1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phylib_stubs.h> 31 #include <linux/phy_led_triggers.h> 32 #include <linux/pse-pd/pse.h> 33 #include <linux/property.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/sfp.h> 36 #include <linux/skbuff.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/uaccess.h> 40 #include <linux/unistd.h> 41 42 MODULE_DESCRIPTION("PHY library"); 43 MODULE_AUTHOR("Andy Fleming"); 44 MODULE_LICENSE("GPL"); 45 46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 47 EXPORT_SYMBOL_GPL(phy_basic_features); 48 49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 50 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 51 52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 54 55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 56 EXPORT_SYMBOL_GPL(phy_gbit_features); 57 58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 60 61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 63 64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 65 EXPORT_SYMBOL_GPL(phy_10gbit_features); 66 67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 69 70 const int phy_basic_ports_array[3] = { 71 ETHTOOL_LINK_MODE_Autoneg_BIT, 72 ETHTOOL_LINK_MODE_TP_BIT, 73 ETHTOOL_LINK_MODE_MII_BIT, 74 }; 75 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 76 77 const int phy_fibre_port_array[1] = { 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 }; 80 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 81 82 const int phy_all_ports_features_array[7] = { 83 ETHTOOL_LINK_MODE_Autoneg_BIT, 84 ETHTOOL_LINK_MODE_TP_BIT, 85 ETHTOOL_LINK_MODE_MII_BIT, 86 ETHTOOL_LINK_MODE_FIBRE_BIT, 87 ETHTOOL_LINK_MODE_AUI_BIT, 88 ETHTOOL_LINK_MODE_BNC_BIT, 89 ETHTOOL_LINK_MODE_Backplane_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 92 93 const int phy_10_100_features_array[4] = { 94 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 95 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 97 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 98 }; 99 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 100 101 const int phy_basic_t1_features_array[3] = { 102 ETHTOOL_LINK_MODE_TP_BIT, 103 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 104 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 105 }; 106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 107 108 const int phy_basic_t1s_p2mp_features_array[2] = { 109 ETHTOOL_LINK_MODE_TP_BIT, 110 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 111 }; 112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 113 114 const int phy_gbit_features_array[2] = { 115 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 116 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 117 }; 118 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 119 120 const int phy_10gbit_features_array[1] = { 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 124 125 static const int phy_10gbit_fec_features_array[1] = { 126 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 127 }; 128 129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 131 132 static const int phy_10gbit_full_features_array[] = { 133 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 135 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 136 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 137 }; 138 139 static const int phy_eee_cap1_features_array[] = { 140 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 142 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 143 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 144 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 145 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 146 }; 147 148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 150 151 static void features_init(void) 152 { 153 /* 10/100 half/full*/ 154 linkmode_set_bit_array(phy_basic_ports_array, 155 ARRAY_SIZE(phy_basic_ports_array), 156 phy_basic_features); 157 linkmode_set_bit_array(phy_10_100_features_array, 158 ARRAY_SIZE(phy_10_100_features_array), 159 phy_basic_features); 160 161 /* 100 full, TP */ 162 linkmode_set_bit_array(phy_basic_t1_features_array, 163 ARRAY_SIZE(phy_basic_t1_features_array), 164 phy_basic_t1_features); 165 166 /* 10 half, P2MP, TP */ 167 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 168 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 169 phy_basic_t1s_p2mp_features); 170 171 /* 10/100 half/full + 1000 half/full */ 172 linkmode_set_bit_array(phy_basic_ports_array, 173 ARRAY_SIZE(phy_basic_ports_array), 174 phy_gbit_features); 175 linkmode_set_bit_array(phy_10_100_features_array, 176 ARRAY_SIZE(phy_10_100_features_array), 177 phy_gbit_features); 178 linkmode_set_bit_array(phy_gbit_features_array, 179 ARRAY_SIZE(phy_gbit_features_array), 180 phy_gbit_features); 181 182 /* 10/100 half/full + 1000 half/full + fibre*/ 183 linkmode_set_bit_array(phy_basic_ports_array, 184 ARRAY_SIZE(phy_basic_ports_array), 185 phy_gbit_fibre_features); 186 linkmode_set_bit_array(phy_10_100_features_array, 187 ARRAY_SIZE(phy_10_100_features_array), 188 phy_gbit_fibre_features); 189 linkmode_set_bit_array(phy_gbit_features_array, 190 ARRAY_SIZE(phy_gbit_features_array), 191 phy_gbit_fibre_features); 192 linkmode_set_bit_array(phy_fibre_port_array, 193 ARRAY_SIZE(phy_fibre_port_array), 194 phy_gbit_fibre_features); 195 196 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 197 linkmode_set_bit_array(phy_all_ports_features_array, 198 ARRAY_SIZE(phy_all_ports_features_array), 199 phy_gbit_all_ports_features); 200 linkmode_set_bit_array(phy_10_100_features_array, 201 ARRAY_SIZE(phy_10_100_features_array), 202 phy_gbit_all_ports_features); 203 linkmode_set_bit_array(phy_gbit_features_array, 204 ARRAY_SIZE(phy_gbit_features_array), 205 phy_gbit_all_ports_features); 206 207 /* 10/100 half/full + 1000 half/full + 10G full*/ 208 linkmode_set_bit_array(phy_all_ports_features_array, 209 ARRAY_SIZE(phy_all_ports_features_array), 210 phy_10gbit_features); 211 linkmode_set_bit_array(phy_10_100_features_array, 212 ARRAY_SIZE(phy_10_100_features_array), 213 phy_10gbit_features); 214 linkmode_set_bit_array(phy_gbit_features_array, 215 ARRAY_SIZE(phy_gbit_features_array), 216 phy_10gbit_features); 217 linkmode_set_bit_array(phy_10gbit_features_array, 218 ARRAY_SIZE(phy_10gbit_features_array), 219 phy_10gbit_features); 220 221 /* 10/100/1000/10G full */ 222 linkmode_set_bit_array(phy_all_ports_features_array, 223 ARRAY_SIZE(phy_all_ports_features_array), 224 phy_10gbit_full_features); 225 linkmode_set_bit_array(phy_10gbit_full_features_array, 226 ARRAY_SIZE(phy_10gbit_full_features_array), 227 phy_10gbit_full_features); 228 /* 10G FEC only */ 229 linkmode_set_bit_array(phy_10gbit_fec_features_array, 230 ARRAY_SIZE(phy_10gbit_fec_features_array), 231 phy_10gbit_fec_features); 232 linkmode_set_bit_array(phy_eee_cap1_features_array, 233 ARRAY_SIZE(phy_eee_cap1_features_array), 234 phy_eee_cap1_features); 235 236 } 237 238 void phy_device_free(struct phy_device *phydev) 239 { 240 put_device(&phydev->mdio.dev); 241 } 242 EXPORT_SYMBOL(phy_device_free); 243 244 static void phy_mdio_device_free(struct mdio_device *mdiodev) 245 { 246 struct phy_device *phydev; 247 248 phydev = container_of(mdiodev, struct phy_device, mdio); 249 phy_device_free(phydev); 250 } 251 252 static void phy_device_release(struct device *dev) 253 { 254 fwnode_handle_put(dev->fwnode); 255 kfree(to_phy_device(dev)); 256 } 257 258 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 259 { 260 struct phy_device *phydev; 261 262 phydev = container_of(mdiodev, struct phy_device, mdio); 263 phy_device_remove(phydev); 264 } 265 266 static struct phy_driver genphy_driver; 267 268 static LIST_HEAD(phy_fixup_list); 269 static DEFINE_MUTEX(phy_fixup_lock); 270 271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 272 { 273 struct device_driver *drv = phydev->mdio.dev.driver; 274 struct phy_driver *phydrv = to_phy_driver(drv); 275 struct net_device *netdev = phydev->attached_dev; 276 277 if (!drv || !phydrv->suspend) 278 return false; 279 280 /* PHY not attached? May suspend if the PHY has not already been 281 * suspended as part of a prior call to phy_disconnect() -> 282 * phy_detach() -> phy_suspend() because the parent netdev might be the 283 * MDIO bus driver and clock gated at this point. 284 */ 285 if (!netdev) 286 goto out; 287 288 if (netdev->wol_enabled) 289 return false; 290 291 /* As long as not all affected network drivers support the 292 * wol_enabled flag, let's check for hints that WoL is enabled. 293 * Don't suspend PHY if the attached netdev parent may wake up. 294 * The parent may point to a PCI device, as in tg3 driver. 295 */ 296 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 297 return false; 298 299 /* Also don't suspend PHY if the netdev itself may wakeup. This 300 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 301 * e.g. SoC devices. 302 */ 303 if (device_may_wakeup(&netdev->dev)) 304 return false; 305 306 out: 307 return !phydev->suspended; 308 } 309 310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 311 { 312 struct phy_device *phydev = to_phy_device(dev); 313 314 if (phydev->mac_managed_pm) 315 return 0; 316 317 /* Wakeup interrupts may occur during the system sleep transition when 318 * the PHY is inaccessible. Set flag to postpone handling until the PHY 319 * has resumed. Wait for concurrent interrupt handler to complete. 320 */ 321 if (phy_interrupt_is_valid(phydev)) { 322 phydev->irq_suspended = 1; 323 synchronize_irq(phydev->irq); 324 } 325 326 /* We must stop the state machine manually, otherwise it stops out of 327 * control, possibly with the phydev->lock held. Upon resume, netdev 328 * may call phy routines that try to grab the same lock, and that may 329 * lead to a deadlock. 330 */ 331 if (phydev->attached_dev && phydev->adjust_link) 332 phy_stop_machine(phydev); 333 334 if (!mdio_bus_phy_may_suspend(phydev)) 335 return 0; 336 337 phydev->suspended_by_mdio_bus = 1; 338 339 return phy_suspend(phydev); 340 } 341 342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 343 { 344 struct phy_device *phydev = to_phy_device(dev); 345 int ret; 346 347 if (phydev->mac_managed_pm) 348 return 0; 349 350 if (!phydev->suspended_by_mdio_bus) 351 goto no_resume; 352 353 phydev->suspended_by_mdio_bus = 0; 354 355 /* If we managed to get here with the PHY state machine in a state 356 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 357 * that something went wrong and we should most likely be using 358 * MAC managed PM, but we are not. 359 */ 360 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 361 phydev->state != PHY_UP); 362 363 ret = phy_init_hw(phydev); 364 if (ret < 0) 365 return ret; 366 367 ret = phy_resume(phydev); 368 if (ret < 0) 369 return ret; 370 no_resume: 371 if (phy_interrupt_is_valid(phydev)) { 372 phydev->irq_suspended = 0; 373 synchronize_irq(phydev->irq); 374 375 /* Rerun interrupts which were postponed by phy_interrupt() 376 * because they occurred during the system sleep transition. 377 */ 378 if (phydev->irq_rerun) { 379 phydev->irq_rerun = 0; 380 enable_irq(phydev->irq); 381 irq_wake_thread(phydev->irq, phydev); 382 } 383 } 384 385 if (phydev->attached_dev && phydev->adjust_link) 386 phy_start_machine(phydev); 387 388 return 0; 389 } 390 391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 392 mdio_bus_phy_resume); 393 394 /** 395 * phy_register_fixup - creates a new phy_fixup and adds it to the list 396 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 397 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 398 * It can also be PHY_ANY_UID 399 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 400 * comparison 401 * @run: The actual code to be run when a matching PHY is found 402 */ 403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 404 int (*run)(struct phy_device *)) 405 { 406 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 407 408 if (!fixup) 409 return -ENOMEM; 410 411 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 412 fixup->phy_uid = phy_uid; 413 fixup->phy_uid_mask = phy_uid_mask; 414 fixup->run = run; 415 416 mutex_lock(&phy_fixup_lock); 417 list_add_tail(&fixup->list, &phy_fixup_list); 418 mutex_unlock(&phy_fixup_lock); 419 420 return 0; 421 } 422 EXPORT_SYMBOL(phy_register_fixup); 423 424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 426 int (*run)(struct phy_device *)) 427 { 428 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 429 } 430 EXPORT_SYMBOL(phy_register_fixup_for_uid); 431 432 /* Registers a fixup to be run on the PHY with id string bus_id */ 433 int phy_register_fixup_for_id(const char *bus_id, 434 int (*run)(struct phy_device *)) 435 { 436 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 437 } 438 EXPORT_SYMBOL(phy_register_fixup_for_id); 439 440 /** 441 * phy_unregister_fixup - remove a phy_fixup from the list 442 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 443 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 444 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 445 */ 446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 447 { 448 struct list_head *pos, *n; 449 struct phy_fixup *fixup; 450 int ret; 451 452 ret = -ENODEV; 453 454 mutex_lock(&phy_fixup_lock); 455 list_for_each_safe(pos, n, &phy_fixup_list) { 456 fixup = list_entry(pos, struct phy_fixup, list); 457 458 if ((!strcmp(fixup->bus_id, bus_id)) && 459 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) { 460 list_del(&fixup->list); 461 kfree(fixup); 462 ret = 0; 463 break; 464 } 465 } 466 mutex_unlock(&phy_fixup_lock); 467 468 return ret; 469 } 470 EXPORT_SYMBOL(phy_unregister_fixup); 471 472 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 474 { 475 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 476 } 477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 478 479 /* Unregisters a fixup of the PHY with id string bus_id */ 480 int phy_unregister_fixup_for_id(const char *bus_id) 481 { 482 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 483 } 484 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 485 486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 487 * Fixups can be set to match any in one or more fields. 488 */ 489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 490 { 491 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 492 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 493 return 0; 494 495 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid, 496 fixup->phy_uid_mask)) 497 if (fixup->phy_uid != PHY_ANY_UID) 498 return 0; 499 500 return 1; 501 } 502 503 /* Runs any matching fixups for this phydev */ 504 static int phy_scan_fixups(struct phy_device *phydev) 505 { 506 struct phy_fixup *fixup; 507 508 mutex_lock(&phy_fixup_lock); 509 list_for_each_entry(fixup, &phy_fixup_list, list) { 510 if (phy_needs_fixup(phydev, fixup)) { 511 int err = fixup->run(phydev); 512 513 if (err < 0) { 514 mutex_unlock(&phy_fixup_lock); 515 return err; 516 } 517 phydev->has_fixups = true; 518 } 519 } 520 mutex_unlock(&phy_fixup_lock); 521 522 return 0; 523 } 524 525 static int phy_bus_match(struct device *dev, struct device_driver *drv) 526 { 527 struct phy_device *phydev = to_phy_device(dev); 528 struct phy_driver *phydrv = to_phy_driver(drv); 529 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 530 int i; 531 532 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 533 return 0; 534 535 if (phydrv->match_phy_device) 536 return phydrv->match_phy_device(phydev); 537 538 if (phydev->is_c45) { 539 for (i = 1; i < num_ids; i++) { 540 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 541 continue; 542 543 if (phy_id_compare(phydev->c45_ids.device_ids[i], 544 phydrv->phy_id, phydrv->phy_id_mask)) 545 return 1; 546 } 547 return 0; 548 } else { 549 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 550 phydrv->phy_id_mask); 551 } 552 } 553 554 static ssize_t 555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 556 { 557 struct phy_device *phydev = to_phy_device(dev); 558 559 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 560 } 561 static DEVICE_ATTR_RO(phy_id); 562 563 static ssize_t 564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 565 { 566 struct phy_device *phydev = to_phy_device(dev); 567 const char *mode = NULL; 568 569 if (phy_is_internal(phydev)) 570 mode = "internal"; 571 else 572 mode = phy_modes(phydev->interface); 573 574 return sysfs_emit(buf, "%s\n", mode); 575 } 576 static DEVICE_ATTR_RO(phy_interface); 577 578 static ssize_t 579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 580 char *buf) 581 { 582 struct phy_device *phydev = to_phy_device(dev); 583 584 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 585 } 586 static DEVICE_ATTR_RO(phy_has_fixups); 587 588 static ssize_t phy_dev_flags_show(struct device *dev, 589 struct device_attribute *attr, 590 char *buf) 591 { 592 struct phy_device *phydev = to_phy_device(dev); 593 594 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 595 } 596 static DEVICE_ATTR_RO(phy_dev_flags); 597 598 static struct attribute *phy_dev_attrs[] = { 599 &dev_attr_phy_id.attr, 600 &dev_attr_phy_interface.attr, 601 &dev_attr_phy_has_fixups.attr, 602 &dev_attr_phy_dev_flags.attr, 603 NULL, 604 }; 605 ATTRIBUTE_GROUPS(phy_dev); 606 607 static const struct device_type mdio_bus_phy_type = { 608 .name = "PHY", 609 .groups = phy_dev_groups, 610 .release = phy_device_release, 611 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 612 }; 613 614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 615 { 616 int ret; 617 618 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 619 MDIO_ID_ARGS(phy_id)); 620 /* We only check for failures in executing the usermode binary, 621 * not whether a PHY driver module exists for the PHY ID. 622 * Accept -ENOENT because this may occur in case no initramfs exists, 623 * then modprobe isn't available. 624 */ 625 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 626 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 627 ret, (unsigned long)phy_id); 628 return ret; 629 } 630 631 return 0; 632 } 633 634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 635 bool is_c45, 636 struct phy_c45_device_ids *c45_ids) 637 { 638 struct phy_device *dev; 639 struct mdio_device *mdiodev; 640 int ret = 0; 641 642 /* We allocate the device, and initialize the default values */ 643 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 644 if (!dev) 645 return ERR_PTR(-ENOMEM); 646 647 mdiodev = &dev->mdio; 648 mdiodev->dev.parent = &bus->dev; 649 mdiodev->dev.bus = &mdio_bus_type; 650 mdiodev->dev.type = &mdio_bus_phy_type; 651 mdiodev->bus = bus; 652 mdiodev->bus_match = phy_bus_match; 653 mdiodev->addr = addr; 654 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 655 mdiodev->device_free = phy_mdio_device_free; 656 mdiodev->device_remove = phy_mdio_device_remove; 657 mdiodev->reset_state = -1; 658 659 dev->speed = SPEED_UNKNOWN; 660 dev->duplex = DUPLEX_UNKNOWN; 661 dev->pause = 0; 662 dev->asym_pause = 0; 663 dev->link = 0; 664 dev->port = PORT_TP; 665 dev->interface = PHY_INTERFACE_MODE_GMII; 666 667 dev->autoneg = AUTONEG_ENABLE; 668 669 dev->pma_extable = -ENODATA; 670 dev->is_c45 = is_c45; 671 dev->phy_id = phy_id; 672 if (c45_ids) 673 dev->c45_ids = *c45_ids; 674 dev->irq = bus->irq[addr]; 675 676 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 677 device_initialize(&mdiodev->dev); 678 679 dev->state = PHY_DOWN; 680 INIT_LIST_HEAD(&dev->leds); 681 682 mutex_init(&dev->lock); 683 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 684 685 /* Request the appropriate module unconditionally; don't 686 * bother trying to do so only if it isn't already loaded, 687 * because that gets complicated. A hotplug event would have 688 * done an unconditional modprobe anyway. 689 * We don't do normal hotplug because it won't work for MDIO 690 * -- because it relies on the device staying around for long 691 * enough for the driver to get loaded. With MDIO, the NIC 692 * driver will get bored and give up as soon as it finds that 693 * there's no driver _already_ loaded. 694 */ 695 if (is_c45 && c45_ids) { 696 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 697 int i; 698 699 for (i = 1; i < num_ids; i++) { 700 if (c45_ids->device_ids[i] == 0xffffffff) 701 continue; 702 703 ret = phy_request_driver_module(dev, 704 c45_ids->device_ids[i]); 705 if (ret) 706 break; 707 } 708 } else { 709 ret = phy_request_driver_module(dev, phy_id); 710 } 711 712 if (ret) { 713 put_device(&mdiodev->dev); 714 dev = ERR_PTR(ret); 715 } 716 717 return dev; 718 } 719 EXPORT_SYMBOL(phy_device_create); 720 721 /* phy_c45_probe_present - checks to see if a MMD is present in the package 722 * @bus: the target MII bus 723 * @prtad: PHY package address on the MII bus 724 * @devad: PHY device (MMD) address 725 * 726 * Read the MDIO_STAT2 register, and check whether a device is responding 727 * at this address. 728 * 729 * Returns: negative error number on bus access error, zero if no device 730 * is responding, or positive if a device is present. 731 */ 732 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 733 { 734 int stat2; 735 736 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 737 if (stat2 < 0) 738 return stat2; 739 740 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 741 } 742 743 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 744 * @bus: the target MII bus 745 * @addr: PHY address on the MII bus 746 * @dev_addr: MMD address in the PHY. 747 * @devices_in_package: where to store the devices in package information. 748 * 749 * Description: reads devices in package registers of a MMD at @dev_addr 750 * from PHY at @addr on @bus. 751 * 752 * Returns: 0 on success, -EIO on failure. 753 */ 754 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 755 u32 *devices_in_package) 756 { 757 int phy_reg; 758 759 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 760 if (phy_reg < 0) 761 return -EIO; 762 *devices_in_package = phy_reg << 16; 763 764 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 765 if (phy_reg < 0) 766 return -EIO; 767 *devices_in_package |= phy_reg; 768 769 return 0; 770 } 771 772 /** 773 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 774 * @bus: the target MII bus 775 * @addr: PHY address on the MII bus 776 * @c45_ids: where to store the c45 ID information. 777 * 778 * Read the PHY "devices in package". If this appears to be valid, read 779 * the PHY identifiers for each device. Return the "devices in package" 780 * and identifiers in @c45_ids. 781 * 782 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 783 * the "devices in package" is invalid. 784 */ 785 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 786 struct phy_c45_device_ids *c45_ids) 787 { 788 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 789 u32 devs_in_pkg = 0; 790 int i, ret, phy_reg; 791 792 /* Find first non-zero Devices In package. Device zero is reserved 793 * for 802.3 c45 complied PHYs, so don't probe it at first. 794 */ 795 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 796 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 797 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 798 /* Check that there is a device present at this 799 * address before reading the devices-in-package 800 * register to avoid reading garbage from the PHY. 801 * Some PHYs (88x3310) vendor space is not IEEE802.3 802 * compliant. 803 */ 804 ret = phy_c45_probe_present(bus, addr, i); 805 if (ret < 0) 806 return -EIO; 807 808 if (!ret) 809 continue; 810 } 811 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 812 if (phy_reg < 0) 813 return -EIO; 814 } 815 816 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 817 /* If mostly Fs, there is no device there, then let's probe 818 * MMD 0, as some 10G PHYs have zero Devices In package, 819 * e.g. Cortina CS4315/CS4340 PHY. 820 */ 821 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 822 if (phy_reg < 0) 823 return -EIO; 824 825 /* no device there, let's get out of here */ 826 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 827 return -ENODEV; 828 } 829 830 /* Now probe Device Identifiers for each device present. */ 831 for (i = 1; i < num_ids; i++) { 832 if (!(devs_in_pkg & (1 << i))) 833 continue; 834 835 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 836 /* Probe the "Device Present" bits for the vendor MMDs 837 * to ignore these if they do not contain IEEE 802.3 838 * registers. 839 */ 840 ret = phy_c45_probe_present(bus, addr, i); 841 if (ret < 0) 842 return ret; 843 844 if (!ret) 845 continue; 846 } 847 848 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 849 if (phy_reg < 0) 850 return -EIO; 851 c45_ids->device_ids[i] = phy_reg << 16; 852 853 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 854 if (phy_reg < 0) 855 return -EIO; 856 c45_ids->device_ids[i] |= phy_reg; 857 } 858 859 c45_ids->devices_in_package = devs_in_pkg; 860 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 861 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 862 863 return 0; 864 } 865 866 /** 867 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 868 * @bus: the target MII bus 869 * @addr: PHY address on the MII bus 870 * @phy_id: where to store the ID retrieved. 871 * 872 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 873 * placing it in @phy_id. Return zero on successful read and the ID is 874 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 875 * or invalid ID. 876 */ 877 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 878 { 879 int phy_reg; 880 881 /* Grab the bits from PHYIR1, and put them in the upper half */ 882 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 883 if (phy_reg < 0) { 884 /* returning -ENODEV doesn't stop bus scanning */ 885 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 886 } 887 888 *phy_id = phy_reg << 16; 889 890 /* Grab the bits from PHYIR2, and put them in the lower half */ 891 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 892 if (phy_reg < 0) { 893 /* returning -ENODEV doesn't stop bus scanning */ 894 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 895 } 896 897 *phy_id |= phy_reg; 898 899 /* If the phy_id is mostly Fs, there is no device there */ 900 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 901 return -ENODEV; 902 903 return 0; 904 } 905 906 /* Extract the phy ID from the compatible string of the form 907 * ethernet-phy-idAAAA.BBBB. 908 */ 909 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 910 { 911 unsigned int upper, lower; 912 const char *cp; 913 int ret; 914 915 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 916 if (ret) 917 return ret; 918 919 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 920 return -EINVAL; 921 922 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 923 return 0; 924 } 925 EXPORT_SYMBOL(fwnode_get_phy_id); 926 927 /** 928 * get_phy_device - reads the specified PHY device and returns its @phy_device 929 * struct 930 * @bus: the target MII bus 931 * @addr: PHY address on the MII bus 932 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 933 * 934 * Probe for a PHY at @addr on @bus. 935 * 936 * When probing for a clause 22 PHY, then read the ID registers. If we find 937 * a valid ID, allocate and return a &struct phy_device. 938 * 939 * When probing for a clause 45 PHY, read the "devices in package" registers. 940 * If the "devices in package" appears valid, read the ID registers for each 941 * MMD, allocate and return a &struct phy_device. 942 * 943 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 944 * no PHY present, or %-EIO on bus access error. 945 */ 946 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 947 { 948 struct phy_c45_device_ids c45_ids; 949 u32 phy_id = 0; 950 int r; 951 952 c45_ids.devices_in_package = 0; 953 c45_ids.mmds_present = 0; 954 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 955 956 if (is_c45) 957 r = get_phy_c45_ids(bus, addr, &c45_ids); 958 else 959 r = get_phy_c22_id(bus, addr, &phy_id); 960 961 if (r) 962 return ERR_PTR(r); 963 964 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 965 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 966 * probe with C45 to see if we're able to get a valid PHY ID in the C45 967 * space, if successful, create the C45 PHY device. 968 */ 969 if (!is_c45 && phy_id == 0 && bus->read_c45) { 970 r = get_phy_c45_ids(bus, addr, &c45_ids); 971 if (!r) 972 return phy_device_create(bus, addr, phy_id, 973 true, &c45_ids); 974 } 975 976 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 977 } 978 EXPORT_SYMBOL(get_phy_device); 979 980 /** 981 * phy_device_register - Register the phy device on the MDIO bus 982 * @phydev: phy_device structure to be added to the MDIO bus 983 */ 984 int phy_device_register(struct phy_device *phydev) 985 { 986 int err; 987 988 err = mdiobus_register_device(&phydev->mdio); 989 if (err) 990 return err; 991 992 /* Deassert the reset signal */ 993 phy_device_reset(phydev, 0); 994 995 /* Run all of the fixups for this PHY */ 996 err = phy_scan_fixups(phydev); 997 if (err) { 998 phydev_err(phydev, "failed to initialize\n"); 999 goto out; 1000 } 1001 1002 err = device_add(&phydev->mdio.dev); 1003 if (err) { 1004 phydev_err(phydev, "failed to add\n"); 1005 goto out; 1006 } 1007 1008 return 0; 1009 1010 out: 1011 /* Assert the reset signal */ 1012 phy_device_reset(phydev, 1); 1013 1014 mdiobus_unregister_device(&phydev->mdio); 1015 return err; 1016 } 1017 EXPORT_SYMBOL(phy_device_register); 1018 1019 /** 1020 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1021 * @phydev: phy_device structure to remove 1022 * 1023 * This doesn't free the phy_device itself, it merely reverses the effects 1024 * of phy_device_register(). Use phy_device_free() to free the device 1025 * after calling this function. 1026 */ 1027 void phy_device_remove(struct phy_device *phydev) 1028 { 1029 unregister_mii_timestamper(phydev->mii_ts); 1030 pse_control_put(phydev->psec); 1031 1032 device_del(&phydev->mdio.dev); 1033 1034 /* Assert the reset signal */ 1035 phy_device_reset(phydev, 1); 1036 1037 mdiobus_unregister_device(&phydev->mdio); 1038 } 1039 EXPORT_SYMBOL(phy_device_remove); 1040 1041 /** 1042 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1043 * @phydev: phy_device structure to read 802.3-c45 IDs 1044 * 1045 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1046 * the "devices in package" is invalid. 1047 */ 1048 int phy_get_c45_ids(struct phy_device *phydev) 1049 { 1050 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1051 &phydev->c45_ids); 1052 } 1053 EXPORT_SYMBOL(phy_get_c45_ids); 1054 1055 /** 1056 * phy_find_first - finds the first PHY device on the bus 1057 * @bus: the target MII bus 1058 */ 1059 struct phy_device *phy_find_first(struct mii_bus *bus) 1060 { 1061 struct phy_device *phydev; 1062 int addr; 1063 1064 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1065 phydev = mdiobus_get_phy(bus, addr); 1066 if (phydev) 1067 return phydev; 1068 } 1069 return NULL; 1070 } 1071 EXPORT_SYMBOL(phy_find_first); 1072 1073 static void phy_link_change(struct phy_device *phydev, bool up) 1074 { 1075 struct net_device *netdev = phydev->attached_dev; 1076 1077 if (up) 1078 netif_carrier_on(netdev); 1079 else 1080 netif_carrier_off(netdev); 1081 phydev->adjust_link(netdev); 1082 if (phydev->mii_ts && phydev->mii_ts->link_state) 1083 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1084 } 1085 1086 /** 1087 * phy_prepare_link - prepares the PHY layer to monitor link status 1088 * @phydev: target phy_device struct 1089 * @handler: callback function for link status change notifications 1090 * 1091 * Description: Tells the PHY infrastructure to handle the 1092 * gory details on monitoring link status (whether through 1093 * polling or an interrupt), and to call back to the 1094 * connected device driver when the link status changes. 1095 * If you want to monitor your own link state, don't call 1096 * this function. 1097 */ 1098 static void phy_prepare_link(struct phy_device *phydev, 1099 void (*handler)(struct net_device *)) 1100 { 1101 phydev->adjust_link = handler; 1102 } 1103 1104 /** 1105 * phy_connect_direct - connect an ethernet device to a specific phy_device 1106 * @dev: the network device to connect 1107 * @phydev: the pointer to the phy device 1108 * @handler: callback function for state change notifications 1109 * @interface: PHY device's interface 1110 */ 1111 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1112 void (*handler)(struct net_device *), 1113 phy_interface_t interface) 1114 { 1115 int rc; 1116 1117 if (!dev) 1118 return -EINVAL; 1119 1120 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1121 if (rc) 1122 return rc; 1123 1124 phy_prepare_link(phydev, handler); 1125 if (phy_interrupt_is_valid(phydev)) 1126 phy_request_interrupt(phydev); 1127 1128 return 0; 1129 } 1130 EXPORT_SYMBOL(phy_connect_direct); 1131 1132 /** 1133 * phy_connect - connect an ethernet device to a PHY device 1134 * @dev: the network device to connect 1135 * @bus_id: the id string of the PHY device to connect 1136 * @handler: callback function for state change notifications 1137 * @interface: PHY device's interface 1138 * 1139 * Description: Convenience function for connecting ethernet 1140 * devices to PHY devices. The default behavior is for 1141 * the PHY infrastructure to handle everything, and only notify 1142 * the connected driver when the link status changes. If you 1143 * don't want, or can't use the provided functionality, you may 1144 * choose to call only the subset of functions which provide 1145 * the desired functionality. 1146 */ 1147 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1148 void (*handler)(struct net_device *), 1149 phy_interface_t interface) 1150 { 1151 struct phy_device *phydev; 1152 struct device *d; 1153 int rc; 1154 1155 /* Search the list of PHY devices on the mdio bus for the 1156 * PHY with the requested name 1157 */ 1158 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1159 if (!d) { 1160 pr_err("PHY %s not found\n", bus_id); 1161 return ERR_PTR(-ENODEV); 1162 } 1163 phydev = to_phy_device(d); 1164 1165 rc = phy_connect_direct(dev, phydev, handler, interface); 1166 put_device(d); 1167 if (rc) 1168 return ERR_PTR(rc); 1169 1170 return phydev; 1171 } 1172 EXPORT_SYMBOL(phy_connect); 1173 1174 /** 1175 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1176 * device 1177 * @phydev: target phy_device struct 1178 */ 1179 void phy_disconnect(struct phy_device *phydev) 1180 { 1181 if (phy_is_started(phydev)) 1182 phy_stop(phydev); 1183 1184 if (phy_interrupt_is_valid(phydev)) 1185 phy_free_interrupt(phydev); 1186 1187 phydev->adjust_link = NULL; 1188 1189 phy_detach(phydev); 1190 } 1191 EXPORT_SYMBOL(phy_disconnect); 1192 1193 /** 1194 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1195 * @phydev: The PHY device to poll 1196 * 1197 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1198 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1199 * register must be polled until the BMCR_RESET bit clears. 1200 * 1201 * Furthermore, any attempts to write to PHY registers may have no effect 1202 * or even generate MDIO bus errors until this is complete. 1203 * 1204 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1205 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1206 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1207 * effort to support such broken PHYs, this function is separate from the 1208 * standard phy_init_hw() which will zero all the other bits in the BMCR 1209 * and reapply all driver-specific and board-specific fixups. 1210 */ 1211 static int phy_poll_reset(struct phy_device *phydev) 1212 { 1213 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1214 int ret, val; 1215 1216 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1217 50000, 600000, true); 1218 if (ret) 1219 return ret; 1220 /* Some chips (smsc911x) may still need up to another 1ms after the 1221 * BMCR_RESET bit is cleared before they are usable. 1222 */ 1223 msleep(1); 1224 return 0; 1225 } 1226 1227 int phy_init_hw(struct phy_device *phydev) 1228 { 1229 int ret = 0; 1230 1231 /* Deassert the reset signal */ 1232 phy_device_reset(phydev, 0); 1233 1234 if (!phydev->drv) 1235 return 0; 1236 1237 if (phydev->drv->soft_reset) { 1238 ret = phydev->drv->soft_reset(phydev); 1239 if (ret < 0) 1240 return ret; 1241 1242 /* see comment in genphy_soft_reset for an explanation */ 1243 phydev->suspended = 0; 1244 } 1245 1246 ret = phy_scan_fixups(phydev); 1247 if (ret < 0) 1248 return ret; 1249 1250 phy_interface_zero(phydev->possible_interfaces); 1251 1252 if (phydev->drv->config_init) { 1253 ret = phydev->drv->config_init(phydev); 1254 if (ret < 0) 1255 return ret; 1256 } 1257 1258 if (phydev->drv->config_intr) { 1259 ret = phydev->drv->config_intr(phydev); 1260 if (ret < 0) 1261 return ret; 1262 } 1263 1264 return 0; 1265 } 1266 EXPORT_SYMBOL(phy_init_hw); 1267 1268 void phy_attached_info(struct phy_device *phydev) 1269 { 1270 phy_attached_print(phydev, NULL); 1271 } 1272 EXPORT_SYMBOL(phy_attached_info); 1273 1274 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1275 char *phy_attached_info_irq(struct phy_device *phydev) 1276 { 1277 char *irq_str; 1278 char irq_num[8]; 1279 1280 switch(phydev->irq) { 1281 case PHY_POLL: 1282 irq_str = "POLL"; 1283 break; 1284 case PHY_MAC_INTERRUPT: 1285 irq_str = "MAC"; 1286 break; 1287 default: 1288 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1289 irq_str = irq_num; 1290 break; 1291 } 1292 1293 return kasprintf(GFP_KERNEL, "%s", irq_str); 1294 } 1295 EXPORT_SYMBOL(phy_attached_info_irq); 1296 1297 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1298 { 1299 const char *unbound = phydev->drv ? "" : "[unbound] "; 1300 char *irq_str = phy_attached_info_irq(phydev); 1301 1302 if (!fmt) { 1303 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1304 phydev_name(phydev), irq_str); 1305 } else { 1306 va_list ap; 1307 1308 phydev_info(phydev, ATTACHED_FMT, unbound, 1309 phydev_name(phydev), irq_str); 1310 1311 va_start(ap, fmt); 1312 vprintk(fmt, ap); 1313 va_end(ap); 1314 } 1315 kfree(irq_str); 1316 } 1317 EXPORT_SYMBOL(phy_attached_print); 1318 1319 static void phy_sysfs_create_links(struct phy_device *phydev) 1320 { 1321 struct net_device *dev = phydev->attached_dev; 1322 int err; 1323 1324 if (!dev) 1325 return; 1326 1327 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1328 "attached_dev"); 1329 if (err) 1330 return; 1331 1332 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1333 &phydev->mdio.dev.kobj, 1334 "phydev"); 1335 if (err) { 1336 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1337 kobject_name(&phydev->mdio.dev.kobj), 1338 err); 1339 /* non-fatal - some net drivers can use one netdevice 1340 * with more then one phy 1341 */ 1342 } 1343 1344 phydev->sysfs_links = true; 1345 } 1346 1347 static ssize_t 1348 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1349 char *buf) 1350 { 1351 struct phy_device *phydev = to_phy_device(dev); 1352 1353 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1354 } 1355 static DEVICE_ATTR_RO(phy_standalone); 1356 1357 /** 1358 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1359 * @upstream: pointer to the phy device 1360 * @bus: sfp bus representing cage being attached 1361 * 1362 * This is used to fill in the sfp_upstream_ops .attach member. 1363 */ 1364 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1365 { 1366 struct phy_device *phydev = upstream; 1367 1368 if (phydev->attached_dev) 1369 phydev->attached_dev->sfp_bus = bus; 1370 phydev->sfp_bus_attached = true; 1371 } 1372 EXPORT_SYMBOL(phy_sfp_attach); 1373 1374 /** 1375 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1376 * @upstream: pointer to the phy device 1377 * @bus: sfp bus representing cage being attached 1378 * 1379 * This is used to fill in the sfp_upstream_ops .detach member. 1380 */ 1381 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1382 { 1383 struct phy_device *phydev = upstream; 1384 1385 if (phydev->attached_dev) 1386 phydev->attached_dev->sfp_bus = NULL; 1387 phydev->sfp_bus_attached = false; 1388 } 1389 EXPORT_SYMBOL(phy_sfp_detach); 1390 1391 /** 1392 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1393 * @phydev: Pointer to phy_device 1394 * @ops: SFP's upstream operations 1395 */ 1396 int phy_sfp_probe(struct phy_device *phydev, 1397 const struct sfp_upstream_ops *ops) 1398 { 1399 struct sfp_bus *bus; 1400 int ret = 0; 1401 1402 if (phydev->mdio.dev.fwnode) { 1403 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1404 if (IS_ERR(bus)) 1405 return PTR_ERR(bus); 1406 1407 phydev->sfp_bus = bus; 1408 1409 ret = sfp_bus_add_upstream(bus, phydev, ops); 1410 sfp_bus_put(bus); 1411 } 1412 return ret; 1413 } 1414 EXPORT_SYMBOL(phy_sfp_probe); 1415 1416 /** 1417 * phy_attach_direct - attach a network device to a given PHY device pointer 1418 * @dev: network device to attach 1419 * @phydev: Pointer to phy_device to attach 1420 * @flags: PHY device's dev_flags 1421 * @interface: PHY device's interface 1422 * 1423 * Description: Called by drivers to attach to a particular PHY 1424 * device. The phy_device is found, and properly hooked up 1425 * to the phy_driver. If no driver is attached, then a 1426 * generic driver is used. The phy_device is given a ptr to 1427 * the attaching device, and given a callback for link status 1428 * change. The phy_device is returned to the attaching driver. 1429 * This function takes a reference on the phy device. 1430 */ 1431 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1432 u32 flags, phy_interface_t interface) 1433 { 1434 struct mii_bus *bus = phydev->mdio.bus; 1435 struct device *d = &phydev->mdio.dev; 1436 struct module *ndev_owner = NULL; 1437 bool using_genphy = false; 1438 int err; 1439 1440 /* For Ethernet device drivers that register their own MDIO bus, we 1441 * will have bus->owner match ndev_mod, so we do not want to increment 1442 * our own module->refcnt here, otherwise we would not be able to 1443 * unload later on. 1444 */ 1445 if (dev) 1446 ndev_owner = dev->dev.parent->driver->owner; 1447 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1448 phydev_err(phydev, "failed to get the bus module\n"); 1449 return -EIO; 1450 } 1451 1452 get_device(d); 1453 1454 /* Assume that if there is no driver, that it doesn't 1455 * exist, and we should use the genphy driver. 1456 */ 1457 if (!d->driver) { 1458 if (phydev->is_c45) 1459 d->driver = &genphy_c45_driver.mdiodrv.driver; 1460 else 1461 d->driver = &genphy_driver.mdiodrv.driver; 1462 1463 using_genphy = true; 1464 } 1465 1466 if (!try_module_get(d->driver->owner)) { 1467 phydev_err(phydev, "failed to get the device driver module\n"); 1468 err = -EIO; 1469 goto error_put_device; 1470 } 1471 1472 if (using_genphy) { 1473 err = d->driver->probe(d); 1474 if (err >= 0) 1475 err = device_bind_driver(d); 1476 1477 if (err) 1478 goto error_module_put; 1479 } 1480 1481 if (phydev->attached_dev) { 1482 dev_err(&dev->dev, "PHY already attached\n"); 1483 err = -EBUSY; 1484 goto error; 1485 } 1486 1487 phydev->phy_link_change = phy_link_change; 1488 if (dev) { 1489 phydev->attached_dev = dev; 1490 dev->phydev = phydev; 1491 1492 if (phydev->sfp_bus_attached) 1493 dev->sfp_bus = phydev->sfp_bus; 1494 } 1495 1496 /* Some Ethernet drivers try to connect to a PHY device before 1497 * calling register_netdevice() -> netdev_register_kobject() and 1498 * does the dev->dev.kobj initialization. Here we only check for 1499 * success which indicates that the network device kobject is 1500 * ready. Once we do that we still need to keep track of whether 1501 * links were successfully set up or not for phy_detach() to 1502 * remove them accordingly. 1503 */ 1504 phydev->sysfs_links = false; 1505 1506 phy_sysfs_create_links(phydev); 1507 1508 if (!phydev->attached_dev) { 1509 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1510 &dev_attr_phy_standalone.attr); 1511 if (err) 1512 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1513 } 1514 1515 phydev->dev_flags |= flags; 1516 1517 phydev->interface = interface; 1518 1519 phydev->state = PHY_READY; 1520 1521 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1522 1523 /* PHYs can request to use poll mode even though they have an 1524 * associated interrupt line. This could be the case if they 1525 * detect a broken interrupt handling. 1526 */ 1527 if (phydev->dev_flags & PHY_F_NO_IRQ) 1528 phydev->irq = PHY_POLL; 1529 1530 /* Port is set to PORT_TP by default and the actual PHY driver will set 1531 * it to different value depending on the PHY configuration. If we have 1532 * the generic PHY driver we can't figure it out, thus set the old 1533 * legacy PORT_MII value. 1534 */ 1535 if (using_genphy) 1536 phydev->port = PORT_MII; 1537 1538 /* Initial carrier state is off as the phy is about to be 1539 * (re)initialized. 1540 */ 1541 if (dev) 1542 netif_carrier_off(phydev->attached_dev); 1543 1544 /* Do initial configuration here, now that 1545 * we have certain key parameters 1546 * (dev_flags and interface) 1547 */ 1548 err = phy_init_hw(phydev); 1549 if (err) 1550 goto error; 1551 1552 phy_resume(phydev); 1553 phy_led_triggers_register(phydev); 1554 1555 /** 1556 * If the external phy used by current mac interface is managed by 1557 * another mac interface, so we should create a device link between 1558 * phy dev and mac dev. 1559 */ 1560 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1561 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1562 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1563 1564 return err; 1565 1566 error: 1567 /* phy_detach() does all of the cleanup below */ 1568 phy_detach(phydev); 1569 return err; 1570 1571 error_module_put: 1572 module_put(d->driver->owner); 1573 d->driver = NULL; 1574 error_put_device: 1575 put_device(d); 1576 if (ndev_owner != bus->owner) 1577 module_put(bus->owner); 1578 return err; 1579 } 1580 EXPORT_SYMBOL(phy_attach_direct); 1581 1582 /** 1583 * phy_attach - attach a network device to a particular PHY device 1584 * @dev: network device to attach 1585 * @bus_id: Bus ID of PHY device to attach 1586 * @interface: PHY device's interface 1587 * 1588 * Description: Same as phy_attach_direct() except that a PHY bus_id 1589 * string is passed instead of a pointer to a struct phy_device. 1590 */ 1591 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1592 phy_interface_t interface) 1593 { 1594 struct bus_type *bus = &mdio_bus_type; 1595 struct phy_device *phydev; 1596 struct device *d; 1597 int rc; 1598 1599 if (!dev) 1600 return ERR_PTR(-EINVAL); 1601 1602 /* Search the list of PHY devices on the mdio bus for the 1603 * PHY with the requested name 1604 */ 1605 d = bus_find_device_by_name(bus, NULL, bus_id); 1606 if (!d) { 1607 pr_err("PHY %s not found\n", bus_id); 1608 return ERR_PTR(-ENODEV); 1609 } 1610 phydev = to_phy_device(d); 1611 1612 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1613 put_device(d); 1614 if (rc) 1615 return ERR_PTR(rc); 1616 1617 return phydev; 1618 } 1619 EXPORT_SYMBOL(phy_attach); 1620 1621 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1622 struct device_driver *driver) 1623 { 1624 struct device *d = &phydev->mdio.dev; 1625 bool ret = false; 1626 1627 if (!phydev->drv) 1628 return ret; 1629 1630 get_device(d); 1631 ret = d->driver == driver; 1632 put_device(d); 1633 1634 return ret; 1635 } 1636 1637 bool phy_driver_is_genphy(struct phy_device *phydev) 1638 { 1639 return phy_driver_is_genphy_kind(phydev, 1640 &genphy_driver.mdiodrv.driver); 1641 } 1642 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1643 1644 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1645 { 1646 return phy_driver_is_genphy_kind(phydev, 1647 &genphy_c45_driver.mdiodrv.driver); 1648 } 1649 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1650 1651 /** 1652 * phy_package_join - join a common PHY group 1653 * @phydev: target phy_device struct 1654 * @base_addr: cookie and base PHY address of PHY package for offset 1655 * calculation of global register access 1656 * @priv_size: if non-zero allocate this amount of bytes for private data 1657 * 1658 * This joins a PHY group and provides a shared storage for all phydevs in 1659 * this group. This is intended to be used for packages which contain 1660 * more than one PHY, for example a quad PHY transceiver. 1661 * 1662 * The base_addr parameter serves as cookie which has to have the same values 1663 * for all members of one group and as the base PHY address of the PHY package 1664 * for offset calculation to access generic registers of a PHY package. 1665 * Usually, one of the PHY addresses of the different PHYs in the package 1666 * provides access to these global registers. 1667 * The address which is given here, will be used in the phy_package_read() 1668 * and phy_package_write() convenience functions as base and added to the 1669 * passed offset in those functions. 1670 * 1671 * This will set the shared pointer of the phydev to the shared storage. 1672 * If this is the first call for a this cookie the shared storage will be 1673 * allocated. If priv_size is non-zero, the given amount of bytes are 1674 * allocated for the priv member. 1675 * 1676 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1677 * with the same cookie but a different priv_size is an error. 1678 */ 1679 int phy_package_join(struct phy_device *phydev, int base_addr, size_t priv_size) 1680 { 1681 struct mii_bus *bus = phydev->mdio.bus; 1682 struct phy_package_shared *shared; 1683 int ret; 1684 1685 if (base_addr < 0 || base_addr >= PHY_MAX_ADDR) 1686 return -EINVAL; 1687 1688 mutex_lock(&bus->shared_lock); 1689 shared = bus->shared[base_addr]; 1690 if (!shared) { 1691 ret = -ENOMEM; 1692 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1693 if (!shared) 1694 goto err_unlock; 1695 if (priv_size) { 1696 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1697 if (!shared->priv) 1698 goto err_free; 1699 shared->priv_size = priv_size; 1700 } 1701 shared->base_addr = base_addr; 1702 refcount_set(&shared->refcnt, 1); 1703 bus->shared[base_addr] = shared; 1704 } else { 1705 ret = -EINVAL; 1706 if (priv_size && priv_size != shared->priv_size) 1707 goto err_unlock; 1708 refcount_inc(&shared->refcnt); 1709 } 1710 mutex_unlock(&bus->shared_lock); 1711 1712 phydev->shared = shared; 1713 1714 return 0; 1715 1716 err_free: 1717 kfree(shared); 1718 err_unlock: 1719 mutex_unlock(&bus->shared_lock); 1720 return ret; 1721 } 1722 EXPORT_SYMBOL_GPL(phy_package_join); 1723 1724 /** 1725 * phy_package_leave - leave a common PHY group 1726 * @phydev: target phy_device struct 1727 * 1728 * This leaves a PHY group created by phy_package_join(). If this phydev 1729 * was the last user of the shared data between the group, this data is 1730 * freed. Resets the phydev->shared pointer to NULL. 1731 */ 1732 void phy_package_leave(struct phy_device *phydev) 1733 { 1734 struct phy_package_shared *shared = phydev->shared; 1735 struct mii_bus *bus = phydev->mdio.bus; 1736 1737 if (!shared) 1738 return; 1739 1740 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1741 bus->shared[shared->base_addr] = NULL; 1742 mutex_unlock(&bus->shared_lock); 1743 kfree(shared->priv); 1744 kfree(shared); 1745 } 1746 1747 phydev->shared = NULL; 1748 } 1749 EXPORT_SYMBOL_GPL(phy_package_leave); 1750 1751 static void devm_phy_package_leave(struct device *dev, void *res) 1752 { 1753 phy_package_leave(*(struct phy_device **)res); 1754 } 1755 1756 /** 1757 * devm_phy_package_join - resource managed phy_package_join() 1758 * @dev: device that is registering this PHY package 1759 * @phydev: target phy_device struct 1760 * @base_addr: cookie and base PHY address of PHY package for offset 1761 * calculation of global register access 1762 * @priv_size: if non-zero allocate this amount of bytes for private data 1763 * 1764 * Managed phy_package_join(). Shared storage fetched by this function, 1765 * phy_package_leave() is automatically called on driver detach. See 1766 * phy_package_join() for more information. 1767 */ 1768 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1769 int base_addr, size_t priv_size) 1770 { 1771 struct phy_device **ptr; 1772 int ret; 1773 1774 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1775 GFP_KERNEL); 1776 if (!ptr) 1777 return -ENOMEM; 1778 1779 ret = phy_package_join(phydev, base_addr, priv_size); 1780 1781 if (!ret) { 1782 *ptr = phydev; 1783 devres_add(dev, ptr); 1784 } else { 1785 devres_free(ptr); 1786 } 1787 1788 return ret; 1789 } 1790 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1791 1792 /** 1793 * phy_detach - detach a PHY device from its network device 1794 * @phydev: target phy_device struct 1795 * 1796 * This detaches the phy device from its network device and the phy 1797 * driver, and drops the reference count taken in phy_attach_direct(). 1798 */ 1799 void phy_detach(struct phy_device *phydev) 1800 { 1801 struct net_device *dev = phydev->attached_dev; 1802 struct module *ndev_owner = NULL; 1803 struct mii_bus *bus; 1804 1805 if (phydev->devlink) 1806 device_link_del(phydev->devlink); 1807 1808 if (phydev->sysfs_links) { 1809 if (dev) 1810 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1811 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1812 } 1813 1814 if (!phydev->attached_dev) 1815 sysfs_remove_file(&phydev->mdio.dev.kobj, 1816 &dev_attr_phy_standalone.attr); 1817 1818 phy_suspend(phydev); 1819 if (dev) { 1820 phydev->attached_dev->phydev = NULL; 1821 phydev->attached_dev = NULL; 1822 } 1823 phydev->phylink = NULL; 1824 1825 phy_led_triggers_unregister(phydev); 1826 1827 if (phydev->mdio.dev.driver) 1828 module_put(phydev->mdio.dev.driver->owner); 1829 1830 /* If the device had no specific driver before (i.e. - it 1831 * was using the generic driver), we unbind the device 1832 * from the generic driver so that there's a chance a 1833 * real driver could be loaded 1834 */ 1835 if (phy_driver_is_genphy(phydev) || 1836 phy_driver_is_genphy_10g(phydev)) 1837 device_release_driver(&phydev->mdio.dev); 1838 1839 /* Assert the reset signal */ 1840 phy_device_reset(phydev, 1); 1841 1842 /* 1843 * The phydev might go away on the put_device() below, so avoid 1844 * a use-after-free bug by reading the underlying bus first. 1845 */ 1846 bus = phydev->mdio.bus; 1847 1848 put_device(&phydev->mdio.dev); 1849 if (dev) 1850 ndev_owner = dev->dev.parent->driver->owner; 1851 if (ndev_owner != bus->owner) 1852 module_put(bus->owner); 1853 } 1854 EXPORT_SYMBOL(phy_detach); 1855 1856 int phy_suspend(struct phy_device *phydev) 1857 { 1858 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1859 struct net_device *netdev = phydev->attached_dev; 1860 struct phy_driver *phydrv = phydev->drv; 1861 int ret; 1862 1863 if (phydev->suspended) 1864 return 0; 1865 1866 phy_ethtool_get_wol(phydev, &wol); 1867 phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled); 1868 /* If the device has WOL enabled, we cannot suspend the PHY */ 1869 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 1870 return -EBUSY; 1871 1872 if (!phydrv || !phydrv->suspend) 1873 return 0; 1874 1875 ret = phydrv->suspend(phydev); 1876 if (!ret) 1877 phydev->suspended = true; 1878 1879 return ret; 1880 } 1881 EXPORT_SYMBOL(phy_suspend); 1882 1883 int __phy_resume(struct phy_device *phydev) 1884 { 1885 struct phy_driver *phydrv = phydev->drv; 1886 int ret; 1887 1888 lockdep_assert_held(&phydev->lock); 1889 1890 if (!phydrv || !phydrv->resume) 1891 return 0; 1892 1893 ret = phydrv->resume(phydev); 1894 if (!ret) 1895 phydev->suspended = false; 1896 1897 return ret; 1898 } 1899 EXPORT_SYMBOL(__phy_resume); 1900 1901 int phy_resume(struct phy_device *phydev) 1902 { 1903 int ret; 1904 1905 mutex_lock(&phydev->lock); 1906 ret = __phy_resume(phydev); 1907 mutex_unlock(&phydev->lock); 1908 1909 return ret; 1910 } 1911 EXPORT_SYMBOL(phy_resume); 1912 1913 int phy_loopback(struct phy_device *phydev, bool enable) 1914 { 1915 int ret = 0; 1916 1917 if (!phydev->drv) 1918 return -EIO; 1919 1920 mutex_lock(&phydev->lock); 1921 1922 if (enable && phydev->loopback_enabled) { 1923 ret = -EBUSY; 1924 goto out; 1925 } 1926 1927 if (!enable && !phydev->loopback_enabled) { 1928 ret = -EINVAL; 1929 goto out; 1930 } 1931 1932 if (phydev->drv->set_loopback) 1933 ret = phydev->drv->set_loopback(phydev, enable); 1934 else 1935 ret = genphy_loopback(phydev, enable); 1936 1937 if (ret) 1938 goto out; 1939 1940 phydev->loopback_enabled = enable; 1941 1942 out: 1943 mutex_unlock(&phydev->lock); 1944 return ret; 1945 } 1946 EXPORT_SYMBOL(phy_loopback); 1947 1948 /** 1949 * phy_reset_after_clk_enable - perform a PHY reset if needed 1950 * @phydev: target phy_device struct 1951 * 1952 * Description: Some PHYs are known to need a reset after their refclk was 1953 * enabled. This function evaluates the flags and perform the reset if it's 1954 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1955 * was reset. 1956 */ 1957 int phy_reset_after_clk_enable(struct phy_device *phydev) 1958 { 1959 if (!phydev || !phydev->drv) 1960 return -ENODEV; 1961 1962 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1963 phy_device_reset(phydev, 1); 1964 phy_device_reset(phydev, 0); 1965 return 1; 1966 } 1967 1968 return 0; 1969 } 1970 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1971 1972 /* Generic PHY support and helper functions */ 1973 1974 /** 1975 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1976 * @phydev: target phy_device struct 1977 * 1978 * Description: Writes MII_ADVERTISE with the appropriate values, 1979 * after sanitizing the values to make sure we only advertise 1980 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1981 * hasn't changed, and > 0 if it has changed. 1982 */ 1983 static int genphy_config_advert(struct phy_device *phydev) 1984 { 1985 int err, bmsr, changed = 0; 1986 u32 adv; 1987 1988 /* Only allow advertising what this PHY supports */ 1989 linkmode_and(phydev->advertising, phydev->advertising, 1990 phydev->supported); 1991 1992 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1993 1994 /* Setup standard advertisement */ 1995 err = phy_modify_changed(phydev, MII_ADVERTISE, 1996 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1997 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1998 adv); 1999 if (err < 0) 2000 return err; 2001 if (err > 0) 2002 changed = 1; 2003 2004 bmsr = phy_read(phydev, MII_BMSR); 2005 if (bmsr < 0) 2006 return bmsr; 2007 2008 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2009 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2010 * logical 1. 2011 */ 2012 if (!(bmsr & BMSR_ESTATEN)) 2013 return changed; 2014 2015 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2016 2017 err = phy_modify_changed(phydev, MII_CTRL1000, 2018 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2019 adv); 2020 if (err < 0) 2021 return err; 2022 if (err > 0) 2023 changed = 1; 2024 2025 return changed; 2026 } 2027 2028 /** 2029 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2030 * @phydev: target phy_device struct 2031 * 2032 * Description: Writes MII_ADVERTISE with the appropriate values, 2033 * after sanitizing the values to make sure we only advertise 2034 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2035 * hasn't changed, and > 0 if it has changed. This function is intended 2036 * for Clause 37 1000Base-X mode. 2037 */ 2038 static int genphy_c37_config_advert(struct phy_device *phydev) 2039 { 2040 u16 adv = 0; 2041 2042 /* Only allow advertising what this PHY supports */ 2043 linkmode_and(phydev->advertising, phydev->advertising, 2044 phydev->supported); 2045 2046 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2047 phydev->advertising)) 2048 adv |= ADVERTISE_1000XFULL; 2049 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2050 phydev->advertising)) 2051 adv |= ADVERTISE_1000XPAUSE; 2052 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2053 phydev->advertising)) 2054 adv |= ADVERTISE_1000XPSE_ASYM; 2055 2056 return phy_modify_changed(phydev, MII_ADVERTISE, 2057 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2058 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2059 adv); 2060 } 2061 2062 /** 2063 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2064 * @phydev: target phy_device struct 2065 * 2066 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2067 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2068 * changed, and 1 if it has changed. 2069 */ 2070 int genphy_config_eee_advert(struct phy_device *phydev) 2071 { 2072 int err; 2073 2074 /* Nothing to disable */ 2075 if (!phydev->eee_broken_modes) 2076 return 0; 2077 2078 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2079 phydev->eee_broken_modes, 0); 2080 /* If the call failed, we assume that EEE is not supported */ 2081 return err < 0 ? 0 : err; 2082 } 2083 EXPORT_SYMBOL(genphy_config_eee_advert); 2084 2085 /** 2086 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2087 * @phydev: target phy_device struct 2088 * 2089 * Description: Configures MII_BMCR to force speed/duplex 2090 * to the values in phydev. Assumes that the values are valid. 2091 * Please see phy_sanitize_settings(). 2092 */ 2093 int genphy_setup_forced(struct phy_device *phydev) 2094 { 2095 u16 ctl; 2096 2097 phydev->pause = 0; 2098 phydev->asym_pause = 0; 2099 2100 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2101 2102 return phy_modify(phydev, MII_BMCR, 2103 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2104 } 2105 EXPORT_SYMBOL(genphy_setup_forced); 2106 2107 static int genphy_setup_master_slave(struct phy_device *phydev) 2108 { 2109 u16 ctl = 0; 2110 2111 if (!phydev->is_gigabit_capable) 2112 return 0; 2113 2114 switch (phydev->master_slave_set) { 2115 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2116 ctl |= CTL1000_PREFER_MASTER; 2117 break; 2118 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2119 break; 2120 case MASTER_SLAVE_CFG_MASTER_FORCE: 2121 ctl |= CTL1000_AS_MASTER; 2122 fallthrough; 2123 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2124 ctl |= CTL1000_ENABLE_MASTER; 2125 break; 2126 case MASTER_SLAVE_CFG_UNKNOWN: 2127 case MASTER_SLAVE_CFG_UNSUPPORTED: 2128 return 0; 2129 default: 2130 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2131 return -EOPNOTSUPP; 2132 } 2133 2134 return phy_modify_changed(phydev, MII_CTRL1000, 2135 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2136 CTL1000_PREFER_MASTER), ctl); 2137 } 2138 2139 int genphy_read_master_slave(struct phy_device *phydev) 2140 { 2141 int cfg, state; 2142 int val; 2143 2144 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2145 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2146 2147 val = phy_read(phydev, MII_CTRL1000); 2148 if (val < 0) 2149 return val; 2150 2151 if (val & CTL1000_ENABLE_MASTER) { 2152 if (val & CTL1000_AS_MASTER) 2153 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2154 else 2155 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2156 } else { 2157 if (val & CTL1000_PREFER_MASTER) 2158 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2159 else 2160 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2161 } 2162 2163 val = phy_read(phydev, MII_STAT1000); 2164 if (val < 0) 2165 return val; 2166 2167 if (val & LPA_1000MSFAIL) { 2168 state = MASTER_SLAVE_STATE_ERR; 2169 } else if (phydev->link) { 2170 /* this bits are valid only for active link */ 2171 if (val & LPA_1000MSRES) 2172 state = MASTER_SLAVE_STATE_MASTER; 2173 else 2174 state = MASTER_SLAVE_STATE_SLAVE; 2175 } else { 2176 state = MASTER_SLAVE_STATE_UNKNOWN; 2177 } 2178 2179 phydev->master_slave_get = cfg; 2180 phydev->master_slave_state = state; 2181 2182 return 0; 2183 } 2184 EXPORT_SYMBOL(genphy_read_master_slave); 2185 2186 /** 2187 * genphy_restart_aneg - Enable and Restart Autonegotiation 2188 * @phydev: target phy_device struct 2189 */ 2190 int genphy_restart_aneg(struct phy_device *phydev) 2191 { 2192 /* Don't isolate the PHY if we're negotiating */ 2193 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2194 BMCR_ANENABLE | BMCR_ANRESTART); 2195 } 2196 EXPORT_SYMBOL(genphy_restart_aneg); 2197 2198 /** 2199 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2200 * @phydev: target phy_device struct 2201 * @restart: whether aneg restart is requested 2202 * 2203 * Check, and restart auto-negotiation if needed. 2204 */ 2205 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2206 { 2207 int ret; 2208 2209 if (!restart) { 2210 /* Advertisement hasn't changed, but maybe aneg was never on to 2211 * begin with? Or maybe phy was isolated? 2212 */ 2213 ret = phy_read(phydev, MII_BMCR); 2214 if (ret < 0) 2215 return ret; 2216 2217 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2218 restart = true; 2219 } 2220 2221 if (restart) 2222 return genphy_restart_aneg(phydev); 2223 2224 return 0; 2225 } 2226 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2227 2228 /** 2229 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2230 * @phydev: target phy_device struct 2231 * @changed: whether autoneg is requested 2232 * 2233 * Description: If auto-negotiation is enabled, we configure the 2234 * advertising, and then restart auto-negotiation. If it is not 2235 * enabled, then we write the BMCR. 2236 */ 2237 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2238 { 2239 int err; 2240 2241 err = genphy_c45_an_config_eee_aneg(phydev); 2242 if (err < 0) 2243 return err; 2244 else if (err) 2245 changed = true; 2246 2247 err = genphy_setup_master_slave(phydev); 2248 if (err < 0) 2249 return err; 2250 else if (err) 2251 changed = true; 2252 2253 if (AUTONEG_ENABLE != phydev->autoneg) 2254 return genphy_setup_forced(phydev); 2255 2256 err = genphy_config_advert(phydev); 2257 if (err < 0) /* error */ 2258 return err; 2259 else if (err) 2260 changed = true; 2261 2262 return genphy_check_and_restart_aneg(phydev, changed); 2263 } 2264 EXPORT_SYMBOL(__genphy_config_aneg); 2265 2266 /** 2267 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2268 * @phydev: target phy_device struct 2269 * 2270 * Description: If auto-negotiation is enabled, we configure the 2271 * advertising, and then restart auto-negotiation. If it is not 2272 * enabled, then we write the BMCR. This function is intended 2273 * for use with Clause 37 1000Base-X mode. 2274 */ 2275 int genphy_c37_config_aneg(struct phy_device *phydev) 2276 { 2277 int err, changed; 2278 2279 if (phydev->autoneg != AUTONEG_ENABLE) 2280 return genphy_setup_forced(phydev); 2281 2282 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2283 BMCR_SPEED1000); 2284 if (err) 2285 return err; 2286 2287 changed = genphy_c37_config_advert(phydev); 2288 if (changed < 0) /* error */ 2289 return changed; 2290 2291 if (!changed) { 2292 /* Advertisement hasn't changed, but maybe aneg was never on to 2293 * begin with? Or maybe phy was isolated? 2294 */ 2295 int ctl = phy_read(phydev, MII_BMCR); 2296 2297 if (ctl < 0) 2298 return ctl; 2299 2300 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2301 changed = 1; /* do restart aneg */ 2302 } 2303 2304 /* Only restart aneg if we are advertising something different 2305 * than we were before. 2306 */ 2307 if (changed > 0) 2308 return genphy_restart_aneg(phydev); 2309 2310 return 0; 2311 } 2312 EXPORT_SYMBOL(genphy_c37_config_aneg); 2313 2314 /** 2315 * genphy_aneg_done - return auto-negotiation status 2316 * @phydev: target phy_device struct 2317 * 2318 * Description: Reads the status register and returns 0 either if 2319 * auto-negotiation is incomplete, or if there was an error. 2320 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2321 */ 2322 int genphy_aneg_done(struct phy_device *phydev) 2323 { 2324 int retval = phy_read(phydev, MII_BMSR); 2325 2326 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2327 } 2328 EXPORT_SYMBOL(genphy_aneg_done); 2329 2330 /** 2331 * genphy_update_link - update link status in @phydev 2332 * @phydev: target phy_device struct 2333 * 2334 * Description: Update the value in phydev->link to reflect the 2335 * current link value. In order to do this, we need to read 2336 * the status register twice, keeping the second value. 2337 */ 2338 int genphy_update_link(struct phy_device *phydev) 2339 { 2340 int status = 0, bmcr; 2341 2342 bmcr = phy_read(phydev, MII_BMCR); 2343 if (bmcr < 0) 2344 return bmcr; 2345 2346 /* Autoneg is being started, therefore disregard BMSR value and 2347 * report link as down. 2348 */ 2349 if (bmcr & BMCR_ANRESTART) 2350 goto done; 2351 2352 /* The link state is latched low so that momentary link 2353 * drops can be detected. Do not double-read the status 2354 * in polling mode to detect such short link drops except 2355 * the link was already down. 2356 */ 2357 if (!phy_polling_mode(phydev) || !phydev->link) { 2358 status = phy_read(phydev, MII_BMSR); 2359 if (status < 0) 2360 return status; 2361 else if (status & BMSR_LSTATUS) 2362 goto done; 2363 } 2364 2365 /* Read link and autonegotiation status */ 2366 status = phy_read(phydev, MII_BMSR); 2367 if (status < 0) 2368 return status; 2369 done: 2370 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2371 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2372 2373 /* Consider the case that autoneg was started and "aneg complete" 2374 * bit has been reset, but "link up" bit not yet. 2375 */ 2376 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2377 phydev->link = 0; 2378 2379 return 0; 2380 } 2381 EXPORT_SYMBOL(genphy_update_link); 2382 2383 int genphy_read_lpa(struct phy_device *phydev) 2384 { 2385 int lpa, lpagb; 2386 2387 if (phydev->autoneg == AUTONEG_ENABLE) { 2388 if (!phydev->autoneg_complete) { 2389 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2390 0); 2391 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2392 return 0; 2393 } 2394 2395 if (phydev->is_gigabit_capable) { 2396 lpagb = phy_read(phydev, MII_STAT1000); 2397 if (lpagb < 0) 2398 return lpagb; 2399 2400 if (lpagb & LPA_1000MSFAIL) { 2401 int adv = phy_read(phydev, MII_CTRL1000); 2402 2403 if (adv < 0) 2404 return adv; 2405 2406 if (adv & CTL1000_ENABLE_MASTER) 2407 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2408 else 2409 phydev_err(phydev, "Master/Slave resolution failed\n"); 2410 return -ENOLINK; 2411 } 2412 2413 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2414 lpagb); 2415 } 2416 2417 lpa = phy_read(phydev, MII_LPA); 2418 if (lpa < 0) 2419 return lpa; 2420 2421 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2422 } else { 2423 linkmode_zero(phydev->lp_advertising); 2424 } 2425 2426 return 0; 2427 } 2428 EXPORT_SYMBOL(genphy_read_lpa); 2429 2430 /** 2431 * genphy_read_status_fixed - read the link parameters for !aneg mode 2432 * @phydev: target phy_device struct 2433 * 2434 * Read the current duplex and speed state for a PHY operating with 2435 * autonegotiation disabled. 2436 */ 2437 int genphy_read_status_fixed(struct phy_device *phydev) 2438 { 2439 int bmcr = phy_read(phydev, MII_BMCR); 2440 2441 if (bmcr < 0) 2442 return bmcr; 2443 2444 if (bmcr & BMCR_FULLDPLX) 2445 phydev->duplex = DUPLEX_FULL; 2446 else 2447 phydev->duplex = DUPLEX_HALF; 2448 2449 if (bmcr & BMCR_SPEED1000) 2450 phydev->speed = SPEED_1000; 2451 else if (bmcr & BMCR_SPEED100) 2452 phydev->speed = SPEED_100; 2453 else 2454 phydev->speed = SPEED_10; 2455 2456 return 0; 2457 } 2458 EXPORT_SYMBOL(genphy_read_status_fixed); 2459 2460 /** 2461 * genphy_read_status - check the link status and update current link state 2462 * @phydev: target phy_device struct 2463 * 2464 * Description: Check the link, then figure out the current state 2465 * by comparing what we advertise with what the link partner 2466 * advertises. Start by checking the gigabit possibilities, 2467 * then move on to 10/100. 2468 */ 2469 int genphy_read_status(struct phy_device *phydev) 2470 { 2471 int err, old_link = phydev->link; 2472 2473 /* Update the link, but return if there was an error */ 2474 err = genphy_update_link(phydev); 2475 if (err) 2476 return err; 2477 2478 /* why bother the PHY if nothing can have changed */ 2479 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2480 return 0; 2481 2482 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2483 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2484 phydev->speed = SPEED_UNKNOWN; 2485 phydev->duplex = DUPLEX_UNKNOWN; 2486 phydev->pause = 0; 2487 phydev->asym_pause = 0; 2488 2489 if (phydev->is_gigabit_capable) { 2490 err = genphy_read_master_slave(phydev); 2491 if (err < 0) 2492 return err; 2493 } 2494 2495 err = genphy_read_lpa(phydev); 2496 if (err < 0) 2497 return err; 2498 2499 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2500 phy_resolve_aneg_linkmode(phydev); 2501 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2502 err = genphy_read_status_fixed(phydev); 2503 if (err < 0) 2504 return err; 2505 } 2506 2507 return 0; 2508 } 2509 EXPORT_SYMBOL(genphy_read_status); 2510 2511 /** 2512 * genphy_c37_read_status - check the link status and update current link state 2513 * @phydev: target phy_device struct 2514 * 2515 * Description: Check the link, then figure out the current state 2516 * by comparing what we advertise with what the link partner 2517 * advertises. This function is for Clause 37 1000Base-X mode. 2518 */ 2519 int genphy_c37_read_status(struct phy_device *phydev) 2520 { 2521 int lpa, err, old_link = phydev->link; 2522 2523 /* Update the link, but return if there was an error */ 2524 err = genphy_update_link(phydev); 2525 if (err) 2526 return err; 2527 2528 /* why bother the PHY if nothing can have changed */ 2529 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2530 return 0; 2531 2532 phydev->duplex = DUPLEX_UNKNOWN; 2533 phydev->pause = 0; 2534 phydev->asym_pause = 0; 2535 2536 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2537 lpa = phy_read(phydev, MII_LPA); 2538 if (lpa < 0) 2539 return lpa; 2540 2541 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2542 phydev->lp_advertising, lpa & LPA_LPACK); 2543 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2544 phydev->lp_advertising, lpa & LPA_1000XFULL); 2545 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2546 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2547 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2548 phydev->lp_advertising, 2549 lpa & LPA_1000XPAUSE_ASYM); 2550 2551 phy_resolve_aneg_linkmode(phydev); 2552 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2553 int bmcr = phy_read(phydev, MII_BMCR); 2554 2555 if (bmcr < 0) 2556 return bmcr; 2557 2558 if (bmcr & BMCR_FULLDPLX) 2559 phydev->duplex = DUPLEX_FULL; 2560 else 2561 phydev->duplex = DUPLEX_HALF; 2562 } 2563 2564 return 0; 2565 } 2566 EXPORT_SYMBOL(genphy_c37_read_status); 2567 2568 /** 2569 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2570 * @phydev: target phy_device struct 2571 * 2572 * Description: Perform a software PHY reset using the standard 2573 * BMCR_RESET bit and poll for the reset bit to be cleared. 2574 * 2575 * Returns: 0 on success, < 0 on failure 2576 */ 2577 int genphy_soft_reset(struct phy_device *phydev) 2578 { 2579 u16 res = BMCR_RESET; 2580 int ret; 2581 2582 if (phydev->autoneg == AUTONEG_ENABLE) 2583 res |= BMCR_ANRESTART; 2584 2585 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2586 if (ret < 0) 2587 return ret; 2588 2589 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2590 * to their default value. Therefore the POWER DOWN bit is supposed to 2591 * be cleared after soft reset. 2592 */ 2593 phydev->suspended = 0; 2594 2595 ret = phy_poll_reset(phydev); 2596 if (ret) 2597 return ret; 2598 2599 /* BMCR may be reset to defaults */ 2600 if (phydev->autoneg == AUTONEG_DISABLE) 2601 ret = genphy_setup_forced(phydev); 2602 2603 return ret; 2604 } 2605 EXPORT_SYMBOL(genphy_soft_reset); 2606 2607 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2608 { 2609 /* It seems there are cases where the interrupts are handled by another 2610 * entity (ie an IRQ controller embedded inside the PHY) and do not 2611 * need any other interraction from phylib. In this case, just trigger 2612 * the state machine directly. 2613 */ 2614 phy_trigger_machine(phydev); 2615 2616 return 0; 2617 } 2618 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2619 2620 /** 2621 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2622 * @phydev: target phy_device struct 2623 * 2624 * Description: Reads the PHY's abilities and populates 2625 * phydev->supported accordingly. 2626 * 2627 * Returns: 0 on success, < 0 on failure 2628 */ 2629 int genphy_read_abilities(struct phy_device *phydev) 2630 { 2631 int val; 2632 2633 linkmode_set_bit_array(phy_basic_ports_array, 2634 ARRAY_SIZE(phy_basic_ports_array), 2635 phydev->supported); 2636 2637 val = phy_read(phydev, MII_BMSR); 2638 if (val < 0) 2639 return val; 2640 2641 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2642 val & BMSR_ANEGCAPABLE); 2643 2644 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2645 val & BMSR_100FULL); 2646 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2647 val & BMSR_100HALF); 2648 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2649 val & BMSR_10FULL); 2650 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2651 val & BMSR_10HALF); 2652 2653 if (val & BMSR_ESTATEN) { 2654 val = phy_read(phydev, MII_ESTATUS); 2655 if (val < 0) 2656 return val; 2657 2658 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2659 phydev->supported, val & ESTATUS_1000_TFULL); 2660 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2661 phydev->supported, val & ESTATUS_1000_THALF); 2662 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2663 phydev->supported, val & ESTATUS_1000_XFULL); 2664 } 2665 2666 /* This is optional functionality. If not supported, we may get an error 2667 * which should be ignored. 2668 */ 2669 genphy_c45_read_eee_abilities(phydev); 2670 2671 return 0; 2672 } 2673 EXPORT_SYMBOL(genphy_read_abilities); 2674 2675 /* This is used for the phy device which doesn't support the MMD extended 2676 * register access, but it does have side effect when we are trying to access 2677 * the MMD register via indirect method. 2678 */ 2679 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2680 { 2681 return -EOPNOTSUPP; 2682 } 2683 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2684 2685 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2686 u16 regnum, u16 val) 2687 { 2688 return -EOPNOTSUPP; 2689 } 2690 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2691 2692 int genphy_suspend(struct phy_device *phydev) 2693 { 2694 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2695 } 2696 EXPORT_SYMBOL(genphy_suspend); 2697 2698 int genphy_resume(struct phy_device *phydev) 2699 { 2700 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2701 } 2702 EXPORT_SYMBOL(genphy_resume); 2703 2704 int genphy_loopback(struct phy_device *phydev, bool enable) 2705 { 2706 if (enable) { 2707 u16 val, ctl = BMCR_LOOPBACK; 2708 int ret; 2709 2710 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2711 2712 phy_modify(phydev, MII_BMCR, ~0, ctl); 2713 2714 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2715 val & BMSR_LSTATUS, 2716 5000, 500000, true); 2717 if (ret) 2718 return ret; 2719 } else { 2720 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2721 2722 phy_config_aneg(phydev); 2723 } 2724 2725 return 0; 2726 } 2727 EXPORT_SYMBOL(genphy_loopback); 2728 2729 /** 2730 * phy_remove_link_mode - Remove a supported link mode 2731 * @phydev: phy_device structure to remove link mode from 2732 * @link_mode: Link mode to be removed 2733 * 2734 * Description: Some MACs don't support all link modes which the PHY 2735 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2736 * to remove a link mode. 2737 */ 2738 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2739 { 2740 linkmode_clear_bit(link_mode, phydev->supported); 2741 phy_advertise_supported(phydev); 2742 } 2743 EXPORT_SYMBOL(phy_remove_link_mode); 2744 2745 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2746 { 2747 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2748 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2749 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2750 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2751 } 2752 2753 /** 2754 * phy_advertise_supported - Advertise all supported modes 2755 * @phydev: target phy_device struct 2756 * 2757 * Description: Called to advertise all supported modes, doesn't touch 2758 * pause mode advertising. 2759 */ 2760 void phy_advertise_supported(struct phy_device *phydev) 2761 { 2762 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2763 2764 linkmode_copy(new, phydev->supported); 2765 phy_copy_pause_bits(new, phydev->advertising); 2766 linkmode_copy(phydev->advertising, new); 2767 } 2768 EXPORT_SYMBOL(phy_advertise_supported); 2769 2770 /** 2771 * phy_support_sym_pause - Enable support of symmetrical pause 2772 * @phydev: target phy_device struct 2773 * 2774 * Description: Called by the MAC to indicate is supports symmetrical 2775 * Pause, but not asym pause. 2776 */ 2777 void phy_support_sym_pause(struct phy_device *phydev) 2778 { 2779 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2780 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2781 } 2782 EXPORT_SYMBOL(phy_support_sym_pause); 2783 2784 /** 2785 * phy_support_asym_pause - Enable support of asym pause 2786 * @phydev: target phy_device struct 2787 * 2788 * Description: Called by the MAC to indicate is supports Asym Pause. 2789 */ 2790 void phy_support_asym_pause(struct phy_device *phydev) 2791 { 2792 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2793 } 2794 EXPORT_SYMBOL(phy_support_asym_pause); 2795 2796 /** 2797 * phy_set_sym_pause - Configure symmetric Pause 2798 * @phydev: target phy_device struct 2799 * @rx: Receiver Pause is supported 2800 * @tx: Transmit Pause is supported 2801 * @autoneg: Auto neg should be used 2802 * 2803 * Description: Configure advertised Pause support depending on if 2804 * receiver pause and pause auto neg is supported. Generally called 2805 * from the set_pauseparam .ndo. 2806 */ 2807 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2808 bool autoneg) 2809 { 2810 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2811 2812 if (rx && tx && autoneg) 2813 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2814 phydev->supported); 2815 2816 linkmode_copy(phydev->advertising, phydev->supported); 2817 } 2818 EXPORT_SYMBOL(phy_set_sym_pause); 2819 2820 /** 2821 * phy_set_asym_pause - Configure Pause and Asym Pause 2822 * @phydev: target phy_device struct 2823 * @rx: Receiver Pause is supported 2824 * @tx: Transmit Pause is supported 2825 * 2826 * Description: Configure advertised Pause support depending on if 2827 * transmit and receiver pause is supported. If there has been a 2828 * change in adverting, trigger a new autoneg. Generally called from 2829 * the set_pauseparam .ndo. 2830 */ 2831 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2832 { 2833 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2834 2835 linkmode_copy(oldadv, phydev->advertising); 2836 linkmode_set_pause(phydev->advertising, tx, rx); 2837 2838 if (!linkmode_equal(oldadv, phydev->advertising) && 2839 phydev->autoneg) 2840 phy_start_aneg(phydev); 2841 } 2842 EXPORT_SYMBOL(phy_set_asym_pause); 2843 2844 /** 2845 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2846 * @phydev: phy_device struct 2847 * @pp: requested pause configuration 2848 * 2849 * Description: Test if the PHY/MAC combination supports the Pause 2850 * configuration the user is requesting. Returns True if it is 2851 * supported, false otherwise. 2852 */ 2853 bool phy_validate_pause(struct phy_device *phydev, 2854 struct ethtool_pauseparam *pp) 2855 { 2856 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2857 phydev->supported) && pp->rx_pause) 2858 return false; 2859 2860 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2861 phydev->supported) && 2862 pp->rx_pause != pp->tx_pause) 2863 return false; 2864 2865 return true; 2866 } 2867 EXPORT_SYMBOL(phy_validate_pause); 2868 2869 /** 2870 * phy_get_pause - resolve negotiated pause modes 2871 * @phydev: phy_device struct 2872 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2873 * enabled. 2874 * @rx_pause: pointer to bool to indicate whether receive pause should be 2875 * enabled. 2876 * 2877 * Resolve and return the flow control modes according to the negotiation 2878 * result. This includes checking that we are operating in full duplex mode. 2879 * See linkmode_resolve_pause() for further details. 2880 */ 2881 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2882 { 2883 if (phydev->duplex != DUPLEX_FULL) { 2884 *tx_pause = false; 2885 *rx_pause = false; 2886 return; 2887 } 2888 2889 return linkmode_resolve_pause(phydev->advertising, 2890 phydev->lp_advertising, 2891 tx_pause, rx_pause); 2892 } 2893 EXPORT_SYMBOL(phy_get_pause); 2894 2895 #if IS_ENABLED(CONFIG_OF_MDIO) 2896 static int phy_get_int_delay_property(struct device *dev, const char *name) 2897 { 2898 s32 int_delay; 2899 int ret; 2900 2901 ret = device_property_read_u32(dev, name, &int_delay); 2902 if (ret) 2903 return ret; 2904 2905 return int_delay; 2906 } 2907 #else 2908 static int phy_get_int_delay_property(struct device *dev, const char *name) 2909 { 2910 return -EINVAL; 2911 } 2912 #endif 2913 2914 /** 2915 * phy_get_internal_delay - returns the index of the internal delay 2916 * @phydev: phy_device struct 2917 * @dev: pointer to the devices device struct 2918 * @delay_values: array of delays the PHY supports 2919 * @size: the size of the delay array 2920 * @is_rx: boolean to indicate to get the rx internal delay 2921 * 2922 * Returns the index within the array of internal delay passed in. 2923 * If the device property is not present then the interface type is checked 2924 * if the interface defines use of internal delay then a 1 is returned otherwise 2925 * a 0 is returned. 2926 * The array must be in ascending order. If PHY does not have an ascending order 2927 * array then size = 0 and the value of the delay property is returned. 2928 * Return -EINVAL if the delay is invalid or cannot be found. 2929 */ 2930 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2931 const int *delay_values, int size, bool is_rx) 2932 { 2933 s32 delay; 2934 int i; 2935 2936 if (is_rx) { 2937 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2938 if (delay < 0 && size == 0) { 2939 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2940 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2941 return 1; 2942 else 2943 return 0; 2944 } 2945 2946 } else { 2947 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2948 if (delay < 0 && size == 0) { 2949 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2950 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2951 return 1; 2952 else 2953 return 0; 2954 } 2955 } 2956 2957 if (delay < 0) 2958 return delay; 2959 2960 if (delay && size == 0) 2961 return delay; 2962 2963 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2964 phydev_err(phydev, "Delay %d is out of range\n", delay); 2965 return -EINVAL; 2966 } 2967 2968 if (delay == delay_values[0]) 2969 return 0; 2970 2971 for (i = 1; i < size; i++) { 2972 if (delay == delay_values[i]) 2973 return i; 2974 2975 /* Find an approximate index by looking up the table */ 2976 if (delay > delay_values[i - 1] && 2977 delay < delay_values[i]) { 2978 if (delay - delay_values[i - 1] < 2979 delay_values[i] - delay) 2980 return i - 1; 2981 else 2982 return i; 2983 } 2984 } 2985 2986 phydev_err(phydev, "error finding internal delay index for %d\n", 2987 delay); 2988 2989 return -EINVAL; 2990 } 2991 EXPORT_SYMBOL(phy_get_internal_delay); 2992 2993 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2994 { 2995 return phydrv->config_intr && phydrv->handle_interrupt; 2996 } 2997 2998 static int phy_led_set_brightness(struct led_classdev *led_cdev, 2999 enum led_brightness value) 3000 { 3001 struct phy_led *phyled = to_phy_led(led_cdev); 3002 struct phy_device *phydev = phyled->phydev; 3003 int err; 3004 3005 mutex_lock(&phydev->lock); 3006 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3007 mutex_unlock(&phydev->lock); 3008 3009 return err; 3010 } 3011 3012 static int phy_led_blink_set(struct led_classdev *led_cdev, 3013 unsigned long *delay_on, 3014 unsigned long *delay_off) 3015 { 3016 struct phy_led *phyled = to_phy_led(led_cdev); 3017 struct phy_device *phydev = phyled->phydev; 3018 int err; 3019 3020 mutex_lock(&phydev->lock); 3021 err = phydev->drv->led_blink_set(phydev, phyled->index, 3022 delay_on, delay_off); 3023 mutex_unlock(&phydev->lock); 3024 3025 return err; 3026 } 3027 3028 static __maybe_unused struct device * 3029 phy_led_hw_control_get_device(struct led_classdev *led_cdev) 3030 { 3031 struct phy_led *phyled = to_phy_led(led_cdev); 3032 struct phy_device *phydev = phyled->phydev; 3033 3034 if (phydev->attached_dev) 3035 return &phydev->attached_dev->dev; 3036 return NULL; 3037 } 3038 3039 static int __maybe_unused 3040 phy_led_hw_control_get(struct led_classdev *led_cdev, 3041 unsigned long *rules) 3042 { 3043 struct phy_led *phyled = to_phy_led(led_cdev); 3044 struct phy_device *phydev = phyled->phydev; 3045 int err; 3046 3047 mutex_lock(&phydev->lock); 3048 err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules); 3049 mutex_unlock(&phydev->lock); 3050 3051 return err; 3052 } 3053 3054 static int __maybe_unused 3055 phy_led_hw_control_set(struct led_classdev *led_cdev, 3056 unsigned long rules) 3057 { 3058 struct phy_led *phyled = to_phy_led(led_cdev); 3059 struct phy_device *phydev = phyled->phydev; 3060 int err; 3061 3062 mutex_lock(&phydev->lock); 3063 err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules); 3064 mutex_unlock(&phydev->lock); 3065 3066 return err; 3067 } 3068 3069 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev, 3070 unsigned long rules) 3071 { 3072 struct phy_led *phyled = to_phy_led(led_cdev); 3073 struct phy_device *phydev = phyled->phydev; 3074 int err; 3075 3076 mutex_lock(&phydev->lock); 3077 err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules); 3078 mutex_unlock(&phydev->lock); 3079 3080 return err; 3081 } 3082 3083 static void phy_leds_unregister(struct phy_device *phydev) 3084 { 3085 struct phy_led *phyled; 3086 3087 list_for_each_entry(phyled, &phydev->leds, list) { 3088 led_classdev_unregister(&phyled->led_cdev); 3089 } 3090 } 3091 3092 static int of_phy_led(struct phy_device *phydev, 3093 struct device_node *led) 3094 { 3095 struct device *dev = &phydev->mdio.dev; 3096 struct led_init_data init_data = {}; 3097 struct led_classdev *cdev; 3098 struct phy_led *phyled; 3099 u32 index; 3100 int err; 3101 3102 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3103 if (!phyled) 3104 return -ENOMEM; 3105 3106 cdev = &phyled->led_cdev; 3107 phyled->phydev = phydev; 3108 3109 err = of_property_read_u32(led, "reg", &index); 3110 if (err) 3111 return err; 3112 if (index > U8_MAX) 3113 return -EINVAL; 3114 3115 phyled->index = index; 3116 if (phydev->drv->led_brightness_set) 3117 cdev->brightness_set_blocking = phy_led_set_brightness; 3118 if (phydev->drv->led_blink_set) 3119 cdev->blink_set = phy_led_blink_set; 3120 3121 #ifdef CONFIG_LEDS_TRIGGERS 3122 if (phydev->drv->led_hw_is_supported && 3123 phydev->drv->led_hw_control_set && 3124 phydev->drv->led_hw_control_get) { 3125 cdev->hw_control_is_supported = phy_led_hw_is_supported; 3126 cdev->hw_control_set = phy_led_hw_control_set; 3127 cdev->hw_control_get = phy_led_hw_control_get; 3128 cdev->hw_control_trigger = "netdev"; 3129 } 3130 3131 cdev->hw_control_get_device = phy_led_hw_control_get_device; 3132 #endif 3133 cdev->max_brightness = 1; 3134 init_data.devicename = dev_name(&phydev->mdio.dev); 3135 init_data.fwnode = of_fwnode_handle(led); 3136 init_data.devname_mandatory = true; 3137 3138 err = led_classdev_register_ext(dev, cdev, &init_data); 3139 if (err) 3140 return err; 3141 3142 list_add(&phyled->list, &phydev->leds); 3143 3144 return 0; 3145 } 3146 3147 static int of_phy_leds(struct phy_device *phydev) 3148 { 3149 struct device_node *node = phydev->mdio.dev.of_node; 3150 struct device_node *leds, *led; 3151 int err; 3152 3153 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3154 return 0; 3155 3156 if (!node) 3157 return 0; 3158 3159 leds = of_get_child_by_name(node, "leds"); 3160 if (!leds) 3161 return 0; 3162 3163 for_each_available_child_of_node(leds, led) { 3164 err = of_phy_led(phydev, led); 3165 if (err) { 3166 of_node_put(led); 3167 phy_leds_unregister(phydev); 3168 return err; 3169 } 3170 } 3171 3172 return 0; 3173 } 3174 3175 /** 3176 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3177 * @fwnode: pointer to the mdio_device's fwnode 3178 * 3179 * If successful, returns a pointer to the mdio_device with the embedded 3180 * struct device refcount incremented by one, or NULL on failure. 3181 * The caller should call put_device() on the mdio_device after its use. 3182 */ 3183 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3184 { 3185 struct device *d; 3186 3187 if (!fwnode) 3188 return NULL; 3189 3190 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3191 if (!d) 3192 return NULL; 3193 3194 return to_mdio_device(d); 3195 } 3196 EXPORT_SYMBOL(fwnode_mdio_find_device); 3197 3198 /** 3199 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3200 * 3201 * @phy_fwnode: Pointer to the phy's fwnode. 3202 * 3203 * If successful, returns a pointer to the phy_device with the embedded 3204 * struct device refcount incremented by one, or NULL on failure. 3205 */ 3206 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3207 { 3208 struct mdio_device *mdiodev; 3209 3210 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3211 if (!mdiodev) 3212 return NULL; 3213 3214 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3215 return to_phy_device(&mdiodev->dev); 3216 3217 put_device(&mdiodev->dev); 3218 3219 return NULL; 3220 } 3221 EXPORT_SYMBOL(fwnode_phy_find_device); 3222 3223 /** 3224 * device_phy_find_device - For the given device, get the phy_device 3225 * @dev: Pointer to the given device 3226 * 3227 * Refer return conditions of fwnode_phy_find_device(). 3228 */ 3229 struct phy_device *device_phy_find_device(struct device *dev) 3230 { 3231 return fwnode_phy_find_device(dev_fwnode(dev)); 3232 } 3233 EXPORT_SYMBOL_GPL(device_phy_find_device); 3234 3235 /** 3236 * fwnode_get_phy_node - Get the phy_node using the named reference. 3237 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3238 * 3239 * Refer return conditions of fwnode_find_reference(). 3240 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3241 * and "phy-device" are not supported in ACPI. DT supports all the three 3242 * named references to the phy node. 3243 */ 3244 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3245 { 3246 struct fwnode_handle *phy_node; 3247 3248 /* Only phy-handle is used for ACPI */ 3249 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3250 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3251 return phy_node; 3252 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3253 if (IS_ERR(phy_node)) 3254 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3255 return phy_node; 3256 } 3257 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3258 3259 /** 3260 * phy_probe - probe and init a PHY device 3261 * @dev: device to probe and init 3262 * 3263 * Take care of setting up the phy_device structure, set the state to READY. 3264 */ 3265 static int phy_probe(struct device *dev) 3266 { 3267 struct phy_device *phydev = to_phy_device(dev); 3268 struct device_driver *drv = phydev->mdio.dev.driver; 3269 struct phy_driver *phydrv = to_phy_driver(drv); 3270 int err = 0; 3271 3272 phydev->drv = phydrv; 3273 3274 /* Disable the interrupt if the PHY doesn't support it 3275 * but the interrupt is still a valid one 3276 */ 3277 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3278 phydev->irq = PHY_POLL; 3279 3280 if (phydrv->flags & PHY_IS_INTERNAL) 3281 phydev->is_internal = true; 3282 3283 /* Deassert the reset signal */ 3284 phy_device_reset(phydev, 0); 3285 3286 if (phydev->drv->probe) { 3287 err = phydev->drv->probe(phydev); 3288 if (err) 3289 goto out; 3290 } 3291 3292 phy_disable_interrupts(phydev); 3293 3294 /* Start out supporting everything. Eventually, 3295 * a controller will attach, and may modify one 3296 * or both of these values 3297 */ 3298 if (phydrv->features) { 3299 linkmode_copy(phydev->supported, phydrv->features); 3300 genphy_c45_read_eee_abilities(phydev); 3301 } 3302 else if (phydrv->get_features) 3303 err = phydrv->get_features(phydev); 3304 else if (phydev->is_c45) 3305 err = genphy_c45_pma_read_abilities(phydev); 3306 else 3307 err = genphy_read_abilities(phydev); 3308 3309 if (err) 3310 goto out; 3311 3312 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3313 phydev->supported)) 3314 phydev->autoneg = 0; 3315 3316 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3317 phydev->supported)) 3318 phydev->is_gigabit_capable = 1; 3319 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3320 phydev->supported)) 3321 phydev->is_gigabit_capable = 1; 3322 3323 of_set_phy_supported(phydev); 3324 phy_advertise_supported(phydev); 3325 3326 /* Get PHY default EEE advertising modes and handle them as potentially 3327 * safe initial configuration. 3328 */ 3329 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3330 if (err) 3331 goto out; 3332 3333 /* There is no "enabled" flag. If PHY is advertising, assume it is 3334 * kind of enabled. 3335 */ 3336 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3337 3338 /* Some PHYs may advertise, by default, not support EEE modes. So, 3339 * we need to clean them. 3340 */ 3341 if (phydev->eee_enabled) 3342 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3343 phydev->advertising_eee); 3344 3345 /* Get the EEE modes we want to prohibit. We will ask 3346 * the PHY stop advertising these mode later on 3347 */ 3348 of_set_phy_eee_broken(phydev); 3349 3350 /* The Pause Frame bits indicate that the PHY can support passing 3351 * pause frames. During autonegotiation, the PHYs will determine if 3352 * they should allow pause frames to pass. The MAC driver should then 3353 * use that result to determine whether to enable flow control via 3354 * pause frames. 3355 * 3356 * Normally, PHY drivers should not set the Pause bits, and instead 3357 * allow phylib to do that. However, there may be some situations 3358 * (e.g. hardware erratum) where the driver wants to set only one 3359 * of these bits. 3360 */ 3361 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3362 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3363 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3364 phydev->supported); 3365 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3366 phydev->supported); 3367 } 3368 3369 /* Set the state to READY by default */ 3370 phydev->state = PHY_READY; 3371 3372 /* Get the LEDs from the device tree, and instantiate standard 3373 * LEDs for them. 3374 */ 3375 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3376 err = of_phy_leds(phydev); 3377 3378 out: 3379 /* Re-assert the reset signal on error */ 3380 if (err) 3381 phy_device_reset(phydev, 1); 3382 3383 return err; 3384 } 3385 3386 static int phy_remove(struct device *dev) 3387 { 3388 struct phy_device *phydev = to_phy_device(dev); 3389 3390 cancel_delayed_work_sync(&phydev->state_queue); 3391 3392 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3393 phy_leds_unregister(phydev); 3394 3395 phydev->state = PHY_DOWN; 3396 3397 sfp_bus_del_upstream(phydev->sfp_bus); 3398 phydev->sfp_bus = NULL; 3399 3400 if (phydev->drv && phydev->drv->remove) 3401 phydev->drv->remove(phydev); 3402 3403 /* Assert the reset signal */ 3404 phy_device_reset(phydev, 1); 3405 3406 phydev->drv = NULL; 3407 3408 return 0; 3409 } 3410 3411 /** 3412 * phy_driver_register - register a phy_driver with the PHY layer 3413 * @new_driver: new phy_driver to register 3414 * @owner: module owning this PHY 3415 */ 3416 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3417 { 3418 int retval; 3419 3420 /* Either the features are hard coded, or dynamically 3421 * determined. It cannot be both. 3422 */ 3423 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3424 pr_err("%s: features and get_features must not both be set\n", 3425 new_driver->name); 3426 return -EINVAL; 3427 } 3428 3429 /* PHYLIB device drivers must not match using a DT compatible table 3430 * as this bypasses our checks that the mdiodev that is being matched 3431 * is backed by a struct phy_device. If such a case happens, we will 3432 * make out-of-bounds accesses and lockup in phydev->lock. 3433 */ 3434 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3435 "%s: driver must not provide a DT match table\n", 3436 new_driver->name)) 3437 return -EINVAL; 3438 3439 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3440 new_driver->mdiodrv.driver.name = new_driver->name; 3441 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3442 new_driver->mdiodrv.driver.probe = phy_probe; 3443 new_driver->mdiodrv.driver.remove = phy_remove; 3444 new_driver->mdiodrv.driver.owner = owner; 3445 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3446 3447 retval = driver_register(&new_driver->mdiodrv.driver); 3448 if (retval) { 3449 pr_err("%s: Error %d in registering driver\n", 3450 new_driver->name, retval); 3451 3452 return retval; 3453 } 3454 3455 pr_debug("%s: Registered new driver\n", new_driver->name); 3456 3457 return 0; 3458 } 3459 EXPORT_SYMBOL(phy_driver_register); 3460 3461 int phy_drivers_register(struct phy_driver *new_driver, int n, 3462 struct module *owner) 3463 { 3464 int i, ret = 0; 3465 3466 for (i = 0; i < n; i++) { 3467 ret = phy_driver_register(new_driver + i, owner); 3468 if (ret) { 3469 while (i-- > 0) 3470 phy_driver_unregister(new_driver + i); 3471 break; 3472 } 3473 } 3474 return ret; 3475 } 3476 EXPORT_SYMBOL(phy_drivers_register); 3477 3478 void phy_driver_unregister(struct phy_driver *drv) 3479 { 3480 driver_unregister(&drv->mdiodrv.driver); 3481 } 3482 EXPORT_SYMBOL(phy_driver_unregister); 3483 3484 void phy_drivers_unregister(struct phy_driver *drv, int n) 3485 { 3486 int i; 3487 3488 for (i = 0; i < n; i++) 3489 phy_driver_unregister(drv + i); 3490 } 3491 EXPORT_SYMBOL(phy_drivers_unregister); 3492 3493 static struct phy_driver genphy_driver = { 3494 .phy_id = 0xffffffff, 3495 .phy_id_mask = 0xffffffff, 3496 .name = "Generic PHY", 3497 .get_features = genphy_read_abilities, 3498 .suspend = genphy_suspend, 3499 .resume = genphy_resume, 3500 .set_loopback = genphy_loopback, 3501 }; 3502 3503 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3504 .get_sset_count = phy_ethtool_get_sset_count, 3505 .get_strings = phy_ethtool_get_strings, 3506 .get_stats = phy_ethtool_get_stats, 3507 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3508 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3509 .get_plca_status = phy_ethtool_get_plca_status, 3510 .start_cable_test = phy_start_cable_test, 3511 .start_cable_test_tdr = phy_start_cable_test_tdr, 3512 }; 3513 3514 static const struct phylib_stubs __phylib_stubs = { 3515 .hwtstamp_get = __phy_hwtstamp_get, 3516 .hwtstamp_set = __phy_hwtstamp_set, 3517 }; 3518 3519 static void phylib_register_stubs(void) 3520 { 3521 phylib_stubs = &__phylib_stubs; 3522 } 3523 3524 static void phylib_unregister_stubs(void) 3525 { 3526 phylib_stubs = NULL; 3527 } 3528 3529 static int __init phy_init(void) 3530 { 3531 int rc; 3532 3533 rtnl_lock(); 3534 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3535 phylib_register_stubs(); 3536 rtnl_unlock(); 3537 3538 rc = mdio_bus_init(); 3539 if (rc) 3540 goto err_ethtool_phy_ops; 3541 3542 features_init(); 3543 3544 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3545 if (rc) 3546 goto err_mdio_bus; 3547 3548 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3549 if (rc) 3550 goto err_c45; 3551 3552 return 0; 3553 3554 err_c45: 3555 phy_driver_unregister(&genphy_c45_driver); 3556 err_mdio_bus: 3557 mdio_bus_exit(); 3558 err_ethtool_phy_ops: 3559 rtnl_lock(); 3560 phylib_unregister_stubs(); 3561 ethtool_set_ethtool_phy_ops(NULL); 3562 rtnl_unlock(); 3563 3564 return rc; 3565 } 3566 3567 static void __exit phy_exit(void) 3568 { 3569 phy_driver_unregister(&genphy_c45_driver); 3570 phy_driver_unregister(&genphy_driver); 3571 mdio_bus_exit(); 3572 rtnl_lock(); 3573 phylib_unregister_stubs(); 3574 ethtool_set_ethtool_phy_ops(NULL); 3575 rtnl_unlock(); 3576 } 3577 3578 subsys_initcall(phy_init); 3579 module_exit(phy_exit); 3580