xref: /linux/drivers/net/phy/sfp.c (revision 2241f81c91f211b512bd2c3a26a4a74258d0e008)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RS0,
28 	GPIO_RS1,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RS0 = BIT(GPIO_RS0),
36 	SFP_F_RS1 = BIT(GPIO_RS1),
37 
38 	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39 
40 	SFP_E_INSERT = 0,
41 	SFP_E_REMOVE,
42 	SFP_E_DEV_ATTACH,
43 	SFP_E_DEV_DETACH,
44 	SFP_E_DEV_DOWN,
45 	SFP_E_DEV_UP,
46 	SFP_E_TX_FAULT,
47 	SFP_E_TX_CLEAR,
48 	SFP_E_LOS_HIGH,
49 	SFP_E_LOS_LOW,
50 	SFP_E_TIMEOUT,
51 
52 	SFP_MOD_EMPTY = 0,
53 	SFP_MOD_ERROR,
54 	SFP_MOD_PROBE,
55 	SFP_MOD_WAITDEV,
56 	SFP_MOD_HPOWER,
57 	SFP_MOD_WAITPWR,
58 	SFP_MOD_PRESENT,
59 
60 	SFP_DEV_DETACHED = 0,
61 	SFP_DEV_DOWN,
62 	SFP_DEV_UP,
63 
64 	SFP_S_DOWN = 0,
65 	SFP_S_FAIL,
66 	SFP_S_WAIT,
67 	SFP_S_INIT,
68 	SFP_S_INIT_PHY,
69 	SFP_S_INIT_TX_FAULT,
70 	SFP_S_WAIT_LOS,
71 	SFP_S_LINK_UP,
72 	SFP_S_TX_FAULT,
73 	SFP_S_REINIT,
74 	SFP_S_TX_DISABLE,
75 };
76 
77 static const char  * const mod_state_strings[] = {
78 	[SFP_MOD_EMPTY] = "empty",
79 	[SFP_MOD_ERROR] = "error",
80 	[SFP_MOD_PROBE] = "probe",
81 	[SFP_MOD_WAITDEV] = "waitdev",
82 	[SFP_MOD_HPOWER] = "hpower",
83 	[SFP_MOD_WAITPWR] = "waitpwr",
84 	[SFP_MOD_PRESENT] = "present",
85 };
86 
87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 		return "Unknown module state";
91 	return mod_state_strings[mod_state];
92 }
93 
94 static const char * const dev_state_strings[] = {
95 	[SFP_DEV_DETACHED] = "detached",
96 	[SFP_DEV_DOWN] = "down",
97 	[SFP_DEV_UP] = "up",
98 };
99 
100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 		return "Unknown device state";
104 	return dev_state_strings[dev_state];
105 }
106 
107 static const char * const event_strings[] = {
108 	[SFP_E_INSERT] = "insert",
109 	[SFP_E_REMOVE] = "remove",
110 	[SFP_E_DEV_ATTACH] = "dev_attach",
111 	[SFP_E_DEV_DETACH] = "dev_detach",
112 	[SFP_E_DEV_DOWN] = "dev_down",
113 	[SFP_E_DEV_UP] = "dev_up",
114 	[SFP_E_TX_FAULT] = "tx_fault",
115 	[SFP_E_TX_CLEAR] = "tx_clear",
116 	[SFP_E_LOS_HIGH] = "los_high",
117 	[SFP_E_LOS_LOW] = "los_low",
118 	[SFP_E_TIMEOUT] = "timeout",
119 };
120 
121 static const char *event_to_str(unsigned short event)
122 {
123 	if (event >= ARRAY_SIZE(event_strings))
124 		return "Unknown event";
125 	return event_strings[event];
126 }
127 
128 static const char * const sm_state_strings[] = {
129 	[SFP_S_DOWN] = "down",
130 	[SFP_S_FAIL] = "fail",
131 	[SFP_S_WAIT] = "wait",
132 	[SFP_S_INIT] = "init",
133 	[SFP_S_INIT_PHY] = "init_phy",
134 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 	[SFP_S_WAIT_LOS] = "wait_los",
136 	[SFP_S_LINK_UP] = "link_up",
137 	[SFP_S_TX_FAULT] = "tx_fault",
138 	[SFP_S_REINIT] = "reinit",
139 	[SFP_S_TX_DISABLE] = "tx_disable",
140 };
141 
142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 		return "Unknown state";
146 	return sm_state_strings[sm_state];
147 }
148 
149 static const char *gpio_names[] = {
150 	"mod-def0",
151 	"los",
152 	"tx-fault",
153 	"tx-disable",
154 	"rate-select0",
155 	"rate-select1",
156 };
157 
158 static const enum gpiod_flags gpio_flags[] = {
159 	GPIOD_IN,
160 	GPIOD_IN,
161 	GPIOD_IN,
162 	GPIOD_ASIS,
163 	GPIOD_ASIS,
164 	GPIOD_ASIS,
165 };
166 
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168  * non-cooled module to initialise its laser safety circuitry. We wait
169  * an initial T_WAIT period before we check the tx fault to give any PHY
170  * on board (for a copper SFP) time to initialise.
171  */
172 #define T_WAIT			msecs_to_jiffies(50)
173 #define T_START_UP		msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175 
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177  * an indicated TX_FAULT.
178  */
179 #define T_RESET_US		10
180 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181 
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183  * time. If the TX_FAULT signal is not deasserted after this number of
184  * attempts at clearing it, we decide that the module is faulty.
185  * N_FAULT is the same but after the module has initialised.
186  */
187 #define N_FAULT_INIT		5
188 #define N_FAULT			5
189 
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191  * R_PHY_RETRY is the number of attempts.
192  */
193 #define T_PHY_RETRY		msecs_to_jiffies(50)
194 #define R_PHY_RETRY		12
195 
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197  * the same length on the PCB, which means it's possible for MOD DEF 0 to
198  * connect before the I2C bus on MOD DEF 1/2.
199  *
200  * The SFF-8472 specifies t_serial ("Time from power on until module is
201  * ready for data transmission over the two wire serial bus.") as 300ms.
202  */
203 #define T_SERIAL		msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT	10
207 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW	12
209 
210 /* SFP modules appear to always have their PHY configured for bus address
211  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214  */
215 #define SFP_PHY_ADDR		22
216 #define SFP_PHY_ADDR_ROLLBALL	17
217 
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219  * at a time. Some SFP modules and also some Linux I2C drivers do not like
220  * reads longer than 16 bytes.
221  */
222 #define SFP_EEPROM_BLOCK_SIZE	16
223 
224 struct sff_data {
225 	unsigned int gpios;
226 	bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228 
229 struct sfp {
230 	struct device *dev;
231 	struct i2c_adapter *i2c;
232 	struct mii_bus *i2c_mii;
233 	struct sfp_bus *sfp_bus;
234 	enum mdio_i2c_proto mdio_protocol;
235 	struct phy_device *mod_phy;
236 	const struct sff_data *type;
237 	size_t i2c_block_size;
238 	u32 max_power_mW;
239 
240 	unsigned int (*get_state)(struct sfp *);
241 	void (*set_state)(struct sfp *, unsigned int);
242 	int (*read)(struct sfp *, bool, u8, void *, size_t);
243 	int (*write)(struct sfp *, bool, u8, void *, size_t);
244 
245 	struct gpio_desc *gpio[GPIO_MAX];
246 	int gpio_irq[GPIO_MAX];
247 
248 	bool need_poll;
249 
250 	/* Access rules:
251 	 * state_hw_drive: st_mutex held
252 	 * state_hw_mask: st_mutex held
253 	 * state_soft_mask: st_mutex held
254 	 * state: st_mutex held unless reading input bits
255 	 */
256 	struct mutex st_mutex;			/* Protects state */
257 	unsigned int state_hw_drive;
258 	unsigned int state_hw_mask;
259 	unsigned int state_soft_mask;
260 	unsigned int state_ignore_mask;
261 	unsigned int state;
262 
263 	struct delayed_work poll;
264 	struct delayed_work timeout;
265 	struct mutex sm_mutex;			/* Protects state machine */
266 	unsigned char sm_mod_state;
267 	unsigned char sm_mod_tries_init;
268 	unsigned char sm_mod_tries;
269 	unsigned char sm_dev_state;
270 	unsigned short sm_state;
271 	unsigned char sm_fault_retries;
272 	unsigned char sm_phy_retries;
273 
274 	struct sfp_eeprom_id id;
275 	unsigned int module_power_mW;
276 	unsigned int module_t_start_up;
277 	unsigned int module_t_wait;
278 
279 	unsigned int rate_kbd;
280 	unsigned int rs_threshold_kbd;
281 	unsigned int rs_state_mask;
282 
283 	bool have_a2;
284 
285 	const struct sfp_quirk *quirk;
286 
287 #if IS_ENABLED(CONFIG_HWMON)
288 	struct sfp_diag diag;
289 	struct delayed_work hwmon_probe;
290 	unsigned int hwmon_tries;
291 	struct device *hwmon_dev;
292 	char *hwmon_name;
293 #endif
294 
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 	struct dentry *debugfs_dir;
297 #endif
298 };
299 
300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305 
306 static const struct sff_data sff_data = {
307 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 	.module_supported = sff_module_supported,
309 };
310 
311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 	if (id->base.phys_id == SFF8024_ID_SFP &&
314 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 		return true;
316 
317 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 	 * as supported based on vendor name and pn match.
320 	 */
321 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
324 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
325 		return true;
326 
327 	return false;
328 }
329 
330 static const struct sff_data sfp_data = {
331 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 	.module_supported = sfp_module_supported,
334 };
335 
336 static const struct of_device_id sfp_of_match[] = {
337 	{ .compatible = "sff,sff", .data = &sff_data, },
338 	{ .compatible = "sff,sfp", .data = &sfp_data, },
339 	{ },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342 
343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347 
348 static void sfp_fixup_ignore_los(struct sfp *sfp)
349 {
350 	/* This forces LOS to zero, so we ignore transitions */
351 	sfp->state_ignore_mask |= SFP_F_LOS;
352 	/* Make sure that LOS options are clear */
353 	sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
354 					    SFP_OPTIONS_LOS_NORMAL);
355 }
356 
357 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
358 {
359 	sfp->state_ignore_mask |= SFP_F_TX_FAULT;
360 }
361 
362 static void sfp_fixup_nokia(struct sfp *sfp)
363 {
364 	sfp_fixup_long_startup(sfp);
365 	sfp_fixup_ignore_los(sfp);
366 }
367 
368 // For 10GBASE-T short-reach modules
369 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
370 {
371 	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
372 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
373 }
374 
375 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
376 {
377 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
378 	sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
379 }
380 
381 static void sfp_fixup_fs_10gt(struct sfp *sfp)
382 {
383 	sfp_fixup_10gbaset_30m(sfp);
384 
385 	// These SFPs need 4 seconds before the PHY can be accessed
386 	sfp_fixup_rollball_proto(sfp, 4);
387 }
388 
389 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
390 {
391 	/* Ignore the TX_FAULT and LOS signals on this module.
392 	 * these are possibly used for other purposes on this
393 	 * module, e.g. a serial port.
394 	 */
395 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
396 }
397 
398 static void sfp_fixup_rollball(struct sfp *sfp)
399 {
400 	// Rollball SFPs need 25 seconds before the PHY can be accessed
401 	sfp_fixup_rollball_proto(sfp, 25);
402 }
403 
404 static void sfp_fixup_rollball_cc(struct sfp *sfp)
405 {
406 	sfp_fixup_rollball(sfp);
407 
408 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
409 	 * burned in EEPROM. For PHY probing we need the correct one.
410 	 */
411 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
412 }
413 
414 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
415 				unsigned long *modes,
416 				unsigned long *interfaces)
417 {
418 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
419 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
420 }
421 
422 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
423 				      unsigned long *modes,
424 				      unsigned long *interfaces)
425 {
426 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
427 }
428 
429 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
430 			       unsigned long *modes,
431 			       unsigned long *interfaces)
432 {
433 	/* Copper 2.5G SFP */
434 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
435 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
436 	sfp_quirk_disable_autoneg(id, modes, interfaces);
437 }
438 
439 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
440 				      unsigned long *modes,
441 				      unsigned long *interfaces)
442 {
443 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
444 	 * types including 10G Ethernet which is not truth. So clear all claimed
445 	 * modes and set only one mode which module supports: 1000baseX_Full.
446 	 */
447 	linkmode_zero(modes);
448 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
449 }
450 
451 #define SFP_QUIRK(_v, _p, _m, _f) \
452 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
453 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
454 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
455 
456 static const struct sfp_quirk sfp_quirks[] = {
457 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
458 	// report 2500MBd NRZ in their EEPROM
459 	SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
460 
461 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
462 	// NRZ in their EEPROM
463 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
464 		  sfp_fixup_nokia),
465 
466 	// Fiberstore SFP-10G-T doesn't identify as copper, and uses the
467 	// Rollball protocol to talk to the PHY.
468 	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
469 
470 	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
471 	// NRZ in their EEPROM
472 	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
473 		  sfp_fixup_ignore_tx_fault),
474 
475 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
476 
477 	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
478 	// 2600MBd in their EERPOM
479 	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
480 
481 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
482 	// their EEPROM
483 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
484 		  sfp_fixup_ignore_tx_fault),
485 
486 	// FS 2.5G Base-T
487 	SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
488 
489 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
490 	// 2500MBd NRZ in their EEPROM
491 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
492 
493 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
494 
495 	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
496 	// Rollball protocol to talk to the PHY.
497 	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
498 	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
499 
500 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
501 	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
502 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
503 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
504 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
505 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
506 };
507 
508 static size_t sfp_strlen(const char *str, size_t maxlen)
509 {
510 	size_t size, i;
511 
512 	/* Trailing characters should be filled with space chars, but
513 	 * some manufacturers can't read SFF-8472 and use NUL.
514 	 */
515 	for (i = 0, size = 0; i < maxlen; i++)
516 		if (str[i] != ' ' && str[i] != '\0')
517 			size = i + 1;
518 
519 	return size;
520 }
521 
522 static bool sfp_match(const char *qs, const char *str, size_t len)
523 {
524 	if (!qs)
525 		return true;
526 	if (strlen(qs) != len)
527 		return false;
528 	return !strncmp(qs, str, len);
529 }
530 
531 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
532 {
533 	const struct sfp_quirk *q;
534 	unsigned int i;
535 	size_t vs, ps;
536 
537 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
538 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
539 
540 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
541 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
542 		    sfp_match(q->part, id->base.vendor_pn, ps))
543 			return q;
544 
545 	return NULL;
546 }
547 
548 static unsigned long poll_jiffies;
549 
550 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
551 {
552 	unsigned int i, state, v;
553 
554 	for (i = state = 0; i < GPIO_MAX; i++) {
555 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
556 			continue;
557 
558 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
559 		if (v)
560 			state |= BIT(i);
561 	}
562 
563 	return state;
564 }
565 
566 static unsigned int sff_gpio_get_state(struct sfp *sfp)
567 {
568 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
569 }
570 
571 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
572 {
573 	unsigned int drive;
574 
575 	if (state & SFP_F_PRESENT)
576 		/* If the module is present, drive the requested signals */
577 		drive = sfp->state_hw_drive;
578 	else
579 		/* Otherwise, let them float to the pull-ups */
580 		drive = 0;
581 
582 	if (sfp->gpio[GPIO_TX_DISABLE]) {
583 		if (drive & SFP_F_TX_DISABLE)
584 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
585 					       state & SFP_F_TX_DISABLE);
586 		else
587 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
588 	}
589 
590 	if (sfp->gpio[GPIO_RS0]) {
591 		if (drive & SFP_F_RS0)
592 			gpiod_direction_output(sfp->gpio[GPIO_RS0],
593 					       state & SFP_F_RS0);
594 		else
595 			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
596 	}
597 
598 	if (sfp->gpio[GPIO_RS1]) {
599 		if (drive & SFP_F_RS1)
600 			gpiod_direction_output(sfp->gpio[GPIO_RS1],
601 					       state & SFP_F_RS1);
602 		else
603 			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
604 	}
605 }
606 
607 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
608 			size_t len)
609 {
610 	struct i2c_msg msgs[2];
611 	u8 bus_addr = a2 ? 0x51 : 0x50;
612 	size_t block_size = sfp->i2c_block_size;
613 	size_t this_len;
614 	int ret;
615 
616 	msgs[0].addr = bus_addr;
617 	msgs[0].flags = 0;
618 	msgs[0].len = 1;
619 	msgs[0].buf = &dev_addr;
620 	msgs[1].addr = bus_addr;
621 	msgs[1].flags = I2C_M_RD;
622 	msgs[1].len = len;
623 	msgs[1].buf = buf;
624 
625 	while (len) {
626 		this_len = len;
627 		if (this_len > block_size)
628 			this_len = block_size;
629 
630 		msgs[1].len = this_len;
631 
632 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
633 		if (ret < 0)
634 			return ret;
635 
636 		if (ret != ARRAY_SIZE(msgs))
637 			break;
638 
639 		msgs[1].buf += this_len;
640 		dev_addr += this_len;
641 		len -= this_len;
642 	}
643 
644 	return msgs[1].buf - (u8 *)buf;
645 }
646 
647 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
648 	size_t len)
649 {
650 	struct i2c_msg msgs[1];
651 	u8 bus_addr = a2 ? 0x51 : 0x50;
652 	int ret;
653 
654 	msgs[0].addr = bus_addr;
655 	msgs[0].flags = 0;
656 	msgs[0].len = 1 + len;
657 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
658 	if (!msgs[0].buf)
659 		return -ENOMEM;
660 
661 	msgs[0].buf[0] = dev_addr;
662 	memcpy(&msgs[0].buf[1], buf, len);
663 
664 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
665 
666 	kfree(msgs[0].buf);
667 
668 	if (ret < 0)
669 		return ret;
670 
671 	return ret == ARRAY_SIZE(msgs) ? len : 0;
672 }
673 
674 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
675 {
676 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
677 		return -EINVAL;
678 
679 	sfp->i2c = i2c;
680 	sfp->read = sfp_i2c_read;
681 	sfp->write = sfp_i2c_write;
682 
683 	return 0;
684 }
685 
686 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
687 {
688 	struct mii_bus *i2c_mii;
689 	int ret;
690 
691 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
692 	if (IS_ERR(i2c_mii))
693 		return PTR_ERR(i2c_mii);
694 
695 	i2c_mii->name = "SFP I2C Bus";
696 	i2c_mii->phy_mask = ~0;
697 
698 	ret = mdiobus_register(i2c_mii);
699 	if (ret < 0) {
700 		mdiobus_free(i2c_mii);
701 		return ret;
702 	}
703 
704 	sfp->i2c_mii = i2c_mii;
705 
706 	return 0;
707 }
708 
709 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
710 {
711 	mdiobus_unregister(sfp->i2c_mii);
712 	sfp->i2c_mii = NULL;
713 }
714 
715 /* Interface */
716 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
717 {
718 	return sfp->read(sfp, a2, addr, buf, len);
719 }
720 
721 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
722 {
723 	return sfp->write(sfp, a2, addr, buf, len);
724 }
725 
726 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
727 {
728 	int ret;
729 	u8 old, v;
730 
731 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
732 	if (ret != sizeof(old))
733 		return ret;
734 
735 	v = (old & ~mask) | (val & mask);
736 	if (v == old)
737 		return sizeof(v);
738 
739 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
740 }
741 
742 static unsigned int sfp_soft_get_state(struct sfp *sfp)
743 {
744 	unsigned int state = 0;
745 	u8 status;
746 	int ret;
747 
748 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
749 	if (ret == sizeof(status)) {
750 		if (status & SFP_STATUS_RX_LOS)
751 			state |= SFP_F_LOS;
752 		if (status & SFP_STATUS_TX_FAULT)
753 			state |= SFP_F_TX_FAULT;
754 	} else {
755 		dev_err_ratelimited(sfp->dev,
756 				    "failed to read SFP soft status: %pe\n",
757 				    ERR_PTR(ret));
758 		/* Preserve the current state */
759 		state = sfp->state;
760 	}
761 
762 	return state & sfp->state_soft_mask;
763 }
764 
765 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
766 			       unsigned int soft)
767 {
768 	u8 mask = 0;
769 	u8 val = 0;
770 
771 	if (soft & SFP_F_TX_DISABLE)
772 		mask |= SFP_STATUS_TX_DISABLE_FORCE;
773 	if (state & SFP_F_TX_DISABLE)
774 		val |= SFP_STATUS_TX_DISABLE_FORCE;
775 
776 	if (soft & SFP_F_RS0)
777 		mask |= SFP_STATUS_RS0_SELECT;
778 	if (state & SFP_F_RS0)
779 		val |= SFP_STATUS_RS0_SELECT;
780 
781 	if (mask)
782 		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
783 
784 	val = mask = 0;
785 	if (soft & SFP_F_RS1)
786 		mask |= SFP_EXT_STATUS_RS1_SELECT;
787 	if (state & SFP_F_RS1)
788 		val |= SFP_EXT_STATUS_RS1_SELECT;
789 
790 	if (mask)
791 		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
792 }
793 
794 static void sfp_soft_start_poll(struct sfp *sfp)
795 {
796 	const struct sfp_eeprom_id *id = &sfp->id;
797 	unsigned int mask = 0;
798 
799 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
800 		mask |= SFP_F_TX_DISABLE;
801 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
802 		mask |= SFP_F_TX_FAULT;
803 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
804 		mask |= SFP_F_LOS;
805 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
806 		mask |= sfp->rs_state_mask;
807 
808 	mutex_lock(&sfp->st_mutex);
809 	// Poll the soft state for hardware pins we want to ignore
810 	sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
811 			       mask;
812 
813 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
814 	    !sfp->need_poll)
815 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
816 	mutex_unlock(&sfp->st_mutex);
817 }
818 
819 static void sfp_soft_stop_poll(struct sfp *sfp)
820 {
821 	mutex_lock(&sfp->st_mutex);
822 	sfp->state_soft_mask = 0;
823 	mutex_unlock(&sfp->st_mutex);
824 }
825 
826 /* sfp_get_state() - must be called with st_mutex held, or in the
827  * initialisation path.
828  */
829 static unsigned int sfp_get_state(struct sfp *sfp)
830 {
831 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
832 	unsigned int state;
833 
834 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
835 	if (state & SFP_F_PRESENT && soft)
836 		state |= sfp_soft_get_state(sfp);
837 
838 	return state;
839 }
840 
841 /* sfp_set_state() - must be called with st_mutex held, or in the
842  * initialisation path.
843  */
844 static void sfp_set_state(struct sfp *sfp, unsigned int state)
845 {
846 	unsigned int soft;
847 
848 	sfp->set_state(sfp, state);
849 
850 	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
851 	if (state & SFP_F_PRESENT && soft)
852 		sfp_soft_set_state(sfp, state, soft);
853 }
854 
855 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
856 {
857 	mutex_lock(&sfp->st_mutex);
858 	sfp->state = (sfp->state & ~mask) | set;
859 	sfp_set_state(sfp, sfp->state);
860 	mutex_unlock(&sfp->st_mutex);
861 }
862 
863 static unsigned int sfp_check(void *buf, size_t len)
864 {
865 	u8 *p, check;
866 
867 	for (p = buf, check = 0; len; p++, len--)
868 		check += *p;
869 
870 	return check;
871 }
872 
873 /* hwmon */
874 #if IS_ENABLED(CONFIG_HWMON)
875 static umode_t sfp_hwmon_is_visible(const void *data,
876 				    enum hwmon_sensor_types type,
877 				    u32 attr, int channel)
878 {
879 	const struct sfp *sfp = data;
880 
881 	switch (type) {
882 	case hwmon_temp:
883 		switch (attr) {
884 		case hwmon_temp_min_alarm:
885 		case hwmon_temp_max_alarm:
886 		case hwmon_temp_lcrit_alarm:
887 		case hwmon_temp_crit_alarm:
888 		case hwmon_temp_min:
889 		case hwmon_temp_max:
890 		case hwmon_temp_lcrit:
891 		case hwmon_temp_crit:
892 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
893 				return 0;
894 			fallthrough;
895 		case hwmon_temp_input:
896 		case hwmon_temp_label:
897 			return 0444;
898 		default:
899 			return 0;
900 		}
901 	case hwmon_in:
902 		switch (attr) {
903 		case hwmon_in_min_alarm:
904 		case hwmon_in_max_alarm:
905 		case hwmon_in_lcrit_alarm:
906 		case hwmon_in_crit_alarm:
907 		case hwmon_in_min:
908 		case hwmon_in_max:
909 		case hwmon_in_lcrit:
910 		case hwmon_in_crit:
911 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
912 				return 0;
913 			fallthrough;
914 		case hwmon_in_input:
915 		case hwmon_in_label:
916 			return 0444;
917 		default:
918 			return 0;
919 		}
920 	case hwmon_curr:
921 		switch (attr) {
922 		case hwmon_curr_min_alarm:
923 		case hwmon_curr_max_alarm:
924 		case hwmon_curr_lcrit_alarm:
925 		case hwmon_curr_crit_alarm:
926 		case hwmon_curr_min:
927 		case hwmon_curr_max:
928 		case hwmon_curr_lcrit:
929 		case hwmon_curr_crit:
930 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
931 				return 0;
932 			fallthrough;
933 		case hwmon_curr_input:
934 		case hwmon_curr_label:
935 			return 0444;
936 		default:
937 			return 0;
938 		}
939 	case hwmon_power:
940 		/* External calibration of receive power requires
941 		 * floating point arithmetic. Doing that in the kernel
942 		 * is not easy, so just skip it. If the module does
943 		 * not require external calibration, we can however
944 		 * show receiver power, since FP is then not needed.
945 		 */
946 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
947 		    channel == 1)
948 			return 0;
949 		switch (attr) {
950 		case hwmon_power_min_alarm:
951 		case hwmon_power_max_alarm:
952 		case hwmon_power_lcrit_alarm:
953 		case hwmon_power_crit_alarm:
954 		case hwmon_power_min:
955 		case hwmon_power_max:
956 		case hwmon_power_lcrit:
957 		case hwmon_power_crit:
958 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
959 				return 0;
960 			fallthrough;
961 		case hwmon_power_input:
962 		case hwmon_power_label:
963 			return 0444;
964 		default:
965 			return 0;
966 		}
967 	default:
968 		return 0;
969 	}
970 }
971 
972 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
973 {
974 	__be16 val;
975 	int err;
976 
977 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
978 	if (err < 0)
979 		return err;
980 
981 	*value = be16_to_cpu(val);
982 
983 	return 0;
984 }
985 
986 static void sfp_hwmon_to_rx_power(long *value)
987 {
988 	*value = DIV_ROUND_CLOSEST(*value, 10);
989 }
990 
991 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
992 				long *value)
993 {
994 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
995 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
996 }
997 
998 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
999 {
1000 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1001 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
1002 
1003 	if (*value >= 0x8000)
1004 		*value -= 0x10000;
1005 
1006 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1007 }
1008 
1009 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1010 {
1011 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1012 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
1013 
1014 	*value = DIV_ROUND_CLOSEST(*value, 10);
1015 }
1016 
1017 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1018 {
1019 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1020 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1021 
1022 	*value = DIV_ROUND_CLOSEST(*value, 500);
1023 }
1024 
1025 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1026 {
1027 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1028 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1029 
1030 	*value = DIV_ROUND_CLOSEST(*value, 10);
1031 }
1032 
1033 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1034 {
1035 	int err;
1036 
1037 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1038 	if (err < 0)
1039 		return err;
1040 
1041 	sfp_hwmon_calibrate_temp(sfp, value);
1042 
1043 	return 0;
1044 }
1045 
1046 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1047 {
1048 	int err;
1049 
1050 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1051 	if (err < 0)
1052 		return err;
1053 
1054 	sfp_hwmon_calibrate_vcc(sfp, value);
1055 
1056 	return 0;
1057 }
1058 
1059 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1060 {
1061 	int err;
1062 
1063 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1064 	if (err < 0)
1065 		return err;
1066 
1067 	sfp_hwmon_calibrate_bias(sfp, value);
1068 
1069 	return 0;
1070 }
1071 
1072 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1073 {
1074 	int err;
1075 
1076 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1077 	if (err < 0)
1078 		return err;
1079 
1080 	sfp_hwmon_calibrate_tx_power(sfp, value);
1081 
1082 	return 0;
1083 }
1084 
1085 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1086 {
1087 	int err;
1088 
1089 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1090 	if (err < 0)
1091 		return err;
1092 
1093 	sfp_hwmon_to_rx_power(value);
1094 
1095 	return 0;
1096 }
1097 
1098 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1099 {
1100 	u8 status;
1101 	int err;
1102 
1103 	switch (attr) {
1104 	case hwmon_temp_input:
1105 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1106 
1107 	case hwmon_temp_lcrit:
1108 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1109 		sfp_hwmon_calibrate_temp(sfp, value);
1110 		return 0;
1111 
1112 	case hwmon_temp_min:
1113 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1114 		sfp_hwmon_calibrate_temp(sfp, value);
1115 		return 0;
1116 	case hwmon_temp_max:
1117 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1118 		sfp_hwmon_calibrate_temp(sfp, value);
1119 		return 0;
1120 
1121 	case hwmon_temp_crit:
1122 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1123 		sfp_hwmon_calibrate_temp(sfp, value);
1124 		return 0;
1125 
1126 	case hwmon_temp_lcrit_alarm:
1127 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1128 		if (err < 0)
1129 			return err;
1130 
1131 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1132 		return 0;
1133 
1134 	case hwmon_temp_min_alarm:
1135 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1136 		if (err < 0)
1137 			return err;
1138 
1139 		*value = !!(status & SFP_WARN0_TEMP_LOW);
1140 		return 0;
1141 
1142 	case hwmon_temp_max_alarm:
1143 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1144 		if (err < 0)
1145 			return err;
1146 
1147 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1148 		return 0;
1149 
1150 	case hwmon_temp_crit_alarm:
1151 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1152 		if (err < 0)
1153 			return err;
1154 
1155 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1156 		return 0;
1157 	default:
1158 		return -EOPNOTSUPP;
1159 	}
1160 
1161 	return -EOPNOTSUPP;
1162 }
1163 
1164 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1165 {
1166 	u8 status;
1167 	int err;
1168 
1169 	switch (attr) {
1170 	case hwmon_in_input:
1171 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1172 
1173 	case hwmon_in_lcrit:
1174 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1175 		sfp_hwmon_calibrate_vcc(sfp, value);
1176 		return 0;
1177 
1178 	case hwmon_in_min:
1179 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1180 		sfp_hwmon_calibrate_vcc(sfp, value);
1181 		return 0;
1182 
1183 	case hwmon_in_max:
1184 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1185 		sfp_hwmon_calibrate_vcc(sfp, value);
1186 		return 0;
1187 
1188 	case hwmon_in_crit:
1189 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1190 		sfp_hwmon_calibrate_vcc(sfp, value);
1191 		return 0;
1192 
1193 	case hwmon_in_lcrit_alarm:
1194 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1195 		if (err < 0)
1196 			return err;
1197 
1198 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1199 		return 0;
1200 
1201 	case hwmon_in_min_alarm:
1202 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1203 		if (err < 0)
1204 			return err;
1205 
1206 		*value = !!(status & SFP_WARN0_VCC_LOW);
1207 		return 0;
1208 
1209 	case hwmon_in_max_alarm:
1210 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1211 		if (err < 0)
1212 			return err;
1213 
1214 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1215 		return 0;
1216 
1217 	case hwmon_in_crit_alarm:
1218 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1219 		if (err < 0)
1220 			return err;
1221 
1222 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1223 		return 0;
1224 	default:
1225 		return -EOPNOTSUPP;
1226 	}
1227 
1228 	return -EOPNOTSUPP;
1229 }
1230 
1231 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1232 {
1233 	u8 status;
1234 	int err;
1235 
1236 	switch (attr) {
1237 	case hwmon_curr_input:
1238 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1239 
1240 	case hwmon_curr_lcrit:
1241 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1242 		sfp_hwmon_calibrate_bias(sfp, value);
1243 		return 0;
1244 
1245 	case hwmon_curr_min:
1246 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1247 		sfp_hwmon_calibrate_bias(sfp, value);
1248 		return 0;
1249 
1250 	case hwmon_curr_max:
1251 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1252 		sfp_hwmon_calibrate_bias(sfp, value);
1253 		return 0;
1254 
1255 	case hwmon_curr_crit:
1256 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1257 		sfp_hwmon_calibrate_bias(sfp, value);
1258 		return 0;
1259 
1260 	case hwmon_curr_lcrit_alarm:
1261 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1262 		if (err < 0)
1263 			return err;
1264 
1265 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1266 		return 0;
1267 
1268 	case hwmon_curr_min_alarm:
1269 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1270 		if (err < 0)
1271 			return err;
1272 
1273 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1274 		return 0;
1275 
1276 	case hwmon_curr_max_alarm:
1277 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1278 		if (err < 0)
1279 			return err;
1280 
1281 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1282 		return 0;
1283 
1284 	case hwmon_curr_crit_alarm:
1285 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1286 		if (err < 0)
1287 			return err;
1288 
1289 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1290 		return 0;
1291 	default:
1292 		return -EOPNOTSUPP;
1293 	}
1294 
1295 	return -EOPNOTSUPP;
1296 }
1297 
1298 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1299 {
1300 	u8 status;
1301 	int err;
1302 
1303 	switch (attr) {
1304 	case hwmon_power_input:
1305 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1306 
1307 	case hwmon_power_lcrit:
1308 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1309 		sfp_hwmon_calibrate_tx_power(sfp, value);
1310 		return 0;
1311 
1312 	case hwmon_power_min:
1313 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1314 		sfp_hwmon_calibrate_tx_power(sfp, value);
1315 		return 0;
1316 
1317 	case hwmon_power_max:
1318 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1319 		sfp_hwmon_calibrate_tx_power(sfp, value);
1320 		return 0;
1321 
1322 	case hwmon_power_crit:
1323 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1324 		sfp_hwmon_calibrate_tx_power(sfp, value);
1325 		return 0;
1326 
1327 	case hwmon_power_lcrit_alarm:
1328 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1329 		if (err < 0)
1330 			return err;
1331 
1332 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1333 		return 0;
1334 
1335 	case hwmon_power_min_alarm:
1336 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1337 		if (err < 0)
1338 			return err;
1339 
1340 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1341 		return 0;
1342 
1343 	case hwmon_power_max_alarm:
1344 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1345 		if (err < 0)
1346 			return err;
1347 
1348 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1349 		return 0;
1350 
1351 	case hwmon_power_crit_alarm:
1352 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1353 		if (err < 0)
1354 			return err;
1355 
1356 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1357 		return 0;
1358 	default:
1359 		return -EOPNOTSUPP;
1360 	}
1361 
1362 	return -EOPNOTSUPP;
1363 }
1364 
1365 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1366 {
1367 	u8 status;
1368 	int err;
1369 
1370 	switch (attr) {
1371 	case hwmon_power_input:
1372 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1373 
1374 	case hwmon_power_lcrit:
1375 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1376 		sfp_hwmon_to_rx_power(value);
1377 		return 0;
1378 
1379 	case hwmon_power_min:
1380 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1381 		sfp_hwmon_to_rx_power(value);
1382 		return 0;
1383 
1384 	case hwmon_power_max:
1385 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1386 		sfp_hwmon_to_rx_power(value);
1387 		return 0;
1388 
1389 	case hwmon_power_crit:
1390 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1391 		sfp_hwmon_to_rx_power(value);
1392 		return 0;
1393 
1394 	case hwmon_power_lcrit_alarm:
1395 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1396 		if (err < 0)
1397 			return err;
1398 
1399 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1400 		return 0;
1401 
1402 	case hwmon_power_min_alarm:
1403 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1404 		if (err < 0)
1405 			return err;
1406 
1407 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1408 		return 0;
1409 
1410 	case hwmon_power_max_alarm:
1411 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1412 		if (err < 0)
1413 			return err;
1414 
1415 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1416 		return 0;
1417 
1418 	case hwmon_power_crit_alarm:
1419 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1420 		if (err < 0)
1421 			return err;
1422 
1423 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1424 		return 0;
1425 	default:
1426 		return -EOPNOTSUPP;
1427 	}
1428 
1429 	return -EOPNOTSUPP;
1430 }
1431 
1432 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1433 			  u32 attr, int channel, long *value)
1434 {
1435 	struct sfp *sfp = dev_get_drvdata(dev);
1436 
1437 	switch (type) {
1438 	case hwmon_temp:
1439 		return sfp_hwmon_temp(sfp, attr, value);
1440 	case hwmon_in:
1441 		return sfp_hwmon_vcc(sfp, attr, value);
1442 	case hwmon_curr:
1443 		return sfp_hwmon_bias(sfp, attr, value);
1444 	case hwmon_power:
1445 		switch (channel) {
1446 		case 0:
1447 			return sfp_hwmon_tx_power(sfp, attr, value);
1448 		case 1:
1449 			return sfp_hwmon_rx_power(sfp, attr, value);
1450 		default:
1451 			return -EOPNOTSUPP;
1452 		}
1453 	default:
1454 		return -EOPNOTSUPP;
1455 	}
1456 }
1457 
1458 static const char *const sfp_hwmon_power_labels[] = {
1459 	"TX_power",
1460 	"RX_power",
1461 };
1462 
1463 static int sfp_hwmon_read_string(struct device *dev,
1464 				 enum hwmon_sensor_types type,
1465 				 u32 attr, int channel, const char **str)
1466 {
1467 	switch (type) {
1468 	case hwmon_curr:
1469 		switch (attr) {
1470 		case hwmon_curr_label:
1471 			*str = "bias";
1472 			return 0;
1473 		default:
1474 			return -EOPNOTSUPP;
1475 		}
1476 		break;
1477 	case hwmon_temp:
1478 		switch (attr) {
1479 		case hwmon_temp_label:
1480 			*str = "temperature";
1481 			return 0;
1482 		default:
1483 			return -EOPNOTSUPP;
1484 		}
1485 		break;
1486 	case hwmon_in:
1487 		switch (attr) {
1488 		case hwmon_in_label:
1489 			*str = "VCC";
1490 			return 0;
1491 		default:
1492 			return -EOPNOTSUPP;
1493 		}
1494 		break;
1495 	case hwmon_power:
1496 		switch (attr) {
1497 		case hwmon_power_label:
1498 			*str = sfp_hwmon_power_labels[channel];
1499 			return 0;
1500 		default:
1501 			return -EOPNOTSUPP;
1502 		}
1503 		break;
1504 	default:
1505 		return -EOPNOTSUPP;
1506 	}
1507 
1508 	return -EOPNOTSUPP;
1509 }
1510 
1511 static const struct hwmon_ops sfp_hwmon_ops = {
1512 	.is_visible = sfp_hwmon_is_visible,
1513 	.read = sfp_hwmon_read,
1514 	.read_string = sfp_hwmon_read_string,
1515 };
1516 
1517 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1518 	HWMON_CHANNEL_INFO(chip,
1519 			   HWMON_C_REGISTER_TZ),
1520 	HWMON_CHANNEL_INFO(in,
1521 			   HWMON_I_INPUT |
1522 			   HWMON_I_MAX | HWMON_I_MIN |
1523 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1524 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1525 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1526 			   HWMON_I_LABEL),
1527 	HWMON_CHANNEL_INFO(temp,
1528 			   HWMON_T_INPUT |
1529 			   HWMON_T_MAX | HWMON_T_MIN |
1530 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1531 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1532 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1533 			   HWMON_T_LABEL),
1534 	HWMON_CHANNEL_INFO(curr,
1535 			   HWMON_C_INPUT |
1536 			   HWMON_C_MAX | HWMON_C_MIN |
1537 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1538 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1539 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1540 			   HWMON_C_LABEL),
1541 	HWMON_CHANNEL_INFO(power,
1542 			   /* Transmit power */
1543 			   HWMON_P_INPUT |
1544 			   HWMON_P_MAX | HWMON_P_MIN |
1545 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1546 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1547 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1548 			   HWMON_P_LABEL,
1549 			   /* Receive power */
1550 			   HWMON_P_INPUT |
1551 			   HWMON_P_MAX | HWMON_P_MIN |
1552 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1553 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1554 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1555 			   HWMON_P_LABEL),
1556 	NULL,
1557 };
1558 
1559 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1560 	.ops = &sfp_hwmon_ops,
1561 	.info = sfp_hwmon_info,
1562 };
1563 
1564 static void sfp_hwmon_probe(struct work_struct *work)
1565 {
1566 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1567 	int err;
1568 
1569 	/* hwmon interface needs to access 16bit registers in atomic way to
1570 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1571 	 * possible to guarantee coherency because EEPROM is broken in such way
1572 	 * that does not support atomic 16bit read operation then we have to
1573 	 * skip registration of hwmon device.
1574 	 */
1575 	if (sfp->i2c_block_size < 2) {
1576 		dev_info(sfp->dev,
1577 			 "skipping hwmon device registration due to broken EEPROM\n");
1578 		dev_info(sfp->dev,
1579 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1580 		return;
1581 	}
1582 
1583 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1584 	if (err < 0) {
1585 		if (sfp->hwmon_tries--) {
1586 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1587 					 T_PROBE_RETRY_SLOW);
1588 		} else {
1589 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1590 				 ERR_PTR(err));
1591 		}
1592 		return;
1593 	}
1594 
1595 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1596 	if (IS_ERR(sfp->hwmon_name)) {
1597 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1598 		return;
1599 	}
1600 
1601 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1602 							 sfp->hwmon_name, sfp,
1603 							 &sfp_hwmon_chip_info,
1604 							 NULL);
1605 	if (IS_ERR(sfp->hwmon_dev))
1606 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1607 			PTR_ERR(sfp->hwmon_dev));
1608 }
1609 
1610 static int sfp_hwmon_insert(struct sfp *sfp)
1611 {
1612 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1613 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1614 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 static void sfp_hwmon_remove(struct sfp *sfp)
1621 {
1622 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1623 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1624 		hwmon_device_unregister(sfp->hwmon_dev);
1625 		sfp->hwmon_dev = NULL;
1626 		kfree(sfp->hwmon_name);
1627 	}
1628 }
1629 
1630 static int sfp_hwmon_init(struct sfp *sfp)
1631 {
1632 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1633 
1634 	return 0;
1635 }
1636 
1637 static void sfp_hwmon_exit(struct sfp *sfp)
1638 {
1639 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1640 }
1641 #else
1642 static int sfp_hwmon_insert(struct sfp *sfp)
1643 {
1644 	return 0;
1645 }
1646 
1647 static void sfp_hwmon_remove(struct sfp *sfp)
1648 {
1649 }
1650 
1651 static int sfp_hwmon_init(struct sfp *sfp)
1652 {
1653 	return 0;
1654 }
1655 
1656 static void sfp_hwmon_exit(struct sfp *sfp)
1657 {
1658 }
1659 #endif
1660 
1661 /* Helpers */
1662 static void sfp_module_tx_disable(struct sfp *sfp)
1663 {
1664 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1665 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1666 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1667 }
1668 
1669 static void sfp_module_tx_enable(struct sfp *sfp)
1670 {
1671 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1672 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1673 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1674 }
1675 
1676 #if IS_ENABLED(CONFIG_DEBUG_FS)
1677 static int sfp_debug_state_show(struct seq_file *s, void *data)
1678 {
1679 	struct sfp *sfp = s->private;
1680 
1681 	seq_printf(s, "Module state: %s\n",
1682 		   mod_state_to_str(sfp->sm_mod_state));
1683 	seq_printf(s, "Module probe attempts: %d %d\n",
1684 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1685 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1686 	seq_printf(s, "Device state: %s\n",
1687 		   dev_state_to_str(sfp->sm_dev_state));
1688 	seq_printf(s, "Main state: %s\n",
1689 		   sm_state_to_str(sfp->sm_state));
1690 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1691 		   sfp->sm_fault_retries);
1692 	seq_printf(s, "PHY probe remaining retries: %d\n",
1693 		   sfp->sm_phy_retries);
1694 	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1695 	seq_printf(s, "Rate select threshold: %u kBd\n",
1696 		   sfp->rs_threshold_kbd);
1697 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1698 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1699 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1700 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1701 	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1702 	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1703 	return 0;
1704 }
1705 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1706 
1707 static void sfp_debugfs_init(struct sfp *sfp)
1708 {
1709 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1710 
1711 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1712 			    &sfp_debug_state_fops);
1713 }
1714 
1715 static void sfp_debugfs_exit(struct sfp *sfp)
1716 {
1717 	debugfs_remove_recursive(sfp->debugfs_dir);
1718 }
1719 #else
1720 static void sfp_debugfs_init(struct sfp *sfp)
1721 {
1722 }
1723 
1724 static void sfp_debugfs_exit(struct sfp *sfp)
1725 {
1726 }
1727 #endif
1728 
1729 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1730 {
1731 	unsigned int state;
1732 
1733 	mutex_lock(&sfp->st_mutex);
1734 	state = sfp->state;
1735 	if (!(state & SFP_F_TX_DISABLE)) {
1736 		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1737 
1738 		udelay(T_RESET_US);
1739 
1740 		sfp_set_state(sfp, state);
1741 	}
1742 	mutex_unlock(&sfp->st_mutex);
1743 }
1744 
1745 /* SFP state machine */
1746 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1747 {
1748 	if (timeout)
1749 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1750 				 timeout);
1751 	else
1752 		cancel_delayed_work(&sfp->timeout);
1753 }
1754 
1755 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1756 			unsigned int timeout)
1757 {
1758 	sfp->sm_state = state;
1759 	sfp_sm_set_timer(sfp, timeout);
1760 }
1761 
1762 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1763 			    unsigned int timeout)
1764 {
1765 	sfp->sm_mod_state = state;
1766 	sfp_sm_set_timer(sfp, timeout);
1767 }
1768 
1769 static void sfp_sm_phy_detach(struct sfp *sfp)
1770 {
1771 	sfp_remove_phy(sfp->sfp_bus);
1772 	phy_device_remove(sfp->mod_phy);
1773 	phy_device_free(sfp->mod_phy);
1774 	sfp->mod_phy = NULL;
1775 }
1776 
1777 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1778 {
1779 	struct phy_device *phy;
1780 	int err;
1781 
1782 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1783 	if (phy == ERR_PTR(-ENODEV))
1784 		return PTR_ERR(phy);
1785 	if (IS_ERR(phy)) {
1786 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1787 		return PTR_ERR(phy);
1788 	}
1789 
1790 	/* Mark this PHY as being on a SFP module */
1791 	phy->is_on_sfp_module = true;
1792 
1793 	err = phy_device_register(phy);
1794 	if (err) {
1795 		phy_device_free(phy);
1796 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1797 			ERR_PTR(err));
1798 		return err;
1799 	}
1800 
1801 	err = sfp_add_phy(sfp->sfp_bus, phy);
1802 	if (err) {
1803 		phy_device_remove(phy);
1804 		phy_device_free(phy);
1805 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1806 		return err;
1807 	}
1808 
1809 	sfp->mod_phy = phy;
1810 
1811 	return 0;
1812 }
1813 
1814 static void sfp_sm_link_up(struct sfp *sfp)
1815 {
1816 	sfp_link_up(sfp->sfp_bus);
1817 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1818 }
1819 
1820 static void sfp_sm_link_down(struct sfp *sfp)
1821 {
1822 	sfp_link_down(sfp->sfp_bus);
1823 }
1824 
1825 static void sfp_sm_link_check_los(struct sfp *sfp)
1826 {
1827 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1828 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1829 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1830 	bool los = false;
1831 
1832 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1833 	 * are set, we assume that no LOS signal is available. If both are
1834 	 * set, we assume LOS is not implemented (and is meaningless.)
1835 	 */
1836 	if (los_options == los_inverted)
1837 		los = !(sfp->state & SFP_F_LOS);
1838 	else if (los_options == los_normal)
1839 		los = !!(sfp->state & SFP_F_LOS);
1840 
1841 	if (los)
1842 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1843 	else
1844 		sfp_sm_link_up(sfp);
1845 }
1846 
1847 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1848 {
1849 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1850 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1851 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1852 
1853 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1854 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1855 }
1856 
1857 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1858 {
1859 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1860 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1861 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1862 
1863 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1864 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1865 }
1866 
1867 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1868 {
1869 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1870 		dev_err(sfp->dev,
1871 			"module persistently indicates fault, disabling\n");
1872 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1873 	} else {
1874 		if (warn)
1875 			dev_err(sfp->dev, "module transmit fault indicated\n");
1876 
1877 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1878 	}
1879 }
1880 
1881 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1882 {
1883 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1884 		return sfp_i2c_mdiobus_create(sfp);
1885 
1886 	return 0;
1887 }
1888 
1889 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1890  * normally sits at I2C bus address 0x56, and may either be a clause 22
1891  * or clause 45 PHY.
1892  *
1893  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1894  * negotiation enabled, but some may be in 1000base-X - which is for the
1895  * PHY driver to determine.
1896  *
1897  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1898  * mode according to the negotiated line speed.
1899  */
1900 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1901 {
1902 	int err = 0;
1903 
1904 	switch (sfp->mdio_protocol) {
1905 	case MDIO_I2C_NONE:
1906 		break;
1907 
1908 	case MDIO_I2C_MARVELL_C22:
1909 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1910 		break;
1911 
1912 	case MDIO_I2C_C45:
1913 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1914 		break;
1915 
1916 	case MDIO_I2C_ROLLBALL:
1917 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1918 		break;
1919 	}
1920 
1921 	return err;
1922 }
1923 
1924 static int sfp_module_parse_power(struct sfp *sfp)
1925 {
1926 	u32 power_mW = 1000;
1927 	bool supports_a2;
1928 
1929 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1930 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1931 		power_mW = 1500;
1932 	/* Added in Rev 11.9, but there is no compliance code for this */
1933 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1934 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1935 		power_mW = 2000;
1936 
1937 	/* Power level 1 modules (max. 1W) are always supported. */
1938 	if (power_mW <= 1000) {
1939 		sfp->module_power_mW = power_mW;
1940 		return 0;
1941 	}
1942 
1943 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1944 				SFP_SFF8472_COMPLIANCE_NONE ||
1945 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1946 
1947 	if (power_mW > sfp->max_power_mW) {
1948 		/* Module power specification exceeds the allowed maximum. */
1949 		if (!supports_a2) {
1950 			/* The module appears not to implement bus address
1951 			 * 0xa2, so assume that the module powers up in the
1952 			 * indicated mode.
1953 			 */
1954 			dev_err(sfp->dev,
1955 				"Host does not support %u.%uW modules\n",
1956 				power_mW / 1000, (power_mW / 100) % 10);
1957 			return -EINVAL;
1958 		} else {
1959 			dev_warn(sfp->dev,
1960 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1961 				 power_mW / 1000, (power_mW / 100) % 10);
1962 			return 0;
1963 		}
1964 	}
1965 
1966 	if (!supports_a2) {
1967 		/* The module power level is below the host maximum and the
1968 		 * module appears not to implement bus address 0xa2, so assume
1969 		 * that the module powers up in the indicated mode.
1970 		 */
1971 		return 0;
1972 	}
1973 
1974 	/* If the module requires a higher power mode, but also requires
1975 	 * an address change sequence, warn the user that the module may
1976 	 * not be functional.
1977 	 */
1978 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1979 		dev_warn(sfp->dev,
1980 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1981 			 power_mW / 1000, (power_mW / 100) % 10);
1982 		return 0;
1983 	}
1984 
1985 	sfp->module_power_mW = power_mW;
1986 
1987 	return 0;
1988 }
1989 
1990 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1991 {
1992 	int err;
1993 
1994 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1995 			    SFP_EXT_STATUS_PWRLVL_SELECT,
1996 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1997 	if (err != sizeof(u8)) {
1998 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1999 			enable ? "en" : "dis", ERR_PTR(err));
2000 		return -EAGAIN;
2001 	}
2002 
2003 	if (enable)
2004 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2005 			 sfp->module_power_mW / 1000,
2006 			 (sfp->module_power_mW / 100) % 10);
2007 
2008 	return 0;
2009 }
2010 
2011 static void sfp_module_parse_rate_select(struct sfp *sfp)
2012 {
2013 	u8 rate_id;
2014 
2015 	sfp->rs_threshold_kbd = 0;
2016 	sfp->rs_state_mask = 0;
2017 
2018 	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2019 		/* No support for RateSelect */
2020 		return;
2021 
2022 	/* Default to INF-8074 RateSelect operation. The signalling threshold
2023 	 * rate is not well specified, so always select "Full Bandwidth", but
2024 	 * SFF-8079 reveals that it is understood that RS0 will be low for
2025 	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2026 	 * This method exists prior to SFF-8472.
2027 	 */
2028 	sfp->rs_state_mask = SFP_F_RS0;
2029 	sfp->rs_threshold_kbd = 1594;
2030 
2031 	/* Parse the rate identifier, which is complicated due to history:
2032 	 * SFF-8472 rev 9.5 marks this field as reserved.
2033 	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2034 	 *  compliance is not required.
2035 	 * SFF-8472 rev 10.2 defines this field using values 0..4
2036 	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2037 	 * and even values.
2038 	 */
2039 	rate_id = sfp->id.base.rate_id;
2040 	if (rate_id == 0)
2041 		/* Unspecified */
2042 		return;
2043 
2044 	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2045 	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2046 	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2047 	 */
2048 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2049 	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2050 	    rate_id == 3)
2051 		rate_id = SFF_RID_8431;
2052 
2053 	if (rate_id & SFF_RID_8079) {
2054 		/* SFF-8079 RateSelect / Application Select in conjunction with
2055 		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2056 		 * with only bit 0 used, which takes precedence over SFF-8472.
2057 		 */
2058 		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2059 			/* SFF-8079 Part 1 - rate selection between Fibre
2060 			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2061 			 * is high for 2125, so we have to subtract 1 to
2062 			 * include it.
2063 			 */
2064 			sfp->rs_threshold_kbd = 2125 - 1;
2065 			sfp->rs_state_mask = SFP_F_RS0;
2066 		}
2067 		return;
2068 	}
2069 
2070 	/* SFF-8472 rev 9.5 does not define the rate identifier */
2071 	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2072 		return;
2073 
2074 	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2075 	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2076 	 */
2077 	switch (rate_id) {
2078 	case SFF_RID_8431_RX_ONLY:
2079 		sfp->rs_threshold_kbd = 4250;
2080 		sfp->rs_state_mask = SFP_F_RS0;
2081 		break;
2082 
2083 	case SFF_RID_8431_TX_ONLY:
2084 		sfp->rs_threshold_kbd = 4250;
2085 		sfp->rs_state_mask = SFP_F_RS1;
2086 		break;
2087 
2088 	case SFF_RID_8431:
2089 		sfp->rs_threshold_kbd = 4250;
2090 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2091 		break;
2092 
2093 	case SFF_RID_10G8G:
2094 		sfp->rs_threshold_kbd = 9000;
2095 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2096 		break;
2097 	}
2098 }
2099 
2100 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2101  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2102  * not support multibyte reads from the EEPROM. Each multi-byte read
2103  * operation returns just one byte of EEPROM followed by zeros. There is
2104  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2105  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2106  * name and vendor id into EEPROM, so there is even no way to detect if
2107  * module is V-SOL V2801F. Therefore check for those zeros in the read
2108  * data and then based on check switch to reading EEPROM to one byte
2109  * at a time.
2110  */
2111 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2112 {
2113 	size_t i, block_size = sfp->i2c_block_size;
2114 
2115 	/* Already using byte IO */
2116 	if (block_size == 1)
2117 		return false;
2118 
2119 	for (i = 1; i < len; i += block_size) {
2120 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2121 			return false;
2122 	}
2123 	return true;
2124 }
2125 
2126 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2127 {
2128 	u8 check;
2129 	int err;
2130 
2131 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2132 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2133 	    id->base.connector != SFF8024_CONNECTOR_LC) {
2134 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2135 		id->base.phys_id = SFF8024_ID_SFF_8472;
2136 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2137 		id->base.connector = SFF8024_CONNECTOR_LC;
2138 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2139 		if (err != 3) {
2140 			dev_err(sfp->dev,
2141 				"Failed to rewrite module EEPROM: %pe\n",
2142 				ERR_PTR(err));
2143 			return err;
2144 		}
2145 
2146 		/* Cotsworks modules have been found to require a delay between write operations. */
2147 		mdelay(50);
2148 
2149 		/* Update base structure checksum */
2150 		check = sfp_check(&id->base, sizeof(id->base) - 1);
2151 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2152 		if (err != 1) {
2153 			dev_err(sfp->dev,
2154 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2155 				ERR_PTR(err));
2156 			return err;
2157 		}
2158 	}
2159 	return 0;
2160 }
2161 
2162 static int sfp_module_parse_sff8472(struct sfp *sfp)
2163 {
2164 	/* If the module requires address swap mode, warn about it */
2165 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2166 		dev_warn(sfp->dev,
2167 			 "module address swap to access page 0xA2 is not supported.\n");
2168 	else
2169 		sfp->have_a2 = true;
2170 
2171 	return 0;
2172 }
2173 
2174 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2175 {
2176 	/* SFP module inserted - read I2C data */
2177 	struct sfp_eeprom_id id;
2178 	bool cotsworks_sfbg;
2179 	unsigned int mask;
2180 	bool cotsworks;
2181 	u8 check;
2182 	int ret;
2183 
2184 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2185 
2186 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2187 	if (ret < 0) {
2188 		if (report)
2189 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2190 				ERR_PTR(ret));
2191 		return -EAGAIN;
2192 	}
2193 
2194 	if (ret != sizeof(id.base)) {
2195 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2196 		return -EAGAIN;
2197 	}
2198 
2199 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2200 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2201 	 * that EEPROM supports atomic 16bit read operation for diagnostic
2202 	 * fields, so do not switch to one byte reading at a time unless it
2203 	 * is really required and we have no other option.
2204 	 */
2205 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2206 		dev_info(sfp->dev,
2207 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2208 		dev_info(sfp->dev,
2209 			 "Switching to reading EEPROM to one byte at a time\n");
2210 		sfp->i2c_block_size = 1;
2211 
2212 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2213 		if (ret < 0) {
2214 			if (report)
2215 				dev_err(sfp->dev,
2216 					"failed to read EEPROM: %pe\n",
2217 					ERR_PTR(ret));
2218 			return -EAGAIN;
2219 		}
2220 
2221 		if (ret != sizeof(id.base)) {
2222 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2223 				ERR_PTR(ret));
2224 			return -EAGAIN;
2225 		}
2226 	}
2227 
2228 	/* Cotsworks do not seem to update the checksums when they
2229 	 * do the final programming with the final module part number,
2230 	 * serial number and date code.
2231 	 */
2232 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2233 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2234 
2235 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2236 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2237 	 * Cotsworks PN matches and bytes are not correct.
2238 	 */
2239 	if (cotsworks && cotsworks_sfbg) {
2240 		ret = sfp_cotsworks_fixup_check(sfp, &id);
2241 		if (ret < 0)
2242 			return ret;
2243 	}
2244 
2245 	/* Validate the checksum over the base structure */
2246 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2247 	if (check != id.base.cc_base) {
2248 		if (cotsworks) {
2249 			dev_warn(sfp->dev,
2250 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2251 				 check, id.base.cc_base);
2252 		} else {
2253 			dev_err(sfp->dev,
2254 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2255 				check, id.base.cc_base);
2256 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2257 				       16, 1, &id, sizeof(id), true);
2258 			return -EINVAL;
2259 		}
2260 	}
2261 
2262 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2263 	if (ret < 0) {
2264 		if (report)
2265 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2266 				ERR_PTR(ret));
2267 		return -EAGAIN;
2268 	}
2269 
2270 	if (ret != sizeof(id.ext)) {
2271 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2272 		return -EAGAIN;
2273 	}
2274 
2275 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2276 	if (check != id.ext.cc_ext) {
2277 		if (cotsworks) {
2278 			dev_warn(sfp->dev,
2279 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2280 				 check, id.ext.cc_ext);
2281 		} else {
2282 			dev_err(sfp->dev,
2283 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2284 				check, id.ext.cc_ext);
2285 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2286 				       16, 1, &id, sizeof(id), true);
2287 			memset(&id.ext, 0, sizeof(id.ext));
2288 		}
2289 	}
2290 
2291 	sfp->id = id;
2292 
2293 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2294 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2295 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2296 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2297 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2298 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2299 
2300 	/* Check whether we support this module */
2301 	if (!sfp->type->module_supported(&id)) {
2302 		dev_err(sfp->dev,
2303 			"module is not supported - phys id 0x%02x 0x%02x\n",
2304 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2305 		return -EINVAL;
2306 	}
2307 
2308 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2309 		ret = sfp_module_parse_sff8472(sfp);
2310 		if (ret < 0)
2311 			return ret;
2312 	}
2313 
2314 	/* Parse the module power requirement */
2315 	ret = sfp_module_parse_power(sfp);
2316 	if (ret < 0)
2317 		return ret;
2318 
2319 	sfp_module_parse_rate_select(sfp);
2320 
2321 	mask = SFP_F_PRESENT;
2322 	if (sfp->gpio[GPIO_TX_DISABLE])
2323 		mask |= SFP_F_TX_DISABLE;
2324 	if (sfp->gpio[GPIO_TX_FAULT])
2325 		mask |= SFP_F_TX_FAULT;
2326 	if (sfp->gpio[GPIO_LOS])
2327 		mask |= SFP_F_LOS;
2328 	if (sfp->gpio[GPIO_RS0])
2329 		mask |= SFP_F_RS0;
2330 	if (sfp->gpio[GPIO_RS1])
2331 		mask |= SFP_F_RS1;
2332 
2333 	sfp->module_t_start_up = T_START_UP;
2334 	sfp->module_t_wait = T_WAIT;
2335 
2336 	sfp->state_ignore_mask = 0;
2337 
2338 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2339 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2340 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2341 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2342 		sfp->mdio_protocol = MDIO_I2C_C45;
2343 	else if (sfp->id.base.e1000_base_t)
2344 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2345 	else
2346 		sfp->mdio_protocol = MDIO_I2C_NONE;
2347 
2348 	sfp->quirk = sfp_lookup_quirk(&id);
2349 
2350 	mutex_lock(&sfp->st_mutex);
2351 	/* Initialise state bits to use from hardware */
2352 	sfp->state_hw_mask = mask;
2353 
2354 	/* We want to drive the rate select pins that the module is using */
2355 	sfp->state_hw_drive |= sfp->rs_state_mask;
2356 
2357 	if (sfp->quirk && sfp->quirk->fixup)
2358 		sfp->quirk->fixup(sfp);
2359 
2360 	sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2361 	mutex_unlock(&sfp->st_mutex);
2362 
2363 	return 0;
2364 }
2365 
2366 static void sfp_sm_mod_remove(struct sfp *sfp)
2367 {
2368 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2369 		sfp_module_remove(sfp->sfp_bus);
2370 
2371 	sfp_hwmon_remove(sfp);
2372 
2373 	memset(&sfp->id, 0, sizeof(sfp->id));
2374 	sfp->module_power_mW = 0;
2375 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2376 	sfp->have_a2 = false;
2377 
2378 	dev_info(sfp->dev, "module removed\n");
2379 }
2380 
2381 /* This state machine tracks the upstream's state */
2382 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2383 {
2384 	switch (sfp->sm_dev_state) {
2385 	default:
2386 		if (event == SFP_E_DEV_ATTACH)
2387 			sfp->sm_dev_state = SFP_DEV_DOWN;
2388 		break;
2389 
2390 	case SFP_DEV_DOWN:
2391 		if (event == SFP_E_DEV_DETACH)
2392 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2393 		else if (event == SFP_E_DEV_UP)
2394 			sfp->sm_dev_state = SFP_DEV_UP;
2395 		break;
2396 
2397 	case SFP_DEV_UP:
2398 		if (event == SFP_E_DEV_DETACH)
2399 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2400 		else if (event == SFP_E_DEV_DOWN)
2401 			sfp->sm_dev_state = SFP_DEV_DOWN;
2402 		break;
2403 	}
2404 }
2405 
2406 /* This state machine tracks the insert/remove state of the module, probes
2407  * the on-board EEPROM, and sets up the power level.
2408  */
2409 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2410 {
2411 	int err;
2412 
2413 	/* Handle remove event globally, it resets this state machine */
2414 	if (event == SFP_E_REMOVE) {
2415 		if (sfp->sm_mod_state > SFP_MOD_PROBE)
2416 			sfp_sm_mod_remove(sfp);
2417 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2418 		return;
2419 	}
2420 
2421 	/* Handle device detach globally */
2422 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2423 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2424 		if (sfp->module_power_mW > 1000 &&
2425 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2426 			sfp_sm_mod_hpower(sfp, false);
2427 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2428 		return;
2429 	}
2430 
2431 	switch (sfp->sm_mod_state) {
2432 	default:
2433 		if (event == SFP_E_INSERT) {
2434 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2435 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2436 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2437 		}
2438 		break;
2439 
2440 	case SFP_MOD_PROBE:
2441 		/* Wait for T_PROBE_INIT to time out */
2442 		if (event != SFP_E_TIMEOUT)
2443 			break;
2444 
2445 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2446 		if (err == -EAGAIN) {
2447 			if (sfp->sm_mod_tries_init &&
2448 			   --sfp->sm_mod_tries_init) {
2449 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2450 				break;
2451 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2452 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2453 					dev_warn(sfp->dev,
2454 						 "please wait, module slow to respond\n");
2455 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2456 				break;
2457 			}
2458 		}
2459 		if (err < 0) {
2460 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2461 			break;
2462 		}
2463 
2464 		/* Force a poll to re-read the hardware signal state after
2465 		 * sfp_sm_mod_probe() changed state_hw_mask.
2466 		 */
2467 		mod_delayed_work(system_wq, &sfp->poll, 1);
2468 
2469 		err = sfp_hwmon_insert(sfp);
2470 		if (err)
2471 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2472 				 ERR_PTR(err));
2473 
2474 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2475 		fallthrough;
2476 	case SFP_MOD_WAITDEV:
2477 		/* Ensure that the device is attached before proceeding */
2478 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2479 			break;
2480 
2481 		/* Report the module insertion to the upstream device */
2482 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2483 					sfp->quirk);
2484 		if (err < 0) {
2485 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2486 			break;
2487 		}
2488 
2489 		/* If this is a power level 1 module, we are done */
2490 		if (sfp->module_power_mW <= 1000)
2491 			goto insert;
2492 
2493 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2494 		fallthrough;
2495 	case SFP_MOD_HPOWER:
2496 		/* Enable high power mode */
2497 		err = sfp_sm_mod_hpower(sfp, true);
2498 		if (err < 0) {
2499 			if (err != -EAGAIN) {
2500 				sfp_module_remove(sfp->sfp_bus);
2501 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2502 			} else {
2503 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2504 			}
2505 			break;
2506 		}
2507 
2508 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2509 		break;
2510 
2511 	case SFP_MOD_WAITPWR:
2512 		/* Wait for T_HPOWER_LEVEL to time out */
2513 		if (event != SFP_E_TIMEOUT)
2514 			break;
2515 
2516 	insert:
2517 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2518 		break;
2519 
2520 	case SFP_MOD_PRESENT:
2521 	case SFP_MOD_ERROR:
2522 		break;
2523 	}
2524 }
2525 
2526 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2527 {
2528 	unsigned long timeout;
2529 	int ret;
2530 
2531 	/* Some events are global */
2532 	if (sfp->sm_state != SFP_S_DOWN &&
2533 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2534 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2535 		if (sfp->sm_state == SFP_S_LINK_UP &&
2536 		    sfp->sm_dev_state == SFP_DEV_UP)
2537 			sfp_sm_link_down(sfp);
2538 		if (sfp->sm_state > SFP_S_INIT)
2539 			sfp_module_stop(sfp->sfp_bus);
2540 		if (sfp->mod_phy)
2541 			sfp_sm_phy_detach(sfp);
2542 		if (sfp->i2c_mii)
2543 			sfp_i2c_mdiobus_destroy(sfp);
2544 		sfp_module_tx_disable(sfp);
2545 		sfp_soft_stop_poll(sfp);
2546 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2547 		return;
2548 	}
2549 
2550 	/* The main state machine */
2551 	switch (sfp->sm_state) {
2552 	case SFP_S_DOWN:
2553 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2554 		    sfp->sm_dev_state != SFP_DEV_UP)
2555 			break;
2556 
2557 		/* Only use the soft state bits if we have access to the A2h
2558 		 * memory, which implies that we have some level of SFF-8472
2559 		 * compliance.
2560 		 */
2561 		if (sfp->have_a2)
2562 			sfp_soft_start_poll(sfp);
2563 
2564 		sfp_module_tx_enable(sfp);
2565 
2566 		/* Initialise the fault clearance retries */
2567 		sfp->sm_fault_retries = N_FAULT_INIT;
2568 
2569 		/* We need to check the TX_FAULT state, which is not defined
2570 		 * while TX_DISABLE is asserted. The earliest we want to do
2571 		 * anything (such as probe for a PHY) is 50ms (or more on
2572 		 * specific modules).
2573 		 */
2574 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2575 		break;
2576 
2577 	case SFP_S_WAIT:
2578 		if (event != SFP_E_TIMEOUT)
2579 			break;
2580 
2581 		if (sfp->state & SFP_F_TX_FAULT) {
2582 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2583 			 * from the TX_DISABLE deassertion for the module to
2584 			 * initialise, which is indicated by TX_FAULT
2585 			 * deasserting.
2586 			 */
2587 			timeout = sfp->module_t_start_up;
2588 			if (timeout > sfp->module_t_wait)
2589 				timeout -= sfp->module_t_wait;
2590 			else
2591 				timeout = 1;
2592 
2593 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2594 		} else {
2595 			/* TX_FAULT is not asserted, assume the module has
2596 			 * finished initialising.
2597 			 */
2598 			goto init_done;
2599 		}
2600 		break;
2601 
2602 	case SFP_S_INIT:
2603 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2604 			/* TX_FAULT is still asserted after t_init
2605 			 * or t_start_up, so assume there is a fault.
2606 			 */
2607 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2608 				     sfp->sm_fault_retries == N_FAULT_INIT);
2609 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2610 	init_done:
2611 			/* Create mdiobus and start trying for PHY */
2612 			ret = sfp_sm_add_mdio_bus(sfp);
2613 			if (ret < 0) {
2614 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2615 				break;
2616 			}
2617 			sfp->sm_phy_retries = R_PHY_RETRY;
2618 			goto phy_probe;
2619 		}
2620 		break;
2621 
2622 	case SFP_S_INIT_PHY:
2623 		if (event != SFP_E_TIMEOUT)
2624 			break;
2625 	phy_probe:
2626 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2627 		 * clear.  Probe for the PHY and check the LOS state.
2628 		 */
2629 		ret = sfp_sm_probe_for_phy(sfp);
2630 		if (ret == -ENODEV) {
2631 			if (--sfp->sm_phy_retries) {
2632 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2633 				break;
2634 			} else {
2635 				dev_info(sfp->dev, "no PHY detected\n");
2636 			}
2637 		} else if (ret) {
2638 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2639 			break;
2640 		}
2641 		if (sfp_module_start(sfp->sfp_bus)) {
2642 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2643 			break;
2644 		}
2645 		sfp_sm_link_check_los(sfp);
2646 
2647 		/* Reset the fault retry count */
2648 		sfp->sm_fault_retries = N_FAULT;
2649 		break;
2650 
2651 	case SFP_S_INIT_TX_FAULT:
2652 		if (event == SFP_E_TIMEOUT) {
2653 			sfp_module_tx_fault_reset(sfp);
2654 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2655 		}
2656 		break;
2657 
2658 	case SFP_S_WAIT_LOS:
2659 		if (event == SFP_E_TX_FAULT)
2660 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2661 		else if (sfp_los_event_inactive(sfp, event))
2662 			sfp_sm_link_up(sfp);
2663 		break;
2664 
2665 	case SFP_S_LINK_UP:
2666 		if (event == SFP_E_TX_FAULT) {
2667 			sfp_sm_link_down(sfp);
2668 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2669 		} else if (sfp_los_event_active(sfp, event)) {
2670 			sfp_sm_link_down(sfp);
2671 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2672 		}
2673 		break;
2674 
2675 	case SFP_S_TX_FAULT:
2676 		if (event == SFP_E_TIMEOUT) {
2677 			sfp_module_tx_fault_reset(sfp);
2678 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2679 		}
2680 		break;
2681 
2682 	case SFP_S_REINIT:
2683 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2684 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2685 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2686 			dev_info(sfp->dev, "module transmit fault recovered\n");
2687 			sfp_sm_link_check_los(sfp);
2688 		}
2689 		break;
2690 
2691 	case SFP_S_TX_DISABLE:
2692 		break;
2693 	}
2694 }
2695 
2696 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2697 {
2698 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2699 		mod_state_to_str(sfp->sm_mod_state),
2700 		dev_state_to_str(sfp->sm_dev_state),
2701 		sm_state_to_str(sfp->sm_state),
2702 		event_to_str(event));
2703 
2704 	sfp_sm_device(sfp, event);
2705 	sfp_sm_module(sfp, event);
2706 	sfp_sm_main(sfp, event);
2707 
2708 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2709 		mod_state_to_str(sfp->sm_mod_state),
2710 		dev_state_to_str(sfp->sm_dev_state),
2711 		sm_state_to_str(sfp->sm_state));
2712 }
2713 
2714 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2715 {
2716 	mutex_lock(&sfp->sm_mutex);
2717 	__sfp_sm_event(sfp, event);
2718 	mutex_unlock(&sfp->sm_mutex);
2719 }
2720 
2721 static void sfp_attach(struct sfp *sfp)
2722 {
2723 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2724 }
2725 
2726 static void sfp_detach(struct sfp *sfp)
2727 {
2728 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2729 }
2730 
2731 static void sfp_start(struct sfp *sfp)
2732 {
2733 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2734 }
2735 
2736 static void sfp_stop(struct sfp *sfp)
2737 {
2738 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2739 }
2740 
2741 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2742 {
2743 	unsigned int set;
2744 
2745 	sfp->rate_kbd = rate_kbd;
2746 
2747 	if (rate_kbd > sfp->rs_threshold_kbd)
2748 		set = sfp->rs_state_mask;
2749 	else
2750 		set = 0;
2751 
2752 	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2753 }
2754 
2755 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2756 {
2757 	/* locking... and check module is present */
2758 
2759 	if (sfp->id.ext.sff8472_compliance &&
2760 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2761 		modinfo->type = ETH_MODULE_SFF_8472;
2762 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2763 	} else {
2764 		modinfo->type = ETH_MODULE_SFF_8079;
2765 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2766 	}
2767 	return 0;
2768 }
2769 
2770 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2771 			     u8 *data)
2772 {
2773 	unsigned int first, last, len;
2774 	int ret;
2775 
2776 	if (!(sfp->state & SFP_F_PRESENT))
2777 		return -ENODEV;
2778 
2779 	if (ee->len == 0)
2780 		return -EINVAL;
2781 
2782 	first = ee->offset;
2783 	last = ee->offset + ee->len;
2784 	if (first < ETH_MODULE_SFF_8079_LEN) {
2785 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2786 		len -= first;
2787 
2788 		ret = sfp_read(sfp, false, first, data, len);
2789 		if (ret < 0)
2790 			return ret;
2791 
2792 		first += len;
2793 		data += len;
2794 	}
2795 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2796 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2797 		len -= first;
2798 		first -= ETH_MODULE_SFF_8079_LEN;
2799 
2800 		ret = sfp_read(sfp, true, first, data, len);
2801 		if (ret < 0)
2802 			return ret;
2803 	}
2804 	return 0;
2805 }
2806 
2807 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2808 				     const struct ethtool_module_eeprom *page,
2809 				     struct netlink_ext_ack *extack)
2810 {
2811 	if (!(sfp->state & SFP_F_PRESENT))
2812 		return -ENODEV;
2813 
2814 	if (page->bank) {
2815 		NL_SET_ERR_MSG(extack, "Banks not supported");
2816 		return -EOPNOTSUPP;
2817 	}
2818 
2819 	if (page->page) {
2820 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2821 		return -EOPNOTSUPP;
2822 	}
2823 
2824 	if (page->i2c_address != 0x50 &&
2825 	    page->i2c_address != 0x51) {
2826 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2827 		return -EOPNOTSUPP;
2828 	}
2829 
2830 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2831 			page->data, page->length);
2832 };
2833 
2834 static const struct sfp_socket_ops sfp_module_ops = {
2835 	.attach = sfp_attach,
2836 	.detach = sfp_detach,
2837 	.start = sfp_start,
2838 	.stop = sfp_stop,
2839 	.set_signal_rate = sfp_set_signal_rate,
2840 	.module_info = sfp_module_info,
2841 	.module_eeprom = sfp_module_eeprom,
2842 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2843 };
2844 
2845 static void sfp_timeout(struct work_struct *work)
2846 {
2847 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2848 
2849 	rtnl_lock();
2850 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2851 	rtnl_unlock();
2852 }
2853 
2854 static void sfp_check_state(struct sfp *sfp)
2855 {
2856 	unsigned int state, i, changed;
2857 
2858 	rtnl_lock();
2859 	mutex_lock(&sfp->st_mutex);
2860 	state = sfp_get_state(sfp);
2861 	changed = state ^ sfp->state;
2862 	changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2863 
2864 	for (i = 0; i < GPIO_MAX; i++)
2865 		if (changed & BIT(i))
2866 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2867 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2868 
2869 	state |= sfp->state & SFP_F_OUTPUTS;
2870 	sfp->state = state;
2871 	mutex_unlock(&sfp->st_mutex);
2872 
2873 	mutex_lock(&sfp->sm_mutex);
2874 	if (changed & SFP_F_PRESENT)
2875 		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2876 				    SFP_E_INSERT : SFP_E_REMOVE);
2877 
2878 	if (changed & SFP_F_TX_FAULT)
2879 		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2880 				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2881 
2882 	if (changed & SFP_F_LOS)
2883 		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2884 				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2885 	mutex_unlock(&sfp->sm_mutex);
2886 	rtnl_unlock();
2887 }
2888 
2889 static irqreturn_t sfp_irq(int irq, void *data)
2890 {
2891 	struct sfp *sfp = data;
2892 
2893 	sfp_check_state(sfp);
2894 
2895 	return IRQ_HANDLED;
2896 }
2897 
2898 static void sfp_poll(struct work_struct *work)
2899 {
2900 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2901 
2902 	sfp_check_state(sfp);
2903 
2904 	// st_mutex doesn't need to be held here for state_soft_mask,
2905 	// it's unimportant if we race while reading this.
2906 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2907 	    sfp->need_poll)
2908 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2909 }
2910 
2911 static struct sfp *sfp_alloc(struct device *dev)
2912 {
2913 	struct sfp *sfp;
2914 
2915 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2916 	if (!sfp)
2917 		return ERR_PTR(-ENOMEM);
2918 
2919 	sfp->dev = dev;
2920 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2921 
2922 	mutex_init(&sfp->sm_mutex);
2923 	mutex_init(&sfp->st_mutex);
2924 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2925 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2926 
2927 	sfp_hwmon_init(sfp);
2928 
2929 	return sfp;
2930 }
2931 
2932 static void sfp_cleanup(void *data)
2933 {
2934 	struct sfp *sfp = data;
2935 
2936 	sfp_hwmon_exit(sfp);
2937 
2938 	cancel_delayed_work_sync(&sfp->poll);
2939 	cancel_delayed_work_sync(&sfp->timeout);
2940 	if (sfp->i2c_mii) {
2941 		mdiobus_unregister(sfp->i2c_mii);
2942 		mdiobus_free(sfp->i2c_mii);
2943 	}
2944 	if (sfp->i2c)
2945 		i2c_put_adapter(sfp->i2c);
2946 	kfree(sfp);
2947 }
2948 
2949 static int sfp_i2c_get(struct sfp *sfp)
2950 {
2951 	struct fwnode_handle *h;
2952 	struct i2c_adapter *i2c;
2953 	int err;
2954 
2955 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2956 	if (IS_ERR(h)) {
2957 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2958 		return -ENODEV;
2959 	}
2960 
2961 	i2c = i2c_get_adapter_by_fwnode(h);
2962 	if (!i2c) {
2963 		err = -EPROBE_DEFER;
2964 		goto put;
2965 	}
2966 
2967 	err = sfp_i2c_configure(sfp, i2c);
2968 	if (err)
2969 		i2c_put_adapter(i2c);
2970 put:
2971 	fwnode_handle_put(h);
2972 	return err;
2973 }
2974 
2975 static int sfp_probe(struct platform_device *pdev)
2976 {
2977 	const struct sff_data *sff;
2978 	char *sfp_irq_name;
2979 	struct sfp *sfp;
2980 	int err, i;
2981 
2982 	sfp = sfp_alloc(&pdev->dev);
2983 	if (IS_ERR(sfp))
2984 		return PTR_ERR(sfp);
2985 
2986 	platform_set_drvdata(pdev, sfp);
2987 
2988 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2989 	if (err < 0)
2990 		return err;
2991 
2992 	sff = device_get_match_data(sfp->dev);
2993 	if (!sff)
2994 		sff = &sfp_data;
2995 
2996 	sfp->type = sff;
2997 
2998 	err = sfp_i2c_get(sfp);
2999 	if (err)
3000 		return err;
3001 
3002 	for (i = 0; i < GPIO_MAX; i++)
3003 		if (sff->gpios & BIT(i)) {
3004 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3005 					   gpio_names[i], gpio_flags[i]);
3006 			if (IS_ERR(sfp->gpio[i]))
3007 				return PTR_ERR(sfp->gpio[i]);
3008 		}
3009 
3010 	sfp->state_hw_mask = SFP_F_PRESENT;
3011 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
3012 
3013 	sfp->get_state = sfp_gpio_get_state;
3014 	sfp->set_state = sfp_gpio_set_state;
3015 
3016 	/* Modules that have no detect signal are always present */
3017 	if (!(sfp->gpio[GPIO_MODDEF0]))
3018 		sfp->get_state = sff_gpio_get_state;
3019 
3020 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3021 				 &sfp->max_power_mW);
3022 	if (sfp->max_power_mW < 1000) {
3023 		if (sfp->max_power_mW)
3024 			dev_warn(sfp->dev,
3025 				 "Firmware bug: host maximum power should be at least 1W\n");
3026 		sfp->max_power_mW = 1000;
3027 	}
3028 
3029 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3030 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3031 
3032 	/* Get the initial state, and always signal TX disable,
3033 	 * since the network interface will not be up.
3034 	 */
3035 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3036 
3037 	if (sfp->gpio[GPIO_RS0] &&
3038 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3039 		sfp->state |= SFP_F_RS0;
3040 	sfp_set_state(sfp, sfp->state);
3041 	sfp_module_tx_disable(sfp);
3042 	if (sfp->state & SFP_F_PRESENT) {
3043 		rtnl_lock();
3044 		sfp_sm_event(sfp, SFP_E_INSERT);
3045 		rtnl_unlock();
3046 	}
3047 
3048 	for (i = 0; i < GPIO_MAX; i++) {
3049 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3050 			continue;
3051 
3052 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3053 		if (sfp->gpio_irq[i] < 0) {
3054 			sfp->gpio_irq[i] = 0;
3055 			sfp->need_poll = true;
3056 			continue;
3057 		}
3058 
3059 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3060 					      "%s-%s", dev_name(sfp->dev),
3061 					      gpio_names[i]);
3062 
3063 		if (!sfp_irq_name)
3064 			return -ENOMEM;
3065 
3066 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3067 						NULL, sfp_irq,
3068 						IRQF_ONESHOT |
3069 						IRQF_TRIGGER_RISING |
3070 						IRQF_TRIGGER_FALLING,
3071 						sfp_irq_name, sfp);
3072 		if (err) {
3073 			sfp->gpio_irq[i] = 0;
3074 			sfp->need_poll = true;
3075 		}
3076 	}
3077 
3078 	if (sfp->need_poll)
3079 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3080 
3081 	/* We could have an issue in cases no Tx disable pin is available or
3082 	 * wired as modules using a laser as their light source will continue to
3083 	 * be active when the fiber is removed. This could be a safety issue and
3084 	 * we should at least warn the user about that.
3085 	 */
3086 	if (!sfp->gpio[GPIO_TX_DISABLE])
3087 		dev_warn(sfp->dev,
3088 			 "No tx_disable pin: SFP modules will always be emitting.\n");
3089 
3090 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3091 	if (!sfp->sfp_bus)
3092 		return -ENOMEM;
3093 
3094 	sfp_debugfs_init(sfp);
3095 
3096 	return 0;
3097 }
3098 
3099 static int sfp_remove(struct platform_device *pdev)
3100 {
3101 	struct sfp *sfp = platform_get_drvdata(pdev);
3102 
3103 	sfp_debugfs_exit(sfp);
3104 	sfp_unregister_socket(sfp->sfp_bus);
3105 
3106 	rtnl_lock();
3107 	sfp_sm_event(sfp, SFP_E_REMOVE);
3108 	rtnl_unlock();
3109 
3110 	return 0;
3111 }
3112 
3113 static void sfp_shutdown(struct platform_device *pdev)
3114 {
3115 	struct sfp *sfp = platform_get_drvdata(pdev);
3116 	int i;
3117 
3118 	for (i = 0; i < GPIO_MAX; i++) {
3119 		if (!sfp->gpio_irq[i])
3120 			continue;
3121 
3122 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3123 	}
3124 
3125 	cancel_delayed_work_sync(&sfp->poll);
3126 	cancel_delayed_work_sync(&sfp->timeout);
3127 }
3128 
3129 static struct platform_driver sfp_driver = {
3130 	.probe = sfp_probe,
3131 	.remove = sfp_remove,
3132 	.shutdown = sfp_shutdown,
3133 	.driver = {
3134 		.name = "sfp",
3135 		.of_match_table = sfp_of_match,
3136 	},
3137 };
3138 
3139 static int sfp_init(void)
3140 {
3141 	poll_jiffies = msecs_to_jiffies(100);
3142 
3143 	return platform_driver_register(&sfp_driver);
3144 }
3145 module_init(sfp_init);
3146 
3147 static void sfp_exit(void)
3148 {
3149 	platform_driver_unregister(&sfp_driver);
3150 }
3151 module_exit(sfp_exit);
3152 
3153 MODULE_ALIAS("platform:sfp");
3154 MODULE_AUTHOR("Russell King");
3155 MODULE_LICENSE("GPL v2");
3156 MODULE_DESCRIPTION("SFP cage support");
3157