xref: /linux/drivers/net/phy/phy_device.c (revision 9d027a35a52a4ea9400390ef4414e4e9dcd54193)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/mii.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/netdevice.h>
29 #include <linux/phy.h>
30 #include <linux/phylib_stubs.h>
31 #include <linux/phy_led_triggers.h>
32 #include <linux/pse-pd/pse.h>
33 #include <linux/property.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/sfp.h>
36 #include <linux/skbuff.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/uaccess.h>
40 #include <linux/unistd.h>
41 
42 MODULE_DESCRIPTION("PHY library");
43 MODULE_AUTHOR("Andy Fleming");
44 MODULE_LICENSE("GPL");
45 
46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
47 EXPORT_SYMBOL_GPL(phy_basic_features);
48 
49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
50 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
51 
52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init;
53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features);
54 
55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
56 EXPORT_SYMBOL_GPL(phy_gbit_features);
57 
58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
60 
61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
63 
64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
65 EXPORT_SYMBOL_GPL(phy_10gbit_features);
66 
67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
69 
70 const int phy_basic_ports_array[3] = {
71 	ETHTOOL_LINK_MODE_Autoneg_BIT,
72 	ETHTOOL_LINK_MODE_TP_BIT,
73 	ETHTOOL_LINK_MODE_MII_BIT,
74 };
75 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
76 
77 const int phy_fibre_port_array[1] = {
78 	ETHTOOL_LINK_MODE_FIBRE_BIT,
79 };
80 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
81 
82 const int phy_all_ports_features_array[7] = {
83 	ETHTOOL_LINK_MODE_Autoneg_BIT,
84 	ETHTOOL_LINK_MODE_TP_BIT,
85 	ETHTOOL_LINK_MODE_MII_BIT,
86 	ETHTOOL_LINK_MODE_FIBRE_BIT,
87 	ETHTOOL_LINK_MODE_AUI_BIT,
88 	ETHTOOL_LINK_MODE_BNC_BIT,
89 	ETHTOOL_LINK_MODE_Backplane_BIT,
90 };
91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
92 
93 const int phy_10_100_features_array[4] = {
94 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
95 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
96 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
97 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
98 };
99 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
100 
101 const int phy_basic_t1_features_array[3] = {
102 	ETHTOOL_LINK_MODE_TP_BIT,
103 	ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
104 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
105 };
106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
107 
108 const int phy_basic_t1s_p2mp_features_array[2] = {
109 	ETHTOOL_LINK_MODE_TP_BIT,
110 	ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT,
111 };
112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array);
113 
114 const int phy_gbit_features_array[2] = {
115 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
116 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
117 };
118 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
119 
120 const int phy_10gbit_features_array[1] = {
121 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
122 };
123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
124 
125 static const int phy_10gbit_fec_features_array[1] = {
126 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
127 };
128 
129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
131 
132 static const int phy_10gbit_full_features_array[] = {
133 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
134 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
135 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
136 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
137 };
138 
139 static const int phy_eee_cap1_features_array[] = {
140 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
141 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
142 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
143 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
144 	ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
145 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
146 };
147 
148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init;
149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features);
150 
151 static void features_init(void)
152 {
153 	/* 10/100 half/full*/
154 	linkmode_set_bit_array(phy_basic_ports_array,
155 			       ARRAY_SIZE(phy_basic_ports_array),
156 			       phy_basic_features);
157 	linkmode_set_bit_array(phy_10_100_features_array,
158 			       ARRAY_SIZE(phy_10_100_features_array),
159 			       phy_basic_features);
160 
161 	/* 100 full, TP */
162 	linkmode_set_bit_array(phy_basic_t1_features_array,
163 			       ARRAY_SIZE(phy_basic_t1_features_array),
164 			       phy_basic_t1_features);
165 
166 	/* 10 half, P2MP, TP */
167 	linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array,
168 			       ARRAY_SIZE(phy_basic_t1s_p2mp_features_array),
169 			       phy_basic_t1s_p2mp_features);
170 
171 	/* 10/100 half/full + 1000 half/full */
172 	linkmode_set_bit_array(phy_basic_ports_array,
173 			       ARRAY_SIZE(phy_basic_ports_array),
174 			       phy_gbit_features);
175 	linkmode_set_bit_array(phy_10_100_features_array,
176 			       ARRAY_SIZE(phy_10_100_features_array),
177 			       phy_gbit_features);
178 	linkmode_set_bit_array(phy_gbit_features_array,
179 			       ARRAY_SIZE(phy_gbit_features_array),
180 			       phy_gbit_features);
181 
182 	/* 10/100 half/full + 1000 half/full + fibre*/
183 	linkmode_set_bit_array(phy_basic_ports_array,
184 			       ARRAY_SIZE(phy_basic_ports_array),
185 			       phy_gbit_fibre_features);
186 	linkmode_set_bit_array(phy_10_100_features_array,
187 			       ARRAY_SIZE(phy_10_100_features_array),
188 			       phy_gbit_fibre_features);
189 	linkmode_set_bit_array(phy_gbit_features_array,
190 			       ARRAY_SIZE(phy_gbit_features_array),
191 			       phy_gbit_fibre_features);
192 	linkmode_set_bit_array(phy_fibre_port_array,
193 			       ARRAY_SIZE(phy_fibre_port_array),
194 			       phy_gbit_fibre_features);
195 
196 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
197 	linkmode_set_bit_array(phy_all_ports_features_array,
198 			       ARRAY_SIZE(phy_all_ports_features_array),
199 			       phy_gbit_all_ports_features);
200 	linkmode_set_bit_array(phy_10_100_features_array,
201 			       ARRAY_SIZE(phy_10_100_features_array),
202 			       phy_gbit_all_ports_features);
203 	linkmode_set_bit_array(phy_gbit_features_array,
204 			       ARRAY_SIZE(phy_gbit_features_array),
205 			       phy_gbit_all_ports_features);
206 
207 	/* 10/100 half/full + 1000 half/full + 10G full*/
208 	linkmode_set_bit_array(phy_all_ports_features_array,
209 			       ARRAY_SIZE(phy_all_ports_features_array),
210 			       phy_10gbit_features);
211 	linkmode_set_bit_array(phy_10_100_features_array,
212 			       ARRAY_SIZE(phy_10_100_features_array),
213 			       phy_10gbit_features);
214 	linkmode_set_bit_array(phy_gbit_features_array,
215 			       ARRAY_SIZE(phy_gbit_features_array),
216 			       phy_10gbit_features);
217 	linkmode_set_bit_array(phy_10gbit_features_array,
218 			       ARRAY_SIZE(phy_10gbit_features_array),
219 			       phy_10gbit_features);
220 
221 	/* 10/100/1000/10G full */
222 	linkmode_set_bit_array(phy_all_ports_features_array,
223 			       ARRAY_SIZE(phy_all_ports_features_array),
224 			       phy_10gbit_full_features);
225 	linkmode_set_bit_array(phy_10gbit_full_features_array,
226 			       ARRAY_SIZE(phy_10gbit_full_features_array),
227 			       phy_10gbit_full_features);
228 	/* 10G FEC only */
229 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
230 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
231 			       phy_10gbit_fec_features);
232 	linkmode_set_bit_array(phy_eee_cap1_features_array,
233 			       ARRAY_SIZE(phy_eee_cap1_features_array),
234 			       phy_eee_cap1_features);
235 
236 }
237 
238 void phy_device_free(struct phy_device *phydev)
239 {
240 	put_device(&phydev->mdio.dev);
241 }
242 EXPORT_SYMBOL(phy_device_free);
243 
244 static void phy_mdio_device_free(struct mdio_device *mdiodev)
245 {
246 	struct phy_device *phydev;
247 
248 	phydev = container_of(mdiodev, struct phy_device, mdio);
249 	phy_device_free(phydev);
250 }
251 
252 static void phy_device_release(struct device *dev)
253 {
254 	fwnode_handle_put(dev->fwnode);
255 	kfree(to_phy_device(dev));
256 }
257 
258 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
259 {
260 	struct phy_device *phydev;
261 
262 	phydev = container_of(mdiodev, struct phy_device, mdio);
263 	phy_device_remove(phydev);
264 }
265 
266 static struct phy_driver genphy_driver;
267 
268 static LIST_HEAD(phy_fixup_list);
269 static DEFINE_MUTEX(phy_fixup_lock);
270 
271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
272 {
273 	struct device_driver *drv = phydev->mdio.dev.driver;
274 	struct phy_driver *phydrv = to_phy_driver(drv);
275 	struct net_device *netdev = phydev->attached_dev;
276 
277 	if (!drv || !phydrv->suspend)
278 		return false;
279 
280 	/* PHY not attached? May suspend if the PHY has not already been
281 	 * suspended as part of a prior call to phy_disconnect() ->
282 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
283 	 * MDIO bus driver and clock gated at this point.
284 	 */
285 	if (!netdev)
286 		goto out;
287 
288 	if (netdev->wol_enabled)
289 		return false;
290 
291 	/* As long as not all affected network drivers support the
292 	 * wol_enabled flag, let's check for hints that WoL is enabled.
293 	 * Don't suspend PHY if the attached netdev parent may wake up.
294 	 * The parent may point to a PCI device, as in tg3 driver.
295 	 */
296 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
297 		return false;
298 
299 	/* Also don't suspend PHY if the netdev itself may wakeup. This
300 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
301 	 * e.g. SoC devices.
302 	 */
303 	if (device_may_wakeup(&netdev->dev))
304 		return false;
305 
306 out:
307 	return !phydev->suspended;
308 }
309 
310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
311 {
312 	struct phy_device *phydev = to_phy_device(dev);
313 
314 	if (phydev->mac_managed_pm)
315 		return 0;
316 
317 	/* Wakeup interrupts may occur during the system sleep transition when
318 	 * the PHY is inaccessible. Set flag to postpone handling until the PHY
319 	 * has resumed. Wait for concurrent interrupt handler to complete.
320 	 */
321 	if (phy_interrupt_is_valid(phydev)) {
322 		phydev->irq_suspended = 1;
323 		synchronize_irq(phydev->irq);
324 	}
325 
326 	/* We must stop the state machine manually, otherwise it stops out of
327 	 * control, possibly with the phydev->lock held. Upon resume, netdev
328 	 * may call phy routines that try to grab the same lock, and that may
329 	 * lead to a deadlock.
330 	 */
331 	if (phydev->attached_dev && phydev->adjust_link)
332 		phy_stop_machine(phydev);
333 
334 	if (!mdio_bus_phy_may_suspend(phydev))
335 		return 0;
336 
337 	phydev->suspended_by_mdio_bus = 1;
338 
339 	return phy_suspend(phydev);
340 }
341 
342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
343 {
344 	struct phy_device *phydev = to_phy_device(dev);
345 	int ret;
346 
347 	if (phydev->mac_managed_pm)
348 		return 0;
349 
350 	if (!phydev->suspended_by_mdio_bus)
351 		goto no_resume;
352 
353 	phydev->suspended_by_mdio_bus = 0;
354 
355 	/* If we managed to get here with the PHY state machine in a state
356 	 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
357 	 * that something went wrong and we should most likely be using
358 	 * MAC managed PM, but we are not.
359 	 */
360 	WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
361 		phydev->state != PHY_UP);
362 
363 	ret = phy_init_hw(phydev);
364 	if (ret < 0)
365 		return ret;
366 
367 	ret = phy_resume(phydev);
368 	if (ret < 0)
369 		return ret;
370 no_resume:
371 	if (phy_interrupt_is_valid(phydev)) {
372 		phydev->irq_suspended = 0;
373 		synchronize_irq(phydev->irq);
374 
375 		/* Rerun interrupts which were postponed by phy_interrupt()
376 		 * because they occurred during the system sleep transition.
377 		 */
378 		if (phydev->irq_rerun) {
379 			phydev->irq_rerun = 0;
380 			enable_irq(phydev->irq);
381 			irq_wake_thread(phydev->irq, phydev);
382 		}
383 	}
384 
385 	if (phydev->attached_dev && phydev->adjust_link)
386 		phy_start_machine(phydev);
387 
388 	return 0;
389 }
390 
391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
392 			 mdio_bus_phy_resume);
393 
394 /**
395  * phy_register_fixup - creates a new phy_fixup and adds it to the list
396  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
397  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
398  *	It can also be PHY_ANY_UID
399  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
400  *	comparison
401  * @run: The actual code to be run when a matching PHY is found
402  */
403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
404 		       int (*run)(struct phy_device *))
405 {
406 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
407 
408 	if (!fixup)
409 		return -ENOMEM;
410 
411 	strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
412 	fixup->phy_uid = phy_uid;
413 	fixup->phy_uid_mask = phy_uid_mask;
414 	fixup->run = run;
415 
416 	mutex_lock(&phy_fixup_lock);
417 	list_add_tail(&fixup->list, &phy_fixup_list);
418 	mutex_unlock(&phy_fixup_lock);
419 
420 	return 0;
421 }
422 EXPORT_SYMBOL(phy_register_fixup);
423 
424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
426 			       int (*run)(struct phy_device *))
427 {
428 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
429 }
430 EXPORT_SYMBOL(phy_register_fixup_for_uid);
431 
432 /* Registers a fixup to be run on the PHY with id string bus_id */
433 int phy_register_fixup_for_id(const char *bus_id,
434 			      int (*run)(struct phy_device *))
435 {
436 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
437 }
438 EXPORT_SYMBOL(phy_register_fixup_for_id);
439 
440 /**
441  * phy_unregister_fixup - remove a phy_fixup from the list
442  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
443  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
444  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
445  */
446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
447 {
448 	struct list_head *pos, *n;
449 	struct phy_fixup *fixup;
450 	int ret;
451 
452 	ret = -ENODEV;
453 
454 	mutex_lock(&phy_fixup_lock);
455 	list_for_each_safe(pos, n, &phy_fixup_list) {
456 		fixup = list_entry(pos, struct phy_fixup, list);
457 
458 		if ((!strcmp(fixup->bus_id, bus_id)) &&
459 		    phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) {
460 			list_del(&fixup->list);
461 			kfree(fixup);
462 			ret = 0;
463 			break;
464 		}
465 	}
466 	mutex_unlock(&phy_fixup_lock);
467 
468 	return ret;
469 }
470 EXPORT_SYMBOL(phy_unregister_fixup);
471 
472 /* Unregisters a fixup of any PHY with the UID in phy_uid */
473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
474 {
475 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
476 }
477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
478 
479 /* Unregisters a fixup of the PHY with id string bus_id */
480 int phy_unregister_fixup_for_id(const char *bus_id)
481 {
482 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
483 }
484 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
485 
486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
487  * Fixups can be set to match any in one or more fields.
488  */
489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
490 {
491 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
492 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
493 			return 0;
494 
495 	if (!phy_id_compare(phydev->phy_id, fixup->phy_uid,
496 			    fixup->phy_uid_mask))
497 		if (fixup->phy_uid != PHY_ANY_UID)
498 			return 0;
499 
500 	return 1;
501 }
502 
503 /* Runs any matching fixups for this phydev */
504 static int phy_scan_fixups(struct phy_device *phydev)
505 {
506 	struct phy_fixup *fixup;
507 
508 	mutex_lock(&phy_fixup_lock);
509 	list_for_each_entry(fixup, &phy_fixup_list, list) {
510 		if (phy_needs_fixup(phydev, fixup)) {
511 			int err = fixup->run(phydev);
512 
513 			if (err < 0) {
514 				mutex_unlock(&phy_fixup_lock);
515 				return err;
516 			}
517 			phydev->has_fixups = true;
518 		}
519 	}
520 	mutex_unlock(&phy_fixup_lock);
521 
522 	return 0;
523 }
524 
525 static int phy_bus_match(struct device *dev, struct device_driver *drv)
526 {
527 	struct phy_device *phydev = to_phy_device(dev);
528 	struct phy_driver *phydrv = to_phy_driver(drv);
529 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
530 	int i;
531 
532 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
533 		return 0;
534 
535 	if (phydrv->match_phy_device)
536 		return phydrv->match_phy_device(phydev);
537 
538 	if (phydev->is_c45) {
539 		for (i = 1; i < num_ids; i++) {
540 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
541 				continue;
542 
543 			if (phy_id_compare(phydev->c45_ids.device_ids[i],
544 					   phydrv->phy_id, phydrv->phy_id_mask))
545 				return 1;
546 		}
547 		return 0;
548 	} else {
549 		return phy_id_compare(phydev->phy_id, phydrv->phy_id,
550 				      phydrv->phy_id_mask);
551 	}
552 }
553 
554 static ssize_t
555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
556 {
557 	struct phy_device *phydev = to_phy_device(dev);
558 
559 	return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
560 }
561 static DEVICE_ATTR_RO(phy_id);
562 
563 static ssize_t
564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
565 {
566 	struct phy_device *phydev = to_phy_device(dev);
567 	const char *mode = NULL;
568 
569 	if (phy_is_internal(phydev))
570 		mode = "internal";
571 	else
572 		mode = phy_modes(phydev->interface);
573 
574 	return sysfs_emit(buf, "%s\n", mode);
575 }
576 static DEVICE_ATTR_RO(phy_interface);
577 
578 static ssize_t
579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
580 		    char *buf)
581 {
582 	struct phy_device *phydev = to_phy_device(dev);
583 
584 	return sysfs_emit(buf, "%d\n", phydev->has_fixups);
585 }
586 static DEVICE_ATTR_RO(phy_has_fixups);
587 
588 static ssize_t phy_dev_flags_show(struct device *dev,
589 				  struct device_attribute *attr,
590 				  char *buf)
591 {
592 	struct phy_device *phydev = to_phy_device(dev);
593 
594 	return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags);
595 }
596 static DEVICE_ATTR_RO(phy_dev_flags);
597 
598 static struct attribute *phy_dev_attrs[] = {
599 	&dev_attr_phy_id.attr,
600 	&dev_attr_phy_interface.attr,
601 	&dev_attr_phy_has_fixups.attr,
602 	&dev_attr_phy_dev_flags.attr,
603 	NULL,
604 };
605 ATTRIBUTE_GROUPS(phy_dev);
606 
607 static const struct device_type mdio_bus_phy_type = {
608 	.name = "PHY",
609 	.groups = phy_dev_groups,
610 	.release = phy_device_release,
611 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
612 };
613 
614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
615 {
616 	int ret;
617 
618 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
619 			     MDIO_ID_ARGS(phy_id));
620 	/* We only check for failures in executing the usermode binary,
621 	 * not whether a PHY driver module exists for the PHY ID.
622 	 * Accept -ENOENT because this may occur in case no initramfs exists,
623 	 * then modprobe isn't available.
624 	 */
625 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
626 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
627 			   ret, (unsigned long)phy_id);
628 		return ret;
629 	}
630 
631 	return 0;
632 }
633 
634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
635 				     bool is_c45,
636 				     struct phy_c45_device_ids *c45_ids)
637 {
638 	struct phy_device *dev;
639 	struct mdio_device *mdiodev;
640 	int ret = 0;
641 
642 	/* We allocate the device, and initialize the default values */
643 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
644 	if (!dev)
645 		return ERR_PTR(-ENOMEM);
646 
647 	mdiodev = &dev->mdio;
648 	mdiodev->dev.parent = &bus->dev;
649 	mdiodev->dev.bus = &mdio_bus_type;
650 	mdiodev->dev.type = &mdio_bus_phy_type;
651 	mdiodev->bus = bus;
652 	mdiodev->bus_match = phy_bus_match;
653 	mdiodev->addr = addr;
654 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
655 	mdiodev->device_free = phy_mdio_device_free;
656 	mdiodev->device_remove = phy_mdio_device_remove;
657 	mdiodev->reset_state = -1;
658 
659 	dev->speed = SPEED_UNKNOWN;
660 	dev->duplex = DUPLEX_UNKNOWN;
661 	dev->pause = 0;
662 	dev->asym_pause = 0;
663 	dev->link = 0;
664 	dev->port = PORT_TP;
665 	dev->interface = PHY_INTERFACE_MODE_GMII;
666 
667 	dev->autoneg = AUTONEG_ENABLE;
668 
669 	dev->pma_extable = -ENODATA;
670 	dev->is_c45 = is_c45;
671 	dev->phy_id = phy_id;
672 	if (c45_ids)
673 		dev->c45_ids = *c45_ids;
674 	dev->irq = bus->irq[addr];
675 
676 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
677 	device_initialize(&mdiodev->dev);
678 
679 	dev->state = PHY_DOWN;
680 	INIT_LIST_HEAD(&dev->leds);
681 
682 	mutex_init(&dev->lock);
683 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
684 
685 	/* Request the appropriate module unconditionally; don't
686 	 * bother trying to do so only if it isn't already loaded,
687 	 * because that gets complicated. A hotplug event would have
688 	 * done an unconditional modprobe anyway.
689 	 * We don't do normal hotplug because it won't work for MDIO
690 	 * -- because it relies on the device staying around for long
691 	 * enough for the driver to get loaded. With MDIO, the NIC
692 	 * driver will get bored and give up as soon as it finds that
693 	 * there's no driver _already_ loaded.
694 	 */
695 	if (is_c45 && c45_ids) {
696 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
697 		int i;
698 
699 		for (i = 1; i < num_ids; i++) {
700 			if (c45_ids->device_ids[i] == 0xffffffff)
701 				continue;
702 
703 			ret = phy_request_driver_module(dev,
704 						c45_ids->device_ids[i]);
705 			if (ret)
706 				break;
707 		}
708 	} else {
709 		ret = phy_request_driver_module(dev, phy_id);
710 	}
711 
712 	if (ret) {
713 		put_device(&mdiodev->dev);
714 		dev = ERR_PTR(ret);
715 	}
716 
717 	return dev;
718 }
719 EXPORT_SYMBOL(phy_device_create);
720 
721 /* phy_c45_probe_present - checks to see if a MMD is present in the package
722  * @bus: the target MII bus
723  * @prtad: PHY package address on the MII bus
724  * @devad: PHY device (MMD) address
725  *
726  * Read the MDIO_STAT2 register, and check whether a device is responding
727  * at this address.
728  *
729  * Returns: negative error number on bus access error, zero if no device
730  * is responding, or positive if a device is present.
731  */
732 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
733 {
734 	int stat2;
735 
736 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
737 	if (stat2 < 0)
738 		return stat2;
739 
740 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
741 }
742 
743 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
744  * @bus: the target MII bus
745  * @addr: PHY address on the MII bus
746  * @dev_addr: MMD address in the PHY.
747  * @devices_in_package: where to store the devices in package information.
748  *
749  * Description: reads devices in package registers of a MMD at @dev_addr
750  * from PHY at @addr on @bus.
751  *
752  * Returns: 0 on success, -EIO on failure.
753  */
754 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
755 				   u32 *devices_in_package)
756 {
757 	int phy_reg;
758 
759 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
760 	if (phy_reg < 0)
761 		return -EIO;
762 	*devices_in_package = phy_reg << 16;
763 
764 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
765 	if (phy_reg < 0)
766 		return -EIO;
767 	*devices_in_package |= phy_reg;
768 
769 	return 0;
770 }
771 
772 /**
773  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
774  * @bus: the target MII bus
775  * @addr: PHY address on the MII bus
776  * @c45_ids: where to store the c45 ID information.
777  *
778  * Read the PHY "devices in package". If this appears to be valid, read
779  * the PHY identifiers for each device. Return the "devices in package"
780  * and identifiers in @c45_ids.
781  *
782  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
783  * the "devices in package" is invalid.
784  */
785 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
786 			   struct phy_c45_device_ids *c45_ids)
787 {
788 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
789 	u32 devs_in_pkg = 0;
790 	int i, ret, phy_reg;
791 
792 	/* Find first non-zero Devices In package. Device zero is reserved
793 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
794 	 */
795 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
796 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
797 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
798 			/* Check that there is a device present at this
799 			 * address before reading the devices-in-package
800 			 * register to avoid reading garbage from the PHY.
801 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
802 			 * compliant.
803 			 */
804 			ret = phy_c45_probe_present(bus, addr, i);
805 			if (ret < 0)
806 				return -EIO;
807 
808 			if (!ret)
809 				continue;
810 		}
811 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
812 		if (phy_reg < 0)
813 			return -EIO;
814 	}
815 
816 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
817 		/* If mostly Fs, there is no device there, then let's probe
818 		 * MMD 0, as some 10G PHYs have zero Devices In package,
819 		 * e.g. Cortina CS4315/CS4340 PHY.
820 		 */
821 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
822 		if (phy_reg < 0)
823 			return -EIO;
824 
825 		/* no device there, let's get out of here */
826 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
827 			return -ENODEV;
828 	}
829 
830 	/* Now probe Device Identifiers for each device present. */
831 	for (i = 1; i < num_ids; i++) {
832 		if (!(devs_in_pkg & (1 << i)))
833 			continue;
834 
835 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
836 			/* Probe the "Device Present" bits for the vendor MMDs
837 			 * to ignore these if they do not contain IEEE 802.3
838 			 * registers.
839 			 */
840 			ret = phy_c45_probe_present(bus, addr, i);
841 			if (ret < 0)
842 				return ret;
843 
844 			if (!ret)
845 				continue;
846 		}
847 
848 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
849 		if (phy_reg < 0)
850 			return -EIO;
851 		c45_ids->device_ids[i] = phy_reg << 16;
852 
853 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
854 		if (phy_reg < 0)
855 			return -EIO;
856 		c45_ids->device_ids[i] |= phy_reg;
857 	}
858 
859 	c45_ids->devices_in_package = devs_in_pkg;
860 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
861 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
862 
863 	return 0;
864 }
865 
866 /**
867  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
868  * @bus: the target MII bus
869  * @addr: PHY address on the MII bus
870  * @phy_id: where to store the ID retrieved.
871  *
872  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
873  * placing it in @phy_id. Return zero on successful read and the ID is
874  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
875  * or invalid ID.
876  */
877 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
878 {
879 	int phy_reg;
880 
881 	/* Grab the bits from PHYIR1, and put them in the upper half */
882 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
883 	if (phy_reg < 0) {
884 		/* returning -ENODEV doesn't stop bus scanning */
885 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
886 	}
887 
888 	*phy_id = phy_reg << 16;
889 
890 	/* Grab the bits from PHYIR2, and put them in the lower half */
891 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
892 	if (phy_reg < 0) {
893 		/* returning -ENODEV doesn't stop bus scanning */
894 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
895 	}
896 
897 	*phy_id |= phy_reg;
898 
899 	/* If the phy_id is mostly Fs, there is no device there */
900 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
901 		return -ENODEV;
902 
903 	return 0;
904 }
905 
906 /* Extract the phy ID from the compatible string of the form
907  * ethernet-phy-idAAAA.BBBB.
908  */
909 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
910 {
911 	unsigned int upper, lower;
912 	const char *cp;
913 	int ret;
914 
915 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
916 	if (ret)
917 		return ret;
918 
919 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
920 		return -EINVAL;
921 
922 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
923 	return 0;
924 }
925 EXPORT_SYMBOL(fwnode_get_phy_id);
926 
927 /**
928  * get_phy_device - reads the specified PHY device and returns its @phy_device
929  *		    struct
930  * @bus: the target MII bus
931  * @addr: PHY address on the MII bus
932  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
933  *
934  * Probe for a PHY at @addr on @bus.
935  *
936  * When probing for a clause 22 PHY, then read the ID registers. If we find
937  * a valid ID, allocate and return a &struct phy_device.
938  *
939  * When probing for a clause 45 PHY, read the "devices in package" registers.
940  * If the "devices in package" appears valid, read the ID registers for each
941  * MMD, allocate and return a &struct phy_device.
942  *
943  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
944  * no PHY present, or %-EIO on bus access error.
945  */
946 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
947 {
948 	struct phy_c45_device_ids c45_ids;
949 	u32 phy_id = 0;
950 	int r;
951 
952 	c45_ids.devices_in_package = 0;
953 	c45_ids.mmds_present = 0;
954 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
955 
956 	if (is_c45)
957 		r = get_phy_c45_ids(bus, addr, &c45_ids);
958 	else
959 		r = get_phy_c22_id(bus, addr, &phy_id);
960 
961 	if (r)
962 		return ERR_PTR(r);
963 
964 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
965 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
966 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
967 	 * space, if successful, create the C45 PHY device.
968 	 */
969 	if (!is_c45 && phy_id == 0 && bus->read_c45) {
970 		r = get_phy_c45_ids(bus, addr, &c45_ids);
971 		if (!r)
972 			return phy_device_create(bus, addr, phy_id,
973 						 true, &c45_ids);
974 	}
975 
976 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
977 }
978 EXPORT_SYMBOL(get_phy_device);
979 
980 /**
981  * phy_device_register - Register the phy device on the MDIO bus
982  * @phydev: phy_device structure to be added to the MDIO bus
983  */
984 int phy_device_register(struct phy_device *phydev)
985 {
986 	int err;
987 
988 	err = mdiobus_register_device(&phydev->mdio);
989 	if (err)
990 		return err;
991 
992 	/* Deassert the reset signal */
993 	phy_device_reset(phydev, 0);
994 
995 	/* Run all of the fixups for this PHY */
996 	err = phy_scan_fixups(phydev);
997 	if (err) {
998 		phydev_err(phydev, "failed to initialize\n");
999 		goto out;
1000 	}
1001 
1002 	err = device_add(&phydev->mdio.dev);
1003 	if (err) {
1004 		phydev_err(phydev, "failed to add\n");
1005 		goto out;
1006 	}
1007 
1008 	return 0;
1009 
1010  out:
1011 	/* Assert the reset signal */
1012 	phy_device_reset(phydev, 1);
1013 
1014 	mdiobus_unregister_device(&phydev->mdio);
1015 	return err;
1016 }
1017 EXPORT_SYMBOL(phy_device_register);
1018 
1019 /**
1020  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
1021  * @phydev: phy_device structure to remove
1022  *
1023  * This doesn't free the phy_device itself, it merely reverses the effects
1024  * of phy_device_register(). Use phy_device_free() to free the device
1025  * after calling this function.
1026  */
1027 void phy_device_remove(struct phy_device *phydev)
1028 {
1029 	unregister_mii_timestamper(phydev->mii_ts);
1030 	pse_control_put(phydev->psec);
1031 
1032 	device_del(&phydev->mdio.dev);
1033 
1034 	/* Assert the reset signal */
1035 	phy_device_reset(phydev, 1);
1036 
1037 	mdiobus_unregister_device(&phydev->mdio);
1038 }
1039 EXPORT_SYMBOL(phy_device_remove);
1040 
1041 /**
1042  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1043  * @phydev: phy_device structure to read 802.3-c45 IDs
1044  *
1045  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1046  * the "devices in package" is invalid.
1047  */
1048 int phy_get_c45_ids(struct phy_device *phydev)
1049 {
1050 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1051 			       &phydev->c45_ids);
1052 }
1053 EXPORT_SYMBOL(phy_get_c45_ids);
1054 
1055 /**
1056  * phy_find_first - finds the first PHY device on the bus
1057  * @bus: the target MII bus
1058  */
1059 struct phy_device *phy_find_first(struct mii_bus *bus)
1060 {
1061 	struct phy_device *phydev;
1062 	int addr;
1063 
1064 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1065 		phydev = mdiobus_get_phy(bus, addr);
1066 		if (phydev)
1067 			return phydev;
1068 	}
1069 	return NULL;
1070 }
1071 EXPORT_SYMBOL(phy_find_first);
1072 
1073 static void phy_link_change(struct phy_device *phydev, bool up)
1074 {
1075 	struct net_device *netdev = phydev->attached_dev;
1076 
1077 	if (up)
1078 		netif_carrier_on(netdev);
1079 	else
1080 		netif_carrier_off(netdev);
1081 	phydev->adjust_link(netdev);
1082 	if (phydev->mii_ts && phydev->mii_ts->link_state)
1083 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1084 }
1085 
1086 /**
1087  * phy_prepare_link - prepares the PHY layer to monitor link status
1088  * @phydev: target phy_device struct
1089  * @handler: callback function for link status change notifications
1090  *
1091  * Description: Tells the PHY infrastructure to handle the
1092  *   gory details on monitoring link status (whether through
1093  *   polling or an interrupt), and to call back to the
1094  *   connected device driver when the link status changes.
1095  *   If you want to monitor your own link state, don't call
1096  *   this function.
1097  */
1098 static void phy_prepare_link(struct phy_device *phydev,
1099 			     void (*handler)(struct net_device *))
1100 {
1101 	phydev->adjust_link = handler;
1102 }
1103 
1104 /**
1105  * phy_connect_direct - connect an ethernet device to a specific phy_device
1106  * @dev: the network device to connect
1107  * @phydev: the pointer to the phy device
1108  * @handler: callback function for state change notifications
1109  * @interface: PHY device's interface
1110  */
1111 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1112 		       void (*handler)(struct net_device *),
1113 		       phy_interface_t interface)
1114 {
1115 	int rc;
1116 
1117 	if (!dev)
1118 		return -EINVAL;
1119 
1120 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1121 	if (rc)
1122 		return rc;
1123 
1124 	phy_prepare_link(phydev, handler);
1125 	if (phy_interrupt_is_valid(phydev))
1126 		phy_request_interrupt(phydev);
1127 
1128 	return 0;
1129 }
1130 EXPORT_SYMBOL(phy_connect_direct);
1131 
1132 /**
1133  * phy_connect - connect an ethernet device to a PHY device
1134  * @dev: the network device to connect
1135  * @bus_id: the id string of the PHY device to connect
1136  * @handler: callback function for state change notifications
1137  * @interface: PHY device's interface
1138  *
1139  * Description: Convenience function for connecting ethernet
1140  *   devices to PHY devices.  The default behavior is for
1141  *   the PHY infrastructure to handle everything, and only notify
1142  *   the connected driver when the link status changes.  If you
1143  *   don't want, or can't use the provided functionality, you may
1144  *   choose to call only the subset of functions which provide
1145  *   the desired functionality.
1146  */
1147 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1148 			       void (*handler)(struct net_device *),
1149 			       phy_interface_t interface)
1150 {
1151 	struct phy_device *phydev;
1152 	struct device *d;
1153 	int rc;
1154 
1155 	/* Search the list of PHY devices on the mdio bus for the
1156 	 * PHY with the requested name
1157 	 */
1158 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1159 	if (!d) {
1160 		pr_err("PHY %s not found\n", bus_id);
1161 		return ERR_PTR(-ENODEV);
1162 	}
1163 	phydev = to_phy_device(d);
1164 
1165 	rc = phy_connect_direct(dev, phydev, handler, interface);
1166 	put_device(d);
1167 	if (rc)
1168 		return ERR_PTR(rc);
1169 
1170 	return phydev;
1171 }
1172 EXPORT_SYMBOL(phy_connect);
1173 
1174 /**
1175  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1176  *		    device
1177  * @phydev: target phy_device struct
1178  */
1179 void phy_disconnect(struct phy_device *phydev)
1180 {
1181 	if (phy_is_started(phydev))
1182 		phy_stop(phydev);
1183 
1184 	if (phy_interrupt_is_valid(phydev))
1185 		phy_free_interrupt(phydev);
1186 
1187 	phydev->adjust_link = NULL;
1188 
1189 	phy_detach(phydev);
1190 }
1191 EXPORT_SYMBOL(phy_disconnect);
1192 
1193 /**
1194  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1195  * @phydev: The PHY device to poll
1196  *
1197  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1198  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1199  *   register must be polled until the BMCR_RESET bit clears.
1200  *
1201  *   Furthermore, any attempts to write to PHY registers may have no effect
1202  *   or even generate MDIO bus errors until this is complete.
1203  *
1204  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1205  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1206  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1207  *   effort to support such broken PHYs, this function is separate from the
1208  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1209  *   and reapply all driver-specific and board-specific fixups.
1210  */
1211 static int phy_poll_reset(struct phy_device *phydev)
1212 {
1213 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1214 	int ret, val;
1215 
1216 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1217 				    50000, 600000, true);
1218 	if (ret)
1219 		return ret;
1220 	/* Some chips (smsc911x) may still need up to another 1ms after the
1221 	 * BMCR_RESET bit is cleared before they are usable.
1222 	 */
1223 	msleep(1);
1224 	return 0;
1225 }
1226 
1227 int phy_init_hw(struct phy_device *phydev)
1228 {
1229 	int ret = 0;
1230 
1231 	/* Deassert the reset signal */
1232 	phy_device_reset(phydev, 0);
1233 
1234 	if (!phydev->drv)
1235 		return 0;
1236 
1237 	if (phydev->drv->soft_reset) {
1238 		ret = phydev->drv->soft_reset(phydev);
1239 		if (ret < 0)
1240 			return ret;
1241 
1242 		/* see comment in genphy_soft_reset for an explanation */
1243 		phydev->suspended = 0;
1244 	}
1245 
1246 	ret = phy_scan_fixups(phydev);
1247 	if (ret < 0)
1248 		return ret;
1249 
1250 	phy_interface_zero(phydev->possible_interfaces);
1251 
1252 	if (phydev->drv->config_init) {
1253 		ret = phydev->drv->config_init(phydev);
1254 		if (ret < 0)
1255 			return ret;
1256 	}
1257 
1258 	if (phydev->drv->config_intr) {
1259 		ret = phydev->drv->config_intr(phydev);
1260 		if (ret < 0)
1261 			return ret;
1262 	}
1263 
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL(phy_init_hw);
1267 
1268 void phy_attached_info(struct phy_device *phydev)
1269 {
1270 	phy_attached_print(phydev, NULL);
1271 }
1272 EXPORT_SYMBOL(phy_attached_info);
1273 
1274 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1275 char *phy_attached_info_irq(struct phy_device *phydev)
1276 {
1277 	char *irq_str;
1278 	char irq_num[8];
1279 
1280 	switch(phydev->irq) {
1281 	case PHY_POLL:
1282 		irq_str = "POLL";
1283 		break;
1284 	case PHY_MAC_INTERRUPT:
1285 		irq_str = "MAC";
1286 		break;
1287 	default:
1288 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1289 		irq_str = irq_num;
1290 		break;
1291 	}
1292 
1293 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1294 }
1295 EXPORT_SYMBOL(phy_attached_info_irq);
1296 
1297 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1298 {
1299 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1300 	char *irq_str = phy_attached_info_irq(phydev);
1301 
1302 	if (!fmt) {
1303 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1304 			    phydev_name(phydev), irq_str);
1305 	} else {
1306 		va_list ap;
1307 
1308 		phydev_info(phydev, ATTACHED_FMT, unbound,
1309 			    phydev_name(phydev), irq_str);
1310 
1311 		va_start(ap, fmt);
1312 		vprintk(fmt, ap);
1313 		va_end(ap);
1314 	}
1315 	kfree(irq_str);
1316 }
1317 EXPORT_SYMBOL(phy_attached_print);
1318 
1319 static void phy_sysfs_create_links(struct phy_device *phydev)
1320 {
1321 	struct net_device *dev = phydev->attached_dev;
1322 	int err;
1323 
1324 	if (!dev)
1325 		return;
1326 
1327 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1328 				"attached_dev");
1329 	if (err)
1330 		return;
1331 
1332 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1333 				       &phydev->mdio.dev.kobj,
1334 				       "phydev");
1335 	if (err) {
1336 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1337 			kobject_name(&phydev->mdio.dev.kobj),
1338 			err);
1339 		/* non-fatal - some net drivers can use one netdevice
1340 		 * with more then one phy
1341 		 */
1342 	}
1343 
1344 	phydev->sysfs_links = true;
1345 }
1346 
1347 static ssize_t
1348 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1349 		    char *buf)
1350 {
1351 	struct phy_device *phydev = to_phy_device(dev);
1352 
1353 	return sysfs_emit(buf, "%d\n", !phydev->attached_dev);
1354 }
1355 static DEVICE_ATTR_RO(phy_standalone);
1356 
1357 /**
1358  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1359  * @upstream: pointer to the phy device
1360  * @bus: sfp bus representing cage being attached
1361  *
1362  * This is used to fill in the sfp_upstream_ops .attach member.
1363  */
1364 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1365 {
1366 	struct phy_device *phydev = upstream;
1367 
1368 	if (phydev->attached_dev)
1369 		phydev->attached_dev->sfp_bus = bus;
1370 	phydev->sfp_bus_attached = true;
1371 }
1372 EXPORT_SYMBOL(phy_sfp_attach);
1373 
1374 /**
1375  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1376  * @upstream: pointer to the phy device
1377  * @bus: sfp bus representing cage being attached
1378  *
1379  * This is used to fill in the sfp_upstream_ops .detach member.
1380  */
1381 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1382 {
1383 	struct phy_device *phydev = upstream;
1384 
1385 	if (phydev->attached_dev)
1386 		phydev->attached_dev->sfp_bus = NULL;
1387 	phydev->sfp_bus_attached = false;
1388 }
1389 EXPORT_SYMBOL(phy_sfp_detach);
1390 
1391 /**
1392  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1393  * @phydev: Pointer to phy_device
1394  * @ops: SFP's upstream operations
1395  */
1396 int phy_sfp_probe(struct phy_device *phydev,
1397 		  const struct sfp_upstream_ops *ops)
1398 {
1399 	struct sfp_bus *bus;
1400 	int ret = 0;
1401 
1402 	if (phydev->mdio.dev.fwnode) {
1403 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1404 		if (IS_ERR(bus))
1405 			return PTR_ERR(bus);
1406 
1407 		phydev->sfp_bus = bus;
1408 
1409 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1410 		sfp_bus_put(bus);
1411 	}
1412 	return ret;
1413 }
1414 EXPORT_SYMBOL(phy_sfp_probe);
1415 
1416 /**
1417  * phy_attach_direct - attach a network device to a given PHY device pointer
1418  * @dev: network device to attach
1419  * @phydev: Pointer to phy_device to attach
1420  * @flags: PHY device's dev_flags
1421  * @interface: PHY device's interface
1422  *
1423  * Description: Called by drivers to attach to a particular PHY
1424  *     device. The phy_device is found, and properly hooked up
1425  *     to the phy_driver.  If no driver is attached, then a
1426  *     generic driver is used.  The phy_device is given a ptr to
1427  *     the attaching device, and given a callback for link status
1428  *     change.  The phy_device is returned to the attaching driver.
1429  *     This function takes a reference on the phy device.
1430  */
1431 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1432 		      u32 flags, phy_interface_t interface)
1433 {
1434 	struct mii_bus *bus = phydev->mdio.bus;
1435 	struct device *d = &phydev->mdio.dev;
1436 	struct module *ndev_owner = NULL;
1437 	bool using_genphy = false;
1438 	int err;
1439 
1440 	/* For Ethernet device drivers that register their own MDIO bus, we
1441 	 * will have bus->owner match ndev_mod, so we do not want to increment
1442 	 * our own module->refcnt here, otherwise we would not be able to
1443 	 * unload later on.
1444 	 */
1445 	if (dev)
1446 		ndev_owner = dev->dev.parent->driver->owner;
1447 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1448 		phydev_err(phydev, "failed to get the bus module\n");
1449 		return -EIO;
1450 	}
1451 
1452 	get_device(d);
1453 
1454 	/* Assume that if there is no driver, that it doesn't
1455 	 * exist, and we should use the genphy driver.
1456 	 */
1457 	if (!d->driver) {
1458 		if (phydev->is_c45)
1459 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1460 		else
1461 			d->driver = &genphy_driver.mdiodrv.driver;
1462 
1463 		using_genphy = true;
1464 	}
1465 
1466 	if (!try_module_get(d->driver->owner)) {
1467 		phydev_err(phydev, "failed to get the device driver module\n");
1468 		err = -EIO;
1469 		goto error_put_device;
1470 	}
1471 
1472 	if (using_genphy) {
1473 		err = d->driver->probe(d);
1474 		if (err >= 0)
1475 			err = device_bind_driver(d);
1476 
1477 		if (err)
1478 			goto error_module_put;
1479 	}
1480 
1481 	if (phydev->attached_dev) {
1482 		dev_err(&dev->dev, "PHY already attached\n");
1483 		err = -EBUSY;
1484 		goto error;
1485 	}
1486 
1487 	phydev->phy_link_change = phy_link_change;
1488 	if (dev) {
1489 		phydev->attached_dev = dev;
1490 		dev->phydev = phydev;
1491 
1492 		if (phydev->sfp_bus_attached)
1493 			dev->sfp_bus = phydev->sfp_bus;
1494 	}
1495 
1496 	/* Some Ethernet drivers try to connect to a PHY device before
1497 	 * calling register_netdevice() -> netdev_register_kobject() and
1498 	 * does the dev->dev.kobj initialization. Here we only check for
1499 	 * success which indicates that the network device kobject is
1500 	 * ready. Once we do that we still need to keep track of whether
1501 	 * links were successfully set up or not for phy_detach() to
1502 	 * remove them accordingly.
1503 	 */
1504 	phydev->sysfs_links = false;
1505 
1506 	phy_sysfs_create_links(phydev);
1507 
1508 	if (!phydev->attached_dev) {
1509 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1510 					&dev_attr_phy_standalone.attr);
1511 		if (err)
1512 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1513 	}
1514 
1515 	phydev->dev_flags |= flags;
1516 
1517 	phydev->interface = interface;
1518 
1519 	phydev->state = PHY_READY;
1520 
1521 	phydev->interrupts = PHY_INTERRUPT_DISABLED;
1522 
1523 	/* PHYs can request to use poll mode even though they have an
1524 	 * associated interrupt line. This could be the case if they
1525 	 * detect a broken interrupt handling.
1526 	 */
1527 	if (phydev->dev_flags & PHY_F_NO_IRQ)
1528 		phydev->irq = PHY_POLL;
1529 
1530 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1531 	 * it to different value depending on the PHY configuration. If we have
1532 	 * the generic PHY driver we can't figure it out, thus set the old
1533 	 * legacy PORT_MII value.
1534 	 */
1535 	if (using_genphy)
1536 		phydev->port = PORT_MII;
1537 
1538 	/* Initial carrier state is off as the phy is about to be
1539 	 * (re)initialized.
1540 	 */
1541 	if (dev)
1542 		netif_carrier_off(phydev->attached_dev);
1543 
1544 	/* Do initial configuration here, now that
1545 	 * we have certain key parameters
1546 	 * (dev_flags and interface)
1547 	 */
1548 	err = phy_init_hw(phydev);
1549 	if (err)
1550 		goto error;
1551 
1552 	phy_resume(phydev);
1553 	phy_led_triggers_register(phydev);
1554 
1555 	/**
1556 	 * If the external phy used by current mac interface is managed by
1557 	 * another mac interface, so we should create a device link between
1558 	 * phy dev and mac dev.
1559 	 */
1560 	if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
1561 		phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
1562 						  DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
1563 
1564 	return err;
1565 
1566 error:
1567 	/* phy_detach() does all of the cleanup below */
1568 	phy_detach(phydev);
1569 	return err;
1570 
1571 error_module_put:
1572 	module_put(d->driver->owner);
1573 	d->driver = NULL;
1574 error_put_device:
1575 	put_device(d);
1576 	if (ndev_owner != bus->owner)
1577 		module_put(bus->owner);
1578 	return err;
1579 }
1580 EXPORT_SYMBOL(phy_attach_direct);
1581 
1582 /**
1583  * phy_attach - attach a network device to a particular PHY device
1584  * @dev: network device to attach
1585  * @bus_id: Bus ID of PHY device to attach
1586  * @interface: PHY device's interface
1587  *
1588  * Description: Same as phy_attach_direct() except that a PHY bus_id
1589  *     string is passed instead of a pointer to a struct phy_device.
1590  */
1591 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1592 			      phy_interface_t interface)
1593 {
1594 	struct bus_type *bus = &mdio_bus_type;
1595 	struct phy_device *phydev;
1596 	struct device *d;
1597 	int rc;
1598 
1599 	if (!dev)
1600 		return ERR_PTR(-EINVAL);
1601 
1602 	/* Search the list of PHY devices on the mdio bus for the
1603 	 * PHY with the requested name
1604 	 */
1605 	d = bus_find_device_by_name(bus, NULL, bus_id);
1606 	if (!d) {
1607 		pr_err("PHY %s not found\n", bus_id);
1608 		return ERR_PTR(-ENODEV);
1609 	}
1610 	phydev = to_phy_device(d);
1611 
1612 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1613 	put_device(d);
1614 	if (rc)
1615 		return ERR_PTR(rc);
1616 
1617 	return phydev;
1618 }
1619 EXPORT_SYMBOL(phy_attach);
1620 
1621 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1622 				      struct device_driver *driver)
1623 {
1624 	struct device *d = &phydev->mdio.dev;
1625 	bool ret = false;
1626 
1627 	if (!phydev->drv)
1628 		return ret;
1629 
1630 	get_device(d);
1631 	ret = d->driver == driver;
1632 	put_device(d);
1633 
1634 	return ret;
1635 }
1636 
1637 bool phy_driver_is_genphy(struct phy_device *phydev)
1638 {
1639 	return phy_driver_is_genphy_kind(phydev,
1640 					 &genphy_driver.mdiodrv.driver);
1641 }
1642 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1643 
1644 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1645 {
1646 	return phy_driver_is_genphy_kind(phydev,
1647 					 &genphy_c45_driver.mdiodrv.driver);
1648 }
1649 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1650 
1651 /**
1652  * phy_package_join - join a common PHY group
1653  * @phydev: target phy_device struct
1654  * @base_addr: cookie and base PHY address of PHY package for offset
1655  *   calculation of global register access
1656  * @priv_size: if non-zero allocate this amount of bytes for private data
1657  *
1658  * This joins a PHY group and provides a shared storage for all phydevs in
1659  * this group. This is intended to be used for packages which contain
1660  * more than one PHY, for example a quad PHY transceiver.
1661  *
1662  * The base_addr parameter serves as cookie which has to have the same values
1663  * for all members of one group and as the base PHY address of the PHY package
1664  * for offset calculation to access generic registers of a PHY package.
1665  * Usually, one of the PHY addresses of the different PHYs in the package
1666  * provides access to these global registers.
1667  * The address which is given here, will be used in the phy_package_read()
1668  * and phy_package_write() convenience functions as base and added to the
1669  * passed offset in those functions.
1670  *
1671  * This will set the shared pointer of the phydev to the shared storage.
1672  * If this is the first call for a this cookie the shared storage will be
1673  * allocated. If priv_size is non-zero, the given amount of bytes are
1674  * allocated for the priv member.
1675  *
1676  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1677  * with the same cookie but a different priv_size is an error.
1678  */
1679 int phy_package_join(struct phy_device *phydev, int base_addr, size_t priv_size)
1680 {
1681 	struct mii_bus *bus = phydev->mdio.bus;
1682 	struct phy_package_shared *shared;
1683 	int ret;
1684 
1685 	if (base_addr < 0 || base_addr >= PHY_MAX_ADDR)
1686 		return -EINVAL;
1687 
1688 	mutex_lock(&bus->shared_lock);
1689 	shared = bus->shared[base_addr];
1690 	if (!shared) {
1691 		ret = -ENOMEM;
1692 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1693 		if (!shared)
1694 			goto err_unlock;
1695 		if (priv_size) {
1696 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1697 			if (!shared->priv)
1698 				goto err_free;
1699 			shared->priv_size = priv_size;
1700 		}
1701 		shared->base_addr = base_addr;
1702 		refcount_set(&shared->refcnt, 1);
1703 		bus->shared[base_addr] = shared;
1704 	} else {
1705 		ret = -EINVAL;
1706 		if (priv_size && priv_size != shared->priv_size)
1707 			goto err_unlock;
1708 		refcount_inc(&shared->refcnt);
1709 	}
1710 	mutex_unlock(&bus->shared_lock);
1711 
1712 	phydev->shared = shared;
1713 
1714 	return 0;
1715 
1716 err_free:
1717 	kfree(shared);
1718 err_unlock:
1719 	mutex_unlock(&bus->shared_lock);
1720 	return ret;
1721 }
1722 EXPORT_SYMBOL_GPL(phy_package_join);
1723 
1724 /**
1725  * phy_package_leave - leave a common PHY group
1726  * @phydev: target phy_device struct
1727  *
1728  * This leaves a PHY group created by phy_package_join(). If this phydev
1729  * was the last user of the shared data between the group, this data is
1730  * freed. Resets the phydev->shared pointer to NULL.
1731  */
1732 void phy_package_leave(struct phy_device *phydev)
1733 {
1734 	struct phy_package_shared *shared = phydev->shared;
1735 	struct mii_bus *bus = phydev->mdio.bus;
1736 
1737 	if (!shared)
1738 		return;
1739 
1740 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1741 		bus->shared[shared->base_addr] = NULL;
1742 		mutex_unlock(&bus->shared_lock);
1743 		kfree(shared->priv);
1744 		kfree(shared);
1745 	}
1746 
1747 	phydev->shared = NULL;
1748 }
1749 EXPORT_SYMBOL_GPL(phy_package_leave);
1750 
1751 static void devm_phy_package_leave(struct device *dev, void *res)
1752 {
1753 	phy_package_leave(*(struct phy_device **)res);
1754 }
1755 
1756 /**
1757  * devm_phy_package_join - resource managed phy_package_join()
1758  * @dev: device that is registering this PHY package
1759  * @phydev: target phy_device struct
1760  * @base_addr: cookie and base PHY address of PHY package for offset
1761  *   calculation of global register access
1762  * @priv_size: if non-zero allocate this amount of bytes for private data
1763  *
1764  * Managed phy_package_join(). Shared storage fetched by this function,
1765  * phy_package_leave() is automatically called on driver detach. See
1766  * phy_package_join() for more information.
1767  */
1768 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1769 			  int base_addr, size_t priv_size)
1770 {
1771 	struct phy_device **ptr;
1772 	int ret;
1773 
1774 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1775 			   GFP_KERNEL);
1776 	if (!ptr)
1777 		return -ENOMEM;
1778 
1779 	ret = phy_package_join(phydev, base_addr, priv_size);
1780 
1781 	if (!ret) {
1782 		*ptr = phydev;
1783 		devres_add(dev, ptr);
1784 	} else {
1785 		devres_free(ptr);
1786 	}
1787 
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1791 
1792 /**
1793  * phy_detach - detach a PHY device from its network device
1794  * @phydev: target phy_device struct
1795  *
1796  * This detaches the phy device from its network device and the phy
1797  * driver, and drops the reference count taken in phy_attach_direct().
1798  */
1799 void phy_detach(struct phy_device *phydev)
1800 {
1801 	struct net_device *dev = phydev->attached_dev;
1802 	struct module *ndev_owner = NULL;
1803 	struct mii_bus *bus;
1804 
1805 	if (phydev->devlink)
1806 		device_link_del(phydev->devlink);
1807 
1808 	if (phydev->sysfs_links) {
1809 		if (dev)
1810 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1811 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1812 	}
1813 
1814 	if (!phydev->attached_dev)
1815 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1816 				  &dev_attr_phy_standalone.attr);
1817 
1818 	phy_suspend(phydev);
1819 	if (dev) {
1820 		phydev->attached_dev->phydev = NULL;
1821 		phydev->attached_dev = NULL;
1822 	}
1823 	phydev->phylink = NULL;
1824 
1825 	phy_led_triggers_unregister(phydev);
1826 
1827 	if (phydev->mdio.dev.driver)
1828 		module_put(phydev->mdio.dev.driver->owner);
1829 
1830 	/* If the device had no specific driver before (i.e. - it
1831 	 * was using the generic driver), we unbind the device
1832 	 * from the generic driver so that there's a chance a
1833 	 * real driver could be loaded
1834 	 */
1835 	if (phy_driver_is_genphy(phydev) ||
1836 	    phy_driver_is_genphy_10g(phydev))
1837 		device_release_driver(&phydev->mdio.dev);
1838 
1839 	/* Assert the reset signal */
1840 	phy_device_reset(phydev, 1);
1841 
1842 	/*
1843 	 * The phydev might go away on the put_device() below, so avoid
1844 	 * a use-after-free bug by reading the underlying bus first.
1845 	 */
1846 	bus = phydev->mdio.bus;
1847 
1848 	put_device(&phydev->mdio.dev);
1849 	if (dev)
1850 		ndev_owner = dev->dev.parent->driver->owner;
1851 	if (ndev_owner != bus->owner)
1852 		module_put(bus->owner);
1853 }
1854 EXPORT_SYMBOL(phy_detach);
1855 
1856 int phy_suspend(struct phy_device *phydev)
1857 {
1858 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1859 	struct net_device *netdev = phydev->attached_dev;
1860 	struct phy_driver *phydrv = phydev->drv;
1861 	int ret;
1862 
1863 	if (phydev->suspended)
1864 		return 0;
1865 
1866 	phy_ethtool_get_wol(phydev, &wol);
1867 	phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled);
1868 	/* If the device has WOL enabled, we cannot suspend the PHY */
1869 	if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND))
1870 		return -EBUSY;
1871 
1872 	if (!phydrv || !phydrv->suspend)
1873 		return 0;
1874 
1875 	ret = phydrv->suspend(phydev);
1876 	if (!ret)
1877 		phydev->suspended = true;
1878 
1879 	return ret;
1880 }
1881 EXPORT_SYMBOL(phy_suspend);
1882 
1883 int __phy_resume(struct phy_device *phydev)
1884 {
1885 	struct phy_driver *phydrv = phydev->drv;
1886 	int ret;
1887 
1888 	lockdep_assert_held(&phydev->lock);
1889 
1890 	if (!phydrv || !phydrv->resume)
1891 		return 0;
1892 
1893 	ret = phydrv->resume(phydev);
1894 	if (!ret)
1895 		phydev->suspended = false;
1896 
1897 	return ret;
1898 }
1899 EXPORT_SYMBOL(__phy_resume);
1900 
1901 int phy_resume(struct phy_device *phydev)
1902 {
1903 	int ret;
1904 
1905 	mutex_lock(&phydev->lock);
1906 	ret = __phy_resume(phydev);
1907 	mutex_unlock(&phydev->lock);
1908 
1909 	return ret;
1910 }
1911 EXPORT_SYMBOL(phy_resume);
1912 
1913 int phy_loopback(struct phy_device *phydev, bool enable)
1914 {
1915 	int ret = 0;
1916 
1917 	if (!phydev->drv)
1918 		return -EIO;
1919 
1920 	mutex_lock(&phydev->lock);
1921 
1922 	if (enable && phydev->loopback_enabled) {
1923 		ret = -EBUSY;
1924 		goto out;
1925 	}
1926 
1927 	if (!enable && !phydev->loopback_enabled) {
1928 		ret = -EINVAL;
1929 		goto out;
1930 	}
1931 
1932 	if (phydev->drv->set_loopback)
1933 		ret = phydev->drv->set_loopback(phydev, enable);
1934 	else
1935 		ret = genphy_loopback(phydev, enable);
1936 
1937 	if (ret)
1938 		goto out;
1939 
1940 	phydev->loopback_enabled = enable;
1941 
1942 out:
1943 	mutex_unlock(&phydev->lock);
1944 	return ret;
1945 }
1946 EXPORT_SYMBOL(phy_loopback);
1947 
1948 /**
1949  * phy_reset_after_clk_enable - perform a PHY reset if needed
1950  * @phydev: target phy_device struct
1951  *
1952  * Description: Some PHYs are known to need a reset after their refclk was
1953  *   enabled. This function evaluates the flags and perform the reset if it's
1954  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1955  *   was reset.
1956  */
1957 int phy_reset_after_clk_enable(struct phy_device *phydev)
1958 {
1959 	if (!phydev || !phydev->drv)
1960 		return -ENODEV;
1961 
1962 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1963 		phy_device_reset(phydev, 1);
1964 		phy_device_reset(phydev, 0);
1965 		return 1;
1966 	}
1967 
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL(phy_reset_after_clk_enable);
1971 
1972 /* Generic PHY support and helper functions */
1973 
1974 /**
1975  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1976  * @phydev: target phy_device struct
1977  *
1978  * Description: Writes MII_ADVERTISE with the appropriate values,
1979  *   after sanitizing the values to make sure we only advertise
1980  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1981  *   hasn't changed, and > 0 if it has changed.
1982  */
1983 static int genphy_config_advert(struct phy_device *phydev)
1984 {
1985 	int err, bmsr, changed = 0;
1986 	u32 adv;
1987 
1988 	/* Only allow advertising what this PHY supports */
1989 	linkmode_and(phydev->advertising, phydev->advertising,
1990 		     phydev->supported);
1991 
1992 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1993 
1994 	/* Setup standard advertisement */
1995 	err = phy_modify_changed(phydev, MII_ADVERTISE,
1996 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
1997 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
1998 				 adv);
1999 	if (err < 0)
2000 		return err;
2001 	if (err > 0)
2002 		changed = 1;
2003 
2004 	bmsr = phy_read(phydev, MII_BMSR);
2005 	if (bmsr < 0)
2006 		return bmsr;
2007 
2008 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
2009 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
2010 	 * logical 1.
2011 	 */
2012 	if (!(bmsr & BMSR_ESTATEN))
2013 		return changed;
2014 
2015 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
2016 
2017 	err = phy_modify_changed(phydev, MII_CTRL1000,
2018 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
2019 				 adv);
2020 	if (err < 0)
2021 		return err;
2022 	if (err > 0)
2023 		changed = 1;
2024 
2025 	return changed;
2026 }
2027 
2028 /**
2029  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
2030  * @phydev: target phy_device struct
2031  *
2032  * Description: Writes MII_ADVERTISE with the appropriate values,
2033  *   after sanitizing the values to make sure we only advertise
2034  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2035  *   hasn't changed, and > 0 if it has changed. This function is intended
2036  *   for Clause 37 1000Base-X mode.
2037  */
2038 static int genphy_c37_config_advert(struct phy_device *phydev)
2039 {
2040 	u16 adv = 0;
2041 
2042 	/* Only allow advertising what this PHY supports */
2043 	linkmode_and(phydev->advertising, phydev->advertising,
2044 		     phydev->supported);
2045 
2046 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2047 			      phydev->advertising))
2048 		adv |= ADVERTISE_1000XFULL;
2049 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2050 			      phydev->advertising))
2051 		adv |= ADVERTISE_1000XPAUSE;
2052 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2053 			      phydev->advertising))
2054 		adv |= ADVERTISE_1000XPSE_ASYM;
2055 
2056 	return phy_modify_changed(phydev, MII_ADVERTISE,
2057 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
2058 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
2059 				  adv);
2060 }
2061 
2062 /**
2063  * genphy_config_eee_advert - disable unwanted eee mode advertisement
2064  * @phydev: target phy_device struct
2065  *
2066  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2067  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2068  *   changed, and 1 if it has changed.
2069  */
2070 int genphy_config_eee_advert(struct phy_device *phydev)
2071 {
2072 	int err;
2073 
2074 	/* Nothing to disable */
2075 	if (!phydev->eee_broken_modes)
2076 		return 0;
2077 
2078 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2079 				     phydev->eee_broken_modes, 0);
2080 	/* If the call failed, we assume that EEE is not supported */
2081 	return err < 0 ? 0 : err;
2082 }
2083 EXPORT_SYMBOL(genphy_config_eee_advert);
2084 
2085 /**
2086  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2087  * @phydev: target phy_device struct
2088  *
2089  * Description: Configures MII_BMCR to force speed/duplex
2090  *   to the values in phydev. Assumes that the values are valid.
2091  *   Please see phy_sanitize_settings().
2092  */
2093 int genphy_setup_forced(struct phy_device *phydev)
2094 {
2095 	u16 ctl;
2096 
2097 	phydev->pause = 0;
2098 	phydev->asym_pause = 0;
2099 
2100 	ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2101 
2102 	return phy_modify(phydev, MII_BMCR,
2103 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2104 }
2105 EXPORT_SYMBOL(genphy_setup_forced);
2106 
2107 static int genphy_setup_master_slave(struct phy_device *phydev)
2108 {
2109 	u16 ctl = 0;
2110 
2111 	if (!phydev->is_gigabit_capable)
2112 		return 0;
2113 
2114 	switch (phydev->master_slave_set) {
2115 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2116 		ctl |= CTL1000_PREFER_MASTER;
2117 		break;
2118 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2119 		break;
2120 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2121 		ctl |= CTL1000_AS_MASTER;
2122 		fallthrough;
2123 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2124 		ctl |= CTL1000_ENABLE_MASTER;
2125 		break;
2126 	case MASTER_SLAVE_CFG_UNKNOWN:
2127 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2128 		return 0;
2129 	default:
2130 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2131 		return -EOPNOTSUPP;
2132 	}
2133 
2134 	return phy_modify_changed(phydev, MII_CTRL1000,
2135 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2136 				   CTL1000_PREFER_MASTER), ctl);
2137 }
2138 
2139 int genphy_read_master_slave(struct phy_device *phydev)
2140 {
2141 	int cfg, state;
2142 	int val;
2143 
2144 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2145 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2146 
2147 	val = phy_read(phydev, MII_CTRL1000);
2148 	if (val < 0)
2149 		return val;
2150 
2151 	if (val & CTL1000_ENABLE_MASTER) {
2152 		if (val & CTL1000_AS_MASTER)
2153 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2154 		else
2155 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2156 	} else {
2157 		if (val & CTL1000_PREFER_MASTER)
2158 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2159 		else
2160 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2161 	}
2162 
2163 	val = phy_read(phydev, MII_STAT1000);
2164 	if (val < 0)
2165 		return val;
2166 
2167 	if (val & LPA_1000MSFAIL) {
2168 		state = MASTER_SLAVE_STATE_ERR;
2169 	} else if (phydev->link) {
2170 		/* this bits are valid only for active link */
2171 		if (val & LPA_1000MSRES)
2172 			state = MASTER_SLAVE_STATE_MASTER;
2173 		else
2174 			state = MASTER_SLAVE_STATE_SLAVE;
2175 	} else {
2176 		state = MASTER_SLAVE_STATE_UNKNOWN;
2177 	}
2178 
2179 	phydev->master_slave_get = cfg;
2180 	phydev->master_slave_state = state;
2181 
2182 	return 0;
2183 }
2184 EXPORT_SYMBOL(genphy_read_master_slave);
2185 
2186 /**
2187  * genphy_restart_aneg - Enable and Restart Autonegotiation
2188  * @phydev: target phy_device struct
2189  */
2190 int genphy_restart_aneg(struct phy_device *phydev)
2191 {
2192 	/* Don't isolate the PHY if we're negotiating */
2193 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2194 			  BMCR_ANENABLE | BMCR_ANRESTART);
2195 }
2196 EXPORT_SYMBOL(genphy_restart_aneg);
2197 
2198 /**
2199  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2200  * @phydev: target phy_device struct
2201  * @restart: whether aneg restart is requested
2202  *
2203  * Check, and restart auto-negotiation if needed.
2204  */
2205 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2206 {
2207 	int ret;
2208 
2209 	if (!restart) {
2210 		/* Advertisement hasn't changed, but maybe aneg was never on to
2211 		 * begin with?  Or maybe phy was isolated?
2212 		 */
2213 		ret = phy_read(phydev, MII_BMCR);
2214 		if (ret < 0)
2215 			return ret;
2216 
2217 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2218 			restart = true;
2219 	}
2220 
2221 	if (restart)
2222 		return genphy_restart_aneg(phydev);
2223 
2224 	return 0;
2225 }
2226 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2227 
2228 /**
2229  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2230  * @phydev: target phy_device struct
2231  * @changed: whether autoneg is requested
2232  *
2233  * Description: If auto-negotiation is enabled, we configure the
2234  *   advertising, and then restart auto-negotiation.  If it is not
2235  *   enabled, then we write the BMCR.
2236  */
2237 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2238 {
2239 	int err;
2240 
2241 	err = genphy_c45_an_config_eee_aneg(phydev);
2242 	if (err < 0)
2243 		return err;
2244 	else if (err)
2245 		changed = true;
2246 
2247 	err = genphy_setup_master_slave(phydev);
2248 	if (err < 0)
2249 		return err;
2250 	else if (err)
2251 		changed = true;
2252 
2253 	if (AUTONEG_ENABLE != phydev->autoneg)
2254 		return genphy_setup_forced(phydev);
2255 
2256 	err = genphy_config_advert(phydev);
2257 	if (err < 0) /* error */
2258 		return err;
2259 	else if (err)
2260 		changed = true;
2261 
2262 	return genphy_check_and_restart_aneg(phydev, changed);
2263 }
2264 EXPORT_SYMBOL(__genphy_config_aneg);
2265 
2266 /**
2267  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2268  * @phydev: target phy_device struct
2269  *
2270  * Description: If auto-negotiation is enabled, we configure the
2271  *   advertising, and then restart auto-negotiation.  If it is not
2272  *   enabled, then we write the BMCR. This function is intended
2273  *   for use with Clause 37 1000Base-X mode.
2274  */
2275 int genphy_c37_config_aneg(struct phy_device *phydev)
2276 {
2277 	int err, changed;
2278 
2279 	if (phydev->autoneg != AUTONEG_ENABLE)
2280 		return genphy_setup_forced(phydev);
2281 
2282 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2283 			 BMCR_SPEED1000);
2284 	if (err)
2285 		return err;
2286 
2287 	changed = genphy_c37_config_advert(phydev);
2288 	if (changed < 0) /* error */
2289 		return changed;
2290 
2291 	if (!changed) {
2292 		/* Advertisement hasn't changed, but maybe aneg was never on to
2293 		 * begin with?  Or maybe phy was isolated?
2294 		 */
2295 		int ctl = phy_read(phydev, MII_BMCR);
2296 
2297 		if (ctl < 0)
2298 			return ctl;
2299 
2300 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2301 			changed = 1; /* do restart aneg */
2302 	}
2303 
2304 	/* Only restart aneg if we are advertising something different
2305 	 * than we were before.
2306 	 */
2307 	if (changed > 0)
2308 		return genphy_restart_aneg(phydev);
2309 
2310 	return 0;
2311 }
2312 EXPORT_SYMBOL(genphy_c37_config_aneg);
2313 
2314 /**
2315  * genphy_aneg_done - return auto-negotiation status
2316  * @phydev: target phy_device struct
2317  *
2318  * Description: Reads the status register and returns 0 either if
2319  *   auto-negotiation is incomplete, or if there was an error.
2320  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2321  */
2322 int genphy_aneg_done(struct phy_device *phydev)
2323 {
2324 	int retval = phy_read(phydev, MII_BMSR);
2325 
2326 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2327 }
2328 EXPORT_SYMBOL(genphy_aneg_done);
2329 
2330 /**
2331  * genphy_update_link - update link status in @phydev
2332  * @phydev: target phy_device struct
2333  *
2334  * Description: Update the value in phydev->link to reflect the
2335  *   current link value.  In order to do this, we need to read
2336  *   the status register twice, keeping the second value.
2337  */
2338 int genphy_update_link(struct phy_device *phydev)
2339 {
2340 	int status = 0, bmcr;
2341 
2342 	bmcr = phy_read(phydev, MII_BMCR);
2343 	if (bmcr < 0)
2344 		return bmcr;
2345 
2346 	/* Autoneg is being started, therefore disregard BMSR value and
2347 	 * report link as down.
2348 	 */
2349 	if (bmcr & BMCR_ANRESTART)
2350 		goto done;
2351 
2352 	/* The link state is latched low so that momentary link
2353 	 * drops can be detected. Do not double-read the status
2354 	 * in polling mode to detect such short link drops except
2355 	 * the link was already down.
2356 	 */
2357 	if (!phy_polling_mode(phydev) || !phydev->link) {
2358 		status = phy_read(phydev, MII_BMSR);
2359 		if (status < 0)
2360 			return status;
2361 		else if (status & BMSR_LSTATUS)
2362 			goto done;
2363 	}
2364 
2365 	/* Read link and autonegotiation status */
2366 	status = phy_read(phydev, MII_BMSR);
2367 	if (status < 0)
2368 		return status;
2369 done:
2370 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2371 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2372 
2373 	/* Consider the case that autoneg was started and "aneg complete"
2374 	 * bit has been reset, but "link up" bit not yet.
2375 	 */
2376 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2377 		phydev->link = 0;
2378 
2379 	return 0;
2380 }
2381 EXPORT_SYMBOL(genphy_update_link);
2382 
2383 int genphy_read_lpa(struct phy_device *phydev)
2384 {
2385 	int lpa, lpagb;
2386 
2387 	if (phydev->autoneg == AUTONEG_ENABLE) {
2388 		if (!phydev->autoneg_complete) {
2389 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2390 							0);
2391 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2392 			return 0;
2393 		}
2394 
2395 		if (phydev->is_gigabit_capable) {
2396 			lpagb = phy_read(phydev, MII_STAT1000);
2397 			if (lpagb < 0)
2398 				return lpagb;
2399 
2400 			if (lpagb & LPA_1000MSFAIL) {
2401 				int adv = phy_read(phydev, MII_CTRL1000);
2402 
2403 				if (adv < 0)
2404 					return adv;
2405 
2406 				if (adv & CTL1000_ENABLE_MASTER)
2407 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2408 				else
2409 					phydev_err(phydev, "Master/Slave resolution failed\n");
2410 				return -ENOLINK;
2411 			}
2412 
2413 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2414 							lpagb);
2415 		}
2416 
2417 		lpa = phy_read(phydev, MII_LPA);
2418 		if (lpa < 0)
2419 			return lpa;
2420 
2421 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2422 	} else {
2423 		linkmode_zero(phydev->lp_advertising);
2424 	}
2425 
2426 	return 0;
2427 }
2428 EXPORT_SYMBOL(genphy_read_lpa);
2429 
2430 /**
2431  * genphy_read_status_fixed - read the link parameters for !aneg mode
2432  * @phydev: target phy_device struct
2433  *
2434  * Read the current duplex and speed state for a PHY operating with
2435  * autonegotiation disabled.
2436  */
2437 int genphy_read_status_fixed(struct phy_device *phydev)
2438 {
2439 	int bmcr = phy_read(phydev, MII_BMCR);
2440 
2441 	if (bmcr < 0)
2442 		return bmcr;
2443 
2444 	if (bmcr & BMCR_FULLDPLX)
2445 		phydev->duplex = DUPLEX_FULL;
2446 	else
2447 		phydev->duplex = DUPLEX_HALF;
2448 
2449 	if (bmcr & BMCR_SPEED1000)
2450 		phydev->speed = SPEED_1000;
2451 	else if (bmcr & BMCR_SPEED100)
2452 		phydev->speed = SPEED_100;
2453 	else
2454 		phydev->speed = SPEED_10;
2455 
2456 	return 0;
2457 }
2458 EXPORT_SYMBOL(genphy_read_status_fixed);
2459 
2460 /**
2461  * genphy_read_status - check the link status and update current link state
2462  * @phydev: target phy_device struct
2463  *
2464  * Description: Check the link, then figure out the current state
2465  *   by comparing what we advertise with what the link partner
2466  *   advertises.  Start by checking the gigabit possibilities,
2467  *   then move on to 10/100.
2468  */
2469 int genphy_read_status(struct phy_device *phydev)
2470 {
2471 	int err, old_link = phydev->link;
2472 
2473 	/* Update the link, but return if there was an error */
2474 	err = genphy_update_link(phydev);
2475 	if (err)
2476 		return err;
2477 
2478 	/* why bother the PHY if nothing can have changed */
2479 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2480 		return 0;
2481 
2482 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2483 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2484 	phydev->speed = SPEED_UNKNOWN;
2485 	phydev->duplex = DUPLEX_UNKNOWN;
2486 	phydev->pause = 0;
2487 	phydev->asym_pause = 0;
2488 
2489 	if (phydev->is_gigabit_capable) {
2490 		err = genphy_read_master_slave(phydev);
2491 		if (err < 0)
2492 			return err;
2493 	}
2494 
2495 	err = genphy_read_lpa(phydev);
2496 	if (err < 0)
2497 		return err;
2498 
2499 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2500 		phy_resolve_aneg_linkmode(phydev);
2501 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2502 		err = genphy_read_status_fixed(phydev);
2503 		if (err < 0)
2504 			return err;
2505 	}
2506 
2507 	return 0;
2508 }
2509 EXPORT_SYMBOL(genphy_read_status);
2510 
2511 /**
2512  * genphy_c37_read_status - check the link status and update current link state
2513  * @phydev: target phy_device struct
2514  *
2515  * Description: Check the link, then figure out the current state
2516  *   by comparing what we advertise with what the link partner
2517  *   advertises. This function is for Clause 37 1000Base-X mode.
2518  */
2519 int genphy_c37_read_status(struct phy_device *phydev)
2520 {
2521 	int lpa, err, old_link = phydev->link;
2522 
2523 	/* Update the link, but return if there was an error */
2524 	err = genphy_update_link(phydev);
2525 	if (err)
2526 		return err;
2527 
2528 	/* why bother the PHY if nothing can have changed */
2529 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2530 		return 0;
2531 
2532 	phydev->duplex = DUPLEX_UNKNOWN;
2533 	phydev->pause = 0;
2534 	phydev->asym_pause = 0;
2535 
2536 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2537 		lpa = phy_read(phydev, MII_LPA);
2538 		if (lpa < 0)
2539 			return lpa;
2540 
2541 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2542 				 phydev->lp_advertising, lpa & LPA_LPACK);
2543 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2544 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2545 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2546 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2547 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2548 				 phydev->lp_advertising,
2549 				 lpa & LPA_1000XPAUSE_ASYM);
2550 
2551 		phy_resolve_aneg_linkmode(phydev);
2552 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2553 		int bmcr = phy_read(phydev, MII_BMCR);
2554 
2555 		if (bmcr < 0)
2556 			return bmcr;
2557 
2558 		if (bmcr & BMCR_FULLDPLX)
2559 			phydev->duplex = DUPLEX_FULL;
2560 		else
2561 			phydev->duplex = DUPLEX_HALF;
2562 	}
2563 
2564 	return 0;
2565 }
2566 EXPORT_SYMBOL(genphy_c37_read_status);
2567 
2568 /**
2569  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2570  * @phydev: target phy_device struct
2571  *
2572  * Description: Perform a software PHY reset using the standard
2573  * BMCR_RESET bit and poll for the reset bit to be cleared.
2574  *
2575  * Returns: 0 on success, < 0 on failure
2576  */
2577 int genphy_soft_reset(struct phy_device *phydev)
2578 {
2579 	u16 res = BMCR_RESET;
2580 	int ret;
2581 
2582 	if (phydev->autoneg == AUTONEG_ENABLE)
2583 		res |= BMCR_ANRESTART;
2584 
2585 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2586 	if (ret < 0)
2587 		return ret;
2588 
2589 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2590 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2591 	 * be cleared after soft reset.
2592 	 */
2593 	phydev->suspended = 0;
2594 
2595 	ret = phy_poll_reset(phydev);
2596 	if (ret)
2597 		return ret;
2598 
2599 	/* BMCR may be reset to defaults */
2600 	if (phydev->autoneg == AUTONEG_DISABLE)
2601 		ret = genphy_setup_forced(phydev);
2602 
2603 	return ret;
2604 }
2605 EXPORT_SYMBOL(genphy_soft_reset);
2606 
2607 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2608 {
2609 	/* It seems there are cases where the interrupts are handled by another
2610 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2611 	 * need any other interraction from phylib. In this case, just trigger
2612 	 * the state machine directly.
2613 	 */
2614 	phy_trigger_machine(phydev);
2615 
2616 	return 0;
2617 }
2618 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2619 
2620 /**
2621  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2622  * @phydev: target phy_device struct
2623  *
2624  * Description: Reads the PHY's abilities and populates
2625  * phydev->supported accordingly.
2626  *
2627  * Returns: 0 on success, < 0 on failure
2628  */
2629 int genphy_read_abilities(struct phy_device *phydev)
2630 {
2631 	int val;
2632 
2633 	linkmode_set_bit_array(phy_basic_ports_array,
2634 			       ARRAY_SIZE(phy_basic_ports_array),
2635 			       phydev->supported);
2636 
2637 	val = phy_read(phydev, MII_BMSR);
2638 	if (val < 0)
2639 		return val;
2640 
2641 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2642 			 val & BMSR_ANEGCAPABLE);
2643 
2644 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2645 			 val & BMSR_100FULL);
2646 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2647 			 val & BMSR_100HALF);
2648 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2649 			 val & BMSR_10FULL);
2650 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2651 			 val & BMSR_10HALF);
2652 
2653 	if (val & BMSR_ESTATEN) {
2654 		val = phy_read(phydev, MII_ESTATUS);
2655 		if (val < 0)
2656 			return val;
2657 
2658 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2659 				 phydev->supported, val & ESTATUS_1000_TFULL);
2660 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2661 				 phydev->supported, val & ESTATUS_1000_THALF);
2662 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2663 				 phydev->supported, val & ESTATUS_1000_XFULL);
2664 	}
2665 
2666 	/* This is optional functionality. If not supported, we may get an error
2667 	 * which should be ignored.
2668 	 */
2669 	genphy_c45_read_eee_abilities(phydev);
2670 
2671 	return 0;
2672 }
2673 EXPORT_SYMBOL(genphy_read_abilities);
2674 
2675 /* This is used for the phy device which doesn't support the MMD extended
2676  * register access, but it does have side effect when we are trying to access
2677  * the MMD register via indirect method.
2678  */
2679 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2680 {
2681 	return -EOPNOTSUPP;
2682 }
2683 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2684 
2685 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2686 				 u16 regnum, u16 val)
2687 {
2688 	return -EOPNOTSUPP;
2689 }
2690 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2691 
2692 int genphy_suspend(struct phy_device *phydev)
2693 {
2694 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2695 }
2696 EXPORT_SYMBOL(genphy_suspend);
2697 
2698 int genphy_resume(struct phy_device *phydev)
2699 {
2700 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2701 }
2702 EXPORT_SYMBOL(genphy_resume);
2703 
2704 int genphy_loopback(struct phy_device *phydev, bool enable)
2705 {
2706 	if (enable) {
2707 		u16 val, ctl = BMCR_LOOPBACK;
2708 		int ret;
2709 
2710 		ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2711 
2712 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2713 
2714 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2715 					    val & BMSR_LSTATUS,
2716 				    5000, 500000, true);
2717 		if (ret)
2718 			return ret;
2719 	} else {
2720 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2721 
2722 		phy_config_aneg(phydev);
2723 	}
2724 
2725 	return 0;
2726 }
2727 EXPORT_SYMBOL(genphy_loopback);
2728 
2729 /**
2730  * phy_remove_link_mode - Remove a supported link mode
2731  * @phydev: phy_device structure to remove link mode from
2732  * @link_mode: Link mode to be removed
2733  *
2734  * Description: Some MACs don't support all link modes which the PHY
2735  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2736  * to remove a link mode.
2737  */
2738 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2739 {
2740 	linkmode_clear_bit(link_mode, phydev->supported);
2741 	phy_advertise_supported(phydev);
2742 }
2743 EXPORT_SYMBOL(phy_remove_link_mode);
2744 
2745 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2746 {
2747 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2748 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2749 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2750 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2751 }
2752 
2753 /**
2754  * phy_advertise_supported - Advertise all supported modes
2755  * @phydev: target phy_device struct
2756  *
2757  * Description: Called to advertise all supported modes, doesn't touch
2758  * pause mode advertising.
2759  */
2760 void phy_advertise_supported(struct phy_device *phydev)
2761 {
2762 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2763 
2764 	linkmode_copy(new, phydev->supported);
2765 	phy_copy_pause_bits(new, phydev->advertising);
2766 	linkmode_copy(phydev->advertising, new);
2767 }
2768 EXPORT_SYMBOL(phy_advertise_supported);
2769 
2770 /**
2771  * phy_support_sym_pause - Enable support of symmetrical pause
2772  * @phydev: target phy_device struct
2773  *
2774  * Description: Called by the MAC to indicate is supports symmetrical
2775  * Pause, but not asym pause.
2776  */
2777 void phy_support_sym_pause(struct phy_device *phydev)
2778 {
2779 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2780 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2781 }
2782 EXPORT_SYMBOL(phy_support_sym_pause);
2783 
2784 /**
2785  * phy_support_asym_pause - Enable support of asym pause
2786  * @phydev: target phy_device struct
2787  *
2788  * Description: Called by the MAC to indicate is supports Asym Pause.
2789  */
2790 void phy_support_asym_pause(struct phy_device *phydev)
2791 {
2792 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2793 }
2794 EXPORT_SYMBOL(phy_support_asym_pause);
2795 
2796 /**
2797  * phy_set_sym_pause - Configure symmetric Pause
2798  * @phydev: target phy_device struct
2799  * @rx: Receiver Pause is supported
2800  * @tx: Transmit Pause is supported
2801  * @autoneg: Auto neg should be used
2802  *
2803  * Description: Configure advertised Pause support depending on if
2804  * receiver pause and pause auto neg is supported. Generally called
2805  * from the set_pauseparam .ndo.
2806  */
2807 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2808 		       bool autoneg)
2809 {
2810 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2811 
2812 	if (rx && tx && autoneg)
2813 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2814 				 phydev->supported);
2815 
2816 	linkmode_copy(phydev->advertising, phydev->supported);
2817 }
2818 EXPORT_SYMBOL(phy_set_sym_pause);
2819 
2820 /**
2821  * phy_set_asym_pause - Configure Pause and Asym Pause
2822  * @phydev: target phy_device struct
2823  * @rx: Receiver Pause is supported
2824  * @tx: Transmit Pause is supported
2825  *
2826  * Description: Configure advertised Pause support depending on if
2827  * transmit and receiver pause is supported. If there has been a
2828  * change in adverting, trigger a new autoneg. Generally called from
2829  * the set_pauseparam .ndo.
2830  */
2831 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2832 {
2833 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2834 
2835 	linkmode_copy(oldadv, phydev->advertising);
2836 	linkmode_set_pause(phydev->advertising, tx, rx);
2837 
2838 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2839 	    phydev->autoneg)
2840 		phy_start_aneg(phydev);
2841 }
2842 EXPORT_SYMBOL(phy_set_asym_pause);
2843 
2844 /**
2845  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2846  * @phydev: phy_device struct
2847  * @pp: requested pause configuration
2848  *
2849  * Description: Test if the PHY/MAC combination supports the Pause
2850  * configuration the user is requesting. Returns True if it is
2851  * supported, false otherwise.
2852  */
2853 bool phy_validate_pause(struct phy_device *phydev,
2854 			struct ethtool_pauseparam *pp)
2855 {
2856 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2857 			       phydev->supported) && pp->rx_pause)
2858 		return false;
2859 
2860 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2861 			       phydev->supported) &&
2862 	    pp->rx_pause != pp->tx_pause)
2863 		return false;
2864 
2865 	return true;
2866 }
2867 EXPORT_SYMBOL(phy_validate_pause);
2868 
2869 /**
2870  * phy_get_pause - resolve negotiated pause modes
2871  * @phydev: phy_device struct
2872  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2873  * enabled.
2874  * @rx_pause: pointer to bool to indicate whether receive pause should be
2875  * enabled.
2876  *
2877  * Resolve and return the flow control modes according to the negotiation
2878  * result. This includes checking that we are operating in full duplex mode.
2879  * See linkmode_resolve_pause() for further details.
2880  */
2881 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2882 {
2883 	if (phydev->duplex != DUPLEX_FULL) {
2884 		*tx_pause = false;
2885 		*rx_pause = false;
2886 		return;
2887 	}
2888 
2889 	return linkmode_resolve_pause(phydev->advertising,
2890 				      phydev->lp_advertising,
2891 				      tx_pause, rx_pause);
2892 }
2893 EXPORT_SYMBOL(phy_get_pause);
2894 
2895 #if IS_ENABLED(CONFIG_OF_MDIO)
2896 static int phy_get_int_delay_property(struct device *dev, const char *name)
2897 {
2898 	s32 int_delay;
2899 	int ret;
2900 
2901 	ret = device_property_read_u32(dev, name, &int_delay);
2902 	if (ret)
2903 		return ret;
2904 
2905 	return int_delay;
2906 }
2907 #else
2908 static int phy_get_int_delay_property(struct device *dev, const char *name)
2909 {
2910 	return -EINVAL;
2911 }
2912 #endif
2913 
2914 /**
2915  * phy_get_internal_delay - returns the index of the internal delay
2916  * @phydev: phy_device struct
2917  * @dev: pointer to the devices device struct
2918  * @delay_values: array of delays the PHY supports
2919  * @size: the size of the delay array
2920  * @is_rx: boolean to indicate to get the rx internal delay
2921  *
2922  * Returns the index within the array of internal delay passed in.
2923  * If the device property is not present then the interface type is checked
2924  * if the interface defines use of internal delay then a 1 is returned otherwise
2925  * a 0 is returned.
2926  * The array must be in ascending order. If PHY does not have an ascending order
2927  * array then size = 0 and the value of the delay property is returned.
2928  * Return -EINVAL if the delay is invalid or cannot be found.
2929  */
2930 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2931 			   const int *delay_values, int size, bool is_rx)
2932 {
2933 	s32 delay;
2934 	int i;
2935 
2936 	if (is_rx) {
2937 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2938 		if (delay < 0 && size == 0) {
2939 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2940 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2941 				return 1;
2942 			else
2943 				return 0;
2944 		}
2945 
2946 	} else {
2947 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2948 		if (delay < 0 && size == 0) {
2949 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2950 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2951 				return 1;
2952 			else
2953 				return 0;
2954 		}
2955 	}
2956 
2957 	if (delay < 0)
2958 		return delay;
2959 
2960 	if (delay && size == 0)
2961 		return delay;
2962 
2963 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2964 		phydev_err(phydev, "Delay %d is out of range\n", delay);
2965 		return -EINVAL;
2966 	}
2967 
2968 	if (delay == delay_values[0])
2969 		return 0;
2970 
2971 	for (i = 1; i < size; i++) {
2972 		if (delay == delay_values[i])
2973 			return i;
2974 
2975 		/* Find an approximate index by looking up the table */
2976 		if (delay > delay_values[i - 1] &&
2977 		    delay < delay_values[i]) {
2978 			if (delay - delay_values[i - 1] <
2979 			    delay_values[i] - delay)
2980 				return i - 1;
2981 			else
2982 				return i;
2983 		}
2984 	}
2985 
2986 	phydev_err(phydev, "error finding internal delay index for %d\n",
2987 		   delay);
2988 
2989 	return -EINVAL;
2990 }
2991 EXPORT_SYMBOL(phy_get_internal_delay);
2992 
2993 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2994 {
2995 	return phydrv->config_intr && phydrv->handle_interrupt;
2996 }
2997 
2998 static int phy_led_set_brightness(struct led_classdev *led_cdev,
2999 				  enum led_brightness value)
3000 {
3001 	struct phy_led *phyled = to_phy_led(led_cdev);
3002 	struct phy_device *phydev = phyled->phydev;
3003 	int err;
3004 
3005 	mutex_lock(&phydev->lock);
3006 	err = phydev->drv->led_brightness_set(phydev, phyled->index, value);
3007 	mutex_unlock(&phydev->lock);
3008 
3009 	return err;
3010 }
3011 
3012 static int phy_led_blink_set(struct led_classdev *led_cdev,
3013 			     unsigned long *delay_on,
3014 			     unsigned long *delay_off)
3015 {
3016 	struct phy_led *phyled = to_phy_led(led_cdev);
3017 	struct phy_device *phydev = phyled->phydev;
3018 	int err;
3019 
3020 	mutex_lock(&phydev->lock);
3021 	err = phydev->drv->led_blink_set(phydev, phyled->index,
3022 					 delay_on, delay_off);
3023 	mutex_unlock(&phydev->lock);
3024 
3025 	return err;
3026 }
3027 
3028 static __maybe_unused struct device *
3029 phy_led_hw_control_get_device(struct led_classdev *led_cdev)
3030 {
3031 	struct phy_led *phyled = to_phy_led(led_cdev);
3032 	struct phy_device *phydev = phyled->phydev;
3033 
3034 	if (phydev->attached_dev)
3035 		return &phydev->attached_dev->dev;
3036 	return NULL;
3037 }
3038 
3039 static int __maybe_unused
3040 phy_led_hw_control_get(struct led_classdev *led_cdev,
3041 		       unsigned long *rules)
3042 {
3043 	struct phy_led *phyled = to_phy_led(led_cdev);
3044 	struct phy_device *phydev = phyled->phydev;
3045 	int err;
3046 
3047 	mutex_lock(&phydev->lock);
3048 	err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules);
3049 	mutex_unlock(&phydev->lock);
3050 
3051 	return err;
3052 }
3053 
3054 static int __maybe_unused
3055 phy_led_hw_control_set(struct led_classdev *led_cdev,
3056 		       unsigned long rules)
3057 {
3058 	struct phy_led *phyled = to_phy_led(led_cdev);
3059 	struct phy_device *phydev = phyled->phydev;
3060 	int err;
3061 
3062 	mutex_lock(&phydev->lock);
3063 	err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules);
3064 	mutex_unlock(&phydev->lock);
3065 
3066 	return err;
3067 }
3068 
3069 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev,
3070 						  unsigned long rules)
3071 {
3072 	struct phy_led *phyled = to_phy_led(led_cdev);
3073 	struct phy_device *phydev = phyled->phydev;
3074 	int err;
3075 
3076 	mutex_lock(&phydev->lock);
3077 	err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules);
3078 	mutex_unlock(&phydev->lock);
3079 
3080 	return err;
3081 }
3082 
3083 static void phy_leds_unregister(struct phy_device *phydev)
3084 {
3085 	struct phy_led *phyled;
3086 
3087 	list_for_each_entry(phyled, &phydev->leds, list) {
3088 		led_classdev_unregister(&phyled->led_cdev);
3089 	}
3090 }
3091 
3092 static int of_phy_led(struct phy_device *phydev,
3093 		      struct device_node *led)
3094 {
3095 	struct device *dev = &phydev->mdio.dev;
3096 	struct led_init_data init_data = {};
3097 	struct led_classdev *cdev;
3098 	struct phy_led *phyled;
3099 	u32 index;
3100 	int err;
3101 
3102 	phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL);
3103 	if (!phyled)
3104 		return -ENOMEM;
3105 
3106 	cdev = &phyled->led_cdev;
3107 	phyled->phydev = phydev;
3108 
3109 	err = of_property_read_u32(led, "reg", &index);
3110 	if (err)
3111 		return err;
3112 	if (index > U8_MAX)
3113 		return -EINVAL;
3114 
3115 	phyled->index = index;
3116 	if (phydev->drv->led_brightness_set)
3117 		cdev->brightness_set_blocking = phy_led_set_brightness;
3118 	if (phydev->drv->led_blink_set)
3119 		cdev->blink_set = phy_led_blink_set;
3120 
3121 #ifdef CONFIG_LEDS_TRIGGERS
3122 	if (phydev->drv->led_hw_is_supported &&
3123 	    phydev->drv->led_hw_control_set &&
3124 	    phydev->drv->led_hw_control_get) {
3125 		cdev->hw_control_is_supported = phy_led_hw_is_supported;
3126 		cdev->hw_control_set = phy_led_hw_control_set;
3127 		cdev->hw_control_get = phy_led_hw_control_get;
3128 		cdev->hw_control_trigger = "netdev";
3129 	}
3130 
3131 	cdev->hw_control_get_device = phy_led_hw_control_get_device;
3132 #endif
3133 	cdev->max_brightness = 1;
3134 	init_data.devicename = dev_name(&phydev->mdio.dev);
3135 	init_data.fwnode = of_fwnode_handle(led);
3136 	init_data.devname_mandatory = true;
3137 
3138 	err = led_classdev_register_ext(dev, cdev, &init_data);
3139 	if (err)
3140 		return err;
3141 
3142 	list_add(&phyled->list, &phydev->leds);
3143 
3144 	return 0;
3145 }
3146 
3147 static int of_phy_leds(struct phy_device *phydev)
3148 {
3149 	struct device_node *node = phydev->mdio.dev.of_node;
3150 	struct device_node *leds, *led;
3151 	int err;
3152 
3153 	if (!IS_ENABLED(CONFIG_OF_MDIO))
3154 		return 0;
3155 
3156 	if (!node)
3157 		return 0;
3158 
3159 	leds = of_get_child_by_name(node, "leds");
3160 	if (!leds)
3161 		return 0;
3162 
3163 	for_each_available_child_of_node(leds, led) {
3164 		err = of_phy_led(phydev, led);
3165 		if (err) {
3166 			of_node_put(led);
3167 			phy_leds_unregister(phydev);
3168 			return err;
3169 		}
3170 	}
3171 
3172 	return 0;
3173 }
3174 
3175 /**
3176  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
3177  * @fwnode: pointer to the mdio_device's fwnode
3178  *
3179  * If successful, returns a pointer to the mdio_device with the embedded
3180  * struct device refcount incremented by one, or NULL on failure.
3181  * The caller should call put_device() on the mdio_device after its use.
3182  */
3183 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
3184 {
3185 	struct device *d;
3186 
3187 	if (!fwnode)
3188 		return NULL;
3189 
3190 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
3191 	if (!d)
3192 		return NULL;
3193 
3194 	return to_mdio_device(d);
3195 }
3196 EXPORT_SYMBOL(fwnode_mdio_find_device);
3197 
3198 /**
3199  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
3200  *
3201  * @phy_fwnode: Pointer to the phy's fwnode.
3202  *
3203  * If successful, returns a pointer to the phy_device with the embedded
3204  * struct device refcount incremented by one, or NULL on failure.
3205  */
3206 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
3207 {
3208 	struct mdio_device *mdiodev;
3209 
3210 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
3211 	if (!mdiodev)
3212 		return NULL;
3213 
3214 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
3215 		return to_phy_device(&mdiodev->dev);
3216 
3217 	put_device(&mdiodev->dev);
3218 
3219 	return NULL;
3220 }
3221 EXPORT_SYMBOL(fwnode_phy_find_device);
3222 
3223 /**
3224  * device_phy_find_device - For the given device, get the phy_device
3225  * @dev: Pointer to the given device
3226  *
3227  * Refer return conditions of fwnode_phy_find_device().
3228  */
3229 struct phy_device *device_phy_find_device(struct device *dev)
3230 {
3231 	return fwnode_phy_find_device(dev_fwnode(dev));
3232 }
3233 EXPORT_SYMBOL_GPL(device_phy_find_device);
3234 
3235 /**
3236  * fwnode_get_phy_node - Get the phy_node using the named reference.
3237  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
3238  *
3239  * Refer return conditions of fwnode_find_reference().
3240  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
3241  * and "phy-device" are not supported in ACPI. DT supports all the three
3242  * named references to the phy node.
3243  */
3244 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode)
3245 {
3246 	struct fwnode_handle *phy_node;
3247 
3248 	/* Only phy-handle is used for ACPI */
3249 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3250 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3251 		return phy_node;
3252 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
3253 	if (IS_ERR(phy_node))
3254 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3255 	return phy_node;
3256 }
3257 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3258 
3259 /**
3260  * phy_probe - probe and init a PHY device
3261  * @dev: device to probe and init
3262  *
3263  * Take care of setting up the phy_device structure, set the state to READY.
3264  */
3265 static int phy_probe(struct device *dev)
3266 {
3267 	struct phy_device *phydev = to_phy_device(dev);
3268 	struct device_driver *drv = phydev->mdio.dev.driver;
3269 	struct phy_driver *phydrv = to_phy_driver(drv);
3270 	int err = 0;
3271 
3272 	phydev->drv = phydrv;
3273 
3274 	/* Disable the interrupt if the PHY doesn't support it
3275 	 * but the interrupt is still a valid one
3276 	 */
3277 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3278 		phydev->irq = PHY_POLL;
3279 
3280 	if (phydrv->flags & PHY_IS_INTERNAL)
3281 		phydev->is_internal = true;
3282 
3283 	/* Deassert the reset signal */
3284 	phy_device_reset(phydev, 0);
3285 
3286 	if (phydev->drv->probe) {
3287 		err = phydev->drv->probe(phydev);
3288 		if (err)
3289 			goto out;
3290 	}
3291 
3292 	phy_disable_interrupts(phydev);
3293 
3294 	/* Start out supporting everything. Eventually,
3295 	 * a controller will attach, and may modify one
3296 	 * or both of these values
3297 	 */
3298 	if (phydrv->features) {
3299 		linkmode_copy(phydev->supported, phydrv->features);
3300 		genphy_c45_read_eee_abilities(phydev);
3301 	}
3302 	else if (phydrv->get_features)
3303 		err = phydrv->get_features(phydev);
3304 	else if (phydev->is_c45)
3305 		err = genphy_c45_pma_read_abilities(phydev);
3306 	else
3307 		err = genphy_read_abilities(phydev);
3308 
3309 	if (err)
3310 		goto out;
3311 
3312 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3313 			       phydev->supported))
3314 		phydev->autoneg = 0;
3315 
3316 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3317 			      phydev->supported))
3318 		phydev->is_gigabit_capable = 1;
3319 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3320 			      phydev->supported))
3321 		phydev->is_gigabit_capable = 1;
3322 
3323 	of_set_phy_supported(phydev);
3324 	phy_advertise_supported(phydev);
3325 
3326 	/* Get PHY default EEE advertising modes and handle them as potentially
3327 	 * safe initial configuration.
3328 	 */
3329 	err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee);
3330 	if (err)
3331 		goto out;
3332 
3333 	/* There is no "enabled" flag. If PHY is advertising, assume it is
3334 	 * kind of enabled.
3335 	 */
3336 	phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee);
3337 
3338 	/* Some PHYs may advertise, by default, not support EEE modes. So,
3339 	 * we need to clean them.
3340 	 */
3341 	if (phydev->eee_enabled)
3342 		linkmode_and(phydev->advertising_eee, phydev->supported_eee,
3343 			     phydev->advertising_eee);
3344 
3345 	/* Get the EEE modes we want to prohibit. We will ask
3346 	 * the PHY stop advertising these mode later on
3347 	 */
3348 	of_set_phy_eee_broken(phydev);
3349 
3350 	/* The Pause Frame bits indicate that the PHY can support passing
3351 	 * pause frames. During autonegotiation, the PHYs will determine if
3352 	 * they should allow pause frames to pass.  The MAC driver should then
3353 	 * use that result to determine whether to enable flow control via
3354 	 * pause frames.
3355 	 *
3356 	 * Normally, PHY drivers should not set the Pause bits, and instead
3357 	 * allow phylib to do that.  However, there may be some situations
3358 	 * (e.g. hardware erratum) where the driver wants to set only one
3359 	 * of these bits.
3360 	 */
3361 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3362 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3363 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3364 				 phydev->supported);
3365 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3366 				 phydev->supported);
3367 	}
3368 
3369 	/* Set the state to READY by default */
3370 	phydev->state = PHY_READY;
3371 
3372 	/* Get the LEDs from the device tree, and instantiate standard
3373 	 * LEDs for them.
3374 	 */
3375 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3376 		err = of_phy_leds(phydev);
3377 
3378 out:
3379 	/* Re-assert the reset signal on error */
3380 	if (err)
3381 		phy_device_reset(phydev, 1);
3382 
3383 	return err;
3384 }
3385 
3386 static int phy_remove(struct device *dev)
3387 {
3388 	struct phy_device *phydev = to_phy_device(dev);
3389 
3390 	cancel_delayed_work_sync(&phydev->state_queue);
3391 
3392 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3393 		phy_leds_unregister(phydev);
3394 
3395 	phydev->state = PHY_DOWN;
3396 
3397 	sfp_bus_del_upstream(phydev->sfp_bus);
3398 	phydev->sfp_bus = NULL;
3399 
3400 	if (phydev->drv && phydev->drv->remove)
3401 		phydev->drv->remove(phydev);
3402 
3403 	/* Assert the reset signal */
3404 	phy_device_reset(phydev, 1);
3405 
3406 	phydev->drv = NULL;
3407 
3408 	return 0;
3409 }
3410 
3411 /**
3412  * phy_driver_register - register a phy_driver with the PHY layer
3413  * @new_driver: new phy_driver to register
3414  * @owner: module owning this PHY
3415  */
3416 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3417 {
3418 	int retval;
3419 
3420 	/* Either the features are hard coded, or dynamically
3421 	 * determined. It cannot be both.
3422 	 */
3423 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3424 		pr_err("%s: features and get_features must not both be set\n",
3425 		       new_driver->name);
3426 		return -EINVAL;
3427 	}
3428 
3429 	/* PHYLIB device drivers must not match using a DT compatible table
3430 	 * as this bypasses our checks that the mdiodev that is being matched
3431 	 * is backed by a struct phy_device. If such a case happens, we will
3432 	 * make out-of-bounds accesses and lockup in phydev->lock.
3433 	 */
3434 	if (WARN(new_driver->mdiodrv.driver.of_match_table,
3435 		 "%s: driver must not provide a DT match table\n",
3436 		 new_driver->name))
3437 		return -EINVAL;
3438 
3439 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3440 	new_driver->mdiodrv.driver.name = new_driver->name;
3441 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3442 	new_driver->mdiodrv.driver.probe = phy_probe;
3443 	new_driver->mdiodrv.driver.remove = phy_remove;
3444 	new_driver->mdiodrv.driver.owner = owner;
3445 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3446 
3447 	retval = driver_register(&new_driver->mdiodrv.driver);
3448 	if (retval) {
3449 		pr_err("%s: Error %d in registering driver\n",
3450 		       new_driver->name, retval);
3451 
3452 		return retval;
3453 	}
3454 
3455 	pr_debug("%s: Registered new driver\n", new_driver->name);
3456 
3457 	return 0;
3458 }
3459 EXPORT_SYMBOL(phy_driver_register);
3460 
3461 int phy_drivers_register(struct phy_driver *new_driver, int n,
3462 			 struct module *owner)
3463 {
3464 	int i, ret = 0;
3465 
3466 	for (i = 0; i < n; i++) {
3467 		ret = phy_driver_register(new_driver + i, owner);
3468 		if (ret) {
3469 			while (i-- > 0)
3470 				phy_driver_unregister(new_driver + i);
3471 			break;
3472 		}
3473 	}
3474 	return ret;
3475 }
3476 EXPORT_SYMBOL(phy_drivers_register);
3477 
3478 void phy_driver_unregister(struct phy_driver *drv)
3479 {
3480 	driver_unregister(&drv->mdiodrv.driver);
3481 }
3482 EXPORT_SYMBOL(phy_driver_unregister);
3483 
3484 void phy_drivers_unregister(struct phy_driver *drv, int n)
3485 {
3486 	int i;
3487 
3488 	for (i = 0; i < n; i++)
3489 		phy_driver_unregister(drv + i);
3490 }
3491 EXPORT_SYMBOL(phy_drivers_unregister);
3492 
3493 static struct phy_driver genphy_driver = {
3494 	.phy_id		= 0xffffffff,
3495 	.phy_id_mask	= 0xffffffff,
3496 	.name		= "Generic PHY",
3497 	.get_features	= genphy_read_abilities,
3498 	.suspend	= genphy_suspend,
3499 	.resume		= genphy_resume,
3500 	.set_loopback   = genphy_loopback,
3501 };
3502 
3503 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3504 	.get_sset_count		= phy_ethtool_get_sset_count,
3505 	.get_strings		= phy_ethtool_get_strings,
3506 	.get_stats		= phy_ethtool_get_stats,
3507 	.get_plca_cfg		= phy_ethtool_get_plca_cfg,
3508 	.set_plca_cfg		= phy_ethtool_set_plca_cfg,
3509 	.get_plca_status	= phy_ethtool_get_plca_status,
3510 	.start_cable_test	= phy_start_cable_test,
3511 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3512 };
3513 
3514 static const struct phylib_stubs __phylib_stubs = {
3515 	.hwtstamp_get = __phy_hwtstamp_get,
3516 	.hwtstamp_set = __phy_hwtstamp_set,
3517 };
3518 
3519 static void phylib_register_stubs(void)
3520 {
3521 	phylib_stubs = &__phylib_stubs;
3522 }
3523 
3524 static void phylib_unregister_stubs(void)
3525 {
3526 	phylib_stubs = NULL;
3527 }
3528 
3529 static int __init phy_init(void)
3530 {
3531 	int rc;
3532 
3533 	rtnl_lock();
3534 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3535 	phylib_register_stubs();
3536 	rtnl_unlock();
3537 
3538 	rc = mdio_bus_init();
3539 	if (rc)
3540 		goto err_ethtool_phy_ops;
3541 
3542 	features_init();
3543 
3544 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3545 	if (rc)
3546 		goto err_mdio_bus;
3547 
3548 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3549 	if (rc)
3550 		goto err_c45;
3551 
3552 	return 0;
3553 
3554 err_c45:
3555 	phy_driver_unregister(&genphy_c45_driver);
3556 err_mdio_bus:
3557 	mdio_bus_exit();
3558 err_ethtool_phy_ops:
3559 	rtnl_lock();
3560 	phylib_unregister_stubs();
3561 	ethtool_set_ethtool_phy_ops(NULL);
3562 	rtnl_unlock();
3563 
3564 	return rc;
3565 }
3566 
3567 static void __exit phy_exit(void)
3568 {
3569 	phy_driver_unregister(&genphy_c45_driver);
3570 	phy_driver_unregister(&genphy_driver);
3571 	mdio_bus_exit();
3572 	rtnl_lock();
3573 	phylib_unregister_stubs();
3574 	ethtool_set_ethtool_phy_ops(NULL);
3575 	rtnl_unlock();
3576 }
3577 
3578 subsys_initcall(phy_init);
3579 module_exit(phy_exit);
3580