1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phylib_stubs.h> 31 #include <linux/phy_led_triggers.h> 32 #include <linux/pse-pd/pse.h> 33 #include <linux/property.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/sfp.h> 36 #include <linux/skbuff.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/uaccess.h> 40 #include <linux/unistd.h> 41 42 MODULE_DESCRIPTION("PHY library"); 43 MODULE_AUTHOR("Andy Fleming"); 44 MODULE_LICENSE("GPL"); 45 46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 47 EXPORT_SYMBOL_GPL(phy_basic_features); 48 49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 50 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 51 52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 54 55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 56 EXPORT_SYMBOL_GPL(phy_gbit_features); 57 58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 60 61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 63 64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 65 EXPORT_SYMBOL_GPL(phy_10gbit_features); 66 67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 69 70 const int phy_basic_ports_array[3] = { 71 ETHTOOL_LINK_MODE_Autoneg_BIT, 72 ETHTOOL_LINK_MODE_TP_BIT, 73 ETHTOOL_LINK_MODE_MII_BIT, 74 }; 75 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 76 77 const int phy_fibre_port_array[1] = { 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 }; 80 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 81 82 const int phy_all_ports_features_array[7] = { 83 ETHTOOL_LINK_MODE_Autoneg_BIT, 84 ETHTOOL_LINK_MODE_TP_BIT, 85 ETHTOOL_LINK_MODE_MII_BIT, 86 ETHTOOL_LINK_MODE_FIBRE_BIT, 87 ETHTOOL_LINK_MODE_AUI_BIT, 88 ETHTOOL_LINK_MODE_BNC_BIT, 89 ETHTOOL_LINK_MODE_Backplane_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 92 93 const int phy_10_100_features_array[4] = { 94 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 95 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 97 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 98 }; 99 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 100 101 const int phy_basic_t1_features_array[3] = { 102 ETHTOOL_LINK_MODE_TP_BIT, 103 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 104 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 105 }; 106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 107 108 const int phy_basic_t1s_p2mp_features_array[2] = { 109 ETHTOOL_LINK_MODE_TP_BIT, 110 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 111 }; 112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 113 114 const int phy_gbit_features_array[2] = { 115 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 116 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 117 }; 118 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 119 120 const int phy_10gbit_features_array[1] = { 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 124 125 static const int phy_10gbit_fec_features_array[1] = { 126 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 127 }; 128 129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 131 132 static const int phy_10gbit_full_features_array[] = { 133 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 135 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 136 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 137 }; 138 139 static const int phy_eee_cap1_features_array[] = { 140 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 142 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 143 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 144 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 145 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 146 }; 147 148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 150 151 static void features_init(void) 152 { 153 /* 10/100 half/full*/ 154 linkmode_set_bit_array(phy_basic_ports_array, 155 ARRAY_SIZE(phy_basic_ports_array), 156 phy_basic_features); 157 linkmode_set_bit_array(phy_10_100_features_array, 158 ARRAY_SIZE(phy_10_100_features_array), 159 phy_basic_features); 160 161 /* 100 full, TP */ 162 linkmode_set_bit_array(phy_basic_t1_features_array, 163 ARRAY_SIZE(phy_basic_t1_features_array), 164 phy_basic_t1_features); 165 166 /* 10 half, P2MP, TP */ 167 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 168 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 169 phy_basic_t1s_p2mp_features); 170 171 /* 10/100 half/full + 1000 half/full */ 172 linkmode_set_bit_array(phy_basic_ports_array, 173 ARRAY_SIZE(phy_basic_ports_array), 174 phy_gbit_features); 175 linkmode_set_bit_array(phy_10_100_features_array, 176 ARRAY_SIZE(phy_10_100_features_array), 177 phy_gbit_features); 178 linkmode_set_bit_array(phy_gbit_features_array, 179 ARRAY_SIZE(phy_gbit_features_array), 180 phy_gbit_features); 181 182 /* 10/100 half/full + 1000 half/full + fibre*/ 183 linkmode_set_bit_array(phy_basic_ports_array, 184 ARRAY_SIZE(phy_basic_ports_array), 185 phy_gbit_fibre_features); 186 linkmode_set_bit_array(phy_10_100_features_array, 187 ARRAY_SIZE(phy_10_100_features_array), 188 phy_gbit_fibre_features); 189 linkmode_set_bit_array(phy_gbit_features_array, 190 ARRAY_SIZE(phy_gbit_features_array), 191 phy_gbit_fibre_features); 192 linkmode_set_bit_array(phy_fibre_port_array, 193 ARRAY_SIZE(phy_fibre_port_array), 194 phy_gbit_fibre_features); 195 196 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 197 linkmode_set_bit_array(phy_all_ports_features_array, 198 ARRAY_SIZE(phy_all_ports_features_array), 199 phy_gbit_all_ports_features); 200 linkmode_set_bit_array(phy_10_100_features_array, 201 ARRAY_SIZE(phy_10_100_features_array), 202 phy_gbit_all_ports_features); 203 linkmode_set_bit_array(phy_gbit_features_array, 204 ARRAY_SIZE(phy_gbit_features_array), 205 phy_gbit_all_ports_features); 206 207 /* 10/100 half/full + 1000 half/full + 10G full*/ 208 linkmode_set_bit_array(phy_all_ports_features_array, 209 ARRAY_SIZE(phy_all_ports_features_array), 210 phy_10gbit_features); 211 linkmode_set_bit_array(phy_10_100_features_array, 212 ARRAY_SIZE(phy_10_100_features_array), 213 phy_10gbit_features); 214 linkmode_set_bit_array(phy_gbit_features_array, 215 ARRAY_SIZE(phy_gbit_features_array), 216 phy_10gbit_features); 217 linkmode_set_bit_array(phy_10gbit_features_array, 218 ARRAY_SIZE(phy_10gbit_features_array), 219 phy_10gbit_features); 220 221 /* 10/100/1000/10G full */ 222 linkmode_set_bit_array(phy_all_ports_features_array, 223 ARRAY_SIZE(phy_all_ports_features_array), 224 phy_10gbit_full_features); 225 linkmode_set_bit_array(phy_10gbit_full_features_array, 226 ARRAY_SIZE(phy_10gbit_full_features_array), 227 phy_10gbit_full_features); 228 /* 10G FEC only */ 229 linkmode_set_bit_array(phy_10gbit_fec_features_array, 230 ARRAY_SIZE(phy_10gbit_fec_features_array), 231 phy_10gbit_fec_features); 232 linkmode_set_bit_array(phy_eee_cap1_features_array, 233 ARRAY_SIZE(phy_eee_cap1_features_array), 234 phy_eee_cap1_features); 235 236 } 237 238 void phy_device_free(struct phy_device *phydev) 239 { 240 put_device(&phydev->mdio.dev); 241 } 242 EXPORT_SYMBOL(phy_device_free); 243 244 static void phy_mdio_device_free(struct mdio_device *mdiodev) 245 { 246 struct phy_device *phydev; 247 248 phydev = container_of(mdiodev, struct phy_device, mdio); 249 phy_device_free(phydev); 250 } 251 252 static void phy_device_release(struct device *dev) 253 { 254 fwnode_handle_put(dev->fwnode); 255 kfree(to_phy_device(dev)); 256 } 257 258 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 259 { 260 struct phy_device *phydev; 261 262 phydev = container_of(mdiodev, struct phy_device, mdio); 263 phy_device_remove(phydev); 264 } 265 266 static struct phy_driver genphy_driver; 267 268 static LIST_HEAD(phy_fixup_list); 269 static DEFINE_MUTEX(phy_fixup_lock); 270 271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 272 { 273 struct device_driver *drv = phydev->mdio.dev.driver; 274 struct phy_driver *phydrv = to_phy_driver(drv); 275 struct net_device *netdev = phydev->attached_dev; 276 277 if (!drv || !phydrv->suspend) 278 return false; 279 280 /* PHY not attached? May suspend if the PHY has not already been 281 * suspended as part of a prior call to phy_disconnect() -> 282 * phy_detach() -> phy_suspend() because the parent netdev might be the 283 * MDIO bus driver and clock gated at this point. 284 */ 285 if (!netdev) 286 goto out; 287 288 if (netdev->wol_enabled) 289 return false; 290 291 /* As long as not all affected network drivers support the 292 * wol_enabled flag, let's check for hints that WoL is enabled. 293 * Don't suspend PHY if the attached netdev parent may wake up. 294 * The parent may point to a PCI device, as in tg3 driver. 295 */ 296 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 297 return false; 298 299 /* Also don't suspend PHY if the netdev itself may wakeup. This 300 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 301 * e.g. SoC devices. 302 */ 303 if (device_may_wakeup(&netdev->dev)) 304 return false; 305 306 out: 307 return !phydev->suspended; 308 } 309 310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 311 { 312 struct phy_device *phydev = to_phy_device(dev); 313 314 if (phydev->mac_managed_pm) 315 return 0; 316 317 /* Wakeup interrupts may occur during the system sleep transition when 318 * the PHY is inaccessible. Set flag to postpone handling until the PHY 319 * has resumed. Wait for concurrent interrupt handler to complete. 320 */ 321 if (phy_interrupt_is_valid(phydev)) { 322 phydev->irq_suspended = 1; 323 synchronize_irq(phydev->irq); 324 } 325 326 /* We must stop the state machine manually, otherwise it stops out of 327 * control, possibly with the phydev->lock held. Upon resume, netdev 328 * may call phy routines that try to grab the same lock, and that may 329 * lead to a deadlock. 330 */ 331 if (phydev->attached_dev && phydev->adjust_link) 332 phy_stop_machine(phydev); 333 334 if (!mdio_bus_phy_may_suspend(phydev)) 335 return 0; 336 337 phydev->suspended_by_mdio_bus = 1; 338 339 return phy_suspend(phydev); 340 } 341 342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 343 { 344 struct phy_device *phydev = to_phy_device(dev); 345 int ret; 346 347 if (phydev->mac_managed_pm) 348 return 0; 349 350 if (!phydev->suspended_by_mdio_bus) 351 goto no_resume; 352 353 phydev->suspended_by_mdio_bus = 0; 354 355 /* If we managed to get here with the PHY state machine in a state 356 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 357 * that something went wrong and we should most likely be using 358 * MAC managed PM, but we are not. 359 */ 360 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 361 phydev->state != PHY_UP); 362 363 ret = phy_init_hw(phydev); 364 if (ret < 0) 365 return ret; 366 367 ret = phy_resume(phydev); 368 if (ret < 0) 369 return ret; 370 no_resume: 371 if (phy_interrupt_is_valid(phydev)) { 372 phydev->irq_suspended = 0; 373 synchronize_irq(phydev->irq); 374 375 /* Rerun interrupts which were postponed by phy_interrupt() 376 * because they occurred during the system sleep transition. 377 */ 378 if (phydev->irq_rerun) { 379 phydev->irq_rerun = 0; 380 enable_irq(phydev->irq); 381 irq_wake_thread(phydev->irq, phydev); 382 } 383 } 384 385 if (phydev->attached_dev && phydev->adjust_link) 386 phy_start_machine(phydev); 387 388 return 0; 389 } 390 391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 392 mdio_bus_phy_resume); 393 394 /** 395 * phy_register_fixup - creates a new phy_fixup and adds it to the list 396 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 397 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 398 * It can also be PHY_ANY_UID 399 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 400 * comparison 401 * @run: The actual code to be run when a matching PHY is found 402 */ 403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 404 int (*run)(struct phy_device *)) 405 { 406 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 407 408 if (!fixup) 409 return -ENOMEM; 410 411 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 412 fixup->phy_uid = phy_uid; 413 fixup->phy_uid_mask = phy_uid_mask; 414 fixup->run = run; 415 416 mutex_lock(&phy_fixup_lock); 417 list_add_tail(&fixup->list, &phy_fixup_list); 418 mutex_unlock(&phy_fixup_lock); 419 420 return 0; 421 } 422 EXPORT_SYMBOL(phy_register_fixup); 423 424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 426 int (*run)(struct phy_device *)) 427 { 428 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 429 } 430 EXPORT_SYMBOL(phy_register_fixup_for_uid); 431 432 /* Registers a fixup to be run on the PHY with id string bus_id */ 433 int phy_register_fixup_for_id(const char *bus_id, 434 int (*run)(struct phy_device *)) 435 { 436 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 437 } 438 EXPORT_SYMBOL(phy_register_fixup_for_id); 439 440 /** 441 * phy_unregister_fixup - remove a phy_fixup from the list 442 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 443 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 444 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 445 */ 446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 447 { 448 struct list_head *pos, *n; 449 struct phy_fixup *fixup; 450 int ret; 451 452 ret = -ENODEV; 453 454 mutex_lock(&phy_fixup_lock); 455 list_for_each_safe(pos, n, &phy_fixup_list) { 456 fixup = list_entry(pos, struct phy_fixup, list); 457 458 if ((!strcmp(fixup->bus_id, bus_id)) && 459 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) { 460 list_del(&fixup->list); 461 kfree(fixup); 462 ret = 0; 463 break; 464 } 465 } 466 mutex_unlock(&phy_fixup_lock); 467 468 return ret; 469 } 470 EXPORT_SYMBOL(phy_unregister_fixup); 471 472 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 474 { 475 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 476 } 477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 478 479 /* Unregisters a fixup of the PHY with id string bus_id */ 480 int phy_unregister_fixup_for_id(const char *bus_id) 481 { 482 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 483 } 484 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 485 486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 487 * Fixups can be set to match any in one or more fields. 488 */ 489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 490 { 491 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 492 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 493 return 0; 494 495 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid, 496 fixup->phy_uid_mask)) 497 if (fixup->phy_uid != PHY_ANY_UID) 498 return 0; 499 500 return 1; 501 } 502 503 /* Runs any matching fixups for this phydev */ 504 static int phy_scan_fixups(struct phy_device *phydev) 505 { 506 struct phy_fixup *fixup; 507 508 mutex_lock(&phy_fixup_lock); 509 list_for_each_entry(fixup, &phy_fixup_list, list) { 510 if (phy_needs_fixup(phydev, fixup)) { 511 int err = fixup->run(phydev); 512 513 if (err < 0) { 514 mutex_unlock(&phy_fixup_lock); 515 return err; 516 } 517 phydev->has_fixups = true; 518 } 519 } 520 mutex_unlock(&phy_fixup_lock); 521 522 return 0; 523 } 524 525 static int phy_bus_match(struct device *dev, struct device_driver *drv) 526 { 527 struct phy_device *phydev = to_phy_device(dev); 528 struct phy_driver *phydrv = to_phy_driver(drv); 529 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 530 int i; 531 532 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 533 return 0; 534 535 if (phydrv->match_phy_device) 536 return phydrv->match_phy_device(phydev); 537 538 if (phydev->is_c45) { 539 for (i = 1; i < num_ids; i++) { 540 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 541 continue; 542 543 if (phy_id_compare(phydev->c45_ids.device_ids[i], 544 phydrv->phy_id, phydrv->phy_id_mask)) 545 return 1; 546 } 547 return 0; 548 } else { 549 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 550 phydrv->phy_id_mask); 551 } 552 } 553 554 static ssize_t 555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 556 { 557 struct phy_device *phydev = to_phy_device(dev); 558 559 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 560 } 561 static DEVICE_ATTR_RO(phy_id); 562 563 static ssize_t 564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 565 { 566 struct phy_device *phydev = to_phy_device(dev); 567 const char *mode = NULL; 568 569 if (phy_is_internal(phydev)) 570 mode = "internal"; 571 else 572 mode = phy_modes(phydev->interface); 573 574 return sysfs_emit(buf, "%s\n", mode); 575 } 576 static DEVICE_ATTR_RO(phy_interface); 577 578 static ssize_t 579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 580 char *buf) 581 { 582 struct phy_device *phydev = to_phy_device(dev); 583 584 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 585 } 586 static DEVICE_ATTR_RO(phy_has_fixups); 587 588 static ssize_t phy_dev_flags_show(struct device *dev, 589 struct device_attribute *attr, 590 char *buf) 591 { 592 struct phy_device *phydev = to_phy_device(dev); 593 594 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 595 } 596 static DEVICE_ATTR_RO(phy_dev_flags); 597 598 static struct attribute *phy_dev_attrs[] = { 599 &dev_attr_phy_id.attr, 600 &dev_attr_phy_interface.attr, 601 &dev_attr_phy_has_fixups.attr, 602 &dev_attr_phy_dev_flags.attr, 603 NULL, 604 }; 605 ATTRIBUTE_GROUPS(phy_dev); 606 607 static const struct device_type mdio_bus_phy_type = { 608 .name = "PHY", 609 .groups = phy_dev_groups, 610 .release = phy_device_release, 611 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 612 }; 613 614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 615 { 616 int ret; 617 618 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 619 MDIO_ID_ARGS(phy_id)); 620 /* We only check for failures in executing the usermode binary, 621 * not whether a PHY driver module exists for the PHY ID. 622 * Accept -ENOENT because this may occur in case no initramfs exists, 623 * then modprobe isn't available. 624 */ 625 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 626 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 627 ret, (unsigned long)phy_id); 628 return ret; 629 } 630 631 return 0; 632 } 633 634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 635 bool is_c45, 636 struct phy_c45_device_ids *c45_ids) 637 { 638 struct phy_device *dev; 639 struct mdio_device *mdiodev; 640 int ret = 0; 641 642 /* We allocate the device, and initialize the default values */ 643 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 644 if (!dev) 645 return ERR_PTR(-ENOMEM); 646 647 mdiodev = &dev->mdio; 648 mdiodev->dev.parent = &bus->dev; 649 mdiodev->dev.bus = &mdio_bus_type; 650 mdiodev->dev.type = &mdio_bus_phy_type; 651 mdiodev->bus = bus; 652 mdiodev->bus_match = phy_bus_match; 653 mdiodev->addr = addr; 654 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 655 mdiodev->device_free = phy_mdio_device_free; 656 mdiodev->device_remove = phy_mdio_device_remove; 657 658 dev->speed = SPEED_UNKNOWN; 659 dev->duplex = DUPLEX_UNKNOWN; 660 dev->pause = 0; 661 dev->asym_pause = 0; 662 dev->link = 0; 663 dev->port = PORT_TP; 664 dev->interface = PHY_INTERFACE_MODE_GMII; 665 666 dev->autoneg = AUTONEG_ENABLE; 667 668 dev->pma_extable = -ENODATA; 669 dev->is_c45 = is_c45; 670 dev->phy_id = phy_id; 671 if (c45_ids) 672 dev->c45_ids = *c45_ids; 673 dev->irq = bus->irq[addr]; 674 675 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 676 device_initialize(&mdiodev->dev); 677 678 dev->state = PHY_DOWN; 679 INIT_LIST_HEAD(&dev->leds); 680 681 mutex_init(&dev->lock); 682 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 683 684 /* Request the appropriate module unconditionally; don't 685 * bother trying to do so only if it isn't already loaded, 686 * because that gets complicated. A hotplug event would have 687 * done an unconditional modprobe anyway. 688 * We don't do normal hotplug because it won't work for MDIO 689 * -- because it relies on the device staying around for long 690 * enough for the driver to get loaded. With MDIO, the NIC 691 * driver will get bored and give up as soon as it finds that 692 * there's no driver _already_ loaded. 693 */ 694 if (is_c45 && c45_ids) { 695 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 696 int i; 697 698 for (i = 1; i < num_ids; i++) { 699 if (c45_ids->device_ids[i] == 0xffffffff) 700 continue; 701 702 ret = phy_request_driver_module(dev, 703 c45_ids->device_ids[i]); 704 if (ret) 705 break; 706 } 707 } else { 708 ret = phy_request_driver_module(dev, phy_id); 709 } 710 711 if (ret) { 712 put_device(&mdiodev->dev); 713 dev = ERR_PTR(ret); 714 } 715 716 return dev; 717 } 718 EXPORT_SYMBOL(phy_device_create); 719 720 /* phy_c45_probe_present - checks to see if a MMD is present in the package 721 * @bus: the target MII bus 722 * @prtad: PHY package address on the MII bus 723 * @devad: PHY device (MMD) address 724 * 725 * Read the MDIO_STAT2 register, and check whether a device is responding 726 * at this address. 727 * 728 * Returns: negative error number on bus access error, zero if no device 729 * is responding, or positive if a device is present. 730 */ 731 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 732 { 733 int stat2; 734 735 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 736 if (stat2 < 0) 737 return stat2; 738 739 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 740 } 741 742 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 743 * @bus: the target MII bus 744 * @addr: PHY address on the MII bus 745 * @dev_addr: MMD address in the PHY. 746 * @devices_in_package: where to store the devices in package information. 747 * 748 * Description: reads devices in package registers of a MMD at @dev_addr 749 * from PHY at @addr on @bus. 750 * 751 * Returns: 0 on success, -EIO on failure. 752 */ 753 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 754 u32 *devices_in_package) 755 { 756 int phy_reg; 757 758 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 759 if (phy_reg < 0) 760 return -EIO; 761 *devices_in_package = phy_reg << 16; 762 763 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 764 if (phy_reg < 0) 765 return -EIO; 766 *devices_in_package |= phy_reg; 767 768 return 0; 769 } 770 771 /** 772 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 773 * @bus: the target MII bus 774 * @addr: PHY address on the MII bus 775 * @c45_ids: where to store the c45 ID information. 776 * 777 * Read the PHY "devices in package". If this appears to be valid, read 778 * the PHY identifiers for each device. Return the "devices in package" 779 * and identifiers in @c45_ids. 780 * 781 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 782 * the "devices in package" is invalid. 783 */ 784 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 785 struct phy_c45_device_ids *c45_ids) 786 { 787 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 788 u32 devs_in_pkg = 0; 789 int i, ret, phy_reg; 790 791 /* Find first non-zero Devices In package. Device zero is reserved 792 * for 802.3 c45 complied PHYs, so don't probe it at first. 793 */ 794 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 795 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 796 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 797 /* Check that there is a device present at this 798 * address before reading the devices-in-package 799 * register to avoid reading garbage from the PHY. 800 * Some PHYs (88x3310) vendor space is not IEEE802.3 801 * compliant. 802 */ 803 ret = phy_c45_probe_present(bus, addr, i); 804 if (ret < 0) 805 return -EIO; 806 807 if (!ret) 808 continue; 809 } 810 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 811 if (phy_reg < 0) 812 return -EIO; 813 } 814 815 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 816 /* If mostly Fs, there is no device there, then let's probe 817 * MMD 0, as some 10G PHYs have zero Devices In package, 818 * e.g. Cortina CS4315/CS4340 PHY. 819 */ 820 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 821 if (phy_reg < 0) 822 return -EIO; 823 824 /* no device there, let's get out of here */ 825 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 826 return -ENODEV; 827 } 828 829 /* Now probe Device Identifiers for each device present. */ 830 for (i = 1; i < num_ids; i++) { 831 if (!(devs_in_pkg & (1 << i))) 832 continue; 833 834 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 835 /* Probe the "Device Present" bits for the vendor MMDs 836 * to ignore these if they do not contain IEEE 802.3 837 * registers. 838 */ 839 ret = phy_c45_probe_present(bus, addr, i); 840 if (ret < 0) 841 return ret; 842 843 if (!ret) 844 continue; 845 } 846 847 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 848 if (phy_reg < 0) 849 return -EIO; 850 c45_ids->device_ids[i] = phy_reg << 16; 851 852 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 853 if (phy_reg < 0) 854 return -EIO; 855 c45_ids->device_ids[i] |= phy_reg; 856 } 857 858 c45_ids->devices_in_package = devs_in_pkg; 859 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 860 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 861 862 return 0; 863 } 864 865 /** 866 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 867 * @bus: the target MII bus 868 * @addr: PHY address on the MII bus 869 * @phy_id: where to store the ID retrieved. 870 * 871 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 872 * placing it in @phy_id. Return zero on successful read and the ID is 873 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 874 * or invalid ID. 875 */ 876 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 877 { 878 int phy_reg; 879 880 /* Grab the bits from PHYIR1, and put them in the upper half */ 881 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 882 if (phy_reg < 0) { 883 /* returning -ENODEV doesn't stop bus scanning */ 884 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 885 } 886 887 *phy_id = phy_reg << 16; 888 889 /* Grab the bits from PHYIR2, and put them in the lower half */ 890 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 891 if (phy_reg < 0) { 892 /* returning -ENODEV doesn't stop bus scanning */ 893 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 894 } 895 896 *phy_id |= phy_reg; 897 898 /* If the phy_id is mostly Fs, there is no device there */ 899 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 900 return -ENODEV; 901 902 return 0; 903 } 904 905 /* Extract the phy ID from the compatible string of the form 906 * ethernet-phy-idAAAA.BBBB. 907 */ 908 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 909 { 910 unsigned int upper, lower; 911 const char *cp; 912 int ret; 913 914 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 915 if (ret) 916 return ret; 917 918 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 919 return -EINVAL; 920 921 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 922 return 0; 923 } 924 EXPORT_SYMBOL(fwnode_get_phy_id); 925 926 /** 927 * get_phy_device - reads the specified PHY device and returns its @phy_device 928 * struct 929 * @bus: the target MII bus 930 * @addr: PHY address on the MII bus 931 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 932 * 933 * Probe for a PHY at @addr on @bus. 934 * 935 * When probing for a clause 22 PHY, then read the ID registers. If we find 936 * a valid ID, allocate and return a &struct phy_device. 937 * 938 * When probing for a clause 45 PHY, read the "devices in package" registers. 939 * If the "devices in package" appears valid, read the ID registers for each 940 * MMD, allocate and return a &struct phy_device. 941 * 942 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 943 * no PHY present, or %-EIO on bus access error. 944 */ 945 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 946 { 947 struct phy_c45_device_ids c45_ids; 948 u32 phy_id = 0; 949 int r; 950 951 c45_ids.devices_in_package = 0; 952 c45_ids.mmds_present = 0; 953 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 954 955 if (is_c45) 956 r = get_phy_c45_ids(bus, addr, &c45_ids); 957 else 958 r = get_phy_c22_id(bus, addr, &phy_id); 959 960 if (r) 961 return ERR_PTR(r); 962 963 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 964 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 965 * probe with C45 to see if we're able to get a valid PHY ID in the C45 966 * space, if successful, create the C45 PHY device. 967 */ 968 if (!is_c45 && phy_id == 0 && bus->read_c45) { 969 r = get_phy_c45_ids(bus, addr, &c45_ids); 970 if (!r) 971 return phy_device_create(bus, addr, phy_id, 972 true, &c45_ids); 973 } 974 975 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 976 } 977 EXPORT_SYMBOL(get_phy_device); 978 979 /** 980 * phy_device_register - Register the phy device on the MDIO bus 981 * @phydev: phy_device structure to be added to the MDIO bus 982 */ 983 int phy_device_register(struct phy_device *phydev) 984 { 985 int err; 986 987 err = mdiobus_register_device(&phydev->mdio); 988 if (err) 989 return err; 990 991 /* Deassert the reset signal */ 992 phy_device_reset(phydev, 0); 993 994 /* Run all of the fixups for this PHY */ 995 err = phy_scan_fixups(phydev); 996 if (err) { 997 phydev_err(phydev, "failed to initialize\n"); 998 goto out; 999 } 1000 1001 err = device_add(&phydev->mdio.dev); 1002 if (err) { 1003 phydev_err(phydev, "failed to add\n"); 1004 goto out; 1005 } 1006 1007 return 0; 1008 1009 out: 1010 /* Assert the reset signal */ 1011 phy_device_reset(phydev, 1); 1012 1013 mdiobus_unregister_device(&phydev->mdio); 1014 return err; 1015 } 1016 EXPORT_SYMBOL(phy_device_register); 1017 1018 /** 1019 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1020 * @phydev: phy_device structure to remove 1021 * 1022 * This doesn't free the phy_device itself, it merely reverses the effects 1023 * of phy_device_register(). Use phy_device_free() to free the device 1024 * after calling this function. 1025 */ 1026 void phy_device_remove(struct phy_device *phydev) 1027 { 1028 unregister_mii_timestamper(phydev->mii_ts); 1029 pse_control_put(phydev->psec); 1030 1031 device_del(&phydev->mdio.dev); 1032 1033 /* Assert the reset signal */ 1034 phy_device_reset(phydev, 1); 1035 1036 mdiobus_unregister_device(&phydev->mdio); 1037 } 1038 EXPORT_SYMBOL(phy_device_remove); 1039 1040 /** 1041 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1042 * @phydev: phy_device structure to read 802.3-c45 IDs 1043 * 1044 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1045 * the "devices in package" is invalid. 1046 */ 1047 int phy_get_c45_ids(struct phy_device *phydev) 1048 { 1049 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1050 &phydev->c45_ids); 1051 } 1052 EXPORT_SYMBOL(phy_get_c45_ids); 1053 1054 /** 1055 * phy_find_first - finds the first PHY device on the bus 1056 * @bus: the target MII bus 1057 */ 1058 struct phy_device *phy_find_first(struct mii_bus *bus) 1059 { 1060 struct phy_device *phydev; 1061 int addr; 1062 1063 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1064 phydev = mdiobus_get_phy(bus, addr); 1065 if (phydev) 1066 return phydev; 1067 } 1068 return NULL; 1069 } 1070 EXPORT_SYMBOL(phy_find_first); 1071 1072 static void phy_link_change(struct phy_device *phydev, bool up) 1073 { 1074 struct net_device *netdev = phydev->attached_dev; 1075 1076 if (up) 1077 netif_carrier_on(netdev); 1078 else 1079 netif_carrier_off(netdev); 1080 phydev->adjust_link(netdev); 1081 if (phydev->mii_ts && phydev->mii_ts->link_state) 1082 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1083 } 1084 1085 /** 1086 * phy_prepare_link - prepares the PHY layer to monitor link status 1087 * @phydev: target phy_device struct 1088 * @handler: callback function for link status change notifications 1089 * 1090 * Description: Tells the PHY infrastructure to handle the 1091 * gory details on monitoring link status (whether through 1092 * polling or an interrupt), and to call back to the 1093 * connected device driver when the link status changes. 1094 * If you want to monitor your own link state, don't call 1095 * this function. 1096 */ 1097 static void phy_prepare_link(struct phy_device *phydev, 1098 void (*handler)(struct net_device *)) 1099 { 1100 phydev->adjust_link = handler; 1101 } 1102 1103 /** 1104 * phy_connect_direct - connect an ethernet device to a specific phy_device 1105 * @dev: the network device to connect 1106 * @phydev: the pointer to the phy device 1107 * @handler: callback function for state change notifications 1108 * @interface: PHY device's interface 1109 */ 1110 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1111 void (*handler)(struct net_device *), 1112 phy_interface_t interface) 1113 { 1114 int rc; 1115 1116 if (!dev) 1117 return -EINVAL; 1118 1119 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1120 if (rc) 1121 return rc; 1122 1123 phy_prepare_link(phydev, handler); 1124 if (phy_interrupt_is_valid(phydev)) 1125 phy_request_interrupt(phydev); 1126 1127 return 0; 1128 } 1129 EXPORT_SYMBOL(phy_connect_direct); 1130 1131 /** 1132 * phy_connect - connect an ethernet device to a PHY device 1133 * @dev: the network device to connect 1134 * @bus_id: the id string of the PHY device to connect 1135 * @handler: callback function for state change notifications 1136 * @interface: PHY device's interface 1137 * 1138 * Description: Convenience function for connecting ethernet 1139 * devices to PHY devices. The default behavior is for 1140 * the PHY infrastructure to handle everything, and only notify 1141 * the connected driver when the link status changes. If you 1142 * don't want, or can't use the provided functionality, you may 1143 * choose to call only the subset of functions which provide 1144 * the desired functionality. 1145 */ 1146 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1147 void (*handler)(struct net_device *), 1148 phy_interface_t interface) 1149 { 1150 struct phy_device *phydev; 1151 struct device *d; 1152 int rc; 1153 1154 /* Search the list of PHY devices on the mdio bus for the 1155 * PHY with the requested name 1156 */ 1157 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1158 if (!d) { 1159 pr_err("PHY %s not found\n", bus_id); 1160 return ERR_PTR(-ENODEV); 1161 } 1162 phydev = to_phy_device(d); 1163 1164 rc = phy_connect_direct(dev, phydev, handler, interface); 1165 put_device(d); 1166 if (rc) 1167 return ERR_PTR(rc); 1168 1169 return phydev; 1170 } 1171 EXPORT_SYMBOL(phy_connect); 1172 1173 /** 1174 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1175 * device 1176 * @phydev: target phy_device struct 1177 */ 1178 void phy_disconnect(struct phy_device *phydev) 1179 { 1180 if (phy_is_started(phydev)) 1181 phy_stop(phydev); 1182 1183 if (phy_interrupt_is_valid(phydev)) 1184 phy_free_interrupt(phydev); 1185 1186 phydev->adjust_link = NULL; 1187 1188 phy_detach(phydev); 1189 } 1190 EXPORT_SYMBOL(phy_disconnect); 1191 1192 /** 1193 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1194 * @phydev: The PHY device to poll 1195 * 1196 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1197 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1198 * register must be polled until the BMCR_RESET bit clears. 1199 * 1200 * Furthermore, any attempts to write to PHY registers may have no effect 1201 * or even generate MDIO bus errors until this is complete. 1202 * 1203 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1204 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1205 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1206 * effort to support such broken PHYs, this function is separate from the 1207 * standard phy_init_hw() which will zero all the other bits in the BMCR 1208 * and reapply all driver-specific and board-specific fixups. 1209 */ 1210 static int phy_poll_reset(struct phy_device *phydev) 1211 { 1212 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1213 int ret, val; 1214 1215 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1216 50000, 600000, true); 1217 if (ret) 1218 return ret; 1219 /* Some chips (smsc911x) may still need up to another 1ms after the 1220 * BMCR_RESET bit is cleared before they are usable. 1221 */ 1222 msleep(1); 1223 return 0; 1224 } 1225 1226 int phy_init_hw(struct phy_device *phydev) 1227 { 1228 int ret = 0; 1229 1230 /* Deassert the reset signal */ 1231 phy_device_reset(phydev, 0); 1232 1233 if (!phydev->drv) 1234 return 0; 1235 1236 if (phydev->drv->soft_reset) { 1237 ret = phydev->drv->soft_reset(phydev); 1238 if (ret < 0) 1239 return ret; 1240 1241 /* see comment in genphy_soft_reset for an explanation */ 1242 phydev->suspended = 0; 1243 } 1244 1245 ret = phy_scan_fixups(phydev); 1246 if (ret < 0) 1247 return ret; 1248 1249 if (phydev->drv->config_init) { 1250 ret = phydev->drv->config_init(phydev); 1251 if (ret < 0) 1252 return ret; 1253 } 1254 1255 if (phydev->drv->config_intr) { 1256 ret = phydev->drv->config_intr(phydev); 1257 if (ret < 0) 1258 return ret; 1259 } 1260 1261 return 0; 1262 } 1263 EXPORT_SYMBOL(phy_init_hw); 1264 1265 void phy_attached_info(struct phy_device *phydev) 1266 { 1267 phy_attached_print(phydev, NULL); 1268 } 1269 EXPORT_SYMBOL(phy_attached_info); 1270 1271 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1272 char *phy_attached_info_irq(struct phy_device *phydev) 1273 { 1274 char *irq_str; 1275 char irq_num[8]; 1276 1277 switch(phydev->irq) { 1278 case PHY_POLL: 1279 irq_str = "POLL"; 1280 break; 1281 case PHY_MAC_INTERRUPT: 1282 irq_str = "MAC"; 1283 break; 1284 default: 1285 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1286 irq_str = irq_num; 1287 break; 1288 } 1289 1290 return kasprintf(GFP_KERNEL, "%s", irq_str); 1291 } 1292 EXPORT_SYMBOL(phy_attached_info_irq); 1293 1294 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1295 { 1296 const char *unbound = phydev->drv ? "" : "[unbound] "; 1297 char *irq_str = phy_attached_info_irq(phydev); 1298 1299 if (!fmt) { 1300 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1301 phydev_name(phydev), irq_str); 1302 } else { 1303 va_list ap; 1304 1305 phydev_info(phydev, ATTACHED_FMT, unbound, 1306 phydev_name(phydev), irq_str); 1307 1308 va_start(ap, fmt); 1309 vprintk(fmt, ap); 1310 va_end(ap); 1311 } 1312 kfree(irq_str); 1313 } 1314 EXPORT_SYMBOL(phy_attached_print); 1315 1316 static void phy_sysfs_create_links(struct phy_device *phydev) 1317 { 1318 struct net_device *dev = phydev->attached_dev; 1319 int err; 1320 1321 if (!dev) 1322 return; 1323 1324 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1325 "attached_dev"); 1326 if (err) 1327 return; 1328 1329 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1330 &phydev->mdio.dev.kobj, 1331 "phydev"); 1332 if (err) { 1333 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1334 kobject_name(&phydev->mdio.dev.kobj), 1335 err); 1336 /* non-fatal - some net drivers can use one netdevice 1337 * with more then one phy 1338 */ 1339 } 1340 1341 phydev->sysfs_links = true; 1342 } 1343 1344 static ssize_t 1345 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1346 char *buf) 1347 { 1348 struct phy_device *phydev = to_phy_device(dev); 1349 1350 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1351 } 1352 static DEVICE_ATTR_RO(phy_standalone); 1353 1354 /** 1355 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1356 * @upstream: pointer to the phy device 1357 * @bus: sfp bus representing cage being attached 1358 * 1359 * This is used to fill in the sfp_upstream_ops .attach member. 1360 */ 1361 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1362 { 1363 struct phy_device *phydev = upstream; 1364 1365 if (phydev->attached_dev) 1366 phydev->attached_dev->sfp_bus = bus; 1367 phydev->sfp_bus_attached = true; 1368 } 1369 EXPORT_SYMBOL(phy_sfp_attach); 1370 1371 /** 1372 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1373 * @upstream: pointer to the phy device 1374 * @bus: sfp bus representing cage being attached 1375 * 1376 * This is used to fill in the sfp_upstream_ops .detach member. 1377 */ 1378 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1379 { 1380 struct phy_device *phydev = upstream; 1381 1382 if (phydev->attached_dev) 1383 phydev->attached_dev->sfp_bus = NULL; 1384 phydev->sfp_bus_attached = false; 1385 } 1386 EXPORT_SYMBOL(phy_sfp_detach); 1387 1388 /** 1389 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1390 * @phydev: Pointer to phy_device 1391 * @ops: SFP's upstream operations 1392 */ 1393 int phy_sfp_probe(struct phy_device *phydev, 1394 const struct sfp_upstream_ops *ops) 1395 { 1396 struct sfp_bus *bus; 1397 int ret = 0; 1398 1399 if (phydev->mdio.dev.fwnode) { 1400 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1401 if (IS_ERR(bus)) 1402 return PTR_ERR(bus); 1403 1404 phydev->sfp_bus = bus; 1405 1406 ret = sfp_bus_add_upstream(bus, phydev, ops); 1407 sfp_bus_put(bus); 1408 } 1409 return ret; 1410 } 1411 EXPORT_SYMBOL(phy_sfp_probe); 1412 1413 /** 1414 * phy_attach_direct - attach a network device to a given PHY device pointer 1415 * @dev: network device to attach 1416 * @phydev: Pointer to phy_device to attach 1417 * @flags: PHY device's dev_flags 1418 * @interface: PHY device's interface 1419 * 1420 * Description: Called by drivers to attach to a particular PHY 1421 * device. The phy_device is found, and properly hooked up 1422 * to the phy_driver. If no driver is attached, then a 1423 * generic driver is used. The phy_device is given a ptr to 1424 * the attaching device, and given a callback for link status 1425 * change. The phy_device is returned to the attaching driver. 1426 * This function takes a reference on the phy device. 1427 */ 1428 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1429 u32 flags, phy_interface_t interface) 1430 { 1431 struct mii_bus *bus = phydev->mdio.bus; 1432 struct device *d = &phydev->mdio.dev; 1433 struct module *ndev_owner = NULL; 1434 bool using_genphy = false; 1435 int err; 1436 1437 /* For Ethernet device drivers that register their own MDIO bus, we 1438 * will have bus->owner match ndev_mod, so we do not want to increment 1439 * our own module->refcnt here, otherwise we would not be able to 1440 * unload later on. 1441 */ 1442 if (dev) 1443 ndev_owner = dev->dev.parent->driver->owner; 1444 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1445 phydev_err(phydev, "failed to get the bus module\n"); 1446 return -EIO; 1447 } 1448 1449 get_device(d); 1450 1451 /* Assume that if there is no driver, that it doesn't 1452 * exist, and we should use the genphy driver. 1453 */ 1454 if (!d->driver) { 1455 if (phydev->is_c45) 1456 d->driver = &genphy_c45_driver.mdiodrv.driver; 1457 else 1458 d->driver = &genphy_driver.mdiodrv.driver; 1459 1460 using_genphy = true; 1461 } 1462 1463 if (!try_module_get(d->driver->owner)) { 1464 phydev_err(phydev, "failed to get the device driver module\n"); 1465 err = -EIO; 1466 goto error_put_device; 1467 } 1468 1469 if (using_genphy) { 1470 err = d->driver->probe(d); 1471 if (err >= 0) 1472 err = device_bind_driver(d); 1473 1474 if (err) 1475 goto error_module_put; 1476 } 1477 1478 if (phydev->attached_dev) { 1479 dev_err(&dev->dev, "PHY already attached\n"); 1480 err = -EBUSY; 1481 goto error; 1482 } 1483 1484 phydev->phy_link_change = phy_link_change; 1485 if (dev) { 1486 phydev->attached_dev = dev; 1487 dev->phydev = phydev; 1488 1489 if (phydev->sfp_bus_attached) 1490 dev->sfp_bus = phydev->sfp_bus; 1491 } 1492 1493 /* Some Ethernet drivers try to connect to a PHY device before 1494 * calling register_netdevice() -> netdev_register_kobject() and 1495 * does the dev->dev.kobj initialization. Here we only check for 1496 * success which indicates that the network device kobject is 1497 * ready. Once we do that we still need to keep track of whether 1498 * links were successfully set up or not for phy_detach() to 1499 * remove them accordingly. 1500 */ 1501 phydev->sysfs_links = false; 1502 1503 phy_sysfs_create_links(phydev); 1504 1505 if (!phydev->attached_dev) { 1506 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1507 &dev_attr_phy_standalone.attr); 1508 if (err) 1509 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1510 } 1511 1512 phydev->dev_flags |= flags; 1513 1514 phydev->interface = interface; 1515 1516 phydev->state = PHY_READY; 1517 1518 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1519 1520 /* PHYs can request to use poll mode even though they have an 1521 * associated interrupt line. This could be the case if they 1522 * detect a broken interrupt handling. 1523 */ 1524 if (phydev->dev_flags & PHY_F_NO_IRQ) 1525 phydev->irq = PHY_POLL; 1526 1527 /* Port is set to PORT_TP by default and the actual PHY driver will set 1528 * it to different value depending on the PHY configuration. If we have 1529 * the generic PHY driver we can't figure it out, thus set the old 1530 * legacy PORT_MII value. 1531 */ 1532 if (using_genphy) 1533 phydev->port = PORT_MII; 1534 1535 /* Initial carrier state is off as the phy is about to be 1536 * (re)initialized. 1537 */ 1538 if (dev) 1539 netif_carrier_off(phydev->attached_dev); 1540 1541 /* Do initial configuration here, now that 1542 * we have certain key parameters 1543 * (dev_flags and interface) 1544 */ 1545 err = phy_init_hw(phydev); 1546 if (err) 1547 goto error; 1548 1549 phy_resume(phydev); 1550 phy_led_triggers_register(phydev); 1551 1552 /** 1553 * If the external phy used by current mac interface is managed by 1554 * another mac interface, so we should create a device link between 1555 * phy dev and mac dev. 1556 */ 1557 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1558 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1559 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1560 1561 return err; 1562 1563 error: 1564 /* phy_detach() does all of the cleanup below */ 1565 phy_detach(phydev); 1566 return err; 1567 1568 error_module_put: 1569 module_put(d->driver->owner); 1570 d->driver = NULL; 1571 error_put_device: 1572 put_device(d); 1573 if (ndev_owner != bus->owner) 1574 module_put(bus->owner); 1575 return err; 1576 } 1577 EXPORT_SYMBOL(phy_attach_direct); 1578 1579 /** 1580 * phy_attach - attach a network device to a particular PHY device 1581 * @dev: network device to attach 1582 * @bus_id: Bus ID of PHY device to attach 1583 * @interface: PHY device's interface 1584 * 1585 * Description: Same as phy_attach_direct() except that a PHY bus_id 1586 * string is passed instead of a pointer to a struct phy_device. 1587 */ 1588 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1589 phy_interface_t interface) 1590 { 1591 struct bus_type *bus = &mdio_bus_type; 1592 struct phy_device *phydev; 1593 struct device *d; 1594 int rc; 1595 1596 if (!dev) 1597 return ERR_PTR(-EINVAL); 1598 1599 /* Search the list of PHY devices on the mdio bus for the 1600 * PHY with the requested name 1601 */ 1602 d = bus_find_device_by_name(bus, NULL, bus_id); 1603 if (!d) { 1604 pr_err("PHY %s not found\n", bus_id); 1605 return ERR_PTR(-ENODEV); 1606 } 1607 phydev = to_phy_device(d); 1608 1609 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1610 put_device(d); 1611 if (rc) 1612 return ERR_PTR(rc); 1613 1614 return phydev; 1615 } 1616 EXPORT_SYMBOL(phy_attach); 1617 1618 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1619 struct device_driver *driver) 1620 { 1621 struct device *d = &phydev->mdio.dev; 1622 bool ret = false; 1623 1624 if (!phydev->drv) 1625 return ret; 1626 1627 get_device(d); 1628 ret = d->driver == driver; 1629 put_device(d); 1630 1631 return ret; 1632 } 1633 1634 bool phy_driver_is_genphy(struct phy_device *phydev) 1635 { 1636 return phy_driver_is_genphy_kind(phydev, 1637 &genphy_driver.mdiodrv.driver); 1638 } 1639 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1640 1641 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1642 { 1643 return phy_driver_is_genphy_kind(phydev, 1644 &genphy_c45_driver.mdiodrv.driver); 1645 } 1646 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1647 1648 /** 1649 * phy_package_join - join a common PHY group 1650 * @phydev: target phy_device struct 1651 * @addr: cookie and PHY address for global register access 1652 * @priv_size: if non-zero allocate this amount of bytes for private data 1653 * 1654 * This joins a PHY group and provides a shared storage for all phydevs in 1655 * this group. This is intended to be used for packages which contain 1656 * more than one PHY, for example a quad PHY transceiver. 1657 * 1658 * The addr parameter serves as a cookie which has to have the same value 1659 * for all members of one group and as a PHY address to access generic 1660 * registers of a PHY package. Usually, one of the PHY addresses of the 1661 * different PHYs in the package provides access to these global registers. 1662 * The address which is given here, will be used in the phy_package_read() 1663 * and phy_package_write() convenience functions. If your PHY doesn't have 1664 * global registers you can just pick any of the PHY addresses. 1665 * 1666 * This will set the shared pointer of the phydev to the shared storage. 1667 * If this is the first call for a this cookie the shared storage will be 1668 * allocated. If priv_size is non-zero, the given amount of bytes are 1669 * allocated for the priv member. 1670 * 1671 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1672 * with the same cookie but a different priv_size is an error. 1673 */ 1674 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1675 { 1676 struct mii_bus *bus = phydev->mdio.bus; 1677 struct phy_package_shared *shared; 1678 int ret; 1679 1680 if (addr < 0 || addr >= PHY_MAX_ADDR) 1681 return -EINVAL; 1682 1683 mutex_lock(&bus->shared_lock); 1684 shared = bus->shared[addr]; 1685 if (!shared) { 1686 ret = -ENOMEM; 1687 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1688 if (!shared) 1689 goto err_unlock; 1690 if (priv_size) { 1691 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1692 if (!shared->priv) 1693 goto err_free; 1694 shared->priv_size = priv_size; 1695 } 1696 shared->addr = addr; 1697 refcount_set(&shared->refcnt, 1); 1698 bus->shared[addr] = shared; 1699 } else { 1700 ret = -EINVAL; 1701 if (priv_size && priv_size != shared->priv_size) 1702 goto err_unlock; 1703 refcount_inc(&shared->refcnt); 1704 } 1705 mutex_unlock(&bus->shared_lock); 1706 1707 phydev->shared = shared; 1708 1709 return 0; 1710 1711 err_free: 1712 kfree(shared); 1713 err_unlock: 1714 mutex_unlock(&bus->shared_lock); 1715 return ret; 1716 } 1717 EXPORT_SYMBOL_GPL(phy_package_join); 1718 1719 /** 1720 * phy_package_leave - leave a common PHY group 1721 * @phydev: target phy_device struct 1722 * 1723 * This leaves a PHY group created by phy_package_join(). If this phydev 1724 * was the last user of the shared data between the group, this data is 1725 * freed. Resets the phydev->shared pointer to NULL. 1726 */ 1727 void phy_package_leave(struct phy_device *phydev) 1728 { 1729 struct phy_package_shared *shared = phydev->shared; 1730 struct mii_bus *bus = phydev->mdio.bus; 1731 1732 if (!shared) 1733 return; 1734 1735 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1736 bus->shared[shared->addr] = NULL; 1737 mutex_unlock(&bus->shared_lock); 1738 kfree(shared->priv); 1739 kfree(shared); 1740 } 1741 1742 phydev->shared = NULL; 1743 } 1744 EXPORT_SYMBOL_GPL(phy_package_leave); 1745 1746 static void devm_phy_package_leave(struct device *dev, void *res) 1747 { 1748 phy_package_leave(*(struct phy_device **)res); 1749 } 1750 1751 /** 1752 * devm_phy_package_join - resource managed phy_package_join() 1753 * @dev: device that is registering this PHY package 1754 * @phydev: target phy_device struct 1755 * @addr: cookie and PHY address for global register access 1756 * @priv_size: if non-zero allocate this amount of bytes for private data 1757 * 1758 * Managed phy_package_join(). Shared storage fetched by this function, 1759 * phy_package_leave() is automatically called on driver detach. See 1760 * phy_package_join() for more information. 1761 */ 1762 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1763 int addr, size_t priv_size) 1764 { 1765 struct phy_device **ptr; 1766 int ret; 1767 1768 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1769 GFP_KERNEL); 1770 if (!ptr) 1771 return -ENOMEM; 1772 1773 ret = phy_package_join(phydev, addr, priv_size); 1774 1775 if (!ret) { 1776 *ptr = phydev; 1777 devres_add(dev, ptr); 1778 } else { 1779 devres_free(ptr); 1780 } 1781 1782 return ret; 1783 } 1784 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1785 1786 /** 1787 * phy_detach - detach a PHY device from its network device 1788 * @phydev: target phy_device struct 1789 * 1790 * This detaches the phy device from its network device and the phy 1791 * driver, and drops the reference count taken in phy_attach_direct(). 1792 */ 1793 void phy_detach(struct phy_device *phydev) 1794 { 1795 struct net_device *dev = phydev->attached_dev; 1796 struct module *ndev_owner = NULL; 1797 struct mii_bus *bus; 1798 1799 if (phydev->devlink) 1800 device_link_del(phydev->devlink); 1801 1802 if (phydev->sysfs_links) { 1803 if (dev) 1804 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1805 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1806 } 1807 1808 if (!phydev->attached_dev) 1809 sysfs_remove_file(&phydev->mdio.dev.kobj, 1810 &dev_attr_phy_standalone.attr); 1811 1812 phy_suspend(phydev); 1813 if (dev) { 1814 phydev->attached_dev->phydev = NULL; 1815 phydev->attached_dev = NULL; 1816 } 1817 phydev->phylink = NULL; 1818 1819 phy_led_triggers_unregister(phydev); 1820 1821 if (phydev->mdio.dev.driver) 1822 module_put(phydev->mdio.dev.driver->owner); 1823 1824 /* If the device had no specific driver before (i.e. - it 1825 * was using the generic driver), we unbind the device 1826 * from the generic driver so that there's a chance a 1827 * real driver could be loaded 1828 */ 1829 if (phy_driver_is_genphy(phydev) || 1830 phy_driver_is_genphy_10g(phydev)) 1831 device_release_driver(&phydev->mdio.dev); 1832 1833 /* Assert the reset signal */ 1834 phy_device_reset(phydev, 1); 1835 1836 /* 1837 * The phydev might go away on the put_device() below, so avoid 1838 * a use-after-free bug by reading the underlying bus first. 1839 */ 1840 bus = phydev->mdio.bus; 1841 1842 put_device(&phydev->mdio.dev); 1843 if (dev) 1844 ndev_owner = dev->dev.parent->driver->owner; 1845 if (ndev_owner != bus->owner) 1846 module_put(bus->owner); 1847 } 1848 EXPORT_SYMBOL(phy_detach); 1849 1850 int phy_suspend(struct phy_device *phydev) 1851 { 1852 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1853 struct net_device *netdev = phydev->attached_dev; 1854 struct phy_driver *phydrv = phydev->drv; 1855 int ret; 1856 1857 if (phydev->suspended) 1858 return 0; 1859 1860 phy_ethtool_get_wol(phydev, &wol); 1861 phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled); 1862 /* If the device has WOL enabled, we cannot suspend the PHY */ 1863 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 1864 return -EBUSY; 1865 1866 if (!phydrv || !phydrv->suspend) 1867 return 0; 1868 1869 ret = phydrv->suspend(phydev); 1870 if (!ret) 1871 phydev->suspended = true; 1872 1873 return ret; 1874 } 1875 EXPORT_SYMBOL(phy_suspend); 1876 1877 int __phy_resume(struct phy_device *phydev) 1878 { 1879 struct phy_driver *phydrv = phydev->drv; 1880 int ret; 1881 1882 lockdep_assert_held(&phydev->lock); 1883 1884 if (!phydrv || !phydrv->resume) 1885 return 0; 1886 1887 ret = phydrv->resume(phydev); 1888 if (!ret) 1889 phydev->suspended = false; 1890 1891 return ret; 1892 } 1893 EXPORT_SYMBOL(__phy_resume); 1894 1895 int phy_resume(struct phy_device *phydev) 1896 { 1897 int ret; 1898 1899 mutex_lock(&phydev->lock); 1900 ret = __phy_resume(phydev); 1901 mutex_unlock(&phydev->lock); 1902 1903 return ret; 1904 } 1905 EXPORT_SYMBOL(phy_resume); 1906 1907 int phy_loopback(struct phy_device *phydev, bool enable) 1908 { 1909 int ret = 0; 1910 1911 if (!phydev->drv) 1912 return -EIO; 1913 1914 mutex_lock(&phydev->lock); 1915 1916 if (enable && phydev->loopback_enabled) { 1917 ret = -EBUSY; 1918 goto out; 1919 } 1920 1921 if (!enable && !phydev->loopback_enabled) { 1922 ret = -EINVAL; 1923 goto out; 1924 } 1925 1926 if (phydev->drv->set_loopback) 1927 ret = phydev->drv->set_loopback(phydev, enable); 1928 else 1929 ret = genphy_loopback(phydev, enable); 1930 1931 if (ret) 1932 goto out; 1933 1934 phydev->loopback_enabled = enable; 1935 1936 out: 1937 mutex_unlock(&phydev->lock); 1938 return ret; 1939 } 1940 EXPORT_SYMBOL(phy_loopback); 1941 1942 /** 1943 * phy_reset_after_clk_enable - perform a PHY reset if needed 1944 * @phydev: target phy_device struct 1945 * 1946 * Description: Some PHYs are known to need a reset after their refclk was 1947 * enabled. This function evaluates the flags and perform the reset if it's 1948 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1949 * was reset. 1950 */ 1951 int phy_reset_after_clk_enable(struct phy_device *phydev) 1952 { 1953 if (!phydev || !phydev->drv) 1954 return -ENODEV; 1955 1956 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1957 phy_device_reset(phydev, 1); 1958 phy_device_reset(phydev, 0); 1959 return 1; 1960 } 1961 1962 return 0; 1963 } 1964 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1965 1966 /* Generic PHY support and helper functions */ 1967 1968 /** 1969 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1970 * @phydev: target phy_device struct 1971 * 1972 * Description: Writes MII_ADVERTISE with the appropriate values, 1973 * after sanitizing the values to make sure we only advertise 1974 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1975 * hasn't changed, and > 0 if it has changed. 1976 */ 1977 static int genphy_config_advert(struct phy_device *phydev) 1978 { 1979 int err, bmsr, changed = 0; 1980 u32 adv; 1981 1982 /* Only allow advertising what this PHY supports */ 1983 linkmode_and(phydev->advertising, phydev->advertising, 1984 phydev->supported); 1985 1986 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1987 1988 /* Setup standard advertisement */ 1989 err = phy_modify_changed(phydev, MII_ADVERTISE, 1990 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1991 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1992 adv); 1993 if (err < 0) 1994 return err; 1995 if (err > 0) 1996 changed = 1; 1997 1998 bmsr = phy_read(phydev, MII_BMSR); 1999 if (bmsr < 0) 2000 return bmsr; 2001 2002 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2003 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2004 * logical 1. 2005 */ 2006 if (!(bmsr & BMSR_ESTATEN)) 2007 return changed; 2008 2009 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2010 2011 err = phy_modify_changed(phydev, MII_CTRL1000, 2012 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2013 adv); 2014 if (err < 0) 2015 return err; 2016 if (err > 0) 2017 changed = 1; 2018 2019 return changed; 2020 } 2021 2022 /** 2023 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2024 * @phydev: target phy_device struct 2025 * 2026 * Description: Writes MII_ADVERTISE with the appropriate values, 2027 * after sanitizing the values to make sure we only advertise 2028 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2029 * hasn't changed, and > 0 if it has changed. This function is intended 2030 * for Clause 37 1000Base-X mode. 2031 */ 2032 static int genphy_c37_config_advert(struct phy_device *phydev) 2033 { 2034 u16 adv = 0; 2035 2036 /* Only allow advertising what this PHY supports */ 2037 linkmode_and(phydev->advertising, phydev->advertising, 2038 phydev->supported); 2039 2040 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2041 phydev->advertising)) 2042 adv |= ADVERTISE_1000XFULL; 2043 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2044 phydev->advertising)) 2045 adv |= ADVERTISE_1000XPAUSE; 2046 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2047 phydev->advertising)) 2048 adv |= ADVERTISE_1000XPSE_ASYM; 2049 2050 return phy_modify_changed(phydev, MII_ADVERTISE, 2051 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2052 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2053 adv); 2054 } 2055 2056 /** 2057 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2058 * @phydev: target phy_device struct 2059 * 2060 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2061 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2062 * changed, and 1 if it has changed. 2063 */ 2064 int genphy_config_eee_advert(struct phy_device *phydev) 2065 { 2066 int err; 2067 2068 /* Nothing to disable */ 2069 if (!phydev->eee_broken_modes) 2070 return 0; 2071 2072 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2073 phydev->eee_broken_modes, 0); 2074 /* If the call failed, we assume that EEE is not supported */ 2075 return err < 0 ? 0 : err; 2076 } 2077 EXPORT_SYMBOL(genphy_config_eee_advert); 2078 2079 /** 2080 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2081 * @phydev: target phy_device struct 2082 * 2083 * Description: Configures MII_BMCR to force speed/duplex 2084 * to the values in phydev. Assumes that the values are valid. 2085 * Please see phy_sanitize_settings(). 2086 */ 2087 int genphy_setup_forced(struct phy_device *phydev) 2088 { 2089 u16 ctl; 2090 2091 phydev->pause = 0; 2092 phydev->asym_pause = 0; 2093 2094 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2095 2096 return phy_modify(phydev, MII_BMCR, 2097 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2098 } 2099 EXPORT_SYMBOL(genphy_setup_forced); 2100 2101 static int genphy_setup_master_slave(struct phy_device *phydev) 2102 { 2103 u16 ctl = 0; 2104 2105 if (!phydev->is_gigabit_capable) 2106 return 0; 2107 2108 switch (phydev->master_slave_set) { 2109 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2110 ctl |= CTL1000_PREFER_MASTER; 2111 break; 2112 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2113 break; 2114 case MASTER_SLAVE_CFG_MASTER_FORCE: 2115 ctl |= CTL1000_AS_MASTER; 2116 fallthrough; 2117 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2118 ctl |= CTL1000_ENABLE_MASTER; 2119 break; 2120 case MASTER_SLAVE_CFG_UNKNOWN: 2121 case MASTER_SLAVE_CFG_UNSUPPORTED: 2122 return 0; 2123 default: 2124 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2125 return -EOPNOTSUPP; 2126 } 2127 2128 return phy_modify_changed(phydev, MII_CTRL1000, 2129 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2130 CTL1000_PREFER_MASTER), ctl); 2131 } 2132 2133 int genphy_read_master_slave(struct phy_device *phydev) 2134 { 2135 int cfg, state; 2136 int val; 2137 2138 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2139 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2140 2141 val = phy_read(phydev, MII_CTRL1000); 2142 if (val < 0) 2143 return val; 2144 2145 if (val & CTL1000_ENABLE_MASTER) { 2146 if (val & CTL1000_AS_MASTER) 2147 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2148 else 2149 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2150 } else { 2151 if (val & CTL1000_PREFER_MASTER) 2152 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2153 else 2154 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2155 } 2156 2157 val = phy_read(phydev, MII_STAT1000); 2158 if (val < 0) 2159 return val; 2160 2161 if (val & LPA_1000MSFAIL) { 2162 state = MASTER_SLAVE_STATE_ERR; 2163 } else if (phydev->link) { 2164 /* this bits are valid only for active link */ 2165 if (val & LPA_1000MSRES) 2166 state = MASTER_SLAVE_STATE_MASTER; 2167 else 2168 state = MASTER_SLAVE_STATE_SLAVE; 2169 } else { 2170 state = MASTER_SLAVE_STATE_UNKNOWN; 2171 } 2172 2173 phydev->master_slave_get = cfg; 2174 phydev->master_slave_state = state; 2175 2176 return 0; 2177 } 2178 EXPORT_SYMBOL(genphy_read_master_slave); 2179 2180 /** 2181 * genphy_restart_aneg - Enable and Restart Autonegotiation 2182 * @phydev: target phy_device struct 2183 */ 2184 int genphy_restart_aneg(struct phy_device *phydev) 2185 { 2186 /* Don't isolate the PHY if we're negotiating */ 2187 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2188 BMCR_ANENABLE | BMCR_ANRESTART); 2189 } 2190 EXPORT_SYMBOL(genphy_restart_aneg); 2191 2192 /** 2193 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2194 * @phydev: target phy_device struct 2195 * @restart: whether aneg restart is requested 2196 * 2197 * Check, and restart auto-negotiation if needed. 2198 */ 2199 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2200 { 2201 int ret; 2202 2203 if (!restart) { 2204 /* Advertisement hasn't changed, but maybe aneg was never on to 2205 * begin with? Or maybe phy was isolated? 2206 */ 2207 ret = phy_read(phydev, MII_BMCR); 2208 if (ret < 0) 2209 return ret; 2210 2211 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2212 restart = true; 2213 } 2214 2215 if (restart) 2216 return genphy_restart_aneg(phydev); 2217 2218 return 0; 2219 } 2220 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2221 2222 /** 2223 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2224 * @phydev: target phy_device struct 2225 * @changed: whether autoneg is requested 2226 * 2227 * Description: If auto-negotiation is enabled, we configure the 2228 * advertising, and then restart auto-negotiation. If it is not 2229 * enabled, then we write the BMCR. 2230 */ 2231 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2232 { 2233 int err; 2234 2235 err = genphy_c45_an_config_eee_aneg(phydev); 2236 if (err < 0) 2237 return err; 2238 else if (err) 2239 changed = true; 2240 2241 err = genphy_setup_master_slave(phydev); 2242 if (err < 0) 2243 return err; 2244 else if (err) 2245 changed = true; 2246 2247 if (AUTONEG_ENABLE != phydev->autoneg) 2248 return genphy_setup_forced(phydev); 2249 2250 err = genphy_config_advert(phydev); 2251 if (err < 0) /* error */ 2252 return err; 2253 else if (err) 2254 changed = true; 2255 2256 return genphy_check_and_restart_aneg(phydev, changed); 2257 } 2258 EXPORT_SYMBOL(__genphy_config_aneg); 2259 2260 /** 2261 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2262 * @phydev: target phy_device struct 2263 * 2264 * Description: If auto-negotiation is enabled, we configure the 2265 * advertising, and then restart auto-negotiation. If it is not 2266 * enabled, then we write the BMCR. This function is intended 2267 * for use with Clause 37 1000Base-X mode. 2268 */ 2269 int genphy_c37_config_aneg(struct phy_device *phydev) 2270 { 2271 int err, changed; 2272 2273 if (phydev->autoneg != AUTONEG_ENABLE) 2274 return genphy_setup_forced(phydev); 2275 2276 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2277 BMCR_SPEED1000); 2278 if (err) 2279 return err; 2280 2281 changed = genphy_c37_config_advert(phydev); 2282 if (changed < 0) /* error */ 2283 return changed; 2284 2285 if (!changed) { 2286 /* Advertisement hasn't changed, but maybe aneg was never on to 2287 * begin with? Or maybe phy was isolated? 2288 */ 2289 int ctl = phy_read(phydev, MII_BMCR); 2290 2291 if (ctl < 0) 2292 return ctl; 2293 2294 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2295 changed = 1; /* do restart aneg */ 2296 } 2297 2298 /* Only restart aneg if we are advertising something different 2299 * than we were before. 2300 */ 2301 if (changed > 0) 2302 return genphy_restart_aneg(phydev); 2303 2304 return 0; 2305 } 2306 EXPORT_SYMBOL(genphy_c37_config_aneg); 2307 2308 /** 2309 * genphy_aneg_done - return auto-negotiation status 2310 * @phydev: target phy_device struct 2311 * 2312 * Description: Reads the status register and returns 0 either if 2313 * auto-negotiation is incomplete, or if there was an error. 2314 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2315 */ 2316 int genphy_aneg_done(struct phy_device *phydev) 2317 { 2318 int retval = phy_read(phydev, MII_BMSR); 2319 2320 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2321 } 2322 EXPORT_SYMBOL(genphy_aneg_done); 2323 2324 /** 2325 * genphy_update_link - update link status in @phydev 2326 * @phydev: target phy_device struct 2327 * 2328 * Description: Update the value in phydev->link to reflect the 2329 * current link value. In order to do this, we need to read 2330 * the status register twice, keeping the second value. 2331 */ 2332 int genphy_update_link(struct phy_device *phydev) 2333 { 2334 int status = 0, bmcr; 2335 2336 bmcr = phy_read(phydev, MII_BMCR); 2337 if (bmcr < 0) 2338 return bmcr; 2339 2340 /* Autoneg is being started, therefore disregard BMSR value and 2341 * report link as down. 2342 */ 2343 if (bmcr & BMCR_ANRESTART) 2344 goto done; 2345 2346 /* The link state is latched low so that momentary link 2347 * drops can be detected. Do not double-read the status 2348 * in polling mode to detect such short link drops except 2349 * the link was already down. 2350 */ 2351 if (!phy_polling_mode(phydev) || !phydev->link) { 2352 status = phy_read(phydev, MII_BMSR); 2353 if (status < 0) 2354 return status; 2355 else if (status & BMSR_LSTATUS) 2356 goto done; 2357 } 2358 2359 /* Read link and autonegotiation status */ 2360 status = phy_read(phydev, MII_BMSR); 2361 if (status < 0) 2362 return status; 2363 done: 2364 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2365 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2366 2367 /* Consider the case that autoneg was started and "aneg complete" 2368 * bit has been reset, but "link up" bit not yet. 2369 */ 2370 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2371 phydev->link = 0; 2372 2373 return 0; 2374 } 2375 EXPORT_SYMBOL(genphy_update_link); 2376 2377 int genphy_read_lpa(struct phy_device *phydev) 2378 { 2379 int lpa, lpagb; 2380 2381 if (phydev->autoneg == AUTONEG_ENABLE) { 2382 if (!phydev->autoneg_complete) { 2383 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2384 0); 2385 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2386 return 0; 2387 } 2388 2389 if (phydev->is_gigabit_capable) { 2390 lpagb = phy_read(phydev, MII_STAT1000); 2391 if (lpagb < 0) 2392 return lpagb; 2393 2394 if (lpagb & LPA_1000MSFAIL) { 2395 int adv = phy_read(phydev, MII_CTRL1000); 2396 2397 if (adv < 0) 2398 return adv; 2399 2400 if (adv & CTL1000_ENABLE_MASTER) 2401 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2402 else 2403 phydev_err(phydev, "Master/Slave resolution failed\n"); 2404 return -ENOLINK; 2405 } 2406 2407 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2408 lpagb); 2409 } 2410 2411 lpa = phy_read(phydev, MII_LPA); 2412 if (lpa < 0) 2413 return lpa; 2414 2415 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2416 } else { 2417 linkmode_zero(phydev->lp_advertising); 2418 } 2419 2420 return 0; 2421 } 2422 EXPORT_SYMBOL(genphy_read_lpa); 2423 2424 /** 2425 * genphy_read_status_fixed - read the link parameters for !aneg mode 2426 * @phydev: target phy_device struct 2427 * 2428 * Read the current duplex and speed state for a PHY operating with 2429 * autonegotiation disabled. 2430 */ 2431 int genphy_read_status_fixed(struct phy_device *phydev) 2432 { 2433 int bmcr = phy_read(phydev, MII_BMCR); 2434 2435 if (bmcr < 0) 2436 return bmcr; 2437 2438 if (bmcr & BMCR_FULLDPLX) 2439 phydev->duplex = DUPLEX_FULL; 2440 else 2441 phydev->duplex = DUPLEX_HALF; 2442 2443 if (bmcr & BMCR_SPEED1000) 2444 phydev->speed = SPEED_1000; 2445 else if (bmcr & BMCR_SPEED100) 2446 phydev->speed = SPEED_100; 2447 else 2448 phydev->speed = SPEED_10; 2449 2450 return 0; 2451 } 2452 EXPORT_SYMBOL(genphy_read_status_fixed); 2453 2454 /** 2455 * genphy_read_status - check the link status and update current link state 2456 * @phydev: target phy_device struct 2457 * 2458 * Description: Check the link, then figure out the current state 2459 * by comparing what we advertise with what the link partner 2460 * advertises. Start by checking the gigabit possibilities, 2461 * then move on to 10/100. 2462 */ 2463 int genphy_read_status(struct phy_device *phydev) 2464 { 2465 int err, old_link = phydev->link; 2466 2467 /* Update the link, but return if there was an error */ 2468 err = genphy_update_link(phydev); 2469 if (err) 2470 return err; 2471 2472 /* why bother the PHY if nothing can have changed */ 2473 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2474 return 0; 2475 2476 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2477 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2478 phydev->speed = SPEED_UNKNOWN; 2479 phydev->duplex = DUPLEX_UNKNOWN; 2480 phydev->pause = 0; 2481 phydev->asym_pause = 0; 2482 2483 if (phydev->is_gigabit_capable) { 2484 err = genphy_read_master_slave(phydev); 2485 if (err < 0) 2486 return err; 2487 } 2488 2489 err = genphy_read_lpa(phydev); 2490 if (err < 0) 2491 return err; 2492 2493 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2494 phy_resolve_aneg_linkmode(phydev); 2495 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2496 err = genphy_read_status_fixed(phydev); 2497 if (err < 0) 2498 return err; 2499 } 2500 2501 return 0; 2502 } 2503 EXPORT_SYMBOL(genphy_read_status); 2504 2505 /** 2506 * genphy_c37_read_status - check the link status and update current link state 2507 * @phydev: target phy_device struct 2508 * 2509 * Description: Check the link, then figure out the current state 2510 * by comparing what we advertise with what the link partner 2511 * advertises. This function is for Clause 37 1000Base-X mode. 2512 */ 2513 int genphy_c37_read_status(struct phy_device *phydev) 2514 { 2515 int lpa, err, old_link = phydev->link; 2516 2517 /* Update the link, but return if there was an error */ 2518 err = genphy_update_link(phydev); 2519 if (err) 2520 return err; 2521 2522 /* why bother the PHY if nothing can have changed */ 2523 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2524 return 0; 2525 2526 phydev->duplex = DUPLEX_UNKNOWN; 2527 phydev->pause = 0; 2528 phydev->asym_pause = 0; 2529 2530 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2531 lpa = phy_read(phydev, MII_LPA); 2532 if (lpa < 0) 2533 return lpa; 2534 2535 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2536 phydev->lp_advertising, lpa & LPA_LPACK); 2537 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2538 phydev->lp_advertising, lpa & LPA_1000XFULL); 2539 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2540 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2541 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2542 phydev->lp_advertising, 2543 lpa & LPA_1000XPAUSE_ASYM); 2544 2545 phy_resolve_aneg_linkmode(phydev); 2546 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2547 int bmcr = phy_read(phydev, MII_BMCR); 2548 2549 if (bmcr < 0) 2550 return bmcr; 2551 2552 if (bmcr & BMCR_FULLDPLX) 2553 phydev->duplex = DUPLEX_FULL; 2554 else 2555 phydev->duplex = DUPLEX_HALF; 2556 } 2557 2558 return 0; 2559 } 2560 EXPORT_SYMBOL(genphy_c37_read_status); 2561 2562 /** 2563 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2564 * @phydev: target phy_device struct 2565 * 2566 * Description: Perform a software PHY reset using the standard 2567 * BMCR_RESET bit and poll for the reset bit to be cleared. 2568 * 2569 * Returns: 0 on success, < 0 on failure 2570 */ 2571 int genphy_soft_reset(struct phy_device *phydev) 2572 { 2573 u16 res = BMCR_RESET; 2574 int ret; 2575 2576 if (phydev->autoneg == AUTONEG_ENABLE) 2577 res |= BMCR_ANRESTART; 2578 2579 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2580 if (ret < 0) 2581 return ret; 2582 2583 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2584 * to their default value. Therefore the POWER DOWN bit is supposed to 2585 * be cleared after soft reset. 2586 */ 2587 phydev->suspended = 0; 2588 2589 ret = phy_poll_reset(phydev); 2590 if (ret) 2591 return ret; 2592 2593 /* BMCR may be reset to defaults */ 2594 if (phydev->autoneg == AUTONEG_DISABLE) 2595 ret = genphy_setup_forced(phydev); 2596 2597 return ret; 2598 } 2599 EXPORT_SYMBOL(genphy_soft_reset); 2600 2601 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2602 { 2603 /* It seems there are cases where the interrupts are handled by another 2604 * entity (ie an IRQ controller embedded inside the PHY) and do not 2605 * need any other interraction from phylib. In this case, just trigger 2606 * the state machine directly. 2607 */ 2608 phy_trigger_machine(phydev); 2609 2610 return 0; 2611 } 2612 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2613 2614 /** 2615 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2616 * @phydev: target phy_device struct 2617 * 2618 * Description: Reads the PHY's abilities and populates 2619 * phydev->supported accordingly. 2620 * 2621 * Returns: 0 on success, < 0 on failure 2622 */ 2623 int genphy_read_abilities(struct phy_device *phydev) 2624 { 2625 int val; 2626 2627 linkmode_set_bit_array(phy_basic_ports_array, 2628 ARRAY_SIZE(phy_basic_ports_array), 2629 phydev->supported); 2630 2631 val = phy_read(phydev, MII_BMSR); 2632 if (val < 0) 2633 return val; 2634 2635 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2636 val & BMSR_ANEGCAPABLE); 2637 2638 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2639 val & BMSR_100FULL); 2640 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2641 val & BMSR_100HALF); 2642 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2643 val & BMSR_10FULL); 2644 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2645 val & BMSR_10HALF); 2646 2647 if (val & BMSR_ESTATEN) { 2648 val = phy_read(phydev, MII_ESTATUS); 2649 if (val < 0) 2650 return val; 2651 2652 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2653 phydev->supported, val & ESTATUS_1000_TFULL); 2654 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2655 phydev->supported, val & ESTATUS_1000_THALF); 2656 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2657 phydev->supported, val & ESTATUS_1000_XFULL); 2658 } 2659 2660 /* This is optional functionality. If not supported, we may get an error 2661 * which should be ignored. 2662 */ 2663 genphy_c45_read_eee_abilities(phydev); 2664 2665 return 0; 2666 } 2667 EXPORT_SYMBOL(genphy_read_abilities); 2668 2669 /* This is used for the phy device which doesn't support the MMD extended 2670 * register access, but it does have side effect when we are trying to access 2671 * the MMD register via indirect method. 2672 */ 2673 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2674 { 2675 return -EOPNOTSUPP; 2676 } 2677 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2678 2679 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2680 u16 regnum, u16 val) 2681 { 2682 return -EOPNOTSUPP; 2683 } 2684 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2685 2686 int genphy_suspend(struct phy_device *phydev) 2687 { 2688 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2689 } 2690 EXPORT_SYMBOL(genphy_suspend); 2691 2692 int genphy_resume(struct phy_device *phydev) 2693 { 2694 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2695 } 2696 EXPORT_SYMBOL(genphy_resume); 2697 2698 int genphy_loopback(struct phy_device *phydev, bool enable) 2699 { 2700 if (enable) { 2701 u16 val, ctl = BMCR_LOOPBACK; 2702 int ret; 2703 2704 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2705 2706 phy_modify(phydev, MII_BMCR, ~0, ctl); 2707 2708 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2709 val & BMSR_LSTATUS, 2710 5000, 500000, true); 2711 if (ret) 2712 return ret; 2713 } else { 2714 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2715 2716 phy_config_aneg(phydev); 2717 } 2718 2719 return 0; 2720 } 2721 EXPORT_SYMBOL(genphy_loopback); 2722 2723 /** 2724 * phy_remove_link_mode - Remove a supported link mode 2725 * @phydev: phy_device structure to remove link mode from 2726 * @link_mode: Link mode to be removed 2727 * 2728 * Description: Some MACs don't support all link modes which the PHY 2729 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2730 * to remove a link mode. 2731 */ 2732 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2733 { 2734 linkmode_clear_bit(link_mode, phydev->supported); 2735 phy_advertise_supported(phydev); 2736 } 2737 EXPORT_SYMBOL(phy_remove_link_mode); 2738 2739 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2740 { 2741 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2742 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2743 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2744 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2745 } 2746 2747 /** 2748 * phy_advertise_supported - Advertise all supported modes 2749 * @phydev: target phy_device struct 2750 * 2751 * Description: Called to advertise all supported modes, doesn't touch 2752 * pause mode advertising. 2753 */ 2754 void phy_advertise_supported(struct phy_device *phydev) 2755 { 2756 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2757 2758 linkmode_copy(new, phydev->supported); 2759 phy_copy_pause_bits(new, phydev->advertising); 2760 linkmode_copy(phydev->advertising, new); 2761 } 2762 EXPORT_SYMBOL(phy_advertise_supported); 2763 2764 /** 2765 * phy_support_sym_pause - Enable support of symmetrical pause 2766 * @phydev: target phy_device struct 2767 * 2768 * Description: Called by the MAC to indicate is supports symmetrical 2769 * Pause, but not asym pause. 2770 */ 2771 void phy_support_sym_pause(struct phy_device *phydev) 2772 { 2773 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2774 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2775 } 2776 EXPORT_SYMBOL(phy_support_sym_pause); 2777 2778 /** 2779 * phy_support_asym_pause - Enable support of asym pause 2780 * @phydev: target phy_device struct 2781 * 2782 * Description: Called by the MAC to indicate is supports Asym Pause. 2783 */ 2784 void phy_support_asym_pause(struct phy_device *phydev) 2785 { 2786 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2787 } 2788 EXPORT_SYMBOL(phy_support_asym_pause); 2789 2790 /** 2791 * phy_set_sym_pause - Configure symmetric Pause 2792 * @phydev: target phy_device struct 2793 * @rx: Receiver Pause is supported 2794 * @tx: Transmit Pause is supported 2795 * @autoneg: Auto neg should be used 2796 * 2797 * Description: Configure advertised Pause support depending on if 2798 * receiver pause and pause auto neg is supported. Generally called 2799 * from the set_pauseparam .ndo. 2800 */ 2801 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2802 bool autoneg) 2803 { 2804 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2805 2806 if (rx && tx && autoneg) 2807 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2808 phydev->supported); 2809 2810 linkmode_copy(phydev->advertising, phydev->supported); 2811 } 2812 EXPORT_SYMBOL(phy_set_sym_pause); 2813 2814 /** 2815 * phy_set_asym_pause - Configure Pause and Asym Pause 2816 * @phydev: target phy_device struct 2817 * @rx: Receiver Pause is supported 2818 * @tx: Transmit Pause is supported 2819 * 2820 * Description: Configure advertised Pause support depending on if 2821 * transmit and receiver pause is supported. If there has been a 2822 * change in adverting, trigger a new autoneg. Generally called from 2823 * the set_pauseparam .ndo. 2824 */ 2825 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2826 { 2827 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2828 2829 linkmode_copy(oldadv, phydev->advertising); 2830 linkmode_set_pause(phydev->advertising, tx, rx); 2831 2832 if (!linkmode_equal(oldadv, phydev->advertising) && 2833 phydev->autoneg) 2834 phy_start_aneg(phydev); 2835 } 2836 EXPORT_SYMBOL(phy_set_asym_pause); 2837 2838 /** 2839 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2840 * @phydev: phy_device struct 2841 * @pp: requested pause configuration 2842 * 2843 * Description: Test if the PHY/MAC combination supports the Pause 2844 * configuration the user is requesting. Returns True if it is 2845 * supported, false otherwise. 2846 */ 2847 bool phy_validate_pause(struct phy_device *phydev, 2848 struct ethtool_pauseparam *pp) 2849 { 2850 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2851 phydev->supported) && pp->rx_pause) 2852 return false; 2853 2854 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2855 phydev->supported) && 2856 pp->rx_pause != pp->tx_pause) 2857 return false; 2858 2859 return true; 2860 } 2861 EXPORT_SYMBOL(phy_validate_pause); 2862 2863 /** 2864 * phy_get_pause - resolve negotiated pause modes 2865 * @phydev: phy_device struct 2866 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2867 * enabled. 2868 * @rx_pause: pointer to bool to indicate whether receive pause should be 2869 * enabled. 2870 * 2871 * Resolve and return the flow control modes according to the negotiation 2872 * result. This includes checking that we are operating in full duplex mode. 2873 * See linkmode_resolve_pause() for further details. 2874 */ 2875 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2876 { 2877 if (phydev->duplex != DUPLEX_FULL) { 2878 *tx_pause = false; 2879 *rx_pause = false; 2880 return; 2881 } 2882 2883 return linkmode_resolve_pause(phydev->advertising, 2884 phydev->lp_advertising, 2885 tx_pause, rx_pause); 2886 } 2887 EXPORT_SYMBOL(phy_get_pause); 2888 2889 #if IS_ENABLED(CONFIG_OF_MDIO) 2890 static int phy_get_int_delay_property(struct device *dev, const char *name) 2891 { 2892 s32 int_delay; 2893 int ret; 2894 2895 ret = device_property_read_u32(dev, name, &int_delay); 2896 if (ret) 2897 return ret; 2898 2899 return int_delay; 2900 } 2901 #else 2902 static int phy_get_int_delay_property(struct device *dev, const char *name) 2903 { 2904 return -EINVAL; 2905 } 2906 #endif 2907 2908 /** 2909 * phy_get_internal_delay - returns the index of the internal delay 2910 * @phydev: phy_device struct 2911 * @dev: pointer to the devices device struct 2912 * @delay_values: array of delays the PHY supports 2913 * @size: the size of the delay array 2914 * @is_rx: boolean to indicate to get the rx internal delay 2915 * 2916 * Returns the index within the array of internal delay passed in. 2917 * If the device property is not present then the interface type is checked 2918 * if the interface defines use of internal delay then a 1 is returned otherwise 2919 * a 0 is returned. 2920 * The array must be in ascending order. If PHY does not have an ascending order 2921 * array then size = 0 and the value of the delay property is returned. 2922 * Return -EINVAL if the delay is invalid or cannot be found. 2923 */ 2924 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2925 const int *delay_values, int size, bool is_rx) 2926 { 2927 s32 delay; 2928 int i; 2929 2930 if (is_rx) { 2931 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2932 if (delay < 0 && size == 0) { 2933 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2934 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2935 return 1; 2936 else 2937 return 0; 2938 } 2939 2940 } else { 2941 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2942 if (delay < 0 && size == 0) { 2943 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2944 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2945 return 1; 2946 else 2947 return 0; 2948 } 2949 } 2950 2951 if (delay < 0) 2952 return delay; 2953 2954 if (delay && size == 0) 2955 return delay; 2956 2957 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2958 phydev_err(phydev, "Delay %d is out of range\n", delay); 2959 return -EINVAL; 2960 } 2961 2962 if (delay == delay_values[0]) 2963 return 0; 2964 2965 for (i = 1; i < size; i++) { 2966 if (delay == delay_values[i]) 2967 return i; 2968 2969 /* Find an approximate index by looking up the table */ 2970 if (delay > delay_values[i - 1] && 2971 delay < delay_values[i]) { 2972 if (delay - delay_values[i - 1] < 2973 delay_values[i] - delay) 2974 return i - 1; 2975 else 2976 return i; 2977 } 2978 } 2979 2980 phydev_err(phydev, "error finding internal delay index for %d\n", 2981 delay); 2982 2983 return -EINVAL; 2984 } 2985 EXPORT_SYMBOL(phy_get_internal_delay); 2986 2987 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2988 { 2989 return phydrv->config_intr && phydrv->handle_interrupt; 2990 } 2991 2992 static int phy_led_set_brightness(struct led_classdev *led_cdev, 2993 enum led_brightness value) 2994 { 2995 struct phy_led *phyled = to_phy_led(led_cdev); 2996 struct phy_device *phydev = phyled->phydev; 2997 int err; 2998 2999 mutex_lock(&phydev->lock); 3000 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3001 mutex_unlock(&phydev->lock); 3002 3003 return err; 3004 } 3005 3006 static int phy_led_blink_set(struct led_classdev *led_cdev, 3007 unsigned long *delay_on, 3008 unsigned long *delay_off) 3009 { 3010 struct phy_led *phyled = to_phy_led(led_cdev); 3011 struct phy_device *phydev = phyled->phydev; 3012 int err; 3013 3014 mutex_lock(&phydev->lock); 3015 err = phydev->drv->led_blink_set(phydev, phyled->index, 3016 delay_on, delay_off); 3017 mutex_unlock(&phydev->lock); 3018 3019 return err; 3020 } 3021 3022 static __maybe_unused struct device * 3023 phy_led_hw_control_get_device(struct led_classdev *led_cdev) 3024 { 3025 struct phy_led *phyled = to_phy_led(led_cdev); 3026 struct phy_device *phydev = phyled->phydev; 3027 3028 if (phydev->attached_dev) 3029 return &phydev->attached_dev->dev; 3030 return NULL; 3031 } 3032 3033 static int __maybe_unused 3034 phy_led_hw_control_get(struct led_classdev *led_cdev, 3035 unsigned long *rules) 3036 { 3037 struct phy_led *phyled = to_phy_led(led_cdev); 3038 struct phy_device *phydev = phyled->phydev; 3039 int err; 3040 3041 mutex_lock(&phydev->lock); 3042 err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules); 3043 mutex_unlock(&phydev->lock); 3044 3045 return err; 3046 } 3047 3048 static int __maybe_unused 3049 phy_led_hw_control_set(struct led_classdev *led_cdev, 3050 unsigned long rules) 3051 { 3052 struct phy_led *phyled = to_phy_led(led_cdev); 3053 struct phy_device *phydev = phyled->phydev; 3054 int err; 3055 3056 mutex_lock(&phydev->lock); 3057 err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules); 3058 mutex_unlock(&phydev->lock); 3059 3060 return err; 3061 } 3062 3063 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev, 3064 unsigned long rules) 3065 { 3066 struct phy_led *phyled = to_phy_led(led_cdev); 3067 struct phy_device *phydev = phyled->phydev; 3068 int err; 3069 3070 mutex_lock(&phydev->lock); 3071 err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules); 3072 mutex_unlock(&phydev->lock); 3073 3074 return err; 3075 } 3076 3077 static void phy_leds_unregister(struct phy_device *phydev) 3078 { 3079 struct phy_led *phyled; 3080 3081 list_for_each_entry(phyled, &phydev->leds, list) { 3082 led_classdev_unregister(&phyled->led_cdev); 3083 } 3084 } 3085 3086 static int of_phy_led(struct phy_device *phydev, 3087 struct device_node *led) 3088 { 3089 struct device *dev = &phydev->mdio.dev; 3090 struct led_init_data init_data = {}; 3091 struct led_classdev *cdev; 3092 struct phy_led *phyled; 3093 u32 index; 3094 int err; 3095 3096 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3097 if (!phyled) 3098 return -ENOMEM; 3099 3100 cdev = &phyled->led_cdev; 3101 phyled->phydev = phydev; 3102 3103 err = of_property_read_u32(led, "reg", &index); 3104 if (err) 3105 return err; 3106 if (index > U8_MAX) 3107 return -EINVAL; 3108 3109 phyled->index = index; 3110 if (phydev->drv->led_brightness_set) 3111 cdev->brightness_set_blocking = phy_led_set_brightness; 3112 if (phydev->drv->led_blink_set) 3113 cdev->blink_set = phy_led_blink_set; 3114 3115 #ifdef CONFIG_LEDS_TRIGGERS 3116 if (phydev->drv->led_hw_is_supported && 3117 phydev->drv->led_hw_control_set && 3118 phydev->drv->led_hw_control_get) { 3119 cdev->hw_control_is_supported = phy_led_hw_is_supported; 3120 cdev->hw_control_set = phy_led_hw_control_set; 3121 cdev->hw_control_get = phy_led_hw_control_get; 3122 cdev->hw_control_trigger = "netdev"; 3123 } 3124 3125 cdev->hw_control_get_device = phy_led_hw_control_get_device; 3126 #endif 3127 cdev->max_brightness = 1; 3128 init_data.devicename = dev_name(&phydev->mdio.dev); 3129 init_data.fwnode = of_fwnode_handle(led); 3130 init_data.devname_mandatory = true; 3131 3132 err = led_classdev_register_ext(dev, cdev, &init_data); 3133 if (err) 3134 return err; 3135 3136 list_add(&phyled->list, &phydev->leds); 3137 3138 return 0; 3139 } 3140 3141 static int of_phy_leds(struct phy_device *phydev) 3142 { 3143 struct device_node *node = phydev->mdio.dev.of_node; 3144 struct device_node *leds, *led; 3145 int err; 3146 3147 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3148 return 0; 3149 3150 if (!node) 3151 return 0; 3152 3153 leds = of_get_child_by_name(node, "leds"); 3154 if (!leds) 3155 return 0; 3156 3157 for_each_available_child_of_node(leds, led) { 3158 err = of_phy_led(phydev, led); 3159 if (err) { 3160 of_node_put(led); 3161 phy_leds_unregister(phydev); 3162 return err; 3163 } 3164 } 3165 3166 return 0; 3167 } 3168 3169 /** 3170 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3171 * @fwnode: pointer to the mdio_device's fwnode 3172 * 3173 * If successful, returns a pointer to the mdio_device with the embedded 3174 * struct device refcount incremented by one, or NULL on failure. 3175 * The caller should call put_device() on the mdio_device after its use. 3176 */ 3177 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3178 { 3179 struct device *d; 3180 3181 if (!fwnode) 3182 return NULL; 3183 3184 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3185 if (!d) 3186 return NULL; 3187 3188 return to_mdio_device(d); 3189 } 3190 EXPORT_SYMBOL(fwnode_mdio_find_device); 3191 3192 /** 3193 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3194 * 3195 * @phy_fwnode: Pointer to the phy's fwnode. 3196 * 3197 * If successful, returns a pointer to the phy_device with the embedded 3198 * struct device refcount incremented by one, or NULL on failure. 3199 */ 3200 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3201 { 3202 struct mdio_device *mdiodev; 3203 3204 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3205 if (!mdiodev) 3206 return NULL; 3207 3208 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3209 return to_phy_device(&mdiodev->dev); 3210 3211 put_device(&mdiodev->dev); 3212 3213 return NULL; 3214 } 3215 EXPORT_SYMBOL(fwnode_phy_find_device); 3216 3217 /** 3218 * device_phy_find_device - For the given device, get the phy_device 3219 * @dev: Pointer to the given device 3220 * 3221 * Refer return conditions of fwnode_phy_find_device(). 3222 */ 3223 struct phy_device *device_phy_find_device(struct device *dev) 3224 { 3225 return fwnode_phy_find_device(dev_fwnode(dev)); 3226 } 3227 EXPORT_SYMBOL_GPL(device_phy_find_device); 3228 3229 /** 3230 * fwnode_get_phy_node - Get the phy_node using the named reference. 3231 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3232 * 3233 * Refer return conditions of fwnode_find_reference(). 3234 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3235 * and "phy-device" are not supported in ACPI. DT supports all the three 3236 * named references to the phy node. 3237 */ 3238 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3239 { 3240 struct fwnode_handle *phy_node; 3241 3242 /* Only phy-handle is used for ACPI */ 3243 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3244 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3245 return phy_node; 3246 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3247 if (IS_ERR(phy_node)) 3248 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3249 return phy_node; 3250 } 3251 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3252 3253 /** 3254 * phy_probe - probe and init a PHY device 3255 * @dev: device to probe and init 3256 * 3257 * Take care of setting up the phy_device structure, set the state to READY. 3258 */ 3259 static int phy_probe(struct device *dev) 3260 { 3261 struct phy_device *phydev = to_phy_device(dev); 3262 struct device_driver *drv = phydev->mdio.dev.driver; 3263 struct phy_driver *phydrv = to_phy_driver(drv); 3264 int err = 0; 3265 3266 phydev->drv = phydrv; 3267 3268 /* Disable the interrupt if the PHY doesn't support it 3269 * but the interrupt is still a valid one 3270 */ 3271 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3272 phydev->irq = PHY_POLL; 3273 3274 if (phydrv->flags & PHY_IS_INTERNAL) 3275 phydev->is_internal = true; 3276 3277 /* Deassert the reset signal */ 3278 phy_device_reset(phydev, 0); 3279 3280 if (phydev->drv->probe) { 3281 err = phydev->drv->probe(phydev); 3282 if (err) 3283 goto out; 3284 } 3285 3286 phy_disable_interrupts(phydev); 3287 3288 /* Start out supporting everything. Eventually, 3289 * a controller will attach, and may modify one 3290 * or both of these values 3291 */ 3292 if (phydrv->features) { 3293 linkmode_copy(phydev->supported, phydrv->features); 3294 genphy_c45_read_eee_abilities(phydev); 3295 } 3296 else if (phydrv->get_features) 3297 err = phydrv->get_features(phydev); 3298 else if (phydev->is_c45) 3299 err = genphy_c45_pma_read_abilities(phydev); 3300 else 3301 err = genphy_read_abilities(phydev); 3302 3303 if (err) 3304 goto out; 3305 3306 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3307 phydev->supported)) 3308 phydev->autoneg = 0; 3309 3310 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3311 phydev->supported)) 3312 phydev->is_gigabit_capable = 1; 3313 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3314 phydev->supported)) 3315 phydev->is_gigabit_capable = 1; 3316 3317 of_set_phy_supported(phydev); 3318 phy_advertise_supported(phydev); 3319 3320 /* Get PHY default EEE advertising modes and handle them as potentially 3321 * safe initial configuration. 3322 */ 3323 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3324 if (err) 3325 goto out; 3326 3327 /* There is no "enabled" flag. If PHY is advertising, assume it is 3328 * kind of enabled. 3329 */ 3330 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3331 3332 /* Some PHYs may advertise, by default, not support EEE modes. So, 3333 * we need to clean them. 3334 */ 3335 if (phydev->eee_enabled) 3336 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3337 phydev->advertising_eee); 3338 3339 /* Get the EEE modes we want to prohibit. We will ask 3340 * the PHY stop advertising these mode later on 3341 */ 3342 of_set_phy_eee_broken(phydev); 3343 3344 /* The Pause Frame bits indicate that the PHY can support passing 3345 * pause frames. During autonegotiation, the PHYs will determine if 3346 * they should allow pause frames to pass. The MAC driver should then 3347 * use that result to determine whether to enable flow control via 3348 * pause frames. 3349 * 3350 * Normally, PHY drivers should not set the Pause bits, and instead 3351 * allow phylib to do that. However, there may be some situations 3352 * (e.g. hardware erratum) where the driver wants to set only one 3353 * of these bits. 3354 */ 3355 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3356 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3357 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3358 phydev->supported); 3359 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3360 phydev->supported); 3361 } 3362 3363 /* Set the state to READY by default */ 3364 phydev->state = PHY_READY; 3365 3366 /* Get the LEDs from the device tree, and instantiate standard 3367 * LEDs for them. 3368 */ 3369 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3370 err = of_phy_leds(phydev); 3371 3372 out: 3373 /* Re-assert the reset signal on error */ 3374 if (err) 3375 phy_device_reset(phydev, 1); 3376 3377 return err; 3378 } 3379 3380 static int phy_remove(struct device *dev) 3381 { 3382 struct phy_device *phydev = to_phy_device(dev); 3383 3384 cancel_delayed_work_sync(&phydev->state_queue); 3385 3386 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3387 phy_leds_unregister(phydev); 3388 3389 phydev->state = PHY_DOWN; 3390 3391 sfp_bus_del_upstream(phydev->sfp_bus); 3392 phydev->sfp_bus = NULL; 3393 3394 if (phydev->drv && phydev->drv->remove) 3395 phydev->drv->remove(phydev); 3396 3397 /* Assert the reset signal */ 3398 phy_device_reset(phydev, 1); 3399 3400 phydev->drv = NULL; 3401 3402 return 0; 3403 } 3404 3405 /** 3406 * phy_driver_register - register a phy_driver with the PHY layer 3407 * @new_driver: new phy_driver to register 3408 * @owner: module owning this PHY 3409 */ 3410 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3411 { 3412 int retval; 3413 3414 /* Either the features are hard coded, or dynamically 3415 * determined. It cannot be both. 3416 */ 3417 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3418 pr_err("%s: features and get_features must not both be set\n", 3419 new_driver->name); 3420 return -EINVAL; 3421 } 3422 3423 /* PHYLIB device drivers must not match using a DT compatible table 3424 * as this bypasses our checks that the mdiodev that is being matched 3425 * is backed by a struct phy_device. If such a case happens, we will 3426 * make out-of-bounds accesses and lockup in phydev->lock. 3427 */ 3428 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3429 "%s: driver must not provide a DT match table\n", 3430 new_driver->name)) 3431 return -EINVAL; 3432 3433 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3434 new_driver->mdiodrv.driver.name = new_driver->name; 3435 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3436 new_driver->mdiodrv.driver.probe = phy_probe; 3437 new_driver->mdiodrv.driver.remove = phy_remove; 3438 new_driver->mdiodrv.driver.owner = owner; 3439 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3440 3441 retval = driver_register(&new_driver->mdiodrv.driver); 3442 if (retval) { 3443 pr_err("%s: Error %d in registering driver\n", 3444 new_driver->name, retval); 3445 3446 return retval; 3447 } 3448 3449 pr_debug("%s: Registered new driver\n", new_driver->name); 3450 3451 return 0; 3452 } 3453 EXPORT_SYMBOL(phy_driver_register); 3454 3455 int phy_drivers_register(struct phy_driver *new_driver, int n, 3456 struct module *owner) 3457 { 3458 int i, ret = 0; 3459 3460 for (i = 0; i < n; i++) { 3461 ret = phy_driver_register(new_driver + i, owner); 3462 if (ret) { 3463 while (i-- > 0) 3464 phy_driver_unregister(new_driver + i); 3465 break; 3466 } 3467 } 3468 return ret; 3469 } 3470 EXPORT_SYMBOL(phy_drivers_register); 3471 3472 void phy_driver_unregister(struct phy_driver *drv) 3473 { 3474 driver_unregister(&drv->mdiodrv.driver); 3475 } 3476 EXPORT_SYMBOL(phy_driver_unregister); 3477 3478 void phy_drivers_unregister(struct phy_driver *drv, int n) 3479 { 3480 int i; 3481 3482 for (i = 0; i < n; i++) 3483 phy_driver_unregister(drv + i); 3484 } 3485 EXPORT_SYMBOL(phy_drivers_unregister); 3486 3487 static struct phy_driver genphy_driver = { 3488 .phy_id = 0xffffffff, 3489 .phy_id_mask = 0xffffffff, 3490 .name = "Generic PHY", 3491 .get_features = genphy_read_abilities, 3492 .suspend = genphy_suspend, 3493 .resume = genphy_resume, 3494 .set_loopback = genphy_loopback, 3495 }; 3496 3497 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3498 .get_sset_count = phy_ethtool_get_sset_count, 3499 .get_strings = phy_ethtool_get_strings, 3500 .get_stats = phy_ethtool_get_stats, 3501 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3502 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3503 .get_plca_status = phy_ethtool_get_plca_status, 3504 .start_cable_test = phy_start_cable_test, 3505 .start_cable_test_tdr = phy_start_cable_test_tdr, 3506 }; 3507 3508 static const struct phylib_stubs __phylib_stubs = { 3509 .hwtstamp_get = __phy_hwtstamp_get, 3510 .hwtstamp_set = __phy_hwtstamp_set, 3511 }; 3512 3513 static void phylib_register_stubs(void) 3514 { 3515 phylib_stubs = &__phylib_stubs; 3516 } 3517 3518 static void phylib_unregister_stubs(void) 3519 { 3520 phylib_stubs = NULL; 3521 } 3522 3523 static int __init phy_init(void) 3524 { 3525 int rc; 3526 3527 rtnl_lock(); 3528 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3529 phylib_register_stubs(); 3530 rtnl_unlock(); 3531 3532 rc = mdio_bus_init(); 3533 if (rc) 3534 goto err_ethtool_phy_ops; 3535 3536 features_init(); 3537 3538 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3539 if (rc) 3540 goto err_mdio_bus; 3541 3542 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3543 if (rc) 3544 goto err_c45; 3545 3546 return 0; 3547 3548 err_c45: 3549 phy_driver_unregister(&genphy_c45_driver); 3550 err_mdio_bus: 3551 mdio_bus_exit(); 3552 err_ethtool_phy_ops: 3553 rtnl_lock(); 3554 phylib_unregister_stubs(); 3555 ethtool_set_ethtool_phy_ops(NULL); 3556 rtnl_unlock(); 3557 3558 return rc; 3559 } 3560 3561 static void __exit phy_exit(void) 3562 { 3563 phy_driver_unregister(&genphy_c45_driver); 3564 phy_driver_unregister(&genphy_driver); 3565 mdio_bus_exit(); 3566 rtnl_lock(); 3567 phylib_unregister_stubs(); 3568 ethtool_set_ethtool_phy_ops(NULL); 3569 rtnl_unlock(); 3570 } 3571 3572 subsys_initcall(phy_init); 3573 module_exit(phy_exit); 3574