1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/debugfs.h> 3 #include <linux/delay.h> 4 #include <linux/gpio/consumer.h> 5 #include <linux/hwmon.h> 6 #include <linux/i2c.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/mdio/mdio-i2c.h> 10 #include <linux/module.h> 11 #include <linux/mutex.h> 12 #include <linux/of.h> 13 #include <linux/phy.h> 14 #include <linux/platform_device.h> 15 #include <linux/rtnetlink.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 19 #include "sfp.h" 20 #include "swphy.h" 21 22 enum { 23 GPIO_MODDEF0, 24 GPIO_LOS, 25 GPIO_TX_FAULT, 26 GPIO_TX_DISABLE, 27 GPIO_RATE_SELECT, 28 GPIO_MAX, 29 30 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 31 SFP_F_LOS = BIT(GPIO_LOS), 32 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 33 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 34 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 35 36 SFP_E_INSERT = 0, 37 SFP_E_REMOVE, 38 SFP_E_DEV_ATTACH, 39 SFP_E_DEV_DETACH, 40 SFP_E_DEV_DOWN, 41 SFP_E_DEV_UP, 42 SFP_E_TX_FAULT, 43 SFP_E_TX_CLEAR, 44 SFP_E_LOS_HIGH, 45 SFP_E_LOS_LOW, 46 SFP_E_TIMEOUT, 47 48 SFP_MOD_EMPTY = 0, 49 SFP_MOD_ERROR, 50 SFP_MOD_PROBE, 51 SFP_MOD_WAITDEV, 52 SFP_MOD_HPOWER, 53 SFP_MOD_WAITPWR, 54 SFP_MOD_PRESENT, 55 56 SFP_DEV_DETACHED = 0, 57 SFP_DEV_DOWN, 58 SFP_DEV_UP, 59 60 SFP_S_DOWN = 0, 61 SFP_S_FAIL, 62 SFP_S_WAIT, 63 SFP_S_INIT, 64 SFP_S_INIT_PHY, 65 SFP_S_INIT_TX_FAULT, 66 SFP_S_WAIT_LOS, 67 SFP_S_LINK_UP, 68 SFP_S_TX_FAULT, 69 SFP_S_REINIT, 70 SFP_S_TX_DISABLE, 71 }; 72 73 static const char * const mod_state_strings[] = { 74 [SFP_MOD_EMPTY] = "empty", 75 [SFP_MOD_ERROR] = "error", 76 [SFP_MOD_PROBE] = "probe", 77 [SFP_MOD_WAITDEV] = "waitdev", 78 [SFP_MOD_HPOWER] = "hpower", 79 [SFP_MOD_WAITPWR] = "waitpwr", 80 [SFP_MOD_PRESENT] = "present", 81 }; 82 83 static const char *mod_state_to_str(unsigned short mod_state) 84 { 85 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 86 return "Unknown module state"; 87 return mod_state_strings[mod_state]; 88 } 89 90 static const char * const dev_state_strings[] = { 91 [SFP_DEV_DETACHED] = "detached", 92 [SFP_DEV_DOWN] = "down", 93 [SFP_DEV_UP] = "up", 94 }; 95 96 static const char *dev_state_to_str(unsigned short dev_state) 97 { 98 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 99 return "Unknown device state"; 100 return dev_state_strings[dev_state]; 101 } 102 103 static const char * const event_strings[] = { 104 [SFP_E_INSERT] = "insert", 105 [SFP_E_REMOVE] = "remove", 106 [SFP_E_DEV_ATTACH] = "dev_attach", 107 [SFP_E_DEV_DETACH] = "dev_detach", 108 [SFP_E_DEV_DOWN] = "dev_down", 109 [SFP_E_DEV_UP] = "dev_up", 110 [SFP_E_TX_FAULT] = "tx_fault", 111 [SFP_E_TX_CLEAR] = "tx_clear", 112 [SFP_E_LOS_HIGH] = "los_high", 113 [SFP_E_LOS_LOW] = "los_low", 114 [SFP_E_TIMEOUT] = "timeout", 115 }; 116 117 static const char *event_to_str(unsigned short event) 118 { 119 if (event >= ARRAY_SIZE(event_strings)) 120 return "Unknown event"; 121 return event_strings[event]; 122 } 123 124 static const char * const sm_state_strings[] = { 125 [SFP_S_DOWN] = "down", 126 [SFP_S_FAIL] = "fail", 127 [SFP_S_WAIT] = "wait", 128 [SFP_S_INIT] = "init", 129 [SFP_S_INIT_PHY] = "init_phy", 130 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 131 [SFP_S_WAIT_LOS] = "wait_los", 132 [SFP_S_LINK_UP] = "link_up", 133 [SFP_S_TX_FAULT] = "tx_fault", 134 [SFP_S_REINIT] = "reinit", 135 [SFP_S_TX_DISABLE] = "tx_disable", 136 }; 137 138 static const char *sm_state_to_str(unsigned short sm_state) 139 { 140 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 141 return "Unknown state"; 142 return sm_state_strings[sm_state]; 143 } 144 145 static const char *gpio_names[] = { 146 "mod-def0", 147 "los", 148 "tx-fault", 149 "tx-disable", 150 "rate-select0", 151 }; 152 153 static const enum gpiod_flags gpio_flags[] = { 154 GPIOD_IN, 155 GPIOD_IN, 156 GPIOD_IN, 157 GPIOD_ASIS, 158 GPIOD_ASIS, 159 }; 160 161 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 162 * non-cooled module to initialise its laser safety circuitry. We wait 163 * an initial T_WAIT period before we check the tx fault to give any PHY 164 * on board (for a copper SFP) time to initialise. 165 */ 166 #define T_WAIT msecs_to_jiffies(50) 167 #define T_WAIT_ROLLBALL msecs_to_jiffies(25000) 168 #define T_START_UP msecs_to_jiffies(300) 169 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 170 171 /* t_reset is the time required to assert the TX_DISABLE signal to reset 172 * an indicated TX_FAULT. 173 */ 174 #define T_RESET_US 10 175 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 176 177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 178 * time. If the TX_FAULT signal is not deasserted after this number of 179 * attempts at clearing it, we decide that the module is faulty. 180 * N_FAULT is the same but after the module has initialised. 181 */ 182 #define N_FAULT_INIT 5 183 #define N_FAULT 5 184 185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 186 * R_PHY_RETRY is the number of attempts. 187 */ 188 #define T_PHY_RETRY msecs_to_jiffies(50) 189 #define R_PHY_RETRY 12 190 191 /* SFP module presence detection is poor: the three MOD DEF signals are 192 * the same length on the PCB, which means it's possible for MOD DEF 0 to 193 * connect before the I2C bus on MOD DEF 1/2. 194 * 195 * The SFF-8472 specifies t_serial ("Time from power on until module is 196 * ready for data transmission over the two wire serial bus.") as 300ms. 197 */ 198 #define T_SERIAL msecs_to_jiffies(300) 199 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 200 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 201 #define R_PROBE_RETRY_INIT 10 202 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 203 #define R_PROBE_RETRY_SLOW 12 204 205 /* SFP modules appear to always have their PHY configured for bus address 206 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 207 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface 208 * via address 0x51 (mdio-i2c will use RollBall protocol on this address). 209 */ 210 #define SFP_PHY_ADDR 22 211 #define SFP_PHY_ADDR_ROLLBALL 17 212 213 struct sff_data { 214 unsigned int gpios; 215 bool (*module_supported)(const struct sfp_eeprom_id *id); 216 }; 217 218 struct sfp { 219 struct device *dev; 220 struct i2c_adapter *i2c; 221 struct mii_bus *i2c_mii; 222 struct sfp_bus *sfp_bus; 223 enum mdio_i2c_proto mdio_protocol; 224 struct phy_device *mod_phy; 225 const struct sff_data *type; 226 size_t i2c_block_size; 227 u32 max_power_mW; 228 229 unsigned int (*get_state)(struct sfp *); 230 void (*set_state)(struct sfp *, unsigned int); 231 int (*read)(struct sfp *, bool, u8, void *, size_t); 232 int (*write)(struct sfp *, bool, u8, void *, size_t); 233 234 struct gpio_desc *gpio[GPIO_MAX]; 235 int gpio_irq[GPIO_MAX]; 236 237 bool need_poll; 238 239 struct mutex st_mutex; /* Protects state */ 240 unsigned int state_hw_mask; 241 unsigned int state_soft_mask; 242 unsigned int state; 243 struct delayed_work poll; 244 struct delayed_work timeout; 245 struct mutex sm_mutex; /* Protects state machine */ 246 unsigned char sm_mod_state; 247 unsigned char sm_mod_tries_init; 248 unsigned char sm_mod_tries; 249 unsigned char sm_dev_state; 250 unsigned short sm_state; 251 unsigned char sm_fault_retries; 252 unsigned char sm_phy_retries; 253 254 struct sfp_eeprom_id id; 255 unsigned int module_power_mW; 256 unsigned int module_t_start_up; 257 unsigned int module_t_wait; 258 bool tx_fault_ignore; 259 260 const struct sfp_quirk *quirk; 261 262 #if IS_ENABLED(CONFIG_HWMON) 263 struct sfp_diag diag; 264 struct delayed_work hwmon_probe; 265 unsigned int hwmon_tries; 266 struct device *hwmon_dev; 267 char *hwmon_name; 268 #endif 269 270 #if IS_ENABLED(CONFIG_DEBUG_FS) 271 struct dentry *debugfs_dir; 272 #endif 273 }; 274 275 static bool sff_module_supported(const struct sfp_eeprom_id *id) 276 { 277 return id->base.phys_id == SFF8024_ID_SFF_8472 && 278 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 279 } 280 281 static const struct sff_data sff_data = { 282 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 283 .module_supported = sff_module_supported, 284 }; 285 286 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 287 { 288 if (id->base.phys_id == SFF8024_ID_SFP && 289 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 290 return true; 291 292 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 293 * phys id SFF instead of SFP. Therefore mark this module explicitly 294 * as supported based on vendor name and pn match. 295 */ 296 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 297 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 298 !memcmp(id->base.vendor_name, "UBNT ", 16) && 299 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 300 return true; 301 302 return false; 303 } 304 305 static const struct sff_data sfp_data = { 306 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 307 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 308 .module_supported = sfp_module_supported, 309 }; 310 311 static const struct of_device_id sfp_of_match[] = { 312 { .compatible = "sff,sff", .data = &sff_data, }, 313 { .compatible = "sff,sfp", .data = &sfp_data, }, 314 { }, 315 }; 316 MODULE_DEVICE_TABLE(of, sfp_of_match); 317 318 static void sfp_fixup_long_startup(struct sfp *sfp) 319 { 320 sfp->module_t_start_up = T_START_UP_BAD_GPON; 321 } 322 323 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) 324 { 325 sfp->tx_fault_ignore = true; 326 } 327 328 static void sfp_fixup_halny_gsfp(struct sfp *sfp) 329 { 330 /* Ignore the TX_FAULT and LOS signals on this module. 331 * these are possibly used for other purposes on this 332 * module, e.g. a serial port. 333 */ 334 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); 335 } 336 337 static void sfp_fixup_rollball(struct sfp *sfp) 338 { 339 sfp->mdio_protocol = MDIO_I2C_ROLLBALL; 340 sfp->module_t_wait = T_WAIT_ROLLBALL; 341 } 342 343 static void sfp_fixup_rollball_cc(struct sfp *sfp) 344 { 345 sfp_fixup_rollball(sfp); 346 347 /* Some RollBall SFPs may have wrong (zero) extended compliance code 348 * burned in EEPROM. For PHY probing we need the correct one. 349 */ 350 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; 351 } 352 353 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, 354 unsigned long *modes, 355 unsigned long *interfaces) 356 { 357 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); 358 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); 359 } 360 361 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, 362 unsigned long *modes, 363 unsigned long *interfaces) 364 { 365 /* Ubiquiti U-Fiber Instant module claims that support all transceiver 366 * types including 10G Ethernet which is not truth. So clear all claimed 367 * modes and set only one mode which module supports: 1000baseX_Full. 368 */ 369 linkmode_zero(modes); 370 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); 371 } 372 373 #define SFP_QUIRK(_v, _p, _m, _f) \ 374 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } 375 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) 376 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) 377 378 static const struct sfp_quirk sfp_quirks[] = { 379 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly 380 // report 2500MBd NRZ in their EEPROM 381 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), 382 383 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd 384 // NRZ in their EEPROM 385 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, 386 sfp_fixup_long_startup), 387 388 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), 389 390 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in 391 // their EEPROM 392 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, 393 sfp_fixup_ignore_tx_fault), 394 395 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report 396 // 2500MBd NRZ in their EEPROM 397 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), 398 399 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), 400 401 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), 402 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), 403 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), 404 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), 405 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), 406 }; 407 408 static size_t sfp_strlen(const char *str, size_t maxlen) 409 { 410 size_t size, i; 411 412 /* Trailing characters should be filled with space chars, but 413 * some manufacturers can't read SFF-8472 and use NUL. 414 */ 415 for (i = 0, size = 0; i < maxlen; i++) 416 if (str[i] != ' ' && str[i] != '\0') 417 size = i + 1; 418 419 return size; 420 } 421 422 static bool sfp_match(const char *qs, const char *str, size_t len) 423 { 424 if (!qs) 425 return true; 426 if (strlen(qs) != len) 427 return false; 428 return !strncmp(qs, str, len); 429 } 430 431 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) 432 { 433 const struct sfp_quirk *q; 434 unsigned int i; 435 size_t vs, ps; 436 437 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); 438 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); 439 440 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) 441 if (sfp_match(q->vendor, id->base.vendor_name, vs) && 442 sfp_match(q->part, id->base.vendor_pn, ps)) 443 return q; 444 445 return NULL; 446 } 447 448 static unsigned long poll_jiffies; 449 450 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 451 { 452 unsigned int i, state, v; 453 454 for (i = state = 0; i < GPIO_MAX; i++) { 455 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 456 continue; 457 458 v = gpiod_get_value_cansleep(sfp->gpio[i]); 459 if (v) 460 state |= BIT(i); 461 } 462 463 return state; 464 } 465 466 static unsigned int sff_gpio_get_state(struct sfp *sfp) 467 { 468 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 469 } 470 471 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 472 { 473 if (state & SFP_F_PRESENT) { 474 /* If the module is present, drive the signals */ 475 if (sfp->gpio[GPIO_TX_DISABLE]) 476 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 477 state & SFP_F_TX_DISABLE); 478 if (state & SFP_F_RATE_SELECT) 479 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 480 state & SFP_F_RATE_SELECT); 481 } else { 482 /* Otherwise, let them float to the pull-ups */ 483 if (sfp->gpio[GPIO_TX_DISABLE]) 484 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 485 if (state & SFP_F_RATE_SELECT) 486 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 487 } 488 } 489 490 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 491 size_t len) 492 { 493 struct i2c_msg msgs[2]; 494 u8 bus_addr = a2 ? 0x51 : 0x50; 495 size_t block_size = sfp->i2c_block_size; 496 size_t this_len; 497 int ret; 498 499 msgs[0].addr = bus_addr; 500 msgs[0].flags = 0; 501 msgs[0].len = 1; 502 msgs[0].buf = &dev_addr; 503 msgs[1].addr = bus_addr; 504 msgs[1].flags = I2C_M_RD; 505 msgs[1].len = len; 506 msgs[1].buf = buf; 507 508 while (len) { 509 this_len = len; 510 if (this_len > block_size) 511 this_len = block_size; 512 513 msgs[1].len = this_len; 514 515 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 516 if (ret < 0) 517 return ret; 518 519 if (ret != ARRAY_SIZE(msgs)) 520 break; 521 522 msgs[1].buf += this_len; 523 dev_addr += this_len; 524 len -= this_len; 525 } 526 527 return msgs[1].buf - (u8 *)buf; 528 } 529 530 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 531 size_t len) 532 { 533 struct i2c_msg msgs[1]; 534 u8 bus_addr = a2 ? 0x51 : 0x50; 535 int ret; 536 537 msgs[0].addr = bus_addr; 538 msgs[0].flags = 0; 539 msgs[0].len = 1 + len; 540 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 541 if (!msgs[0].buf) 542 return -ENOMEM; 543 544 msgs[0].buf[0] = dev_addr; 545 memcpy(&msgs[0].buf[1], buf, len); 546 547 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 548 549 kfree(msgs[0].buf); 550 551 if (ret < 0) 552 return ret; 553 554 return ret == ARRAY_SIZE(msgs) ? len : 0; 555 } 556 557 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 558 { 559 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 560 return -EINVAL; 561 562 sfp->i2c = i2c; 563 sfp->read = sfp_i2c_read; 564 sfp->write = sfp_i2c_write; 565 566 return 0; 567 } 568 569 static int sfp_i2c_mdiobus_create(struct sfp *sfp) 570 { 571 struct mii_bus *i2c_mii; 572 int ret; 573 574 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); 575 if (IS_ERR(i2c_mii)) 576 return PTR_ERR(i2c_mii); 577 578 i2c_mii->name = "SFP I2C Bus"; 579 i2c_mii->phy_mask = ~0; 580 581 ret = mdiobus_register(i2c_mii); 582 if (ret < 0) { 583 mdiobus_free(i2c_mii); 584 return ret; 585 } 586 587 sfp->i2c_mii = i2c_mii; 588 589 return 0; 590 } 591 592 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) 593 { 594 mdiobus_unregister(sfp->i2c_mii); 595 sfp->i2c_mii = NULL; 596 } 597 598 /* Interface */ 599 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 600 { 601 return sfp->read(sfp, a2, addr, buf, len); 602 } 603 604 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 605 { 606 return sfp->write(sfp, a2, addr, buf, len); 607 } 608 609 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) 610 { 611 int ret; 612 u8 old, v; 613 614 ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); 615 if (ret != sizeof(old)) 616 return ret; 617 618 v = (old & ~mask) | (val & mask); 619 if (v == old) 620 return sizeof(v); 621 622 return sfp_write(sfp, a2, addr, &v, sizeof(v)); 623 } 624 625 static unsigned int sfp_soft_get_state(struct sfp *sfp) 626 { 627 unsigned int state = 0; 628 u8 status; 629 int ret; 630 631 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 632 if (ret == sizeof(status)) { 633 if (status & SFP_STATUS_RX_LOS) 634 state |= SFP_F_LOS; 635 if (status & SFP_STATUS_TX_FAULT) 636 state |= SFP_F_TX_FAULT; 637 } else { 638 dev_err_ratelimited(sfp->dev, 639 "failed to read SFP soft status: %pe\n", 640 ERR_PTR(ret)); 641 /* Preserve the current state */ 642 state = sfp->state; 643 } 644 645 return state & sfp->state_soft_mask; 646 } 647 648 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 649 { 650 u8 mask = SFP_STATUS_TX_DISABLE_FORCE; 651 u8 val = 0; 652 653 if (state & SFP_F_TX_DISABLE) 654 val |= SFP_STATUS_TX_DISABLE_FORCE; 655 656 657 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); 658 } 659 660 static void sfp_soft_start_poll(struct sfp *sfp) 661 { 662 const struct sfp_eeprom_id *id = &sfp->id; 663 unsigned int mask = 0; 664 665 sfp->state_soft_mask = 0; 666 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) 667 mask |= SFP_F_TX_DISABLE; 668 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) 669 mask |= SFP_F_TX_FAULT; 670 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) 671 mask |= SFP_F_LOS; 672 673 // Poll the soft state for hardware pins we want to ignore 674 sfp->state_soft_mask = ~sfp->state_hw_mask & mask; 675 676 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 677 !sfp->need_poll) 678 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 679 } 680 681 static void sfp_soft_stop_poll(struct sfp *sfp) 682 { 683 sfp->state_soft_mask = 0; 684 } 685 686 static unsigned int sfp_get_state(struct sfp *sfp) 687 { 688 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); 689 unsigned int state; 690 691 state = sfp->get_state(sfp) & sfp->state_hw_mask; 692 if (state & SFP_F_PRESENT && soft) 693 state |= sfp_soft_get_state(sfp); 694 695 return state; 696 } 697 698 static void sfp_set_state(struct sfp *sfp, unsigned int state) 699 { 700 sfp->set_state(sfp, state); 701 702 if (state & SFP_F_PRESENT && 703 sfp->state_soft_mask & SFP_F_TX_DISABLE) 704 sfp_soft_set_state(sfp, state); 705 } 706 707 static unsigned int sfp_check(void *buf, size_t len) 708 { 709 u8 *p, check; 710 711 for (p = buf, check = 0; len; p++, len--) 712 check += *p; 713 714 return check; 715 } 716 717 /* hwmon */ 718 #if IS_ENABLED(CONFIG_HWMON) 719 static umode_t sfp_hwmon_is_visible(const void *data, 720 enum hwmon_sensor_types type, 721 u32 attr, int channel) 722 { 723 const struct sfp *sfp = data; 724 725 switch (type) { 726 case hwmon_temp: 727 switch (attr) { 728 case hwmon_temp_min_alarm: 729 case hwmon_temp_max_alarm: 730 case hwmon_temp_lcrit_alarm: 731 case hwmon_temp_crit_alarm: 732 case hwmon_temp_min: 733 case hwmon_temp_max: 734 case hwmon_temp_lcrit: 735 case hwmon_temp_crit: 736 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 737 return 0; 738 fallthrough; 739 case hwmon_temp_input: 740 case hwmon_temp_label: 741 return 0444; 742 default: 743 return 0; 744 } 745 case hwmon_in: 746 switch (attr) { 747 case hwmon_in_min_alarm: 748 case hwmon_in_max_alarm: 749 case hwmon_in_lcrit_alarm: 750 case hwmon_in_crit_alarm: 751 case hwmon_in_min: 752 case hwmon_in_max: 753 case hwmon_in_lcrit: 754 case hwmon_in_crit: 755 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 756 return 0; 757 fallthrough; 758 case hwmon_in_input: 759 case hwmon_in_label: 760 return 0444; 761 default: 762 return 0; 763 } 764 case hwmon_curr: 765 switch (attr) { 766 case hwmon_curr_min_alarm: 767 case hwmon_curr_max_alarm: 768 case hwmon_curr_lcrit_alarm: 769 case hwmon_curr_crit_alarm: 770 case hwmon_curr_min: 771 case hwmon_curr_max: 772 case hwmon_curr_lcrit: 773 case hwmon_curr_crit: 774 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 775 return 0; 776 fallthrough; 777 case hwmon_curr_input: 778 case hwmon_curr_label: 779 return 0444; 780 default: 781 return 0; 782 } 783 case hwmon_power: 784 /* External calibration of receive power requires 785 * floating point arithmetic. Doing that in the kernel 786 * is not easy, so just skip it. If the module does 787 * not require external calibration, we can however 788 * show receiver power, since FP is then not needed. 789 */ 790 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 791 channel == 1) 792 return 0; 793 switch (attr) { 794 case hwmon_power_min_alarm: 795 case hwmon_power_max_alarm: 796 case hwmon_power_lcrit_alarm: 797 case hwmon_power_crit_alarm: 798 case hwmon_power_min: 799 case hwmon_power_max: 800 case hwmon_power_lcrit: 801 case hwmon_power_crit: 802 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 803 return 0; 804 fallthrough; 805 case hwmon_power_input: 806 case hwmon_power_label: 807 return 0444; 808 default: 809 return 0; 810 } 811 default: 812 return 0; 813 } 814 } 815 816 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 817 { 818 __be16 val; 819 int err; 820 821 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 822 if (err < 0) 823 return err; 824 825 *value = be16_to_cpu(val); 826 827 return 0; 828 } 829 830 static void sfp_hwmon_to_rx_power(long *value) 831 { 832 *value = DIV_ROUND_CLOSEST(*value, 10); 833 } 834 835 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 836 long *value) 837 { 838 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 839 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 840 } 841 842 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 843 { 844 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 845 be16_to_cpu(sfp->diag.cal_t_offset), value); 846 847 if (*value >= 0x8000) 848 *value -= 0x10000; 849 850 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 851 } 852 853 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 854 { 855 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 856 be16_to_cpu(sfp->diag.cal_v_offset), value); 857 858 *value = DIV_ROUND_CLOSEST(*value, 10); 859 } 860 861 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 862 { 863 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 864 be16_to_cpu(sfp->diag.cal_txi_offset), value); 865 866 *value = DIV_ROUND_CLOSEST(*value, 500); 867 } 868 869 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 870 { 871 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 872 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 873 874 *value = DIV_ROUND_CLOSEST(*value, 10); 875 } 876 877 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 878 { 879 int err; 880 881 err = sfp_hwmon_read_sensor(sfp, reg, value); 882 if (err < 0) 883 return err; 884 885 sfp_hwmon_calibrate_temp(sfp, value); 886 887 return 0; 888 } 889 890 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 891 { 892 int err; 893 894 err = sfp_hwmon_read_sensor(sfp, reg, value); 895 if (err < 0) 896 return err; 897 898 sfp_hwmon_calibrate_vcc(sfp, value); 899 900 return 0; 901 } 902 903 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 904 { 905 int err; 906 907 err = sfp_hwmon_read_sensor(sfp, reg, value); 908 if (err < 0) 909 return err; 910 911 sfp_hwmon_calibrate_bias(sfp, value); 912 913 return 0; 914 } 915 916 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 917 { 918 int err; 919 920 err = sfp_hwmon_read_sensor(sfp, reg, value); 921 if (err < 0) 922 return err; 923 924 sfp_hwmon_calibrate_tx_power(sfp, value); 925 926 return 0; 927 } 928 929 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 930 { 931 int err; 932 933 err = sfp_hwmon_read_sensor(sfp, reg, value); 934 if (err < 0) 935 return err; 936 937 sfp_hwmon_to_rx_power(value); 938 939 return 0; 940 } 941 942 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 943 { 944 u8 status; 945 int err; 946 947 switch (attr) { 948 case hwmon_temp_input: 949 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 950 951 case hwmon_temp_lcrit: 952 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 953 sfp_hwmon_calibrate_temp(sfp, value); 954 return 0; 955 956 case hwmon_temp_min: 957 *value = be16_to_cpu(sfp->diag.temp_low_warn); 958 sfp_hwmon_calibrate_temp(sfp, value); 959 return 0; 960 case hwmon_temp_max: 961 *value = be16_to_cpu(sfp->diag.temp_high_warn); 962 sfp_hwmon_calibrate_temp(sfp, value); 963 return 0; 964 965 case hwmon_temp_crit: 966 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 967 sfp_hwmon_calibrate_temp(sfp, value); 968 return 0; 969 970 case hwmon_temp_lcrit_alarm: 971 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 972 if (err < 0) 973 return err; 974 975 *value = !!(status & SFP_ALARM0_TEMP_LOW); 976 return 0; 977 978 case hwmon_temp_min_alarm: 979 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 980 if (err < 0) 981 return err; 982 983 *value = !!(status & SFP_WARN0_TEMP_LOW); 984 return 0; 985 986 case hwmon_temp_max_alarm: 987 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 988 if (err < 0) 989 return err; 990 991 *value = !!(status & SFP_WARN0_TEMP_HIGH); 992 return 0; 993 994 case hwmon_temp_crit_alarm: 995 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 996 if (err < 0) 997 return err; 998 999 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 1000 return 0; 1001 default: 1002 return -EOPNOTSUPP; 1003 } 1004 1005 return -EOPNOTSUPP; 1006 } 1007 1008 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 1009 { 1010 u8 status; 1011 int err; 1012 1013 switch (attr) { 1014 case hwmon_in_input: 1015 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 1016 1017 case hwmon_in_lcrit: 1018 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 1019 sfp_hwmon_calibrate_vcc(sfp, value); 1020 return 0; 1021 1022 case hwmon_in_min: 1023 *value = be16_to_cpu(sfp->diag.volt_low_warn); 1024 sfp_hwmon_calibrate_vcc(sfp, value); 1025 return 0; 1026 1027 case hwmon_in_max: 1028 *value = be16_to_cpu(sfp->diag.volt_high_warn); 1029 sfp_hwmon_calibrate_vcc(sfp, value); 1030 return 0; 1031 1032 case hwmon_in_crit: 1033 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 1034 sfp_hwmon_calibrate_vcc(sfp, value); 1035 return 0; 1036 1037 case hwmon_in_lcrit_alarm: 1038 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1039 if (err < 0) 1040 return err; 1041 1042 *value = !!(status & SFP_ALARM0_VCC_LOW); 1043 return 0; 1044 1045 case hwmon_in_min_alarm: 1046 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1047 if (err < 0) 1048 return err; 1049 1050 *value = !!(status & SFP_WARN0_VCC_LOW); 1051 return 0; 1052 1053 case hwmon_in_max_alarm: 1054 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1055 if (err < 0) 1056 return err; 1057 1058 *value = !!(status & SFP_WARN0_VCC_HIGH); 1059 return 0; 1060 1061 case hwmon_in_crit_alarm: 1062 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1063 if (err < 0) 1064 return err; 1065 1066 *value = !!(status & SFP_ALARM0_VCC_HIGH); 1067 return 0; 1068 default: 1069 return -EOPNOTSUPP; 1070 } 1071 1072 return -EOPNOTSUPP; 1073 } 1074 1075 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 1076 { 1077 u8 status; 1078 int err; 1079 1080 switch (attr) { 1081 case hwmon_curr_input: 1082 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 1083 1084 case hwmon_curr_lcrit: 1085 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 1086 sfp_hwmon_calibrate_bias(sfp, value); 1087 return 0; 1088 1089 case hwmon_curr_min: 1090 *value = be16_to_cpu(sfp->diag.bias_low_warn); 1091 sfp_hwmon_calibrate_bias(sfp, value); 1092 return 0; 1093 1094 case hwmon_curr_max: 1095 *value = be16_to_cpu(sfp->diag.bias_high_warn); 1096 sfp_hwmon_calibrate_bias(sfp, value); 1097 return 0; 1098 1099 case hwmon_curr_crit: 1100 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 1101 sfp_hwmon_calibrate_bias(sfp, value); 1102 return 0; 1103 1104 case hwmon_curr_lcrit_alarm: 1105 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1106 if (err < 0) 1107 return err; 1108 1109 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 1110 return 0; 1111 1112 case hwmon_curr_min_alarm: 1113 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1114 if (err < 0) 1115 return err; 1116 1117 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 1118 return 0; 1119 1120 case hwmon_curr_max_alarm: 1121 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1122 if (err < 0) 1123 return err; 1124 1125 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 1126 return 0; 1127 1128 case hwmon_curr_crit_alarm: 1129 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1130 if (err < 0) 1131 return err; 1132 1133 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 1134 return 0; 1135 default: 1136 return -EOPNOTSUPP; 1137 } 1138 1139 return -EOPNOTSUPP; 1140 } 1141 1142 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 1143 { 1144 u8 status; 1145 int err; 1146 1147 switch (attr) { 1148 case hwmon_power_input: 1149 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 1150 1151 case hwmon_power_lcrit: 1152 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 1153 sfp_hwmon_calibrate_tx_power(sfp, value); 1154 return 0; 1155 1156 case hwmon_power_min: 1157 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 1158 sfp_hwmon_calibrate_tx_power(sfp, value); 1159 return 0; 1160 1161 case hwmon_power_max: 1162 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1163 sfp_hwmon_calibrate_tx_power(sfp, value); 1164 return 0; 1165 1166 case hwmon_power_crit: 1167 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1168 sfp_hwmon_calibrate_tx_power(sfp, value); 1169 return 0; 1170 1171 case hwmon_power_lcrit_alarm: 1172 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1173 if (err < 0) 1174 return err; 1175 1176 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1177 return 0; 1178 1179 case hwmon_power_min_alarm: 1180 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1181 if (err < 0) 1182 return err; 1183 1184 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1185 return 0; 1186 1187 case hwmon_power_max_alarm: 1188 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1189 if (err < 0) 1190 return err; 1191 1192 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1193 return 0; 1194 1195 case hwmon_power_crit_alarm: 1196 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1197 if (err < 0) 1198 return err; 1199 1200 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1201 return 0; 1202 default: 1203 return -EOPNOTSUPP; 1204 } 1205 1206 return -EOPNOTSUPP; 1207 } 1208 1209 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1210 { 1211 u8 status; 1212 int err; 1213 1214 switch (attr) { 1215 case hwmon_power_input: 1216 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1217 1218 case hwmon_power_lcrit: 1219 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1220 sfp_hwmon_to_rx_power(value); 1221 return 0; 1222 1223 case hwmon_power_min: 1224 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1225 sfp_hwmon_to_rx_power(value); 1226 return 0; 1227 1228 case hwmon_power_max: 1229 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1230 sfp_hwmon_to_rx_power(value); 1231 return 0; 1232 1233 case hwmon_power_crit: 1234 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1235 sfp_hwmon_to_rx_power(value); 1236 return 0; 1237 1238 case hwmon_power_lcrit_alarm: 1239 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1240 if (err < 0) 1241 return err; 1242 1243 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1244 return 0; 1245 1246 case hwmon_power_min_alarm: 1247 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1248 if (err < 0) 1249 return err; 1250 1251 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1252 return 0; 1253 1254 case hwmon_power_max_alarm: 1255 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1256 if (err < 0) 1257 return err; 1258 1259 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1260 return 0; 1261 1262 case hwmon_power_crit_alarm: 1263 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1264 if (err < 0) 1265 return err; 1266 1267 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1268 return 0; 1269 default: 1270 return -EOPNOTSUPP; 1271 } 1272 1273 return -EOPNOTSUPP; 1274 } 1275 1276 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1277 u32 attr, int channel, long *value) 1278 { 1279 struct sfp *sfp = dev_get_drvdata(dev); 1280 1281 switch (type) { 1282 case hwmon_temp: 1283 return sfp_hwmon_temp(sfp, attr, value); 1284 case hwmon_in: 1285 return sfp_hwmon_vcc(sfp, attr, value); 1286 case hwmon_curr: 1287 return sfp_hwmon_bias(sfp, attr, value); 1288 case hwmon_power: 1289 switch (channel) { 1290 case 0: 1291 return sfp_hwmon_tx_power(sfp, attr, value); 1292 case 1: 1293 return sfp_hwmon_rx_power(sfp, attr, value); 1294 default: 1295 return -EOPNOTSUPP; 1296 } 1297 default: 1298 return -EOPNOTSUPP; 1299 } 1300 } 1301 1302 static const char *const sfp_hwmon_power_labels[] = { 1303 "TX_power", 1304 "RX_power", 1305 }; 1306 1307 static int sfp_hwmon_read_string(struct device *dev, 1308 enum hwmon_sensor_types type, 1309 u32 attr, int channel, const char **str) 1310 { 1311 switch (type) { 1312 case hwmon_curr: 1313 switch (attr) { 1314 case hwmon_curr_label: 1315 *str = "bias"; 1316 return 0; 1317 default: 1318 return -EOPNOTSUPP; 1319 } 1320 break; 1321 case hwmon_temp: 1322 switch (attr) { 1323 case hwmon_temp_label: 1324 *str = "temperature"; 1325 return 0; 1326 default: 1327 return -EOPNOTSUPP; 1328 } 1329 break; 1330 case hwmon_in: 1331 switch (attr) { 1332 case hwmon_in_label: 1333 *str = "VCC"; 1334 return 0; 1335 default: 1336 return -EOPNOTSUPP; 1337 } 1338 break; 1339 case hwmon_power: 1340 switch (attr) { 1341 case hwmon_power_label: 1342 *str = sfp_hwmon_power_labels[channel]; 1343 return 0; 1344 default: 1345 return -EOPNOTSUPP; 1346 } 1347 break; 1348 default: 1349 return -EOPNOTSUPP; 1350 } 1351 1352 return -EOPNOTSUPP; 1353 } 1354 1355 static const struct hwmon_ops sfp_hwmon_ops = { 1356 .is_visible = sfp_hwmon_is_visible, 1357 .read = sfp_hwmon_read, 1358 .read_string = sfp_hwmon_read_string, 1359 }; 1360 1361 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1362 HWMON_CHANNEL_INFO(chip, 1363 HWMON_C_REGISTER_TZ), 1364 HWMON_CHANNEL_INFO(in, 1365 HWMON_I_INPUT | 1366 HWMON_I_MAX | HWMON_I_MIN | 1367 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1368 HWMON_I_CRIT | HWMON_I_LCRIT | 1369 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1370 HWMON_I_LABEL), 1371 HWMON_CHANNEL_INFO(temp, 1372 HWMON_T_INPUT | 1373 HWMON_T_MAX | HWMON_T_MIN | 1374 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1375 HWMON_T_CRIT | HWMON_T_LCRIT | 1376 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1377 HWMON_T_LABEL), 1378 HWMON_CHANNEL_INFO(curr, 1379 HWMON_C_INPUT | 1380 HWMON_C_MAX | HWMON_C_MIN | 1381 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1382 HWMON_C_CRIT | HWMON_C_LCRIT | 1383 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1384 HWMON_C_LABEL), 1385 HWMON_CHANNEL_INFO(power, 1386 /* Transmit power */ 1387 HWMON_P_INPUT | 1388 HWMON_P_MAX | HWMON_P_MIN | 1389 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1390 HWMON_P_CRIT | HWMON_P_LCRIT | 1391 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1392 HWMON_P_LABEL, 1393 /* Receive power */ 1394 HWMON_P_INPUT | 1395 HWMON_P_MAX | HWMON_P_MIN | 1396 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1397 HWMON_P_CRIT | HWMON_P_LCRIT | 1398 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1399 HWMON_P_LABEL), 1400 NULL, 1401 }; 1402 1403 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1404 .ops = &sfp_hwmon_ops, 1405 .info = sfp_hwmon_info, 1406 }; 1407 1408 static void sfp_hwmon_probe(struct work_struct *work) 1409 { 1410 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1411 int err; 1412 1413 /* hwmon interface needs to access 16bit registers in atomic way to 1414 * guarantee coherency of the diagnostic monitoring data. If it is not 1415 * possible to guarantee coherency because EEPROM is broken in such way 1416 * that does not support atomic 16bit read operation then we have to 1417 * skip registration of hwmon device. 1418 */ 1419 if (sfp->i2c_block_size < 2) { 1420 dev_info(sfp->dev, 1421 "skipping hwmon device registration due to broken EEPROM\n"); 1422 dev_info(sfp->dev, 1423 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1424 return; 1425 } 1426 1427 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1428 if (err < 0) { 1429 if (sfp->hwmon_tries--) { 1430 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1431 T_PROBE_RETRY_SLOW); 1432 } else { 1433 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1434 ERR_PTR(err)); 1435 } 1436 return; 1437 } 1438 1439 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1440 if (IS_ERR(sfp->hwmon_name)) { 1441 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1442 return; 1443 } 1444 1445 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1446 sfp->hwmon_name, sfp, 1447 &sfp_hwmon_chip_info, 1448 NULL); 1449 if (IS_ERR(sfp->hwmon_dev)) 1450 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1451 PTR_ERR(sfp->hwmon_dev)); 1452 } 1453 1454 static int sfp_hwmon_insert(struct sfp *sfp) 1455 { 1456 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1457 return 0; 1458 1459 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1460 return 0; 1461 1462 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1463 /* This driver in general does not support address 1464 * change. 1465 */ 1466 return 0; 1467 1468 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1469 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1470 1471 return 0; 1472 } 1473 1474 static void sfp_hwmon_remove(struct sfp *sfp) 1475 { 1476 cancel_delayed_work_sync(&sfp->hwmon_probe); 1477 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1478 hwmon_device_unregister(sfp->hwmon_dev); 1479 sfp->hwmon_dev = NULL; 1480 kfree(sfp->hwmon_name); 1481 } 1482 } 1483 1484 static int sfp_hwmon_init(struct sfp *sfp) 1485 { 1486 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1487 1488 return 0; 1489 } 1490 1491 static void sfp_hwmon_exit(struct sfp *sfp) 1492 { 1493 cancel_delayed_work_sync(&sfp->hwmon_probe); 1494 } 1495 #else 1496 static int sfp_hwmon_insert(struct sfp *sfp) 1497 { 1498 return 0; 1499 } 1500 1501 static void sfp_hwmon_remove(struct sfp *sfp) 1502 { 1503 } 1504 1505 static int sfp_hwmon_init(struct sfp *sfp) 1506 { 1507 return 0; 1508 } 1509 1510 static void sfp_hwmon_exit(struct sfp *sfp) 1511 { 1512 } 1513 #endif 1514 1515 /* Helpers */ 1516 static void sfp_module_tx_disable(struct sfp *sfp) 1517 { 1518 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1519 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1520 sfp->state |= SFP_F_TX_DISABLE; 1521 sfp_set_state(sfp, sfp->state); 1522 } 1523 1524 static void sfp_module_tx_enable(struct sfp *sfp) 1525 { 1526 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1527 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1528 sfp->state &= ~SFP_F_TX_DISABLE; 1529 sfp_set_state(sfp, sfp->state); 1530 } 1531 1532 #if IS_ENABLED(CONFIG_DEBUG_FS) 1533 static int sfp_debug_state_show(struct seq_file *s, void *data) 1534 { 1535 struct sfp *sfp = s->private; 1536 1537 seq_printf(s, "Module state: %s\n", 1538 mod_state_to_str(sfp->sm_mod_state)); 1539 seq_printf(s, "Module probe attempts: %d %d\n", 1540 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1541 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1542 seq_printf(s, "Device state: %s\n", 1543 dev_state_to_str(sfp->sm_dev_state)); 1544 seq_printf(s, "Main state: %s\n", 1545 sm_state_to_str(sfp->sm_state)); 1546 seq_printf(s, "Fault recovery remaining retries: %d\n", 1547 sfp->sm_fault_retries); 1548 seq_printf(s, "PHY probe remaining retries: %d\n", 1549 sfp->sm_phy_retries); 1550 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1551 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1552 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1553 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1554 return 0; 1555 } 1556 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1557 1558 static void sfp_debugfs_init(struct sfp *sfp) 1559 { 1560 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1561 1562 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1563 &sfp_debug_state_fops); 1564 } 1565 1566 static void sfp_debugfs_exit(struct sfp *sfp) 1567 { 1568 debugfs_remove_recursive(sfp->debugfs_dir); 1569 } 1570 #else 1571 static void sfp_debugfs_init(struct sfp *sfp) 1572 { 1573 } 1574 1575 static void sfp_debugfs_exit(struct sfp *sfp) 1576 { 1577 } 1578 #endif 1579 1580 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1581 { 1582 unsigned int state = sfp->state; 1583 1584 if (state & SFP_F_TX_DISABLE) 1585 return; 1586 1587 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1588 1589 udelay(T_RESET_US); 1590 1591 sfp_set_state(sfp, state); 1592 } 1593 1594 /* SFP state machine */ 1595 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1596 { 1597 if (timeout) 1598 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1599 timeout); 1600 else 1601 cancel_delayed_work(&sfp->timeout); 1602 } 1603 1604 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1605 unsigned int timeout) 1606 { 1607 sfp->sm_state = state; 1608 sfp_sm_set_timer(sfp, timeout); 1609 } 1610 1611 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1612 unsigned int timeout) 1613 { 1614 sfp->sm_mod_state = state; 1615 sfp_sm_set_timer(sfp, timeout); 1616 } 1617 1618 static void sfp_sm_phy_detach(struct sfp *sfp) 1619 { 1620 sfp_remove_phy(sfp->sfp_bus); 1621 phy_device_remove(sfp->mod_phy); 1622 phy_device_free(sfp->mod_phy); 1623 sfp->mod_phy = NULL; 1624 } 1625 1626 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) 1627 { 1628 struct phy_device *phy; 1629 int err; 1630 1631 phy = get_phy_device(sfp->i2c_mii, addr, is_c45); 1632 if (phy == ERR_PTR(-ENODEV)) 1633 return PTR_ERR(phy); 1634 if (IS_ERR(phy)) { 1635 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1636 return PTR_ERR(phy); 1637 } 1638 1639 err = phy_device_register(phy); 1640 if (err) { 1641 phy_device_free(phy); 1642 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1643 ERR_PTR(err)); 1644 return err; 1645 } 1646 1647 err = sfp_add_phy(sfp->sfp_bus, phy); 1648 if (err) { 1649 phy_device_remove(phy); 1650 phy_device_free(phy); 1651 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1652 return err; 1653 } 1654 1655 sfp->mod_phy = phy; 1656 1657 return 0; 1658 } 1659 1660 static void sfp_sm_link_up(struct sfp *sfp) 1661 { 1662 sfp_link_up(sfp->sfp_bus); 1663 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1664 } 1665 1666 static void sfp_sm_link_down(struct sfp *sfp) 1667 { 1668 sfp_link_down(sfp->sfp_bus); 1669 } 1670 1671 static void sfp_sm_link_check_los(struct sfp *sfp) 1672 { 1673 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1674 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1675 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1676 bool los = false; 1677 1678 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1679 * are set, we assume that no LOS signal is available. If both are 1680 * set, we assume LOS is not implemented (and is meaningless.) 1681 */ 1682 if (los_options == los_inverted) 1683 los = !(sfp->state & SFP_F_LOS); 1684 else if (los_options == los_normal) 1685 los = !!(sfp->state & SFP_F_LOS); 1686 1687 if (los) 1688 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1689 else 1690 sfp_sm_link_up(sfp); 1691 } 1692 1693 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1694 { 1695 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1696 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1697 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1698 1699 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1700 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1701 } 1702 1703 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1704 { 1705 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1706 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1707 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1708 1709 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1710 (los_options == los_normal && event == SFP_E_LOS_LOW); 1711 } 1712 1713 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1714 { 1715 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1716 dev_err(sfp->dev, 1717 "module persistently indicates fault, disabling\n"); 1718 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1719 } else { 1720 if (warn) 1721 dev_err(sfp->dev, "module transmit fault indicated\n"); 1722 1723 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1724 } 1725 } 1726 1727 static int sfp_sm_add_mdio_bus(struct sfp *sfp) 1728 { 1729 if (sfp->mdio_protocol != MDIO_I2C_NONE) 1730 return sfp_i2c_mdiobus_create(sfp); 1731 1732 return 0; 1733 } 1734 1735 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1736 * normally sits at I2C bus address 0x56, and may either be a clause 22 1737 * or clause 45 PHY. 1738 * 1739 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1740 * negotiation enabled, but some may be in 1000base-X - which is for the 1741 * PHY driver to determine. 1742 * 1743 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1744 * mode according to the negotiated line speed. 1745 */ 1746 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1747 { 1748 int err = 0; 1749 1750 switch (sfp->mdio_protocol) { 1751 case MDIO_I2C_NONE: 1752 break; 1753 1754 case MDIO_I2C_MARVELL_C22: 1755 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); 1756 break; 1757 1758 case MDIO_I2C_C45: 1759 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); 1760 break; 1761 1762 case MDIO_I2C_ROLLBALL: 1763 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); 1764 break; 1765 } 1766 1767 return err; 1768 } 1769 1770 static int sfp_module_parse_power(struct sfp *sfp) 1771 { 1772 u32 power_mW = 1000; 1773 bool supports_a2; 1774 1775 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && 1776 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1777 power_mW = 1500; 1778 /* Added in Rev 11.9, but there is no compliance code for this */ 1779 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && 1780 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1781 power_mW = 2000; 1782 1783 /* Power level 1 modules (max. 1W) are always supported. */ 1784 if (power_mW <= 1000) { 1785 sfp->module_power_mW = power_mW; 1786 return 0; 1787 } 1788 1789 supports_a2 = sfp->id.ext.sff8472_compliance != 1790 SFP_SFF8472_COMPLIANCE_NONE || 1791 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1792 1793 if (power_mW > sfp->max_power_mW) { 1794 /* Module power specification exceeds the allowed maximum. */ 1795 if (!supports_a2) { 1796 /* The module appears not to implement bus address 1797 * 0xa2, so assume that the module powers up in the 1798 * indicated mode. 1799 */ 1800 dev_err(sfp->dev, 1801 "Host does not support %u.%uW modules\n", 1802 power_mW / 1000, (power_mW / 100) % 10); 1803 return -EINVAL; 1804 } else { 1805 dev_warn(sfp->dev, 1806 "Host does not support %u.%uW modules, module left in power mode 1\n", 1807 power_mW / 1000, (power_mW / 100) % 10); 1808 return 0; 1809 } 1810 } 1811 1812 if (!supports_a2) { 1813 /* The module power level is below the host maximum and the 1814 * module appears not to implement bus address 0xa2, so assume 1815 * that the module powers up in the indicated mode. 1816 */ 1817 return 0; 1818 } 1819 1820 /* If the module requires a higher power mode, but also requires 1821 * an address change sequence, warn the user that the module may 1822 * not be functional. 1823 */ 1824 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1825 dev_warn(sfp->dev, 1826 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1827 power_mW / 1000, (power_mW / 100) % 10); 1828 return 0; 1829 } 1830 1831 sfp->module_power_mW = power_mW; 1832 1833 return 0; 1834 } 1835 1836 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1837 { 1838 int err; 1839 1840 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, 1841 SFP_EXT_STATUS_PWRLVL_SELECT, 1842 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); 1843 if (err != sizeof(u8)) { 1844 dev_err(sfp->dev, "failed to %sable high power: %pe\n", 1845 enable ? "en" : "dis", ERR_PTR(err)); 1846 return -EAGAIN; 1847 } 1848 1849 if (enable) 1850 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1851 sfp->module_power_mW / 1000, 1852 (sfp->module_power_mW / 100) % 10); 1853 1854 return 0; 1855 } 1856 1857 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 1858 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 1859 * not support multibyte reads from the EEPROM. Each multi-byte read 1860 * operation returns just one byte of EEPROM followed by zeros. There is 1861 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 1862 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 1863 * name and vendor id into EEPROM, so there is even no way to detect if 1864 * module is V-SOL V2801F. Therefore check for those zeros in the read 1865 * data and then based on check switch to reading EEPROM to one byte 1866 * at a time. 1867 */ 1868 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 1869 { 1870 size_t i, block_size = sfp->i2c_block_size; 1871 1872 /* Already using byte IO */ 1873 if (block_size == 1) 1874 return false; 1875 1876 for (i = 1; i < len; i += block_size) { 1877 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 1878 return false; 1879 } 1880 return true; 1881 } 1882 1883 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1884 { 1885 u8 check; 1886 int err; 1887 1888 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1889 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1890 id->base.connector != SFF8024_CONNECTOR_LC) { 1891 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1892 id->base.phys_id = SFF8024_ID_SFF_8472; 1893 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1894 id->base.connector = SFF8024_CONNECTOR_LC; 1895 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1896 if (err != 3) { 1897 dev_err(sfp->dev, 1898 "Failed to rewrite module EEPROM: %pe\n", 1899 ERR_PTR(err)); 1900 return err; 1901 } 1902 1903 /* Cotsworks modules have been found to require a delay between write operations. */ 1904 mdelay(50); 1905 1906 /* Update base structure checksum */ 1907 check = sfp_check(&id->base, sizeof(id->base) - 1); 1908 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1909 if (err != 1) { 1910 dev_err(sfp->dev, 1911 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 1912 ERR_PTR(err)); 1913 return err; 1914 } 1915 } 1916 return 0; 1917 } 1918 1919 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1920 { 1921 /* SFP module inserted - read I2C data */ 1922 struct sfp_eeprom_id id; 1923 bool cotsworks_sfbg; 1924 bool cotsworks; 1925 u8 check; 1926 int ret; 1927 1928 /* Some SFP modules and also some Linux I2C drivers do not like reads 1929 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at 1930 * a time. 1931 */ 1932 sfp->i2c_block_size = 16; 1933 1934 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1935 if (ret < 0) { 1936 if (report) 1937 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1938 ERR_PTR(ret)); 1939 return -EAGAIN; 1940 } 1941 1942 if (ret != sizeof(id.base)) { 1943 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1944 return -EAGAIN; 1945 } 1946 1947 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 1948 * address 0x51 is just one byte at a time. Also SFF-8472 requires 1949 * that EEPROM supports atomic 16bit read operation for diagnostic 1950 * fields, so do not switch to one byte reading at a time unless it 1951 * is really required and we have no other option. 1952 */ 1953 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 1954 dev_info(sfp->dev, 1955 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 1956 dev_info(sfp->dev, 1957 "Switching to reading EEPROM to one byte at a time\n"); 1958 sfp->i2c_block_size = 1; 1959 1960 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1961 if (ret < 0) { 1962 if (report) 1963 dev_err(sfp->dev, 1964 "failed to read EEPROM: %pe\n", 1965 ERR_PTR(ret)); 1966 return -EAGAIN; 1967 } 1968 1969 if (ret != sizeof(id.base)) { 1970 dev_err(sfp->dev, "EEPROM short read: %pe\n", 1971 ERR_PTR(ret)); 1972 return -EAGAIN; 1973 } 1974 } 1975 1976 /* Cotsworks do not seem to update the checksums when they 1977 * do the final programming with the final module part number, 1978 * serial number and date code. 1979 */ 1980 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1981 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 1982 1983 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 1984 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 1985 * Cotsworks PN matches and bytes are not correct. 1986 */ 1987 if (cotsworks && cotsworks_sfbg) { 1988 ret = sfp_cotsworks_fixup_check(sfp, &id); 1989 if (ret < 0) 1990 return ret; 1991 } 1992 1993 /* Validate the checksum over the base structure */ 1994 check = sfp_check(&id.base, sizeof(id.base) - 1); 1995 if (check != id.base.cc_base) { 1996 if (cotsworks) { 1997 dev_warn(sfp->dev, 1998 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 1999 check, id.base.cc_base); 2000 } else { 2001 dev_err(sfp->dev, 2002 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 2003 check, id.base.cc_base); 2004 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2005 16, 1, &id, sizeof(id), true); 2006 return -EINVAL; 2007 } 2008 } 2009 2010 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 2011 if (ret < 0) { 2012 if (report) 2013 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 2014 ERR_PTR(ret)); 2015 return -EAGAIN; 2016 } 2017 2018 if (ret != sizeof(id.ext)) { 2019 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 2020 return -EAGAIN; 2021 } 2022 2023 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 2024 if (check != id.ext.cc_ext) { 2025 if (cotsworks) { 2026 dev_warn(sfp->dev, 2027 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 2028 check, id.ext.cc_ext); 2029 } else { 2030 dev_err(sfp->dev, 2031 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 2032 check, id.ext.cc_ext); 2033 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 2034 16, 1, &id, sizeof(id), true); 2035 memset(&id.ext, 0, sizeof(id.ext)); 2036 } 2037 } 2038 2039 sfp->id = id; 2040 2041 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 2042 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 2043 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 2044 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 2045 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 2046 (int)sizeof(id.ext.datecode), id.ext.datecode); 2047 2048 /* Check whether we support this module */ 2049 if (!sfp->type->module_supported(&id)) { 2050 dev_err(sfp->dev, 2051 "module is not supported - phys id 0x%02x 0x%02x\n", 2052 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 2053 return -EINVAL; 2054 } 2055 2056 /* If the module requires address swap mode, warn about it */ 2057 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 2058 dev_warn(sfp->dev, 2059 "module address swap to access page 0xA2 is not supported.\n"); 2060 2061 /* Parse the module power requirement */ 2062 ret = sfp_module_parse_power(sfp); 2063 if (ret < 0) 2064 return ret; 2065 2066 /* Initialise state bits to use from hardware */ 2067 sfp->state_hw_mask = SFP_F_PRESENT; 2068 if (sfp->gpio[GPIO_TX_DISABLE]) 2069 sfp->state_hw_mask |= SFP_F_TX_DISABLE; 2070 if (sfp->gpio[GPIO_TX_FAULT]) 2071 sfp->state_hw_mask |= SFP_F_TX_FAULT; 2072 if (sfp->gpio[GPIO_LOS]) 2073 sfp->state_hw_mask |= SFP_F_LOS; 2074 2075 sfp->module_t_start_up = T_START_UP; 2076 sfp->module_t_wait = T_WAIT; 2077 2078 sfp->tx_fault_ignore = false; 2079 2080 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || 2081 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || 2082 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || 2083 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) 2084 sfp->mdio_protocol = MDIO_I2C_C45; 2085 else if (sfp->id.base.e1000_base_t) 2086 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; 2087 else 2088 sfp->mdio_protocol = MDIO_I2C_NONE; 2089 2090 sfp->quirk = sfp_lookup_quirk(&id); 2091 if (sfp->quirk && sfp->quirk->fixup) 2092 sfp->quirk->fixup(sfp); 2093 2094 return 0; 2095 } 2096 2097 static void sfp_sm_mod_remove(struct sfp *sfp) 2098 { 2099 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 2100 sfp_module_remove(sfp->sfp_bus); 2101 2102 sfp_hwmon_remove(sfp); 2103 2104 memset(&sfp->id, 0, sizeof(sfp->id)); 2105 sfp->module_power_mW = 0; 2106 2107 dev_info(sfp->dev, "module removed\n"); 2108 } 2109 2110 /* This state machine tracks the upstream's state */ 2111 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 2112 { 2113 switch (sfp->sm_dev_state) { 2114 default: 2115 if (event == SFP_E_DEV_ATTACH) 2116 sfp->sm_dev_state = SFP_DEV_DOWN; 2117 break; 2118 2119 case SFP_DEV_DOWN: 2120 if (event == SFP_E_DEV_DETACH) 2121 sfp->sm_dev_state = SFP_DEV_DETACHED; 2122 else if (event == SFP_E_DEV_UP) 2123 sfp->sm_dev_state = SFP_DEV_UP; 2124 break; 2125 2126 case SFP_DEV_UP: 2127 if (event == SFP_E_DEV_DETACH) 2128 sfp->sm_dev_state = SFP_DEV_DETACHED; 2129 else if (event == SFP_E_DEV_DOWN) 2130 sfp->sm_dev_state = SFP_DEV_DOWN; 2131 break; 2132 } 2133 } 2134 2135 /* This state machine tracks the insert/remove state of the module, probes 2136 * the on-board EEPROM, and sets up the power level. 2137 */ 2138 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 2139 { 2140 int err; 2141 2142 /* Handle remove event globally, it resets this state machine */ 2143 if (event == SFP_E_REMOVE) { 2144 if (sfp->sm_mod_state > SFP_MOD_PROBE) 2145 sfp_sm_mod_remove(sfp); 2146 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 2147 return; 2148 } 2149 2150 /* Handle device detach globally */ 2151 if (sfp->sm_dev_state < SFP_DEV_DOWN && 2152 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 2153 if (sfp->module_power_mW > 1000 && 2154 sfp->sm_mod_state > SFP_MOD_HPOWER) 2155 sfp_sm_mod_hpower(sfp, false); 2156 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2157 return; 2158 } 2159 2160 switch (sfp->sm_mod_state) { 2161 default: 2162 if (event == SFP_E_INSERT) { 2163 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 2164 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 2165 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 2166 } 2167 break; 2168 2169 case SFP_MOD_PROBE: 2170 /* Wait for T_PROBE_INIT to time out */ 2171 if (event != SFP_E_TIMEOUT) 2172 break; 2173 2174 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 2175 if (err == -EAGAIN) { 2176 if (sfp->sm_mod_tries_init && 2177 --sfp->sm_mod_tries_init) { 2178 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2179 break; 2180 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2181 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2182 dev_warn(sfp->dev, 2183 "please wait, module slow to respond\n"); 2184 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2185 break; 2186 } 2187 } 2188 if (err < 0) { 2189 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2190 break; 2191 } 2192 2193 err = sfp_hwmon_insert(sfp); 2194 if (err) 2195 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2196 ERR_PTR(err)); 2197 2198 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2199 fallthrough; 2200 case SFP_MOD_WAITDEV: 2201 /* Ensure that the device is attached before proceeding */ 2202 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2203 break; 2204 2205 /* Report the module insertion to the upstream device */ 2206 err = sfp_module_insert(sfp->sfp_bus, &sfp->id, 2207 sfp->quirk); 2208 if (err < 0) { 2209 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2210 break; 2211 } 2212 2213 /* If this is a power level 1 module, we are done */ 2214 if (sfp->module_power_mW <= 1000) 2215 goto insert; 2216 2217 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2218 fallthrough; 2219 case SFP_MOD_HPOWER: 2220 /* Enable high power mode */ 2221 err = sfp_sm_mod_hpower(sfp, true); 2222 if (err < 0) { 2223 if (err != -EAGAIN) { 2224 sfp_module_remove(sfp->sfp_bus); 2225 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2226 } else { 2227 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2228 } 2229 break; 2230 } 2231 2232 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2233 break; 2234 2235 case SFP_MOD_WAITPWR: 2236 /* Wait for T_HPOWER_LEVEL to time out */ 2237 if (event != SFP_E_TIMEOUT) 2238 break; 2239 2240 insert: 2241 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2242 break; 2243 2244 case SFP_MOD_PRESENT: 2245 case SFP_MOD_ERROR: 2246 break; 2247 } 2248 } 2249 2250 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2251 { 2252 unsigned long timeout; 2253 int ret; 2254 2255 /* Some events are global */ 2256 if (sfp->sm_state != SFP_S_DOWN && 2257 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2258 sfp->sm_dev_state != SFP_DEV_UP)) { 2259 if (sfp->sm_state == SFP_S_LINK_UP && 2260 sfp->sm_dev_state == SFP_DEV_UP) 2261 sfp_sm_link_down(sfp); 2262 if (sfp->sm_state > SFP_S_INIT) 2263 sfp_module_stop(sfp->sfp_bus); 2264 if (sfp->mod_phy) 2265 sfp_sm_phy_detach(sfp); 2266 if (sfp->i2c_mii) 2267 sfp_i2c_mdiobus_destroy(sfp); 2268 sfp_module_tx_disable(sfp); 2269 sfp_soft_stop_poll(sfp); 2270 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2271 return; 2272 } 2273 2274 /* The main state machine */ 2275 switch (sfp->sm_state) { 2276 case SFP_S_DOWN: 2277 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2278 sfp->sm_dev_state != SFP_DEV_UP) 2279 break; 2280 2281 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) 2282 sfp_soft_start_poll(sfp); 2283 2284 sfp_module_tx_enable(sfp); 2285 2286 /* Initialise the fault clearance retries */ 2287 sfp->sm_fault_retries = N_FAULT_INIT; 2288 2289 /* We need to check the TX_FAULT state, which is not defined 2290 * while TX_DISABLE is asserted. The earliest we want to do 2291 * anything (such as probe for a PHY) is 50ms (or more on 2292 * specific modules). 2293 */ 2294 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); 2295 break; 2296 2297 case SFP_S_WAIT: 2298 if (event != SFP_E_TIMEOUT) 2299 break; 2300 2301 if (sfp->state & SFP_F_TX_FAULT) { 2302 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2303 * from the TX_DISABLE deassertion for the module to 2304 * initialise, which is indicated by TX_FAULT 2305 * deasserting. 2306 */ 2307 timeout = sfp->module_t_start_up; 2308 if (timeout > sfp->module_t_wait) 2309 timeout -= sfp->module_t_wait; 2310 else 2311 timeout = 1; 2312 2313 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2314 } else { 2315 /* TX_FAULT is not asserted, assume the module has 2316 * finished initialising. 2317 */ 2318 goto init_done; 2319 } 2320 break; 2321 2322 case SFP_S_INIT: 2323 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2324 /* TX_FAULT is still asserted after t_init 2325 * or t_start_up, so assume there is a fault. 2326 */ 2327 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2328 sfp->sm_fault_retries == N_FAULT_INIT); 2329 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2330 init_done: 2331 /* Create mdiobus and start trying for PHY */ 2332 ret = sfp_sm_add_mdio_bus(sfp); 2333 if (ret < 0) { 2334 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2335 break; 2336 } 2337 sfp->sm_phy_retries = R_PHY_RETRY; 2338 goto phy_probe; 2339 } 2340 break; 2341 2342 case SFP_S_INIT_PHY: 2343 if (event != SFP_E_TIMEOUT) 2344 break; 2345 phy_probe: 2346 /* TX_FAULT deasserted or we timed out with TX_FAULT 2347 * clear. Probe for the PHY and check the LOS state. 2348 */ 2349 ret = sfp_sm_probe_for_phy(sfp); 2350 if (ret == -ENODEV) { 2351 if (--sfp->sm_phy_retries) { 2352 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2353 break; 2354 } else { 2355 dev_info(sfp->dev, "no PHY detected\n"); 2356 } 2357 } else if (ret) { 2358 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2359 break; 2360 } 2361 if (sfp_module_start(sfp->sfp_bus)) { 2362 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2363 break; 2364 } 2365 sfp_sm_link_check_los(sfp); 2366 2367 /* Reset the fault retry count */ 2368 sfp->sm_fault_retries = N_FAULT; 2369 break; 2370 2371 case SFP_S_INIT_TX_FAULT: 2372 if (event == SFP_E_TIMEOUT) { 2373 sfp_module_tx_fault_reset(sfp); 2374 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2375 } 2376 break; 2377 2378 case SFP_S_WAIT_LOS: 2379 if (event == SFP_E_TX_FAULT) 2380 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2381 else if (sfp_los_event_inactive(sfp, event)) 2382 sfp_sm_link_up(sfp); 2383 break; 2384 2385 case SFP_S_LINK_UP: 2386 if (event == SFP_E_TX_FAULT) { 2387 sfp_sm_link_down(sfp); 2388 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2389 } else if (sfp_los_event_active(sfp, event)) { 2390 sfp_sm_link_down(sfp); 2391 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2392 } 2393 break; 2394 2395 case SFP_S_TX_FAULT: 2396 if (event == SFP_E_TIMEOUT) { 2397 sfp_module_tx_fault_reset(sfp); 2398 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2399 } 2400 break; 2401 2402 case SFP_S_REINIT: 2403 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2404 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2405 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2406 dev_info(sfp->dev, "module transmit fault recovered\n"); 2407 sfp_sm_link_check_los(sfp); 2408 } 2409 break; 2410 2411 case SFP_S_TX_DISABLE: 2412 break; 2413 } 2414 } 2415 2416 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2417 { 2418 mutex_lock(&sfp->sm_mutex); 2419 2420 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2421 mod_state_to_str(sfp->sm_mod_state), 2422 dev_state_to_str(sfp->sm_dev_state), 2423 sm_state_to_str(sfp->sm_state), 2424 event_to_str(event)); 2425 2426 sfp_sm_device(sfp, event); 2427 sfp_sm_module(sfp, event); 2428 sfp_sm_main(sfp, event); 2429 2430 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2431 mod_state_to_str(sfp->sm_mod_state), 2432 dev_state_to_str(sfp->sm_dev_state), 2433 sm_state_to_str(sfp->sm_state)); 2434 2435 mutex_unlock(&sfp->sm_mutex); 2436 } 2437 2438 static void sfp_attach(struct sfp *sfp) 2439 { 2440 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2441 } 2442 2443 static void sfp_detach(struct sfp *sfp) 2444 { 2445 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2446 } 2447 2448 static void sfp_start(struct sfp *sfp) 2449 { 2450 sfp_sm_event(sfp, SFP_E_DEV_UP); 2451 } 2452 2453 static void sfp_stop(struct sfp *sfp) 2454 { 2455 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2456 } 2457 2458 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2459 { 2460 /* locking... and check module is present */ 2461 2462 if (sfp->id.ext.sff8472_compliance && 2463 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2464 modinfo->type = ETH_MODULE_SFF_8472; 2465 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2466 } else { 2467 modinfo->type = ETH_MODULE_SFF_8079; 2468 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2469 } 2470 return 0; 2471 } 2472 2473 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2474 u8 *data) 2475 { 2476 unsigned int first, last, len; 2477 int ret; 2478 2479 if (ee->len == 0) 2480 return -EINVAL; 2481 2482 first = ee->offset; 2483 last = ee->offset + ee->len; 2484 if (first < ETH_MODULE_SFF_8079_LEN) { 2485 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2486 len -= first; 2487 2488 ret = sfp_read(sfp, false, first, data, len); 2489 if (ret < 0) 2490 return ret; 2491 2492 first += len; 2493 data += len; 2494 } 2495 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2496 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2497 len -= first; 2498 first -= ETH_MODULE_SFF_8079_LEN; 2499 2500 ret = sfp_read(sfp, true, first, data, len); 2501 if (ret < 0) 2502 return ret; 2503 } 2504 return 0; 2505 } 2506 2507 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2508 const struct ethtool_module_eeprom *page, 2509 struct netlink_ext_ack *extack) 2510 { 2511 if (page->bank) { 2512 NL_SET_ERR_MSG(extack, "Banks not supported"); 2513 return -EOPNOTSUPP; 2514 } 2515 2516 if (page->page) { 2517 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2518 return -EOPNOTSUPP; 2519 } 2520 2521 if (page->i2c_address != 0x50 && 2522 page->i2c_address != 0x51) { 2523 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2524 return -EOPNOTSUPP; 2525 } 2526 2527 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2528 page->data, page->length); 2529 }; 2530 2531 static const struct sfp_socket_ops sfp_module_ops = { 2532 .attach = sfp_attach, 2533 .detach = sfp_detach, 2534 .start = sfp_start, 2535 .stop = sfp_stop, 2536 .module_info = sfp_module_info, 2537 .module_eeprom = sfp_module_eeprom, 2538 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2539 }; 2540 2541 static void sfp_timeout(struct work_struct *work) 2542 { 2543 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2544 2545 rtnl_lock(); 2546 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2547 rtnl_unlock(); 2548 } 2549 2550 static void sfp_check_state(struct sfp *sfp) 2551 { 2552 unsigned int state, i, changed; 2553 2554 mutex_lock(&sfp->st_mutex); 2555 state = sfp_get_state(sfp); 2556 changed = state ^ sfp->state; 2557 if (sfp->tx_fault_ignore) 2558 changed &= SFP_F_PRESENT | SFP_F_LOS; 2559 else 2560 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2561 2562 for (i = 0; i < GPIO_MAX; i++) 2563 if (changed & BIT(i)) 2564 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], 2565 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2566 2567 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2568 sfp->state = state; 2569 2570 rtnl_lock(); 2571 if (changed & SFP_F_PRESENT) 2572 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2573 SFP_E_INSERT : SFP_E_REMOVE); 2574 2575 if (changed & SFP_F_TX_FAULT) 2576 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2577 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2578 2579 if (changed & SFP_F_LOS) 2580 sfp_sm_event(sfp, state & SFP_F_LOS ? 2581 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2582 rtnl_unlock(); 2583 mutex_unlock(&sfp->st_mutex); 2584 } 2585 2586 static irqreturn_t sfp_irq(int irq, void *data) 2587 { 2588 struct sfp *sfp = data; 2589 2590 sfp_check_state(sfp); 2591 2592 return IRQ_HANDLED; 2593 } 2594 2595 static void sfp_poll(struct work_struct *work) 2596 { 2597 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2598 2599 sfp_check_state(sfp); 2600 2601 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2602 sfp->need_poll) 2603 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2604 } 2605 2606 static struct sfp *sfp_alloc(struct device *dev) 2607 { 2608 struct sfp *sfp; 2609 2610 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2611 if (!sfp) 2612 return ERR_PTR(-ENOMEM); 2613 2614 sfp->dev = dev; 2615 2616 mutex_init(&sfp->sm_mutex); 2617 mutex_init(&sfp->st_mutex); 2618 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2619 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2620 2621 sfp_hwmon_init(sfp); 2622 2623 return sfp; 2624 } 2625 2626 static void sfp_cleanup(void *data) 2627 { 2628 struct sfp *sfp = data; 2629 2630 sfp_hwmon_exit(sfp); 2631 2632 cancel_delayed_work_sync(&sfp->poll); 2633 cancel_delayed_work_sync(&sfp->timeout); 2634 if (sfp->i2c_mii) { 2635 mdiobus_unregister(sfp->i2c_mii); 2636 mdiobus_free(sfp->i2c_mii); 2637 } 2638 if (sfp->i2c) 2639 i2c_put_adapter(sfp->i2c); 2640 kfree(sfp); 2641 } 2642 2643 static int sfp_i2c_get(struct sfp *sfp) 2644 { 2645 struct fwnode_handle *h; 2646 struct i2c_adapter *i2c; 2647 int err; 2648 2649 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); 2650 if (IS_ERR(h)) { 2651 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2652 return -ENODEV; 2653 } 2654 2655 i2c = i2c_get_adapter_by_fwnode(h); 2656 if (!i2c) { 2657 err = -EPROBE_DEFER; 2658 goto put; 2659 } 2660 2661 err = sfp_i2c_configure(sfp, i2c); 2662 if (err) 2663 i2c_put_adapter(i2c); 2664 put: 2665 fwnode_handle_put(h); 2666 return err; 2667 } 2668 2669 static int sfp_probe(struct platform_device *pdev) 2670 { 2671 const struct sff_data *sff; 2672 char *sfp_irq_name; 2673 struct sfp *sfp; 2674 int err, i; 2675 2676 sfp = sfp_alloc(&pdev->dev); 2677 if (IS_ERR(sfp)) 2678 return PTR_ERR(sfp); 2679 2680 platform_set_drvdata(pdev, sfp); 2681 2682 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2683 if (err < 0) 2684 return err; 2685 2686 sff = device_get_match_data(sfp->dev); 2687 if (!sff) 2688 sff = &sfp_data; 2689 2690 sfp->type = sff; 2691 2692 err = sfp_i2c_get(sfp); 2693 if (err) 2694 return err; 2695 2696 for (i = 0; i < GPIO_MAX; i++) 2697 if (sff->gpios & BIT(i)) { 2698 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2699 gpio_names[i], gpio_flags[i]); 2700 if (IS_ERR(sfp->gpio[i])) 2701 return PTR_ERR(sfp->gpio[i]); 2702 } 2703 2704 sfp->state_hw_mask = SFP_F_PRESENT; 2705 2706 sfp->get_state = sfp_gpio_get_state; 2707 sfp->set_state = sfp_gpio_set_state; 2708 2709 /* Modules that have no detect signal are always present */ 2710 if (!(sfp->gpio[GPIO_MODDEF0])) 2711 sfp->get_state = sff_gpio_get_state; 2712 2713 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2714 &sfp->max_power_mW); 2715 if (sfp->max_power_mW < 1000) { 2716 if (sfp->max_power_mW) 2717 dev_warn(sfp->dev, 2718 "Firmware bug: host maximum power should be at least 1W\n"); 2719 sfp->max_power_mW = 1000; 2720 } 2721 2722 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2723 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2724 2725 /* Get the initial state, and always signal TX disable, 2726 * since the network interface will not be up. 2727 */ 2728 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2729 2730 if (sfp->gpio[GPIO_RATE_SELECT] && 2731 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2732 sfp->state |= SFP_F_RATE_SELECT; 2733 sfp_set_state(sfp, sfp->state); 2734 sfp_module_tx_disable(sfp); 2735 if (sfp->state & SFP_F_PRESENT) { 2736 rtnl_lock(); 2737 sfp_sm_event(sfp, SFP_E_INSERT); 2738 rtnl_unlock(); 2739 } 2740 2741 for (i = 0; i < GPIO_MAX; i++) { 2742 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2743 continue; 2744 2745 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2746 if (sfp->gpio_irq[i] < 0) { 2747 sfp->gpio_irq[i] = 0; 2748 sfp->need_poll = true; 2749 continue; 2750 } 2751 2752 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2753 "%s-%s", dev_name(sfp->dev), 2754 gpio_names[i]); 2755 2756 if (!sfp_irq_name) 2757 return -ENOMEM; 2758 2759 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2760 NULL, sfp_irq, 2761 IRQF_ONESHOT | 2762 IRQF_TRIGGER_RISING | 2763 IRQF_TRIGGER_FALLING, 2764 sfp_irq_name, sfp); 2765 if (err) { 2766 sfp->gpio_irq[i] = 0; 2767 sfp->need_poll = true; 2768 } 2769 } 2770 2771 if (sfp->need_poll) 2772 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2773 2774 /* We could have an issue in cases no Tx disable pin is available or 2775 * wired as modules using a laser as their light source will continue to 2776 * be active when the fiber is removed. This could be a safety issue and 2777 * we should at least warn the user about that. 2778 */ 2779 if (!sfp->gpio[GPIO_TX_DISABLE]) 2780 dev_warn(sfp->dev, 2781 "No tx_disable pin: SFP modules will always be emitting.\n"); 2782 2783 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2784 if (!sfp->sfp_bus) 2785 return -ENOMEM; 2786 2787 sfp_debugfs_init(sfp); 2788 2789 return 0; 2790 } 2791 2792 static int sfp_remove(struct platform_device *pdev) 2793 { 2794 struct sfp *sfp = platform_get_drvdata(pdev); 2795 2796 sfp_debugfs_exit(sfp); 2797 sfp_unregister_socket(sfp->sfp_bus); 2798 2799 rtnl_lock(); 2800 sfp_sm_event(sfp, SFP_E_REMOVE); 2801 rtnl_unlock(); 2802 2803 return 0; 2804 } 2805 2806 static void sfp_shutdown(struct platform_device *pdev) 2807 { 2808 struct sfp *sfp = platform_get_drvdata(pdev); 2809 int i; 2810 2811 for (i = 0; i < GPIO_MAX; i++) { 2812 if (!sfp->gpio_irq[i]) 2813 continue; 2814 2815 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2816 } 2817 2818 cancel_delayed_work_sync(&sfp->poll); 2819 cancel_delayed_work_sync(&sfp->timeout); 2820 } 2821 2822 static struct platform_driver sfp_driver = { 2823 .probe = sfp_probe, 2824 .remove = sfp_remove, 2825 .shutdown = sfp_shutdown, 2826 .driver = { 2827 .name = "sfp", 2828 .of_match_table = sfp_of_match, 2829 }, 2830 }; 2831 2832 static int sfp_init(void) 2833 { 2834 poll_jiffies = msecs_to_jiffies(100); 2835 2836 return platform_driver_register(&sfp_driver); 2837 } 2838 module_init(sfp_init); 2839 2840 static void sfp_exit(void) 2841 { 2842 platform_driver_unregister(&sfp_driver); 2843 } 2844 module_exit(sfp_exit); 2845 2846 MODULE_ALIAS("platform:sfp"); 2847 MODULE_AUTHOR("Russell King"); 2848 MODULE_LICENSE("GPL v2"); 2849