xref: /linux/drivers/net/phy/sfp-bus.c (revision c79c3c34f75d72a066e292b10aa50fc758c97c89)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/export.h>
3 #include <linux/kref.h>
4 #include <linux/list.h>
5 #include <linux/mutex.h>
6 #include <linux/phylink.h>
7 #include <linux/property.h>
8 #include <linux/rtnetlink.h>
9 #include <linux/slab.h>
10 
11 #include "sfp.h"
12 
13 struct sfp_quirk {
14 	const char *vendor;
15 	const char *part;
16 	void (*modes)(const struct sfp_eeprom_id *id, unsigned long *modes);
17 };
18 
19 /**
20  * struct sfp_bus - internal representation of a sfp bus
21  */
22 struct sfp_bus {
23 	/* private: */
24 	struct kref kref;
25 	struct list_head node;
26 	struct fwnode_handle *fwnode;
27 
28 	const struct sfp_socket_ops *socket_ops;
29 	struct device *sfp_dev;
30 	struct sfp *sfp;
31 	const struct sfp_quirk *sfp_quirk;
32 
33 	const struct sfp_upstream_ops *upstream_ops;
34 	void *upstream;
35 	struct phy_device *phydev;
36 
37 	bool registered;
38 	bool started;
39 };
40 
41 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
42 				unsigned long *modes)
43 {
44 	phylink_set(modes, 2500baseX_Full);
45 }
46 
47 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
48 				      unsigned long *modes)
49 {
50 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
51 	 * types including 10G Ethernet which is not truth. So clear all claimed
52 	 * modes and set only one mode which module supports: 1000baseX_Full.
53 	 */
54 	phylink_zero(modes);
55 	phylink_set(modes, 1000baseX_Full);
56 }
57 
58 static const struct sfp_quirk sfp_quirks[] = {
59 	{
60 		// Alcatel Lucent G-010S-P can operate at 2500base-X, but
61 		// incorrectly report 2500MBd NRZ in their EEPROM
62 		.vendor = "ALCATELLUCENT",
63 		.part = "G010SP",
64 		.modes = sfp_quirk_2500basex,
65 	}, {
66 		// Alcatel Lucent G-010S-A can operate at 2500base-X, but
67 		// report 3.2GBd NRZ in their EEPROM
68 		.vendor = "ALCATELLUCENT",
69 		.part = "3FE46541AA",
70 		.modes = sfp_quirk_2500basex,
71 	}, {
72 		// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd
73 		// NRZ in their EEPROM
74 		.vendor = "HUAWEI",
75 		.part = "MA5671A",
76 		.modes = sfp_quirk_2500basex,
77 	}, {
78 		.vendor = "UBNT",
79 		.part = "UF-INSTANT",
80 		.modes = sfp_quirk_ubnt_uf_instant,
81 	},
82 };
83 
84 static size_t sfp_strlen(const char *str, size_t maxlen)
85 {
86 	size_t size, i;
87 
88 	/* Trailing characters should be filled with space chars */
89 	for (i = 0, size = 0; i < maxlen; i++)
90 		if (str[i] != ' ')
91 			size = i + 1;
92 
93 	return size;
94 }
95 
96 static bool sfp_match(const char *qs, const char *str, size_t len)
97 {
98 	if (!qs)
99 		return true;
100 	if (strlen(qs) != len)
101 		return false;
102 	return !strncmp(qs, str, len);
103 }
104 
105 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
106 {
107 	const struct sfp_quirk *q;
108 	unsigned int i;
109 	size_t vs, ps;
110 
111 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
112 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
113 
114 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
115 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
116 		    sfp_match(q->part, id->base.vendor_pn, ps))
117 			return q;
118 
119 	return NULL;
120 }
121 
122 /**
123  * sfp_parse_port() - Parse the EEPROM base ID, setting the port type
124  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
125  * @id: a pointer to the module's &struct sfp_eeprom_id
126  * @support: optional pointer to an array of unsigned long for the
127  *   ethtool support mask
128  *
129  * Parse the EEPROM identification given in @id, and return one of
130  * %PORT_TP, %PORT_FIBRE or %PORT_OTHER. If @support is non-%NULL,
131  * also set the ethtool %ETHTOOL_LINK_MODE_xxx_BIT corresponding with
132  * the connector type.
133  *
134  * If the port type is not known, returns %PORT_OTHER.
135  */
136 int sfp_parse_port(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
137 		   unsigned long *support)
138 {
139 	int port;
140 
141 	/* port is the physical connector, set this from the connector field. */
142 	switch (id->base.connector) {
143 	case SFF8024_CONNECTOR_SC:
144 	case SFF8024_CONNECTOR_FIBERJACK:
145 	case SFF8024_CONNECTOR_LC:
146 	case SFF8024_CONNECTOR_MT_RJ:
147 	case SFF8024_CONNECTOR_MU:
148 	case SFF8024_CONNECTOR_OPTICAL_PIGTAIL:
149 	case SFF8024_CONNECTOR_MPO_1X12:
150 	case SFF8024_CONNECTOR_MPO_2X16:
151 		port = PORT_FIBRE;
152 		break;
153 
154 	case SFF8024_CONNECTOR_RJ45:
155 		port = PORT_TP;
156 		break;
157 
158 	case SFF8024_CONNECTOR_COPPER_PIGTAIL:
159 		port = PORT_DA;
160 		break;
161 
162 	case SFF8024_CONNECTOR_UNSPEC:
163 		if (id->base.e1000_base_t) {
164 			port = PORT_TP;
165 			break;
166 		}
167 		fallthrough;
168 	case SFF8024_CONNECTOR_SG: /* guess */
169 	case SFF8024_CONNECTOR_HSSDC_II:
170 	case SFF8024_CONNECTOR_NOSEPARATE:
171 	case SFF8024_CONNECTOR_MXC_2X16:
172 		port = PORT_OTHER;
173 		break;
174 	default:
175 		dev_warn(bus->sfp_dev, "SFP: unknown connector id 0x%02x\n",
176 			 id->base.connector);
177 		port = PORT_OTHER;
178 		break;
179 	}
180 
181 	if (support) {
182 		switch (port) {
183 		case PORT_FIBRE:
184 			phylink_set(support, FIBRE);
185 			break;
186 
187 		case PORT_TP:
188 			phylink_set(support, TP);
189 			break;
190 		}
191 	}
192 
193 	return port;
194 }
195 EXPORT_SYMBOL_GPL(sfp_parse_port);
196 
197 /**
198  * sfp_may_have_phy() - indicate whether the module may have a PHY
199  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
200  * @id: a pointer to the module's &struct sfp_eeprom_id
201  *
202  * Parse the EEPROM identification given in @id, and return whether
203  * this module may have a PHY.
204  */
205 bool sfp_may_have_phy(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
206 {
207 	if (id->base.e1000_base_t)
208 		return true;
209 
210 	if (id->base.phys_id != SFF8024_ID_DWDM_SFP) {
211 		switch (id->base.extended_cc) {
212 		case SFF8024_ECC_10GBASE_T_SFI:
213 		case SFF8024_ECC_10GBASE_T_SR:
214 		case SFF8024_ECC_5GBASE_T:
215 		case SFF8024_ECC_2_5GBASE_T:
216 			return true;
217 		}
218 	}
219 
220 	return false;
221 }
222 EXPORT_SYMBOL_GPL(sfp_may_have_phy);
223 
224 /**
225  * sfp_parse_support() - Parse the eeprom id for supported link modes
226  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
227  * @id: a pointer to the module's &struct sfp_eeprom_id
228  * @support: pointer to an array of unsigned long for the ethtool support mask
229  *
230  * Parse the EEPROM identification information and derive the supported
231  * ethtool link modes for the module.
232  */
233 void sfp_parse_support(struct sfp_bus *bus, const struct sfp_eeprom_id *id,
234 		       unsigned long *support)
235 {
236 	unsigned int br_min, br_nom, br_max;
237 	__ETHTOOL_DECLARE_LINK_MODE_MASK(modes) = { 0, };
238 
239 	/* Decode the bitrate information to MBd */
240 	br_min = br_nom = br_max = 0;
241 	if (id->base.br_nominal) {
242 		if (id->base.br_nominal != 255) {
243 			br_nom = id->base.br_nominal * 100;
244 			br_min = br_nom - id->base.br_nominal * id->ext.br_min;
245 			br_max = br_nom + id->base.br_nominal * id->ext.br_max;
246 		} else if (id->ext.br_max) {
247 			br_nom = 250 * id->ext.br_max;
248 			br_max = br_nom + br_nom * id->ext.br_min / 100;
249 			br_min = br_nom - br_nom * id->ext.br_min / 100;
250 		}
251 
252 		/* When using passive cables, in case neither BR,min nor BR,max
253 		 * are specified, set br_min to 0 as the nominal value is then
254 		 * used as the maximum.
255 		 */
256 		if (br_min == br_max && id->base.sfp_ct_passive)
257 			br_min = 0;
258 	}
259 
260 	/* Set ethtool support from the compliance fields. */
261 	if (id->base.e10g_base_sr)
262 		phylink_set(modes, 10000baseSR_Full);
263 	if (id->base.e10g_base_lr)
264 		phylink_set(modes, 10000baseLR_Full);
265 	if (id->base.e10g_base_lrm)
266 		phylink_set(modes, 10000baseLRM_Full);
267 	if (id->base.e10g_base_er)
268 		phylink_set(modes, 10000baseER_Full);
269 	if (id->base.e1000_base_sx ||
270 	    id->base.e1000_base_lx ||
271 	    id->base.e1000_base_cx)
272 		phylink_set(modes, 1000baseX_Full);
273 	if (id->base.e1000_base_t) {
274 		phylink_set(modes, 1000baseT_Half);
275 		phylink_set(modes, 1000baseT_Full);
276 	}
277 
278 	/* 1000Base-PX or 1000Base-BX10 */
279 	if ((id->base.e_base_px || id->base.e_base_bx10) &&
280 	    br_min <= 1300 && br_max >= 1200)
281 		phylink_set(modes, 1000baseX_Full);
282 
283 	/* 100Base-FX, 100Base-LX, 100Base-PX, 100Base-BX10 */
284 	if (id->base.e100_base_fx || id->base.e100_base_lx)
285 		phylink_set(modes, 100baseFX_Full);
286 	if ((id->base.e_base_px || id->base.e_base_bx10) && br_nom == 100)
287 		phylink_set(modes, 100baseFX_Full);
288 
289 	/* For active or passive cables, select the link modes
290 	 * based on the bit rates and the cable compliance bytes.
291 	 */
292 	if ((id->base.sfp_ct_passive || id->base.sfp_ct_active) && br_nom) {
293 		/* This may look odd, but some manufacturers use 12000MBd */
294 		if (br_min <= 12000 && br_max >= 10300)
295 			phylink_set(modes, 10000baseCR_Full);
296 		if (br_min <= 3200 && br_max >= 3100)
297 			phylink_set(modes, 2500baseX_Full);
298 		if (br_min <= 1300 && br_max >= 1200)
299 			phylink_set(modes, 1000baseX_Full);
300 	}
301 	if (id->base.sfp_ct_passive) {
302 		if (id->base.passive.sff8431_app_e)
303 			phylink_set(modes, 10000baseCR_Full);
304 	}
305 	if (id->base.sfp_ct_active) {
306 		if (id->base.active.sff8431_app_e ||
307 		    id->base.active.sff8431_lim) {
308 			phylink_set(modes, 10000baseCR_Full);
309 		}
310 	}
311 
312 	switch (id->base.extended_cc) {
313 	case SFF8024_ECC_UNSPEC:
314 		break;
315 	case SFF8024_ECC_100GBASE_SR4_25GBASE_SR:
316 		phylink_set(modes, 100000baseSR4_Full);
317 		phylink_set(modes, 25000baseSR_Full);
318 		break;
319 	case SFF8024_ECC_100GBASE_LR4_25GBASE_LR:
320 	case SFF8024_ECC_100GBASE_ER4_25GBASE_ER:
321 		phylink_set(modes, 100000baseLR4_ER4_Full);
322 		break;
323 	case SFF8024_ECC_100GBASE_CR4:
324 		phylink_set(modes, 100000baseCR4_Full);
325 		fallthrough;
326 	case SFF8024_ECC_25GBASE_CR_S:
327 	case SFF8024_ECC_25GBASE_CR_N:
328 		phylink_set(modes, 25000baseCR_Full);
329 		break;
330 	case SFF8024_ECC_10GBASE_T_SFI:
331 	case SFF8024_ECC_10GBASE_T_SR:
332 		phylink_set(modes, 10000baseT_Full);
333 		break;
334 	case SFF8024_ECC_5GBASE_T:
335 		phylink_set(modes, 5000baseT_Full);
336 		break;
337 	case SFF8024_ECC_2_5GBASE_T:
338 		phylink_set(modes, 2500baseT_Full);
339 		break;
340 	default:
341 		dev_warn(bus->sfp_dev,
342 			 "Unknown/unsupported extended compliance code: 0x%02x\n",
343 			 id->base.extended_cc);
344 		break;
345 	}
346 
347 	/* For fibre channel SFP, derive possible BaseX modes */
348 	if (id->base.fc_speed_100 ||
349 	    id->base.fc_speed_200 ||
350 	    id->base.fc_speed_400) {
351 		if (id->base.br_nominal >= 31)
352 			phylink_set(modes, 2500baseX_Full);
353 		if (id->base.br_nominal >= 12)
354 			phylink_set(modes, 1000baseX_Full);
355 	}
356 
357 	/* If we haven't discovered any modes that this module supports, try
358 	 * the bitrate to determine supported modes. Some BiDi modules (eg,
359 	 * 1310nm/1550nm) are not 1000BASE-BX compliant due to the differing
360 	 * wavelengths, so do not set any transceiver bits.
361 	 *
362 	 * Do the same for modules supporting 2500BASE-X. Note that some
363 	 * modules use 2500Mbaud rather than 3100 or 3200Mbaud for
364 	 * 2500BASE-X, so we allow some slack here.
365 	 */
366 	if (bitmap_empty(modes, __ETHTOOL_LINK_MODE_MASK_NBITS) && br_nom) {
367 		if (br_min <= 1300 && br_max >= 1200)
368 			phylink_set(modes, 1000baseX_Full);
369 		if (br_min <= 3200 && br_max >= 2500)
370 			phylink_set(modes, 2500baseX_Full);
371 	}
372 
373 	if (bus->sfp_quirk)
374 		bus->sfp_quirk->modes(id, modes);
375 
376 	bitmap_or(support, support, modes, __ETHTOOL_LINK_MODE_MASK_NBITS);
377 
378 	phylink_set(support, Autoneg);
379 	phylink_set(support, Pause);
380 	phylink_set(support, Asym_Pause);
381 }
382 EXPORT_SYMBOL_GPL(sfp_parse_support);
383 
384 /**
385  * sfp_select_interface() - Select appropriate phy_interface_t mode
386  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
387  * @link_modes: ethtool link modes mask
388  *
389  * Derive the phy_interface_t mode for the SFP module from the link
390  * modes mask.
391  */
392 phy_interface_t sfp_select_interface(struct sfp_bus *bus,
393 				     unsigned long *link_modes)
394 {
395 	if (phylink_test(link_modes, 10000baseCR_Full) ||
396 	    phylink_test(link_modes, 10000baseSR_Full) ||
397 	    phylink_test(link_modes, 10000baseLR_Full) ||
398 	    phylink_test(link_modes, 10000baseLRM_Full) ||
399 	    phylink_test(link_modes, 10000baseER_Full) ||
400 	    phylink_test(link_modes, 10000baseT_Full))
401 		return PHY_INTERFACE_MODE_10GBASER;
402 
403 	if (phylink_test(link_modes, 5000baseT_Full))
404 		return PHY_INTERFACE_MODE_5GBASER;
405 
406 	if (phylink_test(link_modes, 2500baseX_Full))
407 		return PHY_INTERFACE_MODE_2500BASEX;
408 
409 	if (phylink_test(link_modes, 1000baseT_Half) ||
410 	    phylink_test(link_modes, 1000baseT_Full))
411 		return PHY_INTERFACE_MODE_SGMII;
412 
413 	if (phylink_test(link_modes, 1000baseX_Full))
414 		return PHY_INTERFACE_MODE_1000BASEX;
415 
416 	if (phylink_test(link_modes, 100baseFX_Full))
417 		return PHY_INTERFACE_MODE_100BASEX;
418 
419 	dev_warn(bus->sfp_dev, "Unable to ascertain link mode\n");
420 
421 	return PHY_INTERFACE_MODE_NA;
422 }
423 EXPORT_SYMBOL_GPL(sfp_select_interface);
424 
425 static LIST_HEAD(sfp_buses);
426 static DEFINE_MUTEX(sfp_mutex);
427 
428 static const struct sfp_upstream_ops *sfp_get_upstream_ops(struct sfp_bus *bus)
429 {
430 	return bus->registered ? bus->upstream_ops : NULL;
431 }
432 
433 static struct sfp_bus *sfp_bus_get(struct fwnode_handle *fwnode)
434 {
435 	struct sfp_bus *sfp, *new, *found = NULL;
436 
437 	new = kzalloc(sizeof(*new), GFP_KERNEL);
438 
439 	mutex_lock(&sfp_mutex);
440 
441 	list_for_each_entry(sfp, &sfp_buses, node) {
442 		if (sfp->fwnode == fwnode) {
443 			kref_get(&sfp->kref);
444 			found = sfp;
445 			break;
446 		}
447 	}
448 
449 	if (!found && new) {
450 		kref_init(&new->kref);
451 		new->fwnode = fwnode;
452 		list_add(&new->node, &sfp_buses);
453 		found = new;
454 		new = NULL;
455 	}
456 
457 	mutex_unlock(&sfp_mutex);
458 
459 	kfree(new);
460 
461 	return found;
462 }
463 
464 static void sfp_bus_release(struct kref *kref)
465 {
466 	struct sfp_bus *bus = container_of(kref, struct sfp_bus, kref);
467 
468 	list_del(&bus->node);
469 	mutex_unlock(&sfp_mutex);
470 	kfree(bus);
471 }
472 
473 /**
474  * sfp_bus_put() - put a reference on the &struct sfp_bus
475  * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
476  *
477  * Put a reference on the &struct sfp_bus and free the underlying structure
478  * if this was the last reference.
479  */
480 void sfp_bus_put(struct sfp_bus *bus)
481 {
482 	if (bus)
483 		kref_put_mutex(&bus->kref, sfp_bus_release, &sfp_mutex);
484 }
485 EXPORT_SYMBOL_GPL(sfp_bus_put);
486 
487 static int sfp_register_bus(struct sfp_bus *bus)
488 {
489 	const struct sfp_upstream_ops *ops = bus->upstream_ops;
490 	int ret;
491 
492 	if (ops) {
493 		if (ops->link_down)
494 			ops->link_down(bus->upstream);
495 		if (ops->connect_phy && bus->phydev) {
496 			ret = ops->connect_phy(bus->upstream, bus->phydev);
497 			if (ret)
498 				return ret;
499 		}
500 	}
501 	bus->registered = true;
502 	bus->socket_ops->attach(bus->sfp);
503 	if (bus->started)
504 		bus->socket_ops->start(bus->sfp);
505 	bus->upstream_ops->attach(bus->upstream, bus);
506 	return 0;
507 }
508 
509 static void sfp_unregister_bus(struct sfp_bus *bus)
510 {
511 	const struct sfp_upstream_ops *ops = bus->upstream_ops;
512 
513 	if (bus->registered) {
514 		bus->upstream_ops->detach(bus->upstream, bus);
515 		if (bus->started)
516 			bus->socket_ops->stop(bus->sfp);
517 		bus->socket_ops->detach(bus->sfp);
518 		if (bus->phydev && ops && ops->disconnect_phy)
519 			ops->disconnect_phy(bus->upstream);
520 	}
521 	bus->registered = false;
522 }
523 
524 /**
525  * sfp_get_module_info() - Get the ethtool_modinfo for a SFP module
526  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
527  * @modinfo: a &struct ethtool_modinfo
528  *
529  * Fill in the type and eeprom_len parameters in @modinfo for a module on
530  * the sfp bus specified by @bus.
531  *
532  * Returns 0 on success or a negative errno number.
533  */
534 int sfp_get_module_info(struct sfp_bus *bus, struct ethtool_modinfo *modinfo)
535 {
536 	return bus->socket_ops->module_info(bus->sfp, modinfo);
537 }
538 EXPORT_SYMBOL_GPL(sfp_get_module_info);
539 
540 /**
541  * sfp_get_module_eeprom() - Read the SFP module EEPROM
542  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
543  * @ee: a &struct ethtool_eeprom
544  * @data: buffer to contain the EEPROM data (must be at least @ee->len bytes)
545  *
546  * Read the EEPROM as specified by the supplied @ee. See the documentation
547  * for &struct ethtool_eeprom for the region to be read.
548  *
549  * Returns 0 on success or a negative errno number.
550  */
551 int sfp_get_module_eeprom(struct sfp_bus *bus, struct ethtool_eeprom *ee,
552 			  u8 *data)
553 {
554 	return bus->socket_ops->module_eeprom(bus->sfp, ee, data);
555 }
556 EXPORT_SYMBOL_GPL(sfp_get_module_eeprom);
557 
558 /**
559  * sfp_upstream_start() - Inform the SFP that the network device is up
560  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
561  *
562  * Inform the SFP socket that the network device is now up, so that the
563  * module can be enabled by allowing TX_DISABLE to be deasserted. This
564  * should be called from the network device driver's &struct net_device_ops
565  * ndo_open() method.
566  */
567 void sfp_upstream_start(struct sfp_bus *bus)
568 {
569 	if (bus->registered)
570 		bus->socket_ops->start(bus->sfp);
571 	bus->started = true;
572 }
573 EXPORT_SYMBOL_GPL(sfp_upstream_start);
574 
575 /**
576  * sfp_upstream_stop() - Inform the SFP that the network device is down
577  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
578  *
579  * Inform the SFP socket that the network device is now up, so that the
580  * module can be disabled by asserting TX_DISABLE, disabling the laser
581  * in optical modules. This should be called from the network device
582  * driver's &struct net_device_ops ndo_stop() method.
583  */
584 void sfp_upstream_stop(struct sfp_bus *bus)
585 {
586 	if (bus->registered)
587 		bus->socket_ops->stop(bus->sfp);
588 	bus->started = false;
589 }
590 EXPORT_SYMBOL_GPL(sfp_upstream_stop);
591 
592 static void sfp_upstream_clear(struct sfp_bus *bus)
593 {
594 	bus->upstream_ops = NULL;
595 	bus->upstream = NULL;
596 }
597 
598 /**
599  * sfp_bus_find_fwnode() - parse and locate the SFP bus from fwnode
600  * @fwnode: firmware node for the parent device (MAC or PHY)
601  *
602  * Parse the parent device's firmware node for a SFP bus, and locate
603  * the sfp_bus structure, incrementing its reference count.  This must
604  * be put via sfp_bus_put() when done.
605  *
606  * Returns:
607  * 	    - on success, a pointer to the sfp_bus structure,
608  *	    - %NULL if no SFP is specified,
609  * 	    - on failure, an error pointer value:
610  *
611  * 	      - corresponding to the errors detailed for
612  * 	        fwnode_property_get_reference_args().
613  * 	      - %-ENOMEM if we failed to allocate the bus.
614  *	      - an error from the upstream's connect_phy() method.
615  */
616 struct sfp_bus *sfp_bus_find_fwnode(struct fwnode_handle *fwnode)
617 {
618 	struct fwnode_reference_args ref;
619 	struct sfp_bus *bus;
620 	int ret;
621 
622 	ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
623 						 0, 0, &ref);
624 	if (ret == -ENOENT)
625 		return NULL;
626 	else if (ret < 0)
627 		return ERR_PTR(ret);
628 
629 	bus = sfp_bus_get(ref.fwnode);
630 	fwnode_handle_put(ref.fwnode);
631 	if (!bus)
632 		return ERR_PTR(-ENOMEM);
633 
634 	return bus;
635 }
636 EXPORT_SYMBOL_GPL(sfp_bus_find_fwnode);
637 
638 /**
639  * sfp_bus_add_upstream() - parse and register the neighbouring device
640  * @bus: the &struct sfp_bus found via sfp_bus_find_fwnode()
641  * @upstream: the upstream private data
642  * @ops: the upstream's &struct sfp_upstream_ops
643  *
644  * Add upstream driver for the SFP bus, and if the bus is complete, register
645  * the SFP bus using sfp_register_upstream().  This takes a reference on the
646  * bus, so it is safe to put the bus after this call.
647  *
648  * Returns:
649  * 	    - on success, a pointer to the sfp_bus structure,
650  *	    - %NULL if no SFP is specified,
651  * 	    - on failure, an error pointer value:
652  *
653  * 	      - corresponding to the errors detailed for
654  * 	        fwnode_property_get_reference_args().
655  * 	      - %-ENOMEM if we failed to allocate the bus.
656  *	      - an error from the upstream's connect_phy() method.
657  */
658 int sfp_bus_add_upstream(struct sfp_bus *bus, void *upstream,
659 			 const struct sfp_upstream_ops *ops)
660 {
661 	int ret;
662 
663 	/* If no bus, return success */
664 	if (!bus)
665 		return 0;
666 
667 	rtnl_lock();
668 	kref_get(&bus->kref);
669 	bus->upstream_ops = ops;
670 	bus->upstream = upstream;
671 
672 	if (bus->sfp) {
673 		ret = sfp_register_bus(bus);
674 		if (ret)
675 			sfp_upstream_clear(bus);
676 	} else {
677 		ret = 0;
678 	}
679 	rtnl_unlock();
680 
681 	if (ret)
682 		sfp_bus_put(bus);
683 
684 	return ret;
685 }
686 EXPORT_SYMBOL_GPL(sfp_bus_add_upstream);
687 
688 /**
689  * sfp_bus_del_upstream() - Delete a sfp bus
690  * @bus: a pointer to the &struct sfp_bus structure for the sfp module
691  *
692  * Delete a previously registered upstream connection for the SFP
693  * module. @bus should have been added by sfp_bus_add_upstream().
694  */
695 void sfp_bus_del_upstream(struct sfp_bus *bus)
696 {
697 	if (bus) {
698 		rtnl_lock();
699 		if (bus->sfp)
700 			sfp_unregister_bus(bus);
701 		sfp_upstream_clear(bus);
702 		rtnl_unlock();
703 
704 		sfp_bus_put(bus);
705 	}
706 }
707 EXPORT_SYMBOL_GPL(sfp_bus_del_upstream);
708 
709 /* Socket driver entry points */
710 int sfp_add_phy(struct sfp_bus *bus, struct phy_device *phydev)
711 {
712 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
713 	int ret = 0;
714 
715 	if (ops && ops->connect_phy)
716 		ret = ops->connect_phy(bus->upstream, phydev);
717 
718 	if (ret == 0)
719 		bus->phydev = phydev;
720 
721 	return ret;
722 }
723 EXPORT_SYMBOL_GPL(sfp_add_phy);
724 
725 void sfp_remove_phy(struct sfp_bus *bus)
726 {
727 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
728 
729 	if (ops && ops->disconnect_phy)
730 		ops->disconnect_phy(bus->upstream);
731 	bus->phydev = NULL;
732 }
733 EXPORT_SYMBOL_GPL(sfp_remove_phy);
734 
735 void sfp_link_up(struct sfp_bus *bus)
736 {
737 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
738 
739 	if (ops && ops->link_up)
740 		ops->link_up(bus->upstream);
741 }
742 EXPORT_SYMBOL_GPL(sfp_link_up);
743 
744 void sfp_link_down(struct sfp_bus *bus)
745 {
746 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
747 
748 	if (ops && ops->link_down)
749 		ops->link_down(bus->upstream);
750 }
751 EXPORT_SYMBOL_GPL(sfp_link_down);
752 
753 int sfp_module_insert(struct sfp_bus *bus, const struct sfp_eeprom_id *id)
754 {
755 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
756 	int ret = 0;
757 
758 	bus->sfp_quirk = sfp_lookup_quirk(id);
759 
760 	if (ops && ops->module_insert)
761 		ret = ops->module_insert(bus->upstream, id);
762 
763 	return ret;
764 }
765 EXPORT_SYMBOL_GPL(sfp_module_insert);
766 
767 void sfp_module_remove(struct sfp_bus *bus)
768 {
769 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
770 
771 	if (ops && ops->module_remove)
772 		ops->module_remove(bus->upstream);
773 
774 	bus->sfp_quirk = NULL;
775 }
776 EXPORT_SYMBOL_GPL(sfp_module_remove);
777 
778 int sfp_module_start(struct sfp_bus *bus)
779 {
780 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
781 	int ret = 0;
782 
783 	if (ops && ops->module_start)
784 		ret = ops->module_start(bus->upstream);
785 
786 	return ret;
787 }
788 EXPORT_SYMBOL_GPL(sfp_module_start);
789 
790 void sfp_module_stop(struct sfp_bus *bus)
791 {
792 	const struct sfp_upstream_ops *ops = sfp_get_upstream_ops(bus);
793 
794 	if (ops && ops->module_stop)
795 		ops->module_stop(bus->upstream);
796 }
797 EXPORT_SYMBOL_GPL(sfp_module_stop);
798 
799 static void sfp_socket_clear(struct sfp_bus *bus)
800 {
801 	bus->sfp_dev = NULL;
802 	bus->sfp = NULL;
803 	bus->socket_ops = NULL;
804 }
805 
806 struct sfp_bus *sfp_register_socket(struct device *dev, struct sfp *sfp,
807 				    const struct sfp_socket_ops *ops)
808 {
809 	struct sfp_bus *bus = sfp_bus_get(dev->fwnode);
810 	int ret = 0;
811 
812 	if (bus) {
813 		rtnl_lock();
814 		bus->sfp_dev = dev;
815 		bus->sfp = sfp;
816 		bus->socket_ops = ops;
817 
818 		if (bus->upstream_ops) {
819 			ret = sfp_register_bus(bus);
820 			if (ret)
821 				sfp_socket_clear(bus);
822 		}
823 		rtnl_unlock();
824 	}
825 
826 	if (ret) {
827 		sfp_bus_put(bus);
828 		bus = NULL;
829 	}
830 
831 	return bus;
832 }
833 EXPORT_SYMBOL_GPL(sfp_register_socket);
834 
835 void sfp_unregister_socket(struct sfp_bus *bus)
836 {
837 	rtnl_lock();
838 	if (bus->upstream_ops)
839 		sfp_unregister_bus(bus);
840 	sfp_socket_clear(bus);
841 	rtnl_unlock();
842 
843 	sfp_bus_put(bus);
844 }
845 EXPORT_SYMBOL_GPL(sfp_unregister_socket);
846