1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phylib_stubs.h> 31 #include <linux/phy_led_triggers.h> 32 #include <linux/pse-pd/pse.h> 33 #include <linux/property.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/sfp.h> 36 #include <linux/skbuff.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/uaccess.h> 40 #include <linux/unistd.h> 41 42 MODULE_DESCRIPTION("PHY library"); 43 MODULE_AUTHOR("Andy Fleming"); 44 MODULE_LICENSE("GPL"); 45 46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 47 EXPORT_SYMBOL_GPL(phy_basic_features); 48 49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 50 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 51 52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 54 55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 56 EXPORT_SYMBOL_GPL(phy_gbit_features); 57 58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 60 61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 63 64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 65 EXPORT_SYMBOL_GPL(phy_10gbit_features); 66 67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 69 70 const int phy_basic_ports_array[3] = { 71 ETHTOOL_LINK_MODE_Autoneg_BIT, 72 ETHTOOL_LINK_MODE_TP_BIT, 73 ETHTOOL_LINK_MODE_MII_BIT, 74 }; 75 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 76 77 const int phy_fibre_port_array[1] = { 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 }; 80 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 81 82 const int phy_all_ports_features_array[7] = { 83 ETHTOOL_LINK_MODE_Autoneg_BIT, 84 ETHTOOL_LINK_MODE_TP_BIT, 85 ETHTOOL_LINK_MODE_MII_BIT, 86 ETHTOOL_LINK_MODE_FIBRE_BIT, 87 ETHTOOL_LINK_MODE_AUI_BIT, 88 ETHTOOL_LINK_MODE_BNC_BIT, 89 ETHTOOL_LINK_MODE_Backplane_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 92 93 const int phy_10_100_features_array[4] = { 94 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 95 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 97 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 98 }; 99 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 100 101 const int phy_basic_t1_features_array[3] = { 102 ETHTOOL_LINK_MODE_TP_BIT, 103 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 104 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 105 }; 106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 107 108 const int phy_basic_t1s_p2mp_features_array[2] = { 109 ETHTOOL_LINK_MODE_TP_BIT, 110 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 111 }; 112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 113 114 const int phy_gbit_features_array[2] = { 115 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 116 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 117 }; 118 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 119 120 const int phy_10gbit_features_array[1] = { 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 124 125 static const int phy_10gbit_fec_features_array[1] = { 126 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 127 }; 128 129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 131 132 static const int phy_10gbit_full_features_array[] = { 133 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 135 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 136 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 137 }; 138 139 static const int phy_eee_cap1_features_array[] = { 140 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 142 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 143 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 144 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 145 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 146 }; 147 148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 150 151 static const int phy_eee_cap2_features_array[] = { 152 ETHTOOL_LINK_MODE_2500baseT_Full_BIT, 153 ETHTOOL_LINK_MODE_5000baseT_Full_BIT, 154 }; 155 156 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap2_features) __ro_after_init; 157 EXPORT_SYMBOL_GPL(phy_eee_cap2_features); 158 159 static void features_init(void) 160 { 161 /* 10/100 half/full*/ 162 linkmode_set_bit_array(phy_basic_ports_array, 163 ARRAY_SIZE(phy_basic_ports_array), 164 phy_basic_features); 165 linkmode_set_bit_array(phy_10_100_features_array, 166 ARRAY_SIZE(phy_10_100_features_array), 167 phy_basic_features); 168 169 /* 100 full, TP */ 170 linkmode_set_bit_array(phy_basic_t1_features_array, 171 ARRAY_SIZE(phy_basic_t1_features_array), 172 phy_basic_t1_features); 173 174 /* 10 half, P2MP, TP */ 175 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 176 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 177 phy_basic_t1s_p2mp_features); 178 179 /* 10/100 half/full + 1000 half/full */ 180 linkmode_set_bit_array(phy_basic_ports_array, 181 ARRAY_SIZE(phy_basic_ports_array), 182 phy_gbit_features); 183 linkmode_set_bit_array(phy_10_100_features_array, 184 ARRAY_SIZE(phy_10_100_features_array), 185 phy_gbit_features); 186 linkmode_set_bit_array(phy_gbit_features_array, 187 ARRAY_SIZE(phy_gbit_features_array), 188 phy_gbit_features); 189 190 /* 10/100 half/full + 1000 half/full + fibre*/ 191 linkmode_set_bit_array(phy_basic_ports_array, 192 ARRAY_SIZE(phy_basic_ports_array), 193 phy_gbit_fibre_features); 194 linkmode_set_bit_array(phy_10_100_features_array, 195 ARRAY_SIZE(phy_10_100_features_array), 196 phy_gbit_fibre_features); 197 linkmode_set_bit_array(phy_gbit_features_array, 198 ARRAY_SIZE(phy_gbit_features_array), 199 phy_gbit_fibre_features); 200 linkmode_set_bit_array(phy_fibre_port_array, 201 ARRAY_SIZE(phy_fibre_port_array), 202 phy_gbit_fibre_features); 203 204 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 205 linkmode_set_bit_array(phy_all_ports_features_array, 206 ARRAY_SIZE(phy_all_ports_features_array), 207 phy_gbit_all_ports_features); 208 linkmode_set_bit_array(phy_10_100_features_array, 209 ARRAY_SIZE(phy_10_100_features_array), 210 phy_gbit_all_ports_features); 211 linkmode_set_bit_array(phy_gbit_features_array, 212 ARRAY_SIZE(phy_gbit_features_array), 213 phy_gbit_all_ports_features); 214 215 /* 10/100 half/full + 1000 half/full + 10G full*/ 216 linkmode_set_bit_array(phy_all_ports_features_array, 217 ARRAY_SIZE(phy_all_ports_features_array), 218 phy_10gbit_features); 219 linkmode_set_bit_array(phy_10_100_features_array, 220 ARRAY_SIZE(phy_10_100_features_array), 221 phy_10gbit_features); 222 linkmode_set_bit_array(phy_gbit_features_array, 223 ARRAY_SIZE(phy_gbit_features_array), 224 phy_10gbit_features); 225 linkmode_set_bit_array(phy_10gbit_features_array, 226 ARRAY_SIZE(phy_10gbit_features_array), 227 phy_10gbit_features); 228 229 /* 10/100/1000/10G full */ 230 linkmode_set_bit_array(phy_all_ports_features_array, 231 ARRAY_SIZE(phy_all_ports_features_array), 232 phy_10gbit_full_features); 233 linkmode_set_bit_array(phy_10gbit_full_features_array, 234 ARRAY_SIZE(phy_10gbit_full_features_array), 235 phy_10gbit_full_features); 236 /* 10G FEC only */ 237 linkmode_set_bit_array(phy_10gbit_fec_features_array, 238 ARRAY_SIZE(phy_10gbit_fec_features_array), 239 phy_10gbit_fec_features); 240 linkmode_set_bit_array(phy_eee_cap1_features_array, 241 ARRAY_SIZE(phy_eee_cap1_features_array), 242 phy_eee_cap1_features); 243 linkmode_set_bit_array(phy_eee_cap2_features_array, 244 ARRAY_SIZE(phy_eee_cap2_features_array), 245 phy_eee_cap2_features); 246 247 } 248 249 void phy_device_free(struct phy_device *phydev) 250 { 251 put_device(&phydev->mdio.dev); 252 } 253 EXPORT_SYMBOL(phy_device_free); 254 255 static void phy_mdio_device_free(struct mdio_device *mdiodev) 256 { 257 struct phy_device *phydev; 258 259 phydev = container_of(mdiodev, struct phy_device, mdio); 260 phy_device_free(phydev); 261 } 262 263 static void phy_device_release(struct device *dev) 264 { 265 fwnode_handle_put(dev->fwnode); 266 kfree(to_phy_device(dev)); 267 } 268 269 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 270 { 271 struct phy_device *phydev; 272 273 phydev = container_of(mdiodev, struct phy_device, mdio); 274 phy_device_remove(phydev); 275 } 276 277 static struct phy_driver genphy_driver; 278 279 static LIST_HEAD(phy_fixup_list); 280 static DEFINE_MUTEX(phy_fixup_lock); 281 282 static bool phy_drv_wol_enabled(struct phy_device *phydev) 283 { 284 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 285 286 phy_ethtool_get_wol(phydev, &wol); 287 288 return wol.wolopts != 0; 289 } 290 291 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 292 { 293 struct device_driver *drv = phydev->mdio.dev.driver; 294 struct phy_driver *phydrv = to_phy_driver(drv); 295 struct net_device *netdev = phydev->attached_dev; 296 297 if (!drv || !phydrv->suspend) 298 return false; 299 300 /* If the PHY on the mido bus is not attached but has WOL enabled 301 * we cannot suspend the PHY. 302 */ 303 if (!netdev && phy_drv_wol_enabled(phydev)) 304 return false; 305 306 /* PHY not attached? May suspend if the PHY has not already been 307 * suspended as part of a prior call to phy_disconnect() -> 308 * phy_detach() -> phy_suspend() because the parent netdev might be the 309 * MDIO bus driver and clock gated at this point. 310 */ 311 if (!netdev) 312 goto out; 313 314 if (netdev->ethtool->wol_enabled) 315 return false; 316 317 /* As long as not all affected network drivers support the 318 * wol_enabled flag, let's check for hints that WoL is enabled. 319 * Don't suspend PHY if the attached netdev parent may wake up. 320 * The parent may point to a PCI device, as in tg3 driver. 321 */ 322 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 323 return false; 324 325 /* Also don't suspend PHY if the netdev itself may wakeup. This 326 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 327 * e.g. SoC devices. 328 */ 329 if (device_may_wakeup(&netdev->dev)) 330 return false; 331 332 out: 333 return !phydev->suspended; 334 } 335 336 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 337 { 338 struct phy_device *phydev = to_phy_device(dev); 339 340 if (phydev->mac_managed_pm) 341 return 0; 342 343 /* Wakeup interrupts may occur during the system sleep transition when 344 * the PHY is inaccessible. Set flag to postpone handling until the PHY 345 * has resumed. Wait for concurrent interrupt handler to complete. 346 */ 347 if (phy_interrupt_is_valid(phydev)) { 348 phydev->irq_suspended = 1; 349 synchronize_irq(phydev->irq); 350 } 351 352 /* We must stop the state machine manually, otherwise it stops out of 353 * control, possibly with the phydev->lock held. Upon resume, netdev 354 * may call phy routines that try to grab the same lock, and that may 355 * lead to a deadlock. 356 */ 357 if (phydev->attached_dev && phydev->adjust_link) 358 phy_stop_machine(phydev); 359 360 if (!mdio_bus_phy_may_suspend(phydev)) 361 return 0; 362 363 phydev->suspended_by_mdio_bus = 1; 364 365 return phy_suspend(phydev); 366 } 367 368 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 369 { 370 struct phy_device *phydev = to_phy_device(dev); 371 int ret; 372 373 if (phydev->mac_managed_pm) 374 return 0; 375 376 if (!phydev->suspended_by_mdio_bus) 377 goto no_resume; 378 379 phydev->suspended_by_mdio_bus = 0; 380 381 /* If we managed to get here with the PHY state machine in a state 382 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 383 * that something went wrong and we should most likely be using 384 * MAC managed PM, but we are not. 385 */ 386 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 387 phydev->state != PHY_UP); 388 389 ret = phy_init_hw(phydev); 390 if (ret < 0) 391 return ret; 392 393 ret = phy_resume(phydev); 394 if (ret < 0) 395 return ret; 396 no_resume: 397 if (phy_interrupt_is_valid(phydev)) { 398 phydev->irq_suspended = 0; 399 synchronize_irq(phydev->irq); 400 401 /* Rerun interrupts which were postponed by phy_interrupt() 402 * because they occurred during the system sleep transition. 403 */ 404 if (phydev->irq_rerun) { 405 phydev->irq_rerun = 0; 406 enable_irq(phydev->irq); 407 irq_wake_thread(phydev->irq, phydev); 408 } 409 } 410 411 if (phydev->attached_dev && phydev->adjust_link) 412 phy_start_machine(phydev); 413 414 return 0; 415 } 416 417 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 418 mdio_bus_phy_resume); 419 420 /** 421 * phy_register_fixup - creates a new phy_fixup and adds it to the list 422 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 423 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 424 * It can also be PHY_ANY_UID 425 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 426 * comparison 427 * @run: The actual code to be run when a matching PHY is found 428 */ 429 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 430 int (*run)(struct phy_device *)) 431 { 432 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 433 434 if (!fixup) 435 return -ENOMEM; 436 437 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 438 fixup->phy_uid = phy_uid; 439 fixup->phy_uid_mask = phy_uid_mask; 440 fixup->run = run; 441 442 mutex_lock(&phy_fixup_lock); 443 list_add_tail(&fixup->list, &phy_fixup_list); 444 mutex_unlock(&phy_fixup_lock); 445 446 return 0; 447 } 448 EXPORT_SYMBOL(phy_register_fixup); 449 450 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 451 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 452 int (*run)(struct phy_device *)) 453 { 454 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 455 } 456 EXPORT_SYMBOL(phy_register_fixup_for_uid); 457 458 /* Registers a fixup to be run on the PHY with id string bus_id */ 459 int phy_register_fixup_for_id(const char *bus_id, 460 int (*run)(struct phy_device *)) 461 { 462 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 463 } 464 EXPORT_SYMBOL(phy_register_fixup_for_id); 465 466 /** 467 * phy_unregister_fixup - remove a phy_fixup from the list 468 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 469 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 470 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 471 */ 472 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 473 { 474 struct list_head *pos, *n; 475 struct phy_fixup *fixup; 476 int ret; 477 478 ret = -ENODEV; 479 480 mutex_lock(&phy_fixup_lock); 481 list_for_each_safe(pos, n, &phy_fixup_list) { 482 fixup = list_entry(pos, struct phy_fixup, list); 483 484 if ((!strcmp(fixup->bus_id, bus_id)) && 485 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) { 486 list_del(&fixup->list); 487 kfree(fixup); 488 ret = 0; 489 break; 490 } 491 } 492 mutex_unlock(&phy_fixup_lock); 493 494 return ret; 495 } 496 EXPORT_SYMBOL(phy_unregister_fixup); 497 498 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 499 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 500 { 501 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 502 } 503 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 504 505 /* Unregisters a fixup of the PHY with id string bus_id */ 506 int phy_unregister_fixup_for_id(const char *bus_id) 507 { 508 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 509 } 510 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 511 512 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 513 * Fixups can be set to match any in one or more fields. 514 */ 515 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 516 { 517 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 518 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 519 return 0; 520 521 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid, 522 fixup->phy_uid_mask)) 523 if (fixup->phy_uid != PHY_ANY_UID) 524 return 0; 525 526 return 1; 527 } 528 529 /* Runs any matching fixups for this phydev */ 530 static int phy_scan_fixups(struct phy_device *phydev) 531 { 532 struct phy_fixup *fixup; 533 534 mutex_lock(&phy_fixup_lock); 535 list_for_each_entry(fixup, &phy_fixup_list, list) { 536 if (phy_needs_fixup(phydev, fixup)) { 537 int err = fixup->run(phydev); 538 539 if (err < 0) { 540 mutex_unlock(&phy_fixup_lock); 541 return err; 542 } 543 phydev->has_fixups = true; 544 } 545 } 546 mutex_unlock(&phy_fixup_lock); 547 548 return 0; 549 } 550 551 static int phy_bus_match(struct device *dev, const struct device_driver *drv) 552 { 553 struct phy_device *phydev = to_phy_device(dev); 554 const struct phy_driver *phydrv = to_phy_driver(drv); 555 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 556 int i; 557 558 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 559 return 0; 560 561 if (phydrv->match_phy_device) 562 return phydrv->match_phy_device(phydev); 563 564 if (phydev->is_c45) { 565 for (i = 1; i < num_ids; i++) { 566 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 567 continue; 568 569 if (phy_id_compare(phydev->c45_ids.device_ids[i], 570 phydrv->phy_id, phydrv->phy_id_mask)) 571 return 1; 572 } 573 return 0; 574 } else { 575 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 576 phydrv->phy_id_mask); 577 } 578 } 579 580 static ssize_t 581 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 582 { 583 struct phy_device *phydev = to_phy_device(dev); 584 585 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 586 } 587 static DEVICE_ATTR_RO(phy_id); 588 589 static ssize_t 590 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 591 { 592 struct phy_device *phydev = to_phy_device(dev); 593 const char *mode = NULL; 594 595 if (phy_is_internal(phydev)) 596 mode = "internal"; 597 else 598 mode = phy_modes(phydev->interface); 599 600 return sysfs_emit(buf, "%s\n", mode); 601 } 602 static DEVICE_ATTR_RO(phy_interface); 603 604 static ssize_t 605 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 606 char *buf) 607 { 608 struct phy_device *phydev = to_phy_device(dev); 609 610 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 611 } 612 static DEVICE_ATTR_RO(phy_has_fixups); 613 614 static ssize_t phy_dev_flags_show(struct device *dev, 615 struct device_attribute *attr, 616 char *buf) 617 { 618 struct phy_device *phydev = to_phy_device(dev); 619 620 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 621 } 622 static DEVICE_ATTR_RO(phy_dev_flags); 623 624 static struct attribute *phy_dev_attrs[] = { 625 &dev_attr_phy_id.attr, 626 &dev_attr_phy_interface.attr, 627 &dev_attr_phy_has_fixups.attr, 628 &dev_attr_phy_dev_flags.attr, 629 NULL, 630 }; 631 ATTRIBUTE_GROUPS(phy_dev); 632 633 static const struct device_type mdio_bus_phy_type = { 634 .name = "PHY", 635 .groups = phy_dev_groups, 636 .release = phy_device_release, 637 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 638 }; 639 640 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 641 { 642 int ret; 643 644 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 645 MDIO_ID_ARGS(phy_id)); 646 /* We only check for failures in executing the usermode binary, 647 * not whether a PHY driver module exists for the PHY ID. 648 * Accept -ENOENT because this may occur in case no initramfs exists, 649 * then modprobe isn't available. 650 */ 651 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 652 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 653 ret, (unsigned long)phy_id); 654 return ret; 655 } 656 657 return 0; 658 } 659 660 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 661 bool is_c45, 662 struct phy_c45_device_ids *c45_ids) 663 { 664 struct phy_device *dev; 665 struct mdio_device *mdiodev; 666 int ret = 0; 667 668 /* We allocate the device, and initialize the default values */ 669 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 670 if (!dev) 671 return ERR_PTR(-ENOMEM); 672 673 mdiodev = &dev->mdio; 674 mdiodev->dev.parent = &bus->dev; 675 mdiodev->dev.bus = &mdio_bus_type; 676 mdiodev->dev.type = &mdio_bus_phy_type; 677 mdiodev->bus = bus; 678 mdiodev->bus_match = phy_bus_match; 679 mdiodev->addr = addr; 680 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 681 mdiodev->device_free = phy_mdio_device_free; 682 mdiodev->device_remove = phy_mdio_device_remove; 683 mdiodev->reset_state = -1; 684 685 dev->speed = SPEED_UNKNOWN; 686 dev->duplex = DUPLEX_UNKNOWN; 687 dev->pause = 0; 688 dev->asym_pause = 0; 689 dev->link = 0; 690 dev->port = PORT_TP; 691 dev->interface = PHY_INTERFACE_MODE_GMII; 692 693 dev->autoneg = AUTONEG_ENABLE; 694 695 dev->pma_extable = -ENODATA; 696 dev->is_c45 = is_c45; 697 dev->phy_id = phy_id; 698 if (c45_ids) 699 dev->c45_ids = *c45_ids; 700 dev->irq = bus->irq[addr]; 701 702 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 703 device_initialize(&mdiodev->dev); 704 705 dev->state = PHY_DOWN; 706 INIT_LIST_HEAD(&dev->leds); 707 708 mutex_init(&dev->lock); 709 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 710 711 /* Request the appropriate module unconditionally; don't 712 * bother trying to do so only if it isn't already loaded, 713 * because that gets complicated. A hotplug event would have 714 * done an unconditional modprobe anyway. 715 * We don't do normal hotplug because it won't work for MDIO 716 * -- because it relies on the device staying around for long 717 * enough for the driver to get loaded. With MDIO, the NIC 718 * driver will get bored and give up as soon as it finds that 719 * there's no driver _already_ loaded. 720 */ 721 if (is_c45 && c45_ids) { 722 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 723 int i; 724 725 for (i = 1; i < num_ids; i++) { 726 if (c45_ids->device_ids[i] == 0xffffffff) 727 continue; 728 729 ret = phy_request_driver_module(dev, 730 c45_ids->device_ids[i]); 731 if (ret) 732 break; 733 } 734 } else { 735 ret = phy_request_driver_module(dev, phy_id); 736 } 737 738 if (ret) { 739 put_device(&mdiodev->dev); 740 dev = ERR_PTR(ret); 741 } 742 743 return dev; 744 } 745 EXPORT_SYMBOL(phy_device_create); 746 747 /* phy_c45_probe_present - checks to see if a MMD is present in the package 748 * @bus: the target MII bus 749 * @prtad: PHY package address on the MII bus 750 * @devad: PHY device (MMD) address 751 * 752 * Read the MDIO_STAT2 register, and check whether a device is responding 753 * at this address. 754 * 755 * Returns: negative error number on bus access error, zero if no device 756 * is responding, or positive if a device is present. 757 */ 758 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 759 { 760 int stat2; 761 762 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 763 if (stat2 < 0) 764 return stat2; 765 766 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 767 } 768 769 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 770 * @bus: the target MII bus 771 * @addr: PHY address on the MII bus 772 * @dev_addr: MMD address in the PHY. 773 * @devices_in_package: where to store the devices in package information. 774 * 775 * Description: reads devices in package registers of a MMD at @dev_addr 776 * from PHY at @addr on @bus. 777 * 778 * Returns: 0 on success, -EIO on failure. 779 */ 780 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 781 u32 *devices_in_package) 782 { 783 int phy_reg; 784 785 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 786 if (phy_reg < 0) 787 return -EIO; 788 *devices_in_package = phy_reg << 16; 789 790 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 791 if (phy_reg < 0) 792 return -EIO; 793 *devices_in_package |= phy_reg; 794 795 return 0; 796 } 797 798 /** 799 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 800 * @bus: the target MII bus 801 * @addr: PHY address on the MII bus 802 * @c45_ids: where to store the c45 ID information. 803 * 804 * Read the PHY "devices in package". If this appears to be valid, read 805 * the PHY identifiers for each device. Return the "devices in package" 806 * and identifiers in @c45_ids. 807 * 808 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 809 * the "devices in package" is invalid or no device responds. 810 */ 811 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 812 struct phy_c45_device_ids *c45_ids) 813 { 814 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 815 u32 devs_in_pkg = 0; 816 int i, ret, phy_reg; 817 818 /* Find first non-zero Devices In package. Device zero is reserved 819 * for 802.3 c45 complied PHYs, so don't probe it at first. 820 */ 821 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 822 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 823 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 824 /* Check that there is a device present at this 825 * address before reading the devices-in-package 826 * register to avoid reading garbage from the PHY. 827 * Some PHYs (88x3310) vendor space is not IEEE802.3 828 * compliant. 829 */ 830 ret = phy_c45_probe_present(bus, addr, i); 831 if (ret < 0) 832 /* returning -ENODEV doesn't stop bus 833 * scanning 834 */ 835 return (phy_reg == -EIO || 836 phy_reg == -ENODEV) ? -ENODEV : -EIO; 837 838 if (!ret) 839 continue; 840 } 841 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 842 if (phy_reg < 0) 843 return -EIO; 844 } 845 846 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 847 /* If mostly Fs, there is no device there, then let's probe 848 * MMD 0, as some 10G PHYs have zero Devices In package, 849 * e.g. Cortina CS4315/CS4340 PHY. 850 */ 851 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 852 if (phy_reg < 0) 853 return -EIO; 854 855 /* no device there, let's get out of here */ 856 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 857 return -ENODEV; 858 } 859 860 /* Now probe Device Identifiers for each device present. */ 861 for (i = 1; i < num_ids; i++) { 862 if (!(devs_in_pkg & (1 << i))) 863 continue; 864 865 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 866 /* Probe the "Device Present" bits for the vendor MMDs 867 * to ignore these if they do not contain IEEE 802.3 868 * registers. 869 */ 870 ret = phy_c45_probe_present(bus, addr, i); 871 if (ret < 0) 872 return ret; 873 874 if (!ret) 875 continue; 876 } 877 878 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 879 if (phy_reg < 0) 880 return -EIO; 881 c45_ids->device_ids[i] = phy_reg << 16; 882 883 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 884 if (phy_reg < 0) 885 return -EIO; 886 c45_ids->device_ids[i] |= phy_reg; 887 } 888 889 c45_ids->devices_in_package = devs_in_pkg; 890 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 891 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 892 893 return 0; 894 } 895 896 /** 897 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 898 * @bus: the target MII bus 899 * @addr: PHY address on the MII bus 900 * @phy_id: where to store the ID retrieved. 901 * 902 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 903 * placing it in @phy_id. Return zero on successful read and the ID is 904 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 905 * or invalid ID. 906 */ 907 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 908 { 909 int phy_reg; 910 911 /* Grab the bits from PHYIR1, and put them in the upper half */ 912 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 913 if (phy_reg < 0) { 914 /* returning -ENODEV doesn't stop bus scanning */ 915 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 916 } 917 918 *phy_id = phy_reg << 16; 919 920 /* Grab the bits from PHYIR2, and put them in the lower half */ 921 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 922 if (phy_reg < 0) { 923 /* returning -ENODEV doesn't stop bus scanning */ 924 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 925 } 926 927 *phy_id |= phy_reg; 928 929 /* If the phy_id is mostly Fs, there is no device there */ 930 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 931 return -ENODEV; 932 933 return 0; 934 } 935 936 /* Extract the phy ID from the compatible string of the form 937 * ethernet-phy-idAAAA.BBBB. 938 */ 939 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 940 { 941 unsigned int upper, lower; 942 const char *cp; 943 int ret; 944 945 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 946 if (ret) 947 return ret; 948 949 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 950 return -EINVAL; 951 952 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 953 return 0; 954 } 955 EXPORT_SYMBOL(fwnode_get_phy_id); 956 957 /** 958 * get_phy_device - reads the specified PHY device and returns its @phy_device 959 * struct 960 * @bus: the target MII bus 961 * @addr: PHY address on the MII bus 962 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 963 * 964 * Probe for a PHY at @addr on @bus. 965 * 966 * When probing for a clause 22 PHY, then read the ID registers. If we find 967 * a valid ID, allocate and return a &struct phy_device. 968 * 969 * When probing for a clause 45 PHY, read the "devices in package" registers. 970 * If the "devices in package" appears valid, read the ID registers for each 971 * MMD, allocate and return a &struct phy_device. 972 * 973 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 974 * no PHY present, or %-EIO on bus access error. 975 */ 976 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 977 { 978 struct phy_c45_device_ids c45_ids; 979 u32 phy_id = 0; 980 int r; 981 982 c45_ids.devices_in_package = 0; 983 c45_ids.mmds_present = 0; 984 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 985 986 if (is_c45) 987 r = get_phy_c45_ids(bus, addr, &c45_ids); 988 else 989 r = get_phy_c22_id(bus, addr, &phy_id); 990 991 if (r) 992 return ERR_PTR(r); 993 994 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 995 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 996 * probe with C45 to see if we're able to get a valid PHY ID in the C45 997 * space, if successful, create the C45 PHY device. 998 */ 999 if (!is_c45 && phy_id == 0 && bus->read_c45) { 1000 r = get_phy_c45_ids(bus, addr, &c45_ids); 1001 if (!r) 1002 return phy_device_create(bus, addr, phy_id, 1003 true, &c45_ids); 1004 } 1005 1006 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 1007 } 1008 EXPORT_SYMBOL(get_phy_device); 1009 1010 /** 1011 * phy_device_register - Register the phy device on the MDIO bus 1012 * @phydev: phy_device structure to be added to the MDIO bus 1013 */ 1014 int phy_device_register(struct phy_device *phydev) 1015 { 1016 int err; 1017 1018 err = mdiobus_register_device(&phydev->mdio); 1019 if (err) 1020 return err; 1021 1022 /* Deassert the reset signal */ 1023 phy_device_reset(phydev, 0); 1024 1025 /* Run all of the fixups for this PHY */ 1026 err = phy_scan_fixups(phydev); 1027 if (err) { 1028 phydev_err(phydev, "failed to initialize\n"); 1029 goto out; 1030 } 1031 1032 err = device_add(&phydev->mdio.dev); 1033 if (err) { 1034 phydev_err(phydev, "failed to add\n"); 1035 goto out; 1036 } 1037 1038 return 0; 1039 1040 out: 1041 /* Assert the reset signal */ 1042 phy_device_reset(phydev, 1); 1043 1044 mdiobus_unregister_device(&phydev->mdio); 1045 return err; 1046 } 1047 EXPORT_SYMBOL(phy_device_register); 1048 1049 /** 1050 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1051 * @phydev: phy_device structure to remove 1052 * 1053 * This doesn't free the phy_device itself, it merely reverses the effects 1054 * of phy_device_register(). Use phy_device_free() to free the device 1055 * after calling this function. 1056 */ 1057 void phy_device_remove(struct phy_device *phydev) 1058 { 1059 unregister_mii_timestamper(phydev->mii_ts); 1060 pse_control_put(phydev->psec); 1061 1062 device_del(&phydev->mdio.dev); 1063 1064 /* Assert the reset signal */ 1065 phy_device_reset(phydev, 1); 1066 1067 mdiobus_unregister_device(&phydev->mdio); 1068 } 1069 EXPORT_SYMBOL(phy_device_remove); 1070 1071 /** 1072 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1073 * @phydev: phy_device structure to read 802.3-c45 IDs 1074 * 1075 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1076 * the "devices in package" is invalid. 1077 */ 1078 int phy_get_c45_ids(struct phy_device *phydev) 1079 { 1080 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1081 &phydev->c45_ids); 1082 } 1083 EXPORT_SYMBOL(phy_get_c45_ids); 1084 1085 /** 1086 * phy_find_first - finds the first PHY device on the bus 1087 * @bus: the target MII bus 1088 */ 1089 struct phy_device *phy_find_first(struct mii_bus *bus) 1090 { 1091 struct phy_device *phydev; 1092 int addr; 1093 1094 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1095 phydev = mdiobus_get_phy(bus, addr); 1096 if (phydev) 1097 return phydev; 1098 } 1099 return NULL; 1100 } 1101 EXPORT_SYMBOL(phy_find_first); 1102 1103 static void phy_link_change(struct phy_device *phydev, bool up) 1104 { 1105 struct net_device *netdev = phydev->attached_dev; 1106 1107 if (up) 1108 netif_carrier_on(netdev); 1109 else 1110 netif_carrier_off(netdev); 1111 phydev->adjust_link(netdev); 1112 if (phydev->mii_ts && phydev->mii_ts->link_state) 1113 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1114 } 1115 1116 /** 1117 * phy_prepare_link - prepares the PHY layer to monitor link status 1118 * @phydev: target phy_device struct 1119 * @handler: callback function for link status change notifications 1120 * 1121 * Description: Tells the PHY infrastructure to handle the 1122 * gory details on monitoring link status (whether through 1123 * polling or an interrupt), and to call back to the 1124 * connected device driver when the link status changes. 1125 * If you want to monitor your own link state, don't call 1126 * this function. 1127 */ 1128 static void phy_prepare_link(struct phy_device *phydev, 1129 void (*handler)(struct net_device *)) 1130 { 1131 phydev->adjust_link = handler; 1132 } 1133 1134 /** 1135 * phy_connect_direct - connect an ethernet device to a specific phy_device 1136 * @dev: the network device to connect 1137 * @phydev: the pointer to the phy device 1138 * @handler: callback function for state change notifications 1139 * @interface: PHY device's interface 1140 */ 1141 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1142 void (*handler)(struct net_device *), 1143 phy_interface_t interface) 1144 { 1145 int rc; 1146 1147 if (!dev) 1148 return -EINVAL; 1149 1150 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1151 if (rc) 1152 return rc; 1153 1154 phy_prepare_link(phydev, handler); 1155 if (phy_interrupt_is_valid(phydev)) 1156 phy_request_interrupt(phydev); 1157 1158 return 0; 1159 } 1160 EXPORT_SYMBOL(phy_connect_direct); 1161 1162 /** 1163 * phy_connect - connect an ethernet device to a PHY device 1164 * @dev: the network device to connect 1165 * @bus_id: the id string of the PHY device to connect 1166 * @handler: callback function for state change notifications 1167 * @interface: PHY device's interface 1168 * 1169 * Description: Convenience function for connecting ethernet 1170 * devices to PHY devices. The default behavior is for 1171 * the PHY infrastructure to handle everything, and only notify 1172 * the connected driver when the link status changes. If you 1173 * don't want, or can't use the provided functionality, you may 1174 * choose to call only the subset of functions which provide 1175 * the desired functionality. 1176 */ 1177 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1178 void (*handler)(struct net_device *), 1179 phy_interface_t interface) 1180 { 1181 struct phy_device *phydev; 1182 struct device *d; 1183 int rc; 1184 1185 /* Search the list of PHY devices on the mdio bus for the 1186 * PHY with the requested name 1187 */ 1188 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1189 if (!d) { 1190 pr_err("PHY %s not found\n", bus_id); 1191 return ERR_PTR(-ENODEV); 1192 } 1193 phydev = to_phy_device(d); 1194 1195 rc = phy_connect_direct(dev, phydev, handler, interface); 1196 put_device(d); 1197 if (rc) 1198 return ERR_PTR(rc); 1199 1200 return phydev; 1201 } 1202 EXPORT_SYMBOL(phy_connect); 1203 1204 /** 1205 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1206 * device 1207 * @phydev: target phy_device struct 1208 */ 1209 void phy_disconnect(struct phy_device *phydev) 1210 { 1211 if (phy_is_started(phydev)) 1212 phy_stop(phydev); 1213 1214 if (phy_interrupt_is_valid(phydev)) 1215 phy_free_interrupt(phydev); 1216 1217 phydev->adjust_link = NULL; 1218 1219 phy_detach(phydev); 1220 } 1221 EXPORT_SYMBOL(phy_disconnect); 1222 1223 /** 1224 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1225 * @phydev: The PHY device to poll 1226 * 1227 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1228 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1229 * register must be polled until the BMCR_RESET bit clears. 1230 * 1231 * Furthermore, any attempts to write to PHY registers may have no effect 1232 * or even generate MDIO bus errors until this is complete. 1233 * 1234 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1235 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1236 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1237 * effort to support such broken PHYs, this function is separate from the 1238 * standard phy_init_hw() which will zero all the other bits in the BMCR 1239 * and reapply all driver-specific and board-specific fixups. 1240 */ 1241 static int phy_poll_reset(struct phy_device *phydev) 1242 { 1243 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1244 int ret, val; 1245 1246 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1247 50000, 600000, true); 1248 if (ret) 1249 return ret; 1250 /* Some chips (smsc911x) may still need up to another 1ms after the 1251 * BMCR_RESET bit is cleared before they are usable. 1252 */ 1253 msleep(1); 1254 return 0; 1255 } 1256 1257 int phy_init_hw(struct phy_device *phydev) 1258 { 1259 int ret = 0; 1260 1261 /* Deassert the reset signal */ 1262 phy_device_reset(phydev, 0); 1263 1264 if (!phydev->drv) 1265 return 0; 1266 1267 if (phydev->drv->soft_reset) { 1268 ret = phydev->drv->soft_reset(phydev); 1269 if (ret < 0) 1270 return ret; 1271 1272 /* see comment in genphy_soft_reset for an explanation */ 1273 phydev->suspended = 0; 1274 } 1275 1276 ret = phy_scan_fixups(phydev); 1277 if (ret < 0) 1278 return ret; 1279 1280 phy_interface_zero(phydev->possible_interfaces); 1281 1282 if (phydev->drv->config_init) { 1283 ret = phydev->drv->config_init(phydev); 1284 if (ret < 0) 1285 return ret; 1286 } 1287 1288 if (phydev->drv->config_intr) { 1289 ret = phydev->drv->config_intr(phydev); 1290 if (ret < 0) 1291 return ret; 1292 } 1293 1294 return 0; 1295 } 1296 EXPORT_SYMBOL(phy_init_hw); 1297 1298 void phy_attached_info(struct phy_device *phydev) 1299 { 1300 phy_attached_print(phydev, NULL); 1301 } 1302 EXPORT_SYMBOL(phy_attached_info); 1303 1304 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1305 char *phy_attached_info_irq(struct phy_device *phydev) 1306 { 1307 char *irq_str; 1308 char irq_num[8]; 1309 1310 switch(phydev->irq) { 1311 case PHY_POLL: 1312 irq_str = "POLL"; 1313 break; 1314 case PHY_MAC_INTERRUPT: 1315 irq_str = "MAC"; 1316 break; 1317 default: 1318 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1319 irq_str = irq_num; 1320 break; 1321 } 1322 1323 return kasprintf(GFP_KERNEL, "%s", irq_str); 1324 } 1325 EXPORT_SYMBOL(phy_attached_info_irq); 1326 1327 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1328 { 1329 const char *unbound = phydev->drv ? "" : "[unbound] "; 1330 char *irq_str = phy_attached_info_irq(phydev); 1331 1332 if (!fmt) { 1333 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1334 phydev_name(phydev), irq_str); 1335 } else { 1336 va_list ap; 1337 1338 phydev_info(phydev, ATTACHED_FMT, unbound, 1339 phydev_name(phydev), irq_str); 1340 1341 va_start(ap, fmt); 1342 vprintk(fmt, ap); 1343 va_end(ap); 1344 } 1345 kfree(irq_str); 1346 } 1347 EXPORT_SYMBOL(phy_attached_print); 1348 1349 static void phy_sysfs_create_links(struct phy_device *phydev) 1350 { 1351 struct net_device *dev = phydev->attached_dev; 1352 int err; 1353 1354 if (!dev) 1355 return; 1356 1357 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1358 "attached_dev"); 1359 if (err) 1360 return; 1361 1362 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1363 &phydev->mdio.dev.kobj, 1364 "phydev"); 1365 if (err) { 1366 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1367 kobject_name(&phydev->mdio.dev.kobj), 1368 err); 1369 /* non-fatal - some net drivers can use one netdevice 1370 * with more then one phy 1371 */ 1372 } 1373 1374 phydev->sysfs_links = true; 1375 } 1376 1377 static ssize_t 1378 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1379 char *buf) 1380 { 1381 struct phy_device *phydev = to_phy_device(dev); 1382 1383 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1384 } 1385 static DEVICE_ATTR_RO(phy_standalone); 1386 1387 /** 1388 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1389 * @upstream: pointer to the phy device 1390 * @bus: sfp bus representing cage being attached 1391 * 1392 * This is used to fill in the sfp_upstream_ops .attach member. 1393 */ 1394 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1395 { 1396 struct phy_device *phydev = upstream; 1397 1398 if (phydev->attached_dev) 1399 phydev->attached_dev->sfp_bus = bus; 1400 phydev->sfp_bus_attached = true; 1401 } 1402 EXPORT_SYMBOL(phy_sfp_attach); 1403 1404 /** 1405 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1406 * @upstream: pointer to the phy device 1407 * @bus: sfp bus representing cage being attached 1408 * 1409 * This is used to fill in the sfp_upstream_ops .detach member. 1410 */ 1411 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1412 { 1413 struct phy_device *phydev = upstream; 1414 1415 if (phydev->attached_dev) 1416 phydev->attached_dev->sfp_bus = NULL; 1417 phydev->sfp_bus_attached = false; 1418 } 1419 EXPORT_SYMBOL(phy_sfp_detach); 1420 1421 /** 1422 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1423 * @phydev: Pointer to phy_device 1424 * @ops: SFP's upstream operations 1425 */ 1426 int phy_sfp_probe(struct phy_device *phydev, 1427 const struct sfp_upstream_ops *ops) 1428 { 1429 struct sfp_bus *bus; 1430 int ret = 0; 1431 1432 if (phydev->mdio.dev.fwnode) { 1433 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1434 if (IS_ERR(bus)) 1435 return PTR_ERR(bus); 1436 1437 phydev->sfp_bus = bus; 1438 1439 ret = sfp_bus_add_upstream(bus, phydev, ops); 1440 sfp_bus_put(bus); 1441 } 1442 return ret; 1443 } 1444 EXPORT_SYMBOL(phy_sfp_probe); 1445 1446 static bool phy_drv_supports_irq(const struct phy_driver *phydrv) 1447 { 1448 return phydrv->config_intr && phydrv->handle_interrupt; 1449 } 1450 1451 /** 1452 * phy_attach_direct - attach a network device to a given PHY device pointer 1453 * @dev: network device to attach 1454 * @phydev: Pointer to phy_device to attach 1455 * @flags: PHY device's dev_flags 1456 * @interface: PHY device's interface 1457 * 1458 * Description: Called by drivers to attach to a particular PHY 1459 * device. The phy_device is found, and properly hooked up 1460 * to the phy_driver. If no driver is attached, then a 1461 * generic driver is used. The phy_device is given a ptr to 1462 * the attaching device, and given a callback for link status 1463 * change. The phy_device is returned to the attaching driver. 1464 * This function takes a reference on the phy device. 1465 */ 1466 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1467 u32 flags, phy_interface_t interface) 1468 { 1469 struct mii_bus *bus = phydev->mdio.bus; 1470 struct device *d = &phydev->mdio.dev; 1471 struct module *ndev_owner = NULL; 1472 bool using_genphy = false; 1473 int err; 1474 1475 /* For Ethernet device drivers that register their own MDIO bus, we 1476 * will have bus->owner match ndev_mod, so we do not want to increment 1477 * our own module->refcnt here, otherwise we would not be able to 1478 * unload later on. 1479 */ 1480 if (dev) 1481 ndev_owner = dev->dev.parent->driver->owner; 1482 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1483 phydev_err(phydev, "failed to get the bus module\n"); 1484 return -EIO; 1485 } 1486 1487 get_device(d); 1488 1489 /* Assume that if there is no driver, that it doesn't 1490 * exist, and we should use the genphy driver. 1491 */ 1492 if (!d->driver) { 1493 if (phydev->is_c45) 1494 d->driver = &genphy_c45_driver.mdiodrv.driver; 1495 else 1496 d->driver = &genphy_driver.mdiodrv.driver; 1497 1498 using_genphy = true; 1499 } 1500 1501 if (!try_module_get(d->driver->owner)) { 1502 phydev_err(phydev, "failed to get the device driver module\n"); 1503 err = -EIO; 1504 goto error_put_device; 1505 } 1506 1507 if (using_genphy) { 1508 err = d->driver->probe(d); 1509 if (err >= 0) 1510 err = device_bind_driver(d); 1511 1512 if (err) 1513 goto error_module_put; 1514 } 1515 1516 if (phydev->attached_dev) { 1517 dev_err(&dev->dev, "PHY already attached\n"); 1518 err = -EBUSY; 1519 goto error; 1520 } 1521 1522 phydev->phy_link_change = phy_link_change; 1523 if (dev) { 1524 phydev->attached_dev = dev; 1525 dev->phydev = phydev; 1526 1527 if (phydev->sfp_bus_attached) 1528 dev->sfp_bus = phydev->sfp_bus; 1529 } 1530 1531 /* Some Ethernet drivers try to connect to a PHY device before 1532 * calling register_netdevice() -> netdev_register_kobject() and 1533 * does the dev->dev.kobj initialization. Here we only check for 1534 * success which indicates that the network device kobject is 1535 * ready. Once we do that we still need to keep track of whether 1536 * links were successfully set up or not for phy_detach() to 1537 * remove them accordingly. 1538 */ 1539 phydev->sysfs_links = false; 1540 1541 phy_sysfs_create_links(phydev); 1542 1543 if (!phydev->attached_dev) { 1544 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1545 &dev_attr_phy_standalone.attr); 1546 if (err) 1547 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1548 } 1549 1550 phydev->dev_flags |= flags; 1551 1552 phydev->interface = interface; 1553 1554 phydev->state = PHY_READY; 1555 1556 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1557 1558 /* PHYs can request to use poll mode even though they have an 1559 * associated interrupt line. This could be the case if they 1560 * detect a broken interrupt handling. 1561 */ 1562 if (phydev->dev_flags & PHY_F_NO_IRQ) 1563 phydev->irq = PHY_POLL; 1564 1565 if (!phy_drv_supports_irq(phydev->drv) && phy_interrupt_is_valid(phydev)) 1566 phydev->irq = PHY_POLL; 1567 1568 /* Port is set to PORT_TP by default and the actual PHY driver will set 1569 * it to different value depending on the PHY configuration. If we have 1570 * the generic PHY driver we can't figure it out, thus set the old 1571 * legacy PORT_MII value. 1572 */ 1573 if (using_genphy) 1574 phydev->port = PORT_MII; 1575 1576 /* Initial carrier state is off as the phy is about to be 1577 * (re)initialized. 1578 */ 1579 if (dev) 1580 netif_carrier_off(phydev->attached_dev); 1581 1582 /* Do initial configuration here, now that 1583 * we have certain key parameters 1584 * (dev_flags and interface) 1585 */ 1586 err = phy_init_hw(phydev); 1587 if (err) 1588 goto error; 1589 1590 phy_resume(phydev); 1591 if (!phydev->is_on_sfp_module) 1592 phy_led_triggers_register(phydev); 1593 1594 /** 1595 * If the external phy used by current mac interface is managed by 1596 * another mac interface, so we should create a device link between 1597 * phy dev and mac dev. 1598 */ 1599 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1600 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1601 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1602 1603 return err; 1604 1605 error: 1606 /* phy_detach() does all of the cleanup below */ 1607 phy_detach(phydev); 1608 return err; 1609 1610 error_module_put: 1611 module_put(d->driver->owner); 1612 d->driver = NULL; 1613 error_put_device: 1614 put_device(d); 1615 if (ndev_owner != bus->owner) 1616 module_put(bus->owner); 1617 return err; 1618 } 1619 EXPORT_SYMBOL(phy_attach_direct); 1620 1621 /** 1622 * phy_attach - attach a network device to a particular PHY device 1623 * @dev: network device to attach 1624 * @bus_id: Bus ID of PHY device to attach 1625 * @interface: PHY device's interface 1626 * 1627 * Description: Same as phy_attach_direct() except that a PHY bus_id 1628 * string is passed instead of a pointer to a struct phy_device. 1629 */ 1630 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1631 phy_interface_t interface) 1632 { 1633 struct phy_device *phydev; 1634 struct device *d; 1635 int rc; 1636 1637 if (!dev) 1638 return ERR_PTR(-EINVAL); 1639 1640 /* Search the list of PHY devices on the mdio bus for the 1641 * PHY with the requested name 1642 */ 1643 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1644 if (!d) { 1645 pr_err("PHY %s not found\n", bus_id); 1646 return ERR_PTR(-ENODEV); 1647 } 1648 phydev = to_phy_device(d); 1649 1650 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1651 put_device(d); 1652 if (rc) 1653 return ERR_PTR(rc); 1654 1655 return phydev; 1656 } 1657 EXPORT_SYMBOL(phy_attach); 1658 1659 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1660 struct device_driver *driver) 1661 { 1662 struct device *d = &phydev->mdio.dev; 1663 bool ret = false; 1664 1665 if (!phydev->drv) 1666 return ret; 1667 1668 get_device(d); 1669 ret = d->driver == driver; 1670 put_device(d); 1671 1672 return ret; 1673 } 1674 1675 bool phy_driver_is_genphy(struct phy_device *phydev) 1676 { 1677 return phy_driver_is_genphy_kind(phydev, 1678 &genphy_driver.mdiodrv.driver); 1679 } 1680 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1681 1682 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1683 { 1684 return phy_driver_is_genphy_kind(phydev, 1685 &genphy_c45_driver.mdiodrv.driver); 1686 } 1687 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1688 1689 /** 1690 * phy_package_join - join a common PHY group 1691 * @phydev: target phy_device struct 1692 * @base_addr: cookie and base PHY address of PHY package for offset 1693 * calculation of global register access 1694 * @priv_size: if non-zero allocate this amount of bytes for private data 1695 * 1696 * This joins a PHY group and provides a shared storage for all phydevs in 1697 * this group. This is intended to be used for packages which contain 1698 * more than one PHY, for example a quad PHY transceiver. 1699 * 1700 * The base_addr parameter serves as cookie which has to have the same values 1701 * for all members of one group and as the base PHY address of the PHY package 1702 * for offset calculation to access generic registers of a PHY package. 1703 * Usually, one of the PHY addresses of the different PHYs in the package 1704 * provides access to these global registers. 1705 * The address which is given here, will be used in the phy_package_read() 1706 * and phy_package_write() convenience functions as base and added to the 1707 * passed offset in those functions. 1708 * 1709 * This will set the shared pointer of the phydev to the shared storage. 1710 * If this is the first call for a this cookie the shared storage will be 1711 * allocated. If priv_size is non-zero, the given amount of bytes are 1712 * allocated for the priv member. 1713 * 1714 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1715 * with the same cookie but a different priv_size is an error. 1716 */ 1717 int phy_package_join(struct phy_device *phydev, int base_addr, size_t priv_size) 1718 { 1719 struct mii_bus *bus = phydev->mdio.bus; 1720 struct phy_package_shared *shared; 1721 int ret; 1722 1723 if (base_addr < 0 || base_addr >= PHY_MAX_ADDR) 1724 return -EINVAL; 1725 1726 mutex_lock(&bus->shared_lock); 1727 shared = bus->shared[base_addr]; 1728 if (!shared) { 1729 ret = -ENOMEM; 1730 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1731 if (!shared) 1732 goto err_unlock; 1733 if (priv_size) { 1734 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1735 if (!shared->priv) 1736 goto err_free; 1737 shared->priv_size = priv_size; 1738 } 1739 shared->base_addr = base_addr; 1740 shared->np = NULL; 1741 refcount_set(&shared->refcnt, 1); 1742 bus->shared[base_addr] = shared; 1743 } else { 1744 ret = -EINVAL; 1745 if (priv_size && priv_size != shared->priv_size) 1746 goto err_unlock; 1747 refcount_inc(&shared->refcnt); 1748 } 1749 mutex_unlock(&bus->shared_lock); 1750 1751 phydev->shared = shared; 1752 1753 return 0; 1754 1755 err_free: 1756 kfree(shared); 1757 err_unlock: 1758 mutex_unlock(&bus->shared_lock); 1759 return ret; 1760 } 1761 EXPORT_SYMBOL_GPL(phy_package_join); 1762 1763 /** 1764 * of_phy_package_join - join a common PHY group in PHY package 1765 * @phydev: target phy_device struct 1766 * @priv_size: if non-zero allocate this amount of bytes for private data 1767 * 1768 * This is a variant of phy_package_join for PHY package defined in DT. 1769 * 1770 * The parent node of the @phydev is checked as a valid PHY package node 1771 * structure (by matching the node name "ethernet-phy-package") and the 1772 * base_addr for the PHY package is passed to phy_package_join. 1773 * 1774 * With this configuration the shared struct will also have the np value 1775 * filled to use additional DT defined properties in PHY specific 1776 * probe_once and config_init_once PHY package OPs. 1777 * 1778 * Returns < 0 on error, 0 on success. Esp. calling phy_package_join() 1779 * with the same cookie but a different priv_size is an error. Or a parent 1780 * node is not detected or is not valid or doesn't match the expected node 1781 * name for PHY package. 1782 */ 1783 int of_phy_package_join(struct phy_device *phydev, size_t priv_size) 1784 { 1785 struct device_node *node = phydev->mdio.dev.of_node; 1786 struct device_node *package_node; 1787 u32 base_addr; 1788 int ret; 1789 1790 if (!node) 1791 return -EINVAL; 1792 1793 package_node = of_get_parent(node); 1794 if (!package_node) 1795 return -EINVAL; 1796 1797 if (!of_node_name_eq(package_node, "ethernet-phy-package")) { 1798 ret = -EINVAL; 1799 goto exit; 1800 } 1801 1802 if (of_property_read_u32(package_node, "reg", &base_addr)) { 1803 ret = -EINVAL; 1804 goto exit; 1805 } 1806 1807 ret = phy_package_join(phydev, base_addr, priv_size); 1808 if (ret) 1809 goto exit; 1810 1811 phydev->shared->np = package_node; 1812 1813 return 0; 1814 exit: 1815 of_node_put(package_node); 1816 return ret; 1817 } 1818 EXPORT_SYMBOL_GPL(of_phy_package_join); 1819 1820 /** 1821 * phy_package_leave - leave a common PHY group 1822 * @phydev: target phy_device struct 1823 * 1824 * This leaves a PHY group created by phy_package_join(). If this phydev 1825 * was the last user of the shared data between the group, this data is 1826 * freed. Resets the phydev->shared pointer to NULL. 1827 */ 1828 void phy_package_leave(struct phy_device *phydev) 1829 { 1830 struct phy_package_shared *shared = phydev->shared; 1831 struct mii_bus *bus = phydev->mdio.bus; 1832 1833 if (!shared) 1834 return; 1835 1836 /* Decrease the node refcount on leave if present */ 1837 if (shared->np) 1838 of_node_put(shared->np); 1839 1840 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1841 bus->shared[shared->base_addr] = NULL; 1842 mutex_unlock(&bus->shared_lock); 1843 kfree(shared->priv); 1844 kfree(shared); 1845 } 1846 1847 phydev->shared = NULL; 1848 } 1849 EXPORT_SYMBOL_GPL(phy_package_leave); 1850 1851 static void devm_phy_package_leave(struct device *dev, void *res) 1852 { 1853 phy_package_leave(*(struct phy_device **)res); 1854 } 1855 1856 /** 1857 * devm_phy_package_join - resource managed phy_package_join() 1858 * @dev: device that is registering this PHY package 1859 * @phydev: target phy_device struct 1860 * @base_addr: cookie and base PHY address of PHY package for offset 1861 * calculation of global register access 1862 * @priv_size: if non-zero allocate this amount of bytes for private data 1863 * 1864 * Managed phy_package_join(). Shared storage fetched by this function, 1865 * phy_package_leave() is automatically called on driver detach. See 1866 * phy_package_join() for more information. 1867 */ 1868 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1869 int base_addr, size_t priv_size) 1870 { 1871 struct phy_device **ptr; 1872 int ret; 1873 1874 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1875 GFP_KERNEL); 1876 if (!ptr) 1877 return -ENOMEM; 1878 1879 ret = phy_package_join(phydev, base_addr, priv_size); 1880 1881 if (!ret) { 1882 *ptr = phydev; 1883 devres_add(dev, ptr); 1884 } else { 1885 devres_free(ptr); 1886 } 1887 1888 return ret; 1889 } 1890 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1891 1892 /** 1893 * devm_of_phy_package_join - resource managed of_phy_package_join() 1894 * @dev: device that is registering this PHY package 1895 * @phydev: target phy_device struct 1896 * @priv_size: if non-zero allocate this amount of bytes for private data 1897 * 1898 * Managed of_phy_package_join(). Shared storage fetched by this function, 1899 * phy_package_leave() is automatically called on driver detach. See 1900 * of_phy_package_join() for more information. 1901 */ 1902 int devm_of_phy_package_join(struct device *dev, struct phy_device *phydev, 1903 size_t priv_size) 1904 { 1905 struct phy_device **ptr; 1906 int ret; 1907 1908 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1909 GFP_KERNEL); 1910 if (!ptr) 1911 return -ENOMEM; 1912 1913 ret = of_phy_package_join(phydev, priv_size); 1914 1915 if (!ret) { 1916 *ptr = phydev; 1917 devres_add(dev, ptr); 1918 } else { 1919 devres_free(ptr); 1920 } 1921 1922 return ret; 1923 } 1924 EXPORT_SYMBOL_GPL(devm_of_phy_package_join); 1925 1926 /** 1927 * phy_detach - detach a PHY device from its network device 1928 * @phydev: target phy_device struct 1929 * 1930 * This detaches the phy device from its network device and the phy 1931 * driver, and drops the reference count taken in phy_attach_direct(). 1932 */ 1933 void phy_detach(struct phy_device *phydev) 1934 { 1935 struct net_device *dev = phydev->attached_dev; 1936 struct module *ndev_owner = NULL; 1937 struct mii_bus *bus; 1938 1939 if (phydev->devlink) 1940 device_link_del(phydev->devlink); 1941 1942 if (phydev->sysfs_links) { 1943 if (dev) 1944 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1945 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1946 } 1947 1948 if (!phydev->attached_dev) 1949 sysfs_remove_file(&phydev->mdio.dev.kobj, 1950 &dev_attr_phy_standalone.attr); 1951 1952 phy_suspend(phydev); 1953 if (dev) { 1954 phydev->attached_dev->phydev = NULL; 1955 phydev->attached_dev = NULL; 1956 } 1957 phydev->phylink = NULL; 1958 1959 if (!phydev->is_on_sfp_module) 1960 phy_led_triggers_unregister(phydev); 1961 1962 if (phydev->mdio.dev.driver) 1963 module_put(phydev->mdio.dev.driver->owner); 1964 1965 /* If the device had no specific driver before (i.e. - it 1966 * was using the generic driver), we unbind the device 1967 * from the generic driver so that there's a chance a 1968 * real driver could be loaded 1969 */ 1970 if (phy_driver_is_genphy(phydev) || 1971 phy_driver_is_genphy_10g(phydev)) 1972 device_release_driver(&phydev->mdio.dev); 1973 1974 /* Assert the reset signal */ 1975 phy_device_reset(phydev, 1); 1976 1977 /* 1978 * The phydev might go away on the put_device() below, so avoid 1979 * a use-after-free bug by reading the underlying bus first. 1980 */ 1981 bus = phydev->mdio.bus; 1982 1983 put_device(&phydev->mdio.dev); 1984 if (dev) 1985 ndev_owner = dev->dev.parent->driver->owner; 1986 if (ndev_owner != bus->owner) 1987 module_put(bus->owner); 1988 } 1989 EXPORT_SYMBOL(phy_detach); 1990 1991 int phy_suspend(struct phy_device *phydev) 1992 { 1993 struct net_device *netdev = phydev->attached_dev; 1994 const struct phy_driver *phydrv = phydev->drv; 1995 int ret; 1996 1997 if (phydev->suspended || !phydrv) 1998 return 0; 1999 2000 phydev->wol_enabled = phy_drv_wol_enabled(phydev) || 2001 (netdev && netdev->ethtool->wol_enabled); 2002 /* If the device has WOL enabled, we cannot suspend the PHY */ 2003 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 2004 return -EBUSY; 2005 2006 if (!phydrv->suspend) 2007 return 0; 2008 2009 ret = phydrv->suspend(phydev); 2010 if (!ret) 2011 phydev->suspended = true; 2012 2013 return ret; 2014 } 2015 EXPORT_SYMBOL(phy_suspend); 2016 2017 int __phy_resume(struct phy_device *phydev) 2018 { 2019 const struct phy_driver *phydrv = phydev->drv; 2020 int ret; 2021 2022 lockdep_assert_held(&phydev->lock); 2023 2024 if (!phydrv || !phydrv->resume) 2025 return 0; 2026 2027 ret = phydrv->resume(phydev); 2028 if (!ret) 2029 phydev->suspended = false; 2030 2031 return ret; 2032 } 2033 EXPORT_SYMBOL(__phy_resume); 2034 2035 int phy_resume(struct phy_device *phydev) 2036 { 2037 int ret; 2038 2039 mutex_lock(&phydev->lock); 2040 ret = __phy_resume(phydev); 2041 mutex_unlock(&phydev->lock); 2042 2043 return ret; 2044 } 2045 EXPORT_SYMBOL(phy_resume); 2046 2047 int phy_loopback(struct phy_device *phydev, bool enable) 2048 { 2049 int ret = 0; 2050 2051 if (!phydev->drv) 2052 return -EIO; 2053 2054 mutex_lock(&phydev->lock); 2055 2056 if (enable && phydev->loopback_enabled) { 2057 ret = -EBUSY; 2058 goto out; 2059 } 2060 2061 if (!enable && !phydev->loopback_enabled) { 2062 ret = -EINVAL; 2063 goto out; 2064 } 2065 2066 if (phydev->drv->set_loopback) 2067 ret = phydev->drv->set_loopback(phydev, enable); 2068 else 2069 ret = genphy_loopback(phydev, enable); 2070 2071 if (ret) 2072 goto out; 2073 2074 phydev->loopback_enabled = enable; 2075 2076 out: 2077 mutex_unlock(&phydev->lock); 2078 return ret; 2079 } 2080 EXPORT_SYMBOL(phy_loopback); 2081 2082 /** 2083 * phy_reset_after_clk_enable - perform a PHY reset if needed 2084 * @phydev: target phy_device struct 2085 * 2086 * Description: Some PHYs are known to need a reset after their refclk was 2087 * enabled. This function evaluates the flags and perform the reset if it's 2088 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 2089 * was reset. 2090 */ 2091 int phy_reset_after_clk_enable(struct phy_device *phydev) 2092 { 2093 if (!phydev || !phydev->drv) 2094 return -ENODEV; 2095 2096 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 2097 phy_device_reset(phydev, 1); 2098 phy_device_reset(phydev, 0); 2099 return 1; 2100 } 2101 2102 return 0; 2103 } 2104 EXPORT_SYMBOL(phy_reset_after_clk_enable); 2105 2106 /* Generic PHY support and helper functions */ 2107 2108 /** 2109 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 2110 * @phydev: target phy_device struct 2111 * @advert: auto-negotiation parameters to advertise 2112 * 2113 * Description: Writes MII_ADVERTISE with the appropriate values, 2114 * after sanitizing the values to make sure we only advertise 2115 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2116 * hasn't changed, and > 0 if it has changed. 2117 */ 2118 static int genphy_config_advert(struct phy_device *phydev, 2119 const unsigned long *advert) 2120 { 2121 int err, bmsr, changed = 0; 2122 u32 adv; 2123 2124 adv = linkmode_adv_to_mii_adv_t(advert); 2125 2126 /* Setup standard advertisement */ 2127 err = phy_modify_changed(phydev, MII_ADVERTISE, 2128 ADVERTISE_ALL | ADVERTISE_100BASE4 | 2129 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 2130 adv); 2131 if (err < 0) 2132 return err; 2133 if (err > 0) 2134 changed = 1; 2135 2136 bmsr = phy_read(phydev, MII_BMSR); 2137 if (bmsr < 0) 2138 return bmsr; 2139 2140 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2141 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2142 * logical 1. 2143 */ 2144 if (!(bmsr & BMSR_ESTATEN)) 2145 return changed; 2146 2147 adv = linkmode_adv_to_mii_ctrl1000_t(advert); 2148 2149 err = phy_modify_changed(phydev, MII_CTRL1000, 2150 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2151 adv); 2152 if (err < 0) 2153 return err; 2154 if (err > 0) 2155 changed = 1; 2156 2157 return changed; 2158 } 2159 2160 /** 2161 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2162 * @phydev: target phy_device struct 2163 * 2164 * Description: Writes MII_ADVERTISE with the appropriate values, 2165 * after sanitizing the values to make sure we only advertise 2166 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2167 * hasn't changed, and > 0 if it has changed. This function is intended 2168 * for Clause 37 1000Base-X mode. 2169 */ 2170 static int genphy_c37_config_advert(struct phy_device *phydev) 2171 { 2172 u16 adv = 0; 2173 2174 /* Only allow advertising what this PHY supports */ 2175 linkmode_and(phydev->advertising, phydev->advertising, 2176 phydev->supported); 2177 2178 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2179 phydev->advertising)) 2180 adv |= ADVERTISE_1000XFULL; 2181 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2182 phydev->advertising)) 2183 adv |= ADVERTISE_1000XPAUSE; 2184 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2185 phydev->advertising)) 2186 adv |= ADVERTISE_1000XPSE_ASYM; 2187 2188 return phy_modify_changed(phydev, MII_ADVERTISE, 2189 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2190 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2191 adv); 2192 } 2193 2194 /** 2195 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2196 * @phydev: target phy_device struct 2197 * 2198 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2199 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2200 * changed, and 1 if it has changed. 2201 */ 2202 int genphy_config_eee_advert(struct phy_device *phydev) 2203 { 2204 int err; 2205 2206 /* Nothing to disable */ 2207 if (!phydev->eee_broken_modes) 2208 return 0; 2209 2210 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2211 phydev->eee_broken_modes, 0); 2212 /* If the call failed, we assume that EEE is not supported */ 2213 return err < 0 ? 0 : err; 2214 } 2215 EXPORT_SYMBOL(genphy_config_eee_advert); 2216 2217 /** 2218 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2219 * @phydev: target phy_device struct 2220 * 2221 * Description: Configures MII_BMCR to force speed/duplex 2222 * to the values in phydev. Assumes that the values are valid. 2223 * Please see phy_sanitize_settings(). 2224 */ 2225 int genphy_setup_forced(struct phy_device *phydev) 2226 { 2227 u16 ctl; 2228 2229 phydev->pause = 0; 2230 phydev->asym_pause = 0; 2231 2232 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2233 2234 return phy_modify(phydev, MII_BMCR, 2235 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2236 } 2237 EXPORT_SYMBOL(genphy_setup_forced); 2238 2239 static int genphy_setup_master_slave(struct phy_device *phydev) 2240 { 2241 u16 ctl = 0; 2242 2243 if (!phydev->is_gigabit_capable) 2244 return 0; 2245 2246 switch (phydev->master_slave_set) { 2247 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2248 ctl |= CTL1000_PREFER_MASTER; 2249 break; 2250 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2251 break; 2252 case MASTER_SLAVE_CFG_MASTER_FORCE: 2253 ctl |= CTL1000_AS_MASTER; 2254 fallthrough; 2255 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2256 ctl |= CTL1000_ENABLE_MASTER; 2257 break; 2258 case MASTER_SLAVE_CFG_UNKNOWN: 2259 case MASTER_SLAVE_CFG_UNSUPPORTED: 2260 return 0; 2261 default: 2262 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2263 return -EOPNOTSUPP; 2264 } 2265 2266 return phy_modify_changed(phydev, MII_CTRL1000, 2267 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2268 CTL1000_PREFER_MASTER), ctl); 2269 } 2270 2271 int genphy_read_master_slave(struct phy_device *phydev) 2272 { 2273 int cfg, state; 2274 int val; 2275 2276 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2277 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2278 2279 val = phy_read(phydev, MII_CTRL1000); 2280 if (val < 0) 2281 return val; 2282 2283 if (val & CTL1000_ENABLE_MASTER) { 2284 if (val & CTL1000_AS_MASTER) 2285 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2286 else 2287 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2288 } else { 2289 if (val & CTL1000_PREFER_MASTER) 2290 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2291 else 2292 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2293 } 2294 2295 val = phy_read(phydev, MII_STAT1000); 2296 if (val < 0) 2297 return val; 2298 2299 if (val & LPA_1000MSFAIL) { 2300 state = MASTER_SLAVE_STATE_ERR; 2301 } else if (phydev->link) { 2302 /* this bits are valid only for active link */ 2303 if (val & LPA_1000MSRES) 2304 state = MASTER_SLAVE_STATE_MASTER; 2305 else 2306 state = MASTER_SLAVE_STATE_SLAVE; 2307 } else { 2308 state = MASTER_SLAVE_STATE_UNKNOWN; 2309 } 2310 2311 phydev->master_slave_get = cfg; 2312 phydev->master_slave_state = state; 2313 2314 return 0; 2315 } 2316 EXPORT_SYMBOL(genphy_read_master_slave); 2317 2318 /** 2319 * genphy_restart_aneg - Enable and Restart Autonegotiation 2320 * @phydev: target phy_device struct 2321 */ 2322 int genphy_restart_aneg(struct phy_device *phydev) 2323 { 2324 /* Don't isolate the PHY if we're negotiating */ 2325 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2326 BMCR_ANENABLE | BMCR_ANRESTART); 2327 } 2328 EXPORT_SYMBOL(genphy_restart_aneg); 2329 2330 /** 2331 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2332 * @phydev: target phy_device struct 2333 * @restart: whether aneg restart is requested 2334 * 2335 * Check, and restart auto-negotiation if needed. 2336 */ 2337 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2338 { 2339 int ret; 2340 2341 if (!restart) { 2342 /* Advertisement hasn't changed, but maybe aneg was never on to 2343 * begin with? Or maybe phy was isolated? 2344 */ 2345 ret = phy_read(phydev, MII_BMCR); 2346 if (ret < 0) 2347 return ret; 2348 2349 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2350 restart = true; 2351 } 2352 2353 if (restart) 2354 return genphy_restart_aneg(phydev); 2355 2356 return 0; 2357 } 2358 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2359 2360 /** 2361 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2362 * @phydev: target phy_device struct 2363 * @changed: whether autoneg is requested 2364 * 2365 * Description: If auto-negotiation is enabled, we configure the 2366 * advertising, and then restart auto-negotiation. If it is not 2367 * enabled, then we write the BMCR. 2368 */ 2369 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2370 { 2371 __ETHTOOL_DECLARE_LINK_MODE_MASK(fixed_advert); 2372 const struct phy_setting *set; 2373 unsigned long *advert; 2374 int err; 2375 2376 err = genphy_c45_an_config_eee_aneg(phydev); 2377 if (err < 0) 2378 return err; 2379 else if (err) 2380 changed = true; 2381 2382 err = genphy_setup_master_slave(phydev); 2383 if (err < 0) 2384 return err; 2385 else if (err) 2386 changed = true; 2387 2388 if (phydev->autoneg == AUTONEG_ENABLE) { 2389 /* Only allow advertising what this PHY supports */ 2390 linkmode_and(phydev->advertising, phydev->advertising, 2391 phydev->supported); 2392 advert = phydev->advertising; 2393 } else if (phydev->speed < SPEED_1000) { 2394 return genphy_setup_forced(phydev); 2395 } else { 2396 linkmode_zero(fixed_advert); 2397 2398 set = phy_lookup_setting(phydev->speed, phydev->duplex, 2399 phydev->supported, true); 2400 if (set) 2401 linkmode_set_bit(set->bit, fixed_advert); 2402 2403 advert = fixed_advert; 2404 } 2405 2406 err = genphy_config_advert(phydev, advert); 2407 if (err < 0) /* error */ 2408 return err; 2409 else if (err) 2410 changed = true; 2411 2412 return genphy_check_and_restart_aneg(phydev, changed); 2413 } 2414 EXPORT_SYMBOL(__genphy_config_aneg); 2415 2416 /** 2417 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2418 * @phydev: target phy_device struct 2419 * 2420 * Description: If auto-negotiation is enabled, we configure the 2421 * advertising, and then restart auto-negotiation. If it is not 2422 * enabled, then we write the BMCR. This function is intended 2423 * for use with Clause 37 1000Base-X mode. 2424 */ 2425 int genphy_c37_config_aneg(struct phy_device *phydev) 2426 { 2427 int err, changed; 2428 2429 if (phydev->autoneg != AUTONEG_ENABLE) 2430 return genphy_setup_forced(phydev); 2431 2432 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2433 BMCR_SPEED1000); 2434 if (err) 2435 return err; 2436 2437 changed = genphy_c37_config_advert(phydev); 2438 if (changed < 0) /* error */ 2439 return changed; 2440 2441 if (!changed) { 2442 /* Advertisement hasn't changed, but maybe aneg was never on to 2443 * begin with? Or maybe phy was isolated? 2444 */ 2445 int ctl = phy_read(phydev, MII_BMCR); 2446 2447 if (ctl < 0) 2448 return ctl; 2449 2450 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2451 changed = 1; /* do restart aneg */ 2452 } 2453 2454 /* Only restart aneg if we are advertising something different 2455 * than we were before. 2456 */ 2457 if (changed > 0) 2458 return genphy_restart_aneg(phydev); 2459 2460 return 0; 2461 } 2462 EXPORT_SYMBOL(genphy_c37_config_aneg); 2463 2464 /** 2465 * genphy_aneg_done - return auto-negotiation status 2466 * @phydev: target phy_device struct 2467 * 2468 * Description: Reads the status register and returns 0 either if 2469 * auto-negotiation is incomplete, or if there was an error. 2470 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2471 */ 2472 int genphy_aneg_done(struct phy_device *phydev) 2473 { 2474 int retval = phy_read(phydev, MII_BMSR); 2475 2476 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2477 } 2478 EXPORT_SYMBOL(genphy_aneg_done); 2479 2480 /** 2481 * genphy_update_link - update link status in @phydev 2482 * @phydev: target phy_device struct 2483 * 2484 * Description: Update the value in phydev->link to reflect the 2485 * current link value. In order to do this, we need to read 2486 * the status register twice, keeping the second value. 2487 */ 2488 int genphy_update_link(struct phy_device *phydev) 2489 { 2490 int status = 0, bmcr; 2491 2492 bmcr = phy_read(phydev, MII_BMCR); 2493 if (bmcr < 0) 2494 return bmcr; 2495 2496 /* Autoneg is being started, therefore disregard BMSR value and 2497 * report link as down. 2498 */ 2499 if (bmcr & BMCR_ANRESTART) 2500 goto done; 2501 2502 /* The link state is latched low so that momentary link 2503 * drops can be detected. Do not double-read the status 2504 * in polling mode to detect such short link drops except 2505 * the link was already down. 2506 */ 2507 if (!phy_polling_mode(phydev) || !phydev->link) { 2508 status = phy_read(phydev, MII_BMSR); 2509 if (status < 0) 2510 return status; 2511 else if (status & BMSR_LSTATUS) 2512 goto done; 2513 } 2514 2515 /* Read link and autonegotiation status */ 2516 status = phy_read(phydev, MII_BMSR); 2517 if (status < 0) 2518 return status; 2519 done: 2520 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2521 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2522 2523 /* Consider the case that autoneg was started and "aneg complete" 2524 * bit has been reset, but "link up" bit not yet. 2525 */ 2526 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2527 phydev->link = 0; 2528 2529 return 0; 2530 } 2531 EXPORT_SYMBOL(genphy_update_link); 2532 2533 int genphy_read_lpa(struct phy_device *phydev) 2534 { 2535 int lpa, lpagb; 2536 2537 if (phydev->autoneg == AUTONEG_ENABLE) { 2538 if (!phydev->autoneg_complete) { 2539 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2540 0); 2541 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2542 return 0; 2543 } 2544 2545 if (phydev->is_gigabit_capable) { 2546 lpagb = phy_read(phydev, MII_STAT1000); 2547 if (lpagb < 0) 2548 return lpagb; 2549 2550 if (lpagb & LPA_1000MSFAIL) { 2551 int adv = phy_read(phydev, MII_CTRL1000); 2552 2553 if (adv < 0) 2554 return adv; 2555 2556 if (adv & CTL1000_ENABLE_MASTER) 2557 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2558 else 2559 phydev_err(phydev, "Master/Slave resolution failed\n"); 2560 return -ENOLINK; 2561 } 2562 2563 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2564 lpagb); 2565 } 2566 2567 lpa = phy_read(phydev, MII_LPA); 2568 if (lpa < 0) 2569 return lpa; 2570 2571 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2572 } else { 2573 linkmode_zero(phydev->lp_advertising); 2574 } 2575 2576 return 0; 2577 } 2578 EXPORT_SYMBOL(genphy_read_lpa); 2579 2580 /** 2581 * genphy_read_status_fixed - read the link parameters for !aneg mode 2582 * @phydev: target phy_device struct 2583 * 2584 * Read the current duplex and speed state for a PHY operating with 2585 * autonegotiation disabled. 2586 */ 2587 int genphy_read_status_fixed(struct phy_device *phydev) 2588 { 2589 int bmcr = phy_read(phydev, MII_BMCR); 2590 2591 if (bmcr < 0) 2592 return bmcr; 2593 2594 if (bmcr & BMCR_FULLDPLX) 2595 phydev->duplex = DUPLEX_FULL; 2596 else 2597 phydev->duplex = DUPLEX_HALF; 2598 2599 if (bmcr & BMCR_SPEED1000) 2600 phydev->speed = SPEED_1000; 2601 else if (bmcr & BMCR_SPEED100) 2602 phydev->speed = SPEED_100; 2603 else 2604 phydev->speed = SPEED_10; 2605 2606 return 0; 2607 } 2608 EXPORT_SYMBOL(genphy_read_status_fixed); 2609 2610 /** 2611 * genphy_read_status - check the link status and update current link state 2612 * @phydev: target phy_device struct 2613 * 2614 * Description: Check the link, then figure out the current state 2615 * by comparing what we advertise with what the link partner 2616 * advertises. Start by checking the gigabit possibilities, 2617 * then move on to 10/100. 2618 */ 2619 int genphy_read_status(struct phy_device *phydev) 2620 { 2621 int err, old_link = phydev->link; 2622 2623 /* Update the link, but return if there was an error */ 2624 err = genphy_update_link(phydev); 2625 if (err) 2626 return err; 2627 2628 /* why bother the PHY if nothing can have changed */ 2629 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2630 return 0; 2631 2632 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2633 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2634 phydev->speed = SPEED_UNKNOWN; 2635 phydev->duplex = DUPLEX_UNKNOWN; 2636 phydev->pause = 0; 2637 phydev->asym_pause = 0; 2638 2639 if (phydev->is_gigabit_capable) { 2640 err = genphy_read_master_slave(phydev); 2641 if (err < 0) 2642 return err; 2643 } 2644 2645 err = genphy_read_lpa(phydev); 2646 if (err < 0) 2647 return err; 2648 2649 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2650 phy_resolve_aneg_linkmode(phydev); 2651 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2652 err = genphy_read_status_fixed(phydev); 2653 if (err < 0) 2654 return err; 2655 } 2656 2657 return 0; 2658 } 2659 EXPORT_SYMBOL(genphy_read_status); 2660 2661 /** 2662 * genphy_c37_read_status - check the link status and update current link state 2663 * @phydev: target phy_device struct 2664 * @changed: pointer where to store if link changed 2665 * 2666 * Description: Check the link, then figure out the current state 2667 * by comparing what we advertise with what the link partner 2668 * advertises. This function is for Clause 37 1000Base-X mode. 2669 * 2670 * If link has changed, @changed is set to true, false otherwise. 2671 */ 2672 int genphy_c37_read_status(struct phy_device *phydev, bool *changed) 2673 { 2674 int lpa, err, old_link = phydev->link; 2675 2676 /* Update the link, but return if there was an error */ 2677 err = genphy_update_link(phydev); 2678 if (err) 2679 return err; 2680 2681 /* why bother the PHY if nothing can have changed */ 2682 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) { 2683 *changed = false; 2684 return 0; 2685 } 2686 2687 /* Signal link has changed */ 2688 *changed = true; 2689 phydev->duplex = DUPLEX_UNKNOWN; 2690 phydev->pause = 0; 2691 phydev->asym_pause = 0; 2692 2693 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2694 lpa = phy_read(phydev, MII_LPA); 2695 if (lpa < 0) 2696 return lpa; 2697 2698 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2699 phydev->lp_advertising, lpa & LPA_LPACK); 2700 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2701 phydev->lp_advertising, lpa & LPA_1000XFULL); 2702 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2703 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2704 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2705 phydev->lp_advertising, 2706 lpa & LPA_1000XPAUSE_ASYM); 2707 2708 phy_resolve_aneg_linkmode(phydev); 2709 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2710 int bmcr = phy_read(phydev, MII_BMCR); 2711 2712 if (bmcr < 0) 2713 return bmcr; 2714 2715 if (bmcr & BMCR_FULLDPLX) 2716 phydev->duplex = DUPLEX_FULL; 2717 else 2718 phydev->duplex = DUPLEX_HALF; 2719 } 2720 2721 return 0; 2722 } 2723 EXPORT_SYMBOL(genphy_c37_read_status); 2724 2725 /** 2726 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2727 * @phydev: target phy_device struct 2728 * 2729 * Description: Perform a software PHY reset using the standard 2730 * BMCR_RESET bit and poll for the reset bit to be cleared. 2731 * 2732 * Returns: 0 on success, < 0 on failure 2733 */ 2734 int genphy_soft_reset(struct phy_device *phydev) 2735 { 2736 u16 res = BMCR_RESET; 2737 int ret; 2738 2739 if (phydev->autoneg == AUTONEG_ENABLE) 2740 res |= BMCR_ANRESTART; 2741 2742 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2743 if (ret < 0) 2744 return ret; 2745 2746 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2747 * to their default value. Therefore the POWER DOWN bit is supposed to 2748 * be cleared after soft reset. 2749 */ 2750 phydev->suspended = 0; 2751 2752 ret = phy_poll_reset(phydev); 2753 if (ret) 2754 return ret; 2755 2756 /* BMCR may be reset to defaults */ 2757 if (phydev->autoneg == AUTONEG_DISABLE) 2758 ret = genphy_setup_forced(phydev); 2759 2760 return ret; 2761 } 2762 EXPORT_SYMBOL(genphy_soft_reset); 2763 2764 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2765 { 2766 /* It seems there are cases where the interrupts are handled by another 2767 * entity (ie an IRQ controller embedded inside the PHY) and do not 2768 * need any other interraction from phylib. In this case, just trigger 2769 * the state machine directly. 2770 */ 2771 phy_trigger_machine(phydev); 2772 2773 return 0; 2774 } 2775 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2776 2777 /** 2778 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2779 * @phydev: target phy_device struct 2780 * 2781 * Description: Reads the PHY's abilities and populates 2782 * phydev->supported accordingly. 2783 * 2784 * Returns: 0 on success, < 0 on failure 2785 */ 2786 int genphy_read_abilities(struct phy_device *phydev) 2787 { 2788 int val; 2789 2790 linkmode_set_bit_array(phy_basic_ports_array, 2791 ARRAY_SIZE(phy_basic_ports_array), 2792 phydev->supported); 2793 2794 val = phy_read(phydev, MII_BMSR); 2795 if (val < 0) 2796 return val; 2797 2798 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2799 val & BMSR_ANEGCAPABLE); 2800 2801 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2802 val & BMSR_100FULL); 2803 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2804 val & BMSR_100HALF); 2805 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2806 val & BMSR_10FULL); 2807 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2808 val & BMSR_10HALF); 2809 2810 if (val & BMSR_ESTATEN) { 2811 val = phy_read(phydev, MII_ESTATUS); 2812 if (val < 0) 2813 return val; 2814 2815 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2816 phydev->supported, val & ESTATUS_1000_TFULL); 2817 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2818 phydev->supported, val & ESTATUS_1000_THALF); 2819 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2820 phydev->supported, val & ESTATUS_1000_XFULL); 2821 } 2822 2823 /* This is optional functionality. If not supported, we may get an error 2824 * which should be ignored. 2825 */ 2826 genphy_c45_read_eee_abilities(phydev); 2827 2828 return 0; 2829 } 2830 EXPORT_SYMBOL(genphy_read_abilities); 2831 2832 /* This is used for the phy device which doesn't support the MMD extended 2833 * register access, but it does have side effect when we are trying to access 2834 * the MMD register via indirect method. 2835 */ 2836 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2837 { 2838 return -EOPNOTSUPP; 2839 } 2840 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2841 2842 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2843 u16 regnum, u16 val) 2844 { 2845 return -EOPNOTSUPP; 2846 } 2847 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2848 2849 int genphy_suspend(struct phy_device *phydev) 2850 { 2851 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2852 } 2853 EXPORT_SYMBOL(genphy_suspend); 2854 2855 int genphy_resume(struct phy_device *phydev) 2856 { 2857 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2858 } 2859 EXPORT_SYMBOL(genphy_resume); 2860 2861 int genphy_loopback(struct phy_device *phydev, bool enable) 2862 { 2863 if (enable) { 2864 u16 ctl = BMCR_LOOPBACK; 2865 int ret, val; 2866 2867 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2868 2869 phy_modify(phydev, MII_BMCR, ~0, ctl); 2870 2871 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2872 val & BMSR_LSTATUS, 2873 5000, 500000, true); 2874 if (ret) 2875 return ret; 2876 } else { 2877 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2878 2879 phy_config_aneg(phydev); 2880 } 2881 2882 return 0; 2883 } 2884 EXPORT_SYMBOL(genphy_loopback); 2885 2886 /** 2887 * phy_remove_link_mode - Remove a supported link mode 2888 * @phydev: phy_device structure to remove link mode from 2889 * @link_mode: Link mode to be removed 2890 * 2891 * Description: Some MACs don't support all link modes which the PHY 2892 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2893 * to remove a link mode. 2894 */ 2895 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2896 { 2897 linkmode_clear_bit(link_mode, phydev->supported); 2898 phy_advertise_supported(phydev); 2899 } 2900 EXPORT_SYMBOL(phy_remove_link_mode); 2901 2902 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2903 { 2904 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2905 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2906 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2907 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2908 } 2909 2910 /** 2911 * phy_advertise_supported - Advertise all supported modes 2912 * @phydev: target phy_device struct 2913 * 2914 * Description: Called to advertise all supported modes, doesn't touch 2915 * pause mode advertising. 2916 */ 2917 void phy_advertise_supported(struct phy_device *phydev) 2918 { 2919 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2920 2921 linkmode_copy(new, phydev->supported); 2922 phy_copy_pause_bits(new, phydev->advertising); 2923 linkmode_copy(phydev->advertising, new); 2924 } 2925 EXPORT_SYMBOL(phy_advertise_supported); 2926 2927 /** 2928 * phy_advertise_eee_all - Advertise all supported EEE modes 2929 * @phydev: target phy_device struct 2930 * 2931 * Description: Per default phylib preserves the EEE advertising at the time of 2932 * phy probing, which might be a subset of the supported EEE modes. Use this 2933 * function when all supported EEE modes should be advertised. This does not 2934 * trigger auto-negotiation, so must be called before phy_start()/ 2935 * phylink_start() which will start auto-negotiation. 2936 */ 2937 void phy_advertise_eee_all(struct phy_device *phydev) 2938 { 2939 linkmode_copy(phydev->advertising_eee, phydev->supported_eee); 2940 } 2941 EXPORT_SYMBOL_GPL(phy_advertise_eee_all); 2942 2943 /** 2944 * phy_support_eee - Set initial EEE policy configuration 2945 * @phydev: Target phy_device struct 2946 * 2947 * This function configures the initial policy for Energy Efficient Ethernet 2948 * (EEE) on the specified PHY device, influencing that EEE capabilities are 2949 * advertised before the link is established. It should be called during PHY 2950 * registration by the MAC driver and/or the PHY driver (for SmartEEE PHYs) 2951 * if MAC supports LPI or PHY is capable to compensate missing LPI functionality 2952 * of the MAC. 2953 * 2954 * The function sets default EEE policy parameters, including preparing the PHY 2955 * to advertise EEE capabilities based on hardware support. 2956 * 2957 * It also sets the expected configuration for Low Power Idle (LPI) in the MAC 2958 * driver. If the PHY framework determines that both local and remote 2959 * advertisements support EEE, and the negotiated link mode is compatible with 2960 * EEE, it will set enable_tx_lpi = true. The MAC driver is expected to act on 2961 * this setting by enabling the LPI timer if enable_tx_lpi is set. 2962 */ 2963 void phy_support_eee(struct phy_device *phydev) 2964 { 2965 linkmode_copy(phydev->advertising_eee, phydev->supported_eee); 2966 phydev->eee_cfg.tx_lpi_enabled = true; 2967 phydev->eee_cfg.eee_enabled = true; 2968 } 2969 EXPORT_SYMBOL(phy_support_eee); 2970 2971 /** 2972 * phy_support_sym_pause - Enable support of symmetrical pause 2973 * @phydev: target phy_device struct 2974 * 2975 * Description: Called by the MAC to indicate is supports symmetrical 2976 * Pause, but not asym pause. 2977 */ 2978 void phy_support_sym_pause(struct phy_device *phydev) 2979 { 2980 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2981 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2982 } 2983 EXPORT_SYMBOL(phy_support_sym_pause); 2984 2985 /** 2986 * phy_support_asym_pause - Enable support of asym pause 2987 * @phydev: target phy_device struct 2988 * 2989 * Description: Called by the MAC to indicate is supports Asym Pause. 2990 */ 2991 void phy_support_asym_pause(struct phy_device *phydev) 2992 { 2993 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2994 } 2995 EXPORT_SYMBOL(phy_support_asym_pause); 2996 2997 /** 2998 * phy_set_sym_pause - Configure symmetric Pause 2999 * @phydev: target phy_device struct 3000 * @rx: Receiver Pause is supported 3001 * @tx: Transmit Pause is supported 3002 * @autoneg: Auto neg should be used 3003 * 3004 * Description: Configure advertised Pause support depending on if 3005 * receiver pause and pause auto neg is supported. Generally called 3006 * from the set_pauseparam .ndo. 3007 */ 3008 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 3009 bool autoneg) 3010 { 3011 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 3012 3013 if (rx && tx && autoneg) 3014 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3015 phydev->supported); 3016 3017 linkmode_copy(phydev->advertising, phydev->supported); 3018 } 3019 EXPORT_SYMBOL(phy_set_sym_pause); 3020 3021 /** 3022 * phy_set_asym_pause - Configure Pause and Asym Pause 3023 * @phydev: target phy_device struct 3024 * @rx: Receiver Pause is supported 3025 * @tx: Transmit Pause is supported 3026 * 3027 * Description: Configure advertised Pause support depending on if 3028 * transmit and receiver pause is supported. If there has been a 3029 * change in adverting, trigger a new autoneg. Generally called from 3030 * the set_pauseparam .ndo. 3031 */ 3032 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 3033 { 3034 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 3035 3036 linkmode_copy(oldadv, phydev->advertising); 3037 linkmode_set_pause(phydev->advertising, tx, rx); 3038 3039 if (!linkmode_equal(oldadv, phydev->advertising) && 3040 phydev->autoneg) 3041 phy_start_aneg(phydev); 3042 } 3043 EXPORT_SYMBOL(phy_set_asym_pause); 3044 3045 /** 3046 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 3047 * @phydev: phy_device struct 3048 * @pp: requested pause configuration 3049 * 3050 * Description: Test if the PHY/MAC combination supports the Pause 3051 * configuration the user is requesting. Returns True if it is 3052 * supported, false otherwise. 3053 */ 3054 bool phy_validate_pause(struct phy_device *phydev, 3055 struct ethtool_pauseparam *pp) 3056 { 3057 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3058 phydev->supported) && pp->rx_pause) 3059 return false; 3060 3061 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3062 phydev->supported) && 3063 pp->rx_pause != pp->tx_pause) 3064 return false; 3065 3066 return true; 3067 } 3068 EXPORT_SYMBOL(phy_validate_pause); 3069 3070 /** 3071 * phy_get_pause - resolve negotiated pause modes 3072 * @phydev: phy_device struct 3073 * @tx_pause: pointer to bool to indicate whether transmit pause should be 3074 * enabled. 3075 * @rx_pause: pointer to bool to indicate whether receive pause should be 3076 * enabled. 3077 * 3078 * Resolve and return the flow control modes according to the negotiation 3079 * result. This includes checking that we are operating in full duplex mode. 3080 * See linkmode_resolve_pause() for further details. 3081 */ 3082 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 3083 { 3084 if (phydev->duplex != DUPLEX_FULL) { 3085 *tx_pause = false; 3086 *rx_pause = false; 3087 return; 3088 } 3089 3090 return linkmode_resolve_pause(phydev->advertising, 3091 phydev->lp_advertising, 3092 tx_pause, rx_pause); 3093 } 3094 EXPORT_SYMBOL(phy_get_pause); 3095 3096 #if IS_ENABLED(CONFIG_OF_MDIO) 3097 static int phy_get_int_delay_property(struct device *dev, const char *name) 3098 { 3099 s32 int_delay; 3100 int ret; 3101 3102 ret = device_property_read_u32(dev, name, &int_delay); 3103 if (ret) 3104 return ret; 3105 3106 return int_delay; 3107 } 3108 #else 3109 static int phy_get_int_delay_property(struct device *dev, const char *name) 3110 { 3111 return -EINVAL; 3112 } 3113 #endif 3114 3115 /** 3116 * phy_get_internal_delay - returns the index of the internal delay 3117 * @phydev: phy_device struct 3118 * @dev: pointer to the devices device struct 3119 * @delay_values: array of delays the PHY supports 3120 * @size: the size of the delay array 3121 * @is_rx: boolean to indicate to get the rx internal delay 3122 * 3123 * Returns the index within the array of internal delay passed in. 3124 * If the device property is not present then the interface type is checked 3125 * if the interface defines use of internal delay then a 1 is returned otherwise 3126 * a 0 is returned. 3127 * The array must be in ascending order. If PHY does not have an ascending order 3128 * array then size = 0 and the value of the delay property is returned. 3129 * Return -EINVAL if the delay is invalid or cannot be found. 3130 */ 3131 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 3132 const int *delay_values, int size, bool is_rx) 3133 { 3134 s32 delay; 3135 int i; 3136 3137 if (is_rx) { 3138 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 3139 if (delay < 0 && size == 0) { 3140 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 3141 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 3142 return 1; 3143 else 3144 return 0; 3145 } 3146 3147 } else { 3148 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 3149 if (delay < 0 && size == 0) { 3150 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 3151 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 3152 return 1; 3153 else 3154 return 0; 3155 } 3156 } 3157 3158 if (delay < 0) 3159 return delay; 3160 3161 if (size == 0) 3162 return delay; 3163 3164 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 3165 phydev_err(phydev, "Delay %d is out of range\n", delay); 3166 return -EINVAL; 3167 } 3168 3169 if (delay == delay_values[0]) 3170 return 0; 3171 3172 for (i = 1; i < size; i++) { 3173 if (delay == delay_values[i]) 3174 return i; 3175 3176 /* Find an approximate index by looking up the table */ 3177 if (delay > delay_values[i - 1] && 3178 delay < delay_values[i]) { 3179 if (delay - delay_values[i - 1] < 3180 delay_values[i] - delay) 3181 return i - 1; 3182 else 3183 return i; 3184 } 3185 } 3186 3187 phydev_err(phydev, "error finding internal delay index for %d\n", 3188 delay); 3189 3190 return -EINVAL; 3191 } 3192 EXPORT_SYMBOL(phy_get_internal_delay); 3193 3194 static int phy_led_set_brightness(struct led_classdev *led_cdev, 3195 enum led_brightness value) 3196 { 3197 struct phy_led *phyled = to_phy_led(led_cdev); 3198 struct phy_device *phydev = phyled->phydev; 3199 int err; 3200 3201 mutex_lock(&phydev->lock); 3202 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3203 mutex_unlock(&phydev->lock); 3204 3205 return err; 3206 } 3207 3208 static int phy_led_blink_set(struct led_classdev *led_cdev, 3209 unsigned long *delay_on, 3210 unsigned long *delay_off) 3211 { 3212 struct phy_led *phyled = to_phy_led(led_cdev); 3213 struct phy_device *phydev = phyled->phydev; 3214 int err; 3215 3216 mutex_lock(&phydev->lock); 3217 err = phydev->drv->led_blink_set(phydev, phyled->index, 3218 delay_on, delay_off); 3219 mutex_unlock(&phydev->lock); 3220 3221 return err; 3222 } 3223 3224 static __maybe_unused struct device * 3225 phy_led_hw_control_get_device(struct led_classdev *led_cdev) 3226 { 3227 struct phy_led *phyled = to_phy_led(led_cdev); 3228 struct phy_device *phydev = phyled->phydev; 3229 3230 if (phydev->attached_dev) 3231 return &phydev->attached_dev->dev; 3232 return NULL; 3233 } 3234 3235 static int __maybe_unused 3236 phy_led_hw_control_get(struct led_classdev *led_cdev, 3237 unsigned long *rules) 3238 { 3239 struct phy_led *phyled = to_phy_led(led_cdev); 3240 struct phy_device *phydev = phyled->phydev; 3241 int err; 3242 3243 mutex_lock(&phydev->lock); 3244 err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules); 3245 mutex_unlock(&phydev->lock); 3246 3247 return err; 3248 } 3249 3250 static int __maybe_unused 3251 phy_led_hw_control_set(struct led_classdev *led_cdev, 3252 unsigned long rules) 3253 { 3254 struct phy_led *phyled = to_phy_led(led_cdev); 3255 struct phy_device *phydev = phyled->phydev; 3256 int err; 3257 3258 mutex_lock(&phydev->lock); 3259 err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules); 3260 mutex_unlock(&phydev->lock); 3261 3262 return err; 3263 } 3264 3265 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev, 3266 unsigned long rules) 3267 { 3268 struct phy_led *phyled = to_phy_led(led_cdev); 3269 struct phy_device *phydev = phyled->phydev; 3270 int err; 3271 3272 mutex_lock(&phydev->lock); 3273 err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules); 3274 mutex_unlock(&phydev->lock); 3275 3276 return err; 3277 } 3278 3279 static void phy_leds_unregister(struct phy_device *phydev) 3280 { 3281 struct phy_led *phyled; 3282 3283 list_for_each_entry(phyled, &phydev->leds, list) { 3284 led_classdev_unregister(&phyled->led_cdev); 3285 } 3286 } 3287 3288 static int of_phy_led(struct phy_device *phydev, 3289 struct device_node *led) 3290 { 3291 struct device *dev = &phydev->mdio.dev; 3292 struct led_init_data init_data = {}; 3293 struct led_classdev *cdev; 3294 unsigned long modes = 0; 3295 struct phy_led *phyled; 3296 u32 index; 3297 int err; 3298 3299 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3300 if (!phyled) 3301 return -ENOMEM; 3302 3303 cdev = &phyled->led_cdev; 3304 phyled->phydev = phydev; 3305 3306 err = of_property_read_u32(led, "reg", &index); 3307 if (err) 3308 return err; 3309 if (index > U8_MAX) 3310 return -EINVAL; 3311 3312 if (of_property_read_bool(led, "active-low")) 3313 set_bit(PHY_LED_ACTIVE_LOW, &modes); 3314 if (of_property_read_bool(led, "inactive-high-impedance")) 3315 set_bit(PHY_LED_INACTIVE_HIGH_IMPEDANCE, &modes); 3316 3317 if (modes) { 3318 /* Return error if asked to set polarity modes but not supported */ 3319 if (!phydev->drv->led_polarity_set) 3320 return -EINVAL; 3321 3322 err = phydev->drv->led_polarity_set(phydev, index, modes); 3323 if (err) 3324 return err; 3325 } 3326 3327 phyled->index = index; 3328 if (phydev->drv->led_brightness_set) 3329 cdev->brightness_set_blocking = phy_led_set_brightness; 3330 if (phydev->drv->led_blink_set) 3331 cdev->blink_set = phy_led_blink_set; 3332 3333 #ifdef CONFIG_LEDS_TRIGGERS 3334 if (phydev->drv->led_hw_is_supported && 3335 phydev->drv->led_hw_control_set && 3336 phydev->drv->led_hw_control_get) { 3337 cdev->hw_control_is_supported = phy_led_hw_is_supported; 3338 cdev->hw_control_set = phy_led_hw_control_set; 3339 cdev->hw_control_get = phy_led_hw_control_get; 3340 cdev->hw_control_trigger = "netdev"; 3341 } 3342 3343 cdev->hw_control_get_device = phy_led_hw_control_get_device; 3344 #endif 3345 cdev->max_brightness = 1; 3346 init_data.devicename = dev_name(&phydev->mdio.dev); 3347 init_data.fwnode = of_fwnode_handle(led); 3348 init_data.devname_mandatory = true; 3349 3350 err = led_classdev_register_ext(dev, cdev, &init_data); 3351 if (err) 3352 return err; 3353 3354 list_add(&phyled->list, &phydev->leds); 3355 3356 return 0; 3357 } 3358 3359 static int of_phy_leds(struct phy_device *phydev) 3360 { 3361 struct device_node *node = phydev->mdio.dev.of_node; 3362 struct device_node *leds, *led; 3363 int err; 3364 3365 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3366 return 0; 3367 3368 if (!node) 3369 return 0; 3370 3371 leds = of_get_child_by_name(node, "leds"); 3372 if (!leds) 3373 return 0; 3374 3375 for_each_available_child_of_node(leds, led) { 3376 err = of_phy_led(phydev, led); 3377 if (err) { 3378 of_node_put(led); 3379 phy_leds_unregister(phydev); 3380 return err; 3381 } 3382 } 3383 3384 return 0; 3385 } 3386 3387 /** 3388 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3389 * @fwnode: pointer to the mdio_device's fwnode 3390 * 3391 * If successful, returns a pointer to the mdio_device with the embedded 3392 * struct device refcount incremented by one, or NULL on failure. 3393 * The caller should call put_device() on the mdio_device after its use. 3394 */ 3395 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3396 { 3397 struct device *d; 3398 3399 if (!fwnode) 3400 return NULL; 3401 3402 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3403 if (!d) 3404 return NULL; 3405 3406 return to_mdio_device(d); 3407 } 3408 EXPORT_SYMBOL(fwnode_mdio_find_device); 3409 3410 /** 3411 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3412 * 3413 * @phy_fwnode: Pointer to the phy's fwnode. 3414 * 3415 * If successful, returns a pointer to the phy_device with the embedded 3416 * struct device refcount incremented by one, or NULL on failure. 3417 */ 3418 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3419 { 3420 struct mdio_device *mdiodev; 3421 3422 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3423 if (!mdiodev) 3424 return NULL; 3425 3426 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3427 return to_phy_device(&mdiodev->dev); 3428 3429 put_device(&mdiodev->dev); 3430 3431 return NULL; 3432 } 3433 EXPORT_SYMBOL(fwnode_phy_find_device); 3434 3435 /** 3436 * device_phy_find_device - For the given device, get the phy_device 3437 * @dev: Pointer to the given device 3438 * 3439 * Refer return conditions of fwnode_phy_find_device(). 3440 */ 3441 struct phy_device *device_phy_find_device(struct device *dev) 3442 { 3443 return fwnode_phy_find_device(dev_fwnode(dev)); 3444 } 3445 EXPORT_SYMBOL_GPL(device_phy_find_device); 3446 3447 /** 3448 * fwnode_get_phy_node - Get the phy_node using the named reference. 3449 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3450 * 3451 * Refer return conditions of fwnode_find_reference(). 3452 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3453 * and "phy-device" are not supported in ACPI. DT supports all the three 3454 * named references to the phy node. 3455 */ 3456 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3457 { 3458 struct fwnode_handle *phy_node; 3459 3460 /* Only phy-handle is used for ACPI */ 3461 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3462 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3463 return phy_node; 3464 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3465 if (IS_ERR(phy_node)) 3466 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3467 return phy_node; 3468 } 3469 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3470 3471 /** 3472 * phy_probe - probe and init a PHY device 3473 * @dev: device to probe and init 3474 * 3475 * Take care of setting up the phy_device structure, set the state to READY. 3476 */ 3477 static int phy_probe(struct device *dev) 3478 { 3479 struct phy_device *phydev = to_phy_device(dev); 3480 struct device_driver *drv = phydev->mdio.dev.driver; 3481 struct phy_driver *phydrv = to_phy_driver(drv); 3482 int err = 0; 3483 3484 phydev->drv = phydrv; 3485 3486 /* Disable the interrupt if the PHY doesn't support it 3487 * but the interrupt is still a valid one 3488 */ 3489 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3490 phydev->irq = PHY_POLL; 3491 3492 if (phydrv->flags & PHY_IS_INTERNAL) 3493 phydev->is_internal = true; 3494 3495 /* Deassert the reset signal */ 3496 phy_device_reset(phydev, 0); 3497 3498 if (phydev->drv->probe) { 3499 err = phydev->drv->probe(phydev); 3500 if (err) 3501 goto out; 3502 } 3503 3504 phy_disable_interrupts(phydev); 3505 3506 /* Start out supporting everything. Eventually, 3507 * a controller will attach, and may modify one 3508 * or both of these values 3509 */ 3510 if (phydrv->features) { 3511 linkmode_copy(phydev->supported, phydrv->features); 3512 genphy_c45_read_eee_abilities(phydev); 3513 } 3514 else if (phydrv->get_features) 3515 err = phydrv->get_features(phydev); 3516 else if (phydev->is_c45) 3517 err = genphy_c45_pma_read_abilities(phydev); 3518 else 3519 err = genphy_read_abilities(phydev); 3520 3521 if (err) 3522 goto out; 3523 3524 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3525 phydev->supported)) 3526 phydev->autoneg = 0; 3527 3528 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3529 phydev->supported)) 3530 phydev->is_gigabit_capable = 1; 3531 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3532 phydev->supported)) 3533 phydev->is_gigabit_capable = 1; 3534 3535 of_set_phy_supported(phydev); 3536 phy_advertise_supported(phydev); 3537 3538 /* Get PHY default EEE advertising modes and handle them as potentially 3539 * safe initial configuration. 3540 */ 3541 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3542 if (err) 3543 goto out; 3544 3545 /* There is no "enabled" flag. If PHY is advertising, assume it is 3546 * kind of enabled. 3547 */ 3548 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3549 3550 /* Some PHYs may advertise, by default, not support EEE modes. So, 3551 * we need to clean them. 3552 */ 3553 if (phydev->eee_enabled) 3554 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3555 phydev->advertising_eee); 3556 3557 /* Get the EEE modes we want to prohibit. We will ask 3558 * the PHY stop advertising these mode later on 3559 */ 3560 of_set_phy_eee_broken(phydev); 3561 3562 /* The Pause Frame bits indicate that the PHY can support passing 3563 * pause frames. During autonegotiation, the PHYs will determine if 3564 * they should allow pause frames to pass. The MAC driver should then 3565 * use that result to determine whether to enable flow control via 3566 * pause frames. 3567 * 3568 * Normally, PHY drivers should not set the Pause bits, and instead 3569 * allow phylib to do that. However, there may be some situations 3570 * (e.g. hardware erratum) where the driver wants to set only one 3571 * of these bits. 3572 */ 3573 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3574 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3575 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3576 phydev->supported); 3577 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3578 phydev->supported); 3579 } 3580 3581 /* Set the state to READY by default */ 3582 phydev->state = PHY_READY; 3583 3584 /* Get the LEDs from the device tree, and instantiate standard 3585 * LEDs for them. 3586 */ 3587 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3588 err = of_phy_leds(phydev); 3589 3590 out: 3591 /* Re-assert the reset signal on error */ 3592 if (err) 3593 phy_device_reset(phydev, 1); 3594 3595 return err; 3596 } 3597 3598 static int phy_remove(struct device *dev) 3599 { 3600 struct phy_device *phydev = to_phy_device(dev); 3601 3602 cancel_delayed_work_sync(&phydev->state_queue); 3603 3604 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3605 phy_leds_unregister(phydev); 3606 3607 phydev->state = PHY_DOWN; 3608 3609 sfp_bus_del_upstream(phydev->sfp_bus); 3610 phydev->sfp_bus = NULL; 3611 3612 if (phydev->drv && phydev->drv->remove) 3613 phydev->drv->remove(phydev); 3614 3615 /* Assert the reset signal */ 3616 phy_device_reset(phydev, 1); 3617 3618 phydev->drv = NULL; 3619 3620 return 0; 3621 } 3622 3623 /** 3624 * phy_driver_register - register a phy_driver with the PHY layer 3625 * @new_driver: new phy_driver to register 3626 * @owner: module owning this PHY 3627 */ 3628 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3629 { 3630 int retval; 3631 3632 /* Either the features are hard coded, or dynamically 3633 * determined. It cannot be both. 3634 */ 3635 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3636 pr_err("%s: features and get_features must not both be set\n", 3637 new_driver->name); 3638 return -EINVAL; 3639 } 3640 3641 /* PHYLIB device drivers must not match using a DT compatible table 3642 * as this bypasses our checks that the mdiodev that is being matched 3643 * is backed by a struct phy_device. If such a case happens, we will 3644 * make out-of-bounds accesses and lockup in phydev->lock. 3645 */ 3646 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3647 "%s: driver must not provide a DT match table\n", 3648 new_driver->name)) 3649 return -EINVAL; 3650 3651 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3652 new_driver->mdiodrv.driver.name = new_driver->name; 3653 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3654 new_driver->mdiodrv.driver.probe = phy_probe; 3655 new_driver->mdiodrv.driver.remove = phy_remove; 3656 new_driver->mdiodrv.driver.owner = owner; 3657 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3658 3659 retval = driver_register(&new_driver->mdiodrv.driver); 3660 if (retval) { 3661 pr_err("%s: Error %d in registering driver\n", 3662 new_driver->name, retval); 3663 3664 return retval; 3665 } 3666 3667 pr_debug("%s: Registered new driver\n", new_driver->name); 3668 3669 return 0; 3670 } 3671 EXPORT_SYMBOL(phy_driver_register); 3672 3673 int phy_drivers_register(struct phy_driver *new_driver, int n, 3674 struct module *owner) 3675 { 3676 int i, ret = 0; 3677 3678 for (i = 0; i < n; i++) { 3679 ret = phy_driver_register(new_driver + i, owner); 3680 if (ret) { 3681 while (i-- > 0) 3682 phy_driver_unregister(new_driver + i); 3683 break; 3684 } 3685 } 3686 return ret; 3687 } 3688 EXPORT_SYMBOL(phy_drivers_register); 3689 3690 void phy_driver_unregister(struct phy_driver *drv) 3691 { 3692 driver_unregister(&drv->mdiodrv.driver); 3693 } 3694 EXPORT_SYMBOL(phy_driver_unregister); 3695 3696 void phy_drivers_unregister(struct phy_driver *drv, int n) 3697 { 3698 int i; 3699 3700 for (i = 0; i < n; i++) 3701 phy_driver_unregister(drv + i); 3702 } 3703 EXPORT_SYMBOL(phy_drivers_unregister); 3704 3705 static struct phy_driver genphy_driver = { 3706 .phy_id = 0xffffffff, 3707 .phy_id_mask = 0xffffffff, 3708 .name = "Generic PHY", 3709 .get_features = genphy_read_abilities, 3710 .suspend = genphy_suspend, 3711 .resume = genphy_resume, 3712 .set_loopback = genphy_loopback, 3713 }; 3714 3715 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3716 .get_sset_count = phy_ethtool_get_sset_count, 3717 .get_strings = phy_ethtool_get_strings, 3718 .get_stats = phy_ethtool_get_stats, 3719 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3720 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3721 .get_plca_status = phy_ethtool_get_plca_status, 3722 .start_cable_test = phy_start_cable_test, 3723 .start_cable_test_tdr = phy_start_cable_test_tdr, 3724 }; 3725 3726 static const struct phylib_stubs __phylib_stubs = { 3727 .hwtstamp_get = __phy_hwtstamp_get, 3728 .hwtstamp_set = __phy_hwtstamp_set, 3729 }; 3730 3731 static void phylib_register_stubs(void) 3732 { 3733 phylib_stubs = &__phylib_stubs; 3734 } 3735 3736 static void phylib_unregister_stubs(void) 3737 { 3738 phylib_stubs = NULL; 3739 } 3740 3741 static int __init phy_init(void) 3742 { 3743 int rc; 3744 3745 rtnl_lock(); 3746 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3747 phylib_register_stubs(); 3748 rtnl_unlock(); 3749 3750 rc = mdio_bus_init(); 3751 if (rc) 3752 goto err_ethtool_phy_ops; 3753 3754 features_init(); 3755 3756 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3757 if (rc) 3758 goto err_mdio_bus; 3759 3760 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3761 if (rc) 3762 goto err_c45; 3763 3764 return 0; 3765 3766 err_c45: 3767 phy_driver_unregister(&genphy_c45_driver); 3768 err_mdio_bus: 3769 mdio_bus_exit(); 3770 err_ethtool_phy_ops: 3771 rtnl_lock(); 3772 phylib_unregister_stubs(); 3773 ethtool_set_ethtool_phy_ops(NULL); 3774 rtnl_unlock(); 3775 3776 return rc; 3777 } 3778 3779 static void __exit phy_exit(void) 3780 { 3781 phy_driver_unregister(&genphy_c45_driver); 3782 phy_driver_unregister(&genphy_driver); 3783 mdio_bus_exit(); 3784 rtnl_lock(); 3785 phylib_unregister_stubs(); 3786 ethtool_set_ethtool_phy_ops(NULL); 3787 rtnl_unlock(); 3788 } 3789 3790 subsys_initcall(phy_init); 3791 module_exit(phy_exit); 3792