xref: /linux/drivers/net/phy/phy_device.c (revision 860a9bed265146b10311bcadbbcef59c3af4454d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/mii.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/netdevice.h>
29 #include <linux/phy.h>
30 #include <linux/phylib_stubs.h>
31 #include <linux/phy_led_triggers.h>
32 #include <linux/phy_link_topology.h>
33 #include <linux/pse-pd/pse.h>
34 #include <linux/property.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/sfp.h>
37 #include <linux/skbuff.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40 #include <linux/uaccess.h>
41 #include <linux/unistd.h>
42 
43 MODULE_DESCRIPTION("PHY library");
44 MODULE_AUTHOR("Andy Fleming");
45 MODULE_LICENSE("GPL");
46 
47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
48 EXPORT_SYMBOL_GPL(phy_basic_features);
49 
50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
51 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
52 
53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init;
54 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features);
55 
56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
57 EXPORT_SYMBOL_GPL(phy_gbit_features);
58 
59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
60 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
61 
62 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
63 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
64 
65 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
66 EXPORT_SYMBOL_GPL(phy_10gbit_features);
67 
68 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
69 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
70 
71 const int phy_basic_ports_array[3] = {
72 	ETHTOOL_LINK_MODE_Autoneg_BIT,
73 	ETHTOOL_LINK_MODE_TP_BIT,
74 	ETHTOOL_LINK_MODE_MII_BIT,
75 };
76 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
77 
78 const int phy_fibre_port_array[1] = {
79 	ETHTOOL_LINK_MODE_FIBRE_BIT,
80 };
81 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
82 
83 const int phy_all_ports_features_array[7] = {
84 	ETHTOOL_LINK_MODE_Autoneg_BIT,
85 	ETHTOOL_LINK_MODE_TP_BIT,
86 	ETHTOOL_LINK_MODE_MII_BIT,
87 	ETHTOOL_LINK_MODE_FIBRE_BIT,
88 	ETHTOOL_LINK_MODE_AUI_BIT,
89 	ETHTOOL_LINK_MODE_BNC_BIT,
90 	ETHTOOL_LINK_MODE_Backplane_BIT,
91 };
92 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
93 
94 const int phy_10_100_features_array[4] = {
95 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
96 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
97 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
98 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
99 };
100 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
101 
102 const int phy_basic_t1_features_array[3] = {
103 	ETHTOOL_LINK_MODE_TP_BIT,
104 	ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
105 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
106 };
107 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
108 
109 const int phy_basic_t1s_p2mp_features_array[2] = {
110 	ETHTOOL_LINK_MODE_TP_BIT,
111 	ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT,
112 };
113 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array);
114 
115 const int phy_gbit_features_array[2] = {
116 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
117 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
118 };
119 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
120 
121 const int phy_10gbit_features_array[1] = {
122 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
123 };
124 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
125 
126 static const int phy_10gbit_fec_features_array[1] = {
127 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
128 };
129 
130 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
131 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
132 
133 static const int phy_10gbit_full_features_array[] = {
134 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
135 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
136 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
137 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
138 };
139 
140 static const int phy_eee_cap1_features_array[] = {
141 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
142 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
143 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
144 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
145 	ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
146 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
147 };
148 
149 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init;
150 EXPORT_SYMBOL_GPL(phy_eee_cap1_features);
151 
152 static const int phy_eee_cap2_features_array[] = {
153 	ETHTOOL_LINK_MODE_2500baseT_Full_BIT,
154 	ETHTOOL_LINK_MODE_5000baseT_Full_BIT,
155 };
156 
157 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap2_features) __ro_after_init;
158 EXPORT_SYMBOL_GPL(phy_eee_cap2_features);
159 
160 static void features_init(void)
161 {
162 	/* 10/100 half/full*/
163 	linkmode_set_bit_array(phy_basic_ports_array,
164 			       ARRAY_SIZE(phy_basic_ports_array),
165 			       phy_basic_features);
166 	linkmode_set_bit_array(phy_10_100_features_array,
167 			       ARRAY_SIZE(phy_10_100_features_array),
168 			       phy_basic_features);
169 
170 	/* 100 full, TP */
171 	linkmode_set_bit_array(phy_basic_t1_features_array,
172 			       ARRAY_SIZE(phy_basic_t1_features_array),
173 			       phy_basic_t1_features);
174 
175 	/* 10 half, P2MP, TP */
176 	linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array,
177 			       ARRAY_SIZE(phy_basic_t1s_p2mp_features_array),
178 			       phy_basic_t1s_p2mp_features);
179 
180 	/* 10/100 half/full + 1000 half/full */
181 	linkmode_set_bit_array(phy_basic_ports_array,
182 			       ARRAY_SIZE(phy_basic_ports_array),
183 			       phy_gbit_features);
184 	linkmode_set_bit_array(phy_10_100_features_array,
185 			       ARRAY_SIZE(phy_10_100_features_array),
186 			       phy_gbit_features);
187 	linkmode_set_bit_array(phy_gbit_features_array,
188 			       ARRAY_SIZE(phy_gbit_features_array),
189 			       phy_gbit_features);
190 
191 	/* 10/100 half/full + 1000 half/full + fibre*/
192 	linkmode_set_bit_array(phy_basic_ports_array,
193 			       ARRAY_SIZE(phy_basic_ports_array),
194 			       phy_gbit_fibre_features);
195 	linkmode_set_bit_array(phy_10_100_features_array,
196 			       ARRAY_SIZE(phy_10_100_features_array),
197 			       phy_gbit_fibre_features);
198 	linkmode_set_bit_array(phy_gbit_features_array,
199 			       ARRAY_SIZE(phy_gbit_features_array),
200 			       phy_gbit_fibre_features);
201 	linkmode_set_bit_array(phy_fibre_port_array,
202 			       ARRAY_SIZE(phy_fibre_port_array),
203 			       phy_gbit_fibre_features);
204 
205 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
206 	linkmode_set_bit_array(phy_all_ports_features_array,
207 			       ARRAY_SIZE(phy_all_ports_features_array),
208 			       phy_gbit_all_ports_features);
209 	linkmode_set_bit_array(phy_10_100_features_array,
210 			       ARRAY_SIZE(phy_10_100_features_array),
211 			       phy_gbit_all_ports_features);
212 	linkmode_set_bit_array(phy_gbit_features_array,
213 			       ARRAY_SIZE(phy_gbit_features_array),
214 			       phy_gbit_all_ports_features);
215 
216 	/* 10/100 half/full + 1000 half/full + 10G full*/
217 	linkmode_set_bit_array(phy_all_ports_features_array,
218 			       ARRAY_SIZE(phy_all_ports_features_array),
219 			       phy_10gbit_features);
220 	linkmode_set_bit_array(phy_10_100_features_array,
221 			       ARRAY_SIZE(phy_10_100_features_array),
222 			       phy_10gbit_features);
223 	linkmode_set_bit_array(phy_gbit_features_array,
224 			       ARRAY_SIZE(phy_gbit_features_array),
225 			       phy_10gbit_features);
226 	linkmode_set_bit_array(phy_10gbit_features_array,
227 			       ARRAY_SIZE(phy_10gbit_features_array),
228 			       phy_10gbit_features);
229 
230 	/* 10/100/1000/10G full */
231 	linkmode_set_bit_array(phy_all_ports_features_array,
232 			       ARRAY_SIZE(phy_all_ports_features_array),
233 			       phy_10gbit_full_features);
234 	linkmode_set_bit_array(phy_10gbit_full_features_array,
235 			       ARRAY_SIZE(phy_10gbit_full_features_array),
236 			       phy_10gbit_full_features);
237 	/* 10G FEC only */
238 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
239 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
240 			       phy_10gbit_fec_features);
241 	linkmode_set_bit_array(phy_eee_cap1_features_array,
242 			       ARRAY_SIZE(phy_eee_cap1_features_array),
243 			       phy_eee_cap1_features);
244 	linkmode_set_bit_array(phy_eee_cap2_features_array,
245 			       ARRAY_SIZE(phy_eee_cap2_features_array),
246 			       phy_eee_cap2_features);
247 
248 }
249 
250 void phy_device_free(struct phy_device *phydev)
251 {
252 	put_device(&phydev->mdio.dev);
253 }
254 EXPORT_SYMBOL(phy_device_free);
255 
256 static void phy_mdio_device_free(struct mdio_device *mdiodev)
257 {
258 	struct phy_device *phydev;
259 
260 	phydev = container_of(mdiodev, struct phy_device, mdio);
261 	phy_device_free(phydev);
262 }
263 
264 static void phy_device_release(struct device *dev)
265 {
266 	fwnode_handle_put(dev->fwnode);
267 	kfree(to_phy_device(dev));
268 }
269 
270 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
271 {
272 	struct phy_device *phydev;
273 
274 	phydev = container_of(mdiodev, struct phy_device, mdio);
275 	phy_device_remove(phydev);
276 }
277 
278 static struct phy_driver genphy_driver;
279 
280 static struct phy_link_topology *phy_get_link_topology(struct phy_device *phydev)
281 {
282 	if (phydev->attached_dev)
283 		return phydev->attached_dev->link_topo;
284 
285 	return NULL;
286 }
287 
288 static LIST_HEAD(phy_fixup_list);
289 static DEFINE_MUTEX(phy_fixup_lock);
290 
291 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
292 {
293 	struct device_driver *drv = phydev->mdio.dev.driver;
294 	struct phy_driver *phydrv = to_phy_driver(drv);
295 	struct net_device *netdev = phydev->attached_dev;
296 
297 	if (!drv || !phydrv->suspend)
298 		return false;
299 
300 	/* PHY not attached? May suspend if the PHY has not already been
301 	 * suspended as part of a prior call to phy_disconnect() ->
302 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
303 	 * MDIO bus driver and clock gated at this point.
304 	 */
305 	if (!netdev)
306 		goto out;
307 
308 	if (netdev->wol_enabled)
309 		return false;
310 
311 	/* As long as not all affected network drivers support the
312 	 * wol_enabled flag, let's check for hints that WoL is enabled.
313 	 * Don't suspend PHY if the attached netdev parent may wake up.
314 	 * The parent may point to a PCI device, as in tg3 driver.
315 	 */
316 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
317 		return false;
318 
319 	/* Also don't suspend PHY if the netdev itself may wakeup. This
320 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
321 	 * e.g. SoC devices.
322 	 */
323 	if (device_may_wakeup(&netdev->dev))
324 		return false;
325 
326 out:
327 	return !phydev->suspended;
328 }
329 
330 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
331 {
332 	struct phy_device *phydev = to_phy_device(dev);
333 
334 	if (phydev->mac_managed_pm)
335 		return 0;
336 
337 	/* Wakeup interrupts may occur during the system sleep transition when
338 	 * the PHY is inaccessible. Set flag to postpone handling until the PHY
339 	 * has resumed. Wait for concurrent interrupt handler to complete.
340 	 */
341 	if (phy_interrupt_is_valid(phydev)) {
342 		phydev->irq_suspended = 1;
343 		synchronize_irq(phydev->irq);
344 	}
345 
346 	/* We must stop the state machine manually, otherwise it stops out of
347 	 * control, possibly with the phydev->lock held. Upon resume, netdev
348 	 * may call phy routines that try to grab the same lock, and that may
349 	 * lead to a deadlock.
350 	 */
351 	if (phydev->attached_dev && phydev->adjust_link)
352 		phy_stop_machine(phydev);
353 
354 	if (!mdio_bus_phy_may_suspend(phydev))
355 		return 0;
356 
357 	phydev->suspended_by_mdio_bus = 1;
358 
359 	return phy_suspend(phydev);
360 }
361 
362 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
363 {
364 	struct phy_device *phydev = to_phy_device(dev);
365 	int ret;
366 
367 	if (phydev->mac_managed_pm)
368 		return 0;
369 
370 	if (!phydev->suspended_by_mdio_bus)
371 		goto no_resume;
372 
373 	phydev->suspended_by_mdio_bus = 0;
374 
375 	/* If we managed to get here with the PHY state machine in a state
376 	 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
377 	 * that something went wrong and we should most likely be using
378 	 * MAC managed PM, but we are not.
379 	 */
380 	WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
381 		phydev->state != PHY_UP);
382 
383 	ret = phy_init_hw(phydev);
384 	if (ret < 0)
385 		return ret;
386 
387 	ret = phy_resume(phydev);
388 	if (ret < 0)
389 		return ret;
390 no_resume:
391 	if (phy_interrupt_is_valid(phydev)) {
392 		phydev->irq_suspended = 0;
393 		synchronize_irq(phydev->irq);
394 
395 		/* Rerun interrupts which were postponed by phy_interrupt()
396 		 * because they occurred during the system sleep transition.
397 		 */
398 		if (phydev->irq_rerun) {
399 			phydev->irq_rerun = 0;
400 			enable_irq(phydev->irq);
401 			irq_wake_thread(phydev->irq, phydev);
402 		}
403 	}
404 
405 	if (phydev->attached_dev && phydev->adjust_link)
406 		phy_start_machine(phydev);
407 
408 	return 0;
409 }
410 
411 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
412 			 mdio_bus_phy_resume);
413 
414 /**
415  * phy_register_fixup - creates a new phy_fixup and adds it to the list
416  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
417  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
418  *	It can also be PHY_ANY_UID
419  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
420  *	comparison
421  * @run: The actual code to be run when a matching PHY is found
422  */
423 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
424 		       int (*run)(struct phy_device *))
425 {
426 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
427 
428 	if (!fixup)
429 		return -ENOMEM;
430 
431 	strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
432 	fixup->phy_uid = phy_uid;
433 	fixup->phy_uid_mask = phy_uid_mask;
434 	fixup->run = run;
435 
436 	mutex_lock(&phy_fixup_lock);
437 	list_add_tail(&fixup->list, &phy_fixup_list);
438 	mutex_unlock(&phy_fixup_lock);
439 
440 	return 0;
441 }
442 EXPORT_SYMBOL(phy_register_fixup);
443 
444 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
445 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
446 			       int (*run)(struct phy_device *))
447 {
448 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
449 }
450 EXPORT_SYMBOL(phy_register_fixup_for_uid);
451 
452 /* Registers a fixup to be run on the PHY with id string bus_id */
453 int phy_register_fixup_for_id(const char *bus_id,
454 			      int (*run)(struct phy_device *))
455 {
456 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
457 }
458 EXPORT_SYMBOL(phy_register_fixup_for_id);
459 
460 /**
461  * phy_unregister_fixup - remove a phy_fixup from the list
462  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
463  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
464  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
465  */
466 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
467 {
468 	struct list_head *pos, *n;
469 	struct phy_fixup *fixup;
470 	int ret;
471 
472 	ret = -ENODEV;
473 
474 	mutex_lock(&phy_fixup_lock);
475 	list_for_each_safe(pos, n, &phy_fixup_list) {
476 		fixup = list_entry(pos, struct phy_fixup, list);
477 
478 		if ((!strcmp(fixup->bus_id, bus_id)) &&
479 		    phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) {
480 			list_del(&fixup->list);
481 			kfree(fixup);
482 			ret = 0;
483 			break;
484 		}
485 	}
486 	mutex_unlock(&phy_fixup_lock);
487 
488 	return ret;
489 }
490 EXPORT_SYMBOL(phy_unregister_fixup);
491 
492 /* Unregisters a fixup of any PHY with the UID in phy_uid */
493 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
494 {
495 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
496 }
497 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
498 
499 /* Unregisters a fixup of the PHY with id string bus_id */
500 int phy_unregister_fixup_for_id(const char *bus_id)
501 {
502 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
503 }
504 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
505 
506 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
507  * Fixups can be set to match any in one or more fields.
508  */
509 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
510 {
511 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
512 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
513 			return 0;
514 
515 	if (!phy_id_compare(phydev->phy_id, fixup->phy_uid,
516 			    fixup->phy_uid_mask))
517 		if (fixup->phy_uid != PHY_ANY_UID)
518 			return 0;
519 
520 	return 1;
521 }
522 
523 /* Runs any matching fixups for this phydev */
524 static int phy_scan_fixups(struct phy_device *phydev)
525 {
526 	struct phy_fixup *fixup;
527 
528 	mutex_lock(&phy_fixup_lock);
529 	list_for_each_entry(fixup, &phy_fixup_list, list) {
530 		if (phy_needs_fixup(phydev, fixup)) {
531 			int err = fixup->run(phydev);
532 
533 			if (err < 0) {
534 				mutex_unlock(&phy_fixup_lock);
535 				return err;
536 			}
537 			phydev->has_fixups = true;
538 		}
539 	}
540 	mutex_unlock(&phy_fixup_lock);
541 
542 	return 0;
543 }
544 
545 static int phy_bus_match(struct device *dev, struct device_driver *drv)
546 {
547 	struct phy_device *phydev = to_phy_device(dev);
548 	struct phy_driver *phydrv = to_phy_driver(drv);
549 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
550 	int i;
551 
552 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
553 		return 0;
554 
555 	if (phydrv->match_phy_device)
556 		return phydrv->match_phy_device(phydev);
557 
558 	if (phydev->is_c45) {
559 		for (i = 1; i < num_ids; i++) {
560 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
561 				continue;
562 
563 			if (phy_id_compare(phydev->c45_ids.device_ids[i],
564 					   phydrv->phy_id, phydrv->phy_id_mask))
565 				return 1;
566 		}
567 		return 0;
568 	} else {
569 		return phy_id_compare(phydev->phy_id, phydrv->phy_id,
570 				      phydrv->phy_id_mask);
571 	}
572 }
573 
574 static ssize_t
575 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
576 {
577 	struct phy_device *phydev = to_phy_device(dev);
578 
579 	return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
580 }
581 static DEVICE_ATTR_RO(phy_id);
582 
583 static ssize_t
584 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
585 {
586 	struct phy_device *phydev = to_phy_device(dev);
587 	const char *mode = NULL;
588 
589 	if (phy_is_internal(phydev))
590 		mode = "internal";
591 	else
592 		mode = phy_modes(phydev->interface);
593 
594 	return sysfs_emit(buf, "%s\n", mode);
595 }
596 static DEVICE_ATTR_RO(phy_interface);
597 
598 static ssize_t
599 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
600 		    char *buf)
601 {
602 	struct phy_device *phydev = to_phy_device(dev);
603 
604 	return sysfs_emit(buf, "%d\n", phydev->has_fixups);
605 }
606 static DEVICE_ATTR_RO(phy_has_fixups);
607 
608 static ssize_t phy_dev_flags_show(struct device *dev,
609 				  struct device_attribute *attr,
610 				  char *buf)
611 {
612 	struct phy_device *phydev = to_phy_device(dev);
613 
614 	return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags);
615 }
616 static DEVICE_ATTR_RO(phy_dev_flags);
617 
618 static struct attribute *phy_dev_attrs[] = {
619 	&dev_attr_phy_id.attr,
620 	&dev_attr_phy_interface.attr,
621 	&dev_attr_phy_has_fixups.attr,
622 	&dev_attr_phy_dev_flags.attr,
623 	NULL,
624 };
625 ATTRIBUTE_GROUPS(phy_dev);
626 
627 static const struct device_type mdio_bus_phy_type = {
628 	.name = "PHY",
629 	.groups = phy_dev_groups,
630 	.release = phy_device_release,
631 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
632 };
633 
634 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
635 {
636 	int ret;
637 
638 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
639 			     MDIO_ID_ARGS(phy_id));
640 	/* We only check for failures in executing the usermode binary,
641 	 * not whether a PHY driver module exists for the PHY ID.
642 	 * Accept -ENOENT because this may occur in case no initramfs exists,
643 	 * then modprobe isn't available.
644 	 */
645 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
646 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
647 			   ret, (unsigned long)phy_id);
648 		return ret;
649 	}
650 
651 	return 0;
652 }
653 
654 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
655 				     bool is_c45,
656 				     struct phy_c45_device_ids *c45_ids)
657 {
658 	struct phy_device *dev;
659 	struct mdio_device *mdiodev;
660 	int ret = 0;
661 
662 	/* We allocate the device, and initialize the default values */
663 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
664 	if (!dev)
665 		return ERR_PTR(-ENOMEM);
666 
667 	mdiodev = &dev->mdio;
668 	mdiodev->dev.parent = &bus->dev;
669 	mdiodev->dev.bus = &mdio_bus_type;
670 	mdiodev->dev.type = &mdio_bus_phy_type;
671 	mdiodev->bus = bus;
672 	mdiodev->bus_match = phy_bus_match;
673 	mdiodev->addr = addr;
674 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
675 	mdiodev->device_free = phy_mdio_device_free;
676 	mdiodev->device_remove = phy_mdio_device_remove;
677 	mdiodev->reset_state = -1;
678 
679 	dev->speed = SPEED_UNKNOWN;
680 	dev->duplex = DUPLEX_UNKNOWN;
681 	dev->pause = 0;
682 	dev->asym_pause = 0;
683 	dev->link = 0;
684 	dev->port = PORT_TP;
685 	dev->interface = PHY_INTERFACE_MODE_GMII;
686 
687 	dev->autoneg = AUTONEG_ENABLE;
688 
689 	dev->pma_extable = -ENODATA;
690 	dev->is_c45 = is_c45;
691 	dev->phy_id = phy_id;
692 	if (c45_ids)
693 		dev->c45_ids = *c45_ids;
694 	dev->irq = bus->irq[addr];
695 
696 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
697 	device_initialize(&mdiodev->dev);
698 
699 	dev->state = PHY_DOWN;
700 	INIT_LIST_HEAD(&dev->leds);
701 
702 	mutex_init(&dev->lock);
703 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
704 
705 	/* Request the appropriate module unconditionally; don't
706 	 * bother trying to do so only if it isn't already loaded,
707 	 * because that gets complicated. A hotplug event would have
708 	 * done an unconditional modprobe anyway.
709 	 * We don't do normal hotplug because it won't work for MDIO
710 	 * -- because it relies on the device staying around for long
711 	 * enough for the driver to get loaded. With MDIO, the NIC
712 	 * driver will get bored and give up as soon as it finds that
713 	 * there's no driver _already_ loaded.
714 	 */
715 	if (is_c45 && c45_ids) {
716 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
717 		int i;
718 
719 		for (i = 1; i < num_ids; i++) {
720 			if (c45_ids->device_ids[i] == 0xffffffff)
721 				continue;
722 
723 			ret = phy_request_driver_module(dev,
724 						c45_ids->device_ids[i]);
725 			if (ret)
726 				break;
727 		}
728 	} else {
729 		ret = phy_request_driver_module(dev, phy_id);
730 	}
731 
732 	if (ret) {
733 		put_device(&mdiodev->dev);
734 		dev = ERR_PTR(ret);
735 	}
736 
737 	return dev;
738 }
739 EXPORT_SYMBOL(phy_device_create);
740 
741 /* phy_c45_probe_present - checks to see if a MMD is present in the package
742  * @bus: the target MII bus
743  * @prtad: PHY package address on the MII bus
744  * @devad: PHY device (MMD) address
745  *
746  * Read the MDIO_STAT2 register, and check whether a device is responding
747  * at this address.
748  *
749  * Returns: negative error number on bus access error, zero if no device
750  * is responding, or positive if a device is present.
751  */
752 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
753 {
754 	int stat2;
755 
756 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
757 	if (stat2 < 0)
758 		return stat2;
759 
760 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
761 }
762 
763 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
764  * @bus: the target MII bus
765  * @addr: PHY address on the MII bus
766  * @dev_addr: MMD address in the PHY.
767  * @devices_in_package: where to store the devices in package information.
768  *
769  * Description: reads devices in package registers of a MMD at @dev_addr
770  * from PHY at @addr on @bus.
771  *
772  * Returns: 0 on success, -EIO on failure.
773  */
774 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
775 				   u32 *devices_in_package)
776 {
777 	int phy_reg;
778 
779 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
780 	if (phy_reg < 0)
781 		return -EIO;
782 	*devices_in_package = phy_reg << 16;
783 
784 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
785 	if (phy_reg < 0)
786 		return -EIO;
787 	*devices_in_package |= phy_reg;
788 
789 	return 0;
790 }
791 
792 /**
793  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
794  * @bus: the target MII bus
795  * @addr: PHY address on the MII bus
796  * @c45_ids: where to store the c45 ID information.
797  *
798  * Read the PHY "devices in package". If this appears to be valid, read
799  * the PHY identifiers for each device. Return the "devices in package"
800  * and identifiers in @c45_ids.
801  *
802  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
803  * the "devices in package" is invalid or no device responds.
804  */
805 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
806 			   struct phy_c45_device_ids *c45_ids)
807 {
808 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
809 	u32 devs_in_pkg = 0;
810 	int i, ret, phy_reg;
811 
812 	/* Find first non-zero Devices In package. Device zero is reserved
813 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
814 	 */
815 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
816 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
817 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
818 			/* Check that there is a device present at this
819 			 * address before reading the devices-in-package
820 			 * register to avoid reading garbage from the PHY.
821 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
822 			 * compliant.
823 			 */
824 			ret = phy_c45_probe_present(bus, addr, i);
825 			if (ret < 0)
826 				/* returning -ENODEV doesn't stop bus
827 				 * scanning
828 				 */
829 				return (phy_reg == -EIO ||
830 					phy_reg == -ENODEV) ? -ENODEV : -EIO;
831 
832 			if (!ret)
833 				continue;
834 		}
835 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
836 		if (phy_reg < 0)
837 			return -EIO;
838 	}
839 
840 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
841 		/* If mostly Fs, there is no device there, then let's probe
842 		 * MMD 0, as some 10G PHYs have zero Devices In package,
843 		 * e.g. Cortina CS4315/CS4340 PHY.
844 		 */
845 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
846 		if (phy_reg < 0)
847 			return -EIO;
848 
849 		/* no device there, let's get out of here */
850 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
851 			return -ENODEV;
852 	}
853 
854 	/* Now probe Device Identifiers for each device present. */
855 	for (i = 1; i < num_ids; i++) {
856 		if (!(devs_in_pkg & (1 << i)))
857 			continue;
858 
859 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
860 			/* Probe the "Device Present" bits for the vendor MMDs
861 			 * to ignore these if they do not contain IEEE 802.3
862 			 * registers.
863 			 */
864 			ret = phy_c45_probe_present(bus, addr, i);
865 			if (ret < 0)
866 				return ret;
867 
868 			if (!ret)
869 				continue;
870 		}
871 
872 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
873 		if (phy_reg < 0)
874 			return -EIO;
875 		c45_ids->device_ids[i] = phy_reg << 16;
876 
877 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
878 		if (phy_reg < 0)
879 			return -EIO;
880 		c45_ids->device_ids[i] |= phy_reg;
881 	}
882 
883 	c45_ids->devices_in_package = devs_in_pkg;
884 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
885 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
886 
887 	return 0;
888 }
889 
890 /**
891  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
892  * @bus: the target MII bus
893  * @addr: PHY address on the MII bus
894  * @phy_id: where to store the ID retrieved.
895  *
896  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
897  * placing it in @phy_id. Return zero on successful read and the ID is
898  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
899  * or invalid ID.
900  */
901 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
902 {
903 	int phy_reg;
904 
905 	/* Grab the bits from PHYIR1, and put them in the upper half */
906 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
907 	if (phy_reg < 0) {
908 		/* returning -ENODEV doesn't stop bus scanning */
909 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
910 	}
911 
912 	*phy_id = phy_reg << 16;
913 
914 	/* Grab the bits from PHYIR2, and put them in the lower half */
915 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
916 	if (phy_reg < 0) {
917 		/* returning -ENODEV doesn't stop bus scanning */
918 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
919 	}
920 
921 	*phy_id |= phy_reg;
922 
923 	/* If the phy_id is mostly Fs, there is no device there */
924 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
925 		return -ENODEV;
926 
927 	return 0;
928 }
929 
930 /* Extract the phy ID from the compatible string of the form
931  * ethernet-phy-idAAAA.BBBB.
932  */
933 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
934 {
935 	unsigned int upper, lower;
936 	const char *cp;
937 	int ret;
938 
939 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
940 	if (ret)
941 		return ret;
942 
943 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
944 		return -EINVAL;
945 
946 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
947 	return 0;
948 }
949 EXPORT_SYMBOL(fwnode_get_phy_id);
950 
951 /**
952  * get_phy_device - reads the specified PHY device and returns its @phy_device
953  *		    struct
954  * @bus: the target MII bus
955  * @addr: PHY address on the MII bus
956  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
957  *
958  * Probe for a PHY at @addr on @bus.
959  *
960  * When probing for a clause 22 PHY, then read the ID registers. If we find
961  * a valid ID, allocate and return a &struct phy_device.
962  *
963  * When probing for a clause 45 PHY, read the "devices in package" registers.
964  * If the "devices in package" appears valid, read the ID registers for each
965  * MMD, allocate and return a &struct phy_device.
966  *
967  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
968  * no PHY present, or %-EIO on bus access error.
969  */
970 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
971 {
972 	struct phy_c45_device_ids c45_ids;
973 	u32 phy_id = 0;
974 	int r;
975 
976 	c45_ids.devices_in_package = 0;
977 	c45_ids.mmds_present = 0;
978 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
979 
980 	if (is_c45)
981 		r = get_phy_c45_ids(bus, addr, &c45_ids);
982 	else
983 		r = get_phy_c22_id(bus, addr, &phy_id);
984 
985 	if (r)
986 		return ERR_PTR(r);
987 
988 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
989 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
990 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
991 	 * space, if successful, create the C45 PHY device.
992 	 */
993 	if (!is_c45 && phy_id == 0 && bus->read_c45) {
994 		r = get_phy_c45_ids(bus, addr, &c45_ids);
995 		if (!r)
996 			return phy_device_create(bus, addr, phy_id,
997 						 true, &c45_ids);
998 	}
999 
1000 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
1001 }
1002 EXPORT_SYMBOL(get_phy_device);
1003 
1004 /**
1005  * phy_device_register - Register the phy device on the MDIO bus
1006  * @phydev: phy_device structure to be added to the MDIO bus
1007  */
1008 int phy_device_register(struct phy_device *phydev)
1009 {
1010 	int err;
1011 
1012 	err = mdiobus_register_device(&phydev->mdio);
1013 	if (err)
1014 		return err;
1015 
1016 	/* Deassert the reset signal */
1017 	phy_device_reset(phydev, 0);
1018 
1019 	/* Run all of the fixups for this PHY */
1020 	err = phy_scan_fixups(phydev);
1021 	if (err) {
1022 		phydev_err(phydev, "failed to initialize\n");
1023 		goto out;
1024 	}
1025 
1026 	err = device_add(&phydev->mdio.dev);
1027 	if (err) {
1028 		phydev_err(phydev, "failed to add\n");
1029 		goto out;
1030 	}
1031 
1032 	return 0;
1033 
1034  out:
1035 	/* Assert the reset signal */
1036 	phy_device_reset(phydev, 1);
1037 
1038 	mdiobus_unregister_device(&phydev->mdio);
1039 	return err;
1040 }
1041 EXPORT_SYMBOL(phy_device_register);
1042 
1043 /**
1044  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
1045  * @phydev: phy_device structure to remove
1046  *
1047  * This doesn't free the phy_device itself, it merely reverses the effects
1048  * of phy_device_register(). Use phy_device_free() to free the device
1049  * after calling this function.
1050  */
1051 void phy_device_remove(struct phy_device *phydev)
1052 {
1053 	unregister_mii_timestamper(phydev->mii_ts);
1054 	pse_control_put(phydev->psec);
1055 
1056 	device_del(&phydev->mdio.dev);
1057 
1058 	/* Assert the reset signal */
1059 	phy_device_reset(phydev, 1);
1060 
1061 	mdiobus_unregister_device(&phydev->mdio);
1062 }
1063 EXPORT_SYMBOL(phy_device_remove);
1064 
1065 /**
1066  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1067  * @phydev: phy_device structure to read 802.3-c45 IDs
1068  *
1069  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1070  * the "devices in package" is invalid.
1071  */
1072 int phy_get_c45_ids(struct phy_device *phydev)
1073 {
1074 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1075 			       &phydev->c45_ids);
1076 }
1077 EXPORT_SYMBOL(phy_get_c45_ids);
1078 
1079 /**
1080  * phy_find_first - finds the first PHY device on the bus
1081  * @bus: the target MII bus
1082  */
1083 struct phy_device *phy_find_first(struct mii_bus *bus)
1084 {
1085 	struct phy_device *phydev;
1086 	int addr;
1087 
1088 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1089 		phydev = mdiobus_get_phy(bus, addr);
1090 		if (phydev)
1091 			return phydev;
1092 	}
1093 	return NULL;
1094 }
1095 EXPORT_SYMBOL(phy_find_first);
1096 
1097 static void phy_link_change(struct phy_device *phydev, bool up)
1098 {
1099 	struct net_device *netdev = phydev->attached_dev;
1100 
1101 	if (up)
1102 		netif_carrier_on(netdev);
1103 	else
1104 		netif_carrier_off(netdev);
1105 	phydev->adjust_link(netdev);
1106 	if (phydev->mii_ts && phydev->mii_ts->link_state)
1107 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1108 }
1109 
1110 /**
1111  * phy_prepare_link - prepares the PHY layer to monitor link status
1112  * @phydev: target phy_device struct
1113  * @handler: callback function for link status change notifications
1114  *
1115  * Description: Tells the PHY infrastructure to handle the
1116  *   gory details on monitoring link status (whether through
1117  *   polling or an interrupt), and to call back to the
1118  *   connected device driver when the link status changes.
1119  *   If you want to monitor your own link state, don't call
1120  *   this function.
1121  */
1122 static void phy_prepare_link(struct phy_device *phydev,
1123 			     void (*handler)(struct net_device *))
1124 {
1125 	phydev->adjust_link = handler;
1126 }
1127 
1128 /**
1129  * phy_connect_direct - connect an ethernet device to a specific phy_device
1130  * @dev: the network device to connect
1131  * @phydev: the pointer to the phy device
1132  * @handler: callback function for state change notifications
1133  * @interface: PHY device's interface
1134  */
1135 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1136 		       void (*handler)(struct net_device *),
1137 		       phy_interface_t interface)
1138 {
1139 	int rc;
1140 
1141 	if (!dev)
1142 		return -EINVAL;
1143 
1144 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1145 	if (rc)
1146 		return rc;
1147 
1148 	phy_prepare_link(phydev, handler);
1149 	if (phy_interrupt_is_valid(phydev))
1150 		phy_request_interrupt(phydev);
1151 
1152 	return 0;
1153 }
1154 EXPORT_SYMBOL(phy_connect_direct);
1155 
1156 /**
1157  * phy_connect - connect an ethernet device to a PHY device
1158  * @dev: the network device to connect
1159  * @bus_id: the id string of the PHY device to connect
1160  * @handler: callback function for state change notifications
1161  * @interface: PHY device's interface
1162  *
1163  * Description: Convenience function for connecting ethernet
1164  *   devices to PHY devices.  The default behavior is for
1165  *   the PHY infrastructure to handle everything, and only notify
1166  *   the connected driver when the link status changes.  If you
1167  *   don't want, or can't use the provided functionality, you may
1168  *   choose to call only the subset of functions which provide
1169  *   the desired functionality.
1170  */
1171 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1172 			       void (*handler)(struct net_device *),
1173 			       phy_interface_t interface)
1174 {
1175 	struct phy_device *phydev;
1176 	struct device *d;
1177 	int rc;
1178 
1179 	/* Search the list of PHY devices on the mdio bus for the
1180 	 * PHY with the requested name
1181 	 */
1182 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1183 	if (!d) {
1184 		pr_err("PHY %s not found\n", bus_id);
1185 		return ERR_PTR(-ENODEV);
1186 	}
1187 	phydev = to_phy_device(d);
1188 
1189 	rc = phy_connect_direct(dev, phydev, handler, interface);
1190 	put_device(d);
1191 	if (rc)
1192 		return ERR_PTR(rc);
1193 
1194 	return phydev;
1195 }
1196 EXPORT_SYMBOL(phy_connect);
1197 
1198 /**
1199  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1200  *		    device
1201  * @phydev: target phy_device struct
1202  */
1203 void phy_disconnect(struct phy_device *phydev)
1204 {
1205 	if (phy_is_started(phydev))
1206 		phy_stop(phydev);
1207 
1208 	if (phy_interrupt_is_valid(phydev))
1209 		phy_free_interrupt(phydev);
1210 
1211 	phydev->adjust_link = NULL;
1212 
1213 	phy_detach(phydev);
1214 }
1215 EXPORT_SYMBOL(phy_disconnect);
1216 
1217 /**
1218  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1219  * @phydev: The PHY device to poll
1220  *
1221  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1222  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1223  *   register must be polled until the BMCR_RESET bit clears.
1224  *
1225  *   Furthermore, any attempts to write to PHY registers may have no effect
1226  *   or even generate MDIO bus errors until this is complete.
1227  *
1228  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1229  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1230  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1231  *   effort to support such broken PHYs, this function is separate from the
1232  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1233  *   and reapply all driver-specific and board-specific fixups.
1234  */
1235 static int phy_poll_reset(struct phy_device *phydev)
1236 {
1237 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1238 	int ret, val;
1239 
1240 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1241 				    50000, 600000, true);
1242 	if (ret)
1243 		return ret;
1244 	/* Some chips (smsc911x) may still need up to another 1ms after the
1245 	 * BMCR_RESET bit is cleared before they are usable.
1246 	 */
1247 	msleep(1);
1248 	return 0;
1249 }
1250 
1251 int phy_init_hw(struct phy_device *phydev)
1252 {
1253 	int ret = 0;
1254 
1255 	/* Deassert the reset signal */
1256 	phy_device_reset(phydev, 0);
1257 
1258 	if (!phydev->drv)
1259 		return 0;
1260 
1261 	if (phydev->drv->soft_reset) {
1262 		ret = phydev->drv->soft_reset(phydev);
1263 		if (ret < 0)
1264 			return ret;
1265 
1266 		/* see comment in genphy_soft_reset for an explanation */
1267 		phydev->suspended = 0;
1268 	}
1269 
1270 	ret = phy_scan_fixups(phydev);
1271 	if (ret < 0)
1272 		return ret;
1273 
1274 	phy_interface_zero(phydev->possible_interfaces);
1275 
1276 	if (phydev->drv->config_init) {
1277 		ret = phydev->drv->config_init(phydev);
1278 		if (ret < 0)
1279 			return ret;
1280 	}
1281 
1282 	if (phydev->drv->config_intr) {
1283 		ret = phydev->drv->config_intr(phydev);
1284 		if (ret < 0)
1285 			return ret;
1286 	}
1287 
1288 	return 0;
1289 }
1290 EXPORT_SYMBOL(phy_init_hw);
1291 
1292 void phy_attached_info(struct phy_device *phydev)
1293 {
1294 	phy_attached_print(phydev, NULL);
1295 }
1296 EXPORT_SYMBOL(phy_attached_info);
1297 
1298 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1299 char *phy_attached_info_irq(struct phy_device *phydev)
1300 {
1301 	char *irq_str;
1302 	char irq_num[8];
1303 
1304 	switch(phydev->irq) {
1305 	case PHY_POLL:
1306 		irq_str = "POLL";
1307 		break;
1308 	case PHY_MAC_INTERRUPT:
1309 		irq_str = "MAC";
1310 		break;
1311 	default:
1312 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1313 		irq_str = irq_num;
1314 		break;
1315 	}
1316 
1317 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1318 }
1319 EXPORT_SYMBOL(phy_attached_info_irq);
1320 
1321 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1322 {
1323 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1324 	char *irq_str = phy_attached_info_irq(phydev);
1325 
1326 	if (!fmt) {
1327 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1328 			    phydev_name(phydev), irq_str);
1329 	} else {
1330 		va_list ap;
1331 
1332 		phydev_info(phydev, ATTACHED_FMT, unbound,
1333 			    phydev_name(phydev), irq_str);
1334 
1335 		va_start(ap, fmt);
1336 		vprintk(fmt, ap);
1337 		va_end(ap);
1338 	}
1339 	kfree(irq_str);
1340 }
1341 EXPORT_SYMBOL(phy_attached_print);
1342 
1343 static void phy_sysfs_create_links(struct phy_device *phydev)
1344 {
1345 	struct net_device *dev = phydev->attached_dev;
1346 	int err;
1347 
1348 	if (!dev)
1349 		return;
1350 
1351 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1352 				"attached_dev");
1353 	if (err)
1354 		return;
1355 
1356 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1357 				       &phydev->mdio.dev.kobj,
1358 				       "phydev");
1359 	if (err) {
1360 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1361 			kobject_name(&phydev->mdio.dev.kobj),
1362 			err);
1363 		/* non-fatal - some net drivers can use one netdevice
1364 		 * with more then one phy
1365 		 */
1366 	}
1367 
1368 	phydev->sysfs_links = true;
1369 }
1370 
1371 static ssize_t
1372 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1373 		    char *buf)
1374 {
1375 	struct phy_device *phydev = to_phy_device(dev);
1376 
1377 	return sysfs_emit(buf, "%d\n", !phydev->attached_dev);
1378 }
1379 static DEVICE_ATTR_RO(phy_standalone);
1380 
1381 /**
1382  * phy_sfp_connect_phy - Connect the SFP module's PHY to the upstream PHY
1383  * @upstream: pointer to the upstream phy device
1384  * @phy: pointer to the SFP module's phy device
1385  *
1386  * This helper allows keeping track of PHY devices on the link. It adds the
1387  * SFP module's phy to the phy namespace of the upstream phy
1388  */
1389 int phy_sfp_connect_phy(void *upstream, struct phy_device *phy)
1390 {
1391 	struct phy_device *phydev = upstream;
1392 	struct phy_link_topology *topo = phy_get_link_topology(phydev);
1393 
1394 	if (topo)
1395 		return phy_link_topo_add_phy(topo, phy, PHY_UPSTREAM_PHY, phydev);
1396 
1397 	return 0;
1398 }
1399 EXPORT_SYMBOL(phy_sfp_connect_phy);
1400 
1401 /**
1402  * phy_sfp_disconnect_phy - Disconnect the SFP module's PHY from the upstream PHY
1403  * @upstream: pointer to the upstream phy device
1404  * @phy: pointer to the SFP module's phy device
1405  *
1406  * This helper allows keeping track of PHY devices on the link. It removes the
1407  * SFP module's phy to the phy namespace of the upstream phy. As the module phy
1408  * will be destroyed, re-inserting the same module will add a new phy with a
1409  * new index.
1410  */
1411 void phy_sfp_disconnect_phy(void *upstream, struct phy_device *phy)
1412 {
1413 	struct phy_device *phydev = upstream;
1414 	struct phy_link_topology *topo = phy_get_link_topology(phydev);
1415 
1416 	if (topo)
1417 		phy_link_topo_del_phy(topo, phy);
1418 }
1419 EXPORT_SYMBOL(phy_sfp_disconnect_phy);
1420 
1421 /**
1422  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1423  * @upstream: pointer to the phy device
1424  * @bus: sfp bus representing cage being attached
1425  *
1426  * This is used to fill in the sfp_upstream_ops .attach member.
1427  */
1428 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1429 {
1430 	struct phy_device *phydev = upstream;
1431 
1432 	if (phydev->attached_dev)
1433 		phydev->attached_dev->sfp_bus = bus;
1434 	phydev->sfp_bus_attached = true;
1435 }
1436 EXPORT_SYMBOL(phy_sfp_attach);
1437 
1438 /**
1439  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1440  * @upstream: pointer to the phy device
1441  * @bus: sfp bus representing cage being attached
1442  *
1443  * This is used to fill in the sfp_upstream_ops .detach member.
1444  */
1445 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1446 {
1447 	struct phy_device *phydev = upstream;
1448 
1449 	if (phydev->attached_dev)
1450 		phydev->attached_dev->sfp_bus = NULL;
1451 	phydev->sfp_bus_attached = false;
1452 }
1453 EXPORT_SYMBOL(phy_sfp_detach);
1454 
1455 /**
1456  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1457  * @phydev: Pointer to phy_device
1458  * @ops: SFP's upstream operations
1459  */
1460 int phy_sfp_probe(struct phy_device *phydev,
1461 		  const struct sfp_upstream_ops *ops)
1462 {
1463 	struct sfp_bus *bus;
1464 	int ret = 0;
1465 
1466 	if (phydev->mdio.dev.fwnode) {
1467 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1468 		if (IS_ERR(bus))
1469 			return PTR_ERR(bus);
1470 
1471 		phydev->sfp_bus = bus;
1472 
1473 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1474 		sfp_bus_put(bus);
1475 	}
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL(phy_sfp_probe);
1479 
1480 static bool phy_drv_supports_irq(const struct phy_driver *phydrv)
1481 {
1482 	return phydrv->config_intr && phydrv->handle_interrupt;
1483 }
1484 
1485 /**
1486  * phy_attach_direct - attach a network device to a given PHY device pointer
1487  * @dev: network device to attach
1488  * @phydev: Pointer to phy_device to attach
1489  * @flags: PHY device's dev_flags
1490  * @interface: PHY device's interface
1491  *
1492  * Description: Called by drivers to attach to a particular PHY
1493  *     device. The phy_device is found, and properly hooked up
1494  *     to the phy_driver.  If no driver is attached, then a
1495  *     generic driver is used.  The phy_device is given a ptr to
1496  *     the attaching device, and given a callback for link status
1497  *     change.  The phy_device is returned to the attaching driver.
1498  *     This function takes a reference on the phy device.
1499  */
1500 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1501 		      u32 flags, phy_interface_t interface)
1502 {
1503 	struct mii_bus *bus = phydev->mdio.bus;
1504 	struct device *d = &phydev->mdio.dev;
1505 	struct module *ndev_owner = NULL;
1506 	bool using_genphy = false;
1507 	int err;
1508 
1509 	/* For Ethernet device drivers that register their own MDIO bus, we
1510 	 * will have bus->owner match ndev_mod, so we do not want to increment
1511 	 * our own module->refcnt here, otherwise we would not be able to
1512 	 * unload later on.
1513 	 */
1514 	if (dev)
1515 		ndev_owner = dev->dev.parent->driver->owner;
1516 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1517 		phydev_err(phydev, "failed to get the bus module\n");
1518 		return -EIO;
1519 	}
1520 
1521 	get_device(d);
1522 
1523 	/* Assume that if there is no driver, that it doesn't
1524 	 * exist, and we should use the genphy driver.
1525 	 */
1526 	if (!d->driver) {
1527 		if (phydev->is_c45)
1528 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1529 		else
1530 			d->driver = &genphy_driver.mdiodrv.driver;
1531 
1532 		using_genphy = true;
1533 	}
1534 
1535 	if (!try_module_get(d->driver->owner)) {
1536 		phydev_err(phydev, "failed to get the device driver module\n");
1537 		err = -EIO;
1538 		goto error_put_device;
1539 	}
1540 
1541 	if (using_genphy) {
1542 		err = d->driver->probe(d);
1543 		if (err >= 0)
1544 			err = device_bind_driver(d);
1545 
1546 		if (err)
1547 			goto error_module_put;
1548 	}
1549 
1550 	if (phydev->attached_dev) {
1551 		dev_err(&dev->dev, "PHY already attached\n");
1552 		err = -EBUSY;
1553 		goto error;
1554 	}
1555 
1556 	phydev->phy_link_change = phy_link_change;
1557 	if (dev) {
1558 		phydev->attached_dev = dev;
1559 		dev->phydev = phydev;
1560 
1561 		if (phydev->sfp_bus_attached)
1562 			dev->sfp_bus = phydev->sfp_bus;
1563 
1564 		err = phy_link_topo_add_phy(dev->link_topo, phydev,
1565 					    PHY_UPSTREAM_MAC, dev);
1566 		if (err)
1567 			goto error;
1568 	}
1569 
1570 	/* Some Ethernet drivers try to connect to a PHY device before
1571 	 * calling register_netdevice() -> netdev_register_kobject() and
1572 	 * does the dev->dev.kobj initialization. Here we only check for
1573 	 * success which indicates that the network device kobject is
1574 	 * ready. Once we do that we still need to keep track of whether
1575 	 * links were successfully set up or not for phy_detach() to
1576 	 * remove them accordingly.
1577 	 */
1578 	phydev->sysfs_links = false;
1579 
1580 	phy_sysfs_create_links(phydev);
1581 
1582 	if (!phydev->attached_dev) {
1583 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1584 					&dev_attr_phy_standalone.attr);
1585 		if (err)
1586 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1587 	}
1588 
1589 	phydev->dev_flags |= flags;
1590 
1591 	phydev->interface = interface;
1592 
1593 	phydev->state = PHY_READY;
1594 
1595 	phydev->interrupts = PHY_INTERRUPT_DISABLED;
1596 
1597 	/* PHYs can request to use poll mode even though they have an
1598 	 * associated interrupt line. This could be the case if they
1599 	 * detect a broken interrupt handling.
1600 	 */
1601 	if (phydev->dev_flags & PHY_F_NO_IRQ)
1602 		phydev->irq = PHY_POLL;
1603 
1604 	if (!phy_drv_supports_irq(phydev->drv) && phy_interrupt_is_valid(phydev))
1605 		phydev->irq = PHY_POLL;
1606 
1607 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1608 	 * it to different value depending on the PHY configuration. If we have
1609 	 * the generic PHY driver we can't figure it out, thus set the old
1610 	 * legacy PORT_MII value.
1611 	 */
1612 	if (using_genphy)
1613 		phydev->port = PORT_MII;
1614 
1615 	/* Initial carrier state is off as the phy is about to be
1616 	 * (re)initialized.
1617 	 */
1618 	if (dev)
1619 		netif_carrier_off(phydev->attached_dev);
1620 
1621 	/* Do initial configuration here, now that
1622 	 * we have certain key parameters
1623 	 * (dev_flags and interface)
1624 	 */
1625 	err = phy_init_hw(phydev);
1626 	if (err)
1627 		goto error;
1628 
1629 	phy_resume(phydev);
1630 	if (!phydev->is_on_sfp_module)
1631 		phy_led_triggers_register(phydev);
1632 
1633 	/**
1634 	 * If the external phy used by current mac interface is managed by
1635 	 * another mac interface, so we should create a device link between
1636 	 * phy dev and mac dev.
1637 	 */
1638 	if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
1639 		phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
1640 						  DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
1641 
1642 	return err;
1643 
1644 error:
1645 	/* phy_detach() does all of the cleanup below */
1646 	phy_detach(phydev);
1647 	return err;
1648 
1649 error_module_put:
1650 	module_put(d->driver->owner);
1651 	d->driver = NULL;
1652 error_put_device:
1653 	put_device(d);
1654 	if (ndev_owner != bus->owner)
1655 		module_put(bus->owner);
1656 	return err;
1657 }
1658 EXPORT_SYMBOL(phy_attach_direct);
1659 
1660 /**
1661  * phy_attach - attach a network device to a particular PHY device
1662  * @dev: network device to attach
1663  * @bus_id: Bus ID of PHY device to attach
1664  * @interface: PHY device's interface
1665  *
1666  * Description: Same as phy_attach_direct() except that a PHY bus_id
1667  *     string is passed instead of a pointer to a struct phy_device.
1668  */
1669 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1670 			      phy_interface_t interface)
1671 {
1672 	struct phy_device *phydev;
1673 	struct device *d;
1674 	int rc;
1675 
1676 	if (!dev)
1677 		return ERR_PTR(-EINVAL);
1678 
1679 	/* Search the list of PHY devices on the mdio bus for the
1680 	 * PHY with the requested name
1681 	 */
1682 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1683 	if (!d) {
1684 		pr_err("PHY %s not found\n", bus_id);
1685 		return ERR_PTR(-ENODEV);
1686 	}
1687 	phydev = to_phy_device(d);
1688 
1689 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1690 	put_device(d);
1691 	if (rc)
1692 		return ERR_PTR(rc);
1693 
1694 	return phydev;
1695 }
1696 EXPORT_SYMBOL(phy_attach);
1697 
1698 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1699 				      struct device_driver *driver)
1700 {
1701 	struct device *d = &phydev->mdio.dev;
1702 	bool ret = false;
1703 
1704 	if (!phydev->drv)
1705 		return ret;
1706 
1707 	get_device(d);
1708 	ret = d->driver == driver;
1709 	put_device(d);
1710 
1711 	return ret;
1712 }
1713 
1714 bool phy_driver_is_genphy(struct phy_device *phydev)
1715 {
1716 	return phy_driver_is_genphy_kind(phydev,
1717 					 &genphy_driver.mdiodrv.driver);
1718 }
1719 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1720 
1721 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1722 {
1723 	return phy_driver_is_genphy_kind(phydev,
1724 					 &genphy_c45_driver.mdiodrv.driver);
1725 }
1726 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1727 
1728 /**
1729  * phy_package_join - join a common PHY group
1730  * @phydev: target phy_device struct
1731  * @base_addr: cookie and base PHY address of PHY package for offset
1732  *   calculation of global register access
1733  * @priv_size: if non-zero allocate this amount of bytes for private data
1734  *
1735  * This joins a PHY group and provides a shared storage for all phydevs in
1736  * this group. This is intended to be used for packages which contain
1737  * more than one PHY, for example a quad PHY transceiver.
1738  *
1739  * The base_addr parameter serves as cookie which has to have the same values
1740  * for all members of one group and as the base PHY address of the PHY package
1741  * for offset calculation to access generic registers of a PHY package.
1742  * Usually, one of the PHY addresses of the different PHYs in the package
1743  * provides access to these global registers.
1744  * The address which is given here, will be used in the phy_package_read()
1745  * and phy_package_write() convenience functions as base and added to the
1746  * passed offset in those functions.
1747  *
1748  * This will set the shared pointer of the phydev to the shared storage.
1749  * If this is the first call for a this cookie the shared storage will be
1750  * allocated. If priv_size is non-zero, the given amount of bytes are
1751  * allocated for the priv member.
1752  *
1753  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1754  * with the same cookie but a different priv_size is an error.
1755  */
1756 int phy_package_join(struct phy_device *phydev, int base_addr, size_t priv_size)
1757 {
1758 	struct mii_bus *bus = phydev->mdio.bus;
1759 	struct phy_package_shared *shared;
1760 	int ret;
1761 
1762 	if (base_addr < 0 || base_addr >= PHY_MAX_ADDR)
1763 		return -EINVAL;
1764 
1765 	mutex_lock(&bus->shared_lock);
1766 	shared = bus->shared[base_addr];
1767 	if (!shared) {
1768 		ret = -ENOMEM;
1769 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1770 		if (!shared)
1771 			goto err_unlock;
1772 		if (priv_size) {
1773 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1774 			if (!shared->priv)
1775 				goto err_free;
1776 			shared->priv_size = priv_size;
1777 		}
1778 		shared->base_addr = base_addr;
1779 		shared->np = NULL;
1780 		refcount_set(&shared->refcnt, 1);
1781 		bus->shared[base_addr] = shared;
1782 	} else {
1783 		ret = -EINVAL;
1784 		if (priv_size && priv_size != shared->priv_size)
1785 			goto err_unlock;
1786 		refcount_inc(&shared->refcnt);
1787 	}
1788 	mutex_unlock(&bus->shared_lock);
1789 
1790 	phydev->shared = shared;
1791 
1792 	return 0;
1793 
1794 err_free:
1795 	kfree(shared);
1796 err_unlock:
1797 	mutex_unlock(&bus->shared_lock);
1798 	return ret;
1799 }
1800 EXPORT_SYMBOL_GPL(phy_package_join);
1801 
1802 /**
1803  * of_phy_package_join - join a common PHY group in PHY package
1804  * @phydev: target phy_device struct
1805  * @priv_size: if non-zero allocate this amount of bytes for private data
1806  *
1807  * This is a variant of phy_package_join for PHY package defined in DT.
1808  *
1809  * The parent node of the @phydev is checked as a valid PHY package node
1810  * structure (by matching the node name "ethernet-phy-package") and the
1811  * base_addr for the PHY package is passed to phy_package_join.
1812  *
1813  * With this configuration the shared struct will also have the np value
1814  * filled to use additional DT defined properties in PHY specific
1815  * probe_once and config_init_once PHY package OPs.
1816  *
1817  * Returns < 0 on error, 0 on success. Esp. calling phy_package_join()
1818  * with the same cookie but a different priv_size is an error. Or a parent
1819  * node is not detected or is not valid or doesn't match the expected node
1820  * name for PHY package.
1821  */
1822 int of_phy_package_join(struct phy_device *phydev, size_t priv_size)
1823 {
1824 	struct device_node *node = phydev->mdio.dev.of_node;
1825 	struct device_node *package_node;
1826 	u32 base_addr;
1827 	int ret;
1828 
1829 	if (!node)
1830 		return -EINVAL;
1831 
1832 	package_node = of_get_parent(node);
1833 	if (!package_node)
1834 		return -EINVAL;
1835 
1836 	if (!of_node_name_eq(package_node, "ethernet-phy-package")) {
1837 		ret = -EINVAL;
1838 		goto exit;
1839 	}
1840 
1841 	if (of_property_read_u32(package_node, "reg", &base_addr)) {
1842 		ret = -EINVAL;
1843 		goto exit;
1844 	}
1845 
1846 	ret = phy_package_join(phydev, base_addr, priv_size);
1847 	if (ret)
1848 		goto exit;
1849 
1850 	phydev->shared->np = package_node;
1851 
1852 	return 0;
1853 exit:
1854 	of_node_put(package_node);
1855 	return ret;
1856 }
1857 EXPORT_SYMBOL_GPL(of_phy_package_join);
1858 
1859 /**
1860  * phy_package_leave - leave a common PHY group
1861  * @phydev: target phy_device struct
1862  *
1863  * This leaves a PHY group created by phy_package_join(). If this phydev
1864  * was the last user of the shared data between the group, this data is
1865  * freed. Resets the phydev->shared pointer to NULL.
1866  */
1867 void phy_package_leave(struct phy_device *phydev)
1868 {
1869 	struct phy_package_shared *shared = phydev->shared;
1870 	struct mii_bus *bus = phydev->mdio.bus;
1871 
1872 	if (!shared)
1873 		return;
1874 
1875 	/* Decrease the node refcount on leave if present */
1876 	if (shared->np)
1877 		of_node_put(shared->np);
1878 
1879 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1880 		bus->shared[shared->base_addr] = NULL;
1881 		mutex_unlock(&bus->shared_lock);
1882 		kfree(shared->priv);
1883 		kfree(shared);
1884 	}
1885 
1886 	phydev->shared = NULL;
1887 }
1888 EXPORT_SYMBOL_GPL(phy_package_leave);
1889 
1890 static void devm_phy_package_leave(struct device *dev, void *res)
1891 {
1892 	phy_package_leave(*(struct phy_device **)res);
1893 }
1894 
1895 /**
1896  * devm_phy_package_join - resource managed phy_package_join()
1897  * @dev: device that is registering this PHY package
1898  * @phydev: target phy_device struct
1899  * @base_addr: cookie and base PHY address of PHY package for offset
1900  *   calculation of global register access
1901  * @priv_size: if non-zero allocate this amount of bytes for private data
1902  *
1903  * Managed phy_package_join(). Shared storage fetched by this function,
1904  * phy_package_leave() is automatically called on driver detach. See
1905  * phy_package_join() for more information.
1906  */
1907 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1908 			  int base_addr, size_t priv_size)
1909 {
1910 	struct phy_device **ptr;
1911 	int ret;
1912 
1913 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1914 			   GFP_KERNEL);
1915 	if (!ptr)
1916 		return -ENOMEM;
1917 
1918 	ret = phy_package_join(phydev, base_addr, priv_size);
1919 
1920 	if (!ret) {
1921 		*ptr = phydev;
1922 		devres_add(dev, ptr);
1923 	} else {
1924 		devres_free(ptr);
1925 	}
1926 
1927 	return ret;
1928 }
1929 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1930 
1931 /**
1932  * devm_of_phy_package_join - resource managed of_phy_package_join()
1933  * @dev: device that is registering this PHY package
1934  * @phydev: target phy_device struct
1935  * @priv_size: if non-zero allocate this amount of bytes for private data
1936  *
1937  * Managed of_phy_package_join(). Shared storage fetched by this function,
1938  * phy_package_leave() is automatically called on driver detach. See
1939  * of_phy_package_join() for more information.
1940  */
1941 int devm_of_phy_package_join(struct device *dev, struct phy_device *phydev,
1942 			     size_t priv_size)
1943 {
1944 	struct phy_device **ptr;
1945 	int ret;
1946 
1947 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1948 			   GFP_KERNEL);
1949 	if (!ptr)
1950 		return -ENOMEM;
1951 
1952 	ret = of_phy_package_join(phydev, priv_size);
1953 
1954 	if (!ret) {
1955 		*ptr = phydev;
1956 		devres_add(dev, ptr);
1957 	} else {
1958 		devres_free(ptr);
1959 	}
1960 
1961 	return ret;
1962 }
1963 EXPORT_SYMBOL_GPL(devm_of_phy_package_join);
1964 
1965 /**
1966  * phy_detach - detach a PHY device from its network device
1967  * @phydev: target phy_device struct
1968  *
1969  * This detaches the phy device from its network device and the phy
1970  * driver, and drops the reference count taken in phy_attach_direct().
1971  */
1972 void phy_detach(struct phy_device *phydev)
1973 {
1974 	struct net_device *dev = phydev->attached_dev;
1975 	struct module *ndev_owner = NULL;
1976 	struct mii_bus *bus;
1977 
1978 	if (phydev->devlink)
1979 		device_link_del(phydev->devlink);
1980 
1981 	if (phydev->sysfs_links) {
1982 		if (dev)
1983 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1984 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1985 	}
1986 
1987 	if (!phydev->attached_dev)
1988 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1989 				  &dev_attr_phy_standalone.attr);
1990 
1991 	phy_suspend(phydev);
1992 	if (dev) {
1993 		phydev->attached_dev->phydev = NULL;
1994 		phydev->attached_dev = NULL;
1995 		phy_link_topo_del_phy(dev->link_topo, phydev);
1996 	}
1997 	phydev->phylink = NULL;
1998 
1999 	if (!phydev->is_on_sfp_module)
2000 		phy_led_triggers_unregister(phydev);
2001 
2002 	if (phydev->mdio.dev.driver)
2003 		module_put(phydev->mdio.dev.driver->owner);
2004 
2005 	/* If the device had no specific driver before (i.e. - it
2006 	 * was using the generic driver), we unbind the device
2007 	 * from the generic driver so that there's a chance a
2008 	 * real driver could be loaded
2009 	 */
2010 	if (phy_driver_is_genphy(phydev) ||
2011 	    phy_driver_is_genphy_10g(phydev))
2012 		device_release_driver(&phydev->mdio.dev);
2013 
2014 	/* Assert the reset signal */
2015 	phy_device_reset(phydev, 1);
2016 
2017 	/*
2018 	 * The phydev might go away on the put_device() below, so avoid
2019 	 * a use-after-free bug by reading the underlying bus first.
2020 	 */
2021 	bus = phydev->mdio.bus;
2022 
2023 	put_device(&phydev->mdio.dev);
2024 	if (dev)
2025 		ndev_owner = dev->dev.parent->driver->owner;
2026 	if (ndev_owner != bus->owner)
2027 		module_put(bus->owner);
2028 }
2029 EXPORT_SYMBOL(phy_detach);
2030 
2031 int phy_suspend(struct phy_device *phydev)
2032 {
2033 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
2034 	struct net_device *netdev = phydev->attached_dev;
2035 	const struct phy_driver *phydrv = phydev->drv;
2036 	int ret;
2037 
2038 	if (phydev->suspended)
2039 		return 0;
2040 
2041 	phy_ethtool_get_wol(phydev, &wol);
2042 	phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled);
2043 	/* If the device has WOL enabled, we cannot suspend the PHY */
2044 	if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND))
2045 		return -EBUSY;
2046 
2047 	if (!phydrv || !phydrv->suspend)
2048 		return 0;
2049 
2050 	ret = phydrv->suspend(phydev);
2051 	if (!ret)
2052 		phydev->suspended = true;
2053 
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL(phy_suspend);
2057 
2058 int __phy_resume(struct phy_device *phydev)
2059 {
2060 	const struct phy_driver *phydrv = phydev->drv;
2061 	int ret;
2062 
2063 	lockdep_assert_held(&phydev->lock);
2064 
2065 	if (!phydrv || !phydrv->resume)
2066 		return 0;
2067 
2068 	ret = phydrv->resume(phydev);
2069 	if (!ret)
2070 		phydev->suspended = false;
2071 
2072 	return ret;
2073 }
2074 EXPORT_SYMBOL(__phy_resume);
2075 
2076 int phy_resume(struct phy_device *phydev)
2077 {
2078 	int ret;
2079 
2080 	mutex_lock(&phydev->lock);
2081 	ret = __phy_resume(phydev);
2082 	mutex_unlock(&phydev->lock);
2083 
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL(phy_resume);
2087 
2088 int phy_loopback(struct phy_device *phydev, bool enable)
2089 {
2090 	int ret = 0;
2091 
2092 	if (!phydev->drv)
2093 		return -EIO;
2094 
2095 	mutex_lock(&phydev->lock);
2096 
2097 	if (enable && phydev->loopback_enabled) {
2098 		ret = -EBUSY;
2099 		goto out;
2100 	}
2101 
2102 	if (!enable && !phydev->loopback_enabled) {
2103 		ret = -EINVAL;
2104 		goto out;
2105 	}
2106 
2107 	if (phydev->drv->set_loopback)
2108 		ret = phydev->drv->set_loopback(phydev, enable);
2109 	else
2110 		ret = genphy_loopback(phydev, enable);
2111 
2112 	if (ret)
2113 		goto out;
2114 
2115 	phydev->loopback_enabled = enable;
2116 
2117 out:
2118 	mutex_unlock(&phydev->lock);
2119 	return ret;
2120 }
2121 EXPORT_SYMBOL(phy_loopback);
2122 
2123 /**
2124  * phy_reset_after_clk_enable - perform a PHY reset if needed
2125  * @phydev: target phy_device struct
2126  *
2127  * Description: Some PHYs are known to need a reset after their refclk was
2128  *   enabled. This function evaluates the flags and perform the reset if it's
2129  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
2130  *   was reset.
2131  */
2132 int phy_reset_after_clk_enable(struct phy_device *phydev)
2133 {
2134 	if (!phydev || !phydev->drv)
2135 		return -ENODEV;
2136 
2137 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
2138 		phy_device_reset(phydev, 1);
2139 		phy_device_reset(phydev, 0);
2140 		return 1;
2141 	}
2142 
2143 	return 0;
2144 }
2145 EXPORT_SYMBOL(phy_reset_after_clk_enable);
2146 
2147 /* Generic PHY support and helper functions */
2148 
2149 /**
2150  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
2151  * @phydev: target phy_device struct
2152  *
2153  * Description: Writes MII_ADVERTISE with the appropriate values,
2154  *   after sanitizing the values to make sure we only advertise
2155  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2156  *   hasn't changed, and > 0 if it has changed.
2157  */
2158 static int genphy_config_advert(struct phy_device *phydev)
2159 {
2160 	int err, bmsr, changed = 0;
2161 	u32 adv;
2162 
2163 	/* Only allow advertising what this PHY supports */
2164 	linkmode_and(phydev->advertising, phydev->advertising,
2165 		     phydev->supported);
2166 
2167 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
2168 
2169 	/* Setup standard advertisement */
2170 	err = phy_modify_changed(phydev, MII_ADVERTISE,
2171 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
2172 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
2173 				 adv);
2174 	if (err < 0)
2175 		return err;
2176 	if (err > 0)
2177 		changed = 1;
2178 
2179 	bmsr = phy_read(phydev, MII_BMSR);
2180 	if (bmsr < 0)
2181 		return bmsr;
2182 
2183 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
2184 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
2185 	 * logical 1.
2186 	 */
2187 	if (!(bmsr & BMSR_ESTATEN))
2188 		return changed;
2189 
2190 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
2191 
2192 	err = phy_modify_changed(phydev, MII_CTRL1000,
2193 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
2194 				 adv);
2195 	if (err < 0)
2196 		return err;
2197 	if (err > 0)
2198 		changed = 1;
2199 
2200 	return changed;
2201 }
2202 
2203 /**
2204  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
2205  * @phydev: target phy_device struct
2206  *
2207  * Description: Writes MII_ADVERTISE with the appropriate values,
2208  *   after sanitizing the values to make sure we only advertise
2209  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2210  *   hasn't changed, and > 0 if it has changed. This function is intended
2211  *   for Clause 37 1000Base-X mode.
2212  */
2213 static int genphy_c37_config_advert(struct phy_device *phydev)
2214 {
2215 	u16 adv = 0;
2216 
2217 	/* Only allow advertising what this PHY supports */
2218 	linkmode_and(phydev->advertising, phydev->advertising,
2219 		     phydev->supported);
2220 
2221 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2222 			      phydev->advertising))
2223 		adv |= ADVERTISE_1000XFULL;
2224 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2225 			      phydev->advertising))
2226 		adv |= ADVERTISE_1000XPAUSE;
2227 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2228 			      phydev->advertising))
2229 		adv |= ADVERTISE_1000XPSE_ASYM;
2230 
2231 	return phy_modify_changed(phydev, MII_ADVERTISE,
2232 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
2233 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
2234 				  adv);
2235 }
2236 
2237 /**
2238  * genphy_config_eee_advert - disable unwanted eee mode advertisement
2239  * @phydev: target phy_device struct
2240  *
2241  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2242  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2243  *   changed, and 1 if it has changed.
2244  */
2245 int genphy_config_eee_advert(struct phy_device *phydev)
2246 {
2247 	int err;
2248 
2249 	/* Nothing to disable */
2250 	if (!phydev->eee_broken_modes)
2251 		return 0;
2252 
2253 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2254 				     phydev->eee_broken_modes, 0);
2255 	/* If the call failed, we assume that EEE is not supported */
2256 	return err < 0 ? 0 : err;
2257 }
2258 EXPORT_SYMBOL(genphy_config_eee_advert);
2259 
2260 /**
2261  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2262  * @phydev: target phy_device struct
2263  *
2264  * Description: Configures MII_BMCR to force speed/duplex
2265  *   to the values in phydev. Assumes that the values are valid.
2266  *   Please see phy_sanitize_settings().
2267  */
2268 int genphy_setup_forced(struct phy_device *phydev)
2269 {
2270 	u16 ctl;
2271 
2272 	phydev->pause = 0;
2273 	phydev->asym_pause = 0;
2274 
2275 	ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2276 
2277 	return phy_modify(phydev, MII_BMCR,
2278 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2279 }
2280 EXPORT_SYMBOL(genphy_setup_forced);
2281 
2282 static int genphy_setup_master_slave(struct phy_device *phydev)
2283 {
2284 	u16 ctl = 0;
2285 
2286 	if (!phydev->is_gigabit_capable)
2287 		return 0;
2288 
2289 	switch (phydev->master_slave_set) {
2290 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2291 		ctl |= CTL1000_PREFER_MASTER;
2292 		break;
2293 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2294 		break;
2295 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2296 		ctl |= CTL1000_AS_MASTER;
2297 		fallthrough;
2298 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2299 		ctl |= CTL1000_ENABLE_MASTER;
2300 		break;
2301 	case MASTER_SLAVE_CFG_UNKNOWN:
2302 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2303 		return 0;
2304 	default:
2305 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2306 		return -EOPNOTSUPP;
2307 	}
2308 
2309 	return phy_modify_changed(phydev, MII_CTRL1000,
2310 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2311 				   CTL1000_PREFER_MASTER), ctl);
2312 }
2313 
2314 int genphy_read_master_slave(struct phy_device *phydev)
2315 {
2316 	int cfg, state;
2317 	int val;
2318 
2319 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2320 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2321 
2322 	val = phy_read(phydev, MII_CTRL1000);
2323 	if (val < 0)
2324 		return val;
2325 
2326 	if (val & CTL1000_ENABLE_MASTER) {
2327 		if (val & CTL1000_AS_MASTER)
2328 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2329 		else
2330 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2331 	} else {
2332 		if (val & CTL1000_PREFER_MASTER)
2333 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2334 		else
2335 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2336 	}
2337 
2338 	val = phy_read(phydev, MII_STAT1000);
2339 	if (val < 0)
2340 		return val;
2341 
2342 	if (val & LPA_1000MSFAIL) {
2343 		state = MASTER_SLAVE_STATE_ERR;
2344 	} else if (phydev->link) {
2345 		/* this bits are valid only for active link */
2346 		if (val & LPA_1000MSRES)
2347 			state = MASTER_SLAVE_STATE_MASTER;
2348 		else
2349 			state = MASTER_SLAVE_STATE_SLAVE;
2350 	} else {
2351 		state = MASTER_SLAVE_STATE_UNKNOWN;
2352 	}
2353 
2354 	phydev->master_slave_get = cfg;
2355 	phydev->master_slave_state = state;
2356 
2357 	return 0;
2358 }
2359 EXPORT_SYMBOL(genphy_read_master_slave);
2360 
2361 /**
2362  * genphy_restart_aneg - Enable and Restart Autonegotiation
2363  * @phydev: target phy_device struct
2364  */
2365 int genphy_restart_aneg(struct phy_device *phydev)
2366 {
2367 	/* Don't isolate the PHY if we're negotiating */
2368 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2369 			  BMCR_ANENABLE | BMCR_ANRESTART);
2370 }
2371 EXPORT_SYMBOL(genphy_restart_aneg);
2372 
2373 /**
2374  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2375  * @phydev: target phy_device struct
2376  * @restart: whether aneg restart is requested
2377  *
2378  * Check, and restart auto-negotiation if needed.
2379  */
2380 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2381 {
2382 	int ret;
2383 
2384 	if (!restart) {
2385 		/* Advertisement hasn't changed, but maybe aneg was never on to
2386 		 * begin with?  Or maybe phy was isolated?
2387 		 */
2388 		ret = phy_read(phydev, MII_BMCR);
2389 		if (ret < 0)
2390 			return ret;
2391 
2392 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2393 			restart = true;
2394 	}
2395 
2396 	if (restart)
2397 		return genphy_restart_aneg(phydev);
2398 
2399 	return 0;
2400 }
2401 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2402 
2403 /**
2404  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2405  * @phydev: target phy_device struct
2406  * @changed: whether autoneg is requested
2407  *
2408  * Description: If auto-negotiation is enabled, we configure the
2409  *   advertising, and then restart auto-negotiation.  If it is not
2410  *   enabled, then we write the BMCR.
2411  */
2412 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2413 {
2414 	int err;
2415 
2416 	err = genphy_c45_an_config_eee_aneg(phydev);
2417 	if (err < 0)
2418 		return err;
2419 	else if (err)
2420 		changed = true;
2421 
2422 	err = genphy_setup_master_slave(phydev);
2423 	if (err < 0)
2424 		return err;
2425 	else if (err)
2426 		changed = true;
2427 
2428 	if (AUTONEG_ENABLE != phydev->autoneg)
2429 		return genphy_setup_forced(phydev);
2430 
2431 	err = genphy_config_advert(phydev);
2432 	if (err < 0) /* error */
2433 		return err;
2434 	else if (err)
2435 		changed = true;
2436 
2437 	return genphy_check_and_restart_aneg(phydev, changed);
2438 }
2439 EXPORT_SYMBOL(__genphy_config_aneg);
2440 
2441 /**
2442  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2443  * @phydev: target phy_device struct
2444  *
2445  * Description: If auto-negotiation is enabled, we configure the
2446  *   advertising, and then restart auto-negotiation.  If it is not
2447  *   enabled, then we write the BMCR. This function is intended
2448  *   for use with Clause 37 1000Base-X mode.
2449  */
2450 int genphy_c37_config_aneg(struct phy_device *phydev)
2451 {
2452 	int err, changed;
2453 
2454 	if (phydev->autoneg != AUTONEG_ENABLE)
2455 		return genphy_setup_forced(phydev);
2456 
2457 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2458 			 BMCR_SPEED1000);
2459 	if (err)
2460 		return err;
2461 
2462 	changed = genphy_c37_config_advert(phydev);
2463 	if (changed < 0) /* error */
2464 		return changed;
2465 
2466 	if (!changed) {
2467 		/* Advertisement hasn't changed, but maybe aneg was never on to
2468 		 * begin with?  Or maybe phy was isolated?
2469 		 */
2470 		int ctl = phy_read(phydev, MII_BMCR);
2471 
2472 		if (ctl < 0)
2473 			return ctl;
2474 
2475 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2476 			changed = 1; /* do restart aneg */
2477 	}
2478 
2479 	/* Only restart aneg if we are advertising something different
2480 	 * than we were before.
2481 	 */
2482 	if (changed > 0)
2483 		return genphy_restart_aneg(phydev);
2484 
2485 	return 0;
2486 }
2487 EXPORT_SYMBOL(genphy_c37_config_aneg);
2488 
2489 /**
2490  * genphy_aneg_done - return auto-negotiation status
2491  * @phydev: target phy_device struct
2492  *
2493  * Description: Reads the status register and returns 0 either if
2494  *   auto-negotiation is incomplete, or if there was an error.
2495  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2496  */
2497 int genphy_aneg_done(struct phy_device *phydev)
2498 {
2499 	int retval = phy_read(phydev, MII_BMSR);
2500 
2501 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2502 }
2503 EXPORT_SYMBOL(genphy_aneg_done);
2504 
2505 /**
2506  * genphy_update_link - update link status in @phydev
2507  * @phydev: target phy_device struct
2508  *
2509  * Description: Update the value in phydev->link to reflect the
2510  *   current link value.  In order to do this, we need to read
2511  *   the status register twice, keeping the second value.
2512  */
2513 int genphy_update_link(struct phy_device *phydev)
2514 {
2515 	int status = 0, bmcr;
2516 
2517 	bmcr = phy_read(phydev, MII_BMCR);
2518 	if (bmcr < 0)
2519 		return bmcr;
2520 
2521 	/* Autoneg is being started, therefore disregard BMSR value and
2522 	 * report link as down.
2523 	 */
2524 	if (bmcr & BMCR_ANRESTART)
2525 		goto done;
2526 
2527 	/* The link state is latched low so that momentary link
2528 	 * drops can be detected. Do not double-read the status
2529 	 * in polling mode to detect such short link drops except
2530 	 * the link was already down.
2531 	 */
2532 	if (!phy_polling_mode(phydev) || !phydev->link) {
2533 		status = phy_read(phydev, MII_BMSR);
2534 		if (status < 0)
2535 			return status;
2536 		else if (status & BMSR_LSTATUS)
2537 			goto done;
2538 	}
2539 
2540 	/* Read link and autonegotiation status */
2541 	status = phy_read(phydev, MII_BMSR);
2542 	if (status < 0)
2543 		return status;
2544 done:
2545 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2546 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2547 
2548 	/* Consider the case that autoneg was started and "aneg complete"
2549 	 * bit has been reset, but "link up" bit not yet.
2550 	 */
2551 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2552 		phydev->link = 0;
2553 
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL(genphy_update_link);
2557 
2558 int genphy_read_lpa(struct phy_device *phydev)
2559 {
2560 	int lpa, lpagb;
2561 
2562 	if (phydev->autoneg == AUTONEG_ENABLE) {
2563 		if (!phydev->autoneg_complete) {
2564 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2565 							0);
2566 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2567 			return 0;
2568 		}
2569 
2570 		if (phydev->is_gigabit_capable) {
2571 			lpagb = phy_read(phydev, MII_STAT1000);
2572 			if (lpagb < 0)
2573 				return lpagb;
2574 
2575 			if (lpagb & LPA_1000MSFAIL) {
2576 				int adv = phy_read(phydev, MII_CTRL1000);
2577 
2578 				if (adv < 0)
2579 					return adv;
2580 
2581 				if (adv & CTL1000_ENABLE_MASTER)
2582 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2583 				else
2584 					phydev_err(phydev, "Master/Slave resolution failed\n");
2585 				return -ENOLINK;
2586 			}
2587 
2588 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2589 							lpagb);
2590 		}
2591 
2592 		lpa = phy_read(phydev, MII_LPA);
2593 		if (lpa < 0)
2594 			return lpa;
2595 
2596 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2597 	} else {
2598 		linkmode_zero(phydev->lp_advertising);
2599 	}
2600 
2601 	return 0;
2602 }
2603 EXPORT_SYMBOL(genphy_read_lpa);
2604 
2605 /**
2606  * genphy_read_status_fixed - read the link parameters for !aneg mode
2607  * @phydev: target phy_device struct
2608  *
2609  * Read the current duplex and speed state for a PHY operating with
2610  * autonegotiation disabled.
2611  */
2612 int genphy_read_status_fixed(struct phy_device *phydev)
2613 {
2614 	int bmcr = phy_read(phydev, MII_BMCR);
2615 
2616 	if (bmcr < 0)
2617 		return bmcr;
2618 
2619 	if (bmcr & BMCR_FULLDPLX)
2620 		phydev->duplex = DUPLEX_FULL;
2621 	else
2622 		phydev->duplex = DUPLEX_HALF;
2623 
2624 	if (bmcr & BMCR_SPEED1000)
2625 		phydev->speed = SPEED_1000;
2626 	else if (bmcr & BMCR_SPEED100)
2627 		phydev->speed = SPEED_100;
2628 	else
2629 		phydev->speed = SPEED_10;
2630 
2631 	return 0;
2632 }
2633 EXPORT_SYMBOL(genphy_read_status_fixed);
2634 
2635 /**
2636  * genphy_read_status - check the link status and update current link state
2637  * @phydev: target phy_device struct
2638  *
2639  * Description: Check the link, then figure out the current state
2640  *   by comparing what we advertise with what the link partner
2641  *   advertises.  Start by checking the gigabit possibilities,
2642  *   then move on to 10/100.
2643  */
2644 int genphy_read_status(struct phy_device *phydev)
2645 {
2646 	int err, old_link = phydev->link;
2647 
2648 	/* Update the link, but return if there was an error */
2649 	err = genphy_update_link(phydev);
2650 	if (err)
2651 		return err;
2652 
2653 	/* why bother the PHY if nothing can have changed */
2654 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2655 		return 0;
2656 
2657 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2658 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2659 	phydev->speed = SPEED_UNKNOWN;
2660 	phydev->duplex = DUPLEX_UNKNOWN;
2661 	phydev->pause = 0;
2662 	phydev->asym_pause = 0;
2663 
2664 	if (phydev->is_gigabit_capable) {
2665 		err = genphy_read_master_slave(phydev);
2666 		if (err < 0)
2667 			return err;
2668 	}
2669 
2670 	err = genphy_read_lpa(phydev);
2671 	if (err < 0)
2672 		return err;
2673 
2674 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2675 		phy_resolve_aneg_linkmode(phydev);
2676 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2677 		err = genphy_read_status_fixed(phydev);
2678 		if (err < 0)
2679 			return err;
2680 	}
2681 
2682 	return 0;
2683 }
2684 EXPORT_SYMBOL(genphy_read_status);
2685 
2686 /**
2687  * genphy_c37_read_status - check the link status and update current link state
2688  * @phydev: target phy_device struct
2689  * @changed: pointer where to store if link changed
2690  *
2691  * Description: Check the link, then figure out the current state
2692  *   by comparing what we advertise with what the link partner
2693  *   advertises. This function is for Clause 37 1000Base-X mode.
2694  *
2695  *   If link has changed, @changed is set to true, false otherwise.
2696  */
2697 int genphy_c37_read_status(struct phy_device *phydev, bool *changed)
2698 {
2699 	int lpa, err, old_link = phydev->link;
2700 
2701 	/* Update the link, but return if there was an error */
2702 	err = genphy_update_link(phydev);
2703 	if (err)
2704 		return err;
2705 
2706 	/* why bother the PHY if nothing can have changed */
2707 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) {
2708 		*changed = false;
2709 		return 0;
2710 	}
2711 
2712 	/* Signal link has changed */
2713 	*changed = true;
2714 	phydev->duplex = DUPLEX_UNKNOWN;
2715 	phydev->pause = 0;
2716 	phydev->asym_pause = 0;
2717 
2718 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2719 		lpa = phy_read(phydev, MII_LPA);
2720 		if (lpa < 0)
2721 			return lpa;
2722 
2723 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2724 				 phydev->lp_advertising, lpa & LPA_LPACK);
2725 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2726 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2727 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2728 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2729 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2730 				 phydev->lp_advertising,
2731 				 lpa & LPA_1000XPAUSE_ASYM);
2732 
2733 		phy_resolve_aneg_linkmode(phydev);
2734 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2735 		int bmcr = phy_read(phydev, MII_BMCR);
2736 
2737 		if (bmcr < 0)
2738 			return bmcr;
2739 
2740 		if (bmcr & BMCR_FULLDPLX)
2741 			phydev->duplex = DUPLEX_FULL;
2742 		else
2743 			phydev->duplex = DUPLEX_HALF;
2744 	}
2745 
2746 	return 0;
2747 }
2748 EXPORT_SYMBOL(genphy_c37_read_status);
2749 
2750 /**
2751  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2752  * @phydev: target phy_device struct
2753  *
2754  * Description: Perform a software PHY reset using the standard
2755  * BMCR_RESET bit and poll for the reset bit to be cleared.
2756  *
2757  * Returns: 0 on success, < 0 on failure
2758  */
2759 int genphy_soft_reset(struct phy_device *phydev)
2760 {
2761 	u16 res = BMCR_RESET;
2762 	int ret;
2763 
2764 	if (phydev->autoneg == AUTONEG_ENABLE)
2765 		res |= BMCR_ANRESTART;
2766 
2767 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2768 	if (ret < 0)
2769 		return ret;
2770 
2771 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2772 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2773 	 * be cleared after soft reset.
2774 	 */
2775 	phydev->suspended = 0;
2776 
2777 	ret = phy_poll_reset(phydev);
2778 	if (ret)
2779 		return ret;
2780 
2781 	/* BMCR may be reset to defaults */
2782 	if (phydev->autoneg == AUTONEG_DISABLE)
2783 		ret = genphy_setup_forced(phydev);
2784 
2785 	return ret;
2786 }
2787 EXPORT_SYMBOL(genphy_soft_reset);
2788 
2789 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2790 {
2791 	/* It seems there are cases where the interrupts are handled by another
2792 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2793 	 * need any other interraction from phylib. In this case, just trigger
2794 	 * the state machine directly.
2795 	 */
2796 	phy_trigger_machine(phydev);
2797 
2798 	return 0;
2799 }
2800 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2801 
2802 /**
2803  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2804  * @phydev: target phy_device struct
2805  *
2806  * Description: Reads the PHY's abilities and populates
2807  * phydev->supported accordingly.
2808  *
2809  * Returns: 0 on success, < 0 on failure
2810  */
2811 int genphy_read_abilities(struct phy_device *phydev)
2812 {
2813 	int val;
2814 
2815 	linkmode_set_bit_array(phy_basic_ports_array,
2816 			       ARRAY_SIZE(phy_basic_ports_array),
2817 			       phydev->supported);
2818 
2819 	val = phy_read(phydev, MII_BMSR);
2820 	if (val < 0)
2821 		return val;
2822 
2823 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2824 			 val & BMSR_ANEGCAPABLE);
2825 
2826 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2827 			 val & BMSR_100FULL);
2828 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2829 			 val & BMSR_100HALF);
2830 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2831 			 val & BMSR_10FULL);
2832 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2833 			 val & BMSR_10HALF);
2834 
2835 	if (val & BMSR_ESTATEN) {
2836 		val = phy_read(phydev, MII_ESTATUS);
2837 		if (val < 0)
2838 			return val;
2839 
2840 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2841 				 phydev->supported, val & ESTATUS_1000_TFULL);
2842 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2843 				 phydev->supported, val & ESTATUS_1000_THALF);
2844 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2845 				 phydev->supported, val & ESTATUS_1000_XFULL);
2846 	}
2847 
2848 	/* This is optional functionality. If not supported, we may get an error
2849 	 * which should be ignored.
2850 	 */
2851 	genphy_c45_read_eee_abilities(phydev);
2852 
2853 	return 0;
2854 }
2855 EXPORT_SYMBOL(genphy_read_abilities);
2856 
2857 /* This is used for the phy device which doesn't support the MMD extended
2858  * register access, but it does have side effect when we are trying to access
2859  * the MMD register via indirect method.
2860  */
2861 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2862 {
2863 	return -EOPNOTSUPP;
2864 }
2865 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2866 
2867 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2868 				 u16 regnum, u16 val)
2869 {
2870 	return -EOPNOTSUPP;
2871 }
2872 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2873 
2874 int genphy_suspend(struct phy_device *phydev)
2875 {
2876 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2877 }
2878 EXPORT_SYMBOL(genphy_suspend);
2879 
2880 int genphy_resume(struct phy_device *phydev)
2881 {
2882 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2883 }
2884 EXPORT_SYMBOL(genphy_resume);
2885 
2886 int genphy_loopback(struct phy_device *phydev, bool enable)
2887 {
2888 	if (enable) {
2889 		u16 ctl = BMCR_LOOPBACK;
2890 		int ret, val;
2891 
2892 		ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2893 
2894 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2895 
2896 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2897 					    val & BMSR_LSTATUS,
2898 				    5000, 500000, true);
2899 		if (ret)
2900 			return ret;
2901 	} else {
2902 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2903 
2904 		phy_config_aneg(phydev);
2905 	}
2906 
2907 	return 0;
2908 }
2909 EXPORT_SYMBOL(genphy_loopback);
2910 
2911 /**
2912  * phy_remove_link_mode - Remove a supported link mode
2913  * @phydev: phy_device structure to remove link mode from
2914  * @link_mode: Link mode to be removed
2915  *
2916  * Description: Some MACs don't support all link modes which the PHY
2917  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2918  * to remove a link mode.
2919  */
2920 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2921 {
2922 	linkmode_clear_bit(link_mode, phydev->supported);
2923 	phy_advertise_supported(phydev);
2924 }
2925 EXPORT_SYMBOL(phy_remove_link_mode);
2926 
2927 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2928 {
2929 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2930 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2931 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2932 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2933 }
2934 
2935 /**
2936  * phy_advertise_supported - Advertise all supported modes
2937  * @phydev: target phy_device struct
2938  *
2939  * Description: Called to advertise all supported modes, doesn't touch
2940  * pause mode advertising.
2941  */
2942 void phy_advertise_supported(struct phy_device *phydev)
2943 {
2944 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2945 
2946 	linkmode_copy(new, phydev->supported);
2947 	phy_copy_pause_bits(new, phydev->advertising);
2948 	linkmode_copy(phydev->advertising, new);
2949 }
2950 EXPORT_SYMBOL(phy_advertise_supported);
2951 
2952 /**
2953  * phy_advertise_eee_all - Advertise all supported EEE modes
2954  * @phydev: target phy_device struct
2955  *
2956  * Description: Per default phylib preserves the EEE advertising at the time of
2957  * phy probing, which might be a subset of the supported EEE modes. Use this
2958  * function when all supported EEE modes should be advertised. This does not
2959  * trigger auto-negotiation, so must be called before phy_start()/
2960  * phylink_start() which will start auto-negotiation.
2961  */
2962 void phy_advertise_eee_all(struct phy_device *phydev)
2963 {
2964 	linkmode_copy(phydev->advertising_eee, phydev->supported_eee);
2965 }
2966 EXPORT_SYMBOL_GPL(phy_advertise_eee_all);
2967 
2968 /**
2969  * phy_support_eee - Set initial EEE policy configuration
2970  * @phydev: Target phy_device struct
2971  *
2972  * This function configures the initial policy for Energy Efficient Ethernet
2973  * (EEE) on the specified PHY device, influencing that EEE capabilities are
2974  * advertised before the link is established. It should be called during PHY
2975  * registration by the MAC driver and/or the PHY driver (for SmartEEE PHYs)
2976  * if MAC supports LPI or PHY is capable to compensate missing LPI functionality
2977  * of the MAC.
2978  *
2979  * The function sets default EEE policy parameters, including preparing the PHY
2980  * to advertise EEE capabilities based on hardware support.
2981  *
2982  * It also sets the expected configuration for Low Power Idle (LPI) in the MAC
2983  * driver. If the PHY framework determines that both local and remote
2984  * advertisements support EEE, and the negotiated link mode is compatible with
2985  * EEE, it will set enable_tx_lpi = true. The MAC driver is expected to act on
2986  * this setting by enabling the LPI timer if enable_tx_lpi is set.
2987  */
2988 void phy_support_eee(struct phy_device *phydev)
2989 {
2990 	linkmode_copy(phydev->advertising_eee, phydev->supported_eee);
2991 	phydev->eee_cfg.tx_lpi_enabled = true;
2992 	phydev->eee_cfg.eee_enabled = true;
2993 }
2994 EXPORT_SYMBOL(phy_support_eee);
2995 
2996 /**
2997  * phy_support_sym_pause - Enable support of symmetrical pause
2998  * @phydev: target phy_device struct
2999  *
3000  * Description: Called by the MAC to indicate is supports symmetrical
3001  * Pause, but not asym pause.
3002  */
3003 void phy_support_sym_pause(struct phy_device *phydev)
3004 {
3005 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
3006 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
3007 }
3008 EXPORT_SYMBOL(phy_support_sym_pause);
3009 
3010 /**
3011  * phy_support_asym_pause - Enable support of asym pause
3012  * @phydev: target phy_device struct
3013  *
3014  * Description: Called by the MAC to indicate is supports Asym Pause.
3015  */
3016 void phy_support_asym_pause(struct phy_device *phydev)
3017 {
3018 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
3019 }
3020 EXPORT_SYMBOL(phy_support_asym_pause);
3021 
3022 /**
3023  * phy_set_sym_pause - Configure symmetric Pause
3024  * @phydev: target phy_device struct
3025  * @rx: Receiver Pause is supported
3026  * @tx: Transmit Pause is supported
3027  * @autoneg: Auto neg should be used
3028  *
3029  * Description: Configure advertised Pause support depending on if
3030  * receiver pause and pause auto neg is supported. Generally called
3031  * from the set_pauseparam .ndo.
3032  */
3033 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
3034 		       bool autoneg)
3035 {
3036 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
3037 
3038 	if (rx && tx && autoneg)
3039 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3040 				 phydev->supported);
3041 
3042 	linkmode_copy(phydev->advertising, phydev->supported);
3043 }
3044 EXPORT_SYMBOL(phy_set_sym_pause);
3045 
3046 /**
3047  * phy_set_asym_pause - Configure Pause and Asym Pause
3048  * @phydev: target phy_device struct
3049  * @rx: Receiver Pause is supported
3050  * @tx: Transmit Pause is supported
3051  *
3052  * Description: Configure advertised Pause support depending on if
3053  * transmit and receiver pause is supported. If there has been a
3054  * change in adverting, trigger a new autoneg. Generally called from
3055  * the set_pauseparam .ndo.
3056  */
3057 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
3058 {
3059 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
3060 
3061 	linkmode_copy(oldadv, phydev->advertising);
3062 	linkmode_set_pause(phydev->advertising, tx, rx);
3063 
3064 	if (!linkmode_equal(oldadv, phydev->advertising) &&
3065 	    phydev->autoneg)
3066 		phy_start_aneg(phydev);
3067 }
3068 EXPORT_SYMBOL(phy_set_asym_pause);
3069 
3070 /**
3071  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
3072  * @phydev: phy_device struct
3073  * @pp: requested pause configuration
3074  *
3075  * Description: Test if the PHY/MAC combination supports the Pause
3076  * configuration the user is requesting. Returns True if it is
3077  * supported, false otherwise.
3078  */
3079 bool phy_validate_pause(struct phy_device *phydev,
3080 			struct ethtool_pauseparam *pp)
3081 {
3082 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3083 			       phydev->supported) && pp->rx_pause)
3084 		return false;
3085 
3086 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3087 			       phydev->supported) &&
3088 	    pp->rx_pause != pp->tx_pause)
3089 		return false;
3090 
3091 	return true;
3092 }
3093 EXPORT_SYMBOL(phy_validate_pause);
3094 
3095 /**
3096  * phy_get_pause - resolve negotiated pause modes
3097  * @phydev: phy_device struct
3098  * @tx_pause: pointer to bool to indicate whether transmit pause should be
3099  * enabled.
3100  * @rx_pause: pointer to bool to indicate whether receive pause should be
3101  * enabled.
3102  *
3103  * Resolve and return the flow control modes according to the negotiation
3104  * result. This includes checking that we are operating in full duplex mode.
3105  * See linkmode_resolve_pause() for further details.
3106  */
3107 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
3108 {
3109 	if (phydev->duplex != DUPLEX_FULL) {
3110 		*tx_pause = false;
3111 		*rx_pause = false;
3112 		return;
3113 	}
3114 
3115 	return linkmode_resolve_pause(phydev->advertising,
3116 				      phydev->lp_advertising,
3117 				      tx_pause, rx_pause);
3118 }
3119 EXPORT_SYMBOL(phy_get_pause);
3120 
3121 #if IS_ENABLED(CONFIG_OF_MDIO)
3122 static int phy_get_int_delay_property(struct device *dev, const char *name)
3123 {
3124 	s32 int_delay;
3125 	int ret;
3126 
3127 	ret = device_property_read_u32(dev, name, &int_delay);
3128 	if (ret)
3129 		return ret;
3130 
3131 	return int_delay;
3132 }
3133 #else
3134 static int phy_get_int_delay_property(struct device *dev, const char *name)
3135 {
3136 	return -EINVAL;
3137 }
3138 #endif
3139 
3140 /**
3141  * phy_get_internal_delay - returns the index of the internal delay
3142  * @phydev: phy_device struct
3143  * @dev: pointer to the devices device struct
3144  * @delay_values: array of delays the PHY supports
3145  * @size: the size of the delay array
3146  * @is_rx: boolean to indicate to get the rx internal delay
3147  *
3148  * Returns the index within the array of internal delay passed in.
3149  * If the device property is not present then the interface type is checked
3150  * if the interface defines use of internal delay then a 1 is returned otherwise
3151  * a 0 is returned.
3152  * The array must be in ascending order. If PHY does not have an ascending order
3153  * array then size = 0 and the value of the delay property is returned.
3154  * Return -EINVAL if the delay is invalid or cannot be found.
3155  */
3156 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
3157 			   const int *delay_values, int size, bool is_rx)
3158 {
3159 	s32 delay;
3160 	int i;
3161 
3162 	if (is_rx) {
3163 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
3164 		if (delay < 0 && size == 0) {
3165 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
3166 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
3167 				return 1;
3168 			else
3169 				return 0;
3170 		}
3171 
3172 	} else {
3173 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
3174 		if (delay < 0 && size == 0) {
3175 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
3176 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
3177 				return 1;
3178 			else
3179 				return 0;
3180 		}
3181 	}
3182 
3183 	if (delay < 0)
3184 		return delay;
3185 
3186 	if (size == 0)
3187 		return delay;
3188 
3189 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
3190 		phydev_err(phydev, "Delay %d is out of range\n", delay);
3191 		return -EINVAL;
3192 	}
3193 
3194 	if (delay == delay_values[0])
3195 		return 0;
3196 
3197 	for (i = 1; i < size; i++) {
3198 		if (delay == delay_values[i])
3199 			return i;
3200 
3201 		/* Find an approximate index by looking up the table */
3202 		if (delay > delay_values[i - 1] &&
3203 		    delay < delay_values[i]) {
3204 			if (delay - delay_values[i - 1] <
3205 			    delay_values[i] - delay)
3206 				return i - 1;
3207 			else
3208 				return i;
3209 		}
3210 	}
3211 
3212 	phydev_err(phydev, "error finding internal delay index for %d\n",
3213 		   delay);
3214 
3215 	return -EINVAL;
3216 }
3217 EXPORT_SYMBOL(phy_get_internal_delay);
3218 
3219 static int phy_led_set_brightness(struct led_classdev *led_cdev,
3220 				  enum led_brightness value)
3221 {
3222 	struct phy_led *phyled = to_phy_led(led_cdev);
3223 	struct phy_device *phydev = phyled->phydev;
3224 	int err;
3225 
3226 	mutex_lock(&phydev->lock);
3227 	err = phydev->drv->led_brightness_set(phydev, phyled->index, value);
3228 	mutex_unlock(&phydev->lock);
3229 
3230 	return err;
3231 }
3232 
3233 static int phy_led_blink_set(struct led_classdev *led_cdev,
3234 			     unsigned long *delay_on,
3235 			     unsigned long *delay_off)
3236 {
3237 	struct phy_led *phyled = to_phy_led(led_cdev);
3238 	struct phy_device *phydev = phyled->phydev;
3239 	int err;
3240 
3241 	mutex_lock(&phydev->lock);
3242 	err = phydev->drv->led_blink_set(phydev, phyled->index,
3243 					 delay_on, delay_off);
3244 	mutex_unlock(&phydev->lock);
3245 
3246 	return err;
3247 }
3248 
3249 static __maybe_unused struct device *
3250 phy_led_hw_control_get_device(struct led_classdev *led_cdev)
3251 {
3252 	struct phy_led *phyled = to_phy_led(led_cdev);
3253 	struct phy_device *phydev = phyled->phydev;
3254 
3255 	if (phydev->attached_dev)
3256 		return &phydev->attached_dev->dev;
3257 	return NULL;
3258 }
3259 
3260 static int __maybe_unused
3261 phy_led_hw_control_get(struct led_classdev *led_cdev,
3262 		       unsigned long *rules)
3263 {
3264 	struct phy_led *phyled = to_phy_led(led_cdev);
3265 	struct phy_device *phydev = phyled->phydev;
3266 	int err;
3267 
3268 	mutex_lock(&phydev->lock);
3269 	err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules);
3270 	mutex_unlock(&phydev->lock);
3271 
3272 	return err;
3273 }
3274 
3275 static int __maybe_unused
3276 phy_led_hw_control_set(struct led_classdev *led_cdev,
3277 		       unsigned long rules)
3278 {
3279 	struct phy_led *phyled = to_phy_led(led_cdev);
3280 	struct phy_device *phydev = phyled->phydev;
3281 	int err;
3282 
3283 	mutex_lock(&phydev->lock);
3284 	err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules);
3285 	mutex_unlock(&phydev->lock);
3286 
3287 	return err;
3288 }
3289 
3290 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev,
3291 						  unsigned long rules)
3292 {
3293 	struct phy_led *phyled = to_phy_led(led_cdev);
3294 	struct phy_device *phydev = phyled->phydev;
3295 	int err;
3296 
3297 	mutex_lock(&phydev->lock);
3298 	err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules);
3299 	mutex_unlock(&phydev->lock);
3300 
3301 	return err;
3302 }
3303 
3304 static void phy_leds_unregister(struct phy_device *phydev)
3305 {
3306 	struct phy_led *phyled;
3307 
3308 	list_for_each_entry(phyled, &phydev->leds, list) {
3309 		led_classdev_unregister(&phyled->led_cdev);
3310 	}
3311 }
3312 
3313 static int of_phy_led(struct phy_device *phydev,
3314 		      struct device_node *led)
3315 {
3316 	struct device *dev = &phydev->mdio.dev;
3317 	struct led_init_data init_data = {};
3318 	struct led_classdev *cdev;
3319 	unsigned long modes = 0;
3320 	struct phy_led *phyled;
3321 	u32 index;
3322 	int err;
3323 
3324 	phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL);
3325 	if (!phyled)
3326 		return -ENOMEM;
3327 
3328 	cdev = &phyled->led_cdev;
3329 	phyled->phydev = phydev;
3330 
3331 	err = of_property_read_u32(led, "reg", &index);
3332 	if (err)
3333 		return err;
3334 	if (index > U8_MAX)
3335 		return -EINVAL;
3336 
3337 	if (of_property_read_bool(led, "active-low"))
3338 		set_bit(PHY_LED_ACTIVE_LOW, &modes);
3339 	if (of_property_read_bool(led, "inactive-high-impedance"))
3340 		set_bit(PHY_LED_INACTIVE_HIGH_IMPEDANCE, &modes);
3341 
3342 	if (modes) {
3343 		/* Return error if asked to set polarity modes but not supported */
3344 		if (!phydev->drv->led_polarity_set)
3345 			return -EINVAL;
3346 
3347 		err = phydev->drv->led_polarity_set(phydev, index, modes);
3348 		if (err)
3349 			return err;
3350 	}
3351 
3352 	phyled->index = index;
3353 	if (phydev->drv->led_brightness_set)
3354 		cdev->brightness_set_blocking = phy_led_set_brightness;
3355 	if (phydev->drv->led_blink_set)
3356 		cdev->blink_set = phy_led_blink_set;
3357 
3358 #ifdef CONFIG_LEDS_TRIGGERS
3359 	if (phydev->drv->led_hw_is_supported &&
3360 	    phydev->drv->led_hw_control_set &&
3361 	    phydev->drv->led_hw_control_get) {
3362 		cdev->hw_control_is_supported = phy_led_hw_is_supported;
3363 		cdev->hw_control_set = phy_led_hw_control_set;
3364 		cdev->hw_control_get = phy_led_hw_control_get;
3365 		cdev->hw_control_trigger = "netdev";
3366 	}
3367 
3368 	cdev->hw_control_get_device = phy_led_hw_control_get_device;
3369 #endif
3370 	cdev->max_brightness = 1;
3371 	init_data.devicename = dev_name(&phydev->mdio.dev);
3372 	init_data.fwnode = of_fwnode_handle(led);
3373 	init_data.devname_mandatory = true;
3374 
3375 	err = led_classdev_register_ext(dev, cdev, &init_data);
3376 	if (err)
3377 		return err;
3378 
3379 	list_add(&phyled->list, &phydev->leds);
3380 
3381 	return 0;
3382 }
3383 
3384 static int of_phy_leds(struct phy_device *phydev)
3385 {
3386 	struct device_node *node = phydev->mdio.dev.of_node;
3387 	struct device_node *leds, *led;
3388 	int err;
3389 
3390 	if (!IS_ENABLED(CONFIG_OF_MDIO))
3391 		return 0;
3392 
3393 	if (!node)
3394 		return 0;
3395 
3396 	leds = of_get_child_by_name(node, "leds");
3397 	if (!leds)
3398 		return 0;
3399 
3400 	for_each_available_child_of_node(leds, led) {
3401 		err = of_phy_led(phydev, led);
3402 		if (err) {
3403 			of_node_put(led);
3404 			phy_leds_unregister(phydev);
3405 			return err;
3406 		}
3407 	}
3408 
3409 	return 0;
3410 }
3411 
3412 /**
3413  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
3414  * @fwnode: pointer to the mdio_device's fwnode
3415  *
3416  * If successful, returns a pointer to the mdio_device with the embedded
3417  * struct device refcount incremented by one, or NULL on failure.
3418  * The caller should call put_device() on the mdio_device after its use.
3419  */
3420 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
3421 {
3422 	struct device *d;
3423 
3424 	if (!fwnode)
3425 		return NULL;
3426 
3427 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
3428 	if (!d)
3429 		return NULL;
3430 
3431 	return to_mdio_device(d);
3432 }
3433 EXPORT_SYMBOL(fwnode_mdio_find_device);
3434 
3435 /**
3436  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
3437  *
3438  * @phy_fwnode: Pointer to the phy's fwnode.
3439  *
3440  * If successful, returns a pointer to the phy_device with the embedded
3441  * struct device refcount incremented by one, or NULL on failure.
3442  */
3443 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
3444 {
3445 	struct mdio_device *mdiodev;
3446 
3447 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
3448 	if (!mdiodev)
3449 		return NULL;
3450 
3451 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
3452 		return to_phy_device(&mdiodev->dev);
3453 
3454 	put_device(&mdiodev->dev);
3455 
3456 	return NULL;
3457 }
3458 EXPORT_SYMBOL(fwnode_phy_find_device);
3459 
3460 /**
3461  * device_phy_find_device - For the given device, get the phy_device
3462  * @dev: Pointer to the given device
3463  *
3464  * Refer return conditions of fwnode_phy_find_device().
3465  */
3466 struct phy_device *device_phy_find_device(struct device *dev)
3467 {
3468 	return fwnode_phy_find_device(dev_fwnode(dev));
3469 }
3470 EXPORT_SYMBOL_GPL(device_phy_find_device);
3471 
3472 /**
3473  * fwnode_get_phy_node - Get the phy_node using the named reference.
3474  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
3475  *
3476  * Refer return conditions of fwnode_find_reference().
3477  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
3478  * and "phy-device" are not supported in ACPI. DT supports all the three
3479  * named references to the phy node.
3480  */
3481 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode)
3482 {
3483 	struct fwnode_handle *phy_node;
3484 
3485 	/* Only phy-handle is used for ACPI */
3486 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3487 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3488 		return phy_node;
3489 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
3490 	if (IS_ERR(phy_node))
3491 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3492 	return phy_node;
3493 }
3494 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3495 
3496 /**
3497  * phy_probe - probe and init a PHY device
3498  * @dev: device to probe and init
3499  *
3500  * Take care of setting up the phy_device structure, set the state to READY.
3501  */
3502 static int phy_probe(struct device *dev)
3503 {
3504 	struct phy_device *phydev = to_phy_device(dev);
3505 	struct device_driver *drv = phydev->mdio.dev.driver;
3506 	struct phy_driver *phydrv = to_phy_driver(drv);
3507 	int err = 0;
3508 
3509 	phydev->drv = phydrv;
3510 
3511 	/* Disable the interrupt if the PHY doesn't support it
3512 	 * but the interrupt is still a valid one
3513 	 */
3514 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3515 		phydev->irq = PHY_POLL;
3516 
3517 	if (phydrv->flags & PHY_IS_INTERNAL)
3518 		phydev->is_internal = true;
3519 
3520 	/* Deassert the reset signal */
3521 	phy_device_reset(phydev, 0);
3522 
3523 	if (phydev->drv->probe) {
3524 		err = phydev->drv->probe(phydev);
3525 		if (err)
3526 			goto out;
3527 	}
3528 
3529 	phy_disable_interrupts(phydev);
3530 
3531 	/* Start out supporting everything. Eventually,
3532 	 * a controller will attach, and may modify one
3533 	 * or both of these values
3534 	 */
3535 	if (phydrv->features) {
3536 		linkmode_copy(phydev->supported, phydrv->features);
3537 		genphy_c45_read_eee_abilities(phydev);
3538 	}
3539 	else if (phydrv->get_features)
3540 		err = phydrv->get_features(phydev);
3541 	else if (phydev->is_c45)
3542 		err = genphy_c45_pma_read_abilities(phydev);
3543 	else
3544 		err = genphy_read_abilities(phydev);
3545 
3546 	if (err)
3547 		goto out;
3548 
3549 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3550 			       phydev->supported))
3551 		phydev->autoneg = 0;
3552 
3553 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3554 			      phydev->supported))
3555 		phydev->is_gigabit_capable = 1;
3556 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3557 			      phydev->supported))
3558 		phydev->is_gigabit_capable = 1;
3559 
3560 	of_set_phy_supported(phydev);
3561 	phy_advertise_supported(phydev);
3562 
3563 	/* Get PHY default EEE advertising modes and handle them as potentially
3564 	 * safe initial configuration.
3565 	 */
3566 	err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee);
3567 	if (err)
3568 		goto out;
3569 
3570 	/* There is no "enabled" flag. If PHY is advertising, assume it is
3571 	 * kind of enabled.
3572 	 */
3573 	phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee);
3574 
3575 	/* Some PHYs may advertise, by default, not support EEE modes. So,
3576 	 * we need to clean them.
3577 	 */
3578 	if (phydev->eee_enabled)
3579 		linkmode_and(phydev->advertising_eee, phydev->supported_eee,
3580 			     phydev->advertising_eee);
3581 
3582 	/* Get the EEE modes we want to prohibit. We will ask
3583 	 * the PHY stop advertising these mode later on
3584 	 */
3585 	of_set_phy_eee_broken(phydev);
3586 
3587 	/* The Pause Frame bits indicate that the PHY can support passing
3588 	 * pause frames. During autonegotiation, the PHYs will determine if
3589 	 * they should allow pause frames to pass.  The MAC driver should then
3590 	 * use that result to determine whether to enable flow control via
3591 	 * pause frames.
3592 	 *
3593 	 * Normally, PHY drivers should not set the Pause bits, and instead
3594 	 * allow phylib to do that.  However, there may be some situations
3595 	 * (e.g. hardware erratum) where the driver wants to set only one
3596 	 * of these bits.
3597 	 */
3598 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3599 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3600 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3601 				 phydev->supported);
3602 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3603 				 phydev->supported);
3604 	}
3605 
3606 	/* Set the state to READY by default */
3607 	phydev->state = PHY_READY;
3608 
3609 	/* Get the LEDs from the device tree, and instantiate standard
3610 	 * LEDs for them.
3611 	 */
3612 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3613 		err = of_phy_leds(phydev);
3614 
3615 out:
3616 	/* Re-assert the reset signal on error */
3617 	if (err)
3618 		phy_device_reset(phydev, 1);
3619 
3620 	return err;
3621 }
3622 
3623 static int phy_remove(struct device *dev)
3624 {
3625 	struct phy_device *phydev = to_phy_device(dev);
3626 
3627 	cancel_delayed_work_sync(&phydev->state_queue);
3628 
3629 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3630 		phy_leds_unregister(phydev);
3631 
3632 	phydev->state = PHY_DOWN;
3633 
3634 	sfp_bus_del_upstream(phydev->sfp_bus);
3635 	phydev->sfp_bus = NULL;
3636 
3637 	if (phydev->drv && phydev->drv->remove)
3638 		phydev->drv->remove(phydev);
3639 
3640 	/* Assert the reset signal */
3641 	phy_device_reset(phydev, 1);
3642 
3643 	phydev->drv = NULL;
3644 
3645 	return 0;
3646 }
3647 
3648 /**
3649  * phy_driver_register - register a phy_driver with the PHY layer
3650  * @new_driver: new phy_driver to register
3651  * @owner: module owning this PHY
3652  */
3653 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3654 {
3655 	int retval;
3656 
3657 	/* Either the features are hard coded, or dynamically
3658 	 * determined. It cannot be both.
3659 	 */
3660 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3661 		pr_err("%s: features and get_features must not both be set\n",
3662 		       new_driver->name);
3663 		return -EINVAL;
3664 	}
3665 
3666 	/* PHYLIB device drivers must not match using a DT compatible table
3667 	 * as this bypasses our checks that the mdiodev that is being matched
3668 	 * is backed by a struct phy_device. If such a case happens, we will
3669 	 * make out-of-bounds accesses and lockup in phydev->lock.
3670 	 */
3671 	if (WARN(new_driver->mdiodrv.driver.of_match_table,
3672 		 "%s: driver must not provide a DT match table\n",
3673 		 new_driver->name))
3674 		return -EINVAL;
3675 
3676 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3677 	new_driver->mdiodrv.driver.name = new_driver->name;
3678 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3679 	new_driver->mdiodrv.driver.probe = phy_probe;
3680 	new_driver->mdiodrv.driver.remove = phy_remove;
3681 	new_driver->mdiodrv.driver.owner = owner;
3682 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3683 
3684 	retval = driver_register(&new_driver->mdiodrv.driver);
3685 	if (retval) {
3686 		pr_err("%s: Error %d in registering driver\n",
3687 		       new_driver->name, retval);
3688 
3689 		return retval;
3690 	}
3691 
3692 	pr_debug("%s: Registered new driver\n", new_driver->name);
3693 
3694 	return 0;
3695 }
3696 EXPORT_SYMBOL(phy_driver_register);
3697 
3698 int phy_drivers_register(struct phy_driver *new_driver, int n,
3699 			 struct module *owner)
3700 {
3701 	int i, ret = 0;
3702 
3703 	for (i = 0; i < n; i++) {
3704 		ret = phy_driver_register(new_driver + i, owner);
3705 		if (ret) {
3706 			while (i-- > 0)
3707 				phy_driver_unregister(new_driver + i);
3708 			break;
3709 		}
3710 	}
3711 	return ret;
3712 }
3713 EXPORT_SYMBOL(phy_drivers_register);
3714 
3715 void phy_driver_unregister(struct phy_driver *drv)
3716 {
3717 	driver_unregister(&drv->mdiodrv.driver);
3718 }
3719 EXPORT_SYMBOL(phy_driver_unregister);
3720 
3721 void phy_drivers_unregister(struct phy_driver *drv, int n)
3722 {
3723 	int i;
3724 
3725 	for (i = 0; i < n; i++)
3726 		phy_driver_unregister(drv + i);
3727 }
3728 EXPORT_SYMBOL(phy_drivers_unregister);
3729 
3730 static struct phy_driver genphy_driver = {
3731 	.phy_id		= 0xffffffff,
3732 	.phy_id_mask	= 0xffffffff,
3733 	.name		= "Generic PHY",
3734 	.get_features	= genphy_read_abilities,
3735 	.suspend	= genphy_suspend,
3736 	.resume		= genphy_resume,
3737 	.set_loopback   = genphy_loopback,
3738 };
3739 
3740 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3741 	.get_sset_count		= phy_ethtool_get_sset_count,
3742 	.get_strings		= phy_ethtool_get_strings,
3743 	.get_stats		= phy_ethtool_get_stats,
3744 	.get_plca_cfg		= phy_ethtool_get_plca_cfg,
3745 	.set_plca_cfg		= phy_ethtool_set_plca_cfg,
3746 	.get_plca_status	= phy_ethtool_get_plca_status,
3747 	.start_cable_test	= phy_start_cable_test,
3748 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3749 };
3750 
3751 static const struct phylib_stubs __phylib_stubs = {
3752 	.hwtstamp_get = __phy_hwtstamp_get,
3753 	.hwtstamp_set = __phy_hwtstamp_set,
3754 };
3755 
3756 static void phylib_register_stubs(void)
3757 {
3758 	phylib_stubs = &__phylib_stubs;
3759 }
3760 
3761 static void phylib_unregister_stubs(void)
3762 {
3763 	phylib_stubs = NULL;
3764 }
3765 
3766 static int __init phy_init(void)
3767 {
3768 	int rc;
3769 
3770 	rtnl_lock();
3771 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3772 	phylib_register_stubs();
3773 	rtnl_unlock();
3774 
3775 	rc = mdio_bus_init();
3776 	if (rc)
3777 		goto err_ethtool_phy_ops;
3778 
3779 	features_init();
3780 
3781 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3782 	if (rc)
3783 		goto err_mdio_bus;
3784 
3785 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3786 	if (rc)
3787 		goto err_c45;
3788 
3789 	return 0;
3790 
3791 err_c45:
3792 	phy_driver_unregister(&genphy_c45_driver);
3793 err_mdio_bus:
3794 	mdio_bus_exit();
3795 err_ethtool_phy_ops:
3796 	rtnl_lock();
3797 	phylib_unregister_stubs();
3798 	ethtool_set_ethtool_phy_ops(NULL);
3799 	rtnl_unlock();
3800 
3801 	return rc;
3802 }
3803 
3804 static void __exit phy_exit(void)
3805 {
3806 	phy_driver_unregister(&genphy_c45_driver);
3807 	phy_driver_unregister(&genphy_driver);
3808 	mdio_bus_exit();
3809 	rtnl_lock();
3810 	phylib_unregister_stubs();
3811 	ethtool_set_ethtool_phy_ops(NULL);
3812 	rtnl_unlock();
3813 }
3814 
3815 subsys_initcall(phy_init);
3816 module_exit(phy_exit);
3817