xref: /linux/drivers/net/phy/phy_device.c (revision 8f109e91b852f159b917f5c565bcf43c26d974e2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/mii.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/netdevice.h>
29 #include <linux/phy.h>
30 #include <linux/phylib_stubs.h>
31 #include <linux/phy_led_triggers.h>
32 #include <linux/pse-pd/pse.h>
33 #include <linux/property.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/sfp.h>
36 #include <linux/skbuff.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/uaccess.h>
40 #include <linux/unistd.h>
41 
42 MODULE_DESCRIPTION("PHY library");
43 MODULE_AUTHOR("Andy Fleming");
44 MODULE_LICENSE("GPL");
45 
46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
47 EXPORT_SYMBOL_GPL(phy_basic_features);
48 
49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
50 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
51 
52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init;
53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features);
54 
55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
56 EXPORT_SYMBOL_GPL(phy_gbit_features);
57 
58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
60 
61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
63 
64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
65 EXPORT_SYMBOL_GPL(phy_10gbit_features);
66 
67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
69 
70 const int phy_basic_ports_array[3] = {
71 	ETHTOOL_LINK_MODE_Autoneg_BIT,
72 	ETHTOOL_LINK_MODE_TP_BIT,
73 	ETHTOOL_LINK_MODE_MII_BIT,
74 };
75 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
76 
77 const int phy_fibre_port_array[1] = {
78 	ETHTOOL_LINK_MODE_FIBRE_BIT,
79 };
80 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
81 
82 const int phy_all_ports_features_array[7] = {
83 	ETHTOOL_LINK_MODE_Autoneg_BIT,
84 	ETHTOOL_LINK_MODE_TP_BIT,
85 	ETHTOOL_LINK_MODE_MII_BIT,
86 	ETHTOOL_LINK_MODE_FIBRE_BIT,
87 	ETHTOOL_LINK_MODE_AUI_BIT,
88 	ETHTOOL_LINK_MODE_BNC_BIT,
89 	ETHTOOL_LINK_MODE_Backplane_BIT,
90 };
91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
92 
93 const int phy_10_100_features_array[4] = {
94 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
95 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
96 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
97 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
98 };
99 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
100 
101 const int phy_basic_t1_features_array[3] = {
102 	ETHTOOL_LINK_MODE_TP_BIT,
103 	ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
104 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
105 };
106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
107 
108 const int phy_basic_t1s_p2mp_features_array[2] = {
109 	ETHTOOL_LINK_MODE_TP_BIT,
110 	ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT,
111 };
112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array);
113 
114 const int phy_gbit_features_array[2] = {
115 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
116 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
117 };
118 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
119 
120 const int phy_10gbit_features_array[1] = {
121 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
122 };
123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
124 
125 static const int phy_10gbit_fec_features_array[1] = {
126 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
127 };
128 
129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
131 
132 static const int phy_10gbit_full_features_array[] = {
133 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
134 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
135 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
136 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
137 };
138 
139 static const int phy_eee_cap1_features_array[] = {
140 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
141 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
142 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
143 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
144 	ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
145 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
146 };
147 
148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init;
149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features);
150 
151 static void features_init(void)
152 {
153 	/* 10/100 half/full*/
154 	linkmode_set_bit_array(phy_basic_ports_array,
155 			       ARRAY_SIZE(phy_basic_ports_array),
156 			       phy_basic_features);
157 	linkmode_set_bit_array(phy_10_100_features_array,
158 			       ARRAY_SIZE(phy_10_100_features_array),
159 			       phy_basic_features);
160 
161 	/* 100 full, TP */
162 	linkmode_set_bit_array(phy_basic_t1_features_array,
163 			       ARRAY_SIZE(phy_basic_t1_features_array),
164 			       phy_basic_t1_features);
165 
166 	/* 10 half, P2MP, TP */
167 	linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array,
168 			       ARRAY_SIZE(phy_basic_t1s_p2mp_features_array),
169 			       phy_basic_t1s_p2mp_features);
170 
171 	/* 10/100 half/full + 1000 half/full */
172 	linkmode_set_bit_array(phy_basic_ports_array,
173 			       ARRAY_SIZE(phy_basic_ports_array),
174 			       phy_gbit_features);
175 	linkmode_set_bit_array(phy_10_100_features_array,
176 			       ARRAY_SIZE(phy_10_100_features_array),
177 			       phy_gbit_features);
178 	linkmode_set_bit_array(phy_gbit_features_array,
179 			       ARRAY_SIZE(phy_gbit_features_array),
180 			       phy_gbit_features);
181 
182 	/* 10/100 half/full + 1000 half/full + fibre*/
183 	linkmode_set_bit_array(phy_basic_ports_array,
184 			       ARRAY_SIZE(phy_basic_ports_array),
185 			       phy_gbit_fibre_features);
186 	linkmode_set_bit_array(phy_10_100_features_array,
187 			       ARRAY_SIZE(phy_10_100_features_array),
188 			       phy_gbit_fibre_features);
189 	linkmode_set_bit_array(phy_gbit_features_array,
190 			       ARRAY_SIZE(phy_gbit_features_array),
191 			       phy_gbit_fibre_features);
192 	linkmode_set_bit_array(phy_fibre_port_array,
193 			       ARRAY_SIZE(phy_fibre_port_array),
194 			       phy_gbit_fibre_features);
195 
196 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
197 	linkmode_set_bit_array(phy_all_ports_features_array,
198 			       ARRAY_SIZE(phy_all_ports_features_array),
199 			       phy_gbit_all_ports_features);
200 	linkmode_set_bit_array(phy_10_100_features_array,
201 			       ARRAY_SIZE(phy_10_100_features_array),
202 			       phy_gbit_all_ports_features);
203 	linkmode_set_bit_array(phy_gbit_features_array,
204 			       ARRAY_SIZE(phy_gbit_features_array),
205 			       phy_gbit_all_ports_features);
206 
207 	/* 10/100 half/full + 1000 half/full + 10G full*/
208 	linkmode_set_bit_array(phy_all_ports_features_array,
209 			       ARRAY_SIZE(phy_all_ports_features_array),
210 			       phy_10gbit_features);
211 	linkmode_set_bit_array(phy_10_100_features_array,
212 			       ARRAY_SIZE(phy_10_100_features_array),
213 			       phy_10gbit_features);
214 	linkmode_set_bit_array(phy_gbit_features_array,
215 			       ARRAY_SIZE(phy_gbit_features_array),
216 			       phy_10gbit_features);
217 	linkmode_set_bit_array(phy_10gbit_features_array,
218 			       ARRAY_SIZE(phy_10gbit_features_array),
219 			       phy_10gbit_features);
220 
221 	/* 10/100/1000/10G full */
222 	linkmode_set_bit_array(phy_all_ports_features_array,
223 			       ARRAY_SIZE(phy_all_ports_features_array),
224 			       phy_10gbit_full_features);
225 	linkmode_set_bit_array(phy_10gbit_full_features_array,
226 			       ARRAY_SIZE(phy_10gbit_full_features_array),
227 			       phy_10gbit_full_features);
228 	/* 10G FEC only */
229 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
230 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
231 			       phy_10gbit_fec_features);
232 	linkmode_set_bit_array(phy_eee_cap1_features_array,
233 			       ARRAY_SIZE(phy_eee_cap1_features_array),
234 			       phy_eee_cap1_features);
235 
236 }
237 
238 void phy_device_free(struct phy_device *phydev)
239 {
240 	put_device(&phydev->mdio.dev);
241 }
242 EXPORT_SYMBOL(phy_device_free);
243 
244 static void phy_mdio_device_free(struct mdio_device *mdiodev)
245 {
246 	struct phy_device *phydev;
247 
248 	phydev = container_of(mdiodev, struct phy_device, mdio);
249 	phy_device_free(phydev);
250 }
251 
252 static void phy_device_release(struct device *dev)
253 {
254 	fwnode_handle_put(dev->fwnode);
255 	kfree(to_phy_device(dev));
256 }
257 
258 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
259 {
260 	struct phy_device *phydev;
261 
262 	phydev = container_of(mdiodev, struct phy_device, mdio);
263 	phy_device_remove(phydev);
264 }
265 
266 static struct phy_driver genphy_driver;
267 
268 static LIST_HEAD(phy_fixup_list);
269 static DEFINE_MUTEX(phy_fixup_lock);
270 
271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
272 {
273 	struct device_driver *drv = phydev->mdio.dev.driver;
274 	struct phy_driver *phydrv = to_phy_driver(drv);
275 	struct net_device *netdev = phydev->attached_dev;
276 
277 	if (!drv || !phydrv->suspend)
278 		return false;
279 
280 	/* PHY not attached? May suspend if the PHY has not already been
281 	 * suspended as part of a prior call to phy_disconnect() ->
282 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
283 	 * MDIO bus driver and clock gated at this point.
284 	 */
285 	if (!netdev)
286 		goto out;
287 
288 	if (netdev->wol_enabled)
289 		return false;
290 
291 	/* As long as not all affected network drivers support the
292 	 * wol_enabled flag, let's check for hints that WoL is enabled.
293 	 * Don't suspend PHY if the attached netdev parent may wake up.
294 	 * The parent may point to a PCI device, as in tg3 driver.
295 	 */
296 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
297 		return false;
298 
299 	/* Also don't suspend PHY if the netdev itself may wakeup. This
300 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
301 	 * e.g. SoC devices.
302 	 */
303 	if (device_may_wakeup(&netdev->dev))
304 		return false;
305 
306 out:
307 	return !phydev->suspended;
308 }
309 
310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
311 {
312 	struct phy_device *phydev = to_phy_device(dev);
313 
314 	if (phydev->mac_managed_pm)
315 		return 0;
316 
317 	/* Wakeup interrupts may occur during the system sleep transition when
318 	 * the PHY is inaccessible. Set flag to postpone handling until the PHY
319 	 * has resumed. Wait for concurrent interrupt handler to complete.
320 	 */
321 	if (phy_interrupt_is_valid(phydev)) {
322 		phydev->irq_suspended = 1;
323 		synchronize_irq(phydev->irq);
324 	}
325 
326 	/* We must stop the state machine manually, otherwise it stops out of
327 	 * control, possibly with the phydev->lock held. Upon resume, netdev
328 	 * may call phy routines that try to grab the same lock, and that may
329 	 * lead to a deadlock.
330 	 */
331 	if (phydev->attached_dev && phydev->adjust_link)
332 		phy_stop_machine(phydev);
333 
334 	if (!mdio_bus_phy_may_suspend(phydev))
335 		return 0;
336 
337 	phydev->suspended_by_mdio_bus = 1;
338 
339 	return phy_suspend(phydev);
340 }
341 
342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
343 {
344 	struct phy_device *phydev = to_phy_device(dev);
345 	int ret;
346 
347 	if (phydev->mac_managed_pm)
348 		return 0;
349 
350 	if (!phydev->suspended_by_mdio_bus)
351 		goto no_resume;
352 
353 	phydev->suspended_by_mdio_bus = 0;
354 
355 	/* If we managed to get here with the PHY state machine in a state
356 	 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
357 	 * that something went wrong and we should most likely be using
358 	 * MAC managed PM, but we are not.
359 	 */
360 	WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
361 		phydev->state != PHY_UP);
362 
363 	ret = phy_init_hw(phydev);
364 	if (ret < 0)
365 		return ret;
366 
367 	ret = phy_resume(phydev);
368 	if (ret < 0)
369 		return ret;
370 no_resume:
371 	if (phy_interrupt_is_valid(phydev)) {
372 		phydev->irq_suspended = 0;
373 		synchronize_irq(phydev->irq);
374 
375 		/* Rerun interrupts which were postponed by phy_interrupt()
376 		 * because they occurred during the system sleep transition.
377 		 */
378 		if (phydev->irq_rerun) {
379 			phydev->irq_rerun = 0;
380 			enable_irq(phydev->irq);
381 			irq_wake_thread(phydev->irq, phydev);
382 		}
383 	}
384 
385 	if (phydev->attached_dev && phydev->adjust_link)
386 		phy_start_machine(phydev);
387 
388 	return 0;
389 }
390 
391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
392 			 mdio_bus_phy_resume);
393 
394 /**
395  * phy_register_fixup - creates a new phy_fixup and adds it to the list
396  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
397  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
398  *	It can also be PHY_ANY_UID
399  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
400  *	comparison
401  * @run: The actual code to be run when a matching PHY is found
402  */
403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
404 		       int (*run)(struct phy_device *))
405 {
406 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
407 
408 	if (!fixup)
409 		return -ENOMEM;
410 
411 	strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
412 	fixup->phy_uid = phy_uid;
413 	fixup->phy_uid_mask = phy_uid_mask;
414 	fixup->run = run;
415 
416 	mutex_lock(&phy_fixup_lock);
417 	list_add_tail(&fixup->list, &phy_fixup_list);
418 	mutex_unlock(&phy_fixup_lock);
419 
420 	return 0;
421 }
422 EXPORT_SYMBOL(phy_register_fixup);
423 
424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
426 			       int (*run)(struct phy_device *))
427 {
428 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
429 }
430 EXPORT_SYMBOL(phy_register_fixup_for_uid);
431 
432 /* Registers a fixup to be run on the PHY with id string bus_id */
433 int phy_register_fixup_for_id(const char *bus_id,
434 			      int (*run)(struct phy_device *))
435 {
436 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
437 }
438 EXPORT_SYMBOL(phy_register_fixup_for_id);
439 
440 /**
441  * phy_unregister_fixup - remove a phy_fixup from the list
442  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
443  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
444  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
445  */
446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
447 {
448 	struct list_head *pos, *n;
449 	struct phy_fixup *fixup;
450 	int ret;
451 
452 	ret = -ENODEV;
453 
454 	mutex_lock(&phy_fixup_lock);
455 	list_for_each_safe(pos, n, &phy_fixup_list) {
456 		fixup = list_entry(pos, struct phy_fixup, list);
457 
458 		if ((!strcmp(fixup->bus_id, bus_id)) &&
459 		    phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) {
460 			list_del(&fixup->list);
461 			kfree(fixup);
462 			ret = 0;
463 			break;
464 		}
465 	}
466 	mutex_unlock(&phy_fixup_lock);
467 
468 	return ret;
469 }
470 EXPORT_SYMBOL(phy_unregister_fixup);
471 
472 /* Unregisters a fixup of any PHY with the UID in phy_uid */
473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
474 {
475 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
476 }
477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
478 
479 /* Unregisters a fixup of the PHY with id string bus_id */
480 int phy_unregister_fixup_for_id(const char *bus_id)
481 {
482 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
483 }
484 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
485 
486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
487  * Fixups can be set to match any in one or more fields.
488  */
489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
490 {
491 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
492 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
493 			return 0;
494 
495 	if (!phy_id_compare(phydev->phy_id, fixup->phy_uid,
496 			    fixup->phy_uid_mask))
497 		if (fixup->phy_uid != PHY_ANY_UID)
498 			return 0;
499 
500 	return 1;
501 }
502 
503 /* Runs any matching fixups for this phydev */
504 static int phy_scan_fixups(struct phy_device *phydev)
505 {
506 	struct phy_fixup *fixup;
507 
508 	mutex_lock(&phy_fixup_lock);
509 	list_for_each_entry(fixup, &phy_fixup_list, list) {
510 		if (phy_needs_fixup(phydev, fixup)) {
511 			int err = fixup->run(phydev);
512 
513 			if (err < 0) {
514 				mutex_unlock(&phy_fixup_lock);
515 				return err;
516 			}
517 			phydev->has_fixups = true;
518 		}
519 	}
520 	mutex_unlock(&phy_fixup_lock);
521 
522 	return 0;
523 }
524 
525 static int phy_bus_match(struct device *dev, struct device_driver *drv)
526 {
527 	struct phy_device *phydev = to_phy_device(dev);
528 	struct phy_driver *phydrv = to_phy_driver(drv);
529 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
530 	int i;
531 
532 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
533 		return 0;
534 
535 	if (phydrv->match_phy_device)
536 		return phydrv->match_phy_device(phydev);
537 
538 	if (phydev->is_c45) {
539 		for (i = 1; i < num_ids; i++) {
540 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
541 				continue;
542 
543 			if (phy_id_compare(phydev->c45_ids.device_ids[i],
544 					   phydrv->phy_id, phydrv->phy_id_mask))
545 				return 1;
546 		}
547 		return 0;
548 	} else {
549 		return phy_id_compare(phydev->phy_id, phydrv->phy_id,
550 				      phydrv->phy_id_mask);
551 	}
552 }
553 
554 static ssize_t
555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
556 {
557 	struct phy_device *phydev = to_phy_device(dev);
558 
559 	return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
560 }
561 static DEVICE_ATTR_RO(phy_id);
562 
563 static ssize_t
564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
565 {
566 	struct phy_device *phydev = to_phy_device(dev);
567 	const char *mode = NULL;
568 
569 	if (phy_is_internal(phydev))
570 		mode = "internal";
571 	else
572 		mode = phy_modes(phydev->interface);
573 
574 	return sysfs_emit(buf, "%s\n", mode);
575 }
576 static DEVICE_ATTR_RO(phy_interface);
577 
578 static ssize_t
579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
580 		    char *buf)
581 {
582 	struct phy_device *phydev = to_phy_device(dev);
583 
584 	return sysfs_emit(buf, "%d\n", phydev->has_fixups);
585 }
586 static DEVICE_ATTR_RO(phy_has_fixups);
587 
588 static ssize_t phy_dev_flags_show(struct device *dev,
589 				  struct device_attribute *attr,
590 				  char *buf)
591 {
592 	struct phy_device *phydev = to_phy_device(dev);
593 
594 	return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags);
595 }
596 static DEVICE_ATTR_RO(phy_dev_flags);
597 
598 static struct attribute *phy_dev_attrs[] = {
599 	&dev_attr_phy_id.attr,
600 	&dev_attr_phy_interface.attr,
601 	&dev_attr_phy_has_fixups.attr,
602 	&dev_attr_phy_dev_flags.attr,
603 	NULL,
604 };
605 ATTRIBUTE_GROUPS(phy_dev);
606 
607 static const struct device_type mdio_bus_phy_type = {
608 	.name = "PHY",
609 	.groups = phy_dev_groups,
610 	.release = phy_device_release,
611 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
612 };
613 
614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
615 {
616 	int ret;
617 
618 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
619 			     MDIO_ID_ARGS(phy_id));
620 	/* We only check for failures in executing the usermode binary,
621 	 * not whether a PHY driver module exists for the PHY ID.
622 	 * Accept -ENOENT because this may occur in case no initramfs exists,
623 	 * then modprobe isn't available.
624 	 */
625 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
626 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
627 			   ret, (unsigned long)phy_id);
628 		return ret;
629 	}
630 
631 	return 0;
632 }
633 
634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
635 				     bool is_c45,
636 				     struct phy_c45_device_ids *c45_ids)
637 {
638 	struct phy_device *dev;
639 	struct mdio_device *mdiodev;
640 	int ret = 0;
641 
642 	/* We allocate the device, and initialize the default values */
643 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
644 	if (!dev)
645 		return ERR_PTR(-ENOMEM);
646 
647 	mdiodev = &dev->mdio;
648 	mdiodev->dev.parent = &bus->dev;
649 	mdiodev->dev.bus = &mdio_bus_type;
650 	mdiodev->dev.type = &mdio_bus_phy_type;
651 	mdiodev->bus = bus;
652 	mdiodev->bus_match = phy_bus_match;
653 	mdiodev->addr = addr;
654 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
655 	mdiodev->device_free = phy_mdio_device_free;
656 	mdiodev->device_remove = phy_mdio_device_remove;
657 	mdiodev->reset_state = -1;
658 
659 	dev->speed = SPEED_UNKNOWN;
660 	dev->duplex = DUPLEX_UNKNOWN;
661 	dev->pause = 0;
662 	dev->asym_pause = 0;
663 	dev->link = 0;
664 	dev->port = PORT_TP;
665 	dev->interface = PHY_INTERFACE_MODE_GMII;
666 
667 	dev->autoneg = AUTONEG_ENABLE;
668 
669 	dev->pma_extable = -ENODATA;
670 	dev->is_c45 = is_c45;
671 	dev->phy_id = phy_id;
672 	if (c45_ids)
673 		dev->c45_ids = *c45_ids;
674 	dev->irq = bus->irq[addr];
675 
676 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
677 	device_initialize(&mdiodev->dev);
678 
679 	dev->state = PHY_DOWN;
680 	INIT_LIST_HEAD(&dev->leds);
681 
682 	mutex_init(&dev->lock);
683 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
684 
685 	/* Request the appropriate module unconditionally; don't
686 	 * bother trying to do so only if it isn't already loaded,
687 	 * because that gets complicated. A hotplug event would have
688 	 * done an unconditional modprobe anyway.
689 	 * We don't do normal hotplug because it won't work for MDIO
690 	 * -- because it relies on the device staying around for long
691 	 * enough for the driver to get loaded. With MDIO, the NIC
692 	 * driver will get bored and give up as soon as it finds that
693 	 * there's no driver _already_ loaded.
694 	 */
695 	if (is_c45 && c45_ids) {
696 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
697 		int i;
698 
699 		for (i = 1; i < num_ids; i++) {
700 			if (c45_ids->device_ids[i] == 0xffffffff)
701 				continue;
702 
703 			ret = phy_request_driver_module(dev,
704 						c45_ids->device_ids[i]);
705 			if (ret)
706 				break;
707 		}
708 	} else {
709 		ret = phy_request_driver_module(dev, phy_id);
710 	}
711 
712 	if (ret) {
713 		put_device(&mdiodev->dev);
714 		dev = ERR_PTR(ret);
715 	}
716 
717 	return dev;
718 }
719 EXPORT_SYMBOL(phy_device_create);
720 
721 /* phy_c45_probe_present - checks to see if a MMD is present in the package
722  * @bus: the target MII bus
723  * @prtad: PHY package address on the MII bus
724  * @devad: PHY device (MMD) address
725  *
726  * Read the MDIO_STAT2 register, and check whether a device is responding
727  * at this address.
728  *
729  * Returns: negative error number on bus access error, zero if no device
730  * is responding, or positive if a device is present.
731  */
732 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
733 {
734 	int stat2;
735 
736 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
737 	if (stat2 < 0)
738 		return stat2;
739 
740 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
741 }
742 
743 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
744  * @bus: the target MII bus
745  * @addr: PHY address on the MII bus
746  * @dev_addr: MMD address in the PHY.
747  * @devices_in_package: where to store the devices in package information.
748  *
749  * Description: reads devices in package registers of a MMD at @dev_addr
750  * from PHY at @addr on @bus.
751  *
752  * Returns: 0 on success, -EIO on failure.
753  */
754 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
755 				   u32 *devices_in_package)
756 {
757 	int phy_reg;
758 
759 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
760 	if (phy_reg < 0)
761 		return -EIO;
762 	*devices_in_package = phy_reg << 16;
763 
764 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
765 	if (phy_reg < 0)
766 		return -EIO;
767 	*devices_in_package |= phy_reg;
768 
769 	return 0;
770 }
771 
772 /**
773  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
774  * @bus: the target MII bus
775  * @addr: PHY address on the MII bus
776  * @c45_ids: where to store the c45 ID information.
777  *
778  * Read the PHY "devices in package". If this appears to be valid, read
779  * the PHY identifiers for each device. Return the "devices in package"
780  * and identifiers in @c45_ids.
781  *
782  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
783  * the "devices in package" is invalid.
784  */
785 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
786 			   struct phy_c45_device_ids *c45_ids)
787 {
788 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
789 	u32 devs_in_pkg = 0;
790 	int i, ret, phy_reg;
791 
792 	/* Find first non-zero Devices In package. Device zero is reserved
793 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
794 	 */
795 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
796 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
797 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
798 			/* Check that there is a device present at this
799 			 * address before reading the devices-in-package
800 			 * register to avoid reading garbage from the PHY.
801 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
802 			 * compliant.
803 			 */
804 			ret = phy_c45_probe_present(bus, addr, i);
805 			if (ret < 0)
806 				return -EIO;
807 
808 			if (!ret)
809 				continue;
810 		}
811 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
812 		if (phy_reg < 0)
813 			return -EIO;
814 	}
815 
816 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
817 		/* If mostly Fs, there is no device there, then let's probe
818 		 * MMD 0, as some 10G PHYs have zero Devices In package,
819 		 * e.g. Cortina CS4315/CS4340 PHY.
820 		 */
821 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
822 		if (phy_reg < 0)
823 			return -EIO;
824 
825 		/* no device there, let's get out of here */
826 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
827 			return -ENODEV;
828 	}
829 
830 	/* Now probe Device Identifiers for each device present. */
831 	for (i = 1; i < num_ids; i++) {
832 		if (!(devs_in_pkg & (1 << i)))
833 			continue;
834 
835 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
836 			/* Probe the "Device Present" bits for the vendor MMDs
837 			 * to ignore these if they do not contain IEEE 802.3
838 			 * registers.
839 			 */
840 			ret = phy_c45_probe_present(bus, addr, i);
841 			if (ret < 0)
842 				return ret;
843 
844 			if (!ret)
845 				continue;
846 		}
847 
848 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
849 		if (phy_reg < 0)
850 			return -EIO;
851 		c45_ids->device_ids[i] = phy_reg << 16;
852 
853 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
854 		if (phy_reg < 0)
855 			return -EIO;
856 		c45_ids->device_ids[i] |= phy_reg;
857 	}
858 
859 	c45_ids->devices_in_package = devs_in_pkg;
860 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
861 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
862 
863 	return 0;
864 }
865 
866 /**
867  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
868  * @bus: the target MII bus
869  * @addr: PHY address on the MII bus
870  * @phy_id: where to store the ID retrieved.
871  *
872  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
873  * placing it in @phy_id. Return zero on successful read and the ID is
874  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
875  * or invalid ID.
876  */
877 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
878 {
879 	int phy_reg;
880 
881 	/* Grab the bits from PHYIR1, and put them in the upper half */
882 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
883 	if (phy_reg < 0) {
884 		/* returning -ENODEV doesn't stop bus scanning */
885 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
886 	}
887 
888 	*phy_id = phy_reg << 16;
889 
890 	/* Grab the bits from PHYIR2, and put them in the lower half */
891 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
892 	if (phy_reg < 0) {
893 		/* returning -ENODEV doesn't stop bus scanning */
894 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
895 	}
896 
897 	*phy_id |= phy_reg;
898 
899 	/* If the phy_id is mostly Fs, there is no device there */
900 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
901 		return -ENODEV;
902 
903 	return 0;
904 }
905 
906 /* Extract the phy ID from the compatible string of the form
907  * ethernet-phy-idAAAA.BBBB.
908  */
909 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
910 {
911 	unsigned int upper, lower;
912 	const char *cp;
913 	int ret;
914 
915 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
916 	if (ret)
917 		return ret;
918 
919 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
920 		return -EINVAL;
921 
922 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
923 	return 0;
924 }
925 EXPORT_SYMBOL(fwnode_get_phy_id);
926 
927 /**
928  * get_phy_device - reads the specified PHY device and returns its @phy_device
929  *		    struct
930  * @bus: the target MII bus
931  * @addr: PHY address on the MII bus
932  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
933  *
934  * Probe for a PHY at @addr on @bus.
935  *
936  * When probing for a clause 22 PHY, then read the ID registers. If we find
937  * a valid ID, allocate and return a &struct phy_device.
938  *
939  * When probing for a clause 45 PHY, read the "devices in package" registers.
940  * If the "devices in package" appears valid, read the ID registers for each
941  * MMD, allocate and return a &struct phy_device.
942  *
943  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
944  * no PHY present, or %-EIO on bus access error.
945  */
946 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
947 {
948 	struct phy_c45_device_ids c45_ids;
949 	u32 phy_id = 0;
950 	int r;
951 
952 	c45_ids.devices_in_package = 0;
953 	c45_ids.mmds_present = 0;
954 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
955 
956 	if (is_c45)
957 		r = get_phy_c45_ids(bus, addr, &c45_ids);
958 	else
959 		r = get_phy_c22_id(bus, addr, &phy_id);
960 
961 	if (r)
962 		return ERR_PTR(r);
963 
964 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
965 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
966 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
967 	 * space, if successful, create the C45 PHY device.
968 	 */
969 	if (!is_c45 && phy_id == 0 && bus->read_c45) {
970 		r = get_phy_c45_ids(bus, addr, &c45_ids);
971 		if (!r)
972 			return phy_device_create(bus, addr, phy_id,
973 						 true, &c45_ids);
974 	}
975 
976 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
977 }
978 EXPORT_SYMBOL(get_phy_device);
979 
980 /**
981  * phy_device_register - Register the phy device on the MDIO bus
982  * @phydev: phy_device structure to be added to the MDIO bus
983  */
984 int phy_device_register(struct phy_device *phydev)
985 {
986 	int err;
987 
988 	err = mdiobus_register_device(&phydev->mdio);
989 	if (err)
990 		return err;
991 
992 	/* Deassert the reset signal */
993 	phy_device_reset(phydev, 0);
994 
995 	/* Run all of the fixups for this PHY */
996 	err = phy_scan_fixups(phydev);
997 	if (err) {
998 		phydev_err(phydev, "failed to initialize\n");
999 		goto out;
1000 	}
1001 
1002 	err = device_add(&phydev->mdio.dev);
1003 	if (err) {
1004 		phydev_err(phydev, "failed to add\n");
1005 		goto out;
1006 	}
1007 
1008 	return 0;
1009 
1010  out:
1011 	/* Assert the reset signal */
1012 	phy_device_reset(phydev, 1);
1013 
1014 	mdiobus_unregister_device(&phydev->mdio);
1015 	return err;
1016 }
1017 EXPORT_SYMBOL(phy_device_register);
1018 
1019 /**
1020  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
1021  * @phydev: phy_device structure to remove
1022  *
1023  * This doesn't free the phy_device itself, it merely reverses the effects
1024  * of phy_device_register(). Use phy_device_free() to free the device
1025  * after calling this function.
1026  */
1027 void phy_device_remove(struct phy_device *phydev)
1028 {
1029 	unregister_mii_timestamper(phydev->mii_ts);
1030 	pse_control_put(phydev->psec);
1031 
1032 	device_del(&phydev->mdio.dev);
1033 
1034 	/* Assert the reset signal */
1035 	phy_device_reset(phydev, 1);
1036 
1037 	mdiobus_unregister_device(&phydev->mdio);
1038 }
1039 EXPORT_SYMBOL(phy_device_remove);
1040 
1041 /**
1042  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1043  * @phydev: phy_device structure to read 802.3-c45 IDs
1044  *
1045  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1046  * the "devices in package" is invalid.
1047  */
1048 int phy_get_c45_ids(struct phy_device *phydev)
1049 {
1050 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1051 			       &phydev->c45_ids);
1052 }
1053 EXPORT_SYMBOL(phy_get_c45_ids);
1054 
1055 /**
1056  * phy_find_first - finds the first PHY device on the bus
1057  * @bus: the target MII bus
1058  */
1059 struct phy_device *phy_find_first(struct mii_bus *bus)
1060 {
1061 	struct phy_device *phydev;
1062 	int addr;
1063 
1064 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1065 		phydev = mdiobus_get_phy(bus, addr);
1066 		if (phydev)
1067 			return phydev;
1068 	}
1069 	return NULL;
1070 }
1071 EXPORT_SYMBOL(phy_find_first);
1072 
1073 static void phy_link_change(struct phy_device *phydev, bool up)
1074 {
1075 	struct net_device *netdev = phydev->attached_dev;
1076 
1077 	if (up)
1078 		netif_carrier_on(netdev);
1079 	else
1080 		netif_carrier_off(netdev);
1081 	phydev->adjust_link(netdev);
1082 	if (phydev->mii_ts && phydev->mii_ts->link_state)
1083 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1084 }
1085 
1086 /**
1087  * phy_prepare_link - prepares the PHY layer to monitor link status
1088  * @phydev: target phy_device struct
1089  * @handler: callback function for link status change notifications
1090  *
1091  * Description: Tells the PHY infrastructure to handle the
1092  *   gory details on monitoring link status (whether through
1093  *   polling or an interrupt), and to call back to the
1094  *   connected device driver when the link status changes.
1095  *   If you want to monitor your own link state, don't call
1096  *   this function.
1097  */
1098 static void phy_prepare_link(struct phy_device *phydev,
1099 			     void (*handler)(struct net_device *))
1100 {
1101 	phydev->adjust_link = handler;
1102 }
1103 
1104 /**
1105  * phy_connect_direct - connect an ethernet device to a specific phy_device
1106  * @dev: the network device to connect
1107  * @phydev: the pointer to the phy device
1108  * @handler: callback function for state change notifications
1109  * @interface: PHY device's interface
1110  */
1111 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1112 		       void (*handler)(struct net_device *),
1113 		       phy_interface_t interface)
1114 {
1115 	int rc;
1116 
1117 	if (!dev)
1118 		return -EINVAL;
1119 
1120 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1121 	if (rc)
1122 		return rc;
1123 
1124 	phy_prepare_link(phydev, handler);
1125 	if (phy_interrupt_is_valid(phydev))
1126 		phy_request_interrupt(phydev);
1127 
1128 	return 0;
1129 }
1130 EXPORT_SYMBOL(phy_connect_direct);
1131 
1132 /**
1133  * phy_connect - connect an ethernet device to a PHY device
1134  * @dev: the network device to connect
1135  * @bus_id: the id string of the PHY device to connect
1136  * @handler: callback function for state change notifications
1137  * @interface: PHY device's interface
1138  *
1139  * Description: Convenience function for connecting ethernet
1140  *   devices to PHY devices.  The default behavior is for
1141  *   the PHY infrastructure to handle everything, and only notify
1142  *   the connected driver when the link status changes.  If you
1143  *   don't want, or can't use the provided functionality, you may
1144  *   choose to call only the subset of functions which provide
1145  *   the desired functionality.
1146  */
1147 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1148 			       void (*handler)(struct net_device *),
1149 			       phy_interface_t interface)
1150 {
1151 	struct phy_device *phydev;
1152 	struct device *d;
1153 	int rc;
1154 
1155 	/* Search the list of PHY devices on the mdio bus for the
1156 	 * PHY with the requested name
1157 	 */
1158 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1159 	if (!d) {
1160 		pr_err("PHY %s not found\n", bus_id);
1161 		return ERR_PTR(-ENODEV);
1162 	}
1163 	phydev = to_phy_device(d);
1164 
1165 	rc = phy_connect_direct(dev, phydev, handler, interface);
1166 	put_device(d);
1167 	if (rc)
1168 		return ERR_PTR(rc);
1169 
1170 	return phydev;
1171 }
1172 EXPORT_SYMBOL(phy_connect);
1173 
1174 /**
1175  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1176  *		    device
1177  * @phydev: target phy_device struct
1178  */
1179 void phy_disconnect(struct phy_device *phydev)
1180 {
1181 	if (phy_is_started(phydev))
1182 		phy_stop(phydev);
1183 
1184 	if (phy_interrupt_is_valid(phydev))
1185 		phy_free_interrupt(phydev);
1186 
1187 	phydev->adjust_link = NULL;
1188 
1189 	phy_detach(phydev);
1190 }
1191 EXPORT_SYMBOL(phy_disconnect);
1192 
1193 /**
1194  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1195  * @phydev: The PHY device to poll
1196  *
1197  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1198  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1199  *   register must be polled until the BMCR_RESET bit clears.
1200  *
1201  *   Furthermore, any attempts to write to PHY registers may have no effect
1202  *   or even generate MDIO bus errors until this is complete.
1203  *
1204  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1205  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1206  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1207  *   effort to support such broken PHYs, this function is separate from the
1208  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1209  *   and reapply all driver-specific and board-specific fixups.
1210  */
1211 static int phy_poll_reset(struct phy_device *phydev)
1212 {
1213 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1214 	int ret, val;
1215 
1216 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1217 				    50000, 600000, true);
1218 	if (ret)
1219 		return ret;
1220 	/* Some chips (smsc911x) may still need up to another 1ms after the
1221 	 * BMCR_RESET bit is cleared before they are usable.
1222 	 */
1223 	msleep(1);
1224 	return 0;
1225 }
1226 
1227 int phy_init_hw(struct phy_device *phydev)
1228 {
1229 	int ret = 0;
1230 
1231 	/* Deassert the reset signal */
1232 	phy_device_reset(phydev, 0);
1233 
1234 	if (!phydev->drv)
1235 		return 0;
1236 
1237 	if (phydev->drv->soft_reset) {
1238 		ret = phydev->drv->soft_reset(phydev);
1239 		if (ret < 0)
1240 			return ret;
1241 
1242 		/* see comment in genphy_soft_reset for an explanation */
1243 		phydev->suspended = 0;
1244 	}
1245 
1246 	ret = phy_scan_fixups(phydev);
1247 	if (ret < 0)
1248 		return ret;
1249 
1250 	phy_interface_zero(phydev->possible_interfaces);
1251 
1252 	if (phydev->drv->config_init) {
1253 		ret = phydev->drv->config_init(phydev);
1254 		if (ret < 0)
1255 			return ret;
1256 	}
1257 
1258 	if (phydev->drv->config_intr) {
1259 		ret = phydev->drv->config_intr(phydev);
1260 		if (ret < 0)
1261 			return ret;
1262 	}
1263 
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL(phy_init_hw);
1267 
1268 void phy_attached_info(struct phy_device *phydev)
1269 {
1270 	phy_attached_print(phydev, NULL);
1271 }
1272 EXPORT_SYMBOL(phy_attached_info);
1273 
1274 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1275 char *phy_attached_info_irq(struct phy_device *phydev)
1276 {
1277 	char *irq_str;
1278 	char irq_num[8];
1279 
1280 	switch(phydev->irq) {
1281 	case PHY_POLL:
1282 		irq_str = "POLL";
1283 		break;
1284 	case PHY_MAC_INTERRUPT:
1285 		irq_str = "MAC";
1286 		break;
1287 	default:
1288 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1289 		irq_str = irq_num;
1290 		break;
1291 	}
1292 
1293 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1294 }
1295 EXPORT_SYMBOL(phy_attached_info_irq);
1296 
1297 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1298 {
1299 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1300 	char *irq_str = phy_attached_info_irq(phydev);
1301 
1302 	if (!fmt) {
1303 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1304 			    phydev_name(phydev), irq_str);
1305 	} else {
1306 		va_list ap;
1307 
1308 		phydev_info(phydev, ATTACHED_FMT, unbound,
1309 			    phydev_name(phydev), irq_str);
1310 
1311 		va_start(ap, fmt);
1312 		vprintk(fmt, ap);
1313 		va_end(ap);
1314 	}
1315 	kfree(irq_str);
1316 }
1317 EXPORT_SYMBOL(phy_attached_print);
1318 
1319 static void phy_sysfs_create_links(struct phy_device *phydev)
1320 {
1321 	struct net_device *dev = phydev->attached_dev;
1322 	int err;
1323 
1324 	if (!dev)
1325 		return;
1326 
1327 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1328 				"attached_dev");
1329 	if (err)
1330 		return;
1331 
1332 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1333 				       &phydev->mdio.dev.kobj,
1334 				       "phydev");
1335 	if (err) {
1336 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1337 			kobject_name(&phydev->mdio.dev.kobj),
1338 			err);
1339 		/* non-fatal - some net drivers can use one netdevice
1340 		 * with more then one phy
1341 		 */
1342 	}
1343 
1344 	phydev->sysfs_links = true;
1345 }
1346 
1347 static ssize_t
1348 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1349 		    char *buf)
1350 {
1351 	struct phy_device *phydev = to_phy_device(dev);
1352 
1353 	return sysfs_emit(buf, "%d\n", !phydev->attached_dev);
1354 }
1355 static DEVICE_ATTR_RO(phy_standalone);
1356 
1357 /**
1358  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1359  * @upstream: pointer to the phy device
1360  * @bus: sfp bus representing cage being attached
1361  *
1362  * This is used to fill in the sfp_upstream_ops .attach member.
1363  */
1364 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1365 {
1366 	struct phy_device *phydev = upstream;
1367 
1368 	if (phydev->attached_dev)
1369 		phydev->attached_dev->sfp_bus = bus;
1370 	phydev->sfp_bus_attached = true;
1371 }
1372 EXPORT_SYMBOL(phy_sfp_attach);
1373 
1374 /**
1375  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1376  * @upstream: pointer to the phy device
1377  * @bus: sfp bus representing cage being attached
1378  *
1379  * This is used to fill in the sfp_upstream_ops .detach member.
1380  */
1381 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1382 {
1383 	struct phy_device *phydev = upstream;
1384 
1385 	if (phydev->attached_dev)
1386 		phydev->attached_dev->sfp_bus = NULL;
1387 	phydev->sfp_bus_attached = false;
1388 }
1389 EXPORT_SYMBOL(phy_sfp_detach);
1390 
1391 /**
1392  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1393  * @phydev: Pointer to phy_device
1394  * @ops: SFP's upstream operations
1395  */
1396 int phy_sfp_probe(struct phy_device *phydev,
1397 		  const struct sfp_upstream_ops *ops)
1398 {
1399 	struct sfp_bus *bus;
1400 	int ret = 0;
1401 
1402 	if (phydev->mdio.dev.fwnode) {
1403 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1404 		if (IS_ERR(bus))
1405 			return PTR_ERR(bus);
1406 
1407 		phydev->sfp_bus = bus;
1408 
1409 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1410 		sfp_bus_put(bus);
1411 	}
1412 	return ret;
1413 }
1414 EXPORT_SYMBOL(phy_sfp_probe);
1415 
1416 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
1417 {
1418 	return phydrv->config_intr && phydrv->handle_interrupt;
1419 }
1420 
1421 /**
1422  * phy_attach_direct - attach a network device to a given PHY device pointer
1423  * @dev: network device to attach
1424  * @phydev: Pointer to phy_device to attach
1425  * @flags: PHY device's dev_flags
1426  * @interface: PHY device's interface
1427  *
1428  * Description: Called by drivers to attach to a particular PHY
1429  *     device. The phy_device is found, and properly hooked up
1430  *     to the phy_driver.  If no driver is attached, then a
1431  *     generic driver is used.  The phy_device is given a ptr to
1432  *     the attaching device, and given a callback for link status
1433  *     change.  The phy_device is returned to the attaching driver.
1434  *     This function takes a reference on the phy device.
1435  */
1436 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1437 		      u32 flags, phy_interface_t interface)
1438 {
1439 	struct mii_bus *bus = phydev->mdio.bus;
1440 	struct device *d = &phydev->mdio.dev;
1441 	struct module *ndev_owner = NULL;
1442 	bool using_genphy = false;
1443 	int err;
1444 
1445 	/* For Ethernet device drivers that register their own MDIO bus, we
1446 	 * will have bus->owner match ndev_mod, so we do not want to increment
1447 	 * our own module->refcnt here, otherwise we would not be able to
1448 	 * unload later on.
1449 	 */
1450 	if (dev)
1451 		ndev_owner = dev->dev.parent->driver->owner;
1452 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1453 		phydev_err(phydev, "failed to get the bus module\n");
1454 		return -EIO;
1455 	}
1456 
1457 	get_device(d);
1458 
1459 	/* Assume that if there is no driver, that it doesn't
1460 	 * exist, and we should use the genphy driver.
1461 	 */
1462 	if (!d->driver) {
1463 		if (phydev->is_c45)
1464 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1465 		else
1466 			d->driver = &genphy_driver.mdiodrv.driver;
1467 
1468 		using_genphy = true;
1469 	}
1470 
1471 	if (!try_module_get(d->driver->owner)) {
1472 		phydev_err(phydev, "failed to get the device driver module\n");
1473 		err = -EIO;
1474 		goto error_put_device;
1475 	}
1476 
1477 	if (using_genphy) {
1478 		err = d->driver->probe(d);
1479 		if (err >= 0)
1480 			err = device_bind_driver(d);
1481 
1482 		if (err)
1483 			goto error_module_put;
1484 	}
1485 
1486 	if (phydev->attached_dev) {
1487 		dev_err(&dev->dev, "PHY already attached\n");
1488 		err = -EBUSY;
1489 		goto error;
1490 	}
1491 
1492 	phydev->phy_link_change = phy_link_change;
1493 	if (dev) {
1494 		phydev->attached_dev = dev;
1495 		dev->phydev = phydev;
1496 
1497 		if (phydev->sfp_bus_attached)
1498 			dev->sfp_bus = phydev->sfp_bus;
1499 	}
1500 
1501 	/* Some Ethernet drivers try to connect to a PHY device before
1502 	 * calling register_netdevice() -> netdev_register_kobject() and
1503 	 * does the dev->dev.kobj initialization. Here we only check for
1504 	 * success which indicates that the network device kobject is
1505 	 * ready. Once we do that we still need to keep track of whether
1506 	 * links were successfully set up or not for phy_detach() to
1507 	 * remove them accordingly.
1508 	 */
1509 	phydev->sysfs_links = false;
1510 
1511 	phy_sysfs_create_links(phydev);
1512 
1513 	if (!phydev->attached_dev) {
1514 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1515 					&dev_attr_phy_standalone.attr);
1516 		if (err)
1517 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1518 	}
1519 
1520 	phydev->dev_flags |= flags;
1521 
1522 	phydev->interface = interface;
1523 
1524 	phydev->state = PHY_READY;
1525 
1526 	phydev->interrupts = PHY_INTERRUPT_DISABLED;
1527 
1528 	/* PHYs can request to use poll mode even though they have an
1529 	 * associated interrupt line. This could be the case if they
1530 	 * detect a broken interrupt handling.
1531 	 */
1532 	if (phydev->dev_flags & PHY_F_NO_IRQ)
1533 		phydev->irq = PHY_POLL;
1534 
1535 	if (!phy_drv_supports_irq(phydev->drv) && phy_interrupt_is_valid(phydev))
1536 		phydev->irq = PHY_POLL;
1537 
1538 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1539 	 * it to different value depending on the PHY configuration. If we have
1540 	 * the generic PHY driver we can't figure it out, thus set the old
1541 	 * legacy PORT_MII value.
1542 	 */
1543 	if (using_genphy)
1544 		phydev->port = PORT_MII;
1545 
1546 	/* Initial carrier state is off as the phy is about to be
1547 	 * (re)initialized.
1548 	 */
1549 	if (dev)
1550 		netif_carrier_off(phydev->attached_dev);
1551 
1552 	/* Do initial configuration here, now that
1553 	 * we have certain key parameters
1554 	 * (dev_flags and interface)
1555 	 */
1556 	err = phy_init_hw(phydev);
1557 	if (err)
1558 		goto error;
1559 
1560 	phy_resume(phydev);
1561 	if (!phydev->is_on_sfp_module)
1562 		phy_led_triggers_register(phydev);
1563 
1564 	/**
1565 	 * If the external phy used by current mac interface is managed by
1566 	 * another mac interface, so we should create a device link between
1567 	 * phy dev and mac dev.
1568 	 */
1569 	if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
1570 		phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
1571 						  DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
1572 
1573 	return err;
1574 
1575 error:
1576 	/* phy_detach() does all of the cleanup below */
1577 	phy_detach(phydev);
1578 	return err;
1579 
1580 error_module_put:
1581 	module_put(d->driver->owner);
1582 	d->driver = NULL;
1583 error_put_device:
1584 	put_device(d);
1585 	if (ndev_owner != bus->owner)
1586 		module_put(bus->owner);
1587 	return err;
1588 }
1589 EXPORT_SYMBOL(phy_attach_direct);
1590 
1591 /**
1592  * phy_attach - attach a network device to a particular PHY device
1593  * @dev: network device to attach
1594  * @bus_id: Bus ID of PHY device to attach
1595  * @interface: PHY device's interface
1596  *
1597  * Description: Same as phy_attach_direct() except that a PHY bus_id
1598  *     string is passed instead of a pointer to a struct phy_device.
1599  */
1600 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1601 			      phy_interface_t interface)
1602 {
1603 	struct bus_type *bus = &mdio_bus_type;
1604 	struct phy_device *phydev;
1605 	struct device *d;
1606 	int rc;
1607 
1608 	if (!dev)
1609 		return ERR_PTR(-EINVAL);
1610 
1611 	/* Search the list of PHY devices on the mdio bus for the
1612 	 * PHY with the requested name
1613 	 */
1614 	d = bus_find_device_by_name(bus, NULL, bus_id);
1615 	if (!d) {
1616 		pr_err("PHY %s not found\n", bus_id);
1617 		return ERR_PTR(-ENODEV);
1618 	}
1619 	phydev = to_phy_device(d);
1620 
1621 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1622 	put_device(d);
1623 	if (rc)
1624 		return ERR_PTR(rc);
1625 
1626 	return phydev;
1627 }
1628 EXPORT_SYMBOL(phy_attach);
1629 
1630 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1631 				      struct device_driver *driver)
1632 {
1633 	struct device *d = &phydev->mdio.dev;
1634 	bool ret = false;
1635 
1636 	if (!phydev->drv)
1637 		return ret;
1638 
1639 	get_device(d);
1640 	ret = d->driver == driver;
1641 	put_device(d);
1642 
1643 	return ret;
1644 }
1645 
1646 bool phy_driver_is_genphy(struct phy_device *phydev)
1647 {
1648 	return phy_driver_is_genphy_kind(phydev,
1649 					 &genphy_driver.mdiodrv.driver);
1650 }
1651 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1652 
1653 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1654 {
1655 	return phy_driver_is_genphy_kind(phydev,
1656 					 &genphy_c45_driver.mdiodrv.driver);
1657 }
1658 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1659 
1660 /**
1661  * phy_package_join - join a common PHY group
1662  * @phydev: target phy_device struct
1663  * @base_addr: cookie and base PHY address of PHY package for offset
1664  *   calculation of global register access
1665  * @priv_size: if non-zero allocate this amount of bytes for private data
1666  *
1667  * This joins a PHY group and provides a shared storage for all phydevs in
1668  * this group. This is intended to be used for packages which contain
1669  * more than one PHY, for example a quad PHY transceiver.
1670  *
1671  * The base_addr parameter serves as cookie which has to have the same values
1672  * for all members of one group and as the base PHY address of the PHY package
1673  * for offset calculation to access generic registers of a PHY package.
1674  * Usually, one of the PHY addresses of the different PHYs in the package
1675  * provides access to these global registers.
1676  * The address which is given here, will be used in the phy_package_read()
1677  * and phy_package_write() convenience functions as base and added to the
1678  * passed offset in those functions.
1679  *
1680  * This will set the shared pointer of the phydev to the shared storage.
1681  * If this is the first call for a this cookie the shared storage will be
1682  * allocated. If priv_size is non-zero, the given amount of bytes are
1683  * allocated for the priv member.
1684  *
1685  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1686  * with the same cookie but a different priv_size is an error.
1687  */
1688 int phy_package_join(struct phy_device *phydev, int base_addr, size_t priv_size)
1689 {
1690 	struct mii_bus *bus = phydev->mdio.bus;
1691 	struct phy_package_shared *shared;
1692 	int ret;
1693 
1694 	if (base_addr < 0 || base_addr >= PHY_MAX_ADDR)
1695 		return -EINVAL;
1696 
1697 	mutex_lock(&bus->shared_lock);
1698 	shared = bus->shared[base_addr];
1699 	if (!shared) {
1700 		ret = -ENOMEM;
1701 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1702 		if (!shared)
1703 			goto err_unlock;
1704 		if (priv_size) {
1705 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1706 			if (!shared->priv)
1707 				goto err_free;
1708 			shared->priv_size = priv_size;
1709 		}
1710 		shared->base_addr = base_addr;
1711 		refcount_set(&shared->refcnt, 1);
1712 		bus->shared[base_addr] = shared;
1713 	} else {
1714 		ret = -EINVAL;
1715 		if (priv_size && priv_size != shared->priv_size)
1716 			goto err_unlock;
1717 		refcount_inc(&shared->refcnt);
1718 	}
1719 	mutex_unlock(&bus->shared_lock);
1720 
1721 	phydev->shared = shared;
1722 
1723 	return 0;
1724 
1725 err_free:
1726 	kfree(shared);
1727 err_unlock:
1728 	mutex_unlock(&bus->shared_lock);
1729 	return ret;
1730 }
1731 EXPORT_SYMBOL_GPL(phy_package_join);
1732 
1733 /**
1734  * phy_package_leave - leave a common PHY group
1735  * @phydev: target phy_device struct
1736  *
1737  * This leaves a PHY group created by phy_package_join(). If this phydev
1738  * was the last user of the shared data between the group, this data is
1739  * freed. Resets the phydev->shared pointer to NULL.
1740  */
1741 void phy_package_leave(struct phy_device *phydev)
1742 {
1743 	struct phy_package_shared *shared = phydev->shared;
1744 	struct mii_bus *bus = phydev->mdio.bus;
1745 
1746 	if (!shared)
1747 		return;
1748 
1749 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1750 		bus->shared[shared->base_addr] = NULL;
1751 		mutex_unlock(&bus->shared_lock);
1752 		kfree(shared->priv);
1753 		kfree(shared);
1754 	}
1755 
1756 	phydev->shared = NULL;
1757 }
1758 EXPORT_SYMBOL_GPL(phy_package_leave);
1759 
1760 static void devm_phy_package_leave(struct device *dev, void *res)
1761 {
1762 	phy_package_leave(*(struct phy_device **)res);
1763 }
1764 
1765 /**
1766  * devm_phy_package_join - resource managed phy_package_join()
1767  * @dev: device that is registering this PHY package
1768  * @phydev: target phy_device struct
1769  * @base_addr: cookie and base PHY address of PHY package for offset
1770  *   calculation of global register access
1771  * @priv_size: if non-zero allocate this amount of bytes for private data
1772  *
1773  * Managed phy_package_join(). Shared storage fetched by this function,
1774  * phy_package_leave() is automatically called on driver detach. See
1775  * phy_package_join() for more information.
1776  */
1777 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1778 			  int base_addr, size_t priv_size)
1779 {
1780 	struct phy_device **ptr;
1781 	int ret;
1782 
1783 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1784 			   GFP_KERNEL);
1785 	if (!ptr)
1786 		return -ENOMEM;
1787 
1788 	ret = phy_package_join(phydev, base_addr, priv_size);
1789 
1790 	if (!ret) {
1791 		*ptr = phydev;
1792 		devres_add(dev, ptr);
1793 	} else {
1794 		devres_free(ptr);
1795 	}
1796 
1797 	return ret;
1798 }
1799 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1800 
1801 /**
1802  * phy_detach - detach a PHY device from its network device
1803  * @phydev: target phy_device struct
1804  *
1805  * This detaches the phy device from its network device and the phy
1806  * driver, and drops the reference count taken in phy_attach_direct().
1807  */
1808 void phy_detach(struct phy_device *phydev)
1809 {
1810 	struct net_device *dev = phydev->attached_dev;
1811 	struct module *ndev_owner = NULL;
1812 	struct mii_bus *bus;
1813 
1814 	if (phydev->devlink)
1815 		device_link_del(phydev->devlink);
1816 
1817 	if (phydev->sysfs_links) {
1818 		if (dev)
1819 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1820 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1821 	}
1822 
1823 	if (!phydev->attached_dev)
1824 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1825 				  &dev_attr_phy_standalone.attr);
1826 
1827 	phy_suspend(phydev);
1828 	if (dev) {
1829 		phydev->attached_dev->phydev = NULL;
1830 		phydev->attached_dev = NULL;
1831 	}
1832 	phydev->phylink = NULL;
1833 
1834 	if (!phydev->is_on_sfp_module)
1835 		phy_led_triggers_unregister(phydev);
1836 
1837 	if (phydev->mdio.dev.driver)
1838 		module_put(phydev->mdio.dev.driver->owner);
1839 
1840 	/* If the device had no specific driver before (i.e. - it
1841 	 * was using the generic driver), we unbind the device
1842 	 * from the generic driver so that there's a chance a
1843 	 * real driver could be loaded
1844 	 */
1845 	if (phy_driver_is_genphy(phydev) ||
1846 	    phy_driver_is_genphy_10g(phydev))
1847 		device_release_driver(&phydev->mdio.dev);
1848 
1849 	/* Assert the reset signal */
1850 	phy_device_reset(phydev, 1);
1851 
1852 	/*
1853 	 * The phydev might go away on the put_device() below, so avoid
1854 	 * a use-after-free bug by reading the underlying bus first.
1855 	 */
1856 	bus = phydev->mdio.bus;
1857 
1858 	put_device(&phydev->mdio.dev);
1859 	if (dev)
1860 		ndev_owner = dev->dev.parent->driver->owner;
1861 	if (ndev_owner != bus->owner)
1862 		module_put(bus->owner);
1863 }
1864 EXPORT_SYMBOL(phy_detach);
1865 
1866 int phy_suspend(struct phy_device *phydev)
1867 {
1868 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1869 	struct net_device *netdev = phydev->attached_dev;
1870 	struct phy_driver *phydrv = phydev->drv;
1871 	int ret;
1872 
1873 	if (phydev->suspended)
1874 		return 0;
1875 
1876 	phy_ethtool_get_wol(phydev, &wol);
1877 	phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled);
1878 	/* If the device has WOL enabled, we cannot suspend the PHY */
1879 	if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND))
1880 		return -EBUSY;
1881 
1882 	if (!phydrv || !phydrv->suspend)
1883 		return 0;
1884 
1885 	ret = phydrv->suspend(phydev);
1886 	if (!ret)
1887 		phydev->suspended = true;
1888 
1889 	return ret;
1890 }
1891 EXPORT_SYMBOL(phy_suspend);
1892 
1893 int __phy_resume(struct phy_device *phydev)
1894 {
1895 	struct phy_driver *phydrv = phydev->drv;
1896 	int ret;
1897 
1898 	lockdep_assert_held(&phydev->lock);
1899 
1900 	if (!phydrv || !phydrv->resume)
1901 		return 0;
1902 
1903 	ret = phydrv->resume(phydev);
1904 	if (!ret)
1905 		phydev->suspended = false;
1906 
1907 	return ret;
1908 }
1909 EXPORT_SYMBOL(__phy_resume);
1910 
1911 int phy_resume(struct phy_device *phydev)
1912 {
1913 	int ret;
1914 
1915 	mutex_lock(&phydev->lock);
1916 	ret = __phy_resume(phydev);
1917 	mutex_unlock(&phydev->lock);
1918 
1919 	return ret;
1920 }
1921 EXPORT_SYMBOL(phy_resume);
1922 
1923 int phy_loopback(struct phy_device *phydev, bool enable)
1924 {
1925 	int ret = 0;
1926 
1927 	if (!phydev->drv)
1928 		return -EIO;
1929 
1930 	mutex_lock(&phydev->lock);
1931 
1932 	if (enable && phydev->loopback_enabled) {
1933 		ret = -EBUSY;
1934 		goto out;
1935 	}
1936 
1937 	if (!enable && !phydev->loopback_enabled) {
1938 		ret = -EINVAL;
1939 		goto out;
1940 	}
1941 
1942 	if (phydev->drv->set_loopback)
1943 		ret = phydev->drv->set_loopback(phydev, enable);
1944 	else
1945 		ret = genphy_loopback(phydev, enable);
1946 
1947 	if (ret)
1948 		goto out;
1949 
1950 	phydev->loopback_enabled = enable;
1951 
1952 out:
1953 	mutex_unlock(&phydev->lock);
1954 	return ret;
1955 }
1956 EXPORT_SYMBOL(phy_loopback);
1957 
1958 /**
1959  * phy_reset_after_clk_enable - perform a PHY reset if needed
1960  * @phydev: target phy_device struct
1961  *
1962  * Description: Some PHYs are known to need a reset after their refclk was
1963  *   enabled. This function evaluates the flags and perform the reset if it's
1964  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1965  *   was reset.
1966  */
1967 int phy_reset_after_clk_enable(struct phy_device *phydev)
1968 {
1969 	if (!phydev || !phydev->drv)
1970 		return -ENODEV;
1971 
1972 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1973 		phy_device_reset(phydev, 1);
1974 		phy_device_reset(phydev, 0);
1975 		return 1;
1976 	}
1977 
1978 	return 0;
1979 }
1980 EXPORT_SYMBOL(phy_reset_after_clk_enable);
1981 
1982 /* Generic PHY support and helper functions */
1983 
1984 /**
1985  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1986  * @phydev: target phy_device struct
1987  *
1988  * Description: Writes MII_ADVERTISE with the appropriate values,
1989  *   after sanitizing the values to make sure we only advertise
1990  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1991  *   hasn't changed, and > 0 if it has changed.
1992  */
1993 static int genphy_config_advert(struct phy_device *phydev)
1994 {
1995 	int err, bmsr, changed = 0;
1996 	u32 adv;
1997 
1998 	/* Only allow advertising what this PHY supports */
1999 	linkmode_and(phydev->advertising, phydev->advertising,
2000 		     phydev->supported);
2001 
2002 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
2003 
2004 	/* Setup standard advertisement */
2005 	err = phy_modify_changed(phydev, MII_ADVERTISE,
2006 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
2007 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
2008 				 adv);
2009 	if (err < 0)
2010 		return err;
2011 	if (err > 0)
2012 		changed = 1;
2013 
2014 	bmsr = phy_read(phydev, MII_BMSR);
2015 	if (bmsr < 0)
2016 		return bmsr;
2017 
2018 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
2019 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
2020 	 * logical 1.
2021 	 */
2022 	if (!(bmsr & BMSR_ESTATEN))
2023 		return changed;
2024 
2025 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
2026 
2027 	err = phy_modify_changed(phydev, MII_CTRL1000,
2028 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
2029 				 adv);
2030 	if (err < 0)
2031 		return err;
2032 	if (err > 0)
2033 		changed = 1;
2034 
2035 	return changed;
2036 }
2037 
2038 /**
2039  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
2040  * @phydev: target phy_device struct
2041  *
2042  * Description: Writes MII_ADVERTISE with the appropriate values,
2043  *   after sanitizing the values to make sure we only advertise
2044  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2045  *   hasn't changed, and > 0 if it has changed. This function is intended
2046  *   for Clause 37 1000Base-X mode.
2047  */
2048 static int genphy_c37_config_advert(struct phy_device *phydev)
2049 {
2050 	u16 adv = 0;
2051 
2052 	/* Only allow advertising what this PHY supports */
2053 	linkmode_and(phydev->advertising, phydev->advertising,
2054 		     phydev->supported);
2055 
2056 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2057 			      phydev->advertising))
2058 		adv |= ADVERTISE_1000XFULL;
2059 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2060 			      phydev->advertising))
2061 		adv |= ADVERTISE_1000XPAUSE;
2062 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2063 			      phydev->advertising))
2064 		adv |= ADVERTISE_1000XPSE_ASYM;
2065 
2066 	return phy_modify_changed(phydev, MII_ADVERTISE,
2067 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
2068 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
2069 				  adv);
2070 }
2071 
2072 /**
2073  * genphy_config_eee_advert - disable unwanted eee mode advertisement
2074  * @phydev: target phy_device struct
2075  *
2076  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2077  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2078  *   changed, and 1 if it has changed.
2079  */
2080 int genphy_config_eee_advert(struct phy_device *phydev)
2081 {
2082 	int err;
2083 
2084 	/* Nothing to disable */
2085 	if (!phydev->eee_broken_modes)
2086 		return 0;
2087 
2088 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2089 				     phydev->eee_broken_modes, 0);
2090 	/* If the call failed, we assume that EEE is not supported */
2091 	return err < 0 ? 0 : err;
2092 }
2093 EXPORT_SYMBOL(genphy_config_eee_advert);
2094 
2095 /**
2096  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2097  * @phydev: target phy_device struct
2098  *
2099  * Description: Configures MII_BMCR to force speed/duplex
2100  *   to the values in phydev. Assumes that the values are valid.
2101  *   Please see phy_sanitize_settings().
2102  */
2103 int genphy_setup_forced(struct phy_device *phydev)
2104 {
2105 	u16 ctl;
2106 
2107 	phydev->pause = 0;
2108 	phydev->asym_pause = 0;
2109 
2110 	ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2111 
2112 	return phy_modify(phydev, MII_BMCR,
2113 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2114 }
2115 EXPORT_SYMBOL(genphy_setup_forced);
2116 
2117 static int genphy_setup_master_slave(struct phy_device *phydev)
2118 {
2119 	u16 ctl = 0;
2120 
2121 	if (!phydev->is_gigabit_capable)
2122 		return 0;
2123 
2124 	switch (phydev->master_slave_set) {
2125 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2126 		ctl |= CTL1000_PREFER_MASTER;
2127 		break;
2128 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2129 		break;
2130 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2131 		ctl |= CTL1000_AS_MASTER;
2132 		fallthrough;
2133 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2134 		ctl |= CTL1000_ENABLE_MASTER;
2135 		break;
2136 	case MASTER_SLAVE_CFG_UNKNOWN:
2137 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2138 		return 0;
2139 	default:
2140 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2141 		return -EOPNOTSUPP;
2142 	}
2143 
2144 	return phy_modify_changed(phydev, MII_CTRL1000,
2145 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2146 				   CTL1000_PREFER_MASTER), ctl);
2147 }
2148 
2149 int genphy_read_master_slave(struct phy_device *phydev)
2150 {
2151 	int cfg, state;
2152 	int val;
2153 
2154 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2155 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2156 
2157 	val = phy_read(phydev, MII_CTRL1000);
2158 	if (val < 0)
2159 		return val;
2160 
2161 	if (val & CTL1000_ENABLE_MASTER) {
2162 		if (val & CTL1000_AS_MASTER)
2163 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2164 		else
2165 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2166 	} else {
2167 		if (val & CTL1000_PREFER_MASTER)
2168 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2169 		else
2170 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2171 	}
2172 
2173 	val = phy_read(phydev, MII_STAT1000);
2174 	if (val < 0)
2175 		return val;
2176 
2177 	if (val & LPA_1000MSFAIL) {
2178 		state = MASTER_SLAVE_STATE_ERR;
2179 	} else if (phydev->link) {
2180 		/* this bits are valid only for active link */
2181 		if (val & LPA_1000MSRES)
2182 			state = MASTER_SLAVE_STATE_MASTER;
2183 		else
2184 			state = MASTER_SLAVE_STATE_SLAVE;
2185 	} else {
2186 		state = MASTER_SLAVE_STATE_UNKNOWN;
2187 	}
2188 
2189 	phydev->master_slave_get = cfg;
2190 	phydev->master_slave_state = state;
2191 
2192 	return 0;
2193 }
2194 EXPORT_SYMBOL(genphy_read_master_slave);
2195 
2196 /**
2197  * genphy_restart_aneg - Enable and Restart Autonegotiation
2198  * @phydev: target phy_device struct
2199  */
2200 int genphy_restart_aneg(struct phy_device *phydev)
2201 {
2202 	/* Don't isolate the PHY if we're negotiating */
2203 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2204 			  BMCR_ANENABLE | BMCR_ANRESTART);
2205 }
2206 EXPORT_SYMBOL(genphy_restart_aneg);
2207 
2208 /**
2209  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2210  * @phydev: target phy_device struct
2211  * @restart: whether aneg restart is requested
2212  *
2213  * Check, and restart auto-negotiation if needed.
2214  */
2215 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2216 {
2217 	int ret;
2218 
2219 	if (!restart) {
2220 		/* Advertisement hasn't changed, but maybe aneg was never on to
2221 		 * begin with?  Or maybe phy was isolated?
2222 		 */
2223 		ret = phy_read(phydev, MII_BMCR);
2224 		if (ret < 0)
2225 			return ret;
2226 
2227 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2228 			restart = true;
2229 	}
2230 
2231 	if (restart)
2232 		return genphy_restart_aneg(phydev);
2233 
2234 	return 0;
2235 }
2236 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2237 
2238 /**
2239  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2240  * @phydev: target phy_device struct
2241  * @changed: whether autoneg is requested
2242  *
2243  * Description: If auto-negotiation is enabled, we configure the
2244  *   advertising, and then restart auto-negotiation.  If it is not
2245  *   enabled, then we write the BMCR.
2246  */
2247 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2248 {
2249 	int err;
2250 
2251 	err = genphy_c45_an_config_eee_aneg(phydev);
2252 	if (err < 0)
2253 		return err;
2254 	else if (err)
2255 		changed = true;
2256 
2257 	err = genphy_setup_master_slave(phydev);
2258 	if (err < 0)
2259 		return err;
2260 	else if (err)
2261 		changed = true;
2262 
2263 	if (AUTONEG_ENABLE != phydev->autoneg)
2264 		return genphy_setup_forced(phydev);
2265 
2266 	err = genphy_config_advert(phydev);
2267 	if (err < 0) /* error */
2268 		return err;
2269 	else if (err)
2270 		changed = true;
2271 
2272 	return genphy_check_and_restart_aneg(phydev, changed);
2273 }
2274 EXPORT_SYMBOL(__genphy_config_aneg);
2275 
2276 /**
2277  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2278  * @phydev: target phy_device struct
2279  *
2280  * Description: If auto-negotiation is enabled, we configure the
2281  *   advertising, and then restart auto-negotiation.  If it is not
2282  *   enabled, then we write the BMCR. This function is intended
2283  *   for use with Clause 37 1000Base-X mode.
2284  */
2285 int genphy_c37_config_aneg(struct phy_device *phydev)
2286 {
2287 	int err, changed;
2288 
2289 	if (phydev->autoneg != AUTONEG_ENABLE)
2290 		return genphy_setup_forced(phydev);
2291 
2292 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2293 			 BMCR_SPEED1000);
2294 	if (err)
2295 		return err;
2296 
2297 	changed = genphy_c37_config_advert(phydev);
2298 	if (changed < 0) /* error */
2299 		return changed;
2300 
2301 	if (!changed) {
2302 		/* Advertisement hasn't changed, but maybe aneg was never on to
2303 		 * begin with?  Or maybe phy was isolated?
2304 		 */
2305 		int ctl = phy_read(phydev, MII_BMCR);
2306 
2307 		if (ctl < 0)
2308 			return ctl;
2309 
2310 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2311 			changed = 1; /* do restart aneg */
2312 	}
2313 
2314 	/* Only restart aneg if we are advertising something different
2315 	 * than we were before.
2316 	 */
2317 	if (changed > 0)
2318 		return genphy_restart_aneg(phydev);
2319 
2320 	return 0;
2321 }
2322 EXPORT_SYMBOL(genphy_c37_config_aneg);
2323 
2324 /**
2325  * genphy_aneg_done - return auto-negotiation status
2326  * @phydev: target phy_device struct
2327  *
2328  * Description: Reads the status register and returns 0 either if
2329  *   auto-negotiation is incomplete, or if there was an error.
2330  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2331  */
2332 int genphy_aneg_done(struct phy_device *phydev)
2333 {
2334 	int retval = phy_read(phydev, MII_BMSR);
2335 
2336 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2337 }
2338 EXPORT_SYMBOL(genphy_aneg_done);
2339 
2340 /**
2341  * genphy_update_link - update link status in @phydev
2342  * @phydev: target phy_device struct
2343  *
2344  * Description: Update the value in phydev->link to reflect the
2345  *   current link value.  In order to do this, we need to read
2346  *   the status register twice, keeping the second value.
2347  */
2348 int genphy_update_link(struct phy_device *phydev)
2349 {
2350 	int status = 0, bmcr;
2351 
2352 	bmcr = phy_read(phydev, MII_BMCR);
2353 	if (bmcr < 0)
2354 		return bmcr;
2355 
2356 	/* Autoneg is being started, therefore disregard BMSR value and
2357 	 * report link as down.
2358 	 */
2359 	if (bmcr & BMCR_ANRESTART)
2360 		goto done;
2361 
2362 	/* The link state is latched low so that momentary link
2363 	 * drops can be detected. Do not double-read the status
2364 	 * in polling mode to detect such short link drops except
2365 	 * the link was already down.
2366 	 */
2367 	if (!phy_polling_mode(phydev) || !phydev->link) {
2368 		status = phy_read(phydev, MII_BMSR);
2369 		if (status < 0)
2370 			return status;
2371 		else if (status & BMSR_LSTATUS)
2372 			goto done;
2373 	}
2374 
2375 	/* Read link and autonegotiation status */
2376 	status = phy_read(phydev, MII_BMSR);
2377 	if (status < 0)
2378 		return status;
2379 done:
2380 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2381 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2382 
2383 	/* Consider the case that autoneg was started and "aneg complete"
2384 	 * bit has been reset, but "link up" bit not yet.
2385 	 */
2386 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2387 		phydev->link = 0;
2388 
2389 	return 0;
2390 }
2391 EXPORT_SYMBOL(genphy_update_link);
2392 
2393 int genphy_read_lpa(struct phy_device *phydev)
2394 {
2395 	int lpa, lpagb;
2396 
2397 	if (phydev->autoneg == AUTONEG_ENABLE) {
2398 		if (!phydev->autoneg_complete) {
2399 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2400 							0);
2401 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2402 			return 0;
2403 		}
2404 
2405 		if (phydev->is_gigabit_capable) {
2406 			lpagb = phy_read(phydev, MII_STAT1000);
2407 			if (lpagb < 0)
2408 				return lpagb;
2409 
2410 			if (lpagb & LPA_1000MSFAIL) {
2411 				int adv = phy_read(phydev, MII_CTRL1000);
2412 
2413 				if (adv < 0)
2414 					return adv;
2415 
2416 				if (adv & CTL1000_ENABLE_MASTER)
2417 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2418 				else
2419 					phydev_err(phydev, "Master/Slave resolution failed\n");
2420 				return -ENOLINK;
2421 			}
2422 
2423 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2424 							lpagb);
2425 		}
2426 
2427 		lpa = phy_read(phydev, MII_LPA);
2428 		if (lpa < 0)
2429 			return lpa;
2430 
2431 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2432 	} else {
2433 		linkmode_zero(phydev->lp_advertising);
2434 	}
2435 
2436 	return 0;
2437 }
2438 EXPORT_SYMBOL(genphy_read_lpa);
2439 
2440 /**
2441  * genphy_read_status_fixed - read the link parameters for !aneg mode
2442  * @phydev: target phy_device struct
2443  *
2444  * Read the current duplex and speed state for a PHY operating with
2445  * autonegotiation disabled.
2446  */
2447 int genphy_read_status_fixed(struct phy_device *phydev)
2448 {
2449 	int bmcr = phy_read(phydev, MII_BMCR);
2450 
2451 	if (bmcr < 0)
2452 		return bmcr;
2453 
2454 	if (bmcr & BMCR_FULLDPLX)
2455 		phydev->duplex = DUPLEX_FULL;
2456 	else
2457 		phydev->duplex = DUPLEX_HALF;
2458 
2459 	if (bmcr & BMCR_SPEED1000)
2460 		phydev->speed = SPEED_1000;
2461 	else if (bmcr & BMCR_SPEED100)
2462 		phydev->speed = SPEED_100;
2463 	else
2464 		phydev->speed = SPEED_10;
2465 
2466 	return 0;
2467 }
2468 EXPORT_SYMBOL(genphy_read_status_fixed);
2469 
2470 /**
2471  * genphy_read_status - check the link status and update current link state
2472  * @phydev: target phy_device struct
2473  *
2474  * Description: Check the link, then figure out the current state
2475  *   by comparing what we advertise with what the link partner
2476  *   advertises.  Start by checking the gigabit possibilities,
2477  *   then move on to 10/100.
2478  */
2479 int genphy_read_status(struct phy_device *phydev)
2480 {
2481 	int err, old_link = phydev->link;
2482 
2483 	/* Update the link, but return if there was an error */
2484 	err = genphy_update_link(phydev);
2485 	if (err)
2486 		return err;
2487 
2488 	/* why bother the PHY if nothing can have changed */
2489 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2490 		return 0;
2491 
2492 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2493 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2494 	phydev->speed = SPEED_UNKNOWN;
2495 	phydev->duplex = DUPLEX_UNKNOWN;
2496 	phydev->pause = 0;
2497 	phydev->asym_pause = 0;
2498 
2499 	if (phydev->is_gigabit_capable) {
2500 		err = genphy_read_master_slave(phydev);
2501 		if (err < 0)
2502 			return err;
2503 	}
2504 
2505 	err = genphy_read_lpa(phydev);
2506 	if (err < 0)
2507 		return err;
2508 
2509 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2510 		phy_resolve_aneg_linkmode(phydev);
2511 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2512 		err = genphy_read_status_fixed(phydev);
2513 		if (err < 0)
2514 			return err;
2515 	}
2516 
2517 	return 0;
2518 }
2519 EXPORT_SYMBOL(genphy_read_status);
2520 
2521 /**
2522  * genphy_c37_read_status - check the link status and update current link state
2523  * @phydev: target phy_device struct
2524  *
2525  * Description: Check the link, then figure out the current state
2526  *   by comparing what we advertise with what the link partner
2527  *   advertises. This function is for Clause 37 1000Base-X mode.
2528  */
2529 int genphy_c37_read_status(struct phy_device *phydev)
2530 {
2531 	int lpa, err, old_link = phydev->link;
2532 
2533 	/* Update the link, but return if there was an error */
2534 	err = genphy_update_link(phydev);
2535 	if (err)
2536 		return err;
2537 
2538 	/* why bother the PHY if nothing can have changed */
2539 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2540 		return 0;
2541 
2542 	phydev->duplex = DUPLEX_UNKNOWN;
2543 	phydev->pause = 0;
2544 	phydev->asym_pause = 0;
2545 
2546 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2547 		lpa = phy_read(phydev, MII_LPA);
2548 		if (lpa < 0)
2549 			return lpa;
2550 
2551 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2552 				 phydev->lp_advertising, lpa & LPA_LPACK);
2553 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2554 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2555 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2556 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2557 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2558 				 phydev->lp_advertising,
2559 				 lpa & LPA_1000XPAUSE_ASYM);
2560 
2561 		phy_resolve_aneg_linkmode(phydev);
2562 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2563 		int bmcr = phy_read(phydev, MII_BMCR);
2564 
2565 		if (bmcr < 0)
2566 			return bmcr;
2567 
2568 		if (bmcr & BMCR_FULLDPLX)
2569 			phydev->duplex = DUPLEX_FULL;
2570 		else
2571 			phydev->duplex = DUPLEX_HALF;
2572 	}
2573 
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL(genphy_c37_read_status);
2577 
2578 /**
2579  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2580  * @phydev: target phy_device struct
2581  *
2582  * Description: Perform a software PHY reset using the standard
2583  * BMCR_RESET bit and poll for the reset bit to be cleared.
2584  *
2585  * Returns: 0 on success, < 0 on failure
2586  */
2587 int genphy_soft_reset(struct phy_device *phydev)
2588 {
2589 	u16 res = BMCR_RESET;
2590 	int ret;
2591 
2592 	if (phydev->autoneg == AUTONEG_ENABLE)
2593 		res |= BMCR_ANRESTART;
2594 
2595 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2596 	if (ret < 0)
2597 		return ret;
2598 
2599 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2600 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2601 	 * be cleared after soft reset.
2602 	 */
2603 	phydev->suspended = 0;
2604 
2605 	ret = phy_poll_reset(phydev);
2606 	if (ret)
2607 		return ret;
2608 
2609 	/* BMCR may be reset to defaults */
2610 	if (phydev->autoneg == AUTONEG_DISABLE)
2611 		ret = genphy_setup_forced(phydev);
2612 
2613 	return ret;
2614 }
2615 EXPORT_SYMBOL(genphy_soft_reset);
2616 
2617 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2618 {
2619 	/* It seems there are cases where the interrupts are handled by another
2620 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2621 	 * need any other interraction from phylib. In this case, just trigger
2622 	 * the state machine directly.
2623 	 */
2624 	phy_trigger_machine(phydev);
2625 
2626 	return 0;
2627 }
2628 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2629 
2630 /**
2631  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2632  * @phydev: target phy_device struct
2633  *
2634  * Description: Reads the PHY's abilities and populates
2635  * phydev->supported accordingly.
2636  *
2637  * Returns: 0 on success, < 0 on failure
2638  */
2639 int genphy_read_abilities(struct phy_device *phydev)
2640 {
2641 	int val;
2642 
2643 	linkmode_set_bit_array(phy_basic_ports_array,
2644 			       ARRAY_SIZE(phy_basic_ports_array),
2645 			       phydev->supported);
2646 
2647 	val = phy_read(phydev, MII_BMSR);
2648 	if (val < 0)
2649 		return val;
2650 
2651 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2652 			 val & BMSR_ANEGCAPABLE);
2653 
2654 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2655 			 val & BMSR_100FULL);
2656 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2657 			 val & BMSR_100HALF);
2658 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2659 			 val & BMSR_10FULL);
2660 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2661 			 val & BMSR_10HALF);
2662 
2663 	if (val & BMSR_ESTATEN) {
2664 		val = phy_read(phydev, MII_ESTATUS);
2665 		if (val < 0)
2666 			return val;
2667 
2668 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2669 				 phydev->supported, val & ESTATUS_1000_TFULL);
2670 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2671 				 phydev->supported, val & ESTATUS_1000_THALF);
2672 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2673 				 phydev->supported, val & ESTATUS_1000_XFULL);
2674 	}
2675 
2676 	/* This is optional functionality. If not supported, we may get an error
2677 	 * which should be ignored.
2678 	 */
2679 	genphy_c45_read_eee_abilities(phydev);
2680 
2681 	return 0;
2682 }
2683 EXPORT_SYMBOL(genphy_read_abilities);
2684 
2685 /* This is used for the phy device which doesn't support the MMD extended
2686  * register access, but it does have side effect when we are trying to access
2687  * the MMD register via indirect method.
2688  */
2689 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2690 {
2691 	return -EOPNOTSUPP;
2692 }
2693 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2694 
2695 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2696 				 u16 regnum, u16 val)
2697 {
2698 	return -EOPNOTSUPP;
2699 }
2700 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2701 
2702 int genphy_suspend(struct phy_device *phydev)
2703 {
2704 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2705 }
2706 EXPORT_SYMBOL(genphy_suspend);
2707 
2708 int genphy_resume(struct phy_device *phydev)
2709 {
2710 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2711 }
2712 EXPORT_SYMBOL(genphy_resume);
2713 
2714 int genphy_loopback(struct phy_device *phydev, bool enable)
2715 {
2716 	if (enable) {
2717 		u16 val, ctl = BMCR_LOOPBACK;
2718 		int ret;
2719 
2720 		ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2721 
2722 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2723 
2724 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2725 					    val & BMSR_LSTATUS,
2726 				    5000, 500000, true);
2727 		if (ret)
2728 			return ret;
2729 	} else {
2730 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2731 
2732 		phy_config_aneg(phydev);
2733 	}
2734 
2735 	return 0;
2736 }
2737 EXPORT_SYMBOL(genphy_loopback);
2738 
2739 /**
2740  * phy_remove_link_mode - Remove a supported link mode
2741  * @phydev: phy_device structure to remove link mode from
2742  * @link_mode: Link mode to be removed
2743  *
2744  * Description: Some MACs don't support all link modes which the PHY
2745  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2746  * to remove a link mode.
2747  */
2748 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2749 {
2750 	linkmode_clear_bit(link_mode, phydev->supported);
2751 	phy_advertise_supported(phydev);
2752 }
2753 EXPORT_SYMBOL(phy_remove_link_mode);
2754 
2755 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2756 {
2757 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2758 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2759 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2760 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2761 }
2762 
2763 /**
2764  * phy_advertise_supported - Advertise all supported modes
2765  * @phydev: target phy_device struct
2766  *
2767  * Description: Called to advertise all supported modes, doesn't touch
2768  * pause mode advertising.
2769  */
2770 void phy_advertise_supported(struct phy_device *phydev)
2771 {
2772 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2773 
2774 	linkmode_copy(new, phydev->supported);
2775 	phy_copy_pause_bits(new, phydev->advertising);
2776 	linkmode_copy(phydev->advertising, new);
2777 }
2778 EXPORT_SYMBOL(phy_advertise_supported);
2779 
2780 /**
2781  * phy_support_sym_pause - Enable support of symmetrical pause
2782  * @phydev: target phy_device struct
2783  *
2784  * Description: Called by the MAC to indicate is supports symmetrical
2785  * Pause, but not asym pause.
2786  */
2787 void phy_support_sym_pause(struct phy_device *phydev)
2788 {
2789 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2790 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2791 }
2792 EXPORT_SYMBOL(phy_support_sym_pause);
2793 
2794 /**
2795  * phy_support_asym_pause - Enable support of asym pause
2796  * @phydev: target phy_device struct
2797  *
2798  * Description: Called by the MAC to indicate is supports Asym Pause.
2799  */
2800 void phy_support_asym_pause(struct phy_device *phydev)
2801 {
2802 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2803 }
2804 EXPORT_SYMBOL(phy_support_asym_pause);
2805 
2806 /**
2807  * phy_set_sym_pause - Configure symmetric Pause
2808  * @phydev: target phy_device struct
2809  * @rx: Receiver Pause is supported
2810  * @tx: Transmit Pause is supported
2811  * @autoneg: Auto neg should be used
2812  *
2813  * Description: Configure advertised Pause support depending on if
2814  * receiver pause and pause auto neg is supported. Generally called
2815  * from the set_pauseparam .ndo.
2816  */
2817 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2818 		       bool autoneg)
2819 {
2820 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2821 
2822 	if (rx && tx && autoneg)
2823 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2824 				 phydev->supported);
2825 
2826 	linkmode_copy(phydev->advertising, phydev->supported);
2827 }
2828 EXPORT_SYMBOL(phy_set_sym_pause);
2829 
2830 /**
2831  * phy_set_asym_pause - Configure Pause and Asym Pause
2832  * @phydev: target phy_device struct
2833  * @rx: Receiver Pause is supported
2834  * @tx: Transmit Pause is supported
2835  *
2836  * Description: Configure advertised Pause support depending on if
2837  * transmit and receiver pause is supported. If there has been a
2838  * change in adverting, trigger a new autoneg. Generally called from
2839  * the set_pauseparam .ndo.
2840  */
2841 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2842 {
2843 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2844 
2845 	linkmode_copy(oldadv, phydev->advertising);
2846 	linkmode_set_pause(phydev->advertising, tx, rx);
2847 
2848 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2849 	    phydev->autoneg)
2850 		phy_start_aneg(phydev);
2851 }
2852 EXPORT_SYMBOL(phy_set_asym_pause);
2853 
2854 /**
2855  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2856  * @phydev: phy_device struct
2857  * @pp: requested pause configuration
2858  *
2859  * Description: Test if the PHY/MAC combination supports the Pause
2860  * configuration the user is requesting. Returns True if it is
2861  * supported, false otherwise.
2862  */
2863 bool phy_validate_pause(struct phy_device *phydev,
2864 			struct ethtool_pauseparam *pp)
2865 {
2866 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2867 			       phydev->supported) && pp->rx_pause)
2868 		return false;
2869 
2870 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2871 			       phydev->supported) &&
2872 	    pp->rx_pause != pp->tx_pause)
2873 		return false;
2874 
2875 	return true;
2876 }
2877 EXPORT_SYMBOL(phy_validate_pause);
2878 
2879 /**
2880  * phy_get_pause - resolve negotiated pause modes
2881  * @phydev: phy_device struct
2882  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2883  * enabled.
2884  * @rx_pause: pointer to bool to indicate whether receive pause should be
2885  * enabled.
2886  *
2887  * Resolve and return the flow control modes according to the negotiation
2888  * result. This includes checking that we are operating in full duplex mode.
2889  * See linkmode_resolve_pause() for further details.
2890  */
2891 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2892 {
2893 	if (phydev->duplex != DUPLEX_FULL) {
2894 		*tx_pause = false;
2895 		*rx_pause = false;
2896 		return;
2897 	}
2898 
2899 	return linkmode_resolve_pause(phydev->advertising,
2900 				      phydev->lp_advertising,
2901 				      tx_pause, rx_pause);
2902 }
2903 EXPORT_SYMBOL(phy_get_pause);
2904 
2905 #if IS_ENABLED(CONFIG_OF_MDIO)
2906 static int phy_get_int_delay_property(struct device *dev, const char *name)
2907 {
2908 	s32 int_delay;
2909 	int ret;
2910 
2911 	ret = device_property_read_u32(dev, name, &int_delay);
2912 	if (ret)
2913 		return ret;
2914 
2915 	return int_delay;
2916 }
2917 #else
2918 static int phy_get_int_delay_property(struct device *dev, const char *name)
2919 {
2920 	return -EINVAL;
2921 }
2922 #endif
2923 
2924 /**
2925  * phy_get_internal_delay - returns the index of the internal delay
2926  * @phydev: phy_device struct
2927  * @dev: pointer to the devices device struct
2928  * @delay_values: array of delays the PHY supports
2929  * @size: the size of the delay array
2930  * @is_rx: boolean to indicate to get the rx internal delay
2931  *
2932  * Returns the index within the array of internal delay passed in.
2933  * If the device property is not present then the interface type is checked
2934  * if the interface defines use of internal delay then a 1 is returned otherwise
2935  * a 0 is returned.
2936  * The array must be in ascending order. If PHY does not have an ascending order
2937  * array then size = 0 and the value of the delay property is returned.
2938  * Return -EINVAL if the delay is invalid or cannot be found.
2939  */
2940 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2941 			   const int *delay_values, int size, bool is_rx)
2942 {
2943 	s32 delay;
2944 	int i;
2945 
2946 	if (is_rx) {
2947 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2948 		if (delay < 0 && size == 0) {
2949 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2950 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2951 				return 1;
2952 			else
2953 				return 0;
2954 		}
2955 
2956 	} else {
2957 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2958 		if (delay < 0 && size == 0) {
2959 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2960 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2961 				return 1;
2962 			else
2963 				return 0;
2964 		}
2965 	}
2966 
2967 	if (delay < 0)
2968 		return delay;
2969 
2970 	if (delay && size == 0)
2971 		return delay;
2972 
2973 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2974 		phydev_err(phydev, "Delay %d is out of range\n", delay);
2975 		return -EINVAL;
2976 	}
2977 
2978 	if (delay == delay_values[0])
2979 		return 0;
2980 
2981 	for (i = 1; i < size; i++) {
2982 		if (delay == delay_values[i])
2983 			return i;
2984 
2985 		/* Find an approximate index by looking up the table */
2986 		if (delay > delay_values[i - 1] &&
2987 		    delay < delay_values[i]) {
2988 			if (delay - delay_values[i - 1] <
2989 			    delay_values[i] - delay)
2990 				return i - 1;
2991 			else
2992 				return i;
2993 		}
2994 	}
2995 
2996 	phydev_err(phydev, "error finding internal delay index for %d\n",
2997 		   delay);
2998 
2999 	return -EINVAL;
3000 }
3001 EXPORT_SYMBOL(phy_get_internal_delay);
3002 
3003 static int phy_led_set_brightness(struct led_classdev *led_cdev,
3004 				  enum led_brightness value)
3005 {
3006 	struct phy_led *phyled = to_phy_led(led_cdev);
3007 	struct phy_device *phydev = phyled->phydev;
3008 	int err;
3009 
3010 	mutex_lock(&phydev->lock);
3011 	err = phydev->drv->led_brightness_set(phydev, phyled->index, value);
3012 	mutex_unlock(&phydev->lock);
3013 
3014 	return err;
3015 }
3016 
3017 static int phy_led_blink_set(struct led_classdev *led_cdev,
3018 			     unsigned long *delay_on,
3019 			     unsigned long *delay_off)
3020 {
3021 	struct phy_led *phyled = to_phy_led(led_cdev);
3022 	struct phy_device *phydev = phyled->phydev;
3023 	int err;
3024 
3025 	mutex_lock(&phydev->lock);
3026 	err = phydev->drv->led_blink_set(phydev, phyled->index,
3027 					 delay_on, delay_off);
3028 	mutex_unlock(&phydev->lock);
3029 
3030 	return err;
3031 }
3032 
3033 static __maybe_unused struct device *
3034 phy_led_hw_control_get_device(struct led_classdev *led_cdev)
3035 {
3036 	struct phy_led *phyled = to_phy_led(led_cdev);
3037 	struct phy_device *phydev = phyled->phydev;
3038 
3039 	if (phydev->attached_dev)
3040 		return &phydev->attached_dev->dev;
3041 	return NULL;
3042 }
3043 
3044 static int __maybe_unused
3045 phy_led_hw_control_get(struct led_classdev *led_cdev,
3046 		       unsigned long *rules)
3047 {
3048 	struct phy_led *phyled = to_phy_led(led_cdev);
3049 	struct phy_device *phydev = phyled->phydev;
3050 	int err;
3051 
3052 	mutex_lock(&phydev->lock);
3053 	err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules);
3054 	mutex_unlock(&phydev->lock);
3055 
3056 	return err;
3057 }
3058 
3059 static int __maybe_unused
3060 phy_led_hw_control_set(struct led_classdev *led_cdev,
3061 		       unsigned long rules)
3062 {
3063 	struct phy_led *phyled = to_phy_led(led_cdev);
3064 	struct phy_device *phydev = phyled->phydev;
3065 	int err;
3066 
3067 	mutex_lock(&phydev->lock);
3068 	err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules);
3069 	mutex_unlock(&phydev->lock);
3070 
3071 	return err;
3072 }
3073 
3074 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev,
3075 						  unsigned long rules)
3076 {
3077 	struct phy_led *phyled = to_phy_led(led_cdev);
3078 	struct phy_device *phydev = phyled->phydev;
3079 	int err;
3080 
3081 	mutex_lock(&phydev->lock);
3082 	err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules);
3083 	mutex_unlock(&phydev->lock);
3084 
3085 	return err;
3086 }
3087 
3088 static void phy_leds_unregister(struct phy_device *phydev)
3089 {
3090 	struct phy_led *phyled;
3091 
3092 	list_for_each_entry(phyled, &phydev->leds, list) {
3093 		led_classdev_unregister(&phyled->led_cdev);
3094 	}
3095 }
3096 
3097 static int of_phy_led(struct phy_device *phydev,
3098 		      struct device_node *led)
3099 {
3100 	struct device *dev = &phydev->mdio.dev;
3101 	struct led_init_data init_data = {};
3102 	struct led_classdev *cdev;
3103 	unsigned long modes = 0;
3104 	struct phy_led *phyled;
3105 	u32 index;
3106 	int err;
3107 
3108 	phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL);
3109 	if (!phyled)
3110 		return -ENOMEM;
3111 
3112 	cdev = &phyled->led_cdev;
3113 	phyled->phydev = phydev;
3114 
3115 	err = of_property_read_u32(led, "reg", &index);
3116 	if (err)
3117 		return err;
3118 	if (index > U8_MAX)
3119 		return -EINVAL;
3120 
3121 	if (of_property_read_bool(led, "active-low"))
3122 		set_bit(PHY_LED_ACTIVE_LOW, &modes);
3123 	if (of_property_read_bool(led, "inactive-high-impedance"))
3124 		set_bit(PHY_LED_INACTIVE_HIGH_IMPEDANCE, &modes);
3125 
3126 	if (modes) {
3127 		/* Return error if asked to set polarity modes but not supported */
3128 		if (!phydev->drv->led_polarity_set)
3129 			return -EINVAL;
3130 
3131 		err = phydev->drv->led_polarity_set(phydev, index, modes);
3132 		if (err)
3133 			return err;
3134 	}
3135 
3136 	phyled->index = index;
3137 	if (phydev->drv->led_brightness_set)
3138 		cdev->brightness_set_blocking = phy_led_set_brightness;
3139 	if (phydev->drv->led_blink_set)
3140 		cdev->blink_set = phy_led_blink_set;
3141 
3142 #ifdef CONFIG_LEDS_TRIGGERS
3143 	if (phydev->drv->led_hw_is_supported &&
3144 	    phydev->drv->led_hw_control_set &&
3145 	    phydev->drv->led_hw_control_get) {
3146 		cdev->hw_control_is_supported = phy_led_hw_is_supported;
3147 		cdev->hw_control_set = phy_led_hw_control_set;
3148 		cdev->hw_control_get = phy_led_hw_control_get;
3149 		cdev->hw_control_trigger = "netdev";
3150 	}
3151 
3152 	cdev->hw_control_get_device = phy_led_hw_control_get_device;
3153 #endif
3154 	cdev->max_brightness = 1;
3155 	init_data.devicename = dev_name(&phydev->mdio.dev);
3156 	init_data.fwnode = of_fwnode_handle(led);
3157 	init_data.devname_mandatory = true;
3158 
3159 	err = led_classdev_register_ext(dev, cdev, &init_data);
3160 	if (err)
3161 		return err;
3162 
3163 	list_add(&phyled->list, &phydev->leds);
3164 
3165 	return 0;
3166 }
3167 
3168 static int of_phy_leds(struct phy_device *phydev)
3169 {
3170 	struct device_node *node = phydev->mdio.dev.of_node;
3171 	struct device_node *leds, *led;
3172 	int err;
3173 
3174 	if (!IS_ENABLED(CONFIG_OF_MDIO))
3175 		return 0;
3176 
3177 	if (!node)
3178 		return 0;
3179 
3180 	leds = of_get_child_by_name(node, "leds");
3181 	if (!leds)
3182 		return 0;
3183 
3184 	for_each_available_child_of_node(leds, led) {
3185 		err = of_phy_led(phydev, led);
3186 		if (err) {
3187 			of_node_put(led);
3188 			phy_leds_unregister(phydev);
3189 			return err;
3190 		}
3191 	}
3192 
3193 	return 0;
3194 }
3195 
3196 /**
3197  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
3198  * @fwnode: pointer to the mdio_device's fwnode
3199  *
3200  * If successful, returns a pointer to the mdio_device with the embedded
3201  * struct device refcount incremented by one, or NULL on failure.
3202  * The caller should call put_device() on the mdio_device after its use.
3203  */
3204 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
3205 {
3206 	struct device *d;
3207 
3208 	if (!fwnode)
3209 		return NULL;
3210 
3211 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
3212 	if (!d)
3213 		return NULL;
3214 
3215 	return to_mdio_device(d);
3216 }
3217 EXPORT_SYMBOL(fwnode_mdio_find_device);
3218 
3219 /**
3220  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
3221  *
3222  * @phy_fwnode: Pointer to the phy's fwnode.
3223  *
3224  * If successful, returns a pointer to the phy_device with the embedded
3225  * struct device refcount incremented by one, or NULL on failure.
3226  */
3227 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
3228 {
3229 	struct mdio_device *mdiodev;
3230 
3231 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
3232 	if (!mdiodev)
3233 		return NULL;
3234 
3235 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
3236 		return to_phy_device(&mdiodev->dev);
3237 
3238 	put_device(&mdiodev->dev);
3239 
3240 	return NULL;
3241 }
3242 EXPORT_SYMBOL(fwnode_phy_find_device);
3243 
3244 /**
3245  * device_phy_find_device - For the given device, get the phy_device
3246  * @dev: Pointer to the given device
3247  *
3248  * Refer return conditions of fwnode_phy_find_device().
3249  */
3250 struct phy_device *device_phy_find_device(struct device *dev)
3251 {
3252 	return fwnode_phy_find_device(dev_fwnode(dev));
3253 }
3254 EXPORT_SYMBOL_GPL(device_phy_find_device);
3255 
3256 /**
3257  * fwnode_get_phy_node - Get the phy_node using the named reference.
3258  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
3259  *
3260  * Refer return conditions of fwnode_find_reference().
3261  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
3262  * and "phy-device" are not supported in ACPI. DT supports all the three
3263  * named references to the phy node.
3264  */
3265 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode)
3266 {
3267 	struct fwnode_handle *phy_node;
3268 
3269 	/* Only phy-handle is used for ACPI */
3270 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3271 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3272 		return phy_node;
3273 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
3274 	if (IS_ERR(phy_node))
3275 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3276 	return phy_node;
3277 }
3278 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3279 
3280 /**
3281  * phy_probe - probe and init a PHY device
3282  * @dev: device to probe and init
3283  *
3284  * Take care of setting up the phy_device structure, set the state to READY.
3285  */
3286 static int phy_probe(struct device *dev)
3287 {
3288 	struct phy_device *phydev = to_phy_device(dev);
3289 	struct device_driver *drv = phydev->mdio.dev.driver;
3290 	struct phy_driver *phydrv = to_phy_driver(drv);
3291 	int err = 0;
3292 
3293 	phydev->drv = phydrv;
3294 
3295 	/* Disable the interrupt if the PHY doesn't support it
3296 	 * but the interrupt is still a valid one
3297 	 */
3298 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3299 		phydev->irq = PHY_POLL;
3300 
3301 	if (phydrv->flags & PHY_IS_INTERNAL)
3302 		phydev->is_internal = true;
3303 
3304 	/* Deassert the reset signal */
3305 	phy_device_reset(phydev, 0);
3306 
3307 	if (phydev->drv->probe) {
3308 		err = phydev->drv->probe(phydev);
3309 		if (err)
3310 			goto out;
3311 	}
3312 
3313 	phy_disable_interrupts(phydev);
3314 
3315 	/* Start out supporting everything. Eventually,
3316 	 * a controller will attach, and may modify one
3317 	 * or both of these values
3318 	 */
3319 	if (phydrv->features) {
3320 		linkmode_copy(phydev->supported, phydrv->features);
3321 		genphy_c45_read_eee_abilities(phydev);
3322 	}
3323 	else if (phydrv->get_features)
3324 		err = phydrv->get_features(phydev);
3325 	else if (phydev->is_c45)
3326 		err = genphy_c45_pma_read_abilities(phydev);
3327 	else
3328 		err = genphy_read_abilities(phydev);
3329 
3330 	if (err)
3331 		goto out;
3332 
3333 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3334 			       phydev->supported))
3335 		phydev->autoneg = 0;
3336 
3337 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3338 			      phydev->supported))
3339 		phydev->is_gigabit_capable = 1;
3340 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3341 			      phydev->supported))
3342 		phydev->is_gigabit_capable = 1;
3343 
3344 	of_set_phy_supported(phydev);
3345 	phy_advertise_supported(phydev);
3346 
3347 	/* Get PHY default EEE advertising modes and handle them as potentially
3348 	 * safe initial configuration.
3349 	 */
3350 	err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee);
3351 	if (err)
3352 		goto out;
3353 
3354 	/* There is no "enabled" flag. If PHY is advertising, assume it is
3355 	 * kind of enabled.
3356 	 */
3357 	phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee);
3358 
3359 	/* Some PHYs may advertise, by default, not support EEE modes. So,
3360 	 * we need to clean them.
3361 	 */
3362 	if (phydev->eee_enabled)
3363 		linkmode_and(phydev->advertising_eee, phydev->supported_eee,
3364 			     phydev->advertising_eee);
3365 
3366 	/* Get the EEE modes we want to prohibit. We will ask
3367 	 * the PHY stop advertising these mode later on
3368 	 */
3369 	of_set_phy_eee_broken(phydev);
3370 
3371 	/* The Pause Frame bits indicate that the PHY can support passing
3372 	 * pause frames. During autonegotiation, the PHYs will determine if
3373 	 * they should allow pause frames to pass.  The MAC driver should then
3374 	 * use that result to determine whether to enable flow control via
3375 	 * pause frames.
3376 	 *
3377 	 * Normally, PHY drivers should not set the Pause bits, and instead
3378 	 * allow phylib to do that.  However, there may be some situations
3379 	 * (e.g. hardware erratum) where the driver wants to set only one
3380 	 * of these bits.
3381 	 */
3382 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3383 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3384 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3385 				 phydev->supported);
3386 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3387 				 phydev->supported);
3388 	}
3389 
3390 	/* Set the state to READY by default */
3391 	phydev->state = PHY_READY;
3392 
3393 	/* Get the LEDs from the device tree, and instantiate standard
3394 	 * LEDs for them.
3395 	 */
3396 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3397 		err = of_phy_leds(phydev);
3398 
3399 out:
3400 	/* Re-assert the reset signal on error */
3401 	if (err)
3402 		phy_device_reset(phydev, 1);
3403 
3404 	return err;
3405 }
3406 
3407 static int phy_remove(struct device *dev)
3408 {
3409 	struct phy_device *phydev = to_phy_device(dev);
3410 
3411 	cancel_delayed_work_sync(&phydev->state_queue);
3412 
3413 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3414 		phy_leds_unregister(phydev);
3415 
3416 	phydev->state = PHY_DOWN;
3417 
3418 	sfp_bus_del_upstream(phydev->sfp_bus);
3419 	phydev->sfp_bus = NULL;
3420 
3421 	if (phydev->drv && phydev->drv->remove)
3422 		phydev->drv->remove(phydev);
3423 
3424 	/* Assert the reset signal */
3425 	phy_device_reset(phydev, 1);
3426 
3427 	phydev->drv = NULL;
3428 
3429 	return 0;
3430 }
3431 
3432 /**
3433  * phy_driver_register - register a phy_driver with the PHY layer
3434  * @new_driver: new phy_driver to register
3435  * @owner: module owning this PHY
3436  */
3437 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3438 {
3439 	int retval;
3440 
3441 	/* Either the features are hard coded, or dynamically
3442 	 * determined. It cannot be both.
3443 	 */
3444 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3445 		pr_err("%s: features and get_features must not both be set\n",
3446 		       new_driver->name);
3447 		return -EINVAL;
3448 	}
3449 
3450 	/* PHYLIB device drivers must not match using a DT compatible table
3451 	 * as this bypasses our checks that the mdiodev that is being matched
3452 	 * is backed by a struct phy_device. If such a case happens, we will
3453 	 * make out-of-bounds accesses and lockup in phydev->lock.
3454 	 */
3455 	if (WARN(new_driver->mdiodrv.driver.of_match_table,
3456 		 "%s: driver must not provide a DT match table\n",
3457 		 new_driver->name))
3458 		return -EINVAL;
3459 
3460 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3461 	new_driver->mdiodrv.driver.name = new_driver->name;
3462 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3463 	new_driver->mdiodrv.driver.probe = phy_probe;
3464 	new_driver->mdiodrv.driver.remove = phy_remove;
3465 	new_driver->mdiodrv.driver.owner = owner;
3466 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3467 
3468 	retval = driver_register(&new_driver->mdiodrv.driver);
3469 	if (retval) {
3470 		pr_err("%s: Error %d in registering driver\n",
3471 		       new_driver->name, retval);
3472 
3473 		return retval;
3474 	}
3475 
3476 	pr_debug("%s: Registered new driver\n", new_driver->name);
3477 
3478 	return 0;
3479 }
3480 EXPORT_SYMBOL(phy_driver_register);
3481 
3482 int phy_drivers_register(struct phy_driver *new_driver, int n,
3483 			 struct module *owner)
3484 {
3485 	int i, ret = 0;
3486 
3487 	for (i = 0; i < n; i++) {
3488 		ret = phy_driver_register(new_driver + i, owner);
3489 		if (ret) {
3490 			while (i-- > 0)
3491 				phy_driver_unregister(new_driver + i);
3492 			break;
3493 		}
3494 	}
3495 	return ret;
3496 }
3497 EXPORT_SYMBOL(phy_drivers_register);
3498 
3499 void phy_driver_unregister(struct phy_driver *drv)
3500 {
3501 	driver_unregister(&drv->mdiodrv.driver);
3502 }
3503 EXPORT_SYMBOL(phy_driver_unregister);
3504 
3505 void phy_drivers_unregister(struct phy_driver *drv, int n)
3506 {
3507 	int i;
3508 
3509 	for (i = 0; i < n; i++)
3510 		phy_driver_unregister(drv + i);
3511 }
3512 EXPORT_SYMBOL(phy_drivers_unregister);
3513 
3514 static struct phy_driver genphy_driver = {
3515 	.phy_id		= 0xffffffff,
3516 	.phy_id_mask	= 0xffffffff,
3517 	.name		= "Generic PHY",
3518 	.get_features	= genphy_read_abilities,
3519 	.suspend	= genphy_suspend,
3520 	.resume		= genphy_resume,
3521 	.set_loopback   = genphy_loopback,
3522 };
3523 
3524 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3525 	.get_sset_count		= phy_ethtool_get_sset_count,
3526 	.get_strings		= phy_ethtool_get_strings,
3527 	.get_stats		= phy_ethtool_get_stats,
3528 	.get_plca_cfg		= phy_ethtool_get_plca_cfg,
3529 	.set_plca_cfg		= phy_ethtool_set_plca_cfg,
3530 	.get_plca_status	= phy_ethtool_get_plca_status,
3531 	.start_cable_test	= phy_start_cable_test,
3532 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3533 };
3534 
3535 static const struct phylib_stubs __phylib_stubs = {
3536 	.hwtstamp_get = __phy_hwtstamp_get,
3537 	.hwtstamp_set = __phy_hwtstamp_set,
3538 };
3539 
3540 static void phylib_register_stubs(void)
3541 {
3542 	phylib_stubs = &__phylib_stubs;
3543 }
3544 
3545 static void phylib_unregister_stubs(void)
3546 {
3547 	phylib_stubs = NULL;
3548 }
3549 
3550 static int __init phy_init(void)
3551 {
3552 	int rc;
3553 
3554 	rtnl_lock();
3555 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3556 	phylib_register_stubs();
3557 	rtnl_unlock();
3558 
3559 	rc = mdio_bus_init();
3560 	if (rc)
3561 		goto err_ethtool_phy_ops;
3562 
3563 	features_init();
3564 
3565 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3566 	if (rc)
3567 		goto err_mdio_bus;
3568 
3569 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3570 	if (rc)
3571 		goto err_c45;
3572 
3573 	return 0;
3574 
3575 err_c45:
3576 	phy_driver_unregister(&genphy_c45_driver);
3577 err_mdio_bus:
3578 	mdio_bus_exit();
3579 err_ethtool_phy_ops:
3580 	rtnl_lock();
3581 	phylib_unregister_stubs();
3582 	ethtool_set_ethtool_phy_ops(NULL);
3583 	rtnl_unlock();
3584 
3585 	return rc;
3586 }
3587 
3588 static void __exit phy_exit(void)
3589 {
3590 	phy_driver_unregister(&genphy_c45_driver);
3591 	phy_driver_unregister(&genphy_driver);
3592 	mdio_bus_exit();
3593 	rtnl_lock();
3594 	phylib_unregister_stubs();
3595 	ethtool_set_ethtool_phy_ops(NULL);
3596 	rtnl_unlock();
3597 }
3598 
3599 subsys_initcall(phy_init);
3600 module_exit(phy_exit);
3601