1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ctype.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/module.h> 10 #include <linux/mutex.h> 11 #include <linux/of.h> 12 #include <linux/phy.h> 13 #include <linux/platform_device.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/slab.h> 16 #include <linux/workqueue.h> 17 18 #include "mdio-i2c.h" 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RATE_SELECT, 28 GPIO_MAX, 29 30 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 31 SFP_F_LOS = BIT(GPIO_LOS), 32 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 33 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 34 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 35 36 SFP_E_INSERT = 0, 37 SFP_E_REMOVE, 38 SFP_E_DEV_DOWN, 39 SFP_E_DEV_UP, 40 SFP_E_TX_FAULT, 41 SFP_E_TX_CLEAR, 42 SFP_E_LOS_HIGH, 43 SFP_E_LOS_LOW, 44 SFP_E_TIMEOUT, 45 46 SFP_MOD_EMPTY = 0, 47 SFP_MOD_PROBE, 48 SFP_MOD_HPOWER, 49 SFP_MOD_PRESENT, 50 SFP_MOD_ERROR, 51 52 SFP_DEV_DOWN = 0, 53 SFP_DEV_UP, 54 55 SFP_S_DOWN = 0, 56 SFP_S_INIT, 57 SFP_S_WAIT_LOS, 58 SFP_S_LINK_UP, 59 SFP_S_TX_FAULT, 60 SFP_S_REINIT, 61 SFP_S_TX_DISABLE, 62 }; 63 64 static const char * const mod_state_strings[] = { 65 [SFP_MOD_EMPTY] = "empty", 66 [SFP_MOD_PROBE] = "probe", 67 [SFP_MOD_HPOWER] = "hpower", 68 [SFP_MOD_PRESENT] = "present", 69 [SFP_MOD_ERROR] = "error", 70 }; 71 72 static const char *mod_state_to_str(unsigned short mod_state) 73 { 74 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 75 return "Unknown module state"; 76 return mod_state_strings[mod_state]; 77 } 78 79 static const char * const dev_state_strings[] = { 80 [SFP_DEV_DOWN] = "down", 81 [SFP_DEV_UP] = "up", 82 }; 83 84 static const char *dev_state_to_str(unsigned short dev_state) 85 { 86 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 87 return "Unknown device state"; 88 return dev_state_strings[dev_state]; 89 } 90 91 static const char * const event_strings[] = { 92 [SFP_E_INSERT] = "insert", 93 [SFP_E_REMOVE] = "remove", 94 [SFP_E_DEV_DOWN] = "dev_down", 95 [SFP_E_DEV_UP] = "dev_up", 96 [SFP_E_TX_FAULT] = "tx_fault", 97 [SFP_E_TX_CLEAR] = "tx_clear", 98 [SFP_E_LOS_HIGH] = "los_high", 99 [SFP_E_LOS_LOW] = "los_low", 100 [SFP_E_TIMEOUT] = "timeout", 101 }; 102 103 static const char *event_to_str(unsigned short event) 104 { 105 if (event >= ARRAY_SIZE(event_strings)) 106 return "Unknown event"; 107 return event_strings[event]; 108 } 109 110 static const char * const sm_state_strings[] = { 111 [SFP_S_DOWN] = "down", 112 [SFP_S_INIT] = "init", 113 [SFP_S_WAIT_LOS] = "wait_los", 114 [SFP_S_LINK_UP] = "link_up", 115 [SFP_S_TX_FAULT] = "tx_fault", 116 [SFP_S_REINIT] = "reinit", 117 [SFP_S_TX_DISABLE] = "rx_disable", 118 }; 119 120 static const char *sm_state_to_str(unsigned short sm_state) 121 { 122 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 123 return "Unknown state"; 124 return sm_state_strings[sm_state]; 125 } 126 127 static const char *gpio_of_names[] = { 128 "mod-def0", 129 "los", 130 "tx-fault", 131 "tx-disable", 132 "rate-select0", 133 }; 134 135 static const enum gpiod_flags gpio_flags[] = { 136 GPIOD_IN, 137 GPIOD_IN, 138 GPIOD_IN, 139 GPIOD_ASIS, 140 GPIOD_ASIS, 141 }; 142 143 #define T_INIT_JIFFIES msecs_to_jiffies(300) 144 #define T_RESET_US 10 145 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 146 147 /* SFP module presence detection is poor: the three MOD DEF signals are 148 * the same length on the PCB, which means it's possible for MOD DEF 0 to 149 * connect before the I2C bus on MOD DEF 1/2. 150 * 151 * The SFP MSA specifies 300ms as t_init (the time taken for TX_FAULT to 152 * be deasserted) but makes no mention of the earliest time before we can 153 * access the I2C EEPROM. However, Avago modules require 300ms. 154 */ 155 #define T_PROBE_INIT msecs_to_jiffies(300) 156 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 157 #define T_PROBE_RETRY msecs_to_jiffies(100) 158 159 /* SFP modules appear to always have their PHY configured for bus address 160 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 161 */ 162 #define SFP_PHY_ADDR 22 163 164 /* Give this long for the PHY to reset. */ 165 #define T_PHY_RESET_MS 50 166 167 struct sff_data { 168 unsigned int gpios; 169 bool (*module_supported)(const struct sfp_eeprom_id *id); 170 }; 171 172 struct sfp { 173 struct device *dev; 174 struct i2c_adapter *i2c; 175 struct mii_bus *i2c_mii; 176 struct sfp_bus *sfp_bus; 177 struct phy_device *mod_phy; 178 const struct sff_data *type; 179 u32 max_power_mW; 180 181 unsigned int (*get_state)(struct sfp *); 182 void (*set_state)(struct sfp *, unsigned int); 183 int (*read)(struct sfp *, bool, u8, void *, size_t); 184 int (*write)(struct sfp *, bool, u8, void *, size_t); 185 186 struct gpio_desc *gpio[GPIO_MAX]; 187 188 bool attached; 189 unsigned int state; 190 struct delayed_work poll; 191 struct delayed_work timeout; 192 struct mutex sm_mutex; 193 unsigned char sm_mod_state; 194 unsigned char sm_dev_state; 195 unsigned short sm_state; 196 unsigned int sm_retries; 197 198 struct sfp_eeprom_id id; 199 #if IS_ENABLED(CONFIG_HWMON) 200 struct sfp_diag diag; 201 struct device *hwmon_dev; 202 char *hwmon_name; 203 #endif 204 205 }; 206 207 static bool sff_module_supported(const struct sfp_eeprom_id *id) 208 { 209 return id->base.phys_id == SFP_PHYS_ID_SFF && 210 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 211 } 212 213 static const struct sff_data sff_data = { 214 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 215 .module_supported = sff_module_supported, 216 }; 217 218 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 219 { 220 return id->base.phys_id == SFP_PHYS_ID_SFP && 221 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 222 } 223 224 static const struct sff_data sfp_data = { 225 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 226 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 227 .module_supported = sfp_module_supported, 228 }; 229 230 static const struct of_device_id sfp_of_match[] = { 231 { .compatible = "sff,sff", .data = &sff_data, }, 232 { .compatible = "sff,sfp", .data = &sfp_data, }, 233 { }, 234 }; 235 MODULE_DEVICE_TABLE(of, sfp_of_match); 236 237 static unsigned long poll_jiffies; 238 239 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 240 { 241 unsigned int i, state, v; 242 243 for (i = state = 0; i < GPIO_MAX; i++) { 244 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 245 continue; 246 247 v = gpiod_get_value_cansleep(sfp->gpio[i]); 248 if (v) 249 state |= BIT(i); 250 } 251 252 return state; 253 } 254 255 static unsigned int sff_gpio_get_state(struct sfp *sfp) 256 { 257 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 258 } 259 260 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 261 { 262 if (state & SFP_F_PRESENT) { 263 /* If the module is present, drive the signals */ 264 if (sfp->gpio[GPIO_TX_DISABLE]) 265 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 266 state & SFP_F_TX_DISABLE); 267 if (state & SFP_F_RATE_SELECT) 268 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 269 state & SFP_F_RATE_SELECT); 270 } else { 271 /* Otherwise, let them float to the pull-ups */ 272 if (sfp->gpio[GPIO_TX_DISABLE]) 273 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 274 if (state & SFP_F_RATE_SELECT) 275 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 276 } 277 } 278 279 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 280 size_t len) 281 { 282 struct i2c_msg msgs[2]; 283 u8 bus_addr = a2 ? 0x51 : 0x50; 284 int ret; 285 286 msgs[0].addr = bus_addr; 287 msgs[0].flags = 0; 288 msgs[0].len = 1; 289 msgs[0].buf = &dev_addr; 290 msgs[1].addr = bus_addr; 291 msgs[1].flags = I2C_M_RD; 292 msgs[1].len = len; 293 msgs[1].buf = buf; 294 295 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 296 if (ret < 0) 297 return ret; 298 299 return ret == ARRAY_SIZE(msgs) ? len : 0; 300 } 301 302 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 303 size_t len) 304 { 305 struct i2c_msg msgs[1]; 306 u8 bus_addr = a2 ? 0x51 : 0x50; 307 int ret; 308 309 msgs[0].addr = bus_addr; 310 msgs[0].flags = 0; 311 msgs[0].len = 1 + len; 312 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 313 if (!msgs[0].buf) 314 return -ENOMEM; 315 316 msgs[0].buf[0] = dev_addr; 317 memcpy(&msgs[0].buf[1], buf, len); 318 319 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 320 321 kfree(msgs[0].buf); 322 323 if (ret < 0) 324 return ret; 325 326 return ret == ARRAY_SIZE(msgs) ? len : 0; 327 } 328 329 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 330 { 331 struct mii_bus *i2c_mii; 332 int ret; 333 334 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 335 return -EINVAL; 336 337 sfp->i2c = i2c; 338 sfp->read = sfp_i2c_read; 339 sfp->write = sfp_i2c_write; 340 341 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); 342 if (IS_ERR(i2c_mii)) 343 return PTR_ERR(i2c_mii); 344 345 i2c_mii->name = "SFP I2C Bus"; 346 i2c_mii->phy_mask = ~0; 347 348 ret = mdiobus_register(i2c_mii); 349 if (ret < 0) { 350 mdiobus_free(i2c_mii); 351 return ret; 352 } 353 354 sfp->i2c_mii = i2c_mii; 355 356 return 0; 357 } 358 359 /* Interface */ 360 static unsigned int sfp_get_state(struct sfp *sfp) 361 { 362 return sfp->get_state(sfp); 363 } 364 365 static void sfp_set_state(struct sfp *sfp, unsigned int state) 366 { 367 sfp->set_state(sfp, state); 368 } 369 370 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 371 { 372 return sfp->read(sfp, a2, addr, buf, len); 373 } 374 375 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 376 { 377 return sfp->write(sfp, a2, addr, buf, len); 378 } 379 380 static unsigned int sfp_check(void *buf, size_t len) 381 { 382 u8 *p, check; 383 384 for (p = buf, check = 0; len; p++, len--) 385 check += *p; 386 387 return check; 388 } 389 390 /* hwmon */ 391 #if IS_ENABLED(CONFIG_HWMON) 392 static umode_t sfp_hwmon_is_visible(const void *data, 393 enum hwmon_sensor_types type, 394 u32 attr, int channel) 395 { 396 const struct sfp *sfp = data; 397 398 switch (type) { 399 case hwmon_temp: 400 switch (attr) { 401 case hwmon_temp_min_alarm: 402 case hwmon_temp_max_alarm: 403 case hwmon_temp_lcrit_alarm: 404 case hwmon_temp_crit_alarm: 405 case hwmon_temp_min: 406 case hwmon_temp_max: 407 case hwmon_temp_lcrit: 408 case hwmon_temp_crit: 409 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 410 return 0; 411 /* fall through */ 412 case hwmon_temp_input: 413 return 0444; 414 default: 415 return 0; 416 } 417 case hwmon_in: 418 switch (attr) { 419 case hwmon_in_min_alarm: 420 case hwmon_in_max_alarm: 421 case hwmon_in_lcrit_alarm: 422 case hwmon_in_crit_alarm: 423 case hwmon_in_min: 424 case hwmon_in_max: 425 case hwmon_in_lcrit: 426 case hwmon_in_crit: 427 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 428 return 0; 429 /* fall through */ 430 case hwmon_in_input: 431 return 0444; 432 default: 433 return 0; 434 } 435 case hwmon_curr: 436 switch (attr) { 437 case hwmon_curr_min_alarm: 438 case hwmon_curr_max_alarm: 439 case hwmon_curr_lcrit_alarm: 440 case hwmon_curr_crit_alarm: 441 case hwmon_curr_min: 442 case hwmon_curr_max: 443 case hwmon_curr_lcrit: 444 case hwmon_curr_crit: 445 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 446 return 0; 447 /* fall through */ 448 case hwmon_curr_input: 449 return 0444; 450 default: 451 return 0; 452 } 453 case hwmon_power: 454 /* External calibration of receive power requires 455 * floating point arithmetic. Doing that in the kernel 456 * is not easy, so just skip it. If the module does 457 * not require external calibration, we can however 458 * show receiver power, since FP is then not needed. 459 */ 460 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 461 channel == 1) 462 return 0; 463 switch (attr) { 464 case hwmon_power_min_alarm: 465 case hwmon_power_max_alarm: 466 case hwmon_power_lcrit_alarm: 467 case hwmon_power_crit_alarm: 468 case hwmon_power_min: 469 case hwmon_power_max: 470 case hwmon_power_lcrit: 471 case hwmon_power_crit: 472 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 473 return 0; 474 /* fall through */ 475 case hwmon_power_input: 476 return 0444; 477 default: 478 return 0; 479 } 480 default: 481 return 0; 482 } 483 } 484 485 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 486 { 487 __be16 val; 488 int err; 489 490 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 491 if (err < 0) 492 return err; 493 494 *value = be16_to_cpu(val); 495 496 return 0; 497 } 498 499 static void sfp_hwmon_to_rx_power(long *value) 500 { 501 *value = DIV_ROUND_CLOSEST(*value, 100); 502 } 503 504 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 505 long *value) 506 { 507 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 508 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 509 } 510 511 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 512 { 513 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 514 be16_to_cpu(sfp->diag.cal_t_offset), value); 515 516 if (*value >= 0x8000) 517 *value -= 0x10000; 518 519 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 520 } 521 522 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 523 { 524 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 525 be16_to_cpu(sfp->diag.cal_v_offset), value); 526 527 *value = DIV_ROUND_CLOSEST(*value, 10); 528 } 529 530 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 531 { 532 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 533 be16_to_cpu(sfp->diag.cal_txi_offset), value); 534 535 *value = DIV_ROUND_CLOSEST(*value, 500); 536 } 537 538 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 539 { 540 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 541 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 542 543 *value = DIV_ROUND_CLOSEST(*value, 10); 544 } 545 546 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 547 { 548 int err; 549 550 err = sfp_hwmon_read_sensor(sfp, reg, value); 551 if (err < 0) 552 return err; 553 554 sfp_hwmon_calibrate_temp(sfp, value); 555 556 return 0; 557 } 558 559 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 560 { 561 int err; 562 563 err = sfp_hwmon_read_sensor(sfp, reg, value); 564 if (err < 0) 565 return err; 566 567 sfp_hwmon_calibrate_vcc(sfp, value); 568 569 return 0; 570 } 571 572 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 573 { 574 int err; 575 576 err = sfp_hwmon_read_sensor(sfp, reg, value); 577 if (err < 0) 578 return err; 579 580 sfp_hwmon_calibrate_bias(sfp, value); 581 582 return 0; 583 } 584 585 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 586 { 587 int err; 588 589 err = sfp_hwmon_read_sensor(sfp, reg, value); 590 if (err < 0) 591 return err; 592 593 sfp_hwmon_calibrate_tx_power(sfp, value); 594 595 return 0; 596 } 597 598 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 599 { 600 int err; 601 602 err = sfp_hwmon_read_sensor(sfp, reg, value); 603 if (err < 0) 604 return err; 605 606 sfp_hwmon_to_rx_power(value); 607 608 return 0; 609 } 610 611 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 612 { 613 u8 status; 614 int err; 615 616 switch (attr) { 617 case hwmon_temp_input: 618 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 619 620 case hwmon_temp_lcrit: 621 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 622 sfp_hwmon_calibrate_temp(sfp, value); 623 return 0; 624 625 case hwmon_temp_min: 626 *value = be16_to_cpu(sfp->diag.temp_low_warn); 627 sfp_hwmon_calibrate_temp(sfp, value); 628 return 0; 629 case hwmon_temp_max: 630 *value = be16_to_cpu(sfp->diag.temp_high_warn); 631 sfp_hwmon_calibrate_temp(sfp, value); 632 return 0; 633 634 case hwmon_temp_crit: 635 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 636 sfp_hwmon_calibrate_temp(sfp, value); 637 return 0; 638 639 case hwmon_temp_lcrit_alarm: 640 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 641 if (err < 0) 642 return err; 643 644 *value = !!(status & SFP_ALARM0_TEMP_LOW); 645 return 0; 646 647 case hwmon_temp_min_alarm: 648 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 649 if (err < 0) 650 return err; 651 652 *value = !!(status & SFP_WARN0_TEMP_LOW); 653 return 0; 654 655 case hwmon_temp_max_alarm: 656 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 657 if (err < 0) 658 return err; 659 660 *value = !!(status & SFP_WARN0_TEMP_HIGH); 661 return 0; 662 663 case hwmon_temp_crit_alarm: 664 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 665 if (err < 0) 666 return err; 667 668 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 669 return 0; 670 default: 671 return -EOPNOTSUPP; 672 } 673 674 return -EOPNOTSUPP; 675 } 676 677 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 678 { 679 u8 status; 680 int err; 681 682 switch (attr) { 683 case hwmon_in_input: 684 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 685 686 case hwmon_in_lcrit: 687 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 688 sfp_hwmon_calibrate_vcc(sfp, value); 689 return 0; 690 691 case hwmon_in_min: 692 *value = be16_to_cpu(sfp->diag.volt_low_warn); 693 sfp_hwmon_calibrate_vcc(sfp, value); 694 return 0; 695 696 case hwmon_in_max: 697 *value = be16_to_cpu(sfp->diag.volt_high_warn); 698 sfp_hwmon_calibrate_vcc(sfp, value); 699 return 0; 700 701 case hwmon_in_crit: 702 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 703 sfp_hwmon_calibrate_vcc(sfp, value); 704 return 0; 705 706 case hwmon_in_lcrit_alarm: 707 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 708 if (err < 0) 709 return err; 710 711 *value = !!(status & SFP_ALARM0_VCC_LOW); 712 return 0; 713 714 case hwmon_in_min_alarm: 715 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 716 if (err < 0) 717 return err; 718 719 *value = !!(status & SFP_WARN0_VCC_LOW); 720 return 0; 721 722 case hwmon_in_max_alarm: 723 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 724 if (err < 0) 725 return err; 726 727 *value = !!(status & SFP_WARN0_VCC_HIGH); 728 return 0; 729 730 case hwmon_in_crit_alarm: 731 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 732 if (err < 0) 733 return err; 734 735 *value = !!(status & SFP_ALARM0_VCC_HIGH); 736 return 0; 737 default: 738 return -EOPNOTSUPP; 739 } 740 741 return -EOPNOTSUPP; 742 } 743 744 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 745 { 746 u8 status; 747 int err; 748 749 switch (attr) { 750 case hwmon_curr_input: 751 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 752 753 case hwmon_curr_lcrit: 754 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 755 sfp_hwmon_calibrate_bias(sfp, value); 756 return 0; 757 758 case hwmon_curr_min: 759 *value = be16_to_cpu(sfp->diag.bias_low_warn); 760 sfp_hwmon_calibrate_bias(sfp, value); 761 return 0; 762 763 case hwmon_curr_max: 764 *value = be16_to_cpu(sfp->diag.bias_high_warn); 765 sfp_hwmon_calibrate_bias(sfp, value); 766 return 0; 767 768 case hwmon_curr_crit: 769 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 770 sfp_hwmon_calibrate_bias(sfp, value); 771 return 0; 772 773 case hwmon_curr_lcrit_alarm: 774 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 775 if (err < 0) 776 return err; 777 778 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 779 return 0; 780 781 case hwmon_curr_min_alarm: 782 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 783 if (err < 0) 784 return err; 785 786 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 787 return 0; 788 789 case hwmon_curr_max_alarm: 790 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 791 if (err < 0) 792 return err; 793 794 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 795 return 0; 796 797 case hwmon_curr_crit_alarm: 798 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 799 if (err < 0) 800 return err; 801 802 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 803 return 0; 804 default: 805 return -EOPNOTSUPP; 806 } 807 808 return -EOPNOTSUPP; 809 } 810 811 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 812 { 813 u8 status; 814 int err; 815 816 switch (attr) { 817 case hwmon_power_input: 818 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 819 820 case hwmon_power_lcrit: 821 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 822 sfp_hwmon_calibrate_tx_power(sfp, value); 823 return 0; 824 825 case hwmon_power_min: 826 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 827 sfp_hwmon_calibrate_tx_power(sfp, value); 828 return 0; 829 830 case hwmon_power_max: 831 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 832 sfp_hwmon_calibrate_tx_power(sfp, value); 833 return 0; 834 835 case hwmon_power_crit: 836 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 837 sfp_hwmon_calibrate_tx_power(sfp, value); 838 return 0; 839 840 case hwmon_power_lcrit_alarm: 841 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 842 if (err < 0) 843 return err; 844 845 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 846 return 0; 847 848 case hwmon_power_min_alarm: 849 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 850 if (err < 0) 851 return err; 852 853 *value = !!(status & SFP_WARN0_TXPWR_LOW); 854 return 0; 855 856 case hwmon_power_max_alarm: 857 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 858 if (err < 0) 859 return err; 860 861 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 862 return 0; 863 864 case hwmon_power_crit_alarm: 865 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 866 if (err < 0) 867 return err; 868 869 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 870 return 0; 871 default: 872 return -EOPNOTSUPP; 873 } 874 875 return -EOPNOTSUPP; 876 } 877 878 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 879 { 880 u8 status; 881 int err; 882 883 switch (attr) { 884 case hwmon_power_input: 885 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 886 887 case hwmon_power_lcrit: 888 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 889 sfp_hwmon_to_rx_power(value); 890 return 0; 891 892 case hwmon_power_min: 893 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 894 sfp_hwmon_to_rx_power(value); 895 return 0; 896 897 case hwmon_power_max: 898 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 899 sfp_hwmon_to_rx_power(value); 900 return 0; 901 902 case hwmon_power_crit: 903 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 904 sfp_hwmon_to_rx_power(value); 905 return 0; 906 907 case hwmon_power_lcrit_alarm: 908 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 909 if (err < 0) 910 return err; 911 912 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 913 return 0; 914 915 case hwmon_power_min_alarm: 916 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 917 if (err < 0) 918 return err; 919 920 *value = !!(status & SFP_WARN1_RXPWR_LOW); 921 return 0; 922 923 case hwmon_power_max_alarm: 924 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 925 if (err < 0) 926 return err; 927 928 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 929 return 0; 930 931 case hwmon_power_crit_alarm: 932 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 933 if (err < 0) 934 return err; 935 936 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 937 return 0; 938 default: 939 return -EOPNOTSUPP; 940 } 941 942 return -EOPNOTSUPP; 943 } 944 945 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 946 u32 attr, int channel, long *value) 947 { 948 struct sfp *sfp = dev_get_drvdata(dev); 949 950 switch (type) { 951 case hwmon_temp: 952 return sfp_hwmon_temp(sfp, attr, value); 953 case hwmon_in: 954 return sfp_hwmon_vcc(sfp, attr, value); 955 case hwmon_curr: 956 return sfp_hwmon_bias(sfp, attr, value); 957 case hwmon_power: 958 switch (channel) { 959 case 0: 960 return sfp_hwmon_tx_power(sfp, attr, value); 961 case 1: 962 return sfp_hwmon_rx_power(sfp, attr, value); 963 default: 964 return -EOPNOTSUPP; 965 } 966 default: 967 return -EOPNOTSUPP; 968 } 969 } 970 971 static const struct hwmon_ops sfp_hwmon_ops = { 972 .is_visible = sfp_hwmon_is_visible, 973 .read = sfp_hwmon_read, 974 }; 975 976 static u32 sfp_hwmon_chip_config[] = { 977 HWMON_C_REGISTER_TZ, 978 0, 979 }; 980 981 static const struct hwmon_channel_info sfp_hwmon_chip = { 982 .type = hwmon_chip, 983 .config = sfp_hwmon_chip_config, 984 }; 985 986 static u32 sfp_hwmon_temp_config[] = { 987 HWMON_T_INPUT | 988 HWMON_T_MAX | HWMON_T_MIN | 989 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 990 HWMON_T_CRIT | HWMON_T_LCRIT | 991 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM, 992 0, 993 }; 994 995 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = { 996 .type = hwmon_temp, 997 .config = sfp_hwmon_temp_config, 998 }; 999 1000 static u32 sfp_hwmon_vcc_config[] = { 1001 HWMON_I_INPUT | 1002 HWMON_I_MAX | HWMON_I_MIN | 1003 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1004 HWMON_I_CRIT | HWMON_I_LCRIT | 1005 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM, 1006 0, 1007 }; 1008 1009 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = { 1010 .type = hwmon_in, 1011 .config = sfp_hwmon_vcc_config, 1012 }; 1013 1014 static u32 sfp_hwmon_bias_config[] = { 1015 HWMON_C_INPUT | 1016 HWMON_C_MAX | HWMON_C_MIN | 1017 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1018 HWMON_C_CRIT | HWMON_C_LCRIT | 1019 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM, 1020 0, 1021 }; 1022 1023 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = { 1024 .type = hwmon_curr, 1025 .config = sfp_hwmon_bias_config, 1026 }; 1027 1028 static u32 sfp_hwmon_power_config[] = { 1029 /* Transmit power */ 1030 HWMON_P_INPUT | 1031 HWMON_P_MAX | HWMON_P_MIN | 1032 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1033 HWMON_P_CRIT | HWMON_P_LCRIT | 1034 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM, 1035 /* Receive power */ 1036 HWMON_P_INPUT | 1037 HWMON_P_MAX | HWMON_P_MIN | 1038 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1039 HWMON_P_CRIT | HWMON_P_LCRIT | 1040 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM, 1041 0, 1042 }; 1043 1044 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = { 1045 .type = hwmon_power, 1046 .config = sfp_hwmon_power_config, 1047 }; 1048 1049 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1050 &sfp_hwmon_chip, 1051 &sfp_hwmon_vcc_channel_info, 1052 &sfp_hwmon_temp_channel_info, 1053 &sfp_hwmon_bias_channel_info, 1054 &sfp_hwmon_power_channel_info, 1055 NULL, 1056 }; 1057 1058 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1059 .ops = &sfp_hwmon_ops, 1060 .info = sfp_hwmon_info, 1061 }; 1062 1063 static int sfp_hwmon_insert(struct sfp *sfp) 1064 { 1065 int err, i; 1066 1067 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1068 return 0; 1069 1070 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1071 return 0; 1072 1073 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1074 /* This driver in general does not support address 1075 * change. 1076 */ 1077 return 0; 1078 1079 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1080 if (err < 0) 1081 return err; 1082 1083 sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL); 1084 if (!sfp->hwmon_name) 1085 return -ENODEV; 1086 1087 for (i = 0; sfp->hwmon_name[i]; i++) 1088 if (hwmon_is_bad_char(sfp->hwmon_name[i])) 1089 sfp->hwmon_name[i] = '_'; 1090 1091 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1092 sfp->hwmon_name, sfp, 1093 &sfp_hwmon_chip_info, 1094 NULL); 1095 1096 return PTR_ERR_OR_ZERO(sfp->hwmon_dev); 1097 } 1098 1099 static void sfp_hwmon_remove(struct sfp *sfp) 1100 { 1101 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1102 hwmon_device_unregister(sfp->hwmon_dev); 1103 sfp->hwmon_dev = NULL; 1104 kfree(sfp->hwmon_name); 1105 } 1106 } 1107 #else 1108 static int sfp_hwmon_insert(struct sfp *sfp) 1109 { 1110 return 0; 1111 } 1112 1113 static void sfp_hwmon_remove(struct sfp *sfp) 1114 { 1115 } 1116 #endif 1117 1118 /* Helpers */ 1119 static void sfp_module_tx_disable(struct sfp *sfp) 1120 { 1121 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1122 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1123 sfp->state |= SFP_F_TX_DISABLE; 1124 sfp_set_state(sfp, sfp->state); 1125 } 1126 1127 static void sfp_module_tx_enable(struct sfp *sfp) 1128 { 1129 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1130 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1131 sfp->state &= ~SFP_F_TX_DISABLE; 1132 sfp_set_state(sfp, sfp->state); 1133 } 1134 1135 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1136 { 1137 unsigned int state = sfp->state; 1138 1139 if (state & SFP_F_TX_DISABLE) 1140 return; 1141 1142 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1143 1144 udelay(T_RESET_US); 1145 1146 sfp_set_state(sfp, state); 1147 } 1148 1149 /* SFP state machine */ 1150 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1151 { 1152 if (timeout) 1153 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1154 timeout); 1155 else 1156 cancel_delayed_work(&sfp->timeout); 1157 } 1158 1159 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1160 unsigned int timeout) 1161 { 1162 sfp->sm_state = state; 1163 sfp_sm_set_timer(sfp, timeout); 1164 } 1165 1166 static void sfp_sm_ins_next(struct sfp *sfp, unsigned int state, 1167 unsigned int timeout) 1168 { 1169 sfp->sm_mod_state = state; 1170 sfp_sm_set_timer(sfp, timeout); 1171 } 1172 1173 static void sfp_sm_phy_detach(struct sfp *sfp) 1174 { 1175 phy_stop(sfp->mod_phy); 1176 sfp_remove_phy(sfp->sfp_bus); 1177 phy_device_remove(sfp->mod_phy); 1178 phy_device_free(sfp->mod_phy); 1179 sfp->mod_phy = NULL; 1180 } 1181 1182 static void sfp_sm_probe_phy(struct sfp *sfp) 1183 { 1184 struct phy_device *phy; 1185 int err; 1186 1187 msleep(T_PHY_RESET_MS); 1188 1189 phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR); 1190 if (phy == ERR_PTR(-ENODEV)) { 1191 dev_info(sfp->dev, "no PHY detected\n"); 1192 return; 1193 } 1194 if (IS_ERR(phy)) { 1195 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy)); 1196 return; 1197 } 1198 1199 err = sfp_add_phy(sfp->sfp_bus, phy); 1200 if (err) { 1201 phy_device_remove(phy); 1202 phy_device_free(phy); 1203 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err); 1204 return; 1205 } 1206 1207 sfp->mod_phy = phy; 1208 phy_start(phy); 1209 } 1210 1211 static void sfp_sm_link_up(struct sfp *sfp) 1212 { 1213 sfp_link_up(sfp->sfp_bus); 1214 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1215 } 1216 1217 static void sfp_sm_link_down(struct sfp *sfp) 1218 { 1219 sfp_link_down(sfp->sfp_bus); 1220 } 1221 1222 static void sfp_sm_link_check_los(struct sfp *sfp) 1223 { 1224 unsigned int los = sfp->state & SFP_F_LOS; 1225 1226 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1227 * are set, we assume that no LOS signal is available. 1228 */ 1229 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED)) 1230 los ^= SFP_F_LOS; 1231 else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL))) 1232 los = 0; 1233 1234 if (los) 1235 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1236 else 1237 sfp_sm_link_up(sfp); 1238 } 1239 1240 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1241 { 1242 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && 1243 event == SFP_E_LOS_LOW) || 1244 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && 1245 event == SFP_E_LOS_HIGH); 1246 } 1247 1248 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1249 { 1250 return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) && 1251 event == SFP_E_LOS_HIGH) || 1252 (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) && 1253 event == SFP_E_LOS_LOW); 1254 } 1255 1256 static void sfp_sm_fault(struct sfp *sfp, bool warn) 1257 { 1258 if (sfp->sm_retries && !--sfp->sm_retries) { 1259 dev_err(sfp->dev, 1260 "module persistently indicates fault, disabling\n"); 1261 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1262 } else { 1263 if (warn) 1264 dev_err(sfp->dev, "module transmit fault indicated\n"); 1265 1266 sfp_sm_next(sfp, SFP_S_TX_FAULT, T_FAULT_RECOVER); 1267 } 1268 } 1269 1270 static void sfp_sm_mod_init(struct sfp *sfp) 1271 { 1272 sfp_module_tx_enable(sfp); 1273 1274 /* Wait t_init before indicating that the link is up, provided the 1275 * current state indicates no TX_FAULT. If TX_FAULT clears before 1276 * this time, that's fine too. 1277 */ 1278 sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES); 1279 sfp->sm_retries = 5; 1280 1281 /* Setting the serdes link mode is guesswork: there's no 1282 * field in the EEPROM which indicates what mode should 1283 * be used. 1284 * 1285 * If it's a gigabit-only fiber module, it probably does 1286 * not have a PHY, so switch to 802.3z negotiation mode. 1287 * Otherwise, switch to SGMII mode (which is required to 1288 * support non-gigabit speeds) and probe for a PHY. 1289 */ 1290 if (sfp->id.base.e1000_base_t || 1291 sfp->id.base.e100_base_lx || 1292 sfp->id.base.e100_base_fx) 1293 sfp_sm_probe_phy(sfp); 1294 } 1295 1296 static int sfp_sm_mod_hpower(struct sfp *sfp) 1297 { 1298 u32 power; 1299 u8 val; 1300 int err; 1301 1302 power = 1000; 1303 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1304 power = 1500; 1305 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1306 power = 2000; 1307 1308 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE && 1309 (sfp->id.ext.diagmon & (SFP_DIAGMON_DDM | SFP_DIAGMON_ADDRMODE)) != 1310 SFP_DIAGMON_DDM) { 1311 /* The module appears not to implement bus address 0xa2, 1312 * or requires an address change sequence, so assume that 1313 * the module powers up in the indicated power mode. 1314 */ 1315 if (power > sfp->max_power_mW) { 1316 dev_err(sfp->dev, 1317 "Host does not support %u.%uW modules\n", 1318 power / 1000, (power / 100) % 10); 1319 return -EINVAL; 1320 } 1321 return 0; 1322 } 1323 1324 if (power > sfp->max_power_mW) { 1325 dev_warn(sfp->dev, 1326 "Host does not support %u.%uW modules, module left in power mode 1\n", 1327 power / 1000, (power / 100) % 10); 1328 return 0; 1329 } 1330 1331 if (power <= 1000) 1332 return 0; 1333 1334 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1335 if (err != sizeof(val)) { 1336 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err); 1337 err = -EAGAIN; 1338 goto err; 1339 } 1340 1341 val |= BIT(0); 1342 1343 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1344 if (err != sizeof(val)) { 1345 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err); 1346 err = -EAGAIN; 1347 goto err; 1348 } 1349 1350 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1351 power / 1000, (power / 100) % 10); 1352 return T_HPOWER_LEVEL; 1353 1354 err: 1355 return err; 1356 } 1357 1358 static int sfp_sm_mod_probe(struct sfp *sfp) 1359 { 1360 /* SFP module inserted - read I2C data */ 1361 struct sfp_eeprom_id id; 1362 bool cotsworks; 1363 u8 check; 1364 int ret; 1365 1366 ret = sfp_read(sfp, false, 0, &id, sizeof(id)); 1367 if (ret < 0) { 1368 dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret); 1369 return -EAGAIN; 1370 } 1371 1372 if (ret != sizeof(id)) { 1373 dev_err(sfp->dev, "EEPROM short read: %d\n", ret); 1374 return -EAGAIN; 1375 } 1376 1377 /* Cotsworks do not seem to update the checksums when they 1378 * do the final programming with the final module part number, 1379 * serial number and date code. 1380 */ 1381 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1382 1383 /* Validate the checksum over the base structure */ 1384 check = sfp_check(&id.base, sizeof(id.base) - 1); 1385 if (check != id.base.cc_base) { 1386 if (cotsworks) { 1387 dev_warn(sfp->dev, 1388 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 1389 check, id.base.cc_base); 1390 } else { 1391 dev_err(sfp->dev, 1392 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 1393 check, id.base.cc_base); 1394 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1395 16, 1, &id, sizeof(id), true); 1396 return -EINVAL; 1397 } 1398 } 1399 1400 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 1401 if (check != id.ext.cc_ext) { 1402 if (cotsworks) { 1403 dev_warn(sfp->dev, 1404 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 1405 check, id.ext.cc_ext); 1406 } else { 1407 dev_err(sfp->dev, 1408 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 1409 check, id.ext.cc_ext); 1410 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1411 16, 1, &id, sizeof(id), true); 1412 memset(&id.ext, 0, sizeof(id.ext)); 1413 } 1414 } 1415 1416 sfp->id = id; 1417 1418 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 1419 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 1420 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 1421 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 1422 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 1423 (int)sizeof(id.ext.datecode), id.ext.datecode); 1424 1425 /* Check whether we support this module */ 1426 if (!sfp->type->module_supported(&sfp->id)) { 1427 dev_err(sfp->dev, 1428 "module is not supported - phys id 0x%02x 0x%02x\n", 1429 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 1430 return -EINVAL; 1431 } 1432 1433 /* If the module requires address swap mode, warn about it */ 1434 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1435 dev_warn(sfp->dev, 1436 "module address swap to access page 0xA2 is not supported.\n"); 1437 1438 ret = sfp_hwmon_insert(sfp); 1439 if (ret < 0) 1440 return ret; 1441 1442 ret = sfp_module_insert(sfp->sfp_bus, &sfp->id); 1443 if (ret < 0) 1444 return ret; 1445 1446 return sfp_sm_mod_hpower(sfp); 1447 } 1448 1449 static void sfp_sm_mod_remove(struct sfp *sfp) 1450 { 1451 sfp_module_remove(sfp->sfp_bus); 1452 1453 sfp_hwmon_remove(sfp); 1454 1455 if (sfp->mod_phy) 1456 sfp_sm_phy_detach(sfp); 1457 1458 sfp_module_tx_disable(sfp); 1459 1460 memset(&sfp->id, 0, sizeof(sfp->id)); 1461 1462 dev_info(sfp->dev, "module removed\n"); 1463 } 1464 1465 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 1466 { 1467 mutex_lock(&sfp->sm_mutex); 1468 1469 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 1470 mod_state_to_str(sfp->sm_mod_state), 1471 dev_state_to_str(sfp->sm_dev_state), 1472 sm_state_to_str(sfp->sm_state), 1473 event_to_str(event)); 1474 1475 /* This state machine tracks the insert/remove state of 1476 * the module, and handles probing the on-board EEPROM. 1477 */ 1478 switch (sfp->sm_mod_state) { 1479 default: 1480 if (event == SFP_E_INSERT && sfp->attached) { 1481 sfp_module_tx_disable(sfp); 1482 sfp_sm_ins_next(sfp, SFP_MOD_PROBE, T_PROBE_INIT); 1483 } 1484 break; 1485 1486 case SFP_MOD_PROBE: 1487 if (event == SFP_E_REMOVE) { 1488 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0); 1489 } else if (event == SFP_E_TIMEOUT) { 1490 int val = sfp_sm_mod_probe(sfp); 1491 1492 if (val == 0) 1493 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0); 1494 else if (val > 0) 1495 sfp_sm_ins_next(sfp, SFP_MOD_HPOWER, val); 1496 else if (val != -EAGAIN) 1497 sfp_sm_ins_next(sfp, SFP_MOD_ERROR, 0); 1498 else 1499 sfp_sm_set_timer(sfp, T_PROBE_RETRY); 1500 } 1501 break; 1502 1503 case SFP_MOD_HPOWER: 1504 if (event == SFP_E_TIMEOUT) { 1505 sfp_sm_ins_next(sfp, SFP_MOD_PRESENT, 0); 1506 break; 1507 } 1508 /* fallthrough */ 1509 case SFP_MOD_PRESENT: 1510 case SFP_MOD_ERROR: 1511 if (event == SFP_E_REMOVE) { 1512 sfp_sm_mod_remove(sfp); 1513 sfp_sm_ins_next(sfp, SFP_MOD_EMPTY, 0); 1514 } 1515 break; 1516 } 1517 1518 /* This state machine tracks the netdev up/down state */ 1519 switch (sfp->sm_dev_state) { 1520 default: 1521 if (event == SFP_E_DEV_UP) 1522 sfp->sm_dev_state = SFP_DEV_UP; 1523 break; 1524 1525 case SFP_DEV_UP: 1526 if (event == SFP_E_DEV_DOWN) { 1527 /* If the module has a PHY, avoid raising TX disable 1528 * as this resets the PHY. Otherwise, raise it to 1529 * turn the laser off. 1530 */ 1531 if (!sfp->mod_phy) 1532 sfp_module_tx_disable(sfp); 1533 sfp->sm_dev_state = SFP_DEV_DOWN; 1534 } 1535 break; 1536 } 1537 1538 /* Some events are global */ 1539 if (sfp->sm_state != SFP_S_DOWN && 1540 (sfp->sm_mod_state != SFP_MOD_PRESENT || 1541 sfp->sm_dev_state != SFP_DEV_UP)) { 1542 if (sfp->sm_state == SFP_S_LINK_UP && 1543 sfp->sm_dev_state == SFP_DEV_UP) 1544 sfp_sm_link_down(sfp); 1545 if (sfp->mod_phy) 1546 sfp_sm_phy_detach(sfp); 1547 sfp_sm_next(sfp, SFP_S_DOWN, 0); 1548 mutex_unlock(&sfp->sm_mutex); 1549 return; 1550 } 1551 1552 /* The main state machine */ 1553 switch (sfp->sm_state) { 1554 case SFP_S_DOWN: 1555 if (sfp->sm_mod_state == SFP_MOD_PRESENT && 1556 sfp->sm_dev_state == SFP_DEV_UP) 1557 sfp_sm_mod_init(sfp); 1558 break; 1559 1560 case SFP_S_INIT: 1561 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) 1562 sfp_sm_fault(sfp, true); 1563 else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) 1564 sfp_sm_link_check_los(sfp); 1565 break; 1566 1567 case SFP_S_WAIT_LOS: 1568 if (event == SFP_E_TX_FAULT) 1569 sfp_sm_fault(sfp, true); 1570 else if (sfp_los_event_inactive(sfp, event)) 1571 sfp_sm_link_up(sfp); 1572 break; 1573 1574 case SFP_S_LINK_UP: 1575 if (event == SFP_E_TX_FAULT) { 1576 sfp_sm_link_down(sfp); 1577 sfp_sm_fault(sfp, true); 1578 } else if (sfp_los_event_active(sfp, event)) { 1579 sfp_sm_link_down(sfp); 1580 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1581 } 1582 break; 1583 1584 case SFP_S_TX_FAULT: 1585 if (event == SFP_E_TIMEOUT) { 1586 sfp_module_tx_fault_reset(sfp); 1587 sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES); 1588 } 1589 break; 1590 1591 case SFP_S_REINIT: 1592 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 1593 sfp_sm_fault(sfp, false); 1594 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 1595 dev_info(sfp->dev, "module transmit fault recovered\n"); 1596 sfp_sm_link_check_los(sfp); 1597 } 1598 break; 1599 1600 case SFP_S_TX_DISABLE: 1601 break; 1602 } 1603 1604 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 1605 mod_state_to_str(sfp->sm_mod_state), 1606 dev_state_to_str(sfp->sm_dev_state), 1607 sm_state_to_str(sfp->sm_state)); 1608 1609 mutex_unlock(&sfp->sm_mutex); 1610 } 1611 1612 static void sfp_attach(struct sfp *sfp) 1613 { 1614 sfp->attached = true; 1615 if (sfp->state & SFP_F_PRESENT) 1616 sfp_sm_event(sfp, SFP_E_INSERT); 1617 } 1618 1619 static void sfp_detach(struct sfp *sfp) 1620 { 1621 sfp->attached = false; 1622 sfp_sm_event(sfp, SFP_E_REMOVE); 1623 } 1624 1625 static void sfp_start(struct sfp *sfp) 1626 { 1627 sfp_sm_event(sfp, SFP_E_DEV_UP); 1628 } 1629 1630 static void sfp_stop(struct sfp *sfp) 1631 { 1632 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 1633 } 1634 1635 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 1636 { 1637 /* locking... and check module is present */ 1638 1639 if (sfp->id.ext.sff8472_compliance && 1640 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 1641 modinfo->type = ETH_MODULE_SFF_8472; 1642 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 1643 } else { 1644 modinfo->type = ETH_MODULE_SFF_8079; 1645 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 1646 } 1647 return 0; 1648 } 1649 1650 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 1651 u8 *data) 1652 { 1653 unsigned int first, last, len; 1654 int ret; 1655 1656 if (ee->len == 0) 1657 return -EINVAL; 1658 1659 first = ee->offset; 1660 last = ee->offset + ee->len; 1661 if (first < ETH_MODULE_SFF_8079_LEN) { 1662 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 1663 len -= first; 1664 1665 ret = sfp_read(sfp, false, first, data, len); 1666 if (ret < 0) 1667 return ret; 1668 1669 first += len; 1670 data += len; 1671 } 1672 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 1673 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 1674 len -= first; 1675 first -= ETH_MODULE_SFF_8079_LEN; 1676 1677 ret = sfp_read(sfp, true, first, data, len); 1678 if (ret < 0) 1679 return ret; 1680 } 1681 return 0; 1682 } 1683 1684 static const struct sfp_socket_ops sfp_module_ops = { 1685 .attach = sfp_attach, 1686 .detach = sfp_detach, 1687 .start = sfp_start, 1688 .stop = sfp_stop, 1689 .module_info = sfp_module_info, 1690 .module_eeprom = sfp_module_eeprom, 1691 }; 1692 1693 static void sfp_timeout(struct work_struct *work) 1694 { 1695 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 1696 1697 rtnl_lock(); 1698 sfp_sm_event(sfp, SFP_E_TIMEOUT); 1699 rtnl_unlock(); 1700 } 1701 1702 static void sfp_check_state(struct sfp *sfp) 1703 { 1704 unsigned int state, i, changed; 1705 1706 state = sfp_get_state(sfp); 1707 changed = state ^ sfp->state; 1708 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 1709 1710 for (i = 0; i < GPIO_MAX; i++) 1711 if (changed & BIT(i)) 1712 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 1713 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 1714 1715 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 1716 sfp->state = state; 1717 1718 rtnl_lock(); 1719 if (changed & SFP_F_PRESENT) 1720 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 1721 SFP_E_INSERT : SFP_E_REMOVE); 1722 1723 if (changed & SFP_F_TX_FAULT) 1724 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 1725 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 1726 1727 if (changed & SFP_F_LOS) 1728 sfp_sm_event(sfp, state & SFP_F_LOS ? 1729 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 1730 rtnl_unlock(); 1731 } 1732 1733 static irqreturn_t sfp_irq(int irq, void *data) 1734 { 1735 struct sfp *sfp = data; 1736 1737 sfp_check_state(sfp); 1738 1739 return IRQ_HANDLED; 1740 } 1741 1742 static void sfp_poll(struct work_struct *work) 1743 { 1744 struct sfp *sfp = container_of(work, struct sfp, poll.work); 1745 1746 sfp_check_state(sfp); 1747 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 1748 } 1749 1750 static struct sfp *sfp_alloc(struct device *dev) 1751 { 1752 struct sfp *sfp; 1753 1754 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 1755 if (!sfp) 1756 return ERR_PTR(-ENOMEM); 1757 1758 sfp->dev = dev; 1759 1760 mutex_init(&sfp->sm_mutex); 1761 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 1762 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 1763 1764 return sfp; 1765 } 1766 1767 static void sfp_cleanup(void *data) 1768 { 1769 struct sfp *sfp = data; 1770 1771 cancel_delayed_work_sync(&sfp->poll); 1772 cancel_delayed_work_sync(&sfp->timeout); 1773 if (sfp->i2c_mii) { 1774 mdiobus_unregister(sfp->i2c_mii); 1775 mdiobus_free(sfp->i2c_mii); 1776 } 1777 if (sfp->i2c) 1778 i2c_put_adapter(sfp->i2c); 1779 kfree(sfp); 1780 } 1781 1782 static int sfp_probe(struct platform_device *pdev) 1783 { 1784 const struct sff_data *sff; 1785 struct sfp *sfp; 1786 bool poll = false; 1787 int irq, err, i; 1788 1789 sfp = sfp_alloc(&pdev->dev); 1790 if (IS_ERR(sfp)) 1791 return PTR_ERR(sfp); 1792 1793 platform_set_drvdata(pdev, sfp); 1794 1795 err = devm_add_action(sfp->dev, sfp_cleanup, sfp); 1796 if (err < 0) 1797 return err; 1798 1799 sff = sfp->type = &sfp_data; 1800 1801 if (pdev->dev.of_node) { 1802 struct device_node *node = pdev->dev.of_node; 1803 const struct of_device_id *id; 1804 struct i2c_adapter *i2c; 1805 struct device_node *np; 1806 1807 id = of_match_node(sfp_of_match, node); 1808 if (WARN_ON(!id)) 1809 return -EINVAL; 1810 1811 sff = sfp->type = id->data; 1812 1813 np = of_parse_phandle(node, "i2c-bus", 0); 1814 if (!np) { 1815 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 1816 return -ENODEV; 1817 } 1818 1819 i2c = of_find_i2c_adapter_by_node(np); 1820 of_node_put(np); 1821 if (!i2c) 1822 return -EPROBE_DEFER; 1823 1824 err = sfp_i2c_configure(sfp, i2c); 1825 if (err < 0) { 1826 i2c_put_adapter(i2c); 1827 return err; 1828 } 1829 } 1830 1831 for (i = 0; i < GPIO_MAX; i++) 1832 if (sff->gpios & BIT(i)) { 1833 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 1834 gpio_of_names[i], gpio_flags[i]); 1835 if (IS_ERR(sfp->gpio[i])) 1836 return PTR_ERR(sfp->gpio[i]); 1837 } 1838 1839 sfp->get_state = sfp_gpio_get_state; 1840 sfp->set_state = sfp_gpio_set_state; 1841 1842 /* Modules that have no detect signal are always present */ 1843 if (!(sfp->gpio[GPIO_MODDEF0])) 1844 sfp->get_state = sff_gpio_get_state; 1845 1846 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 1847 &sfp->max_power_mW); 1848 if (!sfp->max_power_mW) 1849 sfp->max_power_mW = 1000; 1850 1851 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 1852 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 1853 1854 /* Get the initial state, and always signal TX disable, 1855 * since the network interface will not be up. 1856 */ 1857 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 1858 1859 if (sfp->gpio[GPIO_RATE_SELECT] && 1860 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 1861 sfp->state |= SFP_F_RATE_SELECT; 1862 sfp_set_state(sfp, sfp->state); 1863 sfp_module_tx_disable(sfp); 1864 1865 for (i = 0; i < GPIO_MAX; i++) { 1866 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 1867 continue; 1868 1869 irq = gpiod_to_irq(sfp->gpio[i]); 1870 if (!irq) { 1871 poll = true; 1872 continue; 1873 } 1874 1875 err = devm_request_threaded_irq(sfp->dev, irq, NULL, sfp_irq, 1876 IRQF_ONESHOT | 1877 IRQF_TRIGGER_RISING | 1878 IRQF_TRIGGER_FALLING, 1879 dev_name(sfp->dev), sfp); 1880 if (err) 1881 poll = true; 1882 } 1883 1884 if (poll) 1885 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 1886 1887 /* We could have an issue in cases no Tx disable pin is available or 1888 * wired as modules using a laser as their light source will continue to 1889 * be active when the fiber is removed. This could be a safety issue and 1890 * we should at least warn the user about that. 1891 */ 1892 if (!sfp->gpio[GPIO_TX_DISABLE]) 1893 dev_warn(sfp->dev, 1894 "No tx_disable pin: SFP modules will always be emitting.\n"); 1895 1896 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 1897 if (!sfp->sfp_bus) 1898 return -ENOMEM; 1899 1900 return 0; 1901 } 1902 1903 static int sfp_remove(struct platform_device *pdev) 1904 { 1905 struct sfp *sfp = platform_get_drvdata(pdev); 1906 1907 sfp_unregister_socket(sfp->sfp_bus); 1908 1909 return 0; 1910 } 1911 1912 static struct platform_driver sfp_driver = { 1913 .probe = sfp_probe, 1914 .remove = sfp_remove, 1915 .driver = { 1916 .name = "sfp", 1917 .of_match_table = sfp_of_match, 1918 }, 1919 }; 1920 1921 static int sfp_init(void) 1922 { 1923 poll_jiffies = msecs_to_jiffies(100); 1924 1925 return platform_driver_register(&sfp_driver); 1926 } 1927 module_init(sfp_init); 1928 1929 static void sfp_exit(void) 1930 { 1931 platform_driver_unregister(&sfp_driver); 1932 } 1933 module_exit(sfp_exit); 1934 1935 MODULE_ALIAS("platform:sfp"); 1936 MODULE_AUTHOR("Russell King"); 1937 MODULE_LICENSE("GPL v2"); 1938