1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/acpi.h> 3 #include <linux/ctype.h> 4 #include <linux/debugfs.h> 5 #include <linux/delay.h> 6 #include <linux/gpio/consumer.h> 7 #include <linux/hwmon.h> 8 #include <linux/i2c.h> 9 #include <linux/interrupt.h> 10 #include <linux/jiffies.h> 11 #include <linux/mdio/mdio-i2c.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/of.h> 15 #include <linux/phy.h> 16 #include <linux/platform_device.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "sfp.h" 22 #include "swphy.h" 23 24 enum { 25 GPIO_MODDEF0, 26 GPIO_LOS, 27 GPIO_TX_FAULT, 28 GPIO_TX_DISABLE, 29 GPIO_RATE_SELECT, 30 GPIO_MAX, 31 32 SFP_F_PRESENT = BIT(GPIO_MODDEF0), 33 SFP_F_LOS = BIT(GPIO_LOS), 34 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), 35 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), 36 SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT), 37 38 SFP_E_INSERT = 0, 39 SFP_E_REMOVE, 40 SFP_E_DEV_ATTACH, 41 SFP_E_DEV_DETACH, 42 SFP_E_DEV_DOWN, 43 SFP_E_DEV_UP, 44 SFP_E_TX_FAULT, 45 SFP_E_TX_CLEAR, 46 SFP_E_LOS_HIGH, 47 SFP_E_LOS_LOW, 48 SFP_E_TIMEOUT, 49 50 SFP_MOD_EMPTY = 0, 51 SFP_MOD_ERROR, 52 SFP_MOD_PROBE, 53 SFP_MOD_WAITDEV, 54 SFP_MOD_HPOWER, 55 SFP_MOD_WAITPWR, 56 SFP_MOD_PRESENT, 57 58 SFP_DEV_DETACHED = 0, 59 SFP_DEV_DOWN, 60 SFP_DEV_UP, 61 62 SFP_S_DOWN = 0, 63 SFP_S_FAIL, 64 SFP_S_WAIT, 65 SFP_S_INIT, 66 SFP_S_INIT_PHY, 67 SFP_S_INIT_TX_FAULT, 68 SFP_S_WAIT_LOS, 69 SFP_S_LINK_UP, 70 SFP_S_TX_FAULT, 71 SFP_S_REINIT, 72 SFP_S_TX_DISABLE, 73 }; 74 75 static const char * const mod_state_strings[] = { 76 [SFP_MOD_EMPTY] = "empty", 77 [SFP_MOD_ERROR] = "error", 78 [SFP_MOD_PROBE] = "probe", 79 [SFP_MOD_WAITDEV] = "waitdev", 80 [SFP_MOD_HPOWER] = "hpower", 81 [SFP_MOD_WAITPWR] = "waitpwr", 82 [SFP_MOD_PRESENT] = "present", 83 }; 84 85 static const char *mod_state_to_str(unsigned short mod_state) 86 { 87 if (mod_state >= ARRAY_SIZE(mod_state_strings)) 88 return "Unknown module state"; 89 return mod_state_strings[mod_state]; 90 } 91 92 static const char * const dev_state_strings[] = { 93 [SFP_DEV_DETACHED] = "detached", 94 [SFP_DEV_DOWN] = "down", 95 [SFP_DEV_UP] = "up", 96 }; 97 98 static const char *dev_state_to_str(unsigned short dev_state) 99 { 100 if (dev_state >= ARRAY_SIZE(dev_state_strings)) 101 return "Unknown device state"; 102 return dev_state_strings[dev_state]; 103 } 104 105 static const char * const event_strings[] = { 106 [SFP_E_INSERT] = "insert", 107 [SFP_E_REMOVE] = "remove", 108 [SFP_E_DEV_ATTACH] = "dev_attach", 109 [SFP_E_DEV_DETACH] = "dev_detach", 110 [SFP_E_DEV_DOWN] = "dev_down", 111 [SFP_E_DEV_UP] = "dev_up", 112 [SFP_E_TX_FAULT] = "tx_fault", 113 [SFP_E_TX_CLEAR] = "tx_clear", 114 [SFP_E_LOS_HIGH] = "los_high", 115 [SFP_E_LOS_LOW] = "los_low", 116 [SFP_E_TIMEOUT] = "timeout", 117 }; 118 119 static const char *event_to_str(unsigned short event) 120 { 121 if (event >= ARRAY_SIZE(event_strings)) 122 return "Unknown event"; 123 return event_strings[event]; 124 } 125 126 static const char * const sm_state_strings[] = { 127 [SFP_S_DOWN] = "down", 128 [SFP_S_FAIL] = "fail", 129 [SFP_S_WAIT] = "wait", 130 [SFP_S_INIT] = "init", 131 [SFP_S_INIT_PHY] = "init_phy", 132 [SFP_S_INIT_TX_FAULT] = "init_tx_fault", 133 [SFP_S_WAIT_LOS] = "wait_los", 134 [SFP_S_LINK_UP] = "link_up", 135 [SFP_S_TX_FAULT] = "tx_fault", 136 [SFP_S_REINIT] = "reinit", 137 [SFP_S_TX_DISABLE] = "tx_disable", 138 }; 139 140 static const char *sm_state_to_str(unsigned short sm_state) 141 { 142 if (sm_state >= ARRAY_SIZE(sm_state_strings)) 143 return "Unknown state"; 144 return sm_state_strings[sm_state]; 145 } 146 147 static const char *gpio_of_names[] = { 148 "mod-def0", 149 "los", 150 "tx-fault", 151 "tx-disable", 152 "rate-select0", 153 }; 154 155 static const enum gpiod_flags gpio_flags[] = { 156 GPIOD_IN, 157 GPIOD_IN, 158 GPIOD_IN, 159 GPIOD_ASIS, 160 GPIOD_ASIS, 161 }; 162 163 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a 164 * non-cooled module to initialise its laser safety circuitry. We wait 165 * an initial T_WAIT period before we check the tx fault to give any PHY 166 * on board (for a copper SFP) time to initialise. 167 */ 168 #define T_WAIT msecs_to_jiffies(50) 169 #define T_START_UP msecs_to_jiffies(300) 170 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) 171 172 /* t_reset is the time required to assert the TX_DISABLE signal to reset 173 * an indicated TX_FAULT. 174 */ 175 #define T_RESET_US 10 176 #define T_FAULT_RECOVER msecs_to_jiffies(1000) 177 178 /* N_FAULT_INIT is the number of recovery attempts at module initialisation 179 * time. If the TX_FAULT signal is not deasserted after this number of 180 * attempts at clearing it, we decide that the module is faulty. 181 * N_FAULT is the same but after the module has initialised. 182 */ 183 #define N_FAULT_INIT 5 184 #define N_FAULT 5 185 186 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. 187 * R_PHY_RETRY is the number of attempts. 188 */ 189 #define T_PHY_RETRY msecs_to_jiffies(50) 190 #define R_PHY_RETRY 12 191 192 /* SFP module presence detection is poor: the three MOD DEF signals are 193 * the same length on the PCB, which means it's possible for MOD DEF 0 to 194 * connect before the I2C bus on MOD DEF 1/2. 195 * 196 * The SFF-8472 specifies t_serial ("Time from power on until module is 197 * ready for data transmission over the two wire serial bus.") as 300ms. 198 */ 199 #define T_SERIAL msecs_to_jiffies(300) 200 #define T_HPOWER_LEVEL msecs_to_jiffies(300) 201 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) 202 #define R_PROBE_RETRY_INIT 10 203 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) 204 #define R_PROBE_RETRY_SLOW 12 205 206 /* SFP modules appear to always have their PHY configured for bus address 207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22). 208 */ 209 #define SFP_PHY_ADDR 22 210 211 struct sff_data { 212 unsigned int gpios; 213 bool (*module_supported)(const struct sfp_eeprom_id *id); 214 }; 215 216 struct sfp { 217 struct device *dev; 218 struct i2c_adapter *i2c; 219 struct mii_bus *i2c_mii; 220 struct sfp_bus *sfp_bus; 221 struct phy_device *mod_phy; 222 const struct sff_data *type; 223 size_t i2c_block_size; 224 u32 max_power_mW; 225 226 unsigned int (*get_state)(struct sfp *); 227 void (*set_state)(struct sfp *, unsigned int); 228 int (*read)(struct sfp *, bool, u8, void *, size_t); 229 int (*write)(struct sfp *, bool, u8, void *, size_t); 230 231 struct gpio_desc *gpio[GPIO_MAX]; 232 int gpio_irq[GPIO_MAX]; 233 234 bool need_poll; 235 236 struct mutex st_mutex; /* Protects state */ 237 unsigned int state_soft_mask; 238 unsigned int state; 239 struct delayed_work poll; 240 struct delayed_work timeout; 241 struct mutex sm_mutex; /* Protects state machine */ 242 unsigned char sm_mod_state; 243 unsigned char sm_mod_tries_init; 244 unsigned char sm_mod_tries; 245 unsigned char sm_dev_state; 246 unsigned short sm_state; 247 unsigned char sm_fault_retries; 248 unsigned char sm_phy_retries; 249 250 struct sfp_eeprom_id id; 251 unsigned int module_power_mW; 252 unsigned int module_t_start_up; 253 bool tx_fault_ignore; 254 255 #if IS_ENABLED(CONFIG_HWMON) 256 struct sfp_diag diag; 257 struct delayed_work hwmon_probe; 258 unsigned int hwmon_tries; 259 struct device *hwmon_dev; 260 char *hwmon_name; 261 #endif 262 263 #if IS_ENABLED(CONFIG_DEBUG_FS) 264 struct dentry *debugfs_dir; 265 #endif 266 }; 267 268 static bool sff_module_supported(const struct sfp_eeprom_id *id) 269 { 270 return id->base.phys_id == SFF8024_ID_SFF_8472 && 271 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; 272 } 273 274 static const struct sff_data sff_data = { 275 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, 276 .module_supported = sff_module_supported, 277 }; 278 279 static bool sfp_module_supported(const struct sfp_eeprom_id *id) 280 { 281 if (id->base.phys_id == SFF8024_ID_SFP && 282 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) 283 return true; 284 285 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored 286 * phys id SFF instead of SFP. Therefore mark this module explicitly 287 * as supported based on vendor name and pn match. 288 */ 289 if (id->base.phys_id == SFF8024_ID_SFF_8472 && 290 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && 291 !memcmp(id->base.vendor_name, "UBNT ", 16) && 292 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) 293 return true; 294 295 return false; 296 } 297 298 static const struct sff_data sfp_data = { 299 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | 300 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT, 301 .module_supported = sfp_module_supported, 302 }; 303 304 static const struct of_device_id sfp_of_match[] = { 305 { .compatible = "sff,sff", .data = &sff_data, }, 306 { .compatible = "sff,sfp", .data = &sfp_data, }, 307 { }, 308 }; 309 MODULE_DEVICE_TABLE(of, sfp_of_match); 310 311 static unsigned long poll_jiffies; 312 313 static unsigned int sfp_gpio_get_state(struct sfp *sfp) 314 { 315 unsigned int i, state, v; 316 317 for (i = state = 0; i < GPIO_MAX; i++) { 318 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 319 continue; 320 321 v = gpiod_get_value_cansleep(sfp->gpio[i]); 322 if (v) 323 state |= BIT(i); 324 } 325 326 return state; 327 } 328 329 static unsigned int sff_gpio_get_state(struct sfp *sfp) 330 { 331 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; 332 } 333 334 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) 335 { 336 if (state & SFP_F_PRESENT) { 337 /* If the module is present, drive the signals */ 338 if (sfp->gpio[GPIO_TX_DISABLE]) 339 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], 340 state & SFP_F_TX_DISABLE); 341 if (state & SFP_F_RATE_SELECT) 342 gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT], 343 state & SFP_F_RATE_SELECT); 344 } else { 345 /* Otherwise, let them float to the pull-ups */ 346 if (sfp->gpio[GPIO_TX_DISABLE]) 347 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); 348 if (state & SFP_F_RATE_SELECT) 349 gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]); 350 } 351 } 352 353 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 354 size_t len) 355 { 356 struct i2c_msg msgs[2]; 357 u8 bus_addr = a2 ? 0x51 : 0x50; 358 size_t block_size = sfp->i2c_block_size; 359 size_t this_len; 360 int ret; 361 362 msgs[0].addr = bus_addr; 363 msgs[0].flags = 0; 364 msgs[0].len = 1; 365 msgs[0].buf = &dev_addr; 366 msgs[1].addr = bus_addr; 367 msgs[1].flags = I2C_M_RD; 368 msgs[1].len = len; 369 msgs[1].buf = buf; 370 371 while (len) { 372 this_len = len; 373 if (this_len > block_size) 374 this_len = block_size; 375 376 msgs[1].len = this_len; 377 378 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 379 if (ret < 0) 380 return ret; 381 382 if (ret != ARRAY_SIZE(msgs)) 383 break; 384 385 msgs[1].buf += this_len; 386 dev_addr += this_len; 387 len -= this_len; 388 } 389 390 return msgs[1].buf - (u8 *)buf; 391 } 392 393 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, 394 size_t len) 395 { 396 struct i2c_msg msgs[1]; 397 u8 bus_addr = a2 ? 0x51 : 0x50; 398 int ret; 399 400 msgs[0].addr = bus_addr; 401 msgs[0].flags = 0; 402 msgs[0].len = 1 + len; 403 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); 404 if (!msgs[0].buf) 405 return -ENOMEM; 406 407 msgs[0].buf[0] = dev_addr; 408 memcpy(&msgs[0].buf[1], buf, len); 409 410 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); 411 412 kfree(msgs[0].buf); 413 414 if (ret < 0) 415 return ret; 416 417 return ret == ARRAY_SIZE(msgs) ? len : 0; 418 } 419 420 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) 421 { 422 struct mii_bus *i2c_mii; 423 int ret; 424 425 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) 426 return -EINVAL; 427 428 sfp->i2c = i2c; 429 sfp->read = sfp_i2c_read; 430 sfp->write = sfp_i2c_write; 431 432 i2c_mii = mdio_i2c_alloc(sfp->dev, i2c); 433 if (IS_ERR(i2c_mii)) 434 return PTR_ERR(i2c_mii); 435 436 i2c_mii->name = "SFP I2C Bus"; 437 i2c_mii->phy_mask = ~0; 438 439 ret = mdiobus_register(i2c_mii); 440 if (ret < 0) { 441 mdiobus_free(i2c_mii); 442 return ret; 443 } 444 445 sfp->i2c_mii = i2c_mii; 446 447 return 0; 448 } 449 450 /* Interface */ 451 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 452 { 453 return sfp->read(sfp, a2, addr, buf, len); 454 } 455 456 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) 457 { 458 return sfp->write(sfp, a2, addr, buf, len); 459 } 460 461 static unsigned int sfp_soft_get_state(struct sfp *sfp) 462 { 463 unsigned int state = 0; 464 u8 status; 465 int ret; 466 467 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); 468 if (ret == sizeof(status)) { 469 if (status & SFP_STATUS_RX_LOS) 470 state |= SFP_F_LOS; 471 if (status & SFP_STATUS_TX_FAULT) 472 state |= SFP_F_TX_FAULT; 473 } else { 474 dev_err_ratelimited(sfp->dev, 475 "failed to read SFP soft status: %pe\n", 476 ERR_PTR(ret)); 477 /* Preserve the current state */ 478 state = sfp->state; 479 } 480 481 return state & sfp->state_soft_mask; 482 } 483 484 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state) 485 { 486 u8 status; 487 488 if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) == 489 sizeof(status)) { 490 if (state & SFP_F_TX_DISABLE) 491 status |= SFP_STATUS_TX_DISABLE_FORCE; 492 else 493 status &= ~SFP_STATUS_TX_DISABLE_FORCE; 494 495 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status)); 496 } 497 } 498 499 static void sfp_soft_start_poll(struct sfp *sfp) 500 { 501 const struct sfp_eeprom_id *id = &sfp->id; 502 503 sfp->state_soft_mask = 0; 504 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE && 505 !sfp->gpio[GPIO_TX_DISABLE]) 506 sfp->state_soft_mask |= SFP_F_TX_DISABLE; 507 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT && 508 !sfp->gpio[GPIO_TX_FAULT]) 509 sfp->state_soft_mask |= SFP_F_TX_FAULT; 510 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS && 511 !sfp->gpio[GPIO_LOS]) 512 sfp->state_soft_mask |= SFP_F_LOS; 513 514 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && 515 !sfp->need_poll) 516 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 517 } 518 519 static void sfp_soft_stop_poll(struct sfp *sfp) 520 { 521 sfp->state_soft_mask = 0; 522 } 523 524 static unsigned int sfp_get_state(struct sfp *sfp) 525 { 526 unsigned int state = sfp->get_state(sfp); 527 528 if (state & SFP_F_PRESENT && 529 sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT)) 530 state |= sfp_soft_get_state(sfp); 531 532 return state; 533 } 534 535 static void sfp_set_state(struct sfp *sfp, unsigned int state) 536 { 537 sfp->set_state(sfp, state); 538 539 if (state & SFP_F_PRESENT && 540 sfp->state_soft_mask & SFP_F_TX_DISABLE) 541 sfp_soft_set_state(sfp, state); 542 } 543 544 static unsigned int sfp_check(void *buf, size_t len) 545 { 546 u8 *p, check; 547 548 for (p = buf, check = 0; len; p++, len--) 549 check += *p; 550 551 return check; 552 } 553 554 /* hwmon */ 555 #if IS_ENABLED(CONFIG_HWMON) 556 static umode_t sfp_hwmon_is_visible(const void *data, 557 enum hwmon_sensor_types type, 558 u32 attr, int channel) 559 { 560 const struct sfp *sfp = data; 561 562 switch (type) { 563 case hwmon_temp: 564 switch (attr) { 565 case hwmon_temp_min_alarm: 566 case hwmon_temp_max_alarm: 567 case hwmon_temp_lcrit_alarm: 568 case hwmon_temp_crit_alarm: 569 case hwmon_temp_min: 570 case hwmon_temp_max: 571 case hwmon_temp_lcrit: 572 case hwmon_temp_crit: 573 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 574 return 0; 575 fallthrough; 576 case hwmon_temp_input: 577 case hwmon_temp_label: 578 return 0444; 579 default: 580 return 0; 581 } 582 case hwmon_in: 583 switch (attr) { 584 case hwmon_in_min_alarm: 585 case hwmon_in_max_alarm: 586 case hwmon_in_lcrit_alarm: 587 case hwmon_in_crit_alarm: 588 case hwmon_in_min: 589 case hwmon_in_max: 590 case hwmon_in_lcrit: 591 case hwmon_in_crit: 592 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 593 return 0; 594 fallthrough; 595 case hwmon_in_input: 596 case hwmon_in_label: 597 return 0444; 598 default: 599 return 0; 600 } 601 case hwmon_curr: 602 switch (attr) { 603 case hwmon_curr_min_alarm: 604 case hwmon_curr_max_alarm: 605 case hwmon_curr_lcrit_alarm: 606 case hwmon_curr_crit_alarm: 607 case hwmon_curr_min: 608 case hwmon_curr_max: 609 case hwmon_curr_lcrit: 610 case hwmon_curr_crit: 611 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 612 return 0; 613 fallthrough; 614 case hwmon_curr_input: 615 case hwmon_curr_label: 616 return 0444; 617 default: 618 return 0; 619 } 620 case hwmon_power: 621 /* External calibration of receive power requires 622 * floating point arithmetic. Doing that in the kernel 623 * is not easy, so just skip it. If the module does 624 * not require external calibration, we can however 625 * show receiver power, since FP is then not needed. 626 */ 627 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && 628 channel == 1) 629 return 0; 630 switch (attr) { 631 case hwmon_power_min_alarm: 632 case hwmon_power_max_alarm: 633 case hwmon_power_lcrit_alarm: 634 case hwmon_power_crit_alarm: 635 case hwmon_power_min: 636 case hwmon_power_max: 637 case hwmon_power_lcrit: 638 case hwmon_power_crit: 639 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) 640 return 0; 641 fallthrough; 642 case hwmon_power_input: 643 case hwmon_power_label: 644 return 0444; 645 default: 646 return 0; 647 } 648 default: 649 return 0; 650 } 651 } 652 653 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) 654 { 655 __be16 val; 656 int err; 657 658 err = sfp_read(sfp, true, reg, &val, sizeof(val)); 659 if (err < 0) 660 return err; 661 662 *value = be16_to_cpu(val); 663 664 return 0; 665 } 666 667 static void sfp_hwmon_to_rx_power(long *value) 668 { 669 *value = DIV_ROUND_CLOSEST(*value, 10); 670 } 671 672 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, 673 long *value) 674 { 675 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) 676 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; 677 } 678 679 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) 680 { 681 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), 682 be16_to_cpu(sfp->diag.cal_t_offset), value); 683 684 if (*value >= 0x8000) 685 *value -= 0x10000; 686 687 *value = DIV_ROUND_CLOSEST(*value * 1000, 256); 688 } 689 690 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) 691 { 692 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), 693 be16_to_cpu(sfp->diag.cal_v_offset), value); 694 695 *value = DIV_ROUND_CLOSEST(*value, 10); 696 } 697 698 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) 699 { 700 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), 701 be16_to_cpu(sfp->diag.cal_txi_offset), value); 702 703 *value = DIV_ROUND_CLOSEST(*value, 500); 704 } 705 706 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) 707 { 708 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), 709 be16_to_cpu(sfp->diag.cal_txpwr_offset), value); 710 711 *value = DIV_ROUND_CLOSEST(*value, 10); 712 } 713 714 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) 715 { 716 int err; 717 718 err = sfp_hwmon_read_sensor(sfp, reg, value); 719 if (err < 0) 720 return err; 721 722 sfp_hwmon_calibrate_temp(sfp, value); 723 724 return 0; 725 } 726 727 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) 728 { 729 int err; 730 731 err = sfp_hwmon_read_sensor(sfp, reg, value); 732 if (err < 0) 733 return err; 734 735 sfp_hwmon_calibrate_vcc(sfp, value); 736 737 return 0; 738 } 739 740 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) 741 { 742 int err; 743 744 err = sfp_hwmon_read_sensor(sfp, reg, value); 745 if (err < 0) 746 return err; 747 748 sfp_hwmon_calibrate_bias(sfp, value); 749 750 return 0; 751 } 752 753 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) 754 { 755 int err; 756 757 err = sfp_hwmon_read_sensor(sfp, reg, value); 758 if (err < 0) 759 return err; 760 761 sfp_hwmon_calibrate_tx_power(sfp, value); 762 763 return 0; 764 } 765 766 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) 767 { 768 int err; 769 770 err = sfp_hwmon_read_sensor(sfp, reg, value); 771 if (err < 0) 772 return err; 773 774 sfp_hwmon_to_rx_power(value); 775 776 return 0; 777 } 778 779 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) 780 { 781 u8 status; 782 int err; 783 784 switch (attr) { 785 case hwmon_temp_input: 786 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); 787 788 case hwmon_temp_lcrit: 789 *value = be16_to_cpu(sfp->diag.temp_low_alarm); 790 sfp_hwmon_calibrate_temp(sfp, value); 791 return 0; 792 793 case hwmon_temp_min: 794 *value = be16_to_cpu(sfp->diag.temp_low_warn); 795 sfp_hwmon_calibrate_temp(sfp, value); 796 return 0; 797 case hwmon_temp_max: 798 *value = be16_to_cpu(sfp->diag.temp_high_warn); 799 sfp_hwmon_calibrate_temp(sfp, value); 800 return 0; 801 802 case hwmon_temp_crit: 803 *value = be16_to_cpu(sfp->diag.temp_high_alarm); 804 sfp_hwmon_calibrate_temp(sfp, value); 805 return 0; 806 807 case hwmon_temp_lcrit_alarm: 808 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 809 if (err < 0) 810 return err; 811 812 *value = !!(status & SFP_ALARM0_TEMP_LOW); 813 return 0; 814 815 case hwmon_temp_min_alarm: 816 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 817 if (err < 0) 818 return err; 819 820 *value = !!(status & SFP_WARN0_TEMP_LOW); 821 return 0; 822 823 case hwmon_temp_max_alarm: 824 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 825 if (err < 0) 826 return err; 827 828 *value = !!(status & SFP_WARN0_TEMP_HIGH); 829 return 0; 830 831 case hwmon_temp_crit_alarm: 832 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 833 if (err < 0) 834 return err; 835 836 *value = !!(status & SFP_ALARM0_TEMP_HIGH); 837 return 0; 838 default: 839 return -EOPNOTSUPP; 840 } 841 842 return -EOPNOTSUPP; 843 } 844 845 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) 846 { 847 u8 status; 848 int err; 849 850 switch (attr) { 851 case hwmon_in_input: 852 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); 853 854 case hwmon_in_lcrit: 855 *value = be16_to_cpu(sfp->diag.volt_low_alarm); 856 sfp_hwmon_calibrate_vcc(sfp, value); 857 return 0; 858 859 case hwmon_in_min: 860 *value = be16_to_cpu(sfp->diag.volt_low_warn); 861 sfp_hwmon_calibrate_vcc(sfp, value); 862 return 0; 863 864 case hwmon_in_max: 865 *value = be16_to_cpu(sfp->diag.volt_high_warn); 866 sfp_hwmon_calibrate_vcc(sfp, value); 867 return 0; 868 869 case hwmon_in_crit: 870 *value = be16_to_cpu(sfp->diag.volt_high_alarm); 871 sfp_hwmon_calibrate_vcc(sfp, value); 872 return 0; 873 874 case hwmon_in_lcrit_alarm: 875 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 876 if (err < 0) 877 return err; 878 879 *value = !!(status & SFP_ALARM0_VCC_LOW); 880 return 0; 881 882 case hwmon_in_min_alarm: 883 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 884 if (err < 0) 885 return err; 886 887 *value = !!(status & SFP_WARN0_VCC_LOW); 888 return 0; 889 890 case hwmon_in_max_alarm: 891 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 892 if (err < 0) 893 return err; 894 895 *value = !!(status & SFP_WARN0_VCC_HIGH); 896 return 0; 897 898 case hwmon_in_crit_alarm: 899 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 900 if (err < 0) 901 return err; 902 903 *value = !!(status & SFP_ALARM0_VCC_HIGH); 904 return 0; 905 default: 906 return -EOPNOTSUPP; 907 } 908 909 return -EOPNOTSUPP; 910 } 911 912 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) 913 { 914 u8 status; 915 int err; 916 917 switch (attr) { 918 case hwmon_curr_input: 919 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); 920 921 case hwmon_curr_lcrit: 922 *value = be16_to_cpu(sfp->diag.bias_low_alarm); 923 sfp_hwmon_calibrate_bias(sfp, value); 924 return 0; 925 926 case hwmon_curr_min: 927 *value = be16_to_cpu(sfp->diag.bias_low_warn); 928 sfp_hwmon_calibrate_bias(sfp, value); 929 return 0; 930 931 case hwmon_curr_max: 932 *value = be16_to_cpu(sfp->diag.bias_high_warn); 933 sfp_hwmon_calibrate_bias(sfp, value); 934 return 0; 935 936 case hwmon_curr_crit: 937 *value = be16_to_cpu(sfp->diag.bias_high_alarm); 938 sfp_hwmon_calibrate_bias(sfp, value); 939 return 0; 940 941 case hwmon_curr_lcrit_alarm: 942 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 943 if (err < 0) 944 return err; 945 946 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); 947 return 0; 948 949 case hwmon_curr_min_alarm: 950 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 951 if (err < 0) 952 return err; 953 954 *value = !!(status & SFP_WARN0_TX_BIAS_LOW); 955 return 0; 956 957 case hwmon_curr_max_alarm: 958 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 959 if (err < 0) 960 return err; 961 962 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); 963 return 0; 964 965 case hwmon_curr_crit_alarm: 966 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 967 if (err < 0) 968 return err; 969 970 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); 971 return 0; 972 default: 973 return -EOPNOTSUPP; 974 } 975 976 return -EOPNOTSUPP; 977 } 978 979 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) 980 { 981 u8 status; 982 int err; 983 984 switch (attr) { 985 case hwmon_power_input: 986 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); 987 988 case hwmon_power_lcrit: 989 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); 990 sfp_hwmon_calibrate_tx_power(sfp, value); 991 return 0; 992 993 case hwmon_power_min: 994 *value = be16_to_cpu(sfp->diag.txpwr_low_warn); 995 sfp_hwmon_calibrate_tx_power(sfp, value); 996 return 0; 997 998 case hwmon_power_max: 999 *value = be16_to_cpu(sfp->diag.txpwr_high_warn); 1000 sfp_hwmon_calibrate_tx_power(sfp, value); 1001 return 0; 1002 1003 case hwmon_power_crit: 1004 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); 1005 sfp_hwmon_calibrate_tx_power(sfp, value); 1006 return 0; 1007 1008 case hwmon_power_lcrit_alarm: 1009 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1010 if (err < 0) 1011 return err; 1012 1013 *value = !!(status & SFP_ALARM0_TXPWR_LOW); 1014 return 0; 1015 1016 case hwmon_power_min_alarm: 1017 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1018 if (err < 0) 1019 return err; 1020 1021 *value = !!(status & SFP_WARN0_TXPWR_LOW); 1022 return 0; 1023 1024 case hwmon_power_max_alarm: 1025 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); 1026 if (err < 0) 1027 return err; 1028 1029 *value = !!(status & SFP_WARN0_TXPWR_HIGH); 1030 return 0; 1031 1032 case hwmon_power_crit_alarm: 1033 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); 1034 if (err < 0) 1035 return err; 1036 1037 *value = !!(status & SFP_ALARM0_TXPWR_HIGH); 1038 return 0; 1039 default: 1040 return -EOPNOTSUPP; 1041 } 1042 1043 return -EOPNOTSUPP; 1044 } 1045 1046 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) 1047 { 1048 u8 status; 1049 int err; 1050 1051 switch (attr) { 1052 case hwmon_power_input: 1053 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); 1054 1055 case hwmon_power_lcrit: 1056 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); 1057 sfp_hwmon_to_rx_power(value); 1058 return 0; 1059 1060 case hwmon_power_min: 1061 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); 1062 sfp_hwmon_to_rx_power(value); 1063 return 0; 1064 1065 case hwmon_power_max: 1066 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); 1067 sfp_hwmon_to_rx_power(value); 1068 return 0; 1069 1070 case hwmon_power_crit: 1071 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); 1072 sfp_hwmon_to_rx_power(value); 1073 return 0; 1074 1075 case hwmon_power_lcrit_alarm: 1076 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1077 if (err < 0) 1078 return err; 1079 1080 *value = !!(status & SFP_ALARM1_RXPWR_LOW); 1081 return 0; 1082 1083 case hwmon_power_min_alarm: 1084 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1085 if (err < 0) 1086 return err; 1087 1088 *value = !!(status & SFP_WARN1_RXPWR_LOW); 1089 return 0; 1090 1091 case hwmon_power_max_alarm: 1092 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); 1093 if (err < 0) 1094 return err; 1095 1096 *value = !!(status & SFP_WARN1_RXPWR_HIGH); 1097 return 0; 1098 1099 case hwmon_power_crit_alarm: 1100 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); 1101 if (err < 0) 1102 return err; 1103 1104 *value = !!(status & SFP_ALARM1_RXPWR_HIGH); 1105 return 0; 1106 default: 1107 return -EOPNOTSUPP; 1108 } 1109 1110 return -EOPNOTSUPP; 1111 } 1112 1113 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, 1114 u32 attr, int channel, long *value) 1115 { 1116 struct sfp *sfp = dev_get_drvdata(dev); 1117 1118 switch (type) { 1119 case hwmon_temp: 1120 return sfp_hwmon_temp(sfp, attr, value); 1121 case hwmon_in: 1122 return sfp_hwmon_vcc(sfp, attr, value); 1123 case hwmon_curr: 1124 return sfp_hwmon_bias(sfp, attr, value); 1125 case hwmon_power: 1126 switch (channel) { 1127 case 0: 1128 return sfp_hwmon_tx_power(sfp, attr, value); 1129 case 1: 1130 return sfp_hwmon_rx_power(sfp, attr, value); 1131 default: 1132 return -EOPNOTSUPP; 1133 } 1134 default: 1135 return -EOPNOTSUPP; 1136 } 1137 } 1138 1139 static const char *const sfp_hwmon_power_labels[] = { 1140 "TX_power", 1141 "RX_power", 1142 }; 1143 1144 static int sfp_hwmon_read_string(struct device *dev, 1145 enum hwmon_sensor_types type, 1146 u32 attr, int channel, const char **str) 1147 { 1148 switch (type) { 1149 case hwmon_curr: 1150 switch (attr) { 1151 case hwmon_curr_label: 1152 *str = "bias"; 1153 return 0; 1154 default: 1155 return -EOPNOTSUPP; 1156 } 1157 break; 1158 case hwmon_temp: 1159 switch (attr) { 1160 case hwmon_temp_label: 1161 *str = "temperature"; 1162 return 0; 1163 default: 1164 return -EOPNOTSUPP; 1165 } 1166 break; 1167 case hwmon_in: 1168 switch (attr) { 1169 case hwmon_in_label: 1170 *str = "VCC"; 1171 return 0; 1172 default: 1173 return -EOPNOTSUPP; 1174 } 1175 break; 1176 case hwmon_power: 1177 switch (attr) { 1178 case hwmon_power_label: 1179 *str = sfp_hwmon_power_labels[channel]; 1180 return 0; 1181 default: 1182 return -EOPNOTSUPP; 1183 } 1184 break; 1185 default: 1186 return -EOPNOTSUPP; 1187 } 1188 1189 return -EOPNOTSUPP; 1190 } 1191 1192 static const struct hwmon_ops sfp_hwmon_ops = { 1193 .is_visible = sfp_hwmon_is_visible, 1194 .read = sfp_hwmon_read, 1195 .read_string = sfp_hwmon_read_string, 1196 }; 1197 1198 static const struct hwmon_channel_info *sfp_hwmon_info[] = { 1199 HWMON_CHANNEL_INFO(chip, 1200 HWMON_C_REGISTER_TZ), 1201 HWMON_CHANNEL_INFO(in, 1202 HWMON_I_INPUT | 1203 HWMON_I_MAX | HWMON_I_MIN | 1204 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | 1205 HWMON_I_CRIT | HWMON_I_LCRIT | 1206 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | 1207 HWMON_I_LABEL), 1208 HWMON_CHANNEL_INFO(temp, 1209 HWMON_T_INPUT | 1210 HWMON_T_MAX | HWMON_T_MIN | 1211 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | 1212 HWMON_T_CRIT | HWMON_T_LCRIT | 1213 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | 1214 HWMON_T_LABEL), 1215 HWMON_CHANNEL_INFO(curr, 1216 HWMON_C_INPUT | 1217 HWMON_C_MAX | HWMON_C_MIN | 1218 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | 1219 HWMON_C_CRIT | HWMON_C_LCRIT | 1220 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | 1221 HWMON_C_LABEL), 1222 HWMON_CHANNEL_INFO(power, 1223 /* Transmit power */ 1224 HWMON_P_INPUT | 1225 HWMON_P_MAX | HWMON_P_MIN | 1226 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1227 HWMON_P_CRIT | HWMON_P_LCRIT | 1228 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1229 HWMON_P_LABEL, 1230 /* Receive power */ 1231 HWMON_P_INPUT | 1232 HWMON_P_MAX | HWMON_P_MIN | 1233 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | 1234 HWMON_P_CRIT | HWMON_P_LCRIT | 1235 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | 1236 HWMON_P_LABEL), 1237 NULL, 1238 }; 1239 1240 static const struct hwmon_chip_info sfp_hwmon_chip_info = { 1241 .ops = &sfp_hwmon_ops, 1242 .info = sfp_hwmon_info, 1243 }; 1244 1245 static void sfp_hwmon_probe(struct work_struct *work) 1246 { 1247 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); 1248 int err; 1249 1250 /* hwmon interface needs to access 16bit registers in atomic way to 1251 * guarantee coherency of the diagnostic monitoring data. If it is not 1252 * possible to guarantee coherency because EEPROM is broken in such way 1253 * that does not support atomic 16bit read operation then we have to 1254 * skip registration of hwmon device. 1255 */ 1256 if (sfp->i2c_block_size < 2) { 1257 dev_info(sfp->dev, 1258 "skipping hwmon device registration due to broken EEPROM\n"); 1259 dev_info(sfp->dev, 1260 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); 1261 return; 1262 } 1263 1264 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); 1265 if (err < 0) { 1266 if (sfp->hwmon_tries--) { 1267 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1268 T_PROBE_RETRY_SLOW); 1269 } else { 1270 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 1271 ERR_PTR(err)); 1272 } 1273 return; 1274 } 1275 1276 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); 1277 if (IS_ERR(sfp->hwmon_name)) { 1278 dev_err(sfp->dev, "out of memory for hwmon name\n"); 1279 return; 1280 } 1281 1282 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, 1283 sfp->hwmon_name, sfp, 1284 &sfp_hwmon_chip_info, 1285 NULL); 1286 if (IS_ERR(sfp->hwmon_dev)) 1287 dev_err(sfp->dev, "failed to register hwmon device: %ld\n", 1288 PTR_ERR(sfp->hwmon_dev)); 1289 } 1290 1291 static int sfp_hwmon_insert(struct sfp *sfp) 1292 { 1293 if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE) 1294 return 0; 1295 1296 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) 1297 return 0; 1298 1299 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1300 /* This driver in general does not support address 1301 * change. 1302 */ 1303 return 0; 1304 1305 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); 1306 sfp->hwmon_tries = R_PROBE_RETRY_SLOW; 1307 1308 return 0; 1309 } 1310 1311 static void sfp_hwmon_remove(struct sfp *sfp) 1312 { 1313 cancel_delayed_work_sync(&sfp->hwmon_probe); 1314 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { 1315 hwmon_device_unregister(sfp->hwmon_dev); 1316 sfp->hwmon_dev = NULL; 1317 kfree(sfp->hwmon_name); 1318 } 1319 } 1320 1321 static int sfp_hwmon_init(struct sfp *sfp) 1322 { 1323 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); 1324 1325 return 0; 1326 } 1327 1328 static void sfp_hwmon_exit(struct sfp *sfp) 1329 { 1330 cancel_delayed_work_sync(&sfp->hwmon_probe); 1331 } 1332 #else 1333 static int sfp_hwmon_insert(struct sfp *sfp) 1334 { 1335 return 0; 1336 } 1337 1338 static void sfp_hwmon_remove(struct sfp *sfp) 1339 { 1340 } 1341 1342 static int sfp_hwmon_init(struct sfp *sfp) 1343 { 1344 return 0; 1345 } 1346 1347 static void sfp_hwmon_exit(struct sfp *sfp) 1348 { 1349 } 1350 #endif 1351 1352 /* Helpers */ 1353 static void sfp_module_tx_disable(struct sfp *sfp) 1354 { 1355 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1356 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); 1357 sfp->state |= SFP_F_TX_DISABLE; 1358 sfp_set_state(sfp, sfp->state); 1359 } 1360 1361 static void sfp_module_tx_enable(struct sfp *sfp) 1362 { 1363 dev_dbg(sfp->dev, "tx disable %u -> %u\n", 1364 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); 1365 sfp->state &= ~SFP_F_TX_DISABLE; 1366 sfp_set_state(sfp, sfp->state); 1367 } 1368 1369 #if IS_ENABLED(CONFIG_DEBUG_FS) 1370 static int sfp_debug_state_show(struct seq_file *s, void *data) 1371 { 1372 struct sfp *sfp = s->private; 1373 1374 seq_printf(s, "Module state: %s\n", 1375 mod_state_to_str(sfp->sm_mod_state)); 1376 seq_printf(s, "Module probe attempts: %d %d\n", 1377 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, 1378 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); 1379 seq_printf(s, "Device state: %s\n", 1380 dev_state_to_str(sfp->sm_dev_state)); 1381 seq_printf(s, "Main state: %s\n", 1382 sm_state_to_str(sfp->sm_state)); 1383 seq_printf(s, "Fault recovery remaining retries: %d\n", 1384 sfp->sm_fault_retries); 1385 seq_printf(s, "PHY probe remaining retries: %d\n", 1386 sfp->sm_phy_retries); 1387 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); 1388 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); 1389 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); 1390 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); 1391 return 0; 1392 } 1393 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); 1394 1395 static void sfp_debugfs_init(struct sfp *sfp) 1396 { 1397 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); 1398 1399 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, 1400 &sfp_debug_state_fops); 1401 } 1402 1403 static void sfp_debugfs_exit(struct sfp *sfp) 1404 { 1405 debugfs_remove_recursive(sfp->debugfs_dir); 1406 } 1407 #else 1408 static void sfp_debugfs_init(struct sfp *sfp) 1409 { 1410 } 1411 1412 static void sfp_debugfs_exit(struct sfp *sfp) 1413 { 1414 } 1415 #endif 1416 1417 static void sfp_module_tx_fault_reset(struct sfp *sfp) 1418 { 1419 unsigned int state = sfp->state; 1420 1421 if (state & SFP_F_TX_DISABLE) 1422 return; 1423 1424 sfp_set_state(sfp, state | SFP_F_TX_DISABLE); 1425 1426 udelay(T_RESET_US); 1427 1428 sfp_set_state(sfp, state); 1429 } 1430 1431 /* SFP state machine */ 1432 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) 1433 { 1434 if (timeout) 1435 mod_delayed_work(system_power_efficient_wq, &sfp->timeout, 1436 timeout); 1437 else 1438 cancel_delayed_work(&sfp->timeout); 1439 } 1440 1441 static void sfp_sm_next(struct sfp *sfp, unsigned int state, 1442 unsigned int timeout) 1443 { 1444 sfp->sm_state = state; 1445 sfp_sm_set_timer(sfp, timeout); 1446 } 1447 1448 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, 1449 unsigned int timeout) 1450 { 1451 sfp->sm_mod_state = state; 1452 sfp_sm_set_timer(sfp, timeout); 1453 } 1454 1455 static void sfp_sm_phy_detach(struct sfp *sfp) 1456 { 1457 sfp_remove_phy(sfp->sfp_bus); 1458 phy_device_remove(sfp->mod_phy); 1459 phy_device_free(sfp->mod_phy); 1460 sfp->mod_phy = NULL; 1461 } 1462 1463 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45) 1464 { 1465 struct phy_device *phy; 1466 int err; 1467 1468 phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45); 1469 if (phy == ERR_PTR(-ENODEV)) 1470 return PTR_ERR(phy); 1471 if (IS_ERR(phy)) { 1472 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); 1473 return PTR_ERR(phy); 1474 } 1475 1476 err = phy_device_register(phy); 1477 if (err) { 1478 phy_device_free(phy); 1479 dev_err(sfp->dev, "phy_device_register failed: %pe\n", 1480 ERR_PTR(err)); 1481 return err; 1482 } 1483 1484 err = sfp_add_phy(sfp->sfp_bus, phy); 1485 if (err) { 1486 phy_device_remove(phy); 1487 phy_device_free(phy); 1488 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); 1489 return err; 1490 } 1491 1492 sfp->mod_phy = phy; 1493 1494 return 0; 1495 } 1496 1497 static void sfp_sm_link_up(struct sfp *sfp) 1498 { 1499 sfp_link_up(sfp->sfp_bus); 1500 sfp_sm_next(sfp, SFP_S_LINK_UP, 0); 1501 } 1502 1503 static void sfp_sm_link_down(struct sfp *sfp) 1504 { 1505 sfp_link_down(sfp->sfp_bus); 1506 } 1507 1508 static void sfp_sm_link_check_los(struct sfp *sfp) 1509 { 1510 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1511 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1512 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1513 bool los = false; 1514 1515 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL 1516 * are set, we assume that no LOS signal is available. If both are 1517 * set, we assume LOS is not implemented (and is meaningless.) 1518 */ 1519 if (los_options == los_inverted) 1520 los = !(sfp->state & SFP_F_LOS); 1521 else if (los_options == los_normal) 1522 los = !!(sfp->state & SFP_F_LOS); 1523 1524 if (los) 1525 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 1526 else 1527 sfp_sm_link_up(sfp); 1528 } 1529 1530 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) 1531 { 1532 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1533 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1534 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1535 1536 return (los_options == los_inverted && event == SFP_E_LOS_LOW) || 1537 (los_options == los_normal && event == SFP_E_LOS_HIGH); 1538 } 1539 1540 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) 1541 { 1542 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); 1543 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); 1544 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); 1545 1546 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || 1547 (los_options == los_normal && event == SFP_E_LOS_LOW); 1548 } 1549 1550 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) 1551 { 1552 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { 1553 dev_err(sfp->dev, 1554 "module persistently indicates fault, disabling\n"); 1555 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); 1556 } else { 1557 if (warn) 1558 dev_err(sfp->dev, "module transmit fault indicated\n"); 1559 1560 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); 1561 } 1562 } 1563 1564 /* Probe a SFP for a PHY device if the module supports copper - the PHY 1565 * normally sits at I2C bus address 0x56, and may either be a clause 22 1566 * or clause 45 PHY. 1567 * 1568 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with 1569 * negotiation enabled, but some may be in 1000base-X - which is for the 1570 * PHY driver to determine. 1571 * 1572 * Clause 45 copper SFP+ modules (10G) appear to switch their interface 1573 * mode according to the negotiated line speed. 1574 */ 1575 static int sfp_sm_probe_for_phy(struct sfp *sfp) 1576 { 1577 int err = 0; 1578 1579 switch (sfp->id.base.extended_cc) { 1580 case SFF8024_ECC_10GBASE_T_SFI: 1581 case SFF8024_ECC_10GBASE_T_SR: 1582 case SFF8024_ECC_5GBASE_T: 1583 case SFF8024_ECC_2_5GBASE_T: 1584 err = sfp_sm_probe_phy(sfp, true); 1585 break; 1586 1587 default: 1588 if (sfp->id.base.e1000_base_t) 1589 err = sfp_sm_probe_phy(sfp, false); 1590 break; 1591 } 1592 return err; 1593 } 1594 1595 static int sfp_module_parse_power(struct sfp *sfp) 1596 { 1597 u32 power_mW = 1000; 1598 bool supports_a2; 1599 1600 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) 1601 power_mW = 1500; 1602 if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) 1603 power_mW = 2000; 1604 1605 supports_a2 = sfp->id.ext.sff8472_compliance != 1606 SFP_SFF8472_COMPLIANCE_NONE || 1607 sfp->id.ext.diagmon & SFP_DIAGMON_DDM; 1608 1609 if (power_mW > sfp->max_power_mW) { 1610 /* Module power specification exceeds the allowed maximum. */ 1611 if (!supports_a2) { 1612 /* The module appears not to implement bus address 1613 * 0xa2, so assume that the module powers up in the 1614 * indicated mode. 1615 */ 1616 dev_err(sfp->dev, 1617 "Host does not support %u.%uW modules\n", 1618 power_mW / 1000, (power_mW / 100) % 10); 1619 return -EINVAL; 1620 } else { 1621 dev_warn(sfp->dev, 1622 "Host does not support %u.%uW modules, module left in power mode 1\n", 1623 power_mW / 1000, (power_mW / 100) % 10); 1624 return 0; 1625 } 1626 } 1627 1628 if (power_mW <= 1000) { 1629 /* Modules below 1W do not require a power change sequence */ 1630 sfp->module_power_mW = power_mW; 1631 return 0; 1632 } 1633 1634 if (!supports_a2) { 1635 /* The module power level is below the host maximum and the 1636 * module appears not to implement bus address 0xa2, so assume 1637 * that the module powers up in the indicated mode. 1638 */ 1639 return 0; 1640 } 1641 1642 /* If the module requires a higher power mode, but also requires 1643 * an address change sequence, warn the user that the module may 1644 * not be functional. 1645 */ 1646 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { 1647 dev_warn(sfp->dev, 1648 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", 1649 power_mW / 1000, (power_mW / 100) % 10); 1650 return 0; 1651 } 1652 1653 sfp->module_power_mW = power_mW; 1654 1655 return 0; 1656 } 1657 1658 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) 1659 { 1660 u8 val; 1661 int err; 1662 1663 err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1664 if (err != sizeof(val)) { 1665 dev_err(sfp->dev, "Failed to read EEPROM: %pe\n", ERR_PTR(err)); 1666 return -EAGAIN; 1667 } 1668 1669 /* DM7052 reports as a high power module, responds to reads (with 1670 * all bytes 0xff) at 0x51 but does not accept writes. In any case, 1671 * if the bit is already set, we're already in high power mode. 1672 */ 1673 if (!!(val & BIT(0)) == enable) 1674 return 0; 1675 1676 if (enable) 1677 val |= BIT(0); 1678 else 1679 val &= ~BIT(0); 1680 1681 err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val)); 1682 if (err != sizeof(val)) { 1683 dev_err(sfp->dev, "Failed to write EEPROM: %pe\n", 1684 ERR_PTR(err)); 1685 return -EAGAIN; 1686 } 1687 1688 if (enable) 1689 dev_info(sfp->dev, "Module switched to %u.%uW power level\n", 1690 sfp->module_power_mW / 1000, 1691 (sfp->module_power_mW / 100) % 10); 1692 1693 return 0; 1694 } 1695 1696 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL 1697 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do 1698 * not support multibyte reads from the EEPROM. Each multi-byte read 1699 * operation returns just one byte of EEPROM followed by zeros. There is 1700 * no way to identify which modules are using Realtek RTL8672 and RTL9601C 1701 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor 1702 * name and vendor id into EEPROM, so there is even no way to detect if 1703 * module is V-SOL V2801F. Therefore check for those zeros in the read 1704 * data and then based on check switch to reading EEPROM to one byte 1705 * at a time. 1706 */ 1707 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) 1708 { 1709 size_t i, block_size = sfp->i2c_block_size; 1710 1711 /* Already using byte IO */ 1712 if (block_size == 1) 1713 return false; 1714 1715 for (i = 1; i < len; i += block_size) { 1716 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) 1717 return false; 1718 } 1719 return true; 1720 } 1721 1722 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) 1723 { 1724 u8 check; 1725 int err; 1726 1727 if (id->base.phys_id != SFF8024_ID_SFF_8472 || 1728 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || 1729 id->base.connector != SFF8024_CONNECTOR_LC) { 1730 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); 1731 id->base.phys_id = SFF8024_ID_SFF_8472; 1732 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; 1733 id->base.connector = SFF8024_CONNECTOR_LC; 1734 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); 1735 if (err != 3) { 1736 dev_err(sfp->dev, 1737 "Failed to rewrite module EEPROM: %pe\n", 1738 ERR_PTR(err)); 1739 return err; 1740 } 1741 1742 /* Cotsworks modules have been found to require a delay between write operations. */ 1743 mdelay(50); 1744 1745 /* Update base structure checksum */ 1746 check = sfp_check(&id->base, sizeof(id->base) - 1); 1747 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); 1748 if (err != 1) { 1749 dev_err(sfp->dev, 1750 "Failed to update base structure checksum in fiber module EEPROM: %pe\n", 1751 ERR_PTR(err)); 1752 return err; 1753 } 1754 } 1755 return 0; 1756 } 1757 1758 static int sfp_sm_mod_probe(struct sfp *sfp, bool report) 1759 { 1760 /* SFP module inserted - read I2C data */ 1761 struct sfp_eeprom_id id; 1762 bool cotsworks_sfbg; 1763 bool cotsworks; 1764 u8 check; 1765 int ret; 1766 1767 /* Some SFP modules and also some Linux I2C drivers do not like reads 1768 * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at 1769 * a time. 1770 */ 1771 sfp->i2c_block_size = 16; 1772 1773 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1774 if (ret < 0) { 1775 if (report) 1776 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1777 ERR_PTR(ret)); 1778 return -EAGAIN; 1779 } 1780 1781 if (ret != sizeof(id.base)) { 1782 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1783 return -EAGAIN; 1784 } 1785 1786 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from 1787 * address 0x51 is just one byte at a time. Also SFF-8472 requires 1788 * that EEPROM supports atomic 16bit read operation for diagnostic 1789 * fields, so do not switch to one byte reading at a time unless it 1790 * is really required and we have no other option. 1791 */ 1792 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { 1793 dev_info(sfp->dev, 1794 "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); 1795 dev_info(sfp->dev, 1796 "Switching to reading EEPROM to one byte at a time\n"); 1797 sfp->i2c_block_size = 1; 1798 1799 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); 1800 if (ret < 0) { 1801 if (report) 1802 dev_err(sfp->dev, 1803 "failed to read EEPROM: %pe\n", 1804 ERR_PTR(ret)); 1805 return -EAGAIN; 1806 } 1807 1808 if (ret != sizeof(id.base)) { 1809 dev_err(sfp->dev, "EEPROM short read: %pe\n", 1810 ERR_PTR(ret)); 1811 return -EAGAIN; 1812 } 1813 } 1814 1815 /* Cotsworks do not seem to update the checksums when they 1816 * do the final programming with the final module part number, 1817 * serial number and date code. 1818 */ 1819 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); 1820 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); 1821 1822 /* Cotsworks SFF module EEPROM do not always have valid phys_id, 1823 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if 1824 * Cotsworks PN matches and bytes are not correct. 1825 */ 1826 if (cotsworks && cotsworks_sfbg) { 1827 ret = sfp_cotsworks_fixup_check(sfp, &id); 1828 if (ret < 0) 1829 return ret; 1830 } 1831 1832 /* Validate the checksum over the base structure */ 1833 check = sfp_check(&id.base, sizeof(id.base) - 1); 1834 if (check != id.base.cc_base) { 1835 if (cotsworks) { 1836 dev_warn(sfp->dev, 1837 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", 1838 check, id.base.cc_base); 1839 } else { 1840 dev_err(sfp->dev, 1841 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", 1842 check, id.base.cc_base); 1843 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1844 16, 1, &id, sizeof(id), true); 1845 return -EINVAL; 1846 } 1847 } 1848 1849 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); 1850 if (ret < 0) { 1851 if (report) 1852 dev_err(sfp->dev, "failed to read EEPROM: %pe\n", 1853 ERR_PTR(ret)); 1854 return -EAGAIN; 1855 } 1856 1857 if (ret != sizeof(id.ext)) { 1858 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); 1859 return -EAGAIN; 1860 } 1861 1862 check = sfp_check(&id.ext, sizeof(id.ext) - 1); 1863 if (check != id.ext.cc_ext) { 1864 if (cotsworks) { 1865 dev_warn(sfp->dev, 1866 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", 1867 check, id.ext.cc_ext); 1868 } else { 1869 dev_err(sfp->dev, 1870 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", 1871 check, id.ext.cc_ext); 1872 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 1873 16, 1, &id, sizeof(id), true); 1874 memset(&id.ext, 0, sizeof(id.ext)); 1875 } 1876 } 1877 1878 sfp->id = id; 1879 1880 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", 1881 (int)sizeof(id.base.vendor_name), id.base.vendor_name, 1882 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, 1883 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, 1884 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, 1885 (int)sizeof(id.ext.datecode), id.ext.datecode); 1886 1887 /* Check whether we support this module */ 1888 if (!sfp->type->module_supported(&id)) { 1889 dev_err(sfp->dev, 1890 "module is not supported - phys id 0x%02x 0x%02x\n", 1891 sfp->id.base.phys_id, sfp->id.base.phys_ext_id); 1892 return -EINVAL; 1893 } 1894 1895 /* If the module requires address swap mode, warn about it */ 1896 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) 1897 dev_warn(sfp->dev, 1898 "module address swap to access page 0xA2 is not supported.\n"); 1899 1900 /* Parse the module power requirement */ 1901 ret = sfp_module_parse_power(sfp); 1902 if (ret < 0) 1903 return ret; 1904 1905 if (!memcmp(id.base.vendor_name, "ALCATELLUCENT ", 16) && 1906 !memcmp(id.base.vendor_pn, "3FE46541AA ", 16)) 1907 sfp->module_t_start_up = T_START_UP_BAD_GPON; 1908 else 1909 sfp->module_t_start_up = T_START_UP; 1910 1911 if (!memcmp(id.base.vendor_name, "HUAWEI ", 16) && 1912 !memcmp(id.base.vendor_pn, "MA5671A ", 16)) 1913 sfp->tx_fault_ignore = true; 1914 else 1915 sfp->tx_fault_ignore = false; 1916 1917 return 0; 1918 } 1919 1920 static void sfp_sm_mod_remove(struct sfp *sfp) 1921 { 1922 if (sfp->sm_mod_state > SFP_MOD_WAITDEV) 1923 sfp_module_remove(sfp->sfp_bus); 1924 1925 sfp_hwmon_remove(sfp); 1926 1927 memset(&sfp->id, 0, sizeof(sfp->id)); 1928 sfp->module_power_mW = 0; 1929 1930 dev_info(sfp->dev, "module removed\n"); 1931 } 1932 1933 /* This state machine tracks the upstream's state */ 1934 static void sfp_sm_device(struct sfp *sfp, unsigned int event) 1935 { 1936 switch (sfp->sm_dev_state) { 1937 default: 1938 if (event == SFP_E_DEV_ATTACH) 1939 sfp->sm_dev_state = SFP_DEV_DOWN; 1940 break; 1941 1942 case SFP_DEV_DOWN: 1943 if (event == SFP_E_DEV_DETACH) 1944 sfp->sm_dev_state = SFP_DEV_DETACHED; 1945 else if (event == SFP_E_DEV_UP) 1946 sfp->sm_dev_state = SFP_DEV_UP; 1947 break; 1948 1949 case SFP_DEV_UP: 1950 if (event == SFP_E_DEV_DETACH) 1951 sfp->sm_dev_state = SFP_DEV_DETACHED; 1952 else if (event == SFP_E_DEV_DOWN) 1953 sfp->sm_dev_state = SFP_DEV_DOWN; 1954 break; 1955 } 1956 } 1957 1958 /* This state machine tracks the insert/remove state of the module, probes 1959 * the on-board EEPROM, and sets up the power level. 1960 */ 1961 static void sfp_sm_module(struct sfp *sfp, unsigned int event) 1962 { 1963 int err; 1964 1965 /* Handle remove event globally, it resets this state machine */ 1966 if (event == SFP_E_REMOVE) { 1967 if (sfp->sm_mod_state > SFP_MOD_PROBE) 1968 sfp_sm_mod_remove(sfp); 1969 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); 1970 return; 1971 } 1972 1973 /* Handle device detach globally */ 1974 if (sfp->sm_dev_state < SFP_DEV_DOWN && 1975 sfp->sm_mod_state > SFP_MOD_WAITDEV) { 1976 if (sfp->module_power_mW > 1000 && 1977 sfp->sm_mod_state > SFP_MOD_HPOWER) 1978 sfp_sm_mod_hpower(sfp, false); 1979 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 1980 return; 1981 } 1982 1983 switch (sfp->sm_mod_state) { 1984 default: 1985 if (event == SFP_E_INSERT) { 1986 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); 1987 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; 1988 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; 1989 } 1990 break; 1991 1992 case SFP_MOD_PROBE: 1993 /* Wait for T_PROBE_INIT to time out */ 1994 if (event != SFP_E_TIMEOUT) 1995 break; 1996 1997 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); 1998 if (err == -EAGAIN) { 1999 if (sfp->sm_mod_tries_init && 2000 --sfp->sm_mod_tries_init) { 2001 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2002 break; 2003 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { 2004 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) 2005 dev_warn(sfp->dev, 2006 "please wait, module slow to respond\n"); 2007 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); 2008 break; 2009 } 2010 } 2011 if (err < 0) { 2012 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2013 break; 2014 } 2015 2016 err = sfp_hwmon_insert(sfp); 2017 if (err) 2018 dev_warn(sfp->dev, "hwmon probe failed: %pe\n", 2019 ERR_PTR(err)); 2020 2021 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); 2022 fallthrough; 2023 case SFP_MOD_WAITDEV: 2024 /* Ensure that the device is attached before proceeding */ 2025 if (sfp->sm_dev_state < SFP_DEV_DOWN) 2026 break; 2027 2028 /* Report the module insertion to the upstream device */ 2029 err = sfp_module_insert(sfp->sfp_bus, &sfp->id); 2030 if (err < 0) { 2031 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2032 break; 2033 } 2034 2035 /* If this is a power level 1 module, we are done */ 2036 if (sfp->module_power_mW <= 1000) 2037 goto insert; 2038 2039 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); 2040 fallthrough; 2041 case SFP_MOD_HPOWER: 2042 /* Enable high power mode */ 2043 err = sfp_sm_mod_hpower(sfp, true); 2044 if (err < 0) { 2045 if (err != -EAGAIN) { 2046 sfp_module_remove(sfp->sfp_bus); 2047 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); 2048 } else { 2049 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); 2050 } 2051 break; 2052 } 2053 2054 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); 2055 break; 2056 2057 case SFP_MOD_WAITPWR: 2058 /* Wait for T_HPOWER_LEVEL to time out */ 2059 if (event != SFP_E_TIMEOUT) 2060 break; 2061 2062 insert: 2063 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); 2064 break; 2065 2066 case SFP_MOD_PRESENT: 2067 case SFP_MOD_ERROR: 2068 break; 2069 } 2070 } 2071 2072 static void sfp_sm_main(struct sfp *sfp, unsigned int event) 2073 { 2074 unsigned long timeout; 2075 int ret; 2076 2077 /* Some events are global */ 2078 if (sfp->sm_state != SFP_S_DOWN && 2079 (sfp->sm_mod_state != SFP_MOD_PRESENT || 2080 sfp->sm_dev_state != SFP_DEV_UP)) { 2081 if (sfp->sm_state == SFP_S_LINK_UP && 2082 sfp->sm_dev_state == SFP_DEV_UP) 2083 sfp_sm_link_down(sfp); 2084 if (sfp->sm_state > SFP_S_INIT) 2085 sfp_module_stop(sfp->sfp_bus); 2086 if (sfp->mod_phy) 2087 sfp_sm_phy_detach(sfp); 2088 sfp_module_tx_disable(sfp); 2089 sfp_soft_stop_poll(sfp); 2090 sfp_sm_next(sfp, SFP_S_DOWN, 0); 2091 return; 2092 } 2093 2094 /* The main state machine */ 2095 switch (sfp->sm_state) { 2096 case SFP_S_DOWN: 2097 if (sfp->sm_mod_state != SFP_MOD_PRESENT || 2098 sfp->sm_dev_state != SFP_DEV_UP) 2099 break; 2100 2101 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) 2102 sfp_soft_start_poll(sfp); 2103 2104 sfp_module_tx_enable(sfp); 2105 2106 /* Initialise the fault clearance retries */ 2107 sfp->sm_fault_retries = N_FAULT_INIT; 2108 2109 /* We need to check the TX_FAULT state, which is not defined 2110 * while TX_DISABLE is asserted. The earliest we want to do 2111 * anything (such as probe for a PHY) is 50ms. 2112 */ 2113 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT); 2114 break; 2115 2116 case SFP_S_WAIT: 2117 if (event != SFP_E_TIMEOUT) 2118 break; 2119 2120 if (sfp->state & SFP_F_TX_FAULT) { 2121 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) 2122 * from the TX_DISABLE deassertion for the module to 2123 * initialise, which is indicated by TX_FAULT 2124 * deasserting. 2125 */ 2126 timeout = sfp->module_t_start_up; 2127 if (timeout > T_WAIT) 2128 timeout -= T_WAIT; 2129 else 2130 timeout = 1; 2131 2132 sfp_sm_next(sfp, SFP_S_INIT, timeout); 2133 } else { 2134 /* TX_FAULT is not asserted, assume the module has 2135 * finished initialising. 2136 */ 2137 goto init_done; 2138 } 2139 break; 2140 2141 case SFP_S_INIT: 2142 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2143 /* TX_FAULT is still asserted after t_init 2144 * or t_start_up, so assume there is a fault. 2145 */ 2146 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, 2147 sfp->sm_fault_retries == N_FAULT_INIT); 2148 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2149 init_done: 2150 sfp->sm_phy_retries = R_PHY_RETRY; 2151 goto phy_probe; 2152 } 2153 break; 2154 2155 case SFP_S_INIT_PHY: 2156 if (event != SFP_E_TIMEOUT) 2157 break; 2158 phy_probe: 2159 /* TX_FAULT deasserted or we timed out with TX_FAULT 2160 * clear. Probe for the PHY and check the LOS state. 2161 */ 2162 ret = sfp_sm_probe_for_phy(sfp); 2163 if (ret == -ENODEV) { 2164 if (--sfp->sm_phy_retries) { 2165 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY); 2166 break; 2167 } else { 2168 dev_info(sfp->dev, "no PHY detected\n"); 2169 } 2170 } else if (ret) { 2171 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2172 break; 2173 } 2174 if (sfp_module_start(sfp->sfp_bus)) { 2175 sfp_sm_next(sfp, SFP_S_FAIL, 0); 2176 break; 2177 } 2178 sfp_sm_link_check_los(sfp); 2179 2180 /* Reset the fault retry count */ 2181 sfp->sm_fault_retries = N_FAULT; 2182 break; 2183 2184 case SFP_S_INIT_TX_FAULT: 2185 if (event == SFP_E_TIMEOUT) { 2186 sfp_module_tx_fault_reset(sfp); 2187 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); 2188 } 2189 break; 2190 2191 case SFP_S_WAIT_LOS: 2192 if (event == SFP_E_TX_FAULT) 2193 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2194 else if (sfp_los_event_inactive(sfp, event)) 2195 sfp_sm_link_up(sfp); 2196 break; 2197 2198 case SFP_S_LINK_UP: 2199 if (event == SFP_E_TX_FAULT) { 2200 sfp_sm_link_down(sfp); 2201 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); 2202 } else if (sfp_los_event_active(sfp, event)) { 2203 sfp_sm_link_down(sfp); 2204 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); 2205 } 2206 break; 2207 2208 case SFP_S_TX_FAULT: 2209 if (event == SFP_E_TIMEOUT) { 2210 sfp_module_tx_fault_reset(sfp); 2211 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); 2212 } 2213 break; 2214 2215 case SFP_S_REINIT: 2216 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { 2217 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); 2218 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { 2219 dev_info(sfp->dev, "module transmit fault recovered\n"); 2220 sfp_sm_link_check_los(sfp); 2221 } 2222 break; 2223 2224 case SFP_S_TX_DISABLE: 2225 break; 2226 } 2227 } 2228 2229 static void sfp_sm_event(struct sfp *sfp, unsigned int event) 2230 { 2231 mutex_lock(&sfp->sm_mutex); 2232 2233 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", 2234 mod_state_to_str(sfp->sm_mod_state), 2235 dev_state_to_str(sfp->sm_dev_state), 2236 sm_state_to_str(sfp->sm_state), 2237 event_to_str(event)); 2238 2239 sfp_sm_device(sfp, event); 2240 sfp_sm_module(sfp, event); 2241 sfp_sm_main(sfp, event); 2242 2243 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", 2244 mod_state_to_str(sfp->sm_mod_state), 2245 dev_state_to_str(sfp->sm_dev_state), 2246 sm_state_to_str(sfp->sm_state)); 2247 2248 mutex_unlock(&sfp->sm_mutex); 2249 } 2250 2251 static void sfp_attach(struct sfp *sfp) 2252 { 2253 sfp_sm_event(sfp, SFP_E_DEV_ATTACH); 2254 } 2255 2256 static void sfp_detach(struct sfp *sfp) 2257 { 2258 sfp_sm_event(sfp, SFP_E_DEV_DETACH); 2259 } 2260 2261 static void sfp_start(struct sfp *sfp) 2262 { 2263 sfp_sm_event(sfp, SFP_E_DEV_UP); 2264 } 2265 2266 static void sfp_stop(struct sfp *sfp) 2267 { 2268 sfp_sm_event(sfp, SFP_E_DEV_DOWN); 2269 } 2270 2271 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) 2272 { 2273 /* locking... and check module is present */ 2274 2275 if (sfp->id.ext.sff8472_compliance && 2276 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { 2277 modinfo->type = ETH_MODULE_SFF_8472; 2278 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2279 } else { 2280 modinfo->type = ETH_MODULE_SFF_8079; 2281 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2282 } 2283 return 0; 2284 } 2285 2286 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, 2287 u8 *data) 2288 { 2289 unsigned int first, last, len; 2290 int ret; 2291 2292 if (ee->len == 0) 2293 return -EINVAL; 2294 2295 first = ee->offset; 2296 last = ee->offset + ee->len; 2297 if (first < ETH_MODULE_SFF_8079_LEN) { 2298 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); 2299 len -= first; 2300 2301 ret = sfp_read(sfp, false, first, data, len); 2302 if (ret < 0) 2303 return ret; 2304 2305 first += len; 2306 data += len; 2307 } 2308 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { 2309 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); 2310 len -= first; 2311 first -= ETH_MODULE_SFF_8079_LEN; 2312 2313 ret = sfp_read(sfp, true, first, data, len); 2314 if (ret < 0) 2315 return ret; 2316 } 2317 return 0; 2318 } 2319 2320 static int sfp_module_eeprom_by_page(struct sfp *sfp, 2321 const struct ethtool_module_eeprom *page, 2322 struct netlink_ext_ack *extack) 2323 { 2324 if (page->bank) { 2325 NL_SET_ERR_MSG(extack, "Banks not supported"); 2326 return -EOPNOTSUPP; 2327 } 2328 2329 if (page->page) { 2330 NL_SET_ERR_MSG(extack, "Only page 0 supported"); 2331 return -EOPNOTSUPP; 2332 } 2333 2334 if (page->i2c_address != 0x50 && 2335 page->i2c_address != 0x51) { 2336 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); 2337 return -EOPNOTSUPP; 2338 } 2339 2340 return sfp_read(sfp, page->i2c_address == 0x51, page->offset, 2341 page->data, page->length); 2342 }; 2343 2344 static const struct sfp_socket_ops sfp_module_ops = { 2345 .attach = sfp_attach, 2346 .detach = sfp_detach, 2347 .start = sfp_start, 2348 .stop = sfp_stop, 2349 .module_info = sfp_module_info, 2350 .module_eeprom = sfp_module_eeprom, 2351 .module_eeprom_by_page = sfp_module_eeprom_by_page, 2352 }; 2353 2354 static void sfp_timeout(struct work_struct *work) 2355 { 2356 struct sfp *sfp = container_of(work, struct sfp, timeout.work); 2357 2358 rtnl_lock(); 2359 sfp_sm_event(sfp, SFP_E_TIMEOUT); 2360 rtnl_unlock(); 2361 } 2362 2363 static void sfp_check_state(struct sfp *sfp) 2364 { 2365 unsigned int state, i, changed; 2366 2367 mutex_lock(&sfp->st_mutex); 2368 state = sfp_get_state(sfp); 2369 changed = state ^ sfp->state; 2370 if (sfp->tx_fault_ignore) 2371 changed &= SFP_F_PRESENT | SFP_F_LOS; 2372 else 2373 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; 2374 2375 for (i = 0; i < GPIO_MAX; i++) 2376 if (changed & BIT(i)) 2377 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i], 2378 !!(sfp->state & BIT(i)), !!(state & BIT(i))); 2379 2380 state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT); 2381 sfp->state = state; 2382 2383 rtnl_lock(); 2384 if (changed & SFP_F_PRESENT) 2385 sfp_sm_event(sfp, state & SFP_F_PRESENT ? 2386 SFP_E_INSERT : SFP_E_REMOVE); 2387 2388 if (changed & SFP_F_TX_FAULT) 2389 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? 2390 SFP_E_TX_FAULT : SFP_E_TX_CLEAR); 2391 2392 if (changed & SFP_F_LOS) 2393 sfp_sm_event(sfp, state & SFP_F_LOS ? 2394 SFP_E_LOS_HIGH : SFP_E_LOS_LOW); 2395 rtnl_unlock(); 2396 mutex_unlock(&sfp->st_mutex); 2397 } 2398 2399 static irqreturn_t sfp_irq(int irq, void *data) 2400 { 2401 struct sfp *sfp = data; 2402 2403 sfp_check_state(sfp); 2404 2405 return IRQ_HANDLED; 2406 } 2407 2408 static void sfp_poll(struct work_struct *work) 2409 { 2410 struct sfp *sfp = container_of(work, struct sfp, poll.work); 2411 2412 sfp_check_state(sfp); 2413 2414 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || 2415 sfp->need_poll) 2416 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2417 } 2418 2419 static struct sfp *sfp_alloc(struct device *dev) 2420 { 2421 struct sfp *sfp; 2422 2423 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); 2424 if (!sfp) 2425 return ERR_PTR(-ENOMEM); 2426 2427 sfp->dev = dev; 2428 2429 mutex_init(&sfp->sm_mutex); 2430 mutex_init(&sfp->st_mutex); 2431 INIT_DELAYED_WORK(&sfp->poll, sfp_poll); 2432 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); 2433 2434 sfp_hwmon_init(sfp); 2435 2436 return sfp; 2437 } 2438 2439 static void sfp_cleanup(void *data) 2440 { 2441 struct sfp *sfp = data; 2442 2443 sfp_hwmon_exit(sfp); 2444 2445 cancel_delayed_work_sync(&sfp->poll); 2446 cancel_delayed_work_sync(&sfp->timeout); 2447 if (sfp->i2c_mii) { 2448 mdiobus_unregister(sfp->i2c_mii); 2449 mdiobus_free(sfp->i2c_mii); 2450 } 2451 if (sfp->i2c) 2452 i2c_put_adapter(sfp->i2c); 2453 kfree(sfp); 2454 } 2455 2456 static int sfp_probe(struct platform_device *pdev) 2457 { 2458 const struct sff_data *sff; 2459 struct i2c_adapter *i2c; 2460 char *sfp_irq_name; 2461 struct sfp *sfp; 2462 int err, i; 2463 2464 sfp = sfp_alloc(&pdev->dev); 2465 if (IS_ERR(sfp)) 2466 return PTR_ERR(sfp); 2467 2468 platform_set_drvdata(pdev, sfp); 2469 2470 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); 2471 if (err < 0) 2472 return err; 2473 2474 sff = sfp->type = &sfp_data; 2475 2476 if (pdev->dev.of_node) { 2477 struct device_node *node = pdev->dev.of_node; 2478 const struct of_device_id *id; 2479 struct device_node *np; 2480 2481 id = of_match_node(sfp_of_match, node); 2482 if (WARN_ON(!id)) 2483 return -EINVAL; 2484 2485 sff = sfp->type = id->data; 2486 2487 np = of_parse_phandle(node, "i2c-bus", 0); 2488 if (!np) { 2489 dev_err(sfp->dev, "missing 'i2c-bus' property\n"); 2490 return -ENODEV; 2491 } 2492 2493 i2c = of_find_i2c_adapter_by_node(np); 2494 of_node_put(np); 2495 } else if (has_acpi_companion(&pdev->dev)) { 2496 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); 2497 struct fwnode_handle *fw = acpi_fwnode_handle(adev); 2498 struct fwnode_reference_args args; 2499 struct acpi_handle *acpi_handle; 2500 int ret; 2501 2502 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args); 2503 if (ret || !is_acpi_device_node(args.fwnode)) { 2504 dev_err(&pdev->dev, "missing 'i2c-bus' property\n"); 2505 return -ENODEV; 2506 } 2507 2508 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode); 2509 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle); 2510 } else { 2511 return -EINVAL; 2512 } 2513 2514 if (!i2c) 2515 return -EPROBE_DEFER; 2516 2517 err = sfp_i2c_configure(sfp, i2c); 2518 if (err < 0) { 2519 i2c_put_adapter(i2c); 2520 return err; 2521 } 2522 2523 for (i = 0; i < GPIO_MAX; i++) 2524 if (sff->gpios & BIT(i)) { 2525 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, 2526 gpio_of_names[i], gpio_flags[i]); 2527 if (IS_ERR(sfp->gpio[i])) 2528 return PTR_ERR(sfp->gpio[i]); 2529 } 2530 2531 sfp->get_state = sfp_gpio_get_state; 2532 sfp->set_state = sfp_gpio_set_state; 2533 2534 /* Modules that have no detect signal are always present */ 2535 if (!(sfp->gpio[GPIO_MODDEF0])) 2536 sfp->get_state = sff_gpio_get_state; 2537 2538 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", 2539 &sfp->max_power_mW); 2540 if (!sfp->max_power_mW) 2541 sfp->max_power_mW = 1000; 2542 2543 dev_info(sfp->dev, "Host maximum power %u.%uW\n", 2544 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); 2545 2546 /* Get the initial state, and always signal TX disable, 2547 * since the network interface will not be up. 2548 */ 2549 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; 2550 2551 if (sfp->gpio[GPIO_RATE_SELECT] && 2552 gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT])) 2553 sfp->state |= SFP_F_RATE_SELECT; 2554 sfp_set_state(sfp, sfp->state); 2555 sfp_module_tx_disable(sfp); 2556 if (sfp->state & SFP_F_PRESENT) { 2557 rtnl_lock(); 2558 sfp_sm_event(sfp, SFP_E_INSERT); 2559 rtnl_unlock(); 2560 } 2561 2562 for (i = 0; i < GPIO_MAX; i++) { 2563 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) 2564 continue; 2565 2566 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); 2567 if (sfp->gpio_irq[i] < 0) { 2568 sfp->gpio_irq[i] = 0; 2569 sfp->need_poll = true; 2570 continue; 2571 } 2572 2573 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, 2574 "%s-%s", dev_name(sfp->dev), 2575 gpio_of_names[i]); 2576 2577 if (!sfp_irq_name) 2578 return -ENOMEM; 2579 2580 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], 2581 NULL, sfp_irq, 2582 IRQF_ONESHOT | 2583 IRQF_TRIGGER_RISING | 2584 IRQF_TRIGGER_FALLING, 2585 sfp_irq_name, sfp); 2586 if (err) { 2587 sfp->gpio_irq[i] = 0; 2588 sfp->need_poll = true; 2589 } 2590 } 2591 2592 if (sfp->need_poll) 2593 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); 2594 2595 /* We could have an issue in cases no Tx disable pin is available or 2596 * wired as modules using a laser as their light source will continue to 2597 * be active when the fiber is removed. This could be a safety issue and 2598 * we should at least warn the user about that. 2599 */ 2600 if (!sfp->gpio[GPIO_TX_DISABLE]) 2601 dev_warn(sfp->dev, 2602 "No tx_disable pin: SFP modules will always be emitting.\n"); 2603 2604 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); 2605 if (!sfp->sfp_bus) 2606 return -ENOMEM; 2607 2608 sfp_debugfs_init(sfp); 2609 2610 return 0; 2611 } 2612 2613 static int sfp_remove(struct platform_device *pdev) 2614 { 2615 struct sfp *sfp = platform_get_drvdata(pdev); 2616 2617 sfp_debugfs_exit(sfp); 2618 sfp_unregister_socket(sfp->sfp_bus); 2619 2620 rtnl_lock(); 2621 sfp_sm_event(sfp, SFP_E_REMOVE); 2622 rtnl_unlock(); 2623 2624 return 0; 2625 } 2626 2627 static void sfp_shutdown(struct platform_device *pdev) 2628 { 2629 struct sfp *sfp = platform_get_drvdata(pdev); 2630 int i; 2631 2632 for (i = 0; i < GPIO_MAX; i++) { 2633 if (!sfp->gpio_irq[i]) 2634 continue; 2635 2636 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); 2637 } 2638 2639 cancel_delayed_work_sync(&sfp->poll); 2640 cancel_delayed_work_sync(&sfp->timeout); 2641 } 2642 2643 static struct platform_driver sfp_driver = { 2644 .probe = sfp_probe, 2645 .remove = sfp_remove, 2646 .shutdown = sfp_shutdown, 2647 .driver = { 2648 .name = "sfp", 2649 .of_match_table = sfp_of_match, 2650 }, 2651 }; 2652 2653 static int sfp_init(void) 2654 { 2655 poll_jiffies = msecs_to_jiffies(100); 2656 2657 return platform_driver_register(&sfp_driver); 2658 } 2659 module_init(sfp_init); 2660 2661 static void sfp_exit(void) 2662 { 2663 platform_driver_unregister(&sfp_driver); 2664 } 2665 module_exit(sfp_exit); 2666 2667 MODULE_ALIAS("platform:sfp"); 2668 MODULE_AUTHOR("Russell King"); 2669 MODULE_LICENSE("GPL v2"); 2670