1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phylib_stubs.h> 31 #include <linux/phy_led_triggers.h> 32 #include <linux/pse-pd/pse.h> 33 #include <linux/property.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/sfp.h> 36 #include <linux/skbuff.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/uaccess.h> 40 #include <linux/unistd.h> 41 42 MODULE_DESCRIPTION("PHY library"); 43 MODULE_AUTHOR("Andy Fleming"); 44 MODULE_LICENSE("GPL"); 45 46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 47 EXPORT_SYMBOL_GPL(phy_basic_features); 48 49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 50 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 51 52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 54 55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 56 EXPORT_SYMBOL_GPL(phy_gbit_features); 57 58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 60 61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 63 64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 65 EXPORT_SYMBOL_GPL(phy_10gbit_features); 66 67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 69 70 const int phy_basic_ports_array[3] = { 71 ETHTOOL_LINK_MODE_Autoneg_BIT, 72 ETHTOOL_LINK_MODE_TP_BIT, 73 ETHTOOL_LINK_MODE_MII_BIT, 74 }; 75 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 76 77 const int phy_fibre_port_array[1] = { 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 }; 80 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 81 82 const int phy_all_ports_features_array[7] = { 83 ETHTOOL_LINK_MODE_Autoneg_BIT, 84 ETHTOOL_LINK_MODE_TP_BIT, 85 ETHTOOL_LINK_MODE_MII_BIT, 86 ETHTOOL_LINK_MODE_FIBRE_BIT, 87 ETHTOOL_LINK_MODE_AUI_BIT, 88 ETHTOOL_LINK_MODE_BNC_BIT, 89 ETHTOOL_LINK_MODE_Backplane_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 92 93 const int phy_10_100_features_array[4] = { 94 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 95 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 97 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 98 }; 99 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 100 101 const int phy_basic_t1_features_array[3] = { 102 ETHTOOL_LINK_MODE_TP_BIT, 103 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 104 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 105 }; 106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 107 108 const int phy_basic_t1s_p2mp_features_array[2] = { 109 ETHTOOL_LINK_MODE_TP_BIT, 110 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 111 }; 112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 113 114 const int phy_gbit_features_array[2] = { 115 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 116 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 117 }; 118 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 119 120 const int phy_10gbit_features_array[1] = { 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 124 125 static const int phy_10gbit_fec_features_array[1] = { 126 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 127 }; 128 129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 131 132 static const int phy_10gbit_full_features_array[] = { 133 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 135 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 136 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 137 }; 138 139 static const int phy_eee_cap1_features_array[] = { 140 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 142 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 143 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 144 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 145 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 146 }; 147 148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 150 151 static const int phy_eee_cap2_features_array[] = { 152 ETHTOOL_LINK_MODE_2500baseT_Full_BIT, 153 ETHTOOL_LINK_MODE_5000baseT_Full_BIT, 154 }; 155 156 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap2_features) __ro_after_init; 157 EXPORT_SYMBOL_GPL(phy_eee_cap2_features); 158 159 static void features_init(void) 160 { 161 /* 10/100 half/full*/ 162 linkmode_set_bit_array(phy_basic_ports_array, 163 ARRAY_SIZE(phy_basic_ports_array), 164 phy_basic_features); 165 linkmode_set_bit_array(phy_10_100_features_array, 166 ARRAY_SIZE(phy_10_100_features_array), 167 phy_basic_features); 168 169 /* 100 full, TP */ 170 linkmode_set_bit_array(phy_basic_t1_features_array, 171 ARRAY_SIZE(phy_basic_t1_features_array), 172 phy_basic_t1_features); 173 174 /* 10 half, P2MP, TP */ 175 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 176 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 177 phy_basic_t1s_p2mp_features); 178 179 /* 10/100 half/full + 1000 half/full */ 180 linkmode_set_bit_array(phy_basic_ports_array, 181 ARRAY_SIZE(phy_basic_ports_array), 182 phy_gbit_features); 183 linkmode_set_bit_array(phy_10_100_features_array, 184 ARRAY_SIZE(phy_10_100_features_array), 185 phy_gbit_features); 186 linkmode_set_bit_array(phy_gbit_features_array, 187 ARRAY_SIZE(phy_gbit_features_array), 188 phy_gbit_features); 189 190 /* 10/100 half/full + 1000 half/full + fibre*/ 191 linkmode_set_bit_array(phy_basic_ports_array, 192 ARRAY_SIZE(phy_basic_ports_array), 193 phy_gbit_fibre_features); 194 linkmode_set_bit_array(phy_10_100_features_array, 195 ARRAY_SIZE(phy_10_100_features_array), 196 phy_gbit_fibre_features); 197 linkmode_set_bit_array(phy_gbit_features_array, 198 ARRAY_SIZE(phy_gbit_features_array), 199 phy_gbit_fibre_features); 200 linkmode_set_bit_array(phy_fibre_port_array, 201 ARRAY_SIZE(phy_fibre_port_array), 202 phy_gbit_fibre_features); 203 204 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 205 linkmode_set_bit_array(phy_all_ports_features_array, 206 ARRAY_SIZE(phy_all_ports_features_array), 207 phy_gbit_all_ports_features); 208 linkmode_set_bit_array(phy_10_100_features_array, 209 ARRAY_SIZE(phy_10_100_features_array), 210 phy_gbit_all_ports_features); 211 linkmode_set_bit_array(phy_gbit_features_array, 212 ARRAY_SIZE(phy_gbit_features_array), 213 phy_gbit_all_ports_features); 214 215 /* 10/100 half/full + 1000 half/full + 10G full*/ 216 linkmode_set_bit_array(phy_all_ports_features_array, 217 ARRAY_SIZE(phy_all_ports_features_array), 218 phy_10gbit_features); 219 linkmode_set_bit_array(phy_10_100_features_array, 220 ARRAY_SIZE(phy_10_100_features_array), 221 phy_10gbit_features); 222 linkmode_set_bit_array(phy_gbit_features_array, 223 ARRAY_SIZE(phy_gbit_features_array), 224 phy_10gbit_features); 225 linkmode_set_bit_array(phy_10gbit_features_array, 226 ARRAY_SIZE(phy_10gbit_features_array), 227 phy_10gbit_features); 228 229 /* 10/100/1000/10G full */ 230 linkmode_set_bit_array(phy_all_ports_features_array, 231 ARRAY_SIZE(phy_all_ports_features_array), 232 phy_10gbit_full_features); 233 linkmode_set_bit_array(phy_10gbit_full_features_array, 234 ARRAY_SIZE(phy_10gbit_full_features_array), 235 phy_10gbit_full_features); 236 /* 10G FEC only */ 237 linkmode_set_bit_array(phy_10gbit_fec_features_array, 238 ARRAY_SIZE(phy_10gbit_fec_features_array), 239 phy_10gbit_fec_features); 240 linkmode_set_bit_array(phy_eee_cap1_features_array, 241 ARRAY_SIZE(phy_eee_cap1_features_array), 242 phy_eee_cap1_features); 243 linkmode_set_bit_array(phy_eee_cap2_features_array, 244 ARRAY_SIZE(phy_eee_cap2_features_array), 245 phy_eee_cap2_features); 246 247 } 248 249 void phy_device_free(struct phy_device *phydev) 250 { 251 put_device(&phydev->mdio.dev); 252 } 253 EXPORT_SYMBOL(phy_device_free); 254 255 static void phy_mdio_device_free(struct mdio_device *mdiodev) 256 { 257 struct phy_device *phydev; 258 259 phydev = container_of(mdiodev, struct phy_device, mdio); 260 phy_device_free(phydev); 261 } 262 263 static void phy_device_release(struct device *dev) 264 { 265 fwnode_handle_put(dev->fwnode); 266 kfree(to_phy_device(dev)); 267 } 268 269 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 270 { 271 struct phy_device *phydev; 272 273 phydev = container_of(mdiodev, struct phy_device, mdio); 274 phy_device_remove(phydev); 275 } 276 277 static struct phy_driver genphy_driver; 278 279 static LIST_HEAD(phy_fixup_list); 280 static DEFINE_MUTEX(phy_fixup_lock); 281 282 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 283 { 284 struct device_driver *drv = phydev->mdio.dev.driver; 285 struct phy_driver *phydrv = to_phy_driver(drv); 286 struct net_device *netdev = phydev->attached_dev; 287 288 if (!drv || !phydrv->suspend) 289 return false; 290 291 /* PHY not attached? May suspend if the PHY has not already been 292 * suspended as part of a prior call to phy_disconnect() -> 293 * phy_detach() -> phy_suspend() because the parent netdev might be the 294 * MDIO bus driver and clock gated at this point. 295 */ 296 if (!netdev) 297 goto out; 298 299 if (netdev->ethtool->wol_enabled) 300 return false; 301 302 /* As long as not all affected network drivers support the 303 * wol_enabled flag, let's check for hints that WoL is enabled. 304 * Don't suspend PHY if the attached netdev parent may wake up. 305 * The parent may point to a PCI device, as in tg3 driver. 306 */ 307 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 308 return false; 309 310 /* Also don't suspend PHY if the netdev itself may wakeup. This 311 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 312 * e.g. SoC devices. 313 */ 314 if (device_may_wakeup(&netdev->dev)) 315 return false; 316 317 out: 318 return !phydev->suspended; 319 } 320 321 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 322 { 323 struct phy_device *phydev = to_phy_device(dev); 324 325 if (phydev->mac_managed_pm) 326 return 0; 327 328 /* Wakeup interrupts may occur during the system sleep transition when 329 * the PHY is inaccessible. Set flag to postpone handling until the PHY 330 * has resumed. Wait for concurrent interrupt handler to complete. 331 */ 332 if (phy_interrupt_is_valid(phydev)) { 333 phydev->irq_suspended = 1; 334 synchronize_irq(phydev->irq); 335 } 336 337 /* We must stop the state machine manually, otherwise it stops out of 338 * control, possibly with the phydev->lock held. Upon resume, netdev 339 * may call phy routines that try to grab the same lock, and that may 340 * lead to a deadlock. 341 */ 342 if (phydev->attached_dev && phydev->adjust_link) 343 phy_stop_machine(phydev); 344 345 if (!mdio_bus_phy_may_suspend(phydev)) 346 return 0; 347 348 phydev->suspended_by_mdio_bus = 1; 349 350 return phy_suspend(phydev); 351 } 352 353 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 354 { 355 struct phy_device *phydev = to_phy_device(dev); 356 int ret; 357 358 if (phydev->mac_managed_pm) 359 return 0; 360 361 if (!phydev->suspended_by_mdio_bus) 362 goto no_resume; 363 364 phydev->suspended_by_mdio_bus = 0; 365 366 /* If we managed to get here with the PHY state machine in a state 367 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 368 * that something went wrong and we should most likely be using 369 * MAC managed PM, but we are not. 370 */ 371 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 372 phydev->state != PHY_UP); 373 374 ret = phy_init_hw(phydev); 375 if (ret < 0) 376 return ret; 377 378 ret = phy_resume(phydev); 379 if (ret < 0) 380 return ret; 381 no_resume: 382 if (phy_interrupt_is_valid(phydev)) { 383 phydev->irq_suspended = 0; 384 synchronize_irq(phydev->irq); 385 386 /* Rerun interrupts which were postponed by phy_interrupt() 387 * because they occurred during the system sleep transition. 388 */ 389 if (phydev->irq_rerun) { 390 phydev->irq_rerun = 0; 391 enable_irq(phydev->irq); 392 irq_wake_thread(phydev->irq, phydev); 393 } 394 } 395 396 if (phydev->attached_dev && phydev->adjust_link) 397 phy_start_machine(phydev); 398 399 return 0; 400 } 401 402 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 403 mdio_bus_phy_resume); 404 405 /** 406 * phy_register_fixup - creates a new phy_fixup and adds it to the list 407 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 408 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 409 * It can also be PHY_ANY_UID 410 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 411 * comparison 412 * @run: The actual code to be run when a matching PHY is found 413 */ 414 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 415 int (*run)(struct phy_device *)) 416 { 417 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 418 419 if (!fixup) 420 return -ENOMEM; 421 422 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 423 fixup->phy_uid = phy_uid; 424 fixup->phy_uid_mask = phy_uid_mask; 425 fixup->run = run; 426 427 mutex_lock(&phy_fixup_lock); 428 list_add_tail(&fixup->list, &phy_fixup_list); 429 mutex_unlock(&phy_fixup_lock); 430 431 return 0; 432 } 433 EXPORT_SYMBOL(phy_register_fixup); 434 435 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 436 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 437 int (*run)(struct phy_device *)) 438 { 439 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 440 } 441 EXPORT_SYMBOL(phy_register_fixup_for_uid); 442 443 /* Registers a fixup to be run on the PHY with id string bus_id */ 444 int phy_register_fixup_for_id(const char *bus_id, 445 int (*run)(struct phy_device *)) 446 { 447 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 448 } 449 EXPORT_SYMBOL(phy_register_fixup_for_id); 450 451 /** 452 * phy_unregister_fixup - remove a phy_fixup from the list 453 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 454 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 455 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 456 */ 457 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 458 { 459 struct list_head *pos, *n; 460 struct phy_fixup *fixup; 461 int ret; 462 463 ret = -ENODEV; 464 465 mutex_lock(&phy_fixup_lock); 466 list_for_each_safe(pos, n, &phy_fixup_list) { 467 fixup = list_entry(pos, struct phy_fixup, list); 468 469 if ((!strcmp(fixup->bus_id, bus_id)) && 470 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) { 471 list_del(&fixup->list); 472 kfree(fixup); 473 ret = 0; 474 break; 475 } 476 } 477 mutex_unlock(&phy_fixup_lock); 478 479 return ret; 480 } 481 EXPORT_SYMBOL(phy_unregister_fixup); 482 483 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 484 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 485 { 486 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 487 } 488 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 489 490 /* Unregisters a fixup of the PHY with id string bus_id */ 491 int phy_unregister_fixup_for_id(const char *bus_id) 492 { 493 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 494 } 495 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 496 497 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 498 * Fixups can be set to match any in one or more fields. 499 */ 500 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 501 { 502 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 503 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 504 return 0; 505 506 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid, 507 fixup->phy_uid_mask)) 508 if (fixup->phy_uid != PHY_ANY_UID) 509 return 0; 510 511 return 1; 512 } 513 514 /* Runs any matching fixups for this phydev */ 515 static int phy_scan_fixups(struct phy_device *phydev) 516 { 517 struct phy_fixup *fixup; 518 519 mutex_lock(&phy_fixup_lock); 520 list_for_each_entry(fixup, &phy_fixup_list, list) { 521 if (phy_needs_fixup(phydev, fixup)) { 522 int err = fixup->run(phydev); 523 524 if (err < 0) { 525 mutex_unlock(&phy_fixup_lock); 526 return err; 527 } 528 phydev->has_fixups = true; 529 } 530 } 531 mutex_unlock(&phy_fixup_lock); 532 533 return 0; 534 } 535 536 static int phy_bus_match(struct device *dev, const struct device_driver *drv) 537 { 538 struct phy_device *phydev = to_phy_device(dev); 539 const struct phy_driver *phydrv = to_phy_driver(drv); 540 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 541 int i; 542 543 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 544 return 0; 545 546 if (phydrv->match_phy_device) 547 return phydrv->match_phy_device(phydev); 548 549 if (phydev->is_c45) { 550 for (i = 1; i < num_ids; i++) { 551 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 552 continue; 553 554 if (phy_id_compare(phydev->c45_ids.device_ids[i], 555 phydrv->phy_id, phydrv->phy_id_mask)) 556 return 1; 557 } 558 return 0; 559 } else { 560 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 561 phydrv->phy_id_mask); 562 } 563 } 564 565 static ssize_t 566 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 567 { 568 struct phy_device *phydev = to_phy_device(dev); 569 570 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 571 } 572 static DEVICE_ATTR_RO(phy_id); 573 574 static ssize_t 575 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 576 { 577 struct phy_device *phydev = to_phy_device(dev); 578 const char *mode = NULL; 579 580 if (phy_is_internal(phydev)) 581 mode = "internal"; 582 else 583 mode = phy_modes(phydev->interface); 584 585 return sysfs_emit(buf, "%s\n", mode); 586 } 587 static DEVICE_ATTR_RO(phy_interface); 588 589 static ssize_t 590 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 591 char *buf) 592 { 593 struct phy_device *phydev = to_phy_device(dev); 594 595 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 596 } 597 static DEVICE_ATTR_RO(phy_has_fixups); 598 599 static ssize_t phy_dev_flags_show(struct device *dev, 600 struct device_attribute *attr, 601 char *buf) 602 { 603 struct phy_device *phydev = to_phy_device(dev); 604 605 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 606 } 607 static DEVICE_ATTR_RO(phy_dev_flags); 608 609 static struct attribute *phy_dev_attrs[] = { 610 &dev_attr_phy_id.attr, 611 &dev_attr_phy_interface.attr, 612 &dev_attr_phy_has_fixups.attr, 613 &dev_attr_phy_dev_flags.attr, 614 NULL, 615 }; 616 ATTRIBUTE_GROUPS(phy_dev); 617 618 static const struct device_type mdio_bus_phy_type = { 619 .name = "PHY", 620 .groups = phy_dev_groups, 621 .release = phy_device_release, 622 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 623 }; 624 625 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 626 { 627 int ret; 628 629 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 630 MDIO_ID_ARGS(phy_id)); 631 /* We only check for failures in executing the usermode binary, 632 * not whether a PHY driver module exists for the PHY ID. 633 * Accept -ENOENT because this may occur in case no initramfs exists, 634 * then modprobe isn't available. 635 */ 636 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 637 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 638 ret, (unsigned long)phy_id); 639 return ret; 640 } 641 642 return 0; 643 } 644 645 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 646 bool is_c45, 647 struct phy_c45_device_ids *c45_ids) 648 { 649 struct phy_device *dev; 650 struct mdio_device *mdiodev; 651 int ret = 0; 652 653 /* We allocate the device, and initialize the default values */ 654 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 655 if (!dev) 656 return ERR_PTR(-ENOMEM); 657 658 mdiodev = &dev->mdio; 659 mdiodev->dev.parent = &bus->dev; 660 mdiodev->dev.bus = &mdio_bus_type; 661 mdiodev->dev.type = &mdio_bus_phy_type; 662 mdiodev->bus = bus; 663 mdiodev->bus_match = phy_bus_match; 664 mdiodev->addr = addr; 665 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 666 mdiodev->device_free = phy_mdio_device_free; 667 mdiodev->device_remove = phy_mdio_device_remove; 668 mdiodev->reset_state = -1; 669 670 dev->speed = SPEED_UNKNOWN; 671 dev->duplex = DUPLEX_UNKNOWN; 672 dev->pause = 0; 673 dev->asym_pause = 0; 674 dev->link = 0; 675 dev->port = PORT_TP; 676 dev->interface = PHY_INTERFACE_MODE_GMII; 677 678 dev->autoneg = AUTONEG_ENABLE; 679 680 dev->pma_extable = -ENODATA; 681 dev->is_c45 = is_c45; 682 dev->phy_id = phy_id; 683 if (c45_ids) 684 dev->c45_ids = *c45_ids; 685 dev->irq = bus->irq[addr]; 686 687 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 688 device_initialize(&mdiodev->dev); 689 690 dev->state = PHY_DOWN; 691 INIT_LIST_HEAD(&dev->leds); 692 693 mutex_init(&dev->lock); 694 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 695 696 /* Request the appropriate module unconditionally; don't 697 * bother trying to do so only if it isn't already loaded, 698 * because that gets complicated. A hotplug event would have 699 * done an unconditional modprobe anyway. 700 * We don't do normal hotplug because it won't work for MDIO 701 * -- because it relies on the device staying around for long 702 * enough for the driver to get loaded. With MDIO, the NIC 703 * driver will get bored and give up as soon as it finds that 704 * there's no driver _already_ loaded. 705 */ 706 if (is_c45 && c45_ids) { 707 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 708 int i; 709 710 for (i = 1; i < num_ids; i++) { 711 if (c45_ids->device_ids[i] == 0xffffffff) 712 continue; 713 714 ret = phy_request_driver_module(dev, 715 c45_ids->device_ids[i]); 716 if (ret) 717 break; 718 } 719 } else { 720 ret = phy_request_driver_module(dev, phy_id); 721 } 722 723 if (ret) { 724 put_device(&mdiodev->dev); 725 dev = ERR_PTR(ret); 726 } 727 728 return dev; 729 } 730 EXPORT_SYMBOL(phy_device_create); 731 732 /* phy_c45_probe_present - checks to see if a MMD is present in the package 733 * @bus: the target MII bus 734 * @prtad: PHY package address on the MII bus 735 * @devad: PHY device (MMD) address 736 * 737 * Read the MDIO_STAT2 register, and check whether a device is responding 738 * at this address. 739 * 740 * Returns: negative error number on bus access error, zero if no device 741 * is responding, or positive if a device is present. 742 */ 743 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 744 { 745 int stat2; 746 747 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 748 if (stat2 < 0) 749 return stat2; 750 751 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 752 } 753 754 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 755 * @bus: the target MII bus 756 * @addr: PHY address on the MII bus 757 * @dev_addr: MMD address in the PHY. 758 * @devices_in_package: where to store the devices in package information. 759 * 760 * Description: reads devices in package registers of a MMD at @dev_addr 761 * from PHY at @addr on @bus. 762 * 763 * Returns: 0 on success, -EIO on failure. 764 */ 765 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 766 u32 *devices_in_package) 767 { 768 int phy_reg; 769 770 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 771 if (phy_reg < 0) 772 return -EIO; 773 *devices_in_package = phy_reg << 16; 774 775 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 776 if (phy_reg < 0) 777 return -EIO; 778 *devices_in_package |= phy_reg; 779 780 return 0; 781 } 782 783 /** 784 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 785 * @bus: the target MII bus 786 * @addr: PHY address on the MII bus 787 * @c45_ids: where to store the c45 ID information. 788 * 789 * Read the PHY "devices in package". If this appears to be valid, read 790 * the PHY identifiers for each device. Return the "devices in package" 791 * and identifiers in @c45_ids. 792 * 793 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 794 * the "devices in package" is invalid or no device responds. 795 */ 796 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 797 struct phy_c45_device_ids *c45_ids) 798 { 799 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 800 u32 devs_in_pkg = 0; 801 int i, ret, phy_reg; 802 803 /* Find first non-zero Devices In package. Device zero is reserved 804 * for 802.3 c45 complied PHYs, so don't probe it at first. 805 */ 806 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 807 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 808 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 809 /* Check that there is a device present at this 810 * address before reading the devices-in-package 811 * register to avoid reading garbage from the PHY. 812 * Some PHYs (88x3310) vendor space is not IEEE802.3 813 * compliant. 814 */ 815 ret = phy_c45_probe_present(bus, addr, i); 816 if (ret < 0) 817 /* returning -ENODEV doesn't stop bus 818 * scanning 819 */ 820 return (phy_reg == -EIO || 821 phy_reg == -ENODEV) ? -ENODEV : -EIO; 822 823 if (!ret) 824 continue; 825 } 826 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 827 if (phy_reg < 0) 828 return -EIO; 829 } 830 831 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 832 /* If mostly Fs, there is no device there, then let's probe 833 * MMD 0, as some 10G PHYs have zero Devices In package, 834 * e.g. Cortina CS4315/CS4340 PHY. 835 */ 836 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 837 if (phy_reg < 0) 838 return -EIO; 839 840 /* no device there, let's get out of here */ 841 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 842 return -ENODEV; 843 } 844 845 /* Now probe Device Identifiers for each device present. */ 846 for (i = 1; i < num_ids; i++) { 847 if (!(devs_in_pkg & (1 << i))) 848 continue; 849 850 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 851 /* Probe the "Device Present" bits for the vendor MMDs 852 * to ignore these if they do not contain IEEE 802.3 853 * registers. 854 */ 855 ret = phy_c45_probe_present(bus, addr, i); 856 if (ret < 0) 857 return ret; 858 859 if (!ret) 860 continue; 861 } 862 863 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 864 if (phy_reg < 0) 865 return -EIO; 866 c45_ids->device_ids[i] = phy_reg << 16; 867 868 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 869 if (phy_reg < 0) 870 return -EIO; 871 c45_ids->device_ids[i] |= phy_reg; 872 } 873 874 c45_ids->devices_in_package = devs_in_pkg; 875 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 876 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 877 878 return 0; 879 } 880 881 /** 882 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 883 * @bus: the target MII bus 884 * @addr: PHY address on the MII bus 885 * @phy_id: where to store the ID retrieved. 886 * 887 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 888 * placing it in @phy_id. Return zero on successful read and the ID is 889 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 890 * or invalid ID. 891 */ 892 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 893 { 894 int phy_reg; 895 896 /* Grab the bits from PHYIR1, and put them in the upper half */ 897 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 898 if (phy_reg < 0) { 899 /* returning -ENODEV doesn't stop bus scanning */ 900 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 901 } 902 903 *phy_id = phy_reg << 16; 904 905 /* Grab the bits from PHYIR2, and put them in the lower half */ 906 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 907 if (phy_reg < 0) { 908 /* returning -ENODEV doesn't stop bus scanning */ 909 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 910 } 911 912 *phy_id |= phy_reg; 913 914 /* If the phy_id is mostly Fs, there is no device there */ 915 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 916 return -ENODEV; 917 918 return 0; 919 } 920 921 /* Extract the phy ID from the compatible string of the form 922 * ethernet-phy-idAAAA.BBBB. 923 */ 924 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 925 { 926 unsigned int upper, lower; 927 const char *cp; 928 int ret; 929 930 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 931 if (ret) 932 return ret; 933 934 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 935 return -EINVAL; 936 937 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 938 return 0; 939 } 940 EXPORT_SYMBOL(fwnode_get_phy_id); 941 942 /** 943 * get_phy_device - reads the specified PHY device and returns its @phy_device 944 * struct 945 * @bus: the target MII bus 946 * @addr: PHY address on the MII bus 947 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 948 * 949 * Probe for a PHY at @addr on @bus. 950 * 951 * When probing for a clause 22 PHY, then read the ID registers. If we find 952 * a valid ID, allocate and return a &struct phy_device. 953 * 954 * When probing for a clause 45 PHY, read the "devices in package" registers. 955 * If the "devices in package" appears valid, read the ID registers for each 956 * MMD, allocate and return a &struct phy_device. 957 * 958 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 959 * no PHY present, or %-EIO on bus access error. 960 */ 961 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 962 { 963 struct phy_c45_device_ids c45_ids; 964 u32 phy_id = 0; 965 int r; 966 967 c45_ids.devices_in_package = 0; 968 c45_ids.mmds_present = 0; 969 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 970 971 if (is_c45) 972 r = get_phy_c45_ids(bus, addr, &c45_ids); 973 else 974 r = get_phy_c22_id(bus, addr, &phy_id); 975 976 if (r) 977 return ERR_PTR(r); 978 979 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 980 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 981 * probe with C45 to see if we're able to get a valid PHY ID in the C45 982 * space, if successful, create the C45 PHY device. 983 */ 984 if (!is_c45 && phy_id == 0 && bus->read_c45) { 985 r = get_phy_c45_ids(bus, addr, &c45_ids); 986 if (!r) 987 return phy_device_create(bus, addr, phy_id, 988 true, &c45_ids); 989 } 990 991 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 992 } 993 EXPORT_SYMBOL(get_phy_device); 994 995 /** 996 * phy_device_register - Register the phy device on the MDIO bus 997 * @phydev: phy_device structure to be added to the MDIO bus 998 */ 999 int phy_device_register(struct phy_device *phydev) 1000 { 1001 int err; 1002 1003 err = mdiobus_register_device(&phydev->mdio); 1004 if (err) 1005 return err; 1006 1007 /* Deassert the reset signal */ 1008 phy_device_reset(phydev, 0); 1009 1010 /* Run all of the fixups for this PHY */ 1011 err = phy_scan_fixups(phydev); 1012 if (err) { 1013 phydev_err(phydev, "failed to initialize\n"); 1014 goto out; 1015 } 1016 1017 err = device_add(&phydev->mdio.dev); 1018 if (err) { 1019 phydev_err(phydev, "failed to add\n"); 1020 goto out; 1021 } 1022 1023 return 0; 1024 1025 out: 1026 /* Assert the reset signal */ 1027 phy_device_reset(phydev, 1); 1028 1029 mdiobus_unregister_device(&phydev->mdio); 1030 return err; 1031 } 1032 EXPORT_SYMBOL(phy_device_register); 1033 1034 /** 1035 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1036 * @phydev: phy_device structure to remove 1037 * 1038 * This doesn't free the phy_device itself, it merely reverses the effects 1039 * of phy_device_register(). Use phy_device_free() to free the device 1040 * after calling this function. 1041 */ 1042 void phy_device_remove(struct phy_device *phydev) 1043 { 1044 unregister_mii_timestamper(phydev->mii_ts); 1045 pse_control_put(phydev->psec); 1046 1047 device_del(&phydev->mdio.dev); 1048 1049 /* Assert the reset signal */ 1050 phy_device_reset(phydev, 1); 1051 1052 mdiobus_unregister_device(&phydev->mdio); 1053 } 1054 EXPORT_SYMBOL(phy_device_remove); 1055 1056 /** 1057 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1058 * @phydev: phy_device structure to read 802.3-c45 IDs 1059 * 1060 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1061 * the "devices in package" is invalid. 1062 */ 1063 int phy_get_c45_ids(struct phy_device *phydev) 1064 { 1065 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1066 &phydev->c45_ids); 1067 } 1068 EXPORT_SYMBOL(phy_get_c45_ids); 1069 1070 /** 1071 * phy_find_first - finds the first PHY device on the bus 1072 * @bus: the target MII bus 1073 */ 1074 struct phy_device *phy_find_first(struct mii_bus *bus) 1075 { 1076 struct phy_device *phydev; 1077 int addr; 1078 1079 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1080 phydev = mdiobus_get_phy(bus, addr); 1081 if (phydev) 1082 return phydev; 1083 } 1084 return NULL; 1085 } 1086 EXPORT_SYMBOL(phy_find_first); 1087 1088 static void phy_link_change(struct phy_device *phydev, bool up) 1089 { 1090 struct net_device *netdev = phydev->attached_dev; 1091 1092 if (up) 1093 netif_carrier_on(netdev); 1094 else 1095 netif_carrier_off(netdev); 1096 phydev->adjust_link(netdev); 1097 if (phydev->mii_ts && phydev->mii_ts->link_state) 1098 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1099 } 1100 1101 /** 1102 * phy_prepare_link - prepares the PHY layer to monitor link status 1103 * @phydev: target phy_device struct 1104 * @handler: callback function for link status change notifications 1105 * 1106 * Description: Tells the PHY infrastructure to handle the 1107 * gory details on monitoring link status (whether through 1108 * polling or an interrupt), and to call back to the 1109 * connected device driver when the link status changes. 1110 * If you want to monitor your own link state, don't call 1111 * this function. 1112 */ 1113 static void phy_prepare_link(struct phy_device *phydev, 1114 void (*handler)(struct net_device *)) 1115 { 1116 phydev->adjust_link = handler; 1117 } 1118 1119 /** 1120 * phy_connect_direct - connect an ethernet device to a specific phy_device 1121 * @dev: the network device to connect 1122 * @phydev: the pointer to the phy device 1123 * @handler: callback function for state change notifications 1124 * @interface: PHY device's interface 1125 */ 1126 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1127 void (*handler)(struct net_device *), 1128 phy_interface_t interface) 1129 { 1130 int rc; 1131 1132 if (!dev) 1133 return -EINVAL; 1134 1135 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1136 if (rc) 1137 return rc; 1138 1139 phy_prepare_link(phydev, handler); 1140 if (phy_interrupt_is_valid(phydev)) 1141 phy_request_interrupt(phydev); 1142 1143 return 0; 1144 } 1145 EXPORT_SYMBOL(phy_connect_direct); 1146 1147 /** 1148 * phy_connect - connect an ethernet device to a PHY device 1149 * @dev: the network device to connect 1150 * @bus_id: the id string of the PHY device to connect 1151 * @handler: callback function for state change notifications 1152 * @interface: PHY device's interface 1153 * 1154 * Description: Convenience function for connecting ethernet 1155 * devices to PHY devices. The default behavior is for 1156 * the PHY infrastructure to handle everything, and only notify 1157 * the connected driver when the link status changes. If you 1158 * don't want, or can't use the provided functionality, you may 1159 * choose to call only the subset of functions which provide 1160 * the desired functionality. 1161 */ 1162 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1163 void (*handler)(struct net_device *), 1164 phy_interface_t interface) 1165 { 1166 struct phy_device *phydev; 1167 struct device *d; 1168 int rc; 1169 1170 /* Search the list of PHY devices on the mdio bus for the 1171 * PHY with the requested name 1172 */ 1173 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1174 if (!d) { 1175 pr_err("PHY %s not found\n", bus_id); 1176 return ERR_PTR(-ENODEV); 1177 } 1178 phydev = to_phy_device(d); 1179 1180 rc = phy_connect_direct(dev, phydev, handler, interface); 1181 put_device(d); 1182 if (rc) 1183 return ERR_PTR(rc); 1184 1185 return phydev; 1186 } 1187 EXPORT_SYMBOL(phy_connect); 1188 1189 /** 1190 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1191 * device 1192 * @phydev: target phy_device struct 1193 */ 1194 void phy_disconnect(struct phy_device *phydev) 1195 { 1196 if (phy_is_started(phydev)) 1197 phy_stop(phydev); 1198 1199 if (phy_interrupt_is_valid(phydev)) 1200 phy_free_interrupt(phydev); 1201 1202 phydev->adjust_link = NULL; 1203 1204 phy_detach(phydev); 1205 } 1206 EXPORT_SYMBOL(phy_disconnect); 1207 1208 /** 1209 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1210 * @phydev: The PHY device to poll 1211 * 1212 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1213 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1214 * register must be polled until the BMCR_RESET bit clears. 1215 * 1216 * Furthermore, any attempts to write to PHY registers may have no effect 1217 * or even generate MDIO bus errors until this is complete. 1218 * 1219 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1220 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1221 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1222 * effort to support such broken PHYs, this function is separate from the 1223 * standard phy_init_hw() which will zero all the other bits in the BMCR 1224 * and reapply all driver-specific and board-specific fixups. 1225 */ 1226 static int phy_poll_reset(struct phy_device *phydev) 1227 { 1228 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1229 int ret, val; 1230 1231 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1232 50000, 600000, true); 1233 if (ret) 1234 return ret; 1235 /* Some chips (smsc911x) may still need up to another 1ms after the 1236 * BMCR_RESET bit is cleared before they are usable. 1237 */ 1238 msleep(1); 1239 return 0; 1240 } 1241 1242 int phy_init_hw(struct phy_device *phydev) 1243 { 1244 int ret = 0; 1245 1246 /* Deassert the reset signal */ 1247 phy_device_reset(phydev, 0); 1248 1249 if (!phydev->drv) 1250 return 0; 1251 1252 if (phydev->drv->soft_reset) { 1253 ret = phydev->drv->soft_reset(phydev); 1254 if (ret < 0) 1255 return ret; 1256 1257 /* see comment in genphy_soft_reset for an explanation */ 1258 phydev->suspended = 0; 1259 } 1260 1261 ret = phy_scan_fixups(phydev); 1262 if (ret < 0) 1263 return ret; 1264 1265 phy_interface_zero(phydev->possible_interfaces); 1266 1267 if (phydev->drv->config_init) { 1268 ret = phydev->drv->config_init(phydev); 1269 if (ret < 0) 1270 return ret; 1271 } 1272 1273 if (phydev->drv->config_intr) { 1274 ret = phydev->drv->config_intr(phydev); 1275 if (ret < 0) 1276 return ret; 1277 } 1278 1279 return 0; 1280 } 1281 EXPORT_SYMBOL(phy_init_hw); 1282 1283 void phy_attached_info(struct phy_device *phydev) 1284 { 1285 phy_attached_print(phydev, NULL); 1286 } 1287 EXPORT_SYMBOL(phy_attached_info); 1288 1289 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1290 char *phy_attached_info_irq(struct phy_device *phydev) 1291 { 1292 char *irq_str; 1293 char irq_num[8]; 1294 1295 switch(phydev->irq) { 1296 case PHY_POLL: 1297 irq_str = "POLL"; 1298 break; 1299 case PHY_MAC_INTERRUPT: 1300 irq_str = "MAC"; 1301 break; 1302 default: 1303 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1304 irq_str = irq_num; 1305 break; 1306 } 1307 1308 return kasprintf(GFP_KERNEL, "%s", irq_str); 1309 } 1310 EXPORT_SYMBOL(phy_attached_info_irq); 1311 1312 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1313 { 1314 const char *unbound = phydev->drv ? "" : "[unbound] "; 1315 char *irq_str = phy_attached_info_irq(phydev); 1316 1317 if (!fmt) { 1318 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1319 phydev_name(phydev), irq_str); 1320 } else { 1321 va_list ap; 1322 1323 phydev_info(phydev, ATTACHED_FMT, unbound, 1324 phydev_name(phydev), irq_str); 1325 1326 va_start(ap, fmt); 1327 vprintk(fmt, ap); 1328 va_end(ap); 1329 } 1330 kfree(irq_str); 1331 } 1332 EXPORT_SYMBOL(phy_attached_print); 1333 1334 static void phy_sysfs_create_links(struct phy_device *phydev) 1335 { 1336 struct net_device *dev = phydev->attached_dev; 1337 int err; 1338 1339 if (!dev) 1340 return; 1341 1342 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1343 "attached_dev"); 1344 if (err) 1345 return; 1346 1347 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1348 &phydev->mdio.dev.kobj, 1349 "phydev"); 1350 if (err) { 1351 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1352 kobject_name(&phydev->mdio.dev.kobj), 1353 err); 1354 /* non-fatal - some net drivers can use one netdevice 1355 * with more then one phy 1356 */ 1357 } 1358 1359 phydev->sysfs_links = true; 1360 } 1361 1362 static ssize_t 1363 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1364 char *buf) 1365 { 1366 struct phy_device *phydev = to_phy_device(dev); 1367 1368 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1369 } 1370 static DEVICE_ATTR_RO(phy_standalone); 1371 1372 /** 1373 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1374 * @upstream: pointer to the phy device 1375 * @bus: sfp bus representing cage being attached 1376 * 1377 * This is used to fill in the sfp_upstream_ops .attach member. 1378 */ 1379 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1380 { 1381 struct phy_device *phydev = upstream; 1382 1383 if (phydev->attached_dev) 1384 phydev->attached_dev->sfp_bus = bus; 1385 phydev->sfp_bus_attached = true; 1386 } 1387 EXPORT_SYMBOL(phy_sfp_attach); 1388 1389 /** 1390 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1391 * @upstream: pointer to the phy device 1392 * @bus: sfp bus representing cage being attached 1393 * 1394 * This is used to fill in the sfp_upstream_ops .detach member. 1395 */ 1396 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1397 { 1398 struct phy_device *phydev = upstream; 1399 1400 if (phydev->attached_dev) 1401 phydev->attached_dev->sfp_bus = NULL; 1402 phydev->sfp_bus_attached = false; 1403 } 1404 EXPORT_SYMBOL(phy_sfp_detach); 1405 1406 /** 1407 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1408 * @phydev: Pointer to phy_device 1409 * @ops: SFP's upstream operations 1410 */ 1411 int phy_sfp_probe(struct phy_device *phydev, 1412 const struct sfp_upstream_ops *ops) 1413 { 1414 struct sfp_bus *bus; 1415 int ret = 0; 1416 1417 if (phydev->mdio.dev.fwnode) { 1418 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1419 if (IS_ERR(bus)) 1420 return PTR_ERR(bus); 1421 1422 phydev->sfp_bus = bus; 1423 1424 ret = sfp_bus_add_upstream(bus, phydev, ops); 1425 sfp_bus_put(bus); 1426 } 1427 return ret; 1428 } 1429 EXPORT_SYMBOL(phy_sfp_probe); 1430 1431 static bool phy_drv_supports_irq(const struct phy_driver *phydrv) 1432 { 1433 return phydrv->config_intr && phydrv->handle_interrupt; 1434 } 1435 1436 /** 1437 * phy_attach_direct - attach a network device to a given PHY device pointer 1438 * @dev: network device to attach 1439 * @phydev: Pointer to phy_device to attach 1440 * @flags: PHY device's dev_flags 1441 * @interface: PHY device's interface 1442 * 1443 * Description: Called by drivers to attach to a particular PHY 1444 * device. The phy_device is found, and properly hooked up 1445 * to the phy_driver. If no driver is attached, then a 1446 * generic driver is used. The phy_device is given a ptr to 1447 * the attaching device, and given a callback for link status 1448 * change. The phy_device is returned to the attaching driver. 1449 * This function takes a reference on the phy device. 1450 */ 1451 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1452 u32 flags, phy_interface_t interface) 1453 { 1454 struct mii_bus *bus = phydev->mdio.bus; 1455 struct device *d = &phydev->mdio.dev; 1456 struct module *ndev_owner = NULL; 1457 bool using_genphy = false; 1458 int err; 1459 1460 /* For Ethernet device drivers that register their own MDIO bus, we 1461 * will have bus->owner match ndev_mod, so we do not want to increment 1462 * our own module->refcnt here, otherwise we would not be able to 1463 * unload later on. 1464 */ 1465 if (dev) 1466 ndev_owner = dev->dev.parent->driver->owner; 1467 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1468 phydev_err(phydev, "failed to get the bus module\n"); 1469 return -EIO; 1470 } 1471 1472 get_device(d); 1473 1474 /* Assume that if there is no driver, that it doesn't 1475 * exist, and we should use the genphy driver. 1476 */ 1477 if (!d->driver) { 1478 if (phydev->is_c45) 1479 d->driver = &genphy_c45_driver.mdiodrv.driver; 1480 else 1481 d->driver = &genphy_driver.mdiodrv.driver; 1482 1483 using_genphy = true; 1484 } 1485 1486 if (!try_module_get(d->driver->owner)) { 1487 phydev_err(phydev, "failed to get the device driver module\n"); 1488 err = -EIO; 1489 goto error_put_device; 1490 } 1491 1492 if (using_genphy) { 1493 err = d->driver->probe(d); 1494 if (err >= 0) 1495 err = device_bind_driver(d); 1496 1497 if (err) 1498 goto error_module_put; 1499 } 1500 1501 if (phydev->attached_dev) { 1502 dev_err(&dev->dev, "PHY already attached\n"); 1503 err = -EBUSY; 1504 goto error; 1505 } 1506 1507 phydev->phy_link_change = phy_link_change; 1508 if (dev) { 1509 phydev->attached_dev = dev; 1510 dev->phydev = phydev; 1511 1512 if (phydev->sfp_bus_attached) 1513 dev->sfp_bus = phydev->sfp_bus; 1514 } 1515 1516 /* Some Ethernet drivers try to connect to a PHY device before 1517 * calling register_netdevice() -> netdev_register_kobject() and 1518 * does the dev->dev.kobj initialization. Here we only check for 1519 * success which indicates that the network device kobject is 1520 * ready. Once we do that we still need to keep track of whether 1521 * links were successfully set up or not for phy_detach() to 1522 * remove them accordingly. 1523 */ 1524 phydev->sysfs_links = false; 1525 1526 phy_sysfs_create_links(phydev); 1527 1528 if (!phydev->attached_dev) { 1529 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1530 &dev_attr_phy_standalone.attr); 1531 if (err) 1532 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1533 } 1534 1535 phydev->dev_flags |= flags; 1536 1537 phydev->interface = interface; 1538 1539 phydev->state = PHY_READY; 1540 1541 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1542 1543 /* PHYs can request to use poll mode even though they have an 1544 * associated interrupt line. This could be the case if they 1545 * detect a broken interrupt handling. 1546 */ 1547 if (phydev->dev_flags & PHY_F_NO_IRQ) 1548 phydev->irq = PHY_POLL; 1549 1550 if (!phy_drv_supports_irq(phydev->drv) && phy_interrupt_is_valid(phydev)) 1551 phydev->irq = PHY_POLL; 1552 1553 /* Port is set to PORT_TP by default and the actual PHY driver will set 1554 * it to different value depending on the PHY configuration. If we have 1555 * the generic PHY driver we can't figure it out, thus set the old 1556 * legacy PORT_MII value. 1557 */ 1558 if (using_genphy) 1559 phydev->port = PORT_MII; 1560 1561 /* Initial carrier state is off as the phy is about to be 1562 * (re)initialized. 1563 */ 1564 if (dev) 1565 netif_carrier_off(phydev->attached_dev); 1566 1567 /* Do initial configuration here, now that 1568 * we have certain key parameters 1569 * (dev_flags and interface) 1570 */ 1571 err = phy_init_hw(phydev); 1572 if (err) 1573 goto error; 1574 1575 phy_resume(phydev); 1576 if (!phydev->is_on_sfp_module) 1577 phy_led_triggers_register(phydev); 1578 1579 /** 1580 * If the external phy used by current mac interface is managed by 1581 * another mac interface, so we should create a device link between 1582 * phy dev and mac dev. 1583 */ 1584 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1585 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1586 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1587 1588 return err; 1589 1590 error: 1591 /* phy_detach() does all of the cleanup below */ 1592 phy_detach(phydev); 1593 return err; 1594 1595 error_module_put: 1596 module_put(d->driver->owner); 1597 d->driver = NULL; 1598 error_put_device: 1599 put_device(d); 1600 if (ndev_owner != bus->owner) 1601 module_put(bus->owner); 1602 return err; 1603 } 1604 EXPORT_SYMBOL(phy_attach_direct); 1605 1606 /** 1607 * phy_attach - attach a network device to a particular PHY device 1608 * @dev: network device to attach 1609 * @bus_id: Bus ID of PHY device to attach 1610 * @interface: PHY device's interface 1611 * 1612 * Description: Same as phy_attach_direct() except that a PHY bus_id 1613 * string is passed instead of a pointer to a struct phy_device. 1614 */ 1615 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1616 phy_interface_t interface) 1617 { 1618 struct phy_device *phydev; 1619 struct device *d; 1620 int rc; 1621 1622 if (!dev) 1623 return ERR_PTR(-EINVAL); 1624 1625 /* Search the list of PHY devices on the mdio bus for the 1626 * PHY with the requested name 1627 */ 1628 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1629 if (!d) { 1630 pr_err("PHY %s not found\n", bus_id); 1631 return ERR_PTR(-ENODEV); 1632 } 1633 phydev = to_phy_device(d); 1634 1635 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1636 put_device(d); 1637 if (rc) 1638 return ERR_PTR(rc); 1639 1640 return phydev; 1641 } 1642 EXPORT_SYMBOL(phy_attach); 1643 1644 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1645 struct device_driver *driver) 1646 { 1647 struct device *d = &phydev->mdio.dev; 1648 bool ret = false; 1649 1650 if (!phydev->drv) 1651 return ret; 1652 1653 get_device(d); 1654 ret = d->driver == driver; 1655 put_device(d); 1656 1657 return ret; 1658 } 1659 1660 bool phy_driver_is_genphy(struct phy_device *phydev) 1661 { 1662 return phy_driver_is_genphy_kind(phydev, 1663 &genphy_driver.mdiodrv.driver); 1664 } 1665 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1666 1667 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1668 { 1669 return phy_driver_is_genphy_kind(phydev, 1670 &genphy_c45_driver.mdiodrv.driver); 1671 } 1672 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1673 1674 /** 1675 * phy_package_join - join a common PHY group 1676 * @phydev: target phy_device struct 1677 * @base_addr: cookie and base PHY address of PHY package for offset 1678 * calculation of global register access 1679 * @priv_size: if non-zero allocate this amount of bytes for private data 1680 * 1681 * This joins a PHY group and provides a shared storage for all phydevs in 1682 * this group. This is intended to be used for packages which contain 1683 * more than one PHY, for example a quad PHY transceiver. 1684 * 1685 * The base_addr parameter serves as cookie which has to have the same values 1686 * for all members of one group and as the base PHY address of the PHY package 1687 * for offset calculation to access generic registers of a PHY package. 1688 * Usually, one of the PHY addresses of the different PHYs in the package 1689 * provides access to these global registers. 1690 * The address which is given here, will be used in the phy_package_read() 1691 * and phy_package_write() convenience functions as base and added to the 1692 * passed offset in those functions. 1693 * 1694 * This will set the shared pointer of the phydev to the shared storage. 1695 * If this is the first call for a this cookie the shared storage will be 1696 * allocated. If priv_size is non-zero, the given amount of bytes are 1697 * allocated for the priv member. 1698 * 1699 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1700 * with the same cookie but a different priv_size is an error. 1701 */ 1702 int phy_package_join(struct phy_device *phydev, int base_addr, size_t priv_size) 1703 { 1704 struct mii_bus *bus = phydev->mdio.bus; 1705 struct phy_package_shared *shared; 1706 int ret; 1707 1708 if (base_addr < 0 || base_addr >= PHY_MAX_ADDR) 1709 return -EINVAL; 1710 1711 mutex_lock(&bus->shared_lock); 1712 shared = bus->shared[base_addr]; 1713 if (!shared) { 1714 ret = -ENOMEM; 1715 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1716 if (!shared) 1717 goto err_unlock; 1718 if (priv_size) { 1719 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1720 if (!shared->priv) 1721 goto err_free; 1722 shared->priv_size = priv_size; 1723 } 1724 shared->base_addr = base_addr; 1725 shared->np = NULL; 1726 refcount_set(&shared->refcnt, 1); 1727 bus->shared[base_addr] = shared; 1728 } else { 1729 ret = -EINVAL; 1730 if (priv_size && priv_size != shared->priv_size) 1731 goto err_unlock; 1732 refcount_inc(&shared->refcnt); 1733 } 1734 mutex_unlock(&bus->shared_lock); 1735 1736 phydev->shared = shared; 1737 1738 return 0; 1739 1740 err_free: 1741 kfree(shared); 1742 err_unlock: 1743 mutex_unlock(&bus->shared_lock); 1744 return ret; 1745 } 1746 EXPORT_SYMBOL_GPL(phy_package_join); 1747 1748 /** 1749 * of_phy_package_join - join a common PHY group in PHY package 1750 * @phydev: target phy_device struct 1751 * @priv_size: if non-zero allocate this amount of bytes for private data 1752 * 1753 * This is a variant of phy_package_join for PHY package defined in DT. 1754 * 1755 * The parent node of the @phydev is checked as a valid PHY package node 1756 * structure (by matching the node name "ethernet-phy-package") and the 1757 * base_addr for the PHY package is passed to phy_package_join. 1758 * 1759 * With this configuration the shared struct will also have the np value 1760 * filled to use additional DT defined properties in PHY specific 1761 * probe_once and config_init_once PHY package OPs. 1762 * 1763 * Returns < 0 on error, 0 on success. Esp. calling phy_package_join() 1764 * with the same cookie but a different priv_size is an error. Or a parent 1765 * node is not detected or is not valid or doesn't match the expected node 1766 * name for PHY package. 1767 */ 1768 int of_phy_package_join(struct phy_device *phydev, size_t priv_size) 1769 { 1770 struct device_node *node = phydev->mdio.dev.of_node; 1771 struct device_node *package_node; 1772 u32 base_addr; 1773 int ret; 1774 1775 if (!node) 1776 return -EINVAL; 1777 1778 package_node = of_get_parent(node); 1779 if (!package_node) 1780 return -EINVAL; 1781 1782 if (!of_node_name_eq(package_node, "ethernet-phy-package")) { 1783 ret = -EINVAL; 1784 goto exit; 1785 } 1786 1787 if (of_property_read_u32(package_node, "reg", &base_addr)) { 1788 ret = -EINVAL; 1789 goto exit; 1790 } 1791 1792 ret = phy_package_join(phydev, base_addr, priv_size); 1793 if (ret) 1794 goto exit; 1795 1796 phydev->shared->np = package_node; 1797 1798 return 0; 1799 exit: 1800 of_node_put(package_node); 1801 return ret; 1802 } 1803 EXPORT_SYMBOL_GPL(of_phy_package_join); 1804 1805 /** 1806 * phy_package_leave - leave a common PHY group 1807 * @phydev: target phy_device struct 1808 * 1809 * This leaves a PHY group created by phy_package_join(). If this phydev 1810 * was the last user of the shared data between the group, this data is 1811 * freed. Resets the phydev->shared pointer to NULL. 1812 */ 1813 void phy_package_leave(struct phy_device *phydev) 1814 { 1815 struct phy_package_shared *shared = phydev->shared; 1816 struct mii_bus *bus = phydev->mdio.bus; 1817 1818 if (!shared) 1819 return; 1820 1821 /* Decrease the node refcount on leave if present */ 1822 if (shared->np) 1823 of_node_put(shared->np); 1824 1825 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1826 bus->shared[shared->base_addr] = NULL; 1827 mutex_unlock(&bus->shared_lock); 1828 kfree(shared->priv); 1829 kfree(shared); 1830 } 1831 1832 phydev->shared = NULL; 1833 } 1834 EXPORT_SYMBOL_GPL(phy_package_leave); 1835 1836 static void devm_phy_package_leave(struct device *dev, void *res) 1837 { 1838 phy_package_leave(*(struct phy_device **)res); 1839 } 1840 1841 /** 1842 * devm_phy_package_join - resource managed phy_package_join() 1843 * @dev: device that is registering this PHY package 1844 * @phydev: target phy_device struct 1845 * @base_addr: cookie and base PHY address of PHY package for offset 1846 * calculation of global register access 1847 * @priv_size: if non-zero allocate this amount of bytes for private data 1848 * 1849 * Managed phy_package_join(). Shared storage fetched by this function, 1850 * phy_package_leave() is automatically called on driver detach. See 1851 * phy_package_join() for more information. 1852 */ 1853 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1854 int base_addr, size_t priv_size) 1855 { 1856 struct phy_device **ptr; 1857 int ret; 1858 1859 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1860 GFP_KERNEL); 1861 if (!ptr) 1862 return -ENOMEM; 1863 1864 ret = phy_package_join(phydev, base_addr, priv_size); 1865 1866 if (!ret) { 1867 *ptr = phydev; 1868 devres_add(dev, ptr); 1869 } else { 1870 devres_free(ptr); 1871 } 1872 1873 return ret; 1874 } 1875 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1876 1877 /** 1878 * devm_of_phy_package_join - resource managed of_phy_package_join() 1879 * @dev: device that is registering this PHY package 1880 * @phydev: target phy_device struct 1881 * @priv_size: if non-zero allocate this amount of bytes for private data 1882 * 1883 * Managed of_phy_package_join(). Shared storage fetched by this function, 1884 * phy_package_leave() is automatically called on driver detach. See 1885 * of_phy_package_join() for more information. 1886 */ 1887 int devm_of_phy_package_join(struct device *dev, struct phy_device *phydev, 1888 size_t priv_size) 1889 { 1890 struct phy_device **ptr; 1891 int ret; 1892 1893 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1894 GFP_KERNEL); 1895 if (!ptr) 1896 return -ENOMEM; 1897 1898 ret = of_phy_package_join(phydev, priv_size); 1899 1900 if (!ret) { 1901 *ptr = phydev; 1902 devres_add(dev, ptr); 1903 } else { 1904 devres_free(ptr); 1905 } 1906 1907 return ret; 1908 } 1909 EXPORT_SYMBOL_GPL(devm_of_phy_package_join); 1910 1911 /** 1912 * phy_detach - detach a PHY device from its network device 1913 * @phydev: target phy_device struct 1914 * 1915 * This detaches the phy device from its network device and the phy 1916 * driver, and drops the reference count taken in phy_attach_direct(). 1917 */ 1918 void phy_detach(struct phy_device *phydev) 1919 { 1920 struct net_device *dev = phydev->attached_dev; 1921 struct module *ndev_owner = NULL; 1922 struct mii_bus *bus; 1923 1924 if (phydev->devlink) 1925 device_link_del(phydev->devlink); 1926 1927 if (phydev->sysfs_links) { 1928 if (dev) 1929 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1930 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1931 } 1932 1933 if (!phydev->attached_dev) 1934 sysfs_remove_file(&phydev->mdio.dev.kobj, 1935 &dev_attr_phy_standalone.attr); 1936 1937 phy_suspend(phydev); 1938 if (dev) { 1939 phydev->attached_dev->phydev = NULL; 1940 phydev->attached_dev = NULL; 1941 } 1942 phydev->phylink = NULL; 1943 1944 if (!phydev->is_on_sfp_module) 1945 phy_led_triggers_unregister(phydev); 1946 1947 if (phydev->mdio.dev.driver) 1948 module_put(phydev->mdio.dev.driver->owner); 1949 1950 /* If the device had no specific driver before (i.e. - it 1951 * was using the generic driver), we unbind the device 1952 * from the generic driver so that there's a chance a 1953 * real driver could be loaded 1954 */ 1955 if (phy_driver_is_genphy(phydev) || 1956 phy_driver_is_genphy_10g(phydev)) 1957 device_release_driver(&phydev->mdio.dev); 1958 1959 /* Assert the reset signal */ 1960 phy_device_reset(phydev, 1); 1961 1962 /* 1963 * The phydev might go away on the put_device() below, so avoid 1964 * a use-after-free bug by reading the underlying bus first. 1965 */ 1966 bus = phydev->mdio.bus; 1967 1968 put_device(&phydev->mdio.dev); 1969 if (dev) 1970 ndev_owner = dev->dev.parent->driver->owner; 1971 if (ndev_owner != bus->owner) 1972 module_put(bus->owner); 1973 } 1974 EXPORT_SYMBOL(phy_detach); 1975 1976 int phy_suspend(struct phy_device *phydev) 1977 { 1978 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1979 struct net_device *netdev = phydev->attached_dev; 1980 const struct phy_driver *phydrv = phydev->drv; 1981 int ret; 1982 1983 if (phydev->suspended || !phydrv) 1984 return 0; 1985 1986 phy_ethtool_get_wol(phydev, &wol); 1987 phydev->wol_enabled = wol.wolopts || 1988 (netdev && netdev->ethtool->wol_enabled); 1989 /* If the device has WOL enabled, we cannot suspend the PHY */ 1990 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 1991 return -EBUSY; 1992 1993 if (!phydrv->suspend) 1994 return 0; 1995 1996 ret = phydrv->suspend(phydev); 1997 if (!ret) 1998 phydev->suspended = true; 1999 2000 return ret; 2001 } 2002 EXPORT_SYMBOL(phy_suspend); 2003 2004 int __phy_resume(struct phy_device *phydev) 2005 { 2006 const struct phy_driver *phydrv = phydev->drv; 2007 int ret; 2008 2009 lockdep_assert_held(&phydev->lock); 2010 2011 if (!phydrv || !phydrv->resume) 2012 return 0; 2013 2014 ret = phydrv->resume(phydev); 2015 if (!ret) 2016 phydev->suspended = false; 2017 2018 return ret; 2019 } 2020 EXPORT_SYMBOL(__phy_resume); 2021 2022 int phy_resume(struct phy_device *phydev) 2023 { 2024 int ret; 2025 2026 mutex_lock(&phydev->lock); 2027 ret = __phy_resume(phydev); 2028 mutex_unlock(&phydev->lock); 2029 2030 return ret; 2031 } 2032 EXPORT_SYMBOL(phy_resume); 2033 2034 int phy_loopback(struct phy_device *phydev, bool enable) 2035 { 2036 int ret = 0; 2037 2038 if (!phydev->drv) 2039 return -EIO; 2040 2041 mutex_lock(&phydev->lock); 2042 2043 if (enable && phydev->loopback_enabled) { 2044 ret = -EBUSY; 2045 goto out; 2046 } 2047 2048 if (!enable && !phydev->loopback_enabled) { 2049 ret = -EINVAL; 2050 goto out; 2051 } 2052 2053 if (phydev->drv->set_loopback) 2054 ret = phydev->drv->set_loopback(phydev, enable); 2055 else 2056 ret = genphy_loopback(phydev, enable); 2057 2058 if (ret) 2059 goto out; 2060 2061 phydev->loopback_enabled = enable; 2062 2063 out: 2064 mutex_unlock(&phydev->lock); 2065 return ret; 2066 } 2067 EXPORT_SYMBOL(phy_loopback); 2068 2069 /** 2070 * phy_reset_after_clk_enable - perform a PHY reset if needed 2071 * @phydev: target phy_device struct 2072 * 2073 * Description: Some PHYs are known to need a reset after their refclk was 2074 * enabled. This function evaluates the flags and perform the reset if it's 2075 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 2076 * was reset. 2077 */ 2078 int phy_reset_after_clk_enable(struct phy_device *phydev) 2079 { 2080 if (!phydev || !phydev->drv) 2081 return -ENODEV; 2082 2083 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 2084 phy_device_reset(phydev, 1); 2085 phy_device_reset(phydev, 0); 2086 return 1; 2087 } 2088 2089 return 0; 2090 } 2091 EXPORT_SYMBOL(phy_reset_after_clk_enable); 2092 2093 /* Generic PHY support and helper functions */ 2094 2095 /** 2096 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 2097 * @phydev: target phy_device struct 2098 * 2099 * Description: Writes MII_ADVERTISE with the appropriate values, 2100 * after sanitizing the values to make sure we only advertise 2101 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2102 * hasn't changed, and > 0 if it has changed. 2103 */ 2104 static int genphy_config_advert(struct phy_device *phydev) 2105 { 2106 int err, bmsr, changed = 0; 2107 u32 adv; 2108 2109 /* Only allow advertising what this PHY supports */ 2110 linkmode_and(phydev->advertising, phydev->advertising, 2111 phydev->supported); 2112 2113 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 2114 2115 /* Setup standard advertisement */ 2116 err = phy_modify_changed(phydev, MII_ADVERTISE, 2117 ADVERTISE_ALL | ADVERTISE_100BASE4 | 2118 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 2119 adv); 2120 if (err < 0) 2121 return err; 2122 if (err > 0) 2123 changed = 1; 2124 2125 bmsr = phy_read(phydev, MII_BMSR); 2126 if (bmsr < 0) 2127 return bmsr; 2128 2129 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2130 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2131 * logical 1. 2132 */ 2133 if (!(bmsr & BMSR_ESTATEN)) 2134 return changed; 2135 2136 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2137 2138 err = phy_modify_changed(phydev, MII_CTRL1000, 2139 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2140 adv); 2141 if (err < 0) 2142 return err; 2143 if (err > 0) 2144 changed = 1; 2145 2146 return changed; 2147 } 2148 2149 /** 2150 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2151 * @phydev: target phy_device struct 2152 * 2153 * Description: Writes MII_ADVERTISE with the appropriate values, 2154 * after sanitizing the values to make sure we only advertise 2155 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2156 * hasn't changed, and > 0 if it has changed. This function is intended 2157 * for Clause 37 1000Base-X mode. 2158 */ 2159 static int genphy_c37_config_advert(struct phy_device *phydev) 2160 { 2161 u16 adv = 0; 2162 2163 /* Only allow advertising what this PHY supports */ 2164 linkmode_and(phydev->advertising, phydev->advertising, 2165 phydev->supported); 2166 2167 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2168 phydev->advertising)) 2169 adv |= ADVERTISE_1000XFULL; 2170 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2171 phydev->advertising)) 2172 adv |= ADVERTISE_1000XPAUSE; 2173 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2174 phydev->advertising)) 2175 adv |= ADVERTISE_1000XPSE_ASYM; 2176 2177 return phy_modify_changed(phydev, MII_ADVERTISE, 2178 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2179 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2180 adv); 2181 } 2182 2183 /** 2184 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2185 * @phydev: target phy_device struct 2186 * 2187 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2188 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2189 * changed, and 1 if it has changed. 2190 */ 2191 int genphy_config_eee_advert(struct phy_device *phydev) 2192 { 2193 int err; 2194 2195 /* Nothing to disable */ 2196 if (!phydev->eee_broken_modes) 2197 return 0; 2198 2199 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2200 phydev->eee_broken_modes, 0); 2201 /* If the call failed, we assume that EEE is not supported */ 2202 return err < 0 ? 0 : err; 2203 } 2204 EXPORT_SYMBOL(genphy_config_eee_advert); 2205 2206 /** 2207 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2208 * @phydev: target phy_device struct 2209 * 2210 * Description: Configures MII_BMCR to force speed/duplex 2211 * to the values in phydev. Assumes that the values are valid. 2212 * Please see phy_sanitize_settings(). 2213 */ 2214 int genphy_setup_forced(struct phy_device *phydev) 2215 { 2216 u16 ctl; 2217 2218 phydev->pause = 0; 2219 phydev->asym_pause = 0; 2220 2221 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2222 2223 return phy_modify(phydev, MII_BMCR, 2224 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2225 } 2226 EXPORT_SYMBOL(genphy_setup_forced); 2227 2228 static int genphy_setup_master_slave(struct phy_device *phydev) 2229 { 2230 u16 ctl = 0; 2231 2232 if (!phydev->is_gigabit_capable) 2233 return 0; 2234 2235 switch (phydev->master_slave_set) { 2236 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2237 ctl |= CTL1000_PREFER_MASTER; 2238 break; 2239 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2240 break; 2241 case MASTER_SLAVE_CFG_MASTER_FORCE: 2242 ctl |= CTL1000_AS_MASTER; 2243 fallthrough; 2244 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2245 ctl |= CTL1000_ENABLE_MASTER; 2246 break; 2247 case MASTER_SLAVE_CFG_UNKNOWN: 2248 case MASTER_SLAVE_CFG_UNSUPPORTED: 2249 return 0; 2250 default: 2251 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2252 return -EOPNOTSUPP; 2253 } 2254 2255 return phy_modify_changed(phydev, MII_CTRL1000, 2256 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2257 CTL1000_PREFER_MASTER), ctl); 2258 } 2259 2260 int genphy_read_master_slave(struct phy_device *phydev) 2261 { 2262 int cfg, state; 2263 int val; 2264 2265 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2266 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2267 2268 val = phy_read(phydev, MII_CTRL1000); 2269 if (val < 0) 2270 return val; 2271 2272 if (val & CTL1000_ENABLE_MASTER) { 2273 if (val & CTL1000_AS_MASTER) 2274 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2275 else 2276 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2277 } else { 2278 if (val & CTL1000_PREFER_MASTER) 2279 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2280 else 2281 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2282 } 2283 2284 val = phy_read(phydev, MII_STAT1000); 2285 if (val < 0) 2286 return val; 2287 2288 if (val & LPA_1000MSFAIL) { 2289 state = MASTER_SLAVE_STATE_ERR; 2290 } else if (phydev->link) { 2291 /* this bits are valid only for active link */ 2292 if (val & LPA_1000MSRES) 2293 state = MASTER_SLAVE_STATE_MASTER; 2294 else 2295 state = MASTER_SLAVE_STATE_SLAVE; 2296 } else { 2297 state = MASTER_SLAVE_STATE_UNKNOWN; 2298 } 2299 2300 phydev->master_slave_get = cfg; 2301 phydev->master_slave_state = state; 2302 2303 return 0; 2304 } 2305 EXPORT_SYMBOL(genphy_read_master_slave); 2306 2307 /** 2308 * genphy_restart_aneg - Enable and Restart Autonegotiation 2309 * @phydev: target phy_device struct 2310 */ 2311 int genphy_restart_aneg(struct phy_device *phydev) 2312 { 2313 /* Don't isolate the PHY if we're negotiating */ 2314 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2315 BMCR_ANENABLE | BMCR_ANRESTART); 2316 } 2317 EXPORT_SYMBOL(genphy_restart_aneg); 2318 2319 /** 2320 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2321 * @phydev: target phy_device struct 2322 * @restart: whether aneg restart is requested 2323 * 2324 * Check, and restart auto-negotiation if needed. 2325 */ 2326 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2327 { 2328 int ret; 2329 2330 if (!restart) { 2331 /* Advertisement hasn't changed, but maybe aneg was never on to 2332 * begin with? Or maybe phy was isolated? 2333 */ 2334 ret = phy_read(phydev, MII_BMCR); 2335 if (ret < 0) 2336 return ret; 2337 2338 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2339 restart = true; 2340 } 2341 2342 if (restart) 2343 return genphy_restart_aneg(phydev); 2344 2345 return 0; 2346 } 2347 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2348 2349 /** 2350 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2351 * @phydev: target phy_device struct 2352 * @changed: whether autoneg is requested 2353 * 2354 * Description: If auto-negotiation is enabled, we configure the 2355 * advertising, and then restart auto-negotiation. If it is not 2356 * enabled, then we write the BMCR. 2357 */ 2358 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2359 { 2360 int err; 2361 2362 err = genphy_c45_an_config_eee_aneg(phydev); 2363 if (err < 0) 2364 return err; 2365 else if (err) 2366 changed = true; 2367 2368 err = genphy_setup_master_slave(phydev); 2369 if (err < 0) 2370 return err; 2371 else if (err) 2372 changed = true; 2373 2374 if (AUTONEG_ENABLE != phydev->autoneg) 2375 return genphy_setup_forced(phydev); 2376 2377 err = genphy_config_advert(phydev); 2378 if (err < 0) /* error */ 2379 return err; 2380 else if (err) 2381 changed = true; 2382 2383 return genphy_check_and_restart_aneg(phydev, changed); 2384 } 2385 EXPORT_SYMBOL(__genphy_config_aneg); 2386 2387 /** 2388 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2389 * @phydev: target phy_device struct 2390 * 2391 * Description: If auto-negotiation is enabled, we configure the 2392 * advertising, and then restart auto-negotiation. If it is not 2393 * enabled, then we write the BMCR. This function is intended 2394 * for use with Clause 37 1000Base-X mode. 2395 */ 2396 int genphy_c37_config_aneg(struct phy_device *phydev) 2397 { 2398 int err, changed; 2399 2400 if (phydev->autoneg != AUTONEG_ENABLE) 2401 return genphy_setup_forced(phydev); 2402 2403 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2404 BMCR_SPEED1000); 2405 if (err) 2406 return err; 2407 2408 changed = genphy_c37_config_advert(phydev); 2409 if (changed < 0) /* error */ 2410 return changed; 2411 2412 if (!changed) { 2413 /* Advertisement hasn't changed, but maybe aneg was never on to 2414 * begin with? Or maybe phy was isolated? 2415 */ 2416 int ctl = phy_read(phydev, MII_BMCR); 2417 2418 if (ctl < 0) 2419 return ctl; 2420 2421 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2422 changed = 1; /* do restart aneg */ 2423 } 2424 2425 /* Only restart aneg if we are advertising something different 2426 * than we were before. 2427 */ 2428 if (changed > 0) 2429 return genphy_restart_aneg(phydev); 2430 2431 return 0; 2432 } 2433 EXPORT_SYMBOL(genphy_c37_config_aneg); 2434 2435 /** 2436 * genphy_aneg_done - return auto-negotiation status 2437 * @phydev: target phy_device struct 2438 * 2439 * Description: Reads the status register and returns 0 either if 2440 * auto-negotiation is incomplete, or if there was an error. 2441 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2442 */ 2443 int genphy_aneg_done(struct phy_device *phydev) 2444 { 2445 int retval = phy_read(phydev, MII_BMSR); 2446 2447 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2448 } 2449 EXPORT_SYMBOL(genphy_aneg_done); 2450 2451 /** 2452 * genphy_update_link - update link status in @phydev 2453 * @phydev: target phy_device struct 2454 * 2455 * Description: Update the value in phydev->link to reflect the 2456 * current link value. In order to do this, we need to read 2457 * the status register twice, keeping the second value. 2458 */ 2459 int genphy_update_link(struct phy_device *phydev) 2460 { 2461 int status = 0, bmcr; 2462 2463 bmcr = phy_read(phydev, MII_BMCR); 2464 if (bmcr < 0) 2465 return bmcr; 2466 2467 /* Autoneg is being started, therefore disregard BMSR value and 2468 * report link as down. 2469 */ 2470 if (bmcr & BMCR_ANRESTART) 2471 goto done; 2472 2473 /* The link state is latched low so that momentary link 2474 * drops can be detected. Do not double-read the status 2475 * in polling mode to detect such short link drops except 2476 * the link was already down. 2477 */ 2478 if (!phy_polling_mode(phydev) || !phydev->link) { 2479 status = phy_read(phydev, MII_BMSR); 2480 if (status < 0) 2481 return status; 2482 else if (status & BMSR_LSTATUS) 2483 goto done; 2484 } 2485 2486 /* Read link and autonegotiation status */ 2487 status = phy_read(phydev, MII_BMSR); 2488 if (status < 0) 2489 return status; 2490 done: 2491 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2492 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2493 2494 /* Consider the case that autoneg was started and "aneg complete" 2495 * bit has been reset, but "link up" bit not yet. 2496 */ 2497 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2498 phydev->link = 0; 2499 2500 return 0; 2501 } 2502 EXPORT_SYMBOL(genphy_update_link); 2503 2504 int genphy_read_lpa(struct phy_device *phydev) 2505 { 2506 int lpa, lpagb; 2507 2508 if (phydev->autoneg == AUTONEG_ENABLE) { 2509 if (!phydev->autoneg_complete) { 2510 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2511 0); 2512 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2513 return 0; 2514 } 2515 2516 if (phydev->is_gigabit_capable) { 2517 lpagb = phy_read(phydev, MII_STAT1000); 2518 if (lpagb < 0) 2519 return lpagb; 2520 2521 if (lpagb & LPA_1000MSFAIL) { 2522 int adv = phy_read(phydev, MII_CTRL1000); 2523 2524 if (adv < 0) 2525 return adv; 2526 2527 if (adv & CTL1000_ENABLE_MASTER) 2528 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2529 else 2530 phydev_err(phydev, "Master/Slave resolution failed\n"); 2531 return -ENOLINK; 2532 } 2533 2534 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2535 lpagb); 2536 } 2537 2538 lpa = phy_read(phydev, MII_LPA); 2539 if (lpa < 0) 2540 return lpa; 2541 2542 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2543 } else { 2544 linkmode_zero(phydev->lp_advertising); 2545 } 2546 2547 return 0; 2548 } 2549 EXPORT_SYMBOL(genphy_read_lpa); 2550 2551 /** 2552 * genphy_read_status_fixed - read the link parameters for !aneg mode 2553 * @phydev: target phy_device struct 2554 * 2555 * Read the current duplex and speed state for a PHY operating with 2556 * autonegotiation disabled. 2557 */ 2558 int genphy_read_status_fixed(struct phy_device *phydev) 2559 { 2560 int bmcr = phy_read(phydev, MII_BMCR); 2561 2562 if (bmcr < 0) 2563 return bmcr; 2564 2565 if (bmcr & BMCR_FULLDPLX) 2566 phydev->duplex = DUPLEX_FULL; 2567 else 2568 phydev->duplex = DUPLEX_HALF; 2569 2570 if (bmcr & BMCR_SPEED1000) 2571 phydev->speed = SPEED_1000; 2572 else if (bmcr & BMCR_SPEED100) 2573 phydev->speed = SPEED_100; 2574 else 2575 phydev->speed = SPEED_10; 2576 2577 return 0; 2578 } 2579 EXPORT_SYMBOL(genphy_read_status_fixed); 2580 2581 /** 2582 * genphy_read_status - check the link status and update current link state 2583 * @phydev: target phy_device struct 2584 * 2585 * Description: Check the link, then figure out the current state 2586 * by comparing what we advertise with what the link partner 2587 * advertises. Start by checking the gigabit possibilities, 2588 * then move on to 10/100. 2589 */ 2590 int genphy_read_status(struct phy_device *phydev) 2591 { 2592 int err, old_link = phydev->link; 2593 2594 /* Update the link, but return if there was an error */ 2595 err = genphy_update_link(phydev); 2596 if (err) 2597 return err; 2598 2599 /* why bother the PHY if nothing can have changed */ 2600 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2601 return 0; 2602 2603 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2604 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2605 phydev->speed = SPEED_UNKNOWN; 2606 phydev->duplex = DUPLEX_UNKNOWN; 2607 phydev->pause = 0; 2608 phydev->asym_pause = 0; 2609 2610 if (phydev->is_gigabit_capable) { 2611 err = genphy_read_master_slave(phydev); 2612 if (err < 0) 2613 return err; 2614 } 2615 2616 err = genphy_read_lpa(phydev); 2617 if (err < 0) 2618 return err; 2619 2620 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2621 phy_resolve_aneg_linkmode(phydev); 2622 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2623 err = genphy_read_status_fixed(phydev); 2624 if (err < 0) 2625 return err; 2626 } 2627 2628 return 0; 2629 } 2630 EXPORT_SYMBOL(genphy_read_status); 2631 2632 /** 2633 * genphy_c37_read_status - check the link status and update current link state 2634 * @phydev: target phy_device struct 2635 * @changed: pointer where to store if link changed 2636 * 2637 * Description: Check the link, then figure out the current state 2638 * by comparing what we advertise with what the link partner 2639 * advertises. This function is for Clause 37 1000Base-X mode. 2640 * 2641 * If link has changed, @changed is set to true, false otherwise. 2642 */ 2643 int genphy_c37_read_status(struct phy_device *phydev, bool *changed) 2644 { 2645 int lpa, err, old_link = phydev->link; 2646 2647 /* Update the link, but return if there was an error */ 2648 err = genphy_update_link(phydev); 2649 if (err) 2650 return err; 2651 2652 /* why bother the PHY if nothing can have changed */ 2653 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) { 2654 *changed = false; 2655 return 0; 2656 } 2657 2658 /* Signal link has changed */ 2659 *changed = true; 2660 phydev->duplex = DUPLEX_UNKNOWN; 2661 phydev->pause = 0; 2662 phydev->asym_pause = 0; 2663 2664 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2665 lpa = phy_read(phydev, MII_LPA); 2666 if (lpa < 0) 2667 return lpa; 2668 2669 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2670 phydev->lp_advertising, lpa & LPA_LPACK); 2671 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2672 phydev->lp_advertising, lpa & LPA_1000XFULL); 2673 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2674 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2675 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2676 phydev->lp_advertising, 2677 lpa & LPA_1000XPAUSE_ASYM); 2678 2679 phy_resolve_aneg_linkmode(phydev); 2680 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2681 int bmcr = phy_read(phydev, MII_BMCR); 2682 2683 if (bmcr < 0) 2684 return bmcr; 2685 2686 if (bmcr & BMCR_FULLDPLX) 2687 phydev->duplex = DUPLEX_FULL; 2688 else 2689 phydev->duplex = DUPLEX_HALF; 2690 } 2691 2692 return 0; 2693 } 2694 EXPORT_SYMBOL(genphy_c37_read_status); 2695 2696 /** 2697 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2698 * @phydev: target phy_device struct 2699 * 2700 * Description: Perform a software PHY reset using the standard 2701 * BMCR_RESET bit and poll for the reset bit to be cleared. 2702 * 2703 * Returns: 0 on success, < 0 on failure 2704 */ 2705 int genphy_soft_reset(struct phy_device *phydev) 2706 { 2707 u16 res = BMCR_RESET; 2708 int ret; 2709 2710 if (phydev->autoneg == AUTONEG_ENABLE) 2711 res |= BMCR_ANRESTART; 2712 2713 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2714 if (ret < 0) 2715 return ret; 2716 2717 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2718 * to their default value. Therefore the POWER DOWN bit is supposed to 2719 * be cleared after soft reset. 2720 */ 2721 phydev->suspended = 0; 2722 2723 ret = phy_poll_reset(phydev); 2724 if (ret) 2725 return ret; 2726 2727 /* BMCR may be reset to defaults */ 2728 if (phydev->autoneg == AUTONEG_DISABLE) 2729 ret = genphy_setup_forced(phydev); 2730 2731 return ret; 2732 } 2733 EXPORT_SYMBOL(genphy_soft_reset); 2734 2735 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2736 { 2737 /* It seems there are cases where the interrupts are handled by another 2738 * entity (ie an IRQ controller embedded inside the PHY) and do not 2739 * need any other interraction from phylib. In this case, just trigger 2740 * the state machine directly. 2741 */ 2742 phy_trigger_machine(phydev); 2743 2744 return 0; 2745 } 2746 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2747 2748 /** 2749 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2750 * @phydev: target phy_device struct 2751 * 2752 * Description: Reads the PHY's abilities and populates 2753 * phydev->supported accordingly. 2754 * 2755 * Returns: 0 on success, < 0 on failure 2756 */ 2757 int genphy_read_abilities(struct phy_device *phydev) 2758 { 2759 int val; 2760 2761 linkmode_set_bit_array(phy_basic_ports_array, 2762 ARRAY_SIZE(phy_basic_ports_array), 2763 phydev->supported); 2764 2765 val = phy_read(phydev, MII_BMSR); 2766 if (val < 0) 2767 return val; 2768 2769 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2770 val & BMSR_ANEGCAPABLE); 2771 2772 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2773 val & BMSR_100FULL); 2774 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2775 val & BMSR_100HALF); 2776 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2777 val & BMSR_10FULL); 2778 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2779 val & BMSR_10HALF); 2780 2781 if (val & BMSR_ESTATEN) { 2782 val = phy_read(phydev, MII_ESTATUS); 2783 if (val < 0) 2784 return val; 2785 2786 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2787 phydev->supported, val & ESTATUS_1000_TFULL); 2788 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2789 phydev->supported, val & ESTATUS_1000_THALF); 2790 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2791 phydev->supported, val & ESTATUS_1000_XFULL); 2792 } 2793 2794 /* This is optional functionality. If not supported, we may get an error 2795 * which should be ignored. 2796 */ 2797 genphy_c45_read_eee_abilities(phydev); 2798 2799 return 0; 2800 } 2801 EXPORT_SYMBOL(genphy_read_abilities); 2802 2803 /* This is used for the phy device which doesn't support the MMD extended 2804 * register access, but it does have side effect when we are trying to access 2805 * the MMD register via indirect method. 2806 */ 2807 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2808 { 2809 return -EOPNOTSUPP; 2810 } 2811 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2812 2813 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2814 u16 regnum, u16 val) 2815 { 2816 return -EOPNOTSUPP; 2817 } 2818 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2819 2820 int genphy_suspend(struct phy_device *phydev) 2821 { 2822 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2823 } 2824 EXPORT_SYMBOL(genphy_suspend); 2825 2826 int genphy_resume(struct phy_device *phydev) 2827 { 2828 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2829 } 2830 EXPORT_SYMBOL(genphy_resume); 2831 2832 int genphy_loopback(struct phy_device *phydev, bool enable) 2833 { 2834 if (enable) { 2835 u16 ctl = BMCR_LOOPBACK; 2836 int ret, val; 2837 2838 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2839 2840 phy_modify(phydev, MII_BMCR, ~0, ctl); 2841 2842 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2843 val & BMSR_LSTATUS, 2844 5000, 500000, true); 2845 if (ret) 2846 return ret; 2847 } else { 2848 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2849 2850 phy_config_aneg(phydev); 2851 } 2852 2853 return 0; 2854 } 2855 EXPORT_SYMBOL(genphy_loopback); 2856 2857 /** 2858 * phy_remove_link_mode - Remove a supported link mode 2859 * @phydev: phy_device structure to remove link mode from 2860 * @link_mode: Link mode to be removed 2861 * 2862 * Description: Some MACs don't support all link modes which the PHY 2863 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2864 * to remove a link mode. 2865 */ 2866 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2867 { 2868 linkmode_clear_bit(link_mode, phydev->supported); 2869 phy_advertise_supported(phydev); 2870 } 2871 EXPORT_SYMBOL(phy_remove_link_mode); 2872 2873 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2874 { 2875 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2876 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2877 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2878 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2879 } 2880 2881 /** 2882 * phy_advertise_supported - Advertise all supported modes 2883 * @phydev: target phy_device struct 2884 * 2885 * Description: Called to advertise all supported modes, doesn't touch 2886 * pause mode advertising. 2887 */ 2888 void phy_advertise_supported(struct phy_device *phydev) 2889 { 2890 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2891 2892 linkmode_copy(new, phydev->supported); 2893 phy_copy_pause_bits(new, phydev->advertising); 2894 linkmode_copy(phydev->advertising, new); 2895 } 2896 EXPORT_SYMBOL(phy_advertise_supported); 2897 2898 /** 2899 * phy_advertise_eee_all - Advertise all supported EEE modes 2900 * @phydev: target phy_device struct 2901 * 2902 * Description: Per default phylib preserves the EEE advertising at the time of 2903 * phy probing, which might be a subset of the supported EEE modes. Use this 2904 * function when all supported EEE modes should be advertised. This does not 2905 * trigger auto-negotiation, so must be called before phy_start()/ 2906 * phylink_start() which will start auto-negotiation. 2907 */ 2908 void phy_advertise_eee_all(struct phy_device *phydev) 2909 { 2910 linkmode_copy(phydev->advertising_eee, phydev->supported_eee); 2911 } 2912 EXPORT_SYMBOL_GPL(phy_advertise_eee_all); 2913 2914 /** 2915 * phy_support_eee - Set initial EEE policy configuration 2916 * @phydev: Target phy_device struct 2917 * 2918 * This function configures the initial policy for Energy Efficient Ethernet 2919 * (EEE) on the specified PHY device, influencing that EEE capabilities are 2920 * advertised before the link is established. It should be called during PHY 2921 * registration by the MAC driver and/or the PHY driver (for SmartEEE PHYs) 2922 * if MAC supports LPI or PHY is capable to compensate missing LPI functionality 2923 * of the MAC. 2924 * 2925 * The function sets default EEE policy parameters, including preparing the PHY 2926 * to advertise EEE capabilities based on hardware support. 2927 * 2928 * It also sets the expected configuration for Low Power Idle (LPI) in the MAC 2929 * driver. If the PHY framework determines that both local and remote 2930 * advertisements support EEE, and the negotiated link mode is compatible with 2931 * EEE, it will set enable_tx_lpi = true. The MAC driver is expected to act on 2932 * this setting by enabling the LPI timer if enable_tx_lpi is set. 2933 */ 2934 void phy_support_eee(struct phy_device *phydev) 2935 { 2936 linkmode_copy(phydev->advertising_eee, phydev->supported_eee); 2937 phydev->eee_cfg.tx_lpi_enabled = true; 2938 phydev->eee_cfg.eee_enabled = true; 2939 } 2940 EXPORT_SYMBOL(phy_support_eee); 2941 2942 /** 2943 * phy_support_sym_pause - Enable support of symmetrical pause 2944 * @phydev: target phy_device struct 2945 * 2946 * Description: Called by the MAC to indicate is supports symmetrical 2947 * Pause, but not asym pause. 2948 */ 2949 void phy_support_sym_pause(struct phy_device *phydev) 2950 { 2951 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2952 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2953 } 2954 EXPORT_SYMBOL(phy_support_sym_pause); 2955 2956 /** 2957 * phy_support_asym_pause - Enable support of asym pause 2958 * @phydev: target phy_device struct 2959 * 2960 * Description: Called by the MAC to indicate is supports Asym Pause. 2961 */ 2962 void phy_support_asym_pause(struct phy_device *phydev) 2963 { 2964 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2965 } 2966 EXPORT_SYMBOL(phy_support_asym_pause); 2967 2968 /** 2969 * phy_set_sym_pause - Configure symmetric Pause 2970 * @phydev: target phy_device struct 2971 * @rx: Receiver Pause is supported 2972 * @tx: Transmit Pause is supported 2973 * @autoneg: Auto neg should be used 2974 * 2975 * Description: Configure advertised Pause support depending on if 2976 * receiver pause and pause auto neg is supported. Generally called 2977 * from the set_pauseparam .ndo. 2978 */ 2979 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2980 bool autoneg) 2981 { 2982 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2983 2984 if (rx && tx && autoneg) 2985 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2986 phydev->supported); 2987 2988 linkmode_copy(phydev->advertising, phydev->supported); 2989 } 2990 EXPORT_SYMBOL(phy_set_sym_pause); 2991 2992 /** 2993 * phy_set_asym_pause - Configure Pause and Asym Pause 2994 * @phydev: target phy_device struct 2995 * @rx: Receiver Pause is supported 2996 * @tx: Transmit Pause is supported 2997 * 2998 * Description: Configure advertised Pause support depending on if 2999 * transmit and receiver pause is supported. If there has been a 3000 * change in adverting, trigger a new autoneg. Generally called from 3001 * the set_pauseparam .ndo. 3002 */ 3003 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 3004 { 3005 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 3006 3007 linkmode_copy(oldadv, phydev->advertising); 3008 linkmode_set_pause(phydev->advertising, tx, rx); 3009 3010 if (!linkmode_equal(oldadv, phydev->advertising) && 3011 phydev->autoneg) 3012 phy_start_aneg(phydev); 3013 } 3014 EXPORT_SYMBOL(phy_set_asym_pause); 3015 3016 /** 3017 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 3018 * @phydev: phy_device struct 3019 * @pp: requested pause configuration 3020 * 3021 * Description: Test if the PHY/MAC combination supports the Pause 3022 * configuration the user is requesting. Returns True if it is 3023 * supported, false otherwise. 3024 */ 3025 bool phy_validate_pause(struct phy_device *phydev, 3026 struct ethtool_pauseparam *pp) 3027 { 3028 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3029 phydev->supported) && pp->rx_pause) 3030 return false; 3031 3032 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3033 phydev->supported) && 3034 pp->rx_pause != pp->tx_pause) 3035 return false; 3036 3037 return true; 3038 } 3039 EXPORT_SYMBOL(phy_validate_pause); 3040 3041 /** 3042 * phy_get_pause - resolve negotiated pause modes 3043 * @phydev: phy_device struct 3044 * @tx_pause: pointer to bool to indicate whether transmit pause should be 3045 * enabled. 3046 * @rx_pause: pointer to bool to indicate whether receive pause should be 3047 * enabled. 3048 * 3049 * Resolve and return the flow control modes according to the negotiation 3050 * result. This includes checking that we are operating in full duplex mode. 3051 * See linkmode_resolve_pause() for further details. 3052 */ 3053 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 3054 { 3055 if (phydev->duplex != DUPLEX_FULL) { 3056 *tx_pause = false; 3057 *rx_pause = false; 3058 return; 3059 } 3060 3061 return linkmode_resolve_pause(phydev->advertising, 3062 phydev->lp_advertising, 3063 tx_pause, rx_pause); 3064 } 3065 EXPORT_SYMBOL(phy_get_pause); 3066 3067 #if IS_ENABLED(CONFIG_OF_MDIO) 3068 static int phy_get_int_delay_property(struct device *dev, const char *name) 3069 { 3070 s32 int_delay; 3071 int ret; 3072 3073 ret = device_property_read_u32(dev, name, &int_delay); 3074 if (ret) 3075 return ret; 3076 3077 return int_delay; 3078 } 3079 #else 3080 static int phy_get_int_delay_property(struct device *dev, const char *name) 3081 { 3082 return -EINVAL; 3083 } 3084 #endif 3085 3086 /** 3087 * phy_get_internal_delay - returns the index of the internal delay 3088 * @phydev: phy_device struct 3089 * @dev: pointer to the devices device struct 3090 * @delay_values: array of delays the PHY supports 3091 * @size: the size of the delay array 3092 * @is_rx: boolean to indicate to get the rx internal delay 3093 * 3094 * Returns the index within the array of internal delay passed in. 3095 * If the device property is not present then the interface type is checked 3096 * if the interface defines use of internal delay then a 1 is returned otherwise 3097 * a 0 is returned. 3098 * The array must be in ascending order. If PHY does not have an ascending order 3099 * array then size = 0 and the value of the delay property is returned. 3100 * Return -EINVAL if the delay is invalid or cannot be found. 3101 */ 3102 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 3103 const int *delay_values, int size, bool is_rx) 3104 { 3105 s32 delay; 3106 int i; 3107 3108 if (is_rx) { 3109 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 3110 if (delay < 0 && size == 0) { 3111 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 3112 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 3113 return 1; 3114 else 3115 return 0; 3116 } 3117 3118 } else { 3119 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 3120 if (delay < 0 && size == 0) { 3121 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 3122 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 3123 return 1; 3124 else 3125 return 0; 3126 } 3127 } 3128 3129 if (delay < 0) 3130 return delay; 3131 3132 if (size == 0) 3133 return delay; 3134 3135 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 3136 phydev_err(phydev, "Delay %d is out of range\n", delay); 3137 return -EINVAL; 3138 } 3139 3140 if (delay == delay_values[0]) 3141 return 0; 3142 3143 for (i = 1; i < size; i++) { 3144 if (delay == delay_values[i]) 3145 return i; 3146 3147 /* Find an approximate index by looking up the table */ 3148 if (delay > delay_values[i - 1] && 3149 delay < delay_values[i]) { 3150 if (delay - delay_values[i - 1] < 3151 delay_values[i] - delay) 3152 return i - 1; 3153 else 3154 return i; 3155 } 3156 } 3157 3158 phydev_err(phydev, "error finding internal delay index for %d\n", 3159 delay); 3160 3161 return -EINVAL; 3162 } 3163 EXPORT_SYMBOL(phy_get_internal_delay); 3164 3165 static int phy_led_set_brightness(struct led_classdev *led_cdev, 3166 enum led_brightness value) 3167 { 3168 struct phy_led *phyled = to_phy_led(led_cdev); 3169 struct phy_device *phydev = phyled->phydev; 3170 int err; 3171 3172 mutex_lock(&phydev->lock); 3173 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3174 mutex_unlock(&phydev->lock); 3175 3176 return err; 3177 } 3178 3179 static int phy_led_blink_set(struct led_classdev *led_cdev, 3180 unsigned long *delay_on, 3181 unsigned long *delay_off) 3182 { 3183 struct phy_led *phyled = to_phy_led(led_cdev); 3184 struct phy_device *phydev = phyled->phydev; 3185 int err; 3186 3187 mutex_lock(&phydev->lock); 3188 err = phydev->drv->led_blink_set(phydev, phyled->index, 3189 delay_on, delay_off); 3190 mutex_unlock(&phydev->lock); 3191 3192 return err; 3193 } 3194 3195 static __maybe_unused struct device * 3196 phy_led_hw_control_get_device(struct led_classdev *led_cdev) 3197 { 3198 struct phy_led *phyled = to_phy_led(led_cdev); 3199 struct phy_device *phydev = phyled->phydev; 3200 3201 if (phydev->attached_dev) 3202 return &phydev->attached_dev->dev; 3203 return NULL; 3204 } 3205 3206 static int __maybe_unused 3207 phy_led_hw_control_get(struct led_classdev *led_cdev, 3208 unsigned long *rules) 3209 { 3210 struct phy_led *phyled = to_phy_led(led_cdev); 3211 struct phy_device *phydev = phyled->phydev; 3212 int err; 3213 3214 mutex_lock(&phydev->lock); 3215 err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules); 3216 mutex_unlock(&phydev->lock); 3217 3218 return err; 3219 } 3220 3221 static int __maybe_unused 3222 phy_led_hw_control_set(struct led_classdev *led_cdev, 3223 unsigned long rules) 3224 { 3225 struct phy_led *phyled = to_phy_led(led_cdev); 3226 struct phy_device *phydev = phyled->phydev; 3227 int err; 3228 3229 mutex_lock(&phydev->lock); 3230 err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules); 3231 mutex_unlock(&phydev->lock); 3232 3233 return err; 3234 } 3235 3236 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev, 3237 unsigned long rules) 3238 { 3239 struct phy_led *phyled = to_phy_led(led_cdev); 3240 struct phy_device *phydev = phyled->phydev; 3241 int err; 3242 3243 mutex_lock(&phydev->lock); 3244 err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules); 3245 mutex_unlock(&phydev->lock); 3246 3247 return err; 3248 } 3249 3250 static void phy_leds_unregister(struct phy_device *phydev) 3251 { 3252 struct phy_led *phyled; 3253 3254 list_for_each_entry(phyled, &phydev->leds, list) { 3255 led_classdev_unregister(&phyled->led_cdev); 3256 } 3257 } 3258 3259 static int of_phy_led(struct phy_device *phydev, 3260 struct device_node *led) 3261 { 3262 struct device *dev = &phydev->mdio.dev; 3263 struct led_init_data init_data = {}; 3264 struct led_classdev *cdev; 3265 unsigned long modes = 0; 3266 struct phy_led *phyled; 3267 u32 index; 3268 int err; 3269 3270 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3271 if (!phyled) 3272 return -ENOMEM; 3273 3274 cdev = &phyled->led_cdev; 3275 phyled->phydev = phydev; 3276 3277 err = of_property_read_u32(led, "reg", &index); 3278 if (err) 3279 return err; 3280 if (index > U8_MAX) 3281 return -EINVAL; 3282 3283 if (of_property_read_bool(led, "active-low")) 3284 set_bit(PHY_LED_ACTIVE_LOW, &modes); 3285 if (of_property_read_bool(led, "inactive-high-impedance")) 3286 set_bit(PHY_LED_INACTIVE_HIGH_IMPEDANCE, &modes); 3287 3288 if (modes) { 3289 /* Return error if asked to set polarity modes but not supported */ 3290 if (!phydev->drv->led_polarity_set) 3291 return -EINVAL; 3292 3293 err = phydev->drv->led_polarity_set(phydev, index, modes); 3294 if (err) 3295 return err; 3296 } 3297 3298 phyled->index = index; 3299 if (phydev->drv->led_brightness_set) 3300 cdev->brightness_set_blocking = phy_led_set_brightness; 3301 if (phydev->drv->led_blink_set) 3302 cdev->blink_set = phy_led_blink_set; 3303 3304 #ifdef CONFIG_LEDS_TRIGGERS 3305 if (phydev->drv->led_hw_is_supported && 3306 phydev->drv->led_hw_control_set && 3307 phydev->drv->led_hw_control_get) { 3308 cdev->hw_control_is_supported = phy_led_hw_is_supported; 3309 cdev->hw_control_set = phy_led_hw_control_set; 3310 cdev->hw_control_get = phy_led_hw_control_get; 3311 cdev->hw_control_trigger = "netdev"; 3312 } 3313 3314 cdev->hw_control_get_device = phy_led_hw_control_get_device; 3315 #endif 3316 cdev->max_brightness = 1; 3317 init_data.devicename = dev_name(&phydev->mdio.dev); 3318 init_data.fwnode = of_fwnode_handle(led); 3319 init_data.devname_mandatory = true; 3320 3321 err = led_classdev_register_ext(dev, cdev, &init_data); 3322 if (err) 3323 return err; 3324 3325 list_add(&phyled->list, &phydev->leds); 3326 3327 return 0; 3328 } 3329 3330 static int of_phy_leds(struct phy_device *phydev) 3331 { 3332 struct device_node *node = phydev->mdio.dev.of_node; 3333 struct device_node *leds, *led; 3334 int err; 3335 3336 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3337 return 0; 3338 3339 if (!node) 3340 return 0; 3341 3342 leds = of_get_child_by_name(node, "leds"); 3343 if (!leds) 3344 return 0; 3345 3346 for_each_available_child_of_node(leds, led) { 3347 err = of_phy_led(phydev, led); 3348 if (err) { 3349 of_node_put(led); 3350 phy_leds_unregister(phydev); 3351 return err; 3352 } 3353 } 3354 3355 return 0; 3356 } 3357 3358 /** 3359 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3360 * @fwnode: pointer to the mdio_device's fwnode 3361 * 3362 * If successful, returns a pointer to the mdio_device with the embedded 3363 * struct device refcount incremented by one, or NULL on failure. 3364 * The caller should call put_device() on the mdio_device after its use. 3365 */ 3366 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3367 { 3368 struct device *d; 3369 3370 if (!fwnode) 3371 return NULL; 3372 3373 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3374 if (!d) 3375 return NULL; 3376 3377 return to_mdio_device(d); 3378 } 3379 EXPORT_SYMBOL(fwnode_mdio_find_device); 3380 3381 /** 3382 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3383 * 3384 * @phy_fwnode: Pointer to the phy's fwnode. 3385 * 3386 * If successful, returns a pointer to the phy_device with the embedded 3387 * struct device refcount incremented by one, or NULL on failure. 3388 */ 3389 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3390 { 3391 struct mdio_device *mdiodev; 3392 3393 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3394 if (!mdiodev) 3395 return NULL; 3396 3397 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3398 return to_phy_device(&mdiodev->dev); 3399 3400 put_device(&mdiodev->dev); 3401 3402 return NULL; 3403 } 3404 EXPORT_SYMBOL(fwnode_phy_find_device); 3405 3406 /** 3407 * device_phy_find_device - For the given device, get the phy_device 3408 * @dev: Pointer to the given device 3409 * 3410 * Refer return conditions of fwnode_phy_find_device(). 3411 */ 3412 struct phy_device *device_phy_find_device(struct device *dev) 3413 { 3414 return fwnode_phy_find_device(dev_fwnode(dev)); 3415 } 3416 EXPORT_SYMBOL_GPL(device_phy_find_device); 3417 3418 /** 3419 * fwnode_get_phy_node - Get the phy_node using the named reference. 3420 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3421 * 3422 * Refer return conditions of fwnode_find_reference(). 3423 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3424 * and "phy-device" are not supported in ACPI. DT supports all the three 3425 * named references to the phy node. 3426 */ 3427 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3428 { 3429 struct fwnode_handle *phy_node; 3430 3431 /* Only phy-handle is used for ACPI */ 3432 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3433 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3434 return phy_node; 3435 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3436 if (IS_ERR(phy_node)) 3437 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3438 return phy_node; 3439 } 3440 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3441 3442 /** 3443 * phy_probe - probe and init a PHY device 3444 * @dev: device to probe and init 3445 * 3446 * Take care of setting up the phy_device structure, set the state to READY. 3447 */ 3448 static int phy_probe(struct device *dev) 3449 { 3450 struct phy_device *phydev = to_phy_device(dev); 3451 struct device_driver *drv = phydev->mdio.dev.driver; 3452 struct phy_driver *phydrv = to_phy_driver(drv); 3453 int err = 0; 3454 3455 phydev->drv = phydrv; 3456 3457 /* Disable the interrupt if the PHY doesn't support it 3458 * but the interrupt is still a valid one 3459 */ 3460 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3461 phydev->irq = PHY_POLL; 3462 3463 if (phydrv->flags & PHY_IS_INTERNAL) 3464 phydev->is_internal = true; 3465 3466 /* Deassert the reset signal */ 3467 phy_device_reset(phydev, 0); 3468 3469 if (phydev->drv->probe) { 3470 err = phydev->drv->probe(phydev); 3471 if (err) 3472 goto out; 3473 } 3474 3475 phy_disable_interrupts(phydev); 3476 3477 /* Start out supporting everything. Eventually, 3478 * a controller will attach, and may modify one 3479 * or both of these values 3480 */ 3481 if (phydrv->features) { 3482 linkmode_copy(phydev->supported, phydrv->features); 3483 genphy_c45_read_eee_abilities(phydev); 3484 } 3485 else if (phydrv->get_features) 3486 err = phydrv->get_features(phydev); 3487 else if (phydev->is_c45) 3488 err = genphy_c45_pma_read_abilities(phydev); 3489 else 3490 err = genphy_read_abilities(phydev); 3491 3492 if (err) 3493 goto out; 3494 3495 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3496 phydev->supported)) 3497 phydev->autoneg = 0; 3498 3499 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3500 phydev->supported)) 3501 phydev->is_gigabit_capable = 1; 3502 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3503 phydev->supported)) 3504 phydev->is_gigabit_capable = 1; 3505 3506 of_set_phy_supported(phydev); 3507 phy_advertise_supported(phydev); 3508 3509 /* Get PHY default EEE advertising modes and handle them as potentially 3510 * safe initial configuration. 3511 */ 3512 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3513 if (err) 3514 goto out; 3515 3516 /* There is no "enabled" flag. If PHY is advertising, assume it is 3517 * kind of enabled. 3518 */ 3519 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3520 3521 /* Some PHYs may advertise, by default, not support EEE modes. So, 3522 * we need to clean them. 3523 */ 3524 if (phydev->eee_enabled) 3525 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3526 phydev->advertising_eee); 3527 3528 /* Get the EEE modes we want to prohibit. We will ask 3529 * the PHY stop advertising these mode later on 3530 */ 3531 of_set_phy_eee_broken(phydev); 3532 3533 /* The Pause Frame bits indicate that the PHY can support passing 3534 * pause frames. During autonegotiation, the PHYs will determine if 3535 * they should allow pause frames to pass. The MAC driver should then 3536 * use that result to determine whether to enable flow control via 3537 * pause frames. 3538 * 3539 * Normally, PHY drivers should not set the Pause bits, and instead 3540 * allow phylib to do that. However, there may be some situations 3541 * (e.g. hardware erratum) where the driver wants to set only one 3542 * of these bits. 3543 */ 3544 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3545 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3546 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3547 phydev->supported); 3548 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3549 phydev->supported); 3550 } 3551 3552 /* Set the state to READY by default */ 3553 phydev->state = PHY_READY; 3554 3555 /* Get the LEDs from the device tree, and instantiate standard 3556 * LEDs for them. 3557 */ 3558 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3559 err = of_phy_leds(phydev); 3560 3561 out: 3562 /* Re-assert the reset signal on error */ 3563 if (err) 3564 phy_device_reset(phydev, 1); 3565 3566 return err; 3567 } 3568 3569 static int phy_remove(struct device *dev) 3570 { 3571 struct phy_device *phydev = to_phy_device(dev); 3572 3573 cancel_delayed_work_sync(&phydev->state_queue); 3574 3575 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3576 phy_leds_unregister(phydev); 3577 3578 phydev->state = PHY_DOWN; 3579 3580 sfp_bus_del_upstream(phydev->sfp_bus); 3581 phydev->sfp_bus = NULL; 3582 3583 if (phydev->drv && phydev->drv->remove) 3584 phydev->drv->remove(phydev); 3585 3586 /* Assert the reset signal */ 3587 phy_device_reset(phydev, 1); 3588 3589 phydev->drv = NULL; 3590 3591 return 0; 3592 } 3593 3594 /** 3595 * phy_driver_register - register a phy_driver with the PHY layer 3596 * @new_driver: new phy_driver to register 3597 * @owner: module owning this PHY 3598 */ 3599 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3600 { 3601 int retval; 3602 3603 /* Either the features are hard coded, or dynamically 3604 * determined. It cannot be both. 3605 */ 3606 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3607 pr_err("%s: features and get_features must not both be set\n", 3608 new_driver->name); 3609 return -EINVAL; 3610 } 3611 3612 /* PHYLIB device drivers must not match using a DT compatible table 3613 * as this bypasses our checks that the mdiodev that is being matched 3614 * is backed by a struct phy_device. If such a case happens, we will 3615 * make out-of-bounds accesses and lockup in phydev->lock. 3616 */ 3617 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3618 "%s: driver must not provide a DT match table\n", 3619 new_driver->name)) 3620 return -EINVAL; 3621 3622 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3623 new_driver->mdiodrv.driver.name = new_driver->name; 3624 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3625 new_driver->mdiodrv.driver.probe = phy_probe; 3626 new_driver->mdiodrv.driver.remove = phy_remove; 3627 new_driver->mdiodrv.driver.owner = owner; 3628 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3629 3630 retval = driver_register(&new_driver->mdiodrv.driver); 3631 if (retval) { 3632 pr_err("%s: Error %d in registering driver\n", 3633 new_driver->name, retval); 3634 3635 return retval; 3636 } 3637 3638 pr_debug("%s: Registered new driver\n", new_driver->name); 3639 3640 return 0; 3641 } 3642 EXPORT_SYMBOL(phy_driver_register); 3643 3644 int phy_drivers_register(struct phy_driver *new_driver, int n, 3645 struct module *owner) 3646 { 3647 int i, ret = 0; 3648 3649 for (i = 0; i < n; i++) { 3650 ret = phy_driver_register(new_driver + i, owner); 3651 if (ret) { 3652 while (i-- > 0) 3653 phy_driver_unregister(new_driver + i); 3654 break; 3655 } 3656 } 3657 return ret; 3658 } 3659 EXPORT_SYMBOL(phy_drivers_register); 3660 3661 void phy_driver_unregister(struct phy_driver *drv) 3662 { 3663 driver_unregister(&drv->mdiodrv.driver); 3664 } 3665 EXPORT_SYMBOL(phy_driver_unregister); 3666 3667 void phy_drivers_unregister(struct phy_driver *drv, int n) 3668 { 3669 int i; 3670 3671 for (i = 0; i < n; i++) 3672 phy_driver_unregister(drv + i); 3673 } 3674 EXPORT_SYMBOL(phy_drivers_unregister); 3675 3676 static struct phy_driver genphy_driver = { 3677 .phy_id = 0xffffffff, 3678 .phy_id_mask = 0xffffffff, 3679 .name = "Generic PHY", 3680 .get_features = genphy_read_abilities, 3681 .suspend = genphy_suspend, 3682 .resume = genphy_resume, 3683 .set_loopback = genphy_loopback, 3684 }; 3685 3686 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3687 .get_sset_count = phy_ethtool_get_sset_count, 3688 .get_strings = phy_ethtool_get_strings, 3689 .get_stats = phy_ethtool_get_stats, 3690 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3691 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3692 .get_plca_status = phy_ethtool_get_plca_status, 3693 .start_cable_test = phy_start_cable_test, 3694 .start_cable_test_tdr = phy_start_cable_test_tdr, 3695 }; 3696 3697 static const struct phylib_stubs __phylib_stubs = { 3698 .hwtstamp_get = __phy_hwtstamp_get, 3699 .hwtstamp_set = __phy_hwtstamp_set, 3700 }; 3701 3702 static void phylib_register_stubs(void) 3703 { 3704 phylib_stubs = &__phylib_stubs; 3705 } 3706 3707 static void phylib_unregister_stubs(void) 3708 { 3709 phylib_stubs = NULL; 3710 } 3711 3712 static int __init phy_init(void) 3713 { 3714 int rc; 3715 3716 rtnl_lock(); 3717 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3718 phylib_register_stubs(); 3719 rtnl_unlock(); 3720 3721 rc = mdio_bus_init(); 3722 if (rc) 3723 goto err_ethtool_phy_ops; 3724 3725 features_init(); 3726 3727 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3728 if (rc) 3729 goto err_mdio_bus; 3730 3731 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3732 if (rc) 3733 goto err_c45; 3734 3735 return 0; 3736 3737 err_c45: 3738 phy_driver_unregister(&genphy_c45_driver); 3739 err_mdio_bus: 3740 mdio_bus_exit(); 3741 err_ethtool_phy_ops: 3742 rtnl_lock(); 3743 phylib_unregister_stubs(); 3744 ethtool_set_ethtool_phy_ops(NULL); 3745 rtnl_unlock(); 3746 3747 return rc; 3748 } 3749 3750 static void __exit phy_exit(void) 3751 { 3752 phy_driver_unregister(&genphy_c45_driver); 3753 phy_driver_unregister(&genphy_driver); 3754 mdio_bus_exit(); 3755 rtnl_lock(); 3756 phylib_unregister_stubs(); 3757 ethtool_set_ethtool_phy_ops(NULL); 3758 rtnl_unlock(); 3759 } 3760 3761 subsys_initcall(phy_init); 3762 module_exit(phy_exit); 3763