon_curr_label: 1471 *str = "bias"; 1472 return 0; 1473 default: 1474 return -EOPNOTSUPP; 1475 } 1476 break; 1477 case hwmon_temp: 1478 switch (attr) { 1479 case hwmon_temp_label: 1480 *str = "temperature"; 1481 return 0; 1482 default: 1483 return -EOPNOTSUPP; 1484 } 1485 break; 1486 case hwmon_in: 1487 switch (attr) { 1488 case hwmon_in_label: 1489 *str = "VCC"; 1490 return 0; 1491 default: 1492 return -EOPNOTSUPP; 1493 } 1494 break; 1495 case hwmon_power: 1496 switch (attr) { 1497 case hwmon_power_label: 1498 *str = sfp_hwmon_power_labels[channel]; 1499 return 0; 1500 default: 1501 return -EOPNOTSUPP; 1502 } 1503 break; 1504 default: 1505 return -EOPNOTSUPP; 1506 } 1507 1508 return -EOPNOTSUPP; 1509 } 1510 1511 static const struct hwmon_ops sfp_hwmon_ops = { 1512 .is_visible = sfp_hwmon_is_visible, 1513 .read = sfp_hwmon_read, 1514 .read_string = sfp_hwmon_read_string, 1515 }; 1516 1517 static const struct hwmon_channel_info * const sfp_hwmon_info[] = { 1518 HWMON_CHANNEL_INFO(chip, 1519 HWMON_C_REGISTER_TZ), 1520 HWMON_CHANNEL_INFO(in, 1521 HWMON_I_INPUT | 1522 HWMON_I_MAX | HWMON_I_MIN | 1523 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1524 HWMON_I_CRIT | HWMON_I_LCRIT | 1525 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1526 HWMON_I_LABEL), 1527 HWMON_CHANNEL_INFO(temp, 1528 HWMON_T_INPUT | 1529 HWMON_T_MAX | HWMON_T_MIN | 1530 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1531 HWMON_T_CRIT | HWMON_T_LCRIT | 1532 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1533 HWMON_T_LABEL), 1534 HWMON_CHANNEL_INFO(curr, 1535 HWMON_C_INPUT | 1536 HWMON_C_MAX | HWMON_C_MIN | 1537 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1538 HWMON_C_CRIT | HWMON_C_LCRIT | 1539 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1540 HWMON_C_LABEL), 1541 HWMON_CHANNEL_INFO(power, 1542 /* Transmit power */ 1543 HWMON_P_INPUT | 1544 HWMON_P_MAX | HWMON_P_MIN | 1545 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1546 HWMON_P_CRIT | HWMON_P_LCRIT | 1547 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1548 HWMON_P_LABEL, 1549 /* Receive power */ 1550 HWMON_P_INPUT | 1551 HWMON_P_MAX | HWMON_P_MIN | 1552 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1553 HWMON_P_CRIT | HWMON_P_LCRIT | 1554 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1555 HWMON_P_LABEL), 1556 NULL, 1557 }; 1558 1559 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1560 .ops = &sfp_hwmon_ops, 1561 .info = sfp_hwmon_info, 1562 }; 1563 1564 static void sfp_hwmon_probe(struct work_struct *work) 1565 { 1566 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1567 int err; 1568 1569 /* hwmon interface needs to access 16bit registers in atomic way to 1570 * guarantee coherency of the diagnostic monitoring data. If it is not 1571 * possible to guarantee coherency because EEPROM is broken in such way 1572 * that does not support atomic 16bit read operation then we have to 1573 * skip registration of hwmon device. 1574 */ 1575 if (sfp->i2c_block_size < 2) { 1576 dev_info(sfp->dev, 1577 "skipping hwmon device registration due to broken EEPROM\n"); 1578 dev_info(sfp->dev, 1579 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1580 return; 1581 } 1582 1583 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1584 if (err < 0) { 1585 if (sfp->hwmon_tries--) { 1586 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1587 T_PROBE_RETRY_SLOW); 1588 } else { 1589 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1590 ERR_PTR(err)); 1591 } 1592 return; 1593 } 1594 1595 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1596 if (IS_ERR(sfp->hwmon_name)) { 1597 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1598 return; 1599 } 1600 1601 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1602 sfp->hwmon_name, sfp, 1603 &sfp_hwmon_chip_info, 1604 NULL); 1605 if (IS_ERR(sfp->hwmon_dev)) 1606 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1607 PTR_ERR(sfp->hwmon_dev)); 1608 } 1609 1610 static int sfp_hwmon_insert(struct sfp *sfp) 1611 { 1612 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { 1613 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1614 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1615 } 1616 1617 return 0; 1618 } 1619 1620 static void sfp_hwmon_remove(struct sfp *sfp) 1621 { 1622 cancel_delayed_work_sync(&sfp->hwmon_probe); 1623 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1624 hwmon_device_unregister(sfp->hwmon_dev); 1625 sfp->hwmon_dev = NULL; 1626 kfree(sfp->hwmon_name); 1627 } 1628 } 1629 1630 static int sfp_hwmon_init(struct sfp *sfp) 1631 { 1632 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1633 1634 return 0; 1635 } 1636 1637 static void sfp_hwmon_exit(struct sfp *sfp) 1638 { 1639 cancel_delayed_work_sync(&sfp->hwmon_probe); 1640 } 1641 #else 1642 static int sfp_hwmon_insert(struct sfp *sfp) 1643 { 1644 return 0; 1645 } 1646 1647 static void sfp_hwmon_remove(struct sfp *sfp) 1648 { 1649 } 1650 1651 static int sfp_hwmon_init(struct sfp *sfp) 1652 { 1653 return 0; 1654 } 1655 1656 static void sfp_hwmon_exit(struct sfp *sfp) 1657 { 1658 } 1659 #endif 1660 1661 /* Helpers */ 1662 static void sfp_module_tx_disable(struct sfp *sfp) 1663 { 1664 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1665 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1666 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); 1667 } 1668 1669 static void sfp_module_tx_enable(struct sfp *sfp) 1670 { 1671 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1672 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1673 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); 1674 } 1675 1676 #if IS_ENABLED(CONFIG_DEBUG_FS) 1677 static int sfp_debug_state_show(struct seq_file *s, void *data) 1678 { 1679 struct sfp *sfp = s->private; 1680 1681 seq_printf(s, "Module state: %s\n", 1682 mod_state_to_str(sfp->sm_mod_state)); 1683 seq_printf(s, "Module probe attempts: %d %d\n", 1684 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1685 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1686 seq_printf(s, "Device state: %s\n", 1687 dev_state_to_str(sfp->sm_dev_state)); 1688 seq_printf(s, "Main state: %s\n", 1689 sm_state_to_str(sfp->sm_state)); 1690 seq_printf(s, "Fault recovery remaining retries: %d\n", 1691 sfp->sm_fault_retries); 1692 seq_printf(s, "PHY probe remaining retries: %d\n", 1693 sfp->sm_phy_retries); 1694 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); 1695 seq_printf(s, "Rate select threshold: %u kBd\n", 1696 sfp->rs_threshold_kbd); 1697 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1698 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1699 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1700 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1701 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); 1702 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); 1703 return 0; 1704 } 1705 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1706 1707 static void sfp_debugfs_init(struct sfp *sfp) 1708 { 1709 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1710 1711 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1712 &sfp_debug_state_fops); 1713 } 1714 1715 static void sfp_debugfs_exit(struct sfp *sfp) 1716 { 1717 debugfs_remove_recursive(sfp->debugfs_dir); 1718 } 1719 #else 1720 static void sfp_debugfs_init(struct sfp *sfp) 1721 { 1722 } 1723 1724 static void sfp_debugfs_exit(struct sfp *sfp) 1725 { 1726 } 1727 #endif 1728 1729 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1730 { 1731 unsigned int state; 1732 1733 mutex_lock(&sfp->st_mutex); 1734 state = sfp->state; 1735 if (!(state & SFP_F_TX_DISABLE)) { 1736 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1737 1738 udelay(T_RESET_US); 1739 1740 sfp_set_state(sfp, state); 1741 } 1742 mutex_unlock(&sfp->st_mutex); 1743 } 1744 1745 /* SFP state machine */ 1746 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1747 { 1748 if (timeout) 1749 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1750 timeout); 1751 else 1752 cancel_delayed_work(&sfp->timeout); 1753 } 1754 1755 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1756 unsigned int timeout) 1757 { 1758 sfp->sm_state = state; 1759 sfp_sm_set_timer(sfp, timeout); 1760 } 1761 1762 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1763 unsigned int timeout) 1764 { 1765 sfp->sm_mod_state = state; 1766 sfp_sm_set_timer(sfp, timeout); 1767 } 1768 1769 static void sfp_sm_phy_detach(struct sfp *sfp) 1770 { 1771 sfp_remove_phy(sfp->sfp_bus); 1772 phy_device_remove(sfp->mod_phy); 1773 phy_device_free(sfp->mod_phy); 1774 sfp->mod_phy = NULL; 1775 } 1776 1777 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1778 { 1779 struct phy_device *phy; 1780 int err; 1781 1782 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1783 if (phy == ERR_PTR(-ENODEV)) 1784 return PTR_ERR(phy); 1785 if (IS_ERR(phy)) { 1786 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1787 return PTR_ERR(phy); 1788 } 1789 1790 /* Mark this PHY as being on a SFP module */ 1791 phy->is_on_sfp_module = true; 1792 1793 err = phy_device_register(phy); 1794 if (err) { 1795 phy_device_free(phy); 1796 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1797 ERR_PTR(err)); 1798 return err; 1799 } 1800 1801 err = sfp_add_phy(sfp->sfp_bus, phy); 1802 if (err) { 1803 phy_device_remove(phy); 1804 phy_device_free(phy); 1805 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1806 return err; 1807 } 1808 1809 sfp->mod_phy = phy; 1810 1811 return 0; 1812 } 1813 1814 static void sfp_sm_link_up(struct sfp *sfp) 1815 { 1816 sfp_link_up(sfp->sfp_bus); 1817 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1818 } 1819 1820 static void sfp_sm_link_down(struct sfp *sfp) 1821 { 1822 sfp_link_down(sfp->sfp_bus); 1823 } 1824 1825 static void sfp_sm_link_check_los(struct sfp *sfp) 1826 { 1827 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1828 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1829 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1830 bool los = false; 1831 1832 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1833 * are set, we assume that no LOS signal is available. If both are 1834 * set, we assume LOS is not implemented (and is meaningless.) 1835 */ 1836 if (los_options == los_inverted) 1837 los = !(sfp->state & SFP_F_LOS); 1838 else if (los_options == los_normal) 1839 los = !!(sfp->state & SFP_F_LOS); 1840 1841 if (los) 1842 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1843 else 1844 sfp_sm_link_up(sfp); 1845 } 1846 1847 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1848 { 1849 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1850 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1851 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1852 1853 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1854 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1855 } 1856 1857 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1858 { 1859 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1860 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1861 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1862 1863 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1864 (los_options == los_normal && event == SFP_E_LOS_LOW); 1865 } 1866 1867 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1868 { 1869 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1870 dev_err(sfp->dev, 1871 "module persistently indicates fault, disabling\n"); 1872 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1873 } else { 1874 if (warn) 1875 dev_err(sfp->dev, "module transmit fault indicated\n"); 1876 1877 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1878 } 1879 } 1880 1881 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1882 { 1883 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1884 return sfp_i2c_mdiobus_create(sfp); 1885 1886 return 0; 1887 } 1888 1889 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1890 * normally sits at I2C bus address 0x56, and may either be a clause 22 1891 * or clause 45 PHY. 1892 * 1893 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1894 * negotiation enabled, but some may be in 1000base-X - which is for the 1895 * PHY driver to determine. 1896 * 1897 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1898 * mode according to the negotiated line speed. 1899 */ 1900 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1901 { 1902 int err = 0; 1903 1904 switch (sfp->mdio_protocol) { 1905 case MDIO_I2C_NONE: 1906 break; 1907 1908 case MDIO_I2C_MARVELL_C22: 1909 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1910 break; 1911 1912 case MDIO_I2C_C45: 1913 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1914 break; 1915 1916 case MDIO_I2C_ROLLBALL: 1917 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1918 break; 1919 } 1920 1921 return err; 1922 } 1923 1924 static int sfp_module_parse_power(struct sfp *sfp) 1925 { 1926 u32 power_mW = 1000; 1927 bool supports_a2; 1928 1929 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1930 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1931 power_mW = 1500; 1932 /* Added in Rev 11.9, but there is no compliance code for this */ 1933 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1934 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1935 power_mW = 2000; 1936 1937 /* Power level 1 modules (max. 1W) are always supported. */ 1938 if (power_mW <= 1000) { 1939 sfp->module_power_mW = power_mW; 1940 return 0; 1941 } 1942 1943 supports_a2 = sfp->id.ext.sff8472_compliance != 1944 SFP_SFF8472_COMPLIANCE_NONE || 1945 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1946 1947 if (power_mW > sfp->max_power_mW) { 1948 /* Module power specification exceeds the allowed maximum. */ 1949 if (!supports_a2) { 1950 /* The module appears not to implement bus address 1951 * 0xa2, so assume that the module powers up in the 1952 * indicated mode. 1953 */ 1954 dev_err(sfp->dev, 1955 "Host does not support %u.%uW modules\n", 1956 power_mW / 1000, (power_mW / 100) % 10); 1957 return -EINVAL; 1958 } else { 1959 dev_warn(sfp->dev, 1960 "Host does not support %u.%uW modules, module left in power mode 1\n", 1961 power_mW / 1000, (power_mW / 100) % 10); 1962 return 0; 1963 } 1964 } 1965 1966 if (!supports_a2) { 1967 /* The module power level is below the host maximum and the 1968 * module appears not to implement bus address 0xa2, so assume 1969 * that the module powers up in the indicated mode. 1970 */ 1971 return 0; 1972 } 1973 1974 /* If the module requires a higher power mode, but also requires 1975 * an address change sequence, warn the user that the module may 1976 * not be functional. 1977 */ 1978 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1979 dev_warn(sfp->dev, 1980 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1981 power_mW / 1000, (power_mW / 100) % 10); 1982 return 0; 1983 } 1984 1985 sfp->module_power_mW = power_mW; 1986 1987 return 0; 1988 } 1989 1990 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1991 { 1992 int err; 1993 1994 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 1995 SFP_EXT_STATUS_PWRLVL_SELECT, 1996 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 1997 if (err != sizeof(u8)) { 1998 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 1999 enable ? "en" : "dis", ERR_PTR(err)); 2000 return -EAGAIN; 2001 } 2002 2003 if (enable) 2004 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 2005 sfp->module_power_mW / 1000, 2006 (sfp->module_power_mW / 100) % 10); 2007 2008 return 0; 2009 } 2010 2011 static void sfp_module_parse_rate_select(struct sfp *sfp) 2012 { 2013 u8 rate_id; 2014 2015 sfp->rs_threshold_kbd = 0; 2016 sfp->rs_state_mask = 0; 2017 2018 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) 2019 /* No support for RateSelect */ 2020 return; 2021 2022 /* Default to INF-8074 RateSelect operation. The signalling threshold 2023 * rate is not well specified, so always select "Full Bandwidth", but 2024 * SFF-8079 reveals that it is understood that RS0 will be low for 2025 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. 2026 * This method exists prior to SFF-8472. 2027 */ 2028 sfp->rs_state_mask = SFP_F_RS0; 2029 sfp->rs_threshold_kbd = 1594; 2030 2031 /* Parse the rate identifier, which is complicated due to history: 2032 * SFF-8472 rev 9.5 marks this field as reserved. 2033 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 2034 * compliance is not required. 2035 * SFF-8472 rev 10.2 defines this field using values 0..4 2036 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 2037 * and even values. 2038 */ 2039 rate_id = sfp->id.base.rate_id; 2040 if (rate_id == 0) 2041 /* Unspecified */ 2042 return; 2043 2044 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, 2045 * and allocated value 3 to SFF-8431 independent tx/rx rate select. 2046 * Convert this to a SFF-8472 rev 11.0 rate identifier. 2047 */ 2048 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 2049 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && 2050 rate_id == 3) 2051 rate_id = SFF_RID_8431; 2052 2053 if (rate_id & SFF_RID_8079) { 2054 /* SFF-8079 RateSelect / Application Select in conjunction with 2055 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield 2056 * with only bit 0 used, which takes precedence over SFF-8472. 2057 */ 2058 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { 2059 /* SFF-8079 Part 1 - rate selection between Fibre 2060 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 2061 * is high for 2125, so we have to subtract 1 to 2062 * include it. 2063 */ 2064 sfp->rs_threshold_kbd = 2125 - 1; 2065 sfp->rs_state_mask = SFP_F_RS0; 2066 } 2067 return; 2068 } 2069 2070 /* SFF-8472 rev 9.5 does not define the rate identifier */ 2071 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) 2072 return; 2073 2074 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will 2075 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. 2076 */ 2077 switch (rate_id) { 2078 case SFF_RID_8431_RX_ONLY: 2079 sfp->rs_threshold_kbd = 4250; 2080 sfp->rs_state_mask = SFP_F_RS0; 2081 break; 2082 2083 case SFF_RID_8431_TX_ONLY: 2084 sfp->rs_threshold_kbd = 4250; 2085 sfp->rs_state_mask = SFP_F_RS1; 2086 break; 2087 2088 case SFF_RID_8431: 2089 sfp->rs_threshold_kbd = 4250; 2090 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2091 break; 2092 2093 case SFF_RID_10G8G: 2094 sfp->rs_threshold_kbd = 9000; 2095 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; 2096 break; 2097 } 2098 } 2099 2100 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 2101 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 2102 * not support multibyte reads from the EEPROM. Each multi-byte read 2103 * operation returns just one byte of EEPROM followed by zeros. There is 2104 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 2105 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 2106 * name and vendor id into EEPROM, so there is even no way to detect if 2107 * module is V-SOL V2801F. Therefore check for those zeros in the read 2108 * data and then based on check switch to reading EEPROM to one byte 2109 * at a time. 2110 */ 2111 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 2112 { 2113 size_t i, block_size = sfp->i2c_block_size; 2114 2115 /* Already using byte IO */ 2116 if (block_size == 1) 2117 return false; 2118 2119 for (i = 1; i < len; i += block_size) { 2120 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 2121 return false; 2122 } 2123 return true; 2124 } 2125 2126 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 2127 { 2128 u8 check; 2129 int err; 2130 2131 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 2132 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 2133 id->base.connector != SFF8024_CONNECTOR_LC) { 2134 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 2135 id->base.phys_id = SFF8024_ID_SFF_8472; 2136 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 2137 id->base.connector = SFF8024_CONNECTOR_LC; 2138 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 2139 if (err != 3) { 2140 dev_err(sfp->dev, 2141 "Failed to rewrite module EEPROM: %pe\n", 2142 ERR_PTR(err)); 2143 return err; 2144 } 2145 2146 /* Cotsworks modules have been found to require a delay between write operations. */ 2147 mdelay(50); 2148 2149 /* Update base structure checksum */ 2150 check = sfp_check(&id->base, sizeof(id->base) - 1); 2151 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 2152 if (err != 1) { 2153 dev_err(sfp->dev, 2154 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 2155 ERR_PTR(err)); 2156 return err; 2157 } 2158 } 2159 return 0; 2160 } 2161 2162 static int sfp_module_parse_sff8472(struct sfp *sfp) 2163 { 2164 /* If the module requires address swap mode, warn about it */ 2165 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2166 dev_warn(sfp->dev, 2167 "module address swap to access page 0xA2 is not supported.\n"); 2168 else 2169 sfp->have_a2 = true; 2170 2171 return 0; 2172 } 2173 2174 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 2175 { 2176 /* SFP module inserted - read I2C data */ 2177 struct sfp_eeprom_id id; 2178 bool cotsworks_sfbg; 2179 unsigned int mask; 2180 bool cotsworks; 2181 u8 check; 2182 int ret; 2183 2184 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2185 2186 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2187 if (ret < 0) { 2188 if (report) 2189 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2190 ERR_PTR(ret)); 2191 return -EAGAIN; 2192 } 2193 2194 if (ret != sizeof(id.base)) { 2195 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2196 return -EAGAIN; 2197 } 2198 2199 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 2200 * address 0x51 is just one byte at a time. Also SFF-8472 requires 2201 * that EEPROM supports atomic 16bit read operation for diagnostic 2202 * fields, so do not switch to one byte reading at a time unless it 2203 * is really required and we have no other option. 2204 */ 2205 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 2206 dev_info(sfp->dev, 2207 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 2208 dev_info(sfp->dev, 2209 "Switching to reading EEPROM to one byte at a time\n"); 2210 sfp->i2c_block_size = 1; 2211 2212 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 2213 if (ret < 0) { 2214 if (report) 2215 dev_err(sfp->dev, 2216 "failed to read EEPROM: %pe\n", 2217 ERR_PTR(ret)); 2218 return -EAGAIN; 2219 } 2220 2221 if (ret != sizeof(id.base)) { 2222 dev_err(sfp->dev, "EEPROM short read: %pe\n", 2223 ERR_PTR(ret)); 2224 return -EAGAIN; 2225 } 2226 } 2227 2228 /* Cotsworks do not seem to update the checksums when they 2229 * do the final programming with the final module part number, 2230 * serial number and date code. 2231 */ 2232 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 2233 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 2234 2235 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 2236 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 2237 * Cotsworks PN matches and bytes are not correct. 2238 */ 2239 if (cotsworks && cotsworks_sfbg) { 2240 ret = sfp_cotsworks_fixup_check(sfp, &id); 2241 if (ret < 0) 2242 return ret; 2243 } 2244 2245 /* Validate the checksum over the base structure */ 2246 check = sfp_check(&id.base, sizeof(id.base) - 1); 2247 if (check != id.base.cc_base) { 2248 if (cotsworks) { 2249 dev_warn(sfp->dev, 2250 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 2251 check, id.base.cc_base); 2252 } else { 2253 dev_err(sfp->dev, 2254 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2255 check, id.base.cc_base); 2256 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2257 16, 1, &id, sizeof(id), true); 2258 return -EINVAL; 2259 } 2260 } 2261 2262 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2263 if (ret < 0) { 2264 if (report) 2265 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2266 ERR_PTR(ret)); 2267 return -EAGAIN; 2268 } 2269 2270 if (ret != sizeof(id.ext)) { 2271 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2272 return -EAGAIN; 2273 } 2274 2275 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2276 if (check != id.ext.cc_ext) { 2277 if (cotsworks) { 2278 dev_warn(sfp->dev, 2279 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2280 check, id.ext.cc_ext); 2281 } else { 2282 dev_err(sfp->dev, 2283 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2284 check, id.ext.cc_ext); 2285 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2286 16, 1, &id, sizeof(id), true); 2287 memset(&id.ext, 0, sizeof(id.ext)); 2288 } 2289 } 2290 2291 sfp->id = id; 2292 2293 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2294 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2295 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2296 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2297 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2298 (int)sizeof(id.ext.datecode), id.ext.datecode); 2299 2300 /* Check whether we support this module */ 2301 if (!sfp->type->module_supported(&id)) { 2302 dev_err(sfp->dev, 2303 "module is not supported - phys id 0x%02x 0x%02x\n", 2304 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2305 return -EINVAL; 2306 } 2307 2308 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { 2309 ret = sfp_module_parse_sff8472(sfp); 2310 if (ret < 0) 2311 return ret; 2312 } 2313 2314 /* Parse the module power requirement */ 2315 ret = sfp_module_parse_power(sfp); 2316 if (ret < 0) 2317 return ret; 2318 2319 sfp_module_parse_rate_select(sfp); 2320 2321 mask = SFP_F_PRESENT; 2322 if (sfp->gpio[GPIO_TX_DISABLE]) 2323 mask |= SFP_F_TX_DISABLE; 2324 if (sfp->gpio[GPIO_TX_FAULT]) 2325 mask |= SFP_F_TX_FAULT; 2326 if (sfp->gpio[GPIO_LOS]) 2327 mask |= SFP_F_LOS; 2328 if (sfp->gpio[GPIO_RS0]) 2329 mask |= SFP_F_RS0; 2330 if (sfp->gpio[GPIO_RS1]) 2331 mask |= SFP_F_RS1; 2332 2333 sfp->module_t_start_up = T_START_UP; 2334 sfp->module_t_wait = T_WAIT; 2335 2336 sfp->state_ignore_mask = 0; 2337 2338 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2339 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2340 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2341 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2342 sfp->mdio_protocol = MDIO_I2C_C45; 2343 else if (sfp->id.base.e1000_base_t) 2344 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2345 else 2346 sfp->mdio_protocol = MDIO_I2C_NONE; 2347 2348 sfp->quirk = sfp_lookup_quirk(&id); 2349 2350 mutex_lock(&sfp->st_mutex); 2351 /* Initialise state bits to use from hardware */ 2352 sfp->state_hw_mask = mask; 2353 2354 /* We want to drive the rate select pins that the module is using */ 2355 sfp->state_hw_drive |= sfp->rs_state_mask; 2356 2357 if (sfp->quirk && sfp->quirk->fixup) 2358 sfp->quirk->fixup(sfp); 2359 2360 sfp->state_hw_mask &= ~sfp->state_ignore_mask; 2361 mutex_unlock(&sfp->st_mutex); 2362 2363 return 0; 2364 } 2365 2366 static void sfp_sm_mod_remove(struct sfp *sfp) 2367 { 2368 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2369 sfp_module_remove(sfp->sfp_bus); 2370 2371 sfp_hwmon_remove(sfp); 2372 2373 memset(&sfp->id, 0, sizeof(sfp->id)); 2374 sfp->module_power_mW = 0; 2375 sfp->state_hw_drive = SFP_F_TX_DISABLE; 2376 sfp->have_a2 = false; 2377 2378 dev_info(sfp->dev, "module removed\n"); 2379 } 2380 2381 /* This state machine tracks the upstream's state */ 2382 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2383 { 2384 switch (sfp->sm_dev_state) { 2385 default: 2386 if (event == SFP_E_DEV_ATTACH) 2387 sfp->sm_dev_state = SFP_DEV_DOWN; 2388 break; 2389 2390 case SFP_DEV_DOWN: 2391 if (event == SFP_E_DEV_DETACH) 2392 sfp->sm_dev_state = SFP_DEV_DETACHED; 2393 else if (event == SFP_E_DEV_UP) 2394 sfp->sm_dev_state = SFP_DEV_UP; 2395 break; 2396 2397 case SFP_DEV_UP: 2398 if (event == SFP_E_DEV_DETACH) 2399 sfp->sm_dev_state = SFP_DEV_DETACHED; 2400 else if (event == SFP_E_DEV_DOWN) 2401 sfp->sm_dev_state = SFP_DEV_DOWN; 2402 break; 2403 } 2404 } 2405 2406 /* This state machine tracks the insert/remove state of the module, probes 2407 * the on-board EEPROM, and sets up the power level. 2408 */ 2409 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2410 { 2411 int err; 2412 2413 /* Handle remove event globally, it resets this state machine */ 2414 if (event == SFP_E_REMOVE) { 2415 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2416 sfp_sm_mod_remove(sfp); 2417 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2418 return; 2419 } 2420 2421 /* Handle device detach globally */ 2422 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2423 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2424 if (sfp->module_power_mW > 1000 && 2425 sfp->sm_mod_state > SFP_MOD_HPOWER) 2426 sfp_sm_mod_hpower(sfp, false); 2427 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2428 return; 2429 } 2430 2431 switch (sfp->sm_mod_state) { 2432 default: 2433 if (event == SFP_E_INSERT) { 2434 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2435 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2436 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2437 } 2438 break; 2439 2440 case SFP_MOD_PROBE: 2441 /* Wait for T_PROBE_INIT to time out */ 2442 if (event != SFP_E_TIMEOUT) 2443 break; 2444 2445 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2446 if (err == -EAGAIN) { 2447 if (sfp->sm_mod_tries_init && 2448 --sfp->sm_mod_tries_init) { 2449 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2450 break; 2451 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2452 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2453 dev_warn(sfp->dev, 2454 "please wait, module slow to respond\n"); 2455 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2456 break; 2457 } 2458 } 2459 if (err < 0) { 2460 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2461 break; 2462 } 2463 2464 /* Force a poll to re-read the hardware signal state after 2465 * sfp_sm_mod_probe() changed state_hw_mask. 2466 */ 2467 mod_delayed_work(system_wq, &sfp->poll, 1); 2468 2469 err = sfp_hwmon_insert(sfp); 2470 if (err) 2471 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2472 ERR_PTR(err)); 2473 2474 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2475 fallthrough; 2476 case SFP_MOD_WAITDEV: 2477 /* Ensure that the device is attached before proceeding */ 2478 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2479 break; 2480 2481 /* Report the module insertion to the upstream device */ 2482 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2483 sfp->quirk); 2484 if (err < 0) { 2485 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2486 break; 2487 } 2488 2489 /* If this is a power level 1 module, we are done */ 2490 if (sfp->module_power_mW <= 1000) 2491 goto insert; 2492 2493 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2494 fallthrough; 2495 case SFP_MOD_HPOWER: 2496 /* Enable high power mode */ 2497 err = sfp_sm_mod_hpower(sfp, true); 2498 if (err < 0) { 2499 if (err != -EAGAIN) { 2500 sfp_module_remove(sfp->sfp_bus); 2501 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2502 } else { 2503 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2504 } 2505 break; 2506 } 2507 2508 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2509 break; 2510 2511 case SFP_MOD_WAITPWR: 2512 /* Wait for T_HPOWER_LEVEL to time out */ 2513 if (event != SFP_E_TIMEOUT) 2514 break; 2515 2516 insert: 2517 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2518 break; 2519 2520 case SFP_MOD_PRESENT: 2521 case SFP_MOD_ERROR: 2522 break; 2523 } 2524 } 2525 2526 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2527 { 2528 unsigned long timeout; 2529 int ret; 2530 2531 /* Some events are global */ 2532 if (sfp->sm_state != SFP_S_DOWN && 2533 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2534 sfp->sm_dev_state != SFP_DEV_UP)) { 2535 if (sfp->sm_state == SFP_S_LINK_UP && 2536 sfp->sm_dev_state == SFP_DEV_UP) 2537 sfp_sm_link_down(sfp); 2538 if (sfp->sm_state > SFP_S_INIT) 2539 sfp_module_stop(sfp->sfp_bus); 2540 if (sfp->mod_phy) 2541 sfp_sm_phy_detach(sfp); 2542 if (sfp->i2c_mii) 2543 sfp_i2c_mdiobus_destroy(sfp); 2544 sfp_module_tx_disable(sfp); 2545 sfp_soft_stop_poll(sfp); 2546 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2547 return; 2548 } 2549 2550 /* The main state machine */ 2551 switch (sfp->sm_state) { 2552 case SFP_S_DOWN: 2553 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2554 sfp->sm_dev_state != SFP_DEV_UP) 2555 break; 2556 2557 /* Only use the soft state bits if we have access to the A2h 2558 * memory, which implies that we have some level of SFF-8472 2559 * compliance. 2560 */ 2561 if (sfp->have_a2) 2562 sfp_soft_start_poll(sfp); 2563 2564 sfp_module_tx_enable(sfp); 2565 2566 /* Initialise the fault clearance retries */ 2567 sfp->sm_fault_retries = N_FAULT_INIT; 2568 2569 /* We need to check the TX_FAULT state, which is not defined 2570 * while TX_DISABLE is asserted. The earliest we want to do 2571 * anything (such as probe for a PHY) is 50ms (or more on 2572 * specific modules). 2573 */ 2574 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2575 break; 2576 2577 case SFP_S_WAIT: 2578 if (event != SFP_E_TIMEOUT) 2579 break; 2580 2581 if (sfp->state & SFP_F_TX_FAULT) { 2582 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2583 * from the TX_DISABLE deassertion for the module to 2584 * initialise, which is indicated by TX_FAULT 2585 * deasserting. 2586 */ 2587 timeout = sfp->module_t_start_up; 2588 if (timeout > sfp->module_t_wait) 2589 timeout -= sfp->module_t_wait; 2590 else 2591 timeout = 1; 2592 2593 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2594 } else { 2595 /* TX_FAULT is not asserted, assume the module has 2596 * finished initialising. 2597 */ 2598 goto init_done; 2599 } 2600 break; 2601 2602 case SFP_S_INIT: 2603 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2604 /* TX_FAULT is still asserted after t_init 2605 * or t_start_up, so assume there is a fault. 2606 */ 2607 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2608 sfp->sm_fault_retries == N_FAULT_INIT); 2609 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2610 init_done: 2611 /* Create mdiobus and start trying for PHY */ 2612 ret = sfp_sm_add_mdio_bus(sfp); 2613 if (ret < 0) { 2614 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2615 break; 2616 } 2617 sfp->sm_phy_retries = R_PHY_RETRY; 2618 goto phy_probe; 2619 } 2620 break; 2621 2622 case SFP_S_INIT_PHY: 2623 if (event != SFP_E_TIMEOUT) 2624 break; 2625 phy_probe: 2626 /* TX_FAULT deasserted or we timed out with TX_FAULT 2627 * clear. Probe for the PHY and check the LOS state. 2628 */ 2629 ret = sfp_sm_probe_for_phy(sfp); 2630 if (ret == -ENODEV) { 2631 if (--sfp->sm_phy_retries) { 2632 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2633 break; 2634 } else { 2635 dev_info(sfp->dev, "no PHY detected\n"); 2636 } 2637 } else if (ret) { 2638 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2639 break; 2640 } 2641 if (sfp_module_start(sfp->sfp_bus)) { 2642 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2643 break; 2644 } 2645 sfp_sm_link_check_los(sfp); 2646 2647 /* Reset the fault retry count */ 2648 sfp->sm_fault_retries = N_FAULT; 2649 break; 2650 2651 case SFP_S_INIT_TX_FAULT: 2652 if (event == SFP_E_TIMEOUT) { 2653 sfp_module_tx_fault_reset(sfp); 2654 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2655 } 2656 break; 2657 2658 case SFP_S_WAIT_LOS: 2659 if (event == SFP_E_TX_FAULT) 2660 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2661 else if (sfp_los_event_inactive(sfp, event)) 2662 sfp_sm_link_up(sfp); 2663 break; 2664 2665 case SFP_S_LINK_UP: 2666 if (event == SFP_E_TX_FAULT) { 2667 sfp_sm_link_down(sfp); 2668 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2669 } else if (sfp_los_event_active(sfp, event)) { 2670 sfp_sm_link_down(sfp); 2671 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2672 } 2673 break; 2674 2675 case SFP_S_TX_FAULT: 2676 if (event == SFP_E_TIMEOUT) { 2677 sfp_module_tx_fault_reset(sfp); 2678 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2679 } 2680 break; 2681 2682 case SFP_S_REINIT: 2683 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2684 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2685 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2686 dev_info(sfp->dev, "module transmit fault recovered\n"); 2687 sfp_sm_link_check_los(sfp); 2688 } 2689 break; 2690 2691 case SFP_S_TX_DISABLE: 2692 break; 2693 } 2694 } 2695 2696 static void __sfp_sm_event(struct sfp *sfp, unsigned int event) 2697 { 2698 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2699 mod_state_to_str(sfp->sm_mod_state), 2700 dev_state_to_str(sfp->sm_dev_state), 2701 sm_state_to_str(sfp->sm_state), 2702 event_to_str(event)); 2703 2704 sfp_sm_device(sfp, event); 2705 sfp_sm_module(sfp, event); 2706 sfp_sm_main(sfp, event); 2707 2708 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2709 mod_state_to_str(sfp->sm_mod_state), 2710 dev_state_to_str(sfp->sm_dev_state), 2711 sm_state_to_str(sfp->sm_state)); 2712 } 2713 2714 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2715 { 2716 mutex_lock(&sfp->sm_mutex); 2717 __sfp_sm_event(sfp, event); 2718 mutex_unlock(&sfp->sm_mutex); 2719 } 2720 2721 static void sfp_attach(struct sfp *sfp) 2722 { 2723 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2724 } 2725 2726 static void sfp_detach(struct sfp *sfp) 2727 { 2728 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2729 } 2730 2731 static void sfp_start(struct sfp *sfp) 2732 { 2733 sfp_sm_event(sfp, SFP_E_DEV_UP); 2734 } 2735 2736 static void sfp_stop(struct sfp *sfp) 2737 { 2738 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2739 } 2740 2741 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) 2742 { 2743 unsigned int set; 2744 2745 sfp->rate_kbd = rate_kbd; 2746 2747 if (rate_kbd > sfp->rs_threshold_kbd) 2748 set = sfp->rs_state_mask; 2749 else 2750 set = 0; 2751 2752 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); 2753 } 2754 2755 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2756 { 2757 /* locking... and check module is present */ 2758 2759 if (sfp->id.ext.sff8472_compliance && 2760 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2761 modinfo->type = ETH_MODULE_SFF_8472; 2762 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2763 } else { 2764 modinfo->type = ETH_MODULE_SFF_8079; 2765 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2766 } 2767 return 0; 2768 } 2769 2770 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2771 u8 *data) 2772 { 2773 unsigned int first, last, len; 2774 int ret; 2775 2776 if (!(sfp->state & SFP_F_PRESENT)) 2777 return -ENODEV; 2778 2779 if (ee->len == 0) 2780 return -EINVAL; 2781 2782 first = ee->offset; 2783 last = ee->offset + ee->len; 2784 if (first < ETH_MODULE_SFF_8079_LEN) { 2785 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2786 len -= first; 2787 2788 ret = sfp_read(sfp, false, first, data, len); 2789 if (ret < 0) 2790 return ret; 2791 2792 first += len; 2793 data += len; 2794 } 2795 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2796 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2797 len -= first; 2798 first -= ETH_MODULE_SFF_8079_LEN; 2799 2800 ret = sfp_read(sfp, true, first, data, len); 2801 if (ret < 0) 2802 return ret; 2803 } 2804 return 0; 2805 } 2806 2807 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2808 const struct ethtool_module_eeprom *page, 2809 struct netlink_ext_ack *extack) 2810 { 2811 if (!(sfp->state & SFP_F_PRESENT)) 2812 return -ENODEV; 2813 2814 if (page->bank) { 2815 NL_SET_ERR_MSG(extack, "Banks not supported"); 2816 return -EOPNOTSUPP; 2817 } 2818 2819 if (page->page) { 2820 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2821 return -EOPNOTSUPP; 2822 } 2823 2824 if (page->i2c_address != 0x50 && 2825 page->i2c_address != 0x51) { 2826 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2827 return -EOPNOTSUPP; 2828 } 2829 2830 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2831 page->data, page->length); 2832 }; 2833 2834 static const struct sfp_socket_ops sfp_module_ops = { 2835 .attach = sfp_attach, 2836 .detach = sfp_detach, 2837 .start = sfp_start, 2838 .stop = sfp_stop, 2839 .set_signal_rate = sfp_set_signal_rate, 2840 .module_info = sfp_module_info, 2841 .module_eeprom = sfp_module_eeprom, 2842 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2843 }; 2844 2845 static void sfp_timeout(struct work_struct *work) 2846 { 2847 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2848 2849 rtnl_lock(); 2850 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2851 rtnl_unlock(); 2852 } 2853 2854 static void sfp_check_state(struct sfp *sfp) 2855 { 2856 unsigned int state, i, changed; 2857 2858 rtnl_lock(); 2859 mutex_lock(&sfp->st_mutex); 2860 state = sfp_get_state(sfp); 2861 changed = state ^ sfp->state; 2862 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2863 2864 for (i = 0; i < GPIO_MAX; i++) 2865 if (changed & BIT(i)) 2866 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2867 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2868 2869 state |= sfp->state & SFP_F_OUTPUTS; 2870 sfp->state = state; 2871 mutex_unlock(&sfp->st_mutex); 2872 2873 mutex_lock(&sfp->sm_mutex); 2874 if (changed & SFP_F_PRESENT) 2875 __sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2876 SFP_E_INSERT : SFP_E_REMOVE); 2877 2878 if (changed & SFP_F_TX_FAULT) 2879 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2880 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2881 2882 if (changed & SFP_F_LOS) 2883 __sfp_sm_event(sfp, state & SFP_F_LOS ? 2884 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2885 mutex_unlock(&sfp->sm_mutex); 2886 rtnl_unlock(); 2887 } 2888 2889 static irqreturn_t sfp_irq(int irq, void *data) 2890 { 2891 struct sfp *sfp = data; 2892 2893 sfp_check_state(sfp); 2894 2895 return IRQ_HANDLED; 2896 } 2897 2898 static void sfp_poll(struct work_struct *work) 2899 { 2900 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2901 2902 sfp_check_state(sfp); 2903 2904 // st_mutex doesn't need to be held here for state_soft_mask, 2905 // it's unimportant if we race while reading this. 2906 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2907 sfp->need_poll) 2908 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2909 } 2910 2911 static struct sfp *sfp_alloc(struct device *dev) 2912 { 2913 struct sfp *sfp; 2914 2915 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2916 if (!sfp) 2917 return ERR_PTR(-ENOMEM); 2918 2919 sfp->dev = dev; 2920 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; 2921 2922 mutex_init(&sfp->sm_mutex); 2923 mutex_init(&sfp->st_mutex); 2924 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2925 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2926 2927 sfp_hwmon_init(sfp); 2928 2929 return sfp; 2930 } 2931 2932 static void sfp_cleanup(void *data) 2933 { 2934 struct sfp *sfp = data; 2935 2936 sfp_hwmon_exit(sfp); 2937 2938 cancel_delayed_work_sync(&sfp->poll); 2939 cancel_delayed_work_sync(&sfp->timeout); 2940 if (sfp->i2c_mii) { 2941 mdiobus_unregister(sfp->i2c_mii); 2942 mdiobus_free(sfp->i2c_mii); 2943 } 2944 if (sfp->i2c) 2945 i2c_put_adapter(sfp->i2c); 2946 kfree(sfp); 2947 } 2948 2949 static int sfp_i2c_get(struct sfp *sfp) 2950 { 2951 struct fwnode_handle *h; 2952 struct i2c_adapter *i2c; 2953 int err; 2954 2955 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2956 if (IS_ERR(h)) { 2957 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2958 return -ENODEV; 2959 } 2960 2961 i2c = i2c_get_adapter_by_fwnode(h); 2962 if (!i2c) { 2963 err = -EPROBE_DEFER; 2964 goto put; 2965 } 2966 2967 err = sfp_i2c_configure(sfp, i2c); 2968 if (err) 2969 i2c_put_adapter(i2c); 2970 put: 2971 fwnode_handle_put(h); 2972 return err; 2973 } 2974 2975 static int sfp_probe(struct platform_device *pdev) 2976 { 2977 const struct sff_data *sff; 2978 char *sfp_irq_name; 2979 struct sfp *sfp; 2980 int err, i; 2981 2982 sfp = sfp_alloc(&pdev->dev); 2983 if (IS_ERR(sfp)) 2984 return PTR_ERR(sfp); 2985 2986 platform_set_drvdata(pdev, sfp); 2987 2988 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2989 if (err < 0) 2990 return err; 2991 2992 sff = device_get_match_data(sfp->dev); 2993 if (!sff) 2994 sff = &sfp_data; 2995 2996 sfp->type = sff; 2997 2998 err = sfp_i2c_get(sfp); 2999 if (err) 3000 return err; 3001 3002 for (i = 0; i < GPIO_MAX; i++) 3003 if (sff->gpios & BIT(i)) { 3004 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 3005 gpio_names[i], gpio_flags[i]); 3006 if (IS_ERR(sfp->gpio[i])) 3007 return PTR_ERR(sfp->gpio[i]); 3008 } 3009 3010 sfp->state_hw_mask = SFP_F_PRESENT; 3011 sfp->state_hw_drive = SFP_F_TX_DISABLE; 3012 3013 sfp->get_state = sfp_gpio_get_state; 3014 sfp->set_state = sfp_gpio_set_state; 3015 3016 /* Modules that have no detect signal are always present */ 3017 if (!(sfp->gpio[GPIO_MODDEF0])) 3018 sfp->get_state = sff_gpio_get_state; 3019 3020 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 3021 &sfp->max_power_mW); 3022 if (sfp->max_power_mW < 1000) { 3023 if (sfp->max_power_mW) 3024 dev_warn(sfp->dev, 3025 "Firmware bug: host maximum power should be at least 1W\n"); 3026 sfp->max_power_mW = 1000; 3027 } 3028 3029 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 3030 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 3031 3032 /* Get the initial state, and always signal TX disable, 3033 * since the network interface will not be up. 3034 */ 3035 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 3036 3037 if (sfp->gpio[GPIO_RS0] && 3038 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) 3039 sfp->state |= SFP_F_RS0; 3040 sfp_set_state(sfp, sfp->state); 3041 sfp_module_tx_disable(sfp); 3042 if (sfp->state & SFP_F_PRESENT) { 3043 rtnl_lock(); 3044 sfp_sm_event(sfp, SFP_E_INSERT); 3045 rtnl_unlock(); 3046 } 3047 3048 for (i = 0; i < GPIO_MAX; i++) { 3049 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 3050 continue; 3051 3052 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 3053 if (sfp->gpio_irq[i] < 0) { 3054 sfp->gpio_irq[i] = 0; 3055 sfp->need_poll = true; 3056 continue; 3057 } 3058 3059 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 3060 "%s-%s", dev_name(sfp->dev), 3061 gpio_names[i]); 3062 3063 if (!sfp_irq_name) 3064 return -ENOMEM; 3065 3066 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 3067 NULL, sfp_irq, 3068 IRQF_ONESHOT | 3069 IRQF_TRIGGER_RISING | 3070 IRQF_TRIGGER_FALLING, 3071 sfp_irq_name, sfp); 3072 if (err) { 3073 sfp->gpio_irq[i] = 0; 3074 sfp->need_poll = true; 3075 } 3076 } 3077 3078 if (sfp->need_poll) 3079 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 3080 3081 /* We could have an issue in cases no Tx disable pin is available or 3082 * wired as modules using a laser as their light source will continue to 3083 * be active when the fiber is removed. This could be a safety issue and 3084 * we should at least warn the user about that. 3085 */ 3086 if (!sfp->gpio[GPIO_TX_DISABLE]) 3087 dev_warn(sfp->dev, 3088 "No tx_disable pin: SFP modules will always be emitting.\n"); 3089 3090 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 3091 if (!sfp->sfp_bus) 3092 return -ENOMEM; 3093 3094 sfp_debugfs_init(sfp); 3095 3096 return 0; 3097 } 3098 3099 static int sfp_remove(struct platform_device *pdev) 3100 { 3101 struct sfp *sfp = platform_get_drvdata(pdev); 3102 3103 sfp_debugfs_exit(sfp); 3104 sfp_unregister_socket(sfp->sfp_bus); 3105 3106 rtnl_lock(); 3107 sfp_sm_event(sfp, SFP_E_REMOVE); 3108 rtnl_unlock(); 3109 3110 return 0; 3111 } 3112 3113 static void sfp_shutdown(struct platform_device *pdev) 3114 { 3115 struct sfp *sfp = platform_get_drvdata(pdev); 3116 int i; 3117 3118 for (i = 0; i < GPIO_MAX; i++) { 3119 if (!sfp->gpio_irq[i]) 3120 continue; 3121 3122 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 3123 } 3124 3125 cancel_delayed_work_sync(&sfp->poll); 3126 cancel_delayed_work_sync(&sfp->timeout); 3127 } 3128 3129 static struct platform_driver sfp_driver = { 3130 .probe = sfp_probe, 3131 .remove = sfp_remove, 3132 .shutdown = sfp_shutdown, 3133 .driver = { 3134 .name = "sfp", 3135 .of_match_table = sfp_of_match, 3136 }, 3137 }; 3138 3139 static int sfp_init(void) 3140 { 3141 poll_jiffies = msecs_to_jiffies(100); 3142 3143 return platform_driver_register(&sfp_driver); 3144 } 3145 module_init(sfp_init); 3146 3147 static void sfp_exit(void) 3148 { 3149 platform_driver_unregister(&sfp_driver); 3150 } 3151 module_exit(sfp_exit); 3152 3153 MODULE_ALIAS("platform:sfp"); 3154 MODULE_AUTHOR("Russell King"); 3155 MODULE_LICENSE("GPL v2"); 3156 MODULE_DESCRIPTION("SFP cage support"); 3157