xref: /linux/drivers/net/phy/phy_device.c (revision b15a4cfe100b9acd097d3ae7052448bd1cdc2a3b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/mii.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/netdevice.h>
29 #include <linux/phy.h>
30 #include <linux/phylib_stubs.h>
31 #include <linux/phy_led_triggers.h>
32 #include <linux/phy_link_topology.h>
33 #include <linux/pse-pd/pse.h>
34 #include <linux/property.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/sfp.h>
37 #include <linux/skbuff.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40 #include <linux/uaccess.h>
41 #include <linux/unistd.h>
42 
43 MODULE_DESCRIPTION("PHY library");
44 MODULE_AUTHOR("Andy Fleming");
45 MODULE_LICENSE("GPL");
46 
47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
48 EXPORT_SYMBOL_GPL(phy_basic_features);
49 
50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
51 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
52 
53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init;
54 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features);
55 
56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
57 EXPORT_SYMBOL_GPL(phy_gbit_features);
58 
59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
60 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
61 
62 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
63 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
64 
65 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
66 EXPORT_SYMBOL_GPL(phy_10gbit_features);
67 
68 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
69 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
70 
71 const int phy_basic_ports_array[3] = {
72 	ETHTOOL_LINK_MODE_Autoneg_BIT,
73 	ETHTOOL_LINK_MODE_TP_BIT,
74 	ETHTOOL_LINK_MODE_MII_BIT,
75 };
76 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
77 
78 const int phy_fibre_port_array[1] = {
79 	ETHTOOL_LINK_MODE_FIBRE_BIT,
80 };
81 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
82 
83 const int phy_all_ports_features_array[7] = {
84 	ETHTOOL_LINK_MODE_Autoneg_BIT,
85 	ETHTOOL_LINK_MODE_TP_BIT,
86 	ETHTOOL_LINK_MODE_MII_BIT,
87 	ETHTOOL_LINK_MODE_FIBRE_BIT,
88 	ETHTOOL_LINK_MODE_AUI_BIT,
89 	ETHTOOL_LINK_MODE_BNC_BIT,
90 	ETHTOOL_LINK_MODE_Backplane_BIT,
91 };
92 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
93 
94 const int phy_10_100_features_array[4] = {
95 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
96 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
97 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
98 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
99 };
100 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
101 
102 const int phy_basic_t1_features_array[3] = {
103 	ETHTOOL_LINK_MODE_TP_BIT,
104 	ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
105 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
106 };
107 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
108 
109 const int phy_basic_t1s_p2mp_features_array[2] = {
110 	ETHTOOL_LINK_MODE_TP_BIT,
111 	ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT,
112 };
113 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array);
114 
115 const int phy_gbit_features_array[2] = {
116 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
117 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
118 };
119 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
120 
121 const int phy_10gbit_features_array[1] = {
122 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
123 };
124 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
125 
126 static const int phy_10gbit_fec_features_array[1] = {
127 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
128 };
129 
130 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
131 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
132 
133 static const int phy_10gbit_full_features_array[] = {
134 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
135 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
136 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
137 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
138 };
139 
140 static const int phy_eee_cap1_features_array[] = {
141 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
142 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
143 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
144 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
145 	ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
146 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
147 };
148 
149 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init;
150 EXPORT_SYMBOL_GPL(phy_eee_cap1_features);
151 
152 static void features_init(void)
153 {
154 	/* 10/100 half/full*/
155 	linkmode_set_bit_array(phy_basic_ports_array,
156 			       ARRAY_SIZE(phy_basic_ports_array),
157 			       phy_basic_features);
158 	linkmode_set_bit_array(phy_10_100_features_array,
159 			       ARRAY_SIZE(phy_10_100_features_array),
160 			       phy_basic_features);
161 
162 	/* 100 full, TP */
163 	linkmode_set_bit_array(phy_basic_t1_features_array,
164 			       ARRAY_SIZE(phy_basic_t1_features_array),
165 			       phy_basic_t1_features);
166 
167 	/* 10 half, P2MP, TP */
168 	linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array,
169 			       ARRAY_SIZE(phy_basic_t1s_p2mp_features_array),
170 			       phy_basic_t1s_p2mp_features);
171 
172 	/* 10/100 half/full + 1000 half/full */
173 	linkmode_set_bit_array(phy_basic_ports_array,
174 			       ARRAY_SIZE(phy_basic_ports_array),
175 			       phy_gbit_features);
176 	linkmode_set_bit_array(phy_10_100_features_array,
177 			       ARRAY_SIZE(phy_10_100_features_array),
178 			       phy_gbit_features);
179 	linkmode_set_bit_array(phy_gbit_features_array,
180 			       ARRAY_SIZE(phy_gbit_features_array),
181 			       phy_gbit_features);
182 
183 	/* 10/100 half/full + 1000 half/full + fibre*/
184 	linkmode_set_bit_array(phy_basic_ports_array,
185 			       ARRAY_SIZE(phy_basic_ports_array),
186 			       phy_gbit_fibre_features);
187 	linkmode_set_bit_array(phy_10_100_features_array,
188 			       ARRAY_SIZE(phy_10_100_features_array),
189 			       phy_gbit_fibre_features);
190 	linkmode_set_bit_array(phy_gbit_features_array,
191 			       ARRAY_SIZE(phy_gbit_features_array),
192 			       phy_gbit_fibre_features);
193 	linkmode_set_bit_array(phy_fibre_port_array,
194 			       ARRAY_SIZE(phy_fibre_port_array),
195 			       phy_gbit_fibre_features);
196 
197 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
198 	linkmode_set_bit_array(phy_all_ports_features_array,
199 			       ARRAY_SIZE(phy_all_ports_features_array),
200 			       phy_gbit_all_ports_features);
201 	linkmode_set_bit_array(phy_10_100_features_array,
202 			       ARRAY_SIZE(phy_10_100_features_array),
203 			       phy_gbit_all_ports_features);
204 	linkmode_set_bit_array(phy_gbit_features_array,
205 			       ARRAY_SIZE(phy_gbit_features_array),
206 			       phy_gbit_all_ports_features);
207 
208 	/* 10/100 half/full + 1000 half/full + 10G full*/
209 	linkmode_set_bit_array(phy_all_ports_features_array,
210 			       ARRAY_SIZE(phy_all_ports_features_array),
211 			       phy_10gbit_features);
212 	linkmode_set_bit_array(phy_10_100_features_array,
213 			       ARRAY_SIZE(phy_10_100_features_array),
214 			       phy_10gbit_features);
215 	linkmode_set_bit_array(phy_gbit_features_array,
216 			       ARRAY_SIZE(phy_gbit_features_array),
217 			       phy_10gbit_features);
218 	linkmode_set_bit_array(phy_10gbit_features_array,
219 			       ARRAY_SIZE(phy_10gbit_features_array),
220 			       phy_10gbit_features);
221 
222 	/* 10/100/1000/10G full */
223 	linkmode_set_bit_array(phy_all_ports_features_array,
224 			       ARRAY_SIZE(phy_all_ports_features_array),
225 			       phy_10gbit_full_features);
226 	linkmode_set_bit_array(phy_10gbit_full_features_array,
227 			       ARRAY_SIZE(phy_10gbit_full_features_array),
228 			       phy_10gbit_full_features);
229 	/* 10G FEC only */
230 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
231 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
232 			       phy_10gbit_fec_features);
233 	linkmode_set_bit_array(phy_eee_cap1_features_array,
234 			       ARRAY_SIZE(phy_eee_cap1_features_array),
235 			       phy_eee_cap1_features);
236 
237 }
238 
239 void phy_device_free(struct phy_device *phydev)
240 {
241 	put_device(&phydev->mdio.dev);
242 }
243 EXPORT_SYMBOL(phy_device_free);
244 
245 static void phy_mdio_device_free(struct mdio_device *mdiodev)
246 {
247 	struct phy_device *phydev;
248 
249 	phydev = container_of(mdiodev, struct phy_device, mdio);
250 	phy_device_free(phydev);
251 }
252 
253 static void phy_device_release(struct device *dev)
254 {
255 	fwnode_handle_put(dev->fwnode);
256 	kfree(to_phy_device(dev));
257 }
258 
259 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
260 {
261 	struct phy_device *phydev;
262 
263 	phydev = container_of(mdiodev, struct phy_device, mdio);
264 	phy_device_remove(phydev);
265 }
266 
267 static struct phy_driver genphy_driver;
268 
269 static struct phy_link_topology *phy_get_link_topology(struct phy_device *phydev)
270 {
271 	if (phydev->attached_dev)
272 		return &phydev->attached_dev->link_topo;
273 
274 	return NULL;
275 }
276 
277 static LIST_HEAD(phy_fixup_list);
278 static DEFINE_MUTEX(phy_fixup_lock);
279 
280 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
281 {
282 	struct device_driver *drv = phydev->mdio.dev.driver;
283 	struct phy_driver *phydrv = to_phy_driver(drv);
284 	struct net_device *netdev = phydev->attached_dev;
285 
286 	if (!drv || !phydrv->suspend)
287 		return false;
288 
289 	/* PHY not attached? May suspend if the PHY has not already been
290 	 * suspended as part of a prior call to phy_disconnect() ->
291 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
292 	 * MDIO bus driver and clock gated at this point.
293 	 */
294 	if (!netdev)
295 		goto out;
296 
297 	if (netdev->wol_enabled)
298 		return false;
299 
300 	/* As long as not all affected network drivers support the
301 	 * wol_enabled flag, let's check for hints that WoL is enabled.
302 	 * Don't suspend PHY if the attached netdev parent may wake up.
303 	 * The parent may point to a PCI device, as in tg3 driver.
304 	 */
305 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
306 		return false;
307 
308 	/* Also don't suspend PHY if the netdev itself may wakeup. This
309 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
310 	 * e.g. SoC devices.
311 	 */
312 	if (device_may_wakeup(&netdev->dev))
313 		return false;
314 
315 out:
316 	return !phydev->suspended;
317 }
318 
319 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
320 {
321 	struct phy_device *phydev = to_phy_device(dev);
322 
323 	if (phydev->mac_managed_pm)
324 		return 0;
325 
326 	/* Wakeup interrupts may occur during the system sleep transition when
327 	 * the PHY is inaccessible. Set flag to postpone handling until the PHY
328 	 * has resumed. Wait for concurrent interrupt handler to complete.
329 	 */
330 	if (phy_interrupt_is_valid(phydev)) {
331 		phydev->irq_suspended = 1;
332 		synchronize_irq(phydev->irq);
333 	}
334 
335 	/* We must stop the state machine manually, otherwise it stops out of
336 	 * control, possibly with the phydev->lock held. Upon resume, netdev
337 	 * may call phy routines that try to grab the same lock, and that may
338 	 * lead to a deadlock.
339 	 */
340 	if (phydev->attached_dev && phydev->adjust_link)
341 		phy_stop_machine(phydev);
342 
343 	if (!mdio_bus_phy_may_suspend(phydev))
344 		return 0;
345 
346 	phydev->suspended_by_mdio_bus = 1;
347 
348 	return phy_suspend(phydev);
349 }
350 
351 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
352 {
353 	struct phy_device *phydev = to_phy_device(dev);
354 	int ret;
355 
356 	if (phydev->mac_managed_pm)
357 		return 0;
358 
359 	if (!phydev->suspended_by_mdio_bus)
360 		goto no_resume;
361 
362 	phydev->suspended_by_mdio_bus = 0;
363 
364 	/* If we managed to get here with the PHY state machine in a state
365 	 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
366 	 * that something went wrong and we should most likely be using
367 	 * MAC managed PM, but we are not.
368 	 */
369 	WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
370 		phydev->state != PHY_UP);
371 
372 	ret = phy_init_hw(phydev);
373 	if (ret < 0)
374 		return ret;
375 
376 	ret = phy_resume(phydev);
377 	if (ret < 0)
378 		return ret;
379 no_resume:
380 	if (phy_interrupt_is_valid(phydev)) {
381 		phydev->irq_suspended = 0;
382 		synchronize_irq(phydev->irq);
383 
384 		/* Rerun interrupts which were postponed by phy_interrupt()
385 		 * because they occurred during the system sleep transition.
386 		 */
387 		if (phydev->irq_rerun) {
388 			phydev->irq_rerun = 0;
389 			enable_irq(phydev->irq);
390 			irq_wake_thread(phydev->irq, phydev);
391 		}
392 	}
393 
394 	if (phydev->attached_dev && phydev->adjust_link)
395 		phy_start_machine(phydev);
396 
397 	return 0;
398 }
399 
400 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
401 			 mdio_bus_phy_resume);
402 
403 /**
404  * phy_register_fixup - creates a new phy_fixup and adds it to the list
405  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
406  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
407  *	It can also be PHY_ANY_UID
408  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
409  *	comparison
410  * @run: The actual code to be run when a matching PHY is found
411  */
412 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
413 		       int (*run)(struct phy_device *))
414 {
415 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
416 
417 	if (!fixup)
418 		return -ENOMEM;
419 
420 	strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
421 	fixup->phy_uid = phy_uid;
422 	fixup->phy_uid_mask = phy_uid_mask;
423 	fixup->run = run;
424 
425 	mutex_lock(&phy_fixup_lock);
426 	list_add_tail(&fixup->list, &phy_fixup_list);
427 	mutex_unlock(&phy_fixup_lock);
428 
429 	return 0;
430 }
431 EXPORT_SYMBOL(phy_register_fixup);
432 
433 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
434 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
435 			       int (*run)(struct phy_device *))
436 {
437 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
438 }
439 EXPORT_SYMBOL(phy_register_fixup_for_uid);
440 
441 /* Registers a fixup to be run on the PHY with id string bus_id */
442 int phy_register_fixup_for_id(const char *bus_id,
443 			      int (*run)(struct phy_device *))
444 {
445 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
446 }
447 EXPORT_SYMBOL(phy_register_fixup_for_id);
448 
449 /**
450  * phy_unregister_fixup - remove a phy_fixup from the list
451  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
452  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
453  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
454  */
455 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
456 {
457 	struct list_head *pos, *n;
458 	struct phy_fixup *fixup;
459 	int ret;
460 
461 	ret = -ENODEV;
462 
463 	mutex_lock(&phy_fixup_lock);
464 	list_for_each_safe(pos, n, &phy_fixup_list) {
465 		fixup = list_entry(pos, struct phy_fixup, list);
466 
467 		if ((!strcmp(fixup->bus_id, bus_id)) &&
468 		    phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) {
469 			list_del(&fixup->list);
470 			kfree(fixup);
471 			ret = 0;
472 			break;
473 		}
474 	}
475 	mutex_unlock(&phy_fixup_lock);
476 
477 	return ret;
478 }
479 EXPORT_SYMBOL(phy_unregister_fixup);
480 
481 /* Unregisters a fixup of any PHY with the UID in phy_uid */
482 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
483 {
484 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
485 }
486 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
487 
488 /* Unregisters a fixup of the PHY with id string bus_id */
489 int phy_unregister_fixup_for_id(const char *bus_id)
490 {
491 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
492 }
493 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
494 
495 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
496  * Fixups can be set to match any in one or more fields.
497  */
498 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
499 {
500 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
501 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
502 			return 0;
503 
504 	if (!phy_id_compare(phydev->phy_id, fixup->phy_uid,
505 			    fixup->phy_uid_mask))
506 		if (fixup->phy_uid != PHY_ANY_UID)
507 			return 0;
508 
509 	return 1;
510 }
511 
512 /* Runs any matching fixups for this phydev */
513 static int phy_scan_fixups(struct phy_device *phydev)
514 {
515 	struct phy_fixup *fixup;
516 
517 	mutex_lock(&phy_fixup_lock);
518 	list_for_each_entry(fixup, &phy_fixup_list, list) {
519 		if (phy_needs_fixup(phydev, fixup)) {
520 			int err = fixup->run(phydev);
521 
522 			if (err < 0) {
523 				mutex_unlock(&phy_fixup_lock);
524 				return err;
525 			}
526 			phydev->has_fixups = true;
527 		}
528 	}
529 	mutex_unlock(&phy_fixup_lock);
530 
531 	return 0;
532 }
533 
534 static int phy_bus_match(struct device *dev, struct device_driver *drv)
535 {
536 	struct phy_device *phydev = to_phy_device(dev);
537 	struct phy_driver *phydrv = to_phy_driver(drv);
538 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
539 	int i;
540 
541 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
542 		return 0;
543 
544 	if (phydrv->match_phy_device)
545 		return phydrv->match_phy_device(phydev);
546 
547 	if (phydev->is_c45) {
548 		for (i = 1; i < num_ids; i++) {
549 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
550 				continue;
551 
552 			if (phy_id_compare(phydev->c45_ids.device_ids[i],
553 					   phydrv->phy_id, phydrv->phy_id_mask))
554 				return 1;
555 		}
556 		return 0;
557 	} else {
558 		return phy_id_compare(phydev->phy_id, phydrv->phy_id,
559 				      phydrv->phy_id_mask);
560 	}
561 }
562 
563 static ssize_t
564 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
565 {
566 	struct phy_device *phydev = to_phy_device(dev);
567 
568 	return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
569 }
570 static DEVICE_ATTR_RO(phy_id);
571 
572 static ssize_t
573 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
574 {
575 	struct phy_device *phydev = to_phy_device(dev);
576 	const char *mode = NULL;
577 
578 	if (phy_is_internal(phydev))
579 		mode = "internal";
580 	else
581 		mode = phy_modes(phydev->interface);
582 
583 	return sysfs_emit(buf, "%s\n", mode);
584 }
585 static DEVICE_ATTR_RO(phy_interface);
586 
587 static ssize_t
588 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
589 		    char *buf)
590 {
591 	struct phy_device *phydev = to_phy_device(dev);
592 
593 	return sysfs_emit(buf, "%d\n", phydev->has_fixups);
594 }
595 static DEVICE_ATTR_RO(phy_has_fixups);
596 
597 static ssize_t phy_dev_flags_show(struct device *dev,
598 				  struct device_attribute *attr,
599 				  char *buf)
600 {
601 	struct phy_device *phydev = to_phy_device(dev);
602 
603 	return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags);
604 }
605 static DEVICE_ATTR_RO(phy_dev_flags);
606 
607 static struct attribute *phy_dev_attrs[] = {
608 	&dev_attr_phy_id.attr,
609 	&dev_attr_phy_interface.attr,
610 	&dev_attr_phy_has_fixups.attr,
611 	&dev_attr_phy_dev_flags.attr,
612 	NULL,
613 };
614 ATTRIBUTE_GROUPS(phy_dev);
615 
616 static const struct device_type mdio_bus_phy_type = {
617 	.name = "PHY",
618 	.groups = phy_dev_groups,
619 	.release = phy_device_release,
620 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
621 };
622 
623 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
624 {
625 	int ret;
626 
627 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
628 			     MDIO_ID_ARGS(phy_id));
629 	/* We only check for failures in executing the usermode binary,
630 	 * not whether a PHY driver module exists for the PHY ID.
631 	 * Accept -ENOENT because this may occur in case no initramfs exists,
632 	 * then modprobe isn't available.
633 	 */
634 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
635 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
636 			   ret, (unsigned long)phy_id);
637 		return ret;
638 	}
639 
640 	return 0;
641 }
642 
643 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
644 				     bool is_c45,
645 				     struct phy_c45_device_ids *c45_ids)
646 {
647 	struct phy_device *dev;
648 	struct mdio_device *mdiodev;
649 	int ret = 0;
650 
651 	/* We allocate the device, and initialize the default values */
652 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
653 	if (!dev)
654 		return ERR_PTR(-ENOMEM);
655 
656 	mdiodev = &dev->mdio;
657 	mdiodev->dev.parent = &bus->dev;
658 	mdiodev->dev.bus = &mdio_bus_type;
659 	mdiodev->dev.type = &mdio_bus_phy_type;
660 	mdiodev->bus = bus;
661 	mdiodev->bus_match = phy_bus_match;
662 	mdiodev->addr = addr;
663 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
664 	mdiodev->device_free = phy_mdio_device_free;
665 	mdiodev->device_remove = phy_mdio_device_remove;
666 	mdiodev->reset_state = -1;
667 
668 	dev->speed = SPEED_UNKNOWN;
669 	dev->duplex = DUPLEX_UNKNOWN;
670 	dev->pause = 0;
671 	dev->asym_pause = 0;
672 	dev->link = 0;
673 	dev->port = PORT_TP;
674 	dev->interface = PHY_INTERFACE_MODE_GMII;
675 
676 	dev->autoneg = AUTONEG_ENABLE;
677 
678 	dev->pma_extable = -ENODATA;
679 	dev->is_c45 = is_c45;
680 	dev->phy_id = phy_id;
681 	if (c45_ids)
682 		dev->c45_ids = *c45_ids;
683 	dev->irq = bus->irq[addr];
684 
685 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
686 	device_initialize(&mdiodev->dev);
687 
688 	dev->state = PHY_DOWN;
689 	INIT_LIST_HEAD(&dev->leds);
690 
691 	mutex_init(&dev->lock);
692 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
693 
694 	/* Request the appropriate module unconditionally; don't
695 	 * bother trying to do so only if it isn't already loaded,
696 	 * because that gets complicated. A hotplug event would have
697 	 * done an unconditional modprobe anyway.
698 	 * We don't do normal hotplug because it won't work for MDIO
699 	 * -- because it relies on the device staying around for long
700 	 * enough for the driver to get loaded. With MDIO, the NIC
701 	 * driver will get bored and give up as soon as it finds that
702 	 * there's no driver _already_ loaded.
703 	 */
704 	if (is_c45 && c45_ids) {
705 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
706 		int i;
707 
708 		for (i = 1; i < num_ids; i++) {
709 			if (c45_ids->device_ids[i] == 0xffffffff)
710 				continue;
711 
712 			ret = phy_request_driver_module(dev,
713 						c45_ids->device_ids[i]);
714 			if (ret)
715 				break;
716 		}
717 	} else {
718 		ret = phy_request_driver_module(dev, phy_id);
719 	}
720 
721 	if (ret) {
722 		put_device(&mdiodev->dev);
723 		dev = ERR_PTR(ret);
724 	}
725 
726 	return dev;
727 }
728 EXPORT_SYMBOL(phy_device_create);
729 
730 /* phy_c45_probe_present - checks to see if a MMD is present in the package
731  * @bus: the target MII bus
732  * @prtad: PHY package address on the MII bus
733  * @devad: PHY device (MMD) address
734  *
735  * Read the MDIO_STAT2 register, and check whether a device is responding
736  * at this address.
737  *
738  * Returns: negative error number on bus access error, zero if no device
739  * is responding, or positive if a device is present.
740  */
741 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
742 {
743 	int stat2;
744 
745 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
746 	if (stat2 < 0)
747 		return stat2;
748 
749 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
750 }
751 
752 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
753  * @bus: the target MII bus
754  * @addr: PHY address on the MII bus
755  * @dev_addr: MMD address in the PHY.
756  * @devices_in_package: where to store the devices in package information.
757  *
758  * Description: reads devices in package registers of a MMD at @dev_addr
759  * from PHY at @addr on @bus.
760  *
761  * Returns: 0 on success, -EIO on failure.
762  */
763 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
764 				   u32 *devices_in_package)
765 {
766 	int phy_reg;
767 
768 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
769 	if (phy_reg < 0)
770 		return -EIO;
771 	*devices_in_package = phy_reg << 16;
772 
773 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
774 	if (phy_reg < 0)
775 		return -EIO;
776 	*devices_in_package |= phy_reg;
777 
778 	return 0;
779 }
780 
781 /**
782  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
783  * @bus: the target MII bus
784  * @addr: PHY address on the MII bus
785  * @c45_ids: where to store the c45 ID information.
786  *
787  * Read the PHY "devices in package". If this appears to be valid, read
788  * the PHY identifiers for each device. Return the "devices in package"
789  * and identifiers in @c45_ids.
790  *
791  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
792  * the "devices in package" is invalid.
793  */
794 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
795 			   struct phy_c45_device_ids *c45_ids)
796 {
797 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
798 	u32 devs_in_pkg = 0;
799 	int i, ret, phy_reg;
800 
801 	/* Find first non-zero Devices In package. Device zero is reserved
802 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
803 	 */
804 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
805 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
806 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
807 			/* Check that there is a device present at this
808 			 * address before reading the devices-in-package
809 			 * register to avoid reading garbage from the PHY.
810 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
811 			 * compliant.
812 			 */
813 			ret = phy_c45_probe_present(bus, addr, i);
814 			if (ret < 0)
815 				return -EIO;
816 
817 			if (!ret)
818 				continue;
819 		}
820 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
821 		if (phy_reg < 0)
822 			return -EIO;
823 	}
824 
825 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
826 		/* If mostly Fs, there is no device there, then let's probe
827 		 * MMD 0, as some 10G PHYs have zero Devices In package,
828 		 * e.g. Cortina CS4315/CS4340 PHY.
829 		 */
830 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
831 		if (phy_reg < 0)
832 			return -EIO;
833 
834 		/* no device there, let's get out of here */
835 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
836 			return -ENODEV;
837 	}
838 
839 	/* Now probe Device Identifiers for each device present. */
840 	for (i = 1; i < num_ids; i++) {
841 		if (!(devs_in_pkg & (1 << i)))
842 			continue;
843 
844 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
845 			/* Probe the "Device Present" bits for the vendor MMDs
846 			 * to ignore these if they do not contain IEEE 802.3
847 			 * registers.
848 			 */
849 			ret = phy_c45_probe_present(bus, addr, i);
850 			if (ret < 0)
851 				return ret;
852 
853 			if (!ret)
854 				continue;
855 		}
856 
857 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
858 		if (phy_reg < 0)
859 			return -EIO;
860 		c45_ids->device_ids[i] = phy_reg << 16;
861 
862 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
863 		if (phy_reg < 0)
864 			return -EIO;
865 		c45_ids->device_ids[i] |= phy_reg;
866 	}
867 
868 	c45_ids->devices_in_package = devs_in_pkg;
869 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
870 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
871 
872 	return 0;
873 }
874 
875 /**
876  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
877  * @bus: the target MII bus
878  * @addr: PHY address on the MII bus
879  * @phy_id: where to store the ID retrieved.
880  *
881  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
882  * placing it in @phy_id. Return zero on successful read and the ID is
883  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
884  * or invalid ID.
885  */
886 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
887 {
888 	int phy_reg;
889 
890 	/* Grab the bits from PHYIR1, and put them in the upper half */
891 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
892 	if (phy_reg < 0) {
893 		/* returning -ENODEV doesn't stop bus scanning */
894 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
895 	}
896 
897 	*phy_id = phy_reg << 16;
898 
899 	/* Grab the bits from PHYIR2, and put them in the lower half */
900 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
901 	if (phy_reg < 0) {
902 		/* returning -ENODEV doesn't stop bus scanning */
903 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
904 	}
905 
906 	*phy_id |= phy_reg;
907 
908 	/* If the phy_id is mostly Fs, there is no device there */
909 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
910 		return -ENODEV;
911 
912 	return 0;
913 }
914 
915 /* Extract the phy ID from the compatible string of the form
916  * ethernet-phy-idAAAA.BBBB.
917  */
918 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
919 {
920 	unsigned int upper, lower;
921 	const char *cp;
922 	int ret;
923 
924 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
925 	if (ret)
926 		return ret;
927 
928 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
929 		return -EINVAL;
930 
931 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
932 	return 0;
933 }
934 EXPORT_SYMBOL(fwnode_get_phy_id);
935 
936 /**
937  * get_phy_device - reads the specified PHY device and returns its @phy_device
938  *		    struct
939  * @bus: the target MII bus
940  * @addr: PHY address on the MII bus
941  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
942  *
943  * Probe for a PHY at @addr on @bus.
944  *
945  * When probing for a clause 22 PHY, then read the ID registers. If we find
946  * a valid ID, allocate and return a &struct phy_device.
947  *
948  * When probing for a clause 45 PHY, read the "devices in package" registers.
949  * If the "devices in package" appears valid, read the ID registers for each
950  * MMD, allocate and return a &struct phy_device.
951  *
952  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
953  * no PHY present, or %-EIO on bus access error.
954  */
955 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
956 {
957 	struct phy_c45_device_ids c45_ids;
958 	u32 phy_id = 0;
959 	int r;
960 
961 	c45_ids.devices_in_package = 0;
962 	c45_ids.mmds_present = 0;
963 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
964 
965 	if (is_c45)
966 		r = get_phy_c45_ids(bus, addr, &c45_ids);
967 	else
968 		r = get_phy_c22_id(bus, addr, &phy_id);
969 
970 	if (r)
971 		return ERR_PTR(r);
972 
973 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
974 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
975 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
976 	 * space, if successful, create the C45 PHY device.
977 	 */
978 	if (!is_c45 && phy_id == 0 && bus->read_c45) {
979 		r = get_phy_c45_ids(bus, addr, &c45_ids);
980 		if (!r)
981 			return phy_device_create(bus, addr, phy_id,
982 						 true, &c45_ids);
983 	}
984 
985 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
986 }
987 EXPORT_SYMBOL(get_phy_device);
988 
989 /**
990  * phy_device_register - Register the phy device on the MDIO bus
991  * @phydev: phy_device structure to be added to the MDIO bus
992  */
993 int phy_device_register(struct phy_device *phydev)
994 {
995 	int err;
996 
997 	err = mdiobus_register_device(&phydev->mdio);
998 	if (err)
999 		return err;
1000 
1001 	/* Deassert the reset signal */
1002 	phy_device_reset(phydev, 0);
1003 
1004 	/* Run all of the fixups for this PHY */
1005 	err = phy_scan_fixups(phydev);
1006 	if (err) {
1007 		phydev_err(phydev, "failed to initialize\n");
1008 		goto out;
1009 	}
1010 
1011 	err = device_add(&phydev->mdio.dev);
1012 	if (err) {
1013 		phydev_err(phydev, "failed to add\n");
1014 		goto out;
1015 	}
1016 
1017 	return 0;
1018 
1019  out:
1020 	/* Assert the reset signal */
1021 	phy_device_reset(phydev, 1);
1022 
1023 	mdiobus_unregister_device(&phydev->mdio);
1024 	return err;
1025 }
1026 EXPORT_SYMBOL(phy_device_register);
1027 
1028 /**
1029  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
1030  * @phydev: phy_device structure to remove
1031  *
1032  * This doesn't free the phy_device itself, it merely reverses the effects
1033  * of phy_device_register(). Use phy_device_free() to free the device
1034  * after calling this function.
1035  */
1036 void phy_device_remove(struct phy_device *phydev)
1037 {
1038 	unregister_mii_timestamper(phydev->mii_ts);
1039 	pse_control_put(phydev->psec);
1040 
1041 	device_del(&phydev->mdio.dev);
1042 
1043 	/* Assert the reset signal */
1044 	phy_device_reset(phydev, 1);
1045 
1046 	mdiobus_unregister_device(&phydev->mdio);
1047 }
1048 EXPORT_SYMBOL(phy_device_remove);
1049 
1050 /**
1051  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1052  * @phydev: phy_device structure to read 802.3-c45 IDs
1053  *
1054  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1055  * the "devices in package" is invalid.
1056  */
1057 int phy_get_c45_ids(struct phy_device *phydev)
1058 {
1059 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1060 			       &phydev->c45_ids);
1061 }
1062 EXPORT_SYMBOL(phy_get_c45_ids);
1063 
1064 /**
1065  * phy_find_first - finds the first PHY device on the bus
1066  * @bus: the target MII bus
1067  */
1068 struct phy_device *phy_find_first(struct mii_bus *bus)
1069 {
1070 	struct phy_device *phydev;
1071 	int addr;
1072 
1073 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1074 		phydev = mdiobus_get_phy(bus, addr);
1075 		if (phydev)
1076 			return phydev;
1077 	}
1078 	return NULL;
1079 }
1080 EXPORT_SYMBOL(phy_find_first);
1081 
1082 static void phy_link_change(struct phy_device *phydev, bool up)
1083 {
1084 	struct net_device *netdev = phydev->attached_dev;
1085 
1086 	if (up)
1087 		netif_carrier_on(netdev);
1088 	else
1089 		netif_carrier_off(netdev);
1090 	phydev->adjust_link(netdev);
1091 	if (phydev->mii_ts && phydev->mii_ts->link_state)
1092 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1093 }
1094 
1095 /**
1096  * phy_prepare_link - prepares the PHY layer to monitor link status
1097  * @phydev: target phy_device struct
1098  * @handler: callback function for link status change notifications
1099  *
1100  * Description: Tells the PHY infrastructure to handle the
1101  *   gory details on monitoring link status (whether through
1102  *   polling or an interrupt), and to call back to the
1103  *   connected device driver when the link status changes.
1104  *   If you want to monitor your own link state, don't call
1105  *   this function.
1106  */
1107 static void phy_prepare_link(struct phy_device *phydev,
1108 			     void (*handler)(struct net_device *))
1109 {
1110 	phydev->adjust_link = handler;
1111 }
1112 
1113 /**
1114  * phy_connect_direct - connect an ethernet device to a specific phy_device
1115  * @dev: the network device to connect
1116  * @phydev: the pointer to the phy device
1117  * @handler: callback function for state change notifications
1118  * @interface: PHY device's interface
1119  */
1120 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1121 		       void (*handler)(struct net_device *),
1122 		       phy_interface_t interface)
1123 {
1124 	int rc;
1125 
1126 	if (!dev)
1127 		return -EINVAL;
1128 
1129 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1130 	if (rc)
1131 		return rc;
1132 
1133 	phy_prepare_link(phydev, handler);
1134 	if (phy_interrupt_is_valid(phydev))
1135 		phy_request_interrupt(phydev);
1136 
1137 	return 0;
1138 }
1139 EXPORT_SYMBOL(phy_connect_direct);
1140 
1141 /**
1142  * phy_connect - connect an ethernet device to a PHY device
1143  * @dev: the network device to connect
1144  * @bus_id: the id string of the PHY device to connect
1145  * @handler: callback function for state change notifications
1146  * @interface: PHY device's interface
1147  *
1148  * Description: Convenience function for connecting ethernet
1149  *   devices to PHY devices.  The default behavior is for
1150  *   the PHY infrastructure to handle everything, and only notify
1151  *   the connected driver when the link status changes.  If you
1152  *   don't want, or can't use the provided functionality, you may
1153  *   choose to call only the subset of functions which provide
1154  *   the desired functionality.
1155  */
1156 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1157 			       void (*handler)(struct net_device *),
1158 			       phy_interface_t interface)
1159 {
1160 	struct phy_device *phydev;
1161 	struct device *d;
1162 	int rc;
1163 
1164 	/* Search the list of PHY devices on the mdio bus for the
1165 	 * PHY with the requested name
1166 	 */
1167 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1168 	if (!d) {
1169 		pr_err("PHY %s not found\n", bus_id);
1170 		return ERR_PTR(-ENODEV);
1171 	}
1172 	phydev = to_phy_device(d);
1173 
1174 	rc = phy_connect_direct(dev, phydev, handler, interface);
1175 	put_device(d);
1176 	if (rc)
1177 		return ERR_PTR(rc);
1178 
1179 	return phydev;
1180 }
1181 EXPORT_SYMBOL(phy_connect);
1182 
1183 /**
1184  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1185  *		    device
1186  * @phydev: target phy_device struct
1187  */
1188 void phy_disconnect(struct phy_device *phydev)
1189 {
1190 	if (phy_is_started(phydev))
1191 		phy_stop(phydev);
1192 
1193 	if (phy_interrupt_is_valid(phydev))
1194 		phy_free_interrupt(phydev);
1195 
1196 	phydev->adjust_link = NULL;
1197 
1198 	phy_detach(phydev);
1199 }
1200 EXPORT_SYMBOL(phy_disconnect);
1201 
1202 /**
1203  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1204  * @phydev: The PHY device to poll
1205  *
1206  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1207  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1208  *   register must be polled until the BMCR_RESET bit clears.
1209  *
1210  *   Furthermore, any attempts to write to PHY registers may have no effect
1211  *   or even generate MDIO bus errors until this is complete.
1212  *
1213  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1214  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1215  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1216  *   effort to support such broken PHYs, this function is separate from the
1217  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1218  *   and reapply all driver-specific and board-specific fixups.
1219  */
1220 static int phy_poll_reset(struct phy_device *phydev)
1221 {
1222 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1223 	int ret, val;
1224 
1225 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1226 				    50000, 600000, true);
1227 	if (ret)
1228 		return ret;
1229 	/* Some chips (smsc911x) may still need up to another 1ms after the
1230 	 * BMCR_RESET bit is cleared before they are usable.
1231 	 */
1232 	msleep(1);
1233 	return 0;
1234 }
1235 
1236 int phy_init_hw(struct phy_device *phydev)
1237 {
1238 	int ret = 0;
1239 
1240 	/* Deassert the reset signal */
1241 	phy_device_reset(phydev, 0);
1242 
1243 	if (!phydev->drv)
1244 		return 0;
1245 
1246 	if (phydev->drv->soft_reset) {
1247 		ret = phydev->drv->soft_reset(phydev);
1248 		if (ret < 0)
1249 			return ret;
1250 
1251 		/* see comment in genphy_soft_reset for an explanation */
1252 		phydev->suspended = 0;
1253 	}
1254 
1255 	ret = phy_scan_fixups(phydev);
1256 	if (ret < 0)
1257 		return ret;
1258 
1259 	phy_interface_zero(phydev->possible_interfaces);
1260 
1261 	if (phydev->drv->config_init) {
1262 		ret = phydev->drv->config_init(phydev);
1263 		if (ret < 0)
1264 			return ret;
1265 	}
1266 
1267 	if (phydev->drv->config_intr) {
1268 		ret = phydev->drv->config_intr(phydev);
1269 		if (ret < 0)
1270 			return ret;
1271 	}
1272 
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL(phy_init_hw);
1276 
1277 void phy_attached_info(struct phy_device *phydev)
1278 {
1279 	phy_attached_print(phydev, NULL);
1280 }
1281 EXPORT_SYMBOL(phy_attached_info);
1282 
1283 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1284 char *phy_attached_info_irq(struct phy_device *phydev)
1285 {
1286 	char *irq_str;
1287 	char irq_num[8];
1288 
1289 	switch(phydev->irq) {
1290 	case PHY_POLL:
1291 		irq_str = "POLL";
1292 		break;
1293 	case PHY_MAC_INTERRUPT:
1294 		irq_str = "MAC";
1295 		break;
1296 	default:
1297 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1298 		irq_str = irq_num;
1299 		break;
1300 	}
1301 
1302 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1303 }
1304 EXPORT_SYMBOL(phy_attached_info_irq);
1305 
1306 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1307 {
1308 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1309 	char *irq_str = phy_attached_info_irq(phydev);
1310 
1311 	if (!fmt) {
1312 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1313 			    phydev_name(phydev), irq_str);
1314 	} else {
1315 		va_list ap;
1316 
1317 		phydev_info(phydev, ATTACHED_FMT, unbound,
1318 			    phydev_name(phydev), irq_str);
1319 
1320 		va_start(ap, fmt);
1321 		vprintk(fmt, ap);
1322 		va_end(ap);
1323 	}
1324 	kfree(irq_str);
1325 }
1326 EXPORT_SYMBOL(phy_attached_print);
1327 
1328 static void phy_sysfs_create_links(struct phy_device *phydev)
1329 {
1330 	struct net_device *dev = phydev->attached_dev;
1331 	int err;
1332 
1333 	if (!dev)
1334 		return;
1335 
1336 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1337 				"attached_dev");
1338 	if (err)
1339 		return;
1340 
1341 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1342 				       &phydev->mdio.dev.kobj,
1343 				       "phydev");
1344 	if (err) {
1345 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1346 			kobject_name(&phydev->mdio.dev.kobj),
1347 			err);
1348 		/* non-fatal - some net drivers can use one netdevice
1349 		 * with more then one phy
1350 		 */
1351 	}
1352 
1353 	phydev->sysfs_links = true;
1354 }
1355 
1356 static ssize_t
1357 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1358 		    char *buf)
1359 {
1360 	struct phy_device *phydev = to_phy_device(dev);
1361 
1362 	return sysfs_emit(buf, "%d\n", !phydev->attached_dev);
1363 }
1364 static DEVICE_ATTR_RO(phy_standalone);
1365 
1366 /**
1367  * phy_sfp_connect_phy - Connect the SFP module's PHY to the upstream PHY
1368  * @upstream: pointer to the upstream phy device
1369  * @phy: pointer to the SFP module's phy device
1370  *
1371  * This helper allows keeping track of PHY devices on the link. It adds the
1372  * SFP module's phy to the phy namespace of the upstream phy
1373  */
1374 int phy_sfp_connect_phy(void *upstream, struct phy_device *phy)
1375 {
1376 	struct phy_device *phydev = upstream;
1377 	struct phy_link_topology *topo = phy_get_link_topology(phydev);
1378 
1379 	if (topo)
1380 		return phy_link_topo_add_phy(topo, phy, PHY_UPSTREAM_PHY, phydev);
1381 
1382 	return 0;
1383 }
1384 EXPORT_SYMBOL(phy_sfp_connect_phy);
1385 
1386 /**
1387  * phy_sfp_disconnect_phy - Disconnect the SFP module's PHY from the upstream PHY
1388  * @upstream: pointer to the upstream phy device
1389  * @phy: pointer to the SFP module's phy device
1390  *
1391  * This helper allows keeping track of PHY devices on the link. It removes the
1392  * SFP module's phy to the phy namespace of the upstream phy. As the module phy
1393  * will be destroyed, re-inserting the same module will add a new phy with a
1394  * new index.
1395  */
1396 void phy_sfp_disconnect_phy(void *upstream, struct phy_device *phy)
1397 {
1398 	struct phy_device *phydev = upstream;
1399 	struct phy_link_topology *topo = phy_get_link_topology(phydev);
1400 
1401 	if (topo)
1402 		phy_link_topo_del_phy(topo, phy);
1403 }
1404 EXPORT_SYMBOL(phy_sfp_disconnect_phy);
1405 
1406 /**
1407  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1408  * @upstream: pointer to the phy device
1409  * @bus: sfp bus representing cage being attached
1410  *
1411  * This is used to fill in the sfp_upstream_ops .attach member.
1412  */
1413 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1414 {
1415 	struct phy_device *phydev = upstream;
1416 
1417 	if (phydev->attached_dev)
1418 		phydev->attached_dev->sfp_bus = bus;
1419 	phydev->sfp_bus_attached = true;
1420 }
1421 EXPORT_SYMBOL(phy_sfp_attach);
1422 
1423 /**
1424  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1425  * @upstream: pointer to the phy device
1426  * @bus: sfp bus representing cage being attached
1427  *
1428  * This is used to fill in the sfp_upstream_ops .detach member.
1429  */
1430 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1431 {
1432 	struct phy_device *phydev = upstream;
1433 
1434 	if (phydev->attached_dev)
1435 		phydev->attached_dev->sfp_bus = NULL;
1436 	phydev->sfp_bus_attached = false;
1437 }
1438 EXPORT_SYMBOL(phy_sfp_detach);
1439 
1440 /**
1441  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1442  * @phydev: Pointer to phy_device
1443  * @ops: SFP's upstream operations
1444  */
1445 int phy_sfp_probe(struct phy_device *phydev,
1446 		  const struct sfp_upstream_ops *ops)
1447 {
1448 	struct sfp_bus *bus;
1449 	int ret = 0;
1450 
1451 	if (phydev->mdio.dev.fwnode) {
1452 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1453 		if (IS_ERR(bus))
1454 			return PTR_ERR(bus);
1455 
1456 		phydev->sfp_bus = bus;
1457 
1458 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1459 		sfp_bus_put(bus);
1460 	}
1461 	return ret;
1462 }
1463 EXPORT_SYMBOL(phy_sfp_probe);
1464 
1465 /**
1466  * phy_attach_direct - attach a network device to a given PHY device pointer
1467  * @dev: network device to attach
1468  * @phydev: Pointer to phy_device to attach
1469  * @flags: PHY device's dev_flags
1470  * @interface: PHY device's interface
1471  *
1472  * Description: Called by drivers to attach to a particular PHY
1473  *     device. The phy_device is found, and properly hooked up
1474  *     to the phy_driver.  If no driver is attached, then a
1475  *     generic driver is used.  The phy_device is given a ptr to
1476  *     the attaching device, and given a callback for link status
1477  *     change.  The phy_device is returned to the attaching driver.
1478  *     This function takes a reference on the phy device.
1479  */
1480 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1481 		      u32 flags, phy_interface_t interface)
1482 {
1483 	struct mii_bus *bus = phydev->mdio.bus;
1484 	struct device *d = &phydev->mdio.dev;
1485 	struct module *ndev_owner = NULL;
1486 	bool using_genphy = false;
1487 	int err;
1488 
1489 	/* For Ethernet device drivers that register their own MDIO bus, we
1490 	 * will have bus->owner match ndev_mod, so we do not want to increment
1491 	 * our own module->refcnt here, otherwise we would not be able to
1492 	 * unload later on.
1493 	 */
1494 	if (dev)
1495 		ndev_owner = dev->dev.parent->driver->owner;
1496 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1497 		phydev_err(phydev, "failed to get the bus module\n");
1498 		return -EIO;
1499 	}
1500 
1501 	get_device(d);
1502 
1503 	/* Assume that if there is no driver, that it doesn't
1504 	 * exist, and we should use the genphy driver.
1505 	 */
1506 	if (!d->driver) {
1507 		if (phydev->is_c45)
1508 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1509 		else
1510 			d->driver = &genphy_driver.mdiodrv.driver;
1511 
1512 		using_genphy = true;
1513 	}
1514 
1515 	if (!try_module_get(d->driver->owner)) {
1516 		phydev_err(phydev, "failed to get the device driver module\n");
1517 		err = -EIO;
1518 		goto error_put_device;
1519 	}
1520 
1521 	if (using_genphy) {
1522 		err = d->driver->probe(d);
1523 		if (err >= 0)
1524 			err = device_bind_driver(d);
1525 
1526 		if (err)
1527 			goto error_module_put;
1528 	}
1529 
1530 	if (phydev->attached_dev) {
1531 		dev_err(&dev->dev, "PHY already attached\n");
1532 		err = -EBUSY;
1533 		goto error;
1534 	}
1535 
1536 	phydev->phy_link_change = phy_link_change;
1537 	if (dev) {
1538 		phydev->attached_dev = dev;
1539 		dev->phydev = phydev;
1540 
1541 		if (phydev->sfp_bus_attached)
1542 			dev->sfp_bus = phydev->sfp_bus;
1543 
1544 		err = phy_link_topo_add_phy(&dev->link_topo, phydev,
1545 					    PHY_UPSTREAM_MAC, dev);
1546 		if (err)
1547 			goto error;
1548 	}
1549 
1550 	/* Some Ethernet drivers try to connect to a PHY device before
1551 	 * calling register_netdevice() -> netdev_register_kobject() and
1552 	 * does the dev->dev.kobj initialization. Here we only check for
1553 	 * success which indicates that the network device kobject is
1554 	 * ready. Once we do that we still need to keep track of whether
1555 	 * links were successfully set up or not for phy_detach() to
1556 	 * remove them accordingly.
1557 	 */
1558 	phydev->sysfs_links = false;
1559 
1560 	phy_sysfs_create_links(phydev);
1561 
1562 	if (!phydev->attached_dev) {
1563 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1564 					&dev_attr_phy_standalone.attr);
1565 		if (err)
1566 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1567 	}
1568 
1569 	phydev->dev_flags |= flags;
1570 
1571 	phydev->interface = interface;
1572 
1573 	phydev->state = PHY_READY;
1574 
1575 	phydev->interrupts = PHY_INTERRUPT_DISABLED;
1576 
1577 	/* PHYs can request to use poll mode even though they have an
1578 	 * associated interrupt line. This could be the case if they
1579 	 * detect a broken interrupt handling.
1580 	 */
1581 	if (phydev->dev_flags & PHY_F_NO_IRQ)
1582 		phydev->irq = PHY_POLL;
1583 
1584 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1585 	 * it to different value depending on the PHY configuration. If we have
1586 	 * the generic PHY driver we can't figure it out, thus set the old
1587 	 * legacy PORT_MII value.
1588 	 */
1589 	if (using_genphy)
1590 		phydev->port = PORT_MII;
1591 
1592 	/* Initial carrier state is off as the phy is about to be
1593 	 * (re)initialized.
1594 	 */
1595 	if (dev)
1596 		netif_carrier_off(phydev->attached_dev);
1597 
1598 	/* Do initial configuration here, now that
1599 	 * we have certain key parameters
1600 	 * (dev_flags and interface)
1601 	 */
1602 	err = phy_init_hw(phydev);
1603 	if (err)
1604 		goto error;
1605 
1606 	phy_resume(phydev);
1607 	if (!phydev->is_on_sfp_module)
1608 		phy_led_triggers_register(phydev);
1609 
1610 	/**
1611 	 * If the external phy used by current mac interface is managed by
1612 	 * another mac interface, so we should create a device link between
1613 	 * phy dev and mac dev.
1614 	 */
1615 	if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
1616 		phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
1617 						  DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
1618 
1619 	return err;
1620 
1621 error:
1622 	/* phy_detach() does all of the cleanup below */
1623 	phy_detach(phydev);
1624 	return err;
1625 
1626 error_module_put:
1627 	module_put(d->driver->owner);
1628 	d->driver = NULL;
1629 error_put_device:
1630 	put_device(d);
1631 	if (ndev_owner != bus->owner)
1632 		module_put(bus->owner);
1633 	return err;
1634 }
1635 EXPORT_SYMBOL(phy_attach_direct);
1636 
1637 /**
1638  * phy_attach - attach a network device to a particular PHY device
1639  * @dev: network device to attach
1640  * @bus_id: Bus ID of PHY device to attach
1641  * @interface: PHY device's interface
1642  *
1643  * Description: Same as phy_attach_direct() except that a PHY bus_id
1644  *     string is passed instead of a pointer to a struct phy_device.
1645  */
1646 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1647 			      phy_interface_t interface)
1648 {
1649 	struct bus_type *bus = &mdio_bus_type;
1650 	struct phy_device *phydev;
1651 	struct device *d;
1652 	int rc;
1653 
1654 	if (!dev)
1655 		return ERR_PTR(-EINVAL);
1656 
1657 	/* Search the list of PHY devices on the mdio bus for the
1658 	 * PHY with the requested name
1659 	 */
1660 	d = bus_find_device_by_name(bus, NULL, bus_id);
1661 	if (!d) {
1662 		pr_err("PHY %s not found\n", bus_id);
1663 		return ERR_PTR(-ENODEV);
1664 	}
1665 	phydev = to_phy_device(d);
1666 
1667 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1668 	put_device(d);
1669 	if (rc)
1670 		return ERR_PTR(rc);
1671 
1672 	return phydev;
1673 }
1674 EXPORT_SYMBOL(phy_attach);
1675 
1676 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1677 				      struct device_driver *driver)
1678 {
1679 	struct device *d = &phydev->mdio.dev;
1680 	bool ret = false;
1681 
1682 	if (!phydev->drv)
1683 		return ret;
1684 
1685 	get_device(d);
1686 	ret = d->driver == driver;
1687 	put_device(d);
1688 
1689 	return ret;
1690 }
1691 
1692 bool phy_driver_is_genphy(struct phy_device *phydev)
1693 {
1694 	return phy_driver_is_genphy_kind(phydev,
1695 					 &genphy_driver.mdiodrv.driver);
1696 }
1697 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1698 
1699 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1700 {
1701 	return phy_driver_is_genphy_kind(phydev,
1702 					 &genphy_c45_driver.mdiodrv.driver);
1703 }
1704 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1705 
1706 /**
1707  * phy_package_join - join a common PHY group
1708  * @phydev: target phy_device struct
1709  * @base_addr: cookie and base PHY address of PHY package for offset
1710  *   calculation of global register access
1711  * @priv_size: if non-zero allocate this amount of bytes for private data
1712  *
1713  * This joins a PHY group and provides a shared storage for all phydevs in
1714  * this group. This is intended to be used for packages which contain
1715  * more than one PHY, for example a quad PHY transceiver.
1716  *
1717  * The base_addr parameter serves as cookie which has to have the same values
1718  * for all members of one group and as the base PHY address of the PHY package
1719  * for offset calculation to access generic registers of a PHY package.
1720  * Usually, one of the PHY addresses of the different PHYs in the package
1721  * provides access to these global registers.
1722  * The address which is given here, will be used in the phy_package_read()
1723  * and phy_package_write() convenience functions as base and added to the
1724  * passed offset in those functions.
1725  *
1726  * This will set the shared pointer of the phydev to the shared storage.
1727  * If this is the first call for a this cookie the shared storage will be
1728  * allocated. If priv_size is non-zero, the given amount of bytes are
1729  * allocated for the priv member.
1730  *
1731  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1732  * with the same cookie but a different priv_size is an error.
1733  */
1734 int phy_package_join(struct phy_device *phydev, int base_addr, size_t priv_size)
1735 {
1736 	struct mii_bus *bus = phydev->mdio.bus;
1737 	struct phy_package_shared *shared;
1738 	int ret;
1739 
1740 	if (base_addr < 0 || base_addr >= PHY_MAX_ADDR)
1741 		return -EINVAL;
1742 
1743 	mutex_lock(&bus->shared_lock);
1744 	shared = bus->shared[base_addr];
1745 	if (!shared) {
1746 		ret = -ENOMEM;
1747 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1748 		if (!shared)
1749 			goto err_unlock;
1750 		if (priv_size) {
1751 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1752 			if (!shared->priv)
1753 				goto err_free;
1754 			shared->priv_size = priv_size;
1755 		}
1756 		shared->base_addr = base_addr;
1757 		refcount_set(&shared->refcnt, 1);
1758 		bus->shared[base_addr] = shared;
1759 	} else {
1760 		ret = -EINVAL;
1761 		if (priv_size && priv_size != shared->priv_size)
1762 			goto err_unlock;
1763 		refcount_inc(&shared->refcnt);
1764 	}
1765 	mutex_unlock(&bus->shared_lock);
1766 
1767 	phydev->shared = shared;
1768 
1769 	return 0;
1770 
1771 err_free:
1772 	kfree(shared);
1773 err_unlock:
1774 	mutex_unlock(&bus->shared_lock);
1775 	return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(phy_package_join);
1778 
1779 /**
1780  * phy_package_leave - leave a common PHY group
1781  * @phydev: target phy_device struct
1782  *
1783  * This leaves a PHY group created by phy_package_join(). If this phydev
1784  * was the last user of the shared data between the group, this data is
1785  * freed. Resets the phydev->shared pointer to NULL.
1786  */
1787 void phy_package_leave(struct phy_device *phydev)
1788 {
1789 	struct phy_package_shared *shared = phydev->shared;
1790 	struct mii_bus *bus = phydev->mdio.bus;
1791 
1792 	if (!shared)
1793 		return;
1794 
1795 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1796 		bus->shared[shared->base_addr] = NULL;
1797 		mutex_unlock(&bus->shared_lock);
1798 		kfree(shared->priv);
1799 		kfree(shared);
1800 	}
1801 
1802 	phydev->shared = NULL;
1803 }
1804 EXPORT_SYMBOL_GPL(phy_package_leave);
1805 
1806 static void devm_phy_package_leave(struct device *dev, void *res)
1807 {
1808 	phy_package_leave(*(struct phy_device **)res);
1809 }
1810 
1811 /**
1812  * devm_phy_package_join - resource managed phy_package_join()
1813  * @dev: device that is registering this PHY package
1814  * @phydev: target phy_device struct
1815  * @base_addr: cookie and base PHY address of PHY package for offset
1816  *   calculation of global register access
1817  * @priv_size: if non-zero allocate this amount of bytes for private data
1818  *
1819  * Managed phy_package_join(). Shared storage fetched by this function,
1820  * phy_package_leave() is automatically called on driver detach. See
1821  * phy_package_join() for more information.
1822  */
1823 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1824 			  int base_addr, size_t priv_size)
1825 {
1826 	struct phy_device **ptr;
1827 	int ret;
1828 
1829 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1830 			   GFP_KERNEL);
1831 	if (!ptr)
1832 		return -ENOMEM;
1833 
1834 	ret = phy_package_join(phydev, base_addr, priv_size);
1835 
1836 	if (!ret) {
1837 		*ptr = phydev;
1838 		devres_add(dev, ptr);
1839 	} else {
1840 		devres_free(ptr);
1841 	}
1842 
1843 	return ret;
1844 }
1845 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1846 
1847 /**
1848  * phy_detach - detach a PHY device from its network device
1849  * @phydev: target phy_device struct
1850  *
1851  * This detaches the phy device from its network device and the phy
1852  * driver, and drops the reference count taken in phy_attach_direct().
1853  */
1854 void phy_detach(struct phy_device *phydev)
1855 {
1856 	struct net_device *dev = phydev->attached_dev;
1857 	struct module *ndev_owner = NULL;
1858 	struct mii_bus *bus;
1859 
1860 	if (phydev->devlink)
1861 		device_link_del(phydev->devlink);
1862 
1863 	if (phydev->sysfs_links) {
1864 		if (dev)
1865 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1866 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1867 	}
1868 
1869 	if (!phydev->attached_dev)
1870 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1871 				  &dev_attr_phy_standalone.attr);
1872 
1873 	phy_suspend(phydev);
1874 	if (dev) {
1875 		phydev->attached_dev->phydev = NULL;
1876 		phydev->attached_dev = NULL;
1877 		phy_link_topo_del_phy(&dev->link_topo, phydev);
1878 	}
1879 	phydev->phylink = NULL;
1880 
1881 	if (!phydev->is_on_sfp_module)
1882 		phy_led_triggers_unregister(phydev);
1883 
1884 	if (phydev->mdio.dev.driver)
1885 		module_put(phydev->mdio.dev.driver->owner);
1886 
1887 	/* If the device had no specific driver before (i.e. - it
1888 	 * was using the generic driver), we unbind the device
1889 	 * from the generic driver so that there's a chance a
1890 	 * real driver could be loaded
1891 	 */
1892 	if (phy_driver_is_genphy(phydev) ||
1893 	    phy_driver_is_genphy_10g(phydev))
1894 		device_release_driver(&phydev->mdio.dev);
1895 
1896 	/* Assert the reset signal */
1897 	phy_device_reset(phydev, 1);
1898 
1899 	/*
1900 	 * The phydev might go away on the put_device() below, so avoid
1901 	 * a use-after-free bug by reading the underlying bus first.
1902 	 */
1903 	bus = phydev->mdio.bus;
1904 
1905 	put_device(&phydev->mdio.dev);
1906 	if (dev)
1907 		ndev_owner = dev->dev.parent->driver->owner;
1908 	if (ndev_owner != bus->owner)
1909 		module_put(bus->owner);
1910 }
1911 EXPORT_SYMBOL(phy_detach);
1912 
1913 int phy_suspend(struct phy_device *phydev)
1914 {
1915 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1916 	struct net_device *netdev = phydev->attached_dev;
1917 	struct phy_driver *phydrv = phydev->drv;
1918 	int ret;
1919 
1920 	if (phydev->suspended)
1921 		return 0;
1922 
1923 	phy_ethtool_get_wol(phydev, &wol);
1924 	phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled);
1925 	/* If the device has WOL enabled, we cannot suspend the PHY */
1926 	if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND))
1927 		return -EBUSY;
1928 
1929 	if (!phydrv || !phydrv->suspend)
1930 		return 0;
1931 
1932 	ret = phydrv->suspend(phydev);
1933 	if (!ret)
1934 		phydev->suspended = true;
1935 
1936 	return ret;
1937 }
1938 EXPORT_SYMBOL(phy_suspend);
1939 
1940 int __phy_resume(struct phy_device *phydev)
1941 {
1942 	struct phy_driver *phydrv = phydev->drv;
1943 	int ret;
1944 
1945 	lockdep_assert_held(&phydev->lock);
1946 
1947 	if (!phydrv || !phydrv->resume)
1948 		return 0;
1949 
1950 	ret = phydrv->resume(phydev);
1951 	if (!ret)
1952 		phydev->suspended = false;
1953 
1954 	return ret;
1955 }
1956 EXPORT_SYMBOL(__phy_resume);
1957 
1958 int phy_resume(struct phy_device *phydev)
1959 {
1960 	int ret;
1961 
1962 	mutex_lock(&phydev->lock);
1963 	ret = __phy_resume(phydev);
1964 	mutex_unlock(&phydev->lock);
1965 
1966 	return ret;
1967 }
1968 EXPORT_SYMBOL(phy_resume);
1969 
1970 int phy_loopback(struct phy_device *phydev, bool enable)
1971 {
1972 	int ret = 0;
1973 
1974 	if (!phydev->drv)
1975 		return -EIO;
1976 
1977 	mutex_lock(&phydev->lock);
1978 
1979 	if (enable && phydev->loopback_enabled) {
1980 		ret = -EBUSY;
1981 		goto out;
1982 	}
1983 
1984 	if (!enable && !phydev->loopback_enabled) {
1985 		ret = -EINVAL;
1986 		goto out;
1987 	}
1988 
1989 	if (phydev->drv->set_loopback)
1990 		ret = phydev->drv->set_loopback(phydev, enable);
1991 	else
1992 		ret = genphy_loopback(phydev, enable);
1993 
1994 	if (ret)
1995 		goto out;
1996 
1997 	phydev->loopback_enabled = enable;
1998 
1999 out:
2000 	mutex_unlock(&phydev->lock);
2001 	return ret;
2002 }
2003 EXPORT_SYMBOL(phy_loopback);
2004 
2005 /**
2006  * phy_reset_after_clk_enable - perform a PHY reset if needed
2007  * @phydev: target phy_device struct
2008  *
2009  * Description: Some PHYs are known to need a reset after their refclk was
2010  *   enabled. This function evaluates the flags and perform the reset if it's
2011  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
2012  *   was reset.
2013  */
2014 int phy_reset_after_clk_enable(struct phy_device *phydev)
2015 {
2016 	if (!phydev || !phydev->drv)
2017 		return -ENODEV;
2018 
2019 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
2020 		phy_device_reset(phydev, 1);
2021 		phy_device_reset(phydev, 0);
2022 		return 1;
2023 	}
2024 
2025 	return 0;
2026 }
2027 EXPORT_SYMBOL(phy_reset_after_clk_enable);
2028 
2029 /* Generic PHY support and helper functions */
2030 
2031 /**
2032  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
2033  * @phydev: target phy_device struct
2034  *
2035  * Description: Writes MII_ADVERTISE with the appropriate values,
2036  *   after sanitizing the values to make sure we only advertise
2037  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2038  *   hasn't changed, and > 0 if it has changed.
2039  */
2040 static int genphy_config_advert(struct phy_device *phydev)
2041 {
2042 	int err, bmsr, changed = 0;
2043 	u32 adv;
2044 
2045 	/* Only allow advertising what this PHY supports */
2046 	linkmode_and(phydev->advertising, phydev->advertising,
2047 		     phydev->supported);
2048 
2049 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
2050 
2051 	/* Setup standard advertisement */
2052 	err = phy_modify_changed(phydev, MII_ADVERTISE,
2053 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
2054 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
2055 				 adv);
2056 	if (err < 0)
2057 		return err;
2058 	if (err > 0)
2059 		changed = 1;
2060 
2061 	bmsr = phy_read(phydev, MII_BMSR);
2062 	if (bmsr < 0)
2063 		return bmsr;
2064 
2065 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
2066 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
2067 	 * logical 1.
2068 	 */
2069 	if (!(bmsr & BMSR_ESTATEN))
2070 		return changed;
2071 
2072 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
2073 
2074 	err = phy_modify_changed(phydev, MII_CTRL1000,
2075 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
2076 				 adv);
2077 	if (err < 0)
2078 		return err;
2079 	if (err > 0)
2080 		changed = 1;
2081 
2082 	return changed;
2083 }
2084 
2085 /**
2086  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
2087  * @phydev: target phy_device struct
2088  *
2089  * Description: Writes MII_ADVERTISE with the appropriate values,
2090  *   after sanitizing the values to make sure we only advertise
2091  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2092  *   hasn't changed, and > 0 if it has changed. This function is intended
2093  *   for Clause 37 1000Base-X mode.
2094  */
2095 static int genphy_c37_config_advert(struct phy_device *phydev)
2096 {
2097 	u16 adv = 0;
2098 
2099 	/* Only allow advertising what this PHY supports */
2100 	linkmode_and(phydev->advertising, phydev->advertising,
2101 		     phydev->supported);
2102 
2103 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2104 			      phydev->advertising))
2105 		adv |= ADVERTISE_1000XFULL;
2106 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2107 			      phydev->advertising))
2108 		adv |= ADVERTISE_1000XPAUSE;
2109 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2110 			      phydev->advertising))
2111 		adv |= ADVERTISE_1000XPSE_ASYM;
2112 
2113 	return phy_modify_changed(phydev, MII_ADVERTISE,
2114 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
2115 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
2116 				  adv);
2117 }
2118 
2119 /**
2120  * genphy_config_eee_advert - disable unwanted eee mode advertisement
2121  * @phydev: target phy_device struct
2122  *
2123  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2124  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2125  *   changed, and 1 if it has changed.
2126  */
2127 int genphy_config_eee_advert(struct phy_device *phydev)
2128 {
2129 	int err;
2130 
2131 	/* Nothing to disable */
2132 	if (!phydev->eee_broken_modes)
2133 		return 0;
2134 
2135 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2136 				     phydev->eee_broken_modes, 0);
2137 	/* If the call failed, we assume that EEE is not supported */
2138 	return err < 0 ? 0 : err;
2139 }
2140 EXPORT_SYMBOL(genphy_config_eee_advert);
2141 
2142 /**
2143  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2144  * @phydev: target phy_device struct
2145  *
2146  * Description: Configures MII_BMCR to force speed/duplex
2147  *   to the values in phydev. Assumes that the values are valid.
2148  *   Please see phy_sanitize_settings().
2149  */
2150 int genphy_setup_forced(struct phy_device *phydev)
2151 {
2152 	u16 ctl;
2153 
2154 	phydev->pause = 0;
2155 	phydev->asym_pause = 0;
2156 
2157 	ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2158 
2159 	return phy_modify(phydev, MII_BMCR,
2160 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2161 }
2162 EXPORT_SYMBOL(genphy_setup_forced);
2163 
2164 static int genphy_setup_master_slave(struct phy_device *phydev)
2165 {
2166 	u16 ctl = 0;
2167 
2168 	if (!phydev->is_gigabit_capable)
2169 		return 0;
2170 
2171 	switch (phydev->master_slave_set) {
2172 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2173 		ctl |= CTL1000_PREFER_MASTER;
2174 		break;
2175 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2176 		break;
2177 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2178 		ctl |= CTL1000_AS_MASTER;
2179 		fallthrough;
2180 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2181 		ctl |= CTL1000_ENABLE_MASTER;
2182 		break;
2183 	case MASTER_SLAVE_CFG_UNKNOWN:
2184 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2185 		return 0;
2186 	default:
2187 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2188 		return -EOPNOTSUPP;
2189 	}
2190 
2191 	return phy_modify_changed(phydev, MII_CTRL1000,
2192 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2193 				   CTL1000_PREFER_MASTER), ctl);
2194 }
2195 
2196 int genphy_read_master_slave(struct phy_device *phydev)
2197 {
2198 	int cfg, state;
2199 	int val;
2200 
2201 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2202 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2203 
2204 	val = phy_read(phydev, MII_CTRL1000);
2205 	if (val < 0)
2206 		return val;
2207 
2208 	if (val & CTL1000_ENABLE_MASTER) {
2209 		if (val & CTL1000_AS_MASTER)
2210 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2211 		else
2212 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2213 	} else {
2214 		if (val & CTL1000_PREFER_MASTER)
2215 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2216 		else
2217 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2218 	}
2219 
2220 	val = phy_read(phydev, MII_STAT1000);
2221 	if (val < 0)
2222 		return val;
2223 
2224 	if (val & LPA_1000MSFAIL) {
2225 		state = MASTER_SLAVE_STATE_ERR;
2226 	} else if (phydev->link) {
2227 		/* this bits are valid only for active link */
2228 		if (val & LPA_1000MSRES)
2229 			state = MASTER_SLAVE_STATE_MASTER;
2230 		else
2231 			state = MASTER_SLAVE_STATE_SLAVE;
2232 	} else {
2233 		state = MASTER_SLAVE_STATE_UNKNOWN;
2234 	}
2235 
2236 	phydev->master_slave_get = cfg;
2237 	phydev->master_slave_state = state;
2238 
2239 	return 0;
2240 }
2241 EXPORT_SYMBOL(genphy_read_master_slave);
2242 
2243 /**
2244  * genphy_restart_aneg - Enable and Restart Autonegotiation
2245  * @phydev: target phy_device struct
2246  */
2247 int genphy_restart_aneg(struct phy_device *phydev)
2248 {
2249 	/* Don't isolate the PHY if we're negotiating */
2250 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2251 			  BMCR_ANENABLE | BMCR_ANRESTART);
2252 }
2253 EXPORT_SYMBOL(genphy_restart_aneg);
2254 
2255 /**
2256  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2257  * @phydev: target phy_device struct
2258  * @restart: whether aneg restart is requested
2259  *
2260  * Check, and restart auto-negotiation if needed.
2261  */
2262 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2263 {
2264 	int ret;
2265 
2266 	if (!restart) {
2267 		/* Advertisement hasn't changed, but maybe aneg was never on to
2268 		 * begin with?  Or maybe phy was isolated?
2269 		 */
2270 		ret = phy_read(phydev, MII_BMCR);
2271 		if (ret < 0)
2272 			return ret;
2273 
2274 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2275 			restart = true;
2276 	}
2277 
2278 	if (restart)
2279 		return genphy_restart_aneg(phydev);
2280 
2281 	return 0;
2282 }
2283 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2284 
2285 /**
2286  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2287  * @phydev: target phy_device struct
2288  * @changed: whether autoneg is requested
2289  *
2290  * Description: If auto-negotiation is enabled, we configure the
2291  *   advertising, and then restart auto-negotiation.  If it is not
2292  *   enabled, then we write the BMCR.
2293  */
2294 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2295 {
2296 	int err;
2297 
2298 	err = genphy_c45_an_config_eee_aneg(phydev);
2299 	if (err < 0)
2300 		return err;
2301 	else if (err)
2302 		changed = true;
2303 
2304 	err = genphy_setup_master_slave(phydev);
2305 	if (err < 0)
2306 		return err;
2307 	else if (err)
2308 		changed = true;
2309 
2310 	if (AUTONEG_ENABLE != phydev->autoneg)
2311 		return genphy_setup_forced(phydev);
2312 
2313 	err = genphy_config_advert(phydev);
2314 	if (err < 0) /* error */
2315 		return err;
2316 	else if (err)
2317 		changed = true;
2318 
2319 	return genphy_check_and_restart_aneg(phydev, changed);
2320 }
2321 EXPORT_SYMBOL(__genphy_config_aneg);
2322 
2323 /**
2324  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2325  * @phydev: target phy_device struct
2326  *
2327  * Description: If auto-negotiation is enabled, we configure the
2328  *   advertising, and then restart auto-negotiation.  If it is not
2329  *   enabled, then we write the BMCR. This function is intended
2330  *   for use with Clause 37 1000Base-X mode.
2331  */
2332 int genphy_c37_config_aneg(struct phy_device *phydev)
2333 {
2334 	int err, changed;
2335 
2336 	if (phydev->autoneg != AUTONEG_ENABLE)
2337 		return genphy_setup_forced(phydev);
2338 
2339 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2340 			 BMCR_SPEED1000);
2341 	if (err)
2342 		return err;
2343 
2344 	changed = genphy_c37_config_advert(phydev);
2345 	if (changed < 0) /* error */
2346 		return changed;
2347 
2348 	if (!changed) {
2349 		/* Advertisement hasn't changed, but maybe aneg was never on to
2350 		 * begin with?  Or maybe phy was isolated?
2351 		 */
2352 		int ctl = phy_read(phydev, MII_BMCR);
2353 
2354 		if (ctl < 0)
2355 			return ctl;
2356 
2357 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2358 			changed = 1; /* do restart aneg */
2359 	}
2360 
2361 	/* Only restart aneg if we are advertising something different
2362 	 * than we were before.
2363 	 */
2364 	if (changed > 0)
2365 		return genphy_restart_aneg(phydev);
2366 
2367 	return 0;
2368 }
2369 EXPORT_SYMBOL(genphy_c37_config_aneg);
2370 
2371 /**
2372  * genphy_aneg_done - return auto-negotiation status
2373  * @phydev: target phy_device struct
2374  *
2375  * Description: Reads the status register and returns 0 either if
2376  *   auto-negotiation is incomplete, or if there was an error.
2377  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2378  */
2379 int genphy_aneg_done(struct phy_device *phydev)
2380 {
2381 	int retval = phy_read(phydev, MII_BMSR);
2382 
2383 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2384 }
2385 EXPORT_SYMBOL(genphy_aneg_done);
2386 
2387 /**
2388  * genphy_update_link - update link status in @phydev
2389  * @phydev: target phy_device struct
2390  *
2391  * Description: Update the value in phydev->link to reflect the
2392  *   current link value.  In order to do this, we need to read
2393  *   the status register twice, keeping the second value.
2394  */
2395 int genphy_update_link(struct phy_device *phydev)
2396 {
2397 	int status = 0, bmcr;
2398 
2399 	bmcr = phy_read(phydev, MII_BMCR);
2400 	if (bmcr < 0)
2401 		return bmcr;
2402 
2403 	/* Autoneg is being started, therefore disregard BMSR value and
2404 	 * report link as down.
2405 	 */
2406 	if (bmcr & BMCR_ANRESTART)
2407 		goto done;
2408 
2409 	/* The link state is latched low so that momentary link
2410 	 * drops can be detected. Do not double-read the status
2411 	 * in polling mode to detect such short link drops except
2412 	 * the link was already down.
2413 	 */
2414 	if (!phy_polling_mode(phydev) || !phydev->link) {
2415 		status = phy_read(phydev, MII_BMSR);
2416 		if (status < 0)
2417 			return status;
2418 		else if (status & BMSR_LSTATUS)
2419 			goto done;
2420 	}
2421 
2422 	/* Read link and autonegotiation status */
2423 	status = phy_read(phydev, MII_BMSR);
2424 	if (status < 0)
2425 		return status;
2426 done:
2427 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2428 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2429 
2430 	/* Consider the case that autoneg was started and "aneg complete"
2431 	 * bit has been reset, but "link up" bit not yet.
2432 	 */
2433 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2434 		phydev->link = 0;
2435 
2436 	return 0;
2437 }
2438 EXPORT_SYMBOL(genphy_update_link);
2439 
2440 int genphy_read_lpa(struct phy_device *phydev)
2441 {
2442 	int lpa, lpagb;
2443 
2444 	if (phydev->autoneg == AUTONEG_ENABLE) {
2445 		if (!phydev->autoneg_complete) {
2446 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2447 							0);
2448 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2449 			return 0;
2450 		}
2451 
2452 		if (phydev->is_gigabit_capable) {
2453 			lpagb = phy_read(phydev, MII_STAT1000);
2454 			if (lpagb < 0)
2455 				return lpagb;
2456 
2457 			if (lpagb & LPA_1000MSFAIL) {
2458 				int adv = phy_read(phydev, MII_CTRL1000);
2459 
2460 				if (adv < 0)
2461 					return adv;
2462 
2463 				if (adv & CTL1000_ENABLE_MASTER)
2464 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2465 				else
2466 					phydev_err(phydev, "Master/Slave resolution failed\n");
2467 				return -ENOLINK;
2468 			}
2469 
2470 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2471 							lpagb);
2472 		}
2473 
2474 		lpa = phy_read(phydev, MII_LPA);
2475 		if (lpa < 0)
2476 			return lpa;
2477 
2478 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2479 	} else {
2480 		linkmode_zero(phydev->lp_advertising);
2481 	}
2482 
2483 	return 0;
2484 }
2485 EXPORT_SYMBOL(genphy_read_lpa);
2486 
2487 /**
2488  * genphy_read_status_fixed - read the link parameters for !aneg mode
2489  * @phydev: target phy_device struct
2490  *
2491  * Read the current duplex and speed state for a PHY operating with
2492  * autonegotiation disabled.
2493  */
2494 int genphy_read_status_fixed(struct phy_device *phydev)
2495 {
2496 	int bmcr = phy_read(phydev, MII_BMCR);
2497 
2498 	if (bmcr < 0)
2499 		return bmcr;
2500 
2501 	if (bmcr & BMCR_FULLDPLX)
2502 		phydev->duplex = DUPLEX_FULL;
2503 	else
2504 		phydev->duplex = DUPLEX_HALF;
2505 
2506 	if (bmcr & BMCR_SPEED1000)
2507 		phydev->speed = SPEED_1000;
2508 	else if (bmcr & BMCR_SPEED100)
2509 		phydev->speed = SPEED_100;
2510 	else
2511 		phydev->speed = SPEED_10;
2512 
2513 	return 0;
2514 }
2515 EXPORT_SYMBOL(genphy_read_status_fixed);
2516 
2517 /**
2518  * genphy_read_status - check the link status and update current link state
2519  * @phydev: target phy_device struct
2520  *
2521  * Description: Check the link, then figure out the current state
2522  *   by comparing what we advertise with what the link partner
2523  *   advertises.  Start by checking the gigabit possibilities,
2524  *   then move on to 10/100.
2525  */
2526 int genphy_read_status(struct phy_device *phydev)
2527 {
2528 	int err, old_link = phydev->link;
2529 
2530 	/* Update the link, but return if there was an error */
2531 	err = genphy_update_link(phydev);
2532 	if (err)
2533 		return err;
2534 
2535 	/* why bother the PHY if nothing can have changed */
2536 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2537 		return 0;
2538 
2539 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2540 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2541 	phydev->speed = SPEED_UNKNOWN;
2542 	phydev->duplex = DUPLEX_UNKNOWN;
2543 	phydev->pause = 0;
2544 	phydev->asym_pause = 0;
2545 
2546 	if (phydev->is_gigabit_capable) {
2547 		err = genphy_read_master_slave(phydev);
2548 		if (err < 0)
2549 			return err;
2550 	}
2551 
2552 	err = genphy_read_lpa(phydev);
2553 	if (err < 0)
2554 		return err;
2555 
2556 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2557 		phy_resolve_aneg_linkmode(phydev);
2558 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2559 		err = genphy_read_status_fixed(phydev);
2560 		if (err < 0)
2561 			return err;
2562 	}
2563 
2564 	return 0;
2565 }
2566 EXPORT_SYMBOL(genphy_read_status);
2567 
2568 /**
2569  * genphy_c37_read_status - check the link status and update current link state
2570  * @phydev: target phy_device struct
2571  *
2572  * Description: Check the link, then figure out the current state
2573  *   by comparing what we advertise with what the link partner
2574  *   advertises. This function is for Clause 37 1000Base-X mode.
2575  */
2576 int genphy_c37_read_status(struct phy_device *phydev)
2577 {
2578 	int lpa, err, old_link = phydev->link;
2579 
2580 	/* Update the link, but return if there was an error */
2581 	err = genphy_update_link(phydev);
2582 	if (err)
2583 		return err;
2584 
2585 	/* why bother the PHY if nothing can have changed */
2586 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2587 		return 0;
2588 
2589 	phydev->duplex = DUPLEX_UNKNOWN;
2590 	phydev->pause = 0;
2591 	phydev->asym_pause = 0;
2592 
2593 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2594 		lpa = phy_read(phydev, MII_LPA);
2595 		if (lpa < 0)
2596 			return lpa;
2597 
2598 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2599 				 phydev->lp_advertising, lpa & LPA_LPACK);
2600 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2601 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2602 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2603 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2604 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2605 				 phydev->lp_advertising,
2606 				 lpa & LPA_1000XPAUSE_ASYM);
2607 
2608 		phy_resolve_aneg_linkmode(phydev);
2609 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2610 		int bmcr = phy_read(phydev, MII_BMCR);
2611 
2612 		if (bmcr < 0)
2613 			return bmcr;
2614 
2615 		if (bmcr & BMCR_FULLDPLX)
2616 			phydev->duplex = DUPLEX_FULL;
2617 		else
2618 			phydev->duplex = DUPLEX_HALF;
2619 	}
2620 
2621 	return 0;
2622 }
2623 EXPORT_SYMBOL(genphy_c37_read_status);
2624 
2625 /**
2626  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2627  * @phydev: target phy_device struct
2628  *
2629  * Description: Perform a software PHY reset using the standard
2630  * BMCR_RESET bit and poll for the reset bit to be cleared.
2631  *
2632  * Returns: 0 on success, < 0 on failure
2633  */
2634 int genphy_soft_reset(struct phy_device *phydev)
2635 {
2636 	u16 res = BMCR_RESET;
2637 	int ret;
2638 
2639 	if (phydev->autoneg == AUTONEG_ENABLE)
2640 		res |= BMCR_ANRESTART;
2641 
2642 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2643 	if (ret < 0)
2644 		return ret;
2645 
2646 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2647 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2648 	 * be cleared after soft reset.
2649 	 */
2650 	phydev->suspended = 0;
2651 
2652 	ret = phy_poll_reset(phydev);
2653 	if (ret)
2654 		return ret;
2655 
2656 	/* BMCR may be reset to defaults */
2657 	if (phydev->autoneg == AUTONEG_DISABLE)
2658 		ret = genphy_setup_forced(phydev);
2659 
2660 	return ret;
2661 }
2662 EXPORT_SYMBOL(genphy_soft_reset);
2663 
2664 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2665 {
2666 	/* It seems there are cases where the interrupts are handled by another
2667 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2668 	 * need any other interraction from phylib. In this case, just trigger
2669 	 * the state machine directly.
2670 	 */
2671 	phy_trigger_machine(phydev);
2672 
2673 	return 0;
2674 }
2675 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2676 
2677 /**
2678  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2679  * @phydev: target phy_device struct
2680  *
2681  * Description: Reads the PHY's abilities and populates
2682  * phydev->supported accordingly.
2683  *
2684  * Returns: 0 on success, < 0 on failure
2685  */
2686 int genphy_read_abilities(struct phy_device *phydev)
2687 {
2688 	int val;
2689 
2690 	linkmode_set_bit_array(phy_basic_ports_array,
2691 			       ARRAY_SIZE(phy_basic_ports_array),
2692 			       phydev->supported);
2693 
2694 	val = phy_read(phydev, MII_BMSR);
2695 	if (val < 0)
2696 		return val;
2697 
2698 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2699 			 val & BMSR_ANEGCAPABLE);
2700 
2701 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2702 			 val & BMSR_100FULL);
2703 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2704 			 val & BMSR_100HALF);
2705 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2706 			 val & BMSR_10FULL);
2707 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2708 			 val & BMSR_10HALF);
2709 
2710 	if (val & BMSR_ESTATEN) {
2711 		val = phy_read(phydev, MII_ESTATUS);
2712 		if (val < 0)
2713 			return val;
2714 
2715 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2716 				 phydev->supported, val & ESTATUS_1000_TFULL);
2717 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2718 				 phydev->supported, val & ESTATUS_1000_THALF);
2719 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2720 				 phydev->supported, val & ESTATUS_1000_XFULL);
2721 	}
2722 
2723 	/* This is optional functionality. If not supported, we may get an error
2724 	 * which should be ignored.
2725 	 */
2726 	genphy_c45_read_eee_abilities(phydev);
2727 
2728 	return 0;
2729 }
2730 EXPORT_SYMBOL(genphy_read_abilities);
2731 
2732 /* This is used for the phy device which doesn't support the MMD extended
2733  * register access, but it does have side effect when we are trying to access
2734  * the MMD register via indirect method.
2735  */
2736 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2737 {
2738 	return -EOPNOTSUPP;
2739 }
2740 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2741 
2742 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2743 				 u16 regnum, u16 val)
2744 {
2745 	return -EOPNOTSUPP;
2746 }
2747 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2748 
2749 int genphy_suspend(struct phy_device *phydev)
2750 {
2751 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2752 }
2753 EXPORT_SYMBOL(genphy_suspend);
2754 
2755 int genphy_resume(struct phy_device *phydev)
2756 {
2757 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2758 }
2759 EXPORT_SYMBOL(genphy_resume);
2760 
2761 int genphy_loopback(struct phy_device *phydev, bool enable)
2762 {
2763 	if (enable) {
2764 		u16 val, ctl = BMCR_LOOPBACK;
2765 		int ret;
2766 
2767 		ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2768 
2769 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2770 
2771 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2772 					    val & BMSR_LSTATUS,
2773 				    5000, 500000, true);
2774 		if (ret)
2775 			return ret;
2776 	} else {
2777 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2778 
2779 		phy_config_aneg(phydev);
2780 	}
2781 
2782 	return 0;
2783 }
2784 EXPORT_SYMBOL(genphy_loopback);
2785 
2786 /**
2787  * phy_remove_link_mode - Remove a supported link mode
2788  * @phydev: phy_device structure to remove link mode from
2789  * @link_mode: Link mode to be removed
2790  *
2791  * Description: Some MACs don't support all link modes which the PHY
2792  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2793  * to remove a link mode.
2794  */
2795 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2796 {
2797 	linkmode_clear_bit(link_mode, phydev->supported);
2798 	phy_advertise_supported(phydev);
2799 }
2800 EXPORT_SYMBOL(phy_remove_link_mode);
2801 
2802 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2803 {
2804 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2805 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2806 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2807 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2808 }
2809 
2810 /**
2811  * phy_advertise_supported - Advertise all supported modes
2812  * @phydev: target phy_device struct
2813  *
2814  * Description: Called to advertise all supported modes, doesn't touch
2815  * pause mode advertising.
2816  */
2817 void phy_advertise_supported(struct phy_device *phydev)
2818 {
2819 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2820 
2821 	linkmode_copy(new, phydev->supported);
2822 	phy_copy_pause_bits(new, phydev->advertising);
2823 	linkmode_copy(phydev->advertising, new);
2824 }
2825 EXPORT_SYMBOL(phy_advertise_supported);
2826 
2827 /**
2828  * phy_support_sym_pause - Enable support of symmetrical pause
2829  * @phydev: target phy_device struct
2830  *
2831  * Description: Called by the MAC to indicate is supports symmetrical
2832  * Pause, but not asym pause.
2833  */
2834 void phy_support_sym_pause(struct phy_device *phydev)
2835 {
2836 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2837 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2838 }
2839 EXPORT_SYMBOL(phy_support_sym_pause);
2840 
2841 /**
2842  * phy_support_asym_pause - Enable support of asym pause
2843  * @phydev: target phy_device struct
2844  *
2845  * Description: Called by the MAC to indicate is supports Asym Pause.
2846  */
2847 void phy_support_asym_pause(struct phy_device *phydev)
2848 {
2849 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2850 }
2851 EXPORT_SYMBOL(phy_support_asym_pause);
2852 
2853 /**
2854  * phy_set_sym_pause - Configure symmetric Pause
2855  * @phydev: target phy_device struct
2856  * @rx: Receiver Pause is supported
2857  * @tx: Transmit Pause is supported
2858  * @autoneg: Auto neg should be used
2859  *
2860  * Description: Configure advertised Pause support depending on if
2861  * receiver pause and pause auto neg is supported. Generally called
2862  * from the set_pauseparam .ndo.
2863  */
2864 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2865 		       bool autoneg)
2866 {
2867 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2868 
2869 	if (rx && tx && autoneg)
2870 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2871 				 phydev->supported);
2872 
2873 	linkmode_copy(phydev->advertising, phydev->supported);
2874 }
2875 EXPORT_SYMBOL(phy_set_sym_pause);
2876 
2877 /**
2878  * phy_set_asym_pause - Configure Pause and Asym Pause
2879  * @phydev: target phy_device struct
2880  * @rx: Receiver Pause is supported
2881  * @tx: Transmit Pause is supported
2882  *
2883  * Description: Configure advertised Pause support depending on if
2884  * transmit and receiver pause is supported. If there has been a
2885  * change in adverting, trigger a new autoneg. Generally called from
2886  * the set_pauseparam .ndo.
2887  */
2888 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2889 {
2890 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2891 
2892 	linkmode_copy(oldadv, phydev->advertising);
2893 	linkmode_set_pause(phydev->advertising, tx, rx);
2894 
2895 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2896 	    phydev->autoneg)
2897 		phy_start_aneg(phydev);
2898 }
2899 EXPORT_SYMBOL(phy_set_asym_pause);
2900 
2901 /**
2902  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2903  * @phydev: phy_device struct
2904  * @pp: requested pause configuration
2905  *
2906  * Description: Test if the PHY/MAC combination supports the Pause
2907  * configuration the user is requesting. Returns True if it is
2908  * supported, false otherwise.
2909  */
2910 bool phy_validate_pause(struct phy_device *phydev,
2911 			struct ethtool_pauseparam *pp)
2912 {
2913 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2914 			       phydev->supported) && pp->rx_pause)
2915 		return false;
2916 
2917 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2918 			       phydev->supported) &&
2919 	    pp->rx_pause != pp->tx_pause)
2920 		return false;
2921 
2922 	return true;
2923 }
2924 EXPORT_SYMBOL(phy_validate_pause);
2925 
2926 /**
2927  * phy_get_pause - resolve negotiated pause modes
2928  * @phydev: phy_device struct
2929  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2930  * enabled.
2931  * @rx_pause: pointer to bool to indicate whether receive pause should be
2932  * enabled.
2933  *
2934  * Resolve and return the flow control modes according to the negotiation
2935  * result. This includes checking that we are operating in full duplex mode.
2936  * See linkmode_resolve_pause() for further details.
2937  */
2938 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2939 {
2940 	if (phydev->duplex != DUPLEX_FULL) {
2941 		*tx_pause = false;
2942 		*rx_pause = false;
2943 		return;
2944 	}
2945 
2946 	return linkmode_resolve_pause(phydev->advertising,
2947 				      phydev->lp_advertising,
2948 				      tx_pause, rx_pause);
2949 }
2950 EXPORT_SYMBOL(phy_get_pause);
2951 
2952 #if IS_ENABLED(CONFIG_OF_MDIO)
2953 static int phy_get_int_delay_property(struct device *dev, const char *name)
2954 {
2955 	s32 int_delay;
2956 	int ret;
2957 
2958 	ret = device_property_read_u32(dev, name, &int_delay);
2959 	if (ret)
2960 		return ret;
2961 
2962 	return int_delay;
2963 }
2964 #else
2965 static int phy_get_int_delay_property(struct device *dev, const char *name)
2966 {
2967 	return -EINVAL;
2968 }
2969 #endif
2970 
2971 /**
2972  * phy_get_internal_delay - returns the index of the internal delay
2973  * @phydev: phy_device struct
2974  * @dev: pointer to the devices device struct
2975  * @delay_values: array of delays the PHY supports
2976  * @size: the size of the delay array
2977  * @is_rx: boolean to indicate to get the rx internal delay
2978  *
2979  * Returns the index within the array of internal delay passed in.
2980  * If the device property is not present then the interface type is checked
2981  * if the interface defines use of internal delay then a 1 is returned otherwise
2982  * a 0 is returned.
2983  * The array must be in ascending order. If PHY does not have an ascending order
2984  * array then size = 0 and the value of the delay property is returned.
2985  * Return -EINVAL if the delay is invalid or cannot be found.
2986  */
2987 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2988 			   const int *delay_values, int size, bool is_rx)
2989 {
2990 	s32 delay;
2991 	int i;
2992 
2993 	if (is_rx) {
2994 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2995 		if (delay < 0 && size == 0) {
2996 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2997 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2998 				return 1;
2999 			else
3000 				return 0;
3001 		}
3002 
3003 	} else {
3004 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
3005 		if (delay < 0 && size == 0) {
3006 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
3007 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
3008 				return 1;
3009 			else
3010 				return 0;
3011 		}
3012 	}
3013 
3014 	if (delay < 0)
3015 		return delay;
3016 
3017 	if (delay && size == 0)
3018 		return delay;
3019 
3020 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
3021 		phydev_err(phydev, "Delay %d is out of range\n", delay);
3022 		return -EINVAL;
3023 	}
3024 
3025 	if (delay == delay_values[0])
3026 		return 0;
3027 
3028 	for (i = 1; i < size; i++) {
3029 		if (delay == delay_values[i])
3030 			return i;
3031 
3032 		/* Find an approximate index by looking up the table */
3033 		if (delay > delay_values[i - 1] &&
3034 		    delay < delay_values[i]) {
3035 			if (delay - delay_values[i - 1] <
3036 			    delay_values[i] - delay)
3037 				return i - 1;
3038 			else
3039 				return i;
3040 		}
3041 	}
3042 
3043 	phydev_err(phydev, "error finding internal delay index for %d\n",
3044 		   delay);
3045 
3046 	return -EINVAL;
3047 }
3048 EXPORT_SYMBOL(phy_get_internal_delay);
3049 
3050 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
3051 {
3052 	return phydrv->config_intr && phydrv->handle_interrupt;
3053 }
3054 
3055 static int phy_led_set_brightness(struct led_classdev *led_cdev,
3056 				  enum led_brightness value)
3057 {
3058 	struct phy_led *phyled = to_phy_led(led_cdev);
3059 	struct phy_device *phydev = phyled->phydev;
3060 	int err;
3061 
3062 	mutex_lock(&phydev->lock);
3063 	err = phydev->drv->led_brightness_set(phydev, phyled->index, value);
3064 	mutex_unlock(&phydev->lock);
3065 
3066 	return err;
3067 }
3068 
3069 static int phy_led_blink_set(struct led_classdev *led_cdev,
3070 			     unsigned long *delay_on,
3071 			     unsigned long *delay_off)
3072 {
3073 	struct phy_led *phyled = to_phy_led(led_cdev);
3074 	struct phy_device *phydev = phyled->phydev;
3075 	int err;
3076 
3077 	mutex_lock(&phydev->lock);
3078 	err = phydev->drv->led_blink_set(phydev, phyled->index,
3079 					 delay_on, delay_off);
3080 	mutex_unlock(&phydev->lock);
3081 
3082 	return err;
3083 }
3084 
3085 static __maybe_unused struct device *
3086 phy_led_hw_control_get_device(struct led_classdev *led_cdev)
3087 {
3088 	struct phy_led *phyled = to_phy_led(led_cdev);
3089 	struct phy_device *phydev = phyled->phydev;
3090 
3091 	if (phydev->attached_dev)
3092 		return &phydev->attached_dev->dev;
3093 	return NULL;
3094 }
3095 
3096 static int __maybe_unused
3097 phy_led_hw_control_get(struct led_classdev *led_cdev,
3098 		       unsigned long *rules)
3099 {
3100 	struct phy_led *phyled = to_phy_led(led_cdev);
3101 	struct phy_device *phydev = phyled->phydev;
3102 	int err;
3103 
3104 	mutex_lock(&phydev->lock);
3105 	err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules);
3106 	mutex_unlock(&phydev->lock);
3107 
3108 	return err;
3109 }
3110 
3111 static int __maybe_unused
3112 phy_led_hw_control_set(struct led_classdev *led_cdev,
3113 		       unsigned long rules)
3114 {
3115 	struct phy_led *phyled = to_phy_led(led_cdev);
3116 	struct phy_device *phydev = phyled->phydev;
3117 	int err;
3118 
3119 	mutex_lock(&phydev->lock);
3120 	err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules);
3121 	mutex_unlock(&phydev->lock);
3122 
3123 	return err;
3124 }
3125 
3126 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev,
3127 						  unsigned long rules)
3128 {
3129 	struct phy_led *phyled = to_phy_led(led_cdev);
3130 	struct phy_device *phydev = phyled->phydev;
3131 	int err;
3132 
3133 	mutex_lock(&phydev->lock);
3134 	err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules);
3135 	mutex_unlock(&phydev->lock);
3136 
3137 	return err;
3138 }
3139 
3140 static void phy_leds_unregister(struct phy_device *phydev)
3141 {
3142 	struct phy_led *phyled;
3143 
3144 	list_for_each_entry(phyled, &phydev->leds, list) {
3145 		led_classdev_unregister(&phyled->led_cdev);
3146 	}
3147 }
3148 
3149 static int of_phy_led(struct phy_device *phydev,
3150 		      struct device_node *led)
3151 {
3152 	struct device *dev = &phydev->mdio.dev;
3153 	struct led_init_data init_data = {};
3154 	struct led_classdev *cdev;
3155 	struct phy_led *phyled;
3156 	u32 index;
3157 	int err;
3158 
3159 	phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL);
3160 	if (!phyled)
3161 		return -ENOMEM;
3162 
3163 	cdev = &phyled->led_cdev;
3164 	phyled->phydev = phydev;
3165 
3166 	err = of_property_read_u32(led, "reg", &index);
3167 	if (err)
3168 		return err;
3169 	if (index > U8_MAX)
3170 		return -EINVAL;
3171 
3172 	phyled->index = index;
3173 	if (phydev->drv->led_brightness_set)
3174 		cdev->brightness_set_blocking = phy_led_set_brightness;
3175 	if (phydev->drv->led_blink_set)
3176 		cdev->blink_set = phy_led_blink_set;
3177 
3178 #ifdef CONFIG_LEDS_TRIGGERS
3179 	if (phydev->drv->led_hw_is_supported &&
3180 	    phydev->drv->led_hw_control_set &&
3181 	    phydev->drv->led_hw_control_get) {
3182 		cdev->hw_control_is_supported = phy_led_hw_is_supported;
3183 		cdev->hw_control_set = phy_led_hw_control_set;
3184 		cdev->hw_control_get = phy_led_hw_control_get;
3185 		cdev->hw_control_trigger = "netdev";
3186 	}
3187 
3188 	cdev->hw_control_get_device = phy_led_hw_control_get_device;
3189 #endif
3190 	cdev->max_brightness = 1;
3191 	init_data.devicename = dev_name(&phydev->mdio.dev);
3192 	init_data.fwnode = of_fwnode_handle(led);
3193 	init_data.devname_mandatory = true;
3194 
3195 	err = led_classdev_register_ext(dev, cdev, &init_data);
3196 	if (err)
3197 		return err;
3198 
3199 	list_add(&phyled->list, &phydev->leds);
3200 
3201 	return 0;
3202 }
3203 
3204 static int of_phy_leds(struct phy_device *phydev)
3205 {
3206 	struct device_node *node = phydev->mdio.dev.of_node;
3207 	struct device_node *leds, *led;
3208 	int err;
3209 
3210 	if (!IS_ENABLED(CONFIG_OF_MDIO))
3211 		return 0;
3212 
3213 	if (!node)
3214 		return 0;
3215 
3216 	leds = of_get_child_by_name(node, "leds");
3217 	if (!leds)
3218 		return 0;
3219 
3220 	for_each_available_child_of_node(leds, led) {
3221 		err = of_phy_led(phydev, led);
3222 		if (err) {
3223 			of_node_put(led);
3224 			phy_leds_unregister(phydev);
3225 			return err;
3226 		}
3227 	}
3228 
3229 	return 0;
3230 }
3231 
3232 /**
3233  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
3234  * @fwnode: pointer to the mdio_device's fwnode
3235  *
3236  * If successful, returns a pointer to the mdio_device with the embedded
3237  * struct device refcount incremented by one, or NULL on failure.
3238  * The caller should call put_device() on the mdio_device after its use.
3239  */
3240 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
3241 {
3242 	struct device *d;
3243 
3244 	if (!fwnode)
3245 		return NULL;
3246 
3247 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
3248 	if (!d)
3249 		return NULL;
3250 
3251 	return to_mdio_device(d);
3252 }
3253 EXPORT_SYMBOL(fwnode_mdio_find_device);
3254 
3255 /**
3256  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
3257  *
3258  * @phy_fwnode: Pointer to the phy's fwnode.
3259  *
3260  * If successful, returns a pointer to the phy_device with the embedded
3261  * struct device refcount incremented by one, or NULL on failure.
3262  */
3263 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
3264 {
3265 	struct mdio_device *mdiodev;
3266 
3267 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
3268 	if (!mdiodev)
3269 		return NULL;
3270 
3271 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
3272 		return to_phy_device(&mdiodev->dev);
3273 
3274 	put_device(&mdiodev->dev);
3275 
3276 	return NULL;
3277 }
3278 EXPORT_SYMBOL(fwnode_phy_find_device);
3279 
3280 /**
3281  * device_phy_find_device - For the given device, get the phy_device
3282  * @dev: Pointer to the given device
3283  *
3284  * Refer return conditions of fwnode_phy_find_device().
3285  */
3286 struct phy_device *device_phy_find_device(struct device *dev)
3287 {
3288 	return fwnode_phy_find_device(dev_fwnode(dev));
3289 }
3290 EXPORT_SYMBOL_GPL(device_phy_find_device);
3291 
3292 /**
3293  * fwnode_get_phy_node - Get the phy_node using the named reference.
3294  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
3295  *
3296  * Refer return conditions of fwnode_find_reference().
3297  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
3298  * and "phy-device" are not supported in ACPI. DT supports all the three
3299  * named references to the phy node.
3300  */
3301 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode)
3302 {
3303 	struct fwnode_handle *phy_node;
3304 
3305 	/* Only phy-handle is used for ACPI */
3306 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3307 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3308 		return phy_node;
3309 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
3310 	if (IS_ERR(phy_node))
3311 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3312 	return phy_node;
3313 }
3314 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3315 
3316 /**
3317  * phy_probe - probe and init a PHY device
3318  * @dev: device to probe and init
3319  *
3320  * Take care of setting up the phy_device structure, set the state to READY.
3321  */
3322 static int phy_probe(struct device *dev)
3323 {
3324 	struct phy_device *phydev = to_phy_device(dev);
3325 	struct device_driver *drv = phydev->mdio.dev.driver;
3326 	struct phy_driver *phydrv = to_phy_driver(drv);
3327 	int err = 0;
3328 
3329 	phydev->drv = phydrv;
3330 
3331 	/* Disable the interrupt if the PHY doesn't support it
3332 	 * but the interrupt is still a valid one
3333 	 */
3334 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3335 		phydev->irq = PHY_POLL;
3336 
3337 	if (phydrv->flags & PHY_IS_INTERNAL)
3338 		phydev->is_internal = true;
3339 
3340 	/* Deassert the reset signal */
3341 	phy_device_reset(phydev, 0);
3342 
3343 	if (phydev->drv->probe) {
3344 		err = phydev->drv->probe(phydev);
3345 		if (err)
3346 			goto out;
3347 	}
3348 
3349 	phy_disable_interrupts(phydev);
3350 
3351 	/* Start out supporting everything. Eventually,
3352 	 * a controller will attach, and may modify one
3353 	 * or both of these values
3354 	 */
3355 	if (phydrv->features) {
3356 		linkmode_copy(phydev->supported, phydrv->features);
3357 		genphy_c45_read_eee_abilities(phydev);
3358 	}
3359 	else if (phydrv->get_features)
3360 		err = phydrv->get_features(phydev);
3361 	else if (phydev->is_c45)
3362 		err = genphy_c45_pma_read_abilities(phydev);
3363 	else
3364 		err = genphy_read_abilities(phydev);
3365 
3366 	if (err)
3367 		goto out;
3368 
3369 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3370 			       phydev->supported))
3371 		phydev->autoneg = 0;
3372 
3373 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3374 			      phydev->supported))
3375 		phydev->is_gigabit_capable = 1;
3376 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3377 			      phydev->supported))
3378 		phydev->is_gigabit_capable = 1;
3379 
3380 	of_set_phy_supported(phydev);
3381 	phy_advertise_supported(phydev);
3382 
3383 	/* Get PHY default EEE advertising modes and handle them as potentially
3384 	 * safe initial configuration.
3385 	 */
3386 	err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee);
3387 	if (err)
3388 		goto out;
3389 
3390 	/* There is no "enabled" flag. If PHY is advertising, assume it is
3391 	 * kind of enabled.
3392 	 */
3393 	phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee);
3394 
3395 	/* Some PHYs may advertise, by default, not support EEE modes. So,
3396 	 * we need to clean them.
3397 	 */
3398 	if (phydev->eee_enabled)
3399 		linkmode_and(phydev->advertising_eee, phydev->supported_eee,
3400 			     phydev->advertising_eee);
3401 
3402 	/* Get the EEE modes we want to prohibit. We will ask
3403 	 * the PHY stop advertising these mode later on
3404 	 */
3405 	of_set_phy_eee_broken(phydev);
3406 
3407 	/* The Pause Frame bits indicate that the PHY can support passing
3408 	 * pause frames. During autonegotiation, the PHYs will determine if
3409 	 * they should allow pause frames to pass.  The MAC driver should then
3410 	 * use that result to determine whether to enable flow control via
3411 	 * pause frames.
3412 	 *
3413 	 * Normally, PHY drivers should not set the Pause bits, and instead
3414 	 * allow phylib to do that.  However, there may be some situations
3415 	 * (e.g. hardware erratum) where the driver wants to set only one
3416 	 * of these bits.
3417 	 */
3418 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3419 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3420 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3421 				 phydev->supported);
3422 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3423 				 phydev->supported);
3424 	}
3425 
3426 	/* Set the state to READY by default */
3427 	phydev->state = PHY_READY;
3428 
3429 	/* Get the LEDs from the device tree, and instantiate standard
3430 	 * LEDs for them.
3431 	 */
3432 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3433 		err = of_phy_leds(phydev);
3434 
3435 out:
3436 	/* Re-assert the reset signal on error */
3437 	if (err)
3438 		phy_device_reset(phydev, 1);
3439 
3440 	return err;
3441 }
3442 
3443 static int phy_remove(struct device *dev)
3444 {
3445 	struct phy_device *phydev = to_phy_device(dev);
3446 
3447 	cancel_delayed_work_sync(&phydev->state_queue);
3448 
3449 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3450 		phy_leds_unregister(phydev);
3451 
3452 	phydev->state = PHY_DOWN;
3453 
3454 	sfp_bus_del_upstream(phydev->sfp_bus);
3455 	phydev->sfp_bus = NULL;
3456 
3457 	if (phydev->drv && phydev->drv->remove)
3458 		phydev->drv->remove(phydev);
3459 
3460 	/* Assert the reset signal */
3461 	phy_device_reset(phydev, 1);
3462 
3463 	phydev->drv = NULL;
3464 
3465 	return 0;
3466 }
3467 
3468 /**
3469  * phy_driver_register - register a phy_driver with the PHY layer
3470  * @new_driver: new phy_driver to register
3471  * @owner: module owning this PHY
3472  */
3473 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3474 {
3475 	int retval;
3476 
3477 	/* Either the features are hard coded, or dynamically
3478 	 * determined. It cannot be both.
3479 	 */
3480 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3481 		pr_err("%s: features and get_features must not both be set\n",
3482 		       new_driver->name);
3483 		return -EINVAL;
3484 	}
3485 
3486 	/* PHYLIB device drivers must not match using a DT compatible table
3487 	 * as this bypasses our checks that the mdiodev that is being matched
3488 	 * is backed by a struct phy_device. If such a case happens, we will
3489 	 * make out-of-bounds accesses and lockup in phydev->lock.
3490 	 */
3491 	if (WARN(new_driver->mdiodrv.driver.of_match_table,
3492 		 "%s: driver must not provide a DT match table\n",
3493 		 new_driver->name))
3494 		return -EINVAL;
3495 
3496 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3497 	new_driver->mdiodrv.driver.name = new_driver->name;
3498 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3499 	new_driver->mdiodrv.driver.probe = phy_probe;
3500 	new_driver->mdiodrv.driver.remove = phy_remove;
3501 	new_driver->mdiodrv.driver.owner = owner;
3502 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3503 
3504 	retval = driver_register(&new_driver->mdiodrv.driver);
3505 	if (retval) {
3506 		pr_err("%s: Error %d in registering driver\n",
3507 		       new_driver->name, retval);
3508 
3509 		return retval;
3510 	}
3511 
3512 	pr_debug("%s: Registered new driver\n", new_driver->name);
3513 
3514 	return 0;
3515 }
3516 EXPORT_SYMBOL(phy_driver_register);
3517 
3518 int phy_drivers_register(struct phy_driver *new_driver, int n,
3519 			 struct module *owner)
3520 {
3521 	int i, ret = 0;
3522 
3523 	for (i = 0; i < n; i++) {
3524 		ret = phy_driver_register(new_driver + i, owner);
3525 		if (ret) {
3526 			while (i-- > 0)
3527 				phy_driver_unregister(new_driver + i);
3528 			break;
3529 		}
3530 	}
3531 	return ret;
3532 }
3533 EXPORT_SYMBOL(phy_drivers_register);
3534 
3535 void phy_driver_unregister(struct phy_driver *drv)
3536 {
3537 	driver_unregister(&drv->mdiodrv.driver);
3538 }
3539 EXPORT_SYMBOL(phy_driver_unregister);
3540 
3541 void phy_drivers_unregister(struct phy_driver *drv, int n)
3542 {
3543 	int i;
3544 
3545 	for (i = 0; i < n; i++)
3546 		phy_driver_unregister(drv + i);
3547 }
3548 EXPORT_SYMBOL(phy_drivers_unregister);
3549 
3550 static struct phy_driver genphy_driver = {
3551 	.phy_id		= 0xffffffff,
3552 	.phy_id_mask	= 0xffffffff,
3553 	.name		= "Generic PHY",
3554 	.get_features	= genphy_read_abilities,
3555 	.suspend	= genphy_suspend,
3556 	.resume		= genphy_resume,
3557 	.set_loopback   = genphy_loopback,
3558 };
3559 
3560 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3561 	.get_sset_count		= phy_ethtool_get_sset_count,
3562 	.get_strings		= phy_ethtool_get_strings,
3563 	.get_stats		= phy_ethtool_get_stats,
3564 	.get_plca_cfg		= phy_ethtool_get_plca_cfg,
3565 	.set_plca_cfg		= phy_ethtool_set_plca_cfg,
3566 	.get_plca_status	= phy_ethtool_get_plca_status,
3567 	.start_cable_test	= phy_start_cable_test,
3568 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3569 };
3570 
3571 static const struct phylib_stubs __phylib_stubs = {
3572 	.hwtstamp_get = __phy_hwtstamp_get,
3573 	.hwtstamp_set = __phy_hwtstamp_set,
3574 };
3575 
3576 static void phylib_register_stubs(void)
3577 {
3578 	phylib_stubs = &__phylib_stubs;
3579 }
3580 
3581 static void phylib_unregister_stubs(void)
3582 {
3583 	phylib_stubs = NULL;
3584 }
3585 
3586 static int __init phy_init(void)
3587 {
3588 	int rc;
3589 
3590 	rtnl_lock();
3591 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3592 	phylib_register_stubs();
3593 	rtnl_unlock();
3594 
3595 	rc = mdio_bus_init();
3596 	if (rc)
3597 		goto err_ethtool_phy_ops;
3598 
3599 	features_init();
3600 
3601 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3602 	if (rc)
3603 		goto err_mdio_bus;
3604 
3605 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3606 	if (rc)
3607 		goto err_c45;
3608 
3609 	return 0;
3610 
3611 err_c45:
3612 	phy_driver_unregister(&genphy_c45_driver);
3613 err_mdio_bus:
3614 	mdio_bus_exit();
3615 err_ethtool_phy_ops:
3616 	rtnl_lock();
3617 	phylib_unregister_stubs();
3618 	ethtool_set_ethtool_phy_ops(NULL);
3619 	rtnl_unlock();
3620 
3621 	return rc;
3622 }
3623 
3624 static void __exit phy_exit(void)
3625 {
3626 	phy_driver_unregister(&genphy_c45_driver);
3627 	phy_driver_unregister(&genphy_driver);
3628 	mdio_bus_exit();
3629 	rtnl_lock();
3630 	phylib_unregister_stubs();
3631 	ethtool_set_ethtool_phy_ops(NULL);
3632 	rtnl_unlock();
3633 }
3634 
3635 subsys_initcall(phy_init);
3636 module_exit(phy_exit);
3637