xref: /linux/drivers/net/phy/phy_device.c (revision 7c59294076204cc8f51f794b6c2e7675c8ad12cd)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/mii.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/netdevice.h>
29 #include <linux/phy.h>
30 #include <linux/phylib_stubs.h>
31 #include <linux/phy_led_triggers.h>
32 #include <linux/pse-pd/pse.h>
33 #include <linux/property.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/sfp.h>
36 #include <linux/skbuff.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/uaccess.h>
40 #include <linux/unistd.h>
41 
42 MODULE_DESCRIPTION("PHY library");
43 MODULE_AUTHOR("Andy Fleming");
44 MODULE_LICENSE("GPL");
45 
46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
47 EXPORT_SYMBOL_GPL(phy_basic_features);
48 
49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
50 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
51 
52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init;
53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features);
54 
55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
56 EXPORT_SYMBOL_GPL(phy_gbit_features);
57 
58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
60 
61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
63 
64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
65 EXPORT_SYMBOL_GPL(phy_10gbit_features);
66 
67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
69 
70 const int phy_basic_ports_array[3] = {
71 	ETHTOOL_LINK_MODE_Autoneg_BIT,
72 	ETHTOOL_LINK_MODE_TP_BIT,
73 	ETHTOOL_LINK_MODE_MII_BIT,
74 };
75 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
76 
77 const int phy_fibre_port_array[1] = {
78 	ETHTOOL_LINK_MODE_FIBRE_BIT,
79 };
80 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
81 
82 const int phy_all_ports_features_array[7] = {
83 	ETHTOOL_LINK_MODE_Autoneg_BIT,
84 	ETHTOOL_LINK_MODE_TP_BIT,
85 	ETHTOOL_LINK_MODE_MII_BIT,
86 	ETHTOOL_LINK_MODE_FIBRE_BIT,
87 	ETHTOOL_LINK_MODE_AUI_BIT,
88 	ETHTOOL_LINK_MODE_BNC_BIT,
89 	ETHTOOL_LINK_MODE_Backplane_BIT,
90 };
91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
92 
93 const int phy_10_100_features_array[4] = {
94 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
95 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
96 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
97 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
98 };
99 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
100 
101 const int phy_basic_t1_features_array[3] = {
102 	ETHTOOL_LINK_MODE_TP_BIT,
103 	ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
104 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
105 };
106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
107 
108 const int phy_basic_t1s_p2mp_features_array[2] = {
109 	ETHTOOL_LINK_MODE_TP_BIT,
110 	ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT,
111 };
112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array);
113 
114 const int phy_gbit_features_array[2] = {
115 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
116 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
117 };
118 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
119 
120 const int phy_10gbit_features_array[1] = {
121 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
122 };
123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
124 
125 static const int phy_10gbit_fec_features_array[1] = {
126 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
127 };
128 
129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
131 
132 static const int phy_10gbit_full_features_array[] = {
133 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
134 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
135 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
136 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
137 };
138 
139 static const int phy_eee_cap1_features_array[] = {
140 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
141 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
142 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
143 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
144 	ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
145 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
146 };
147 
148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init;
149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features);
150 
151 static void features_init(void)
152 {
153 	/* 10/100 half/full*/
154 	linkmode_set_bit_array(phy_basic_ports_array,
155 			       ARRAY_SIZE(phy_basic_ports_array),
156 			       phy_basic_features);
157 	linkmode_set_bit_array(phy_10_100_features_array,
158 			       ARRAY_SIZE(phy_10_100_features_array),
159 			       phy_basic_features);
160 
161 	/* 100 full, TP */
162 	linkmode_set_bit_array(phy_basic_t1_features_array,
163 			       ARRAY_SIZE(phy_basic_t1_features_array),
164 			       phy_basic_t1_features);
165 
166 	/* 10 half, P2MP, TP */
167 	linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array,
168 			       ARRAY_SIZE(phy_basic_t1s_p2mp_features_array),
169 			       phy_basic_t1s_p2mp_features);
170 
171 	/* 10/100 half/full + 1000 half/full */
172 	linkmode_set_bit_array(phy_basic_ports_array,
173 			       ARRAY_SIZE(phy_basic_ports_array),
174 			       phy_gbit_features);
175 	linkmode_set_bit_array(phy_10_100_features_array,
176 			       ARRAY_SIZE(phy_10_100_features_array),
177 			       phy_gbit_features);
178 	linkmode_set_bit_array(phy_gbit_features_array,
179 			       ARRAY_SIZE(phy_gbit_features_array),
180 			       phy_gbit_features);
181 
182 	/* 10/100 half/full + 1000 half/full + fibre*/
183 	linkmode_set_bit_array(phy_basic_ports_array,
184 			       ARRAY_SIZE(phy_basic_ports_array),
185 			       phy_gbit_fibre_features);
186 	linkmode_set_bit_array(phy_10_100_features_array,
187 			       ARRAY_SIZE(phy_10_100_features_array),
188 			       phy_gbit_fibre_features);
189 	linkmode_set_bit_array(phy_gbit_features_array,
190 			       ARRAY_SIZE(phy_gbit_features_array),
191 			       phy_gbit_fibre_features);
192 	linkmode_set_bit_array(phy_fibre_port_array,
193 			       ARRAY_SIZE(phy_fibre_port_array),
194 			       phy_gbit_fibre_features);
195 
196 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
197 	linkmode_set_bit_array(phy_all_ports_features_array,
198 			       ARRAY_SIZE(phy_all_ports_features_array),
199 			       phy_gbit_all_ports_features);
200 	linkmode_set_bit_array(phy_10_100_features_array,
201 			       ARRAY_SIZE(phy_10_100_features_array),
202 			       phy_gbit_all_ports_features);
203 	linkmode_set_bit_array(phy_gbit_features_array,
204 			       ARRAY_SIZE(phy_gbit_features_array),
205 			       phy_gbit_all_ports_features);
206 
207 	/* 10/100 half/full + 1000 half/full + 10G full*/
208 	linkmode_set_bit_array(phy_all_ports_features_array,
209 			       ARRAY_SIZE(phy_all_ports_features_array),
210 			       phy_10gbit_features);
211 	linkmode_set_bit_array(phy_10_100_features_array,
212 			       ARRAY_SIZE(phy_10_100_features_array),
213 			       phy_10gbit_features);
214 	linkmode_set_bit_array(phy_gbit_features_array,
215 			       ARRAY_SIZE(phy_gbit_features_array),
216 			       phy_10gbit_features);
217 	linkmode_set_bit_array(phy_10gbit_features_array,
218 			       ARRAY_SIZE(phy_10gbit_features_array),
219 			       phy_10gbit_features);
220 
221 	/* 10/100/1000/10G full */
222 	linkmode_set_bit_array(phy_all_ports_features_array,
223 			       ARRAY_SIZE(phy_all_ports_features_array),
224 			       phy_10gbit_full_features);
225 	linkmode_set_bit_array(phy_10gbit_full_features_array,
226 			       ARRAY_SIZE(phy_10gbit_full_features_array),
227 			       phy_10gbit_full_features);
228 	/* 10G FEC only */
229 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
230 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
231 			       phy_10gbit_fec_features);
232 	linkmode_set_bit_array(phy_eee_cap1_features_array,
233 			       ARRAY_SIZE(phy_eee_cap1_features_array),
234 			       phy_eee_cap1_features);
235 
236 }
237 
238 void phy_device_free(struct phy_device *phydev)
239 {
240 	put_device(&phydev->mdio.dev);
241 }
242 EXPORT_SYMBOL(phy_device_free);
243 
244 static void phy_mdio_device_free(struct mdio_device *mdiodev)
245 {
246 	struct phy_device *phydev;
247 
248 	phydev = container_of(mdiodev, struct phy_device, mdio);
249 	phy_device_free(phydev);
250 }
251 
252 static void phy_device_release(struct device *dev)
253 {
254 	fwnode_handle_put(dev->fwnode);
255 	kfree(to_phy_device(dev));
256 }
257 
258 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
259 {
260 	struct phy_device *phydev;
261 
262 	phydev = container_of(mdiodev, struct phy_device, mdio);
263 	phy_device_remove(phydev);
264 }
265 
266 static struct phy_driver genphy_driver;
267 
268 static LIST_HEAD(phy_fixup_list);
269 static DEFINE_MUTEX(phy_fixup_lock);
270 
271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
272 {
273 	struct device_driver *drv = phydev->mdio.dev.driver;
274 	struct phy_driver *phydrv = to_phy_driver(drv);
275 	struct net_device *netdev = phydev->attached_dev;
276 
277 	if (!drv || !phydrv->suspend)
278 		return false;
279 
280 	/* PHY not attached? May suspend if the PHY has not already been
281 	 * suspended as part of a prior call to phy_disconnect() ->
282 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
283 	 * MDIO bus driver and clock gated at this point.
284 	 */
285 	if (!netdev)
286 		goto out;
287 
288 	if (netdev->wol_enabled)
289 		return false;
290 
291 	/* As long as not all affected network drivers support the
292 	 * wol_enabled flag, let's check for hints that WoL is enabled.
293 	 * Don't suspend PHY if the attached netdev parent may wake up.
294 	 * The parent may point to a PCI device, as in tg3 driver.
295 	 */
296 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
297 		return false;
298 
299 	/* Also don't suspend PHY if the netdev itself may wakeup. This
300 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
301 	 * e.g. SoC devices.
302 	 */
303 	if (device_may_wakeup(&netdev->dev))
304 		return false;
305 
306 out:
307 	return !phydev->suspended;
308 }
309 
310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
311 {
312 	struct phy_device *phydev = to_phy_device(dev);
313 
314 	if (phydev->mac_managed_pm)
315 		return 0;
316 
317 	/* Wakeup interrupts may occur during the system sleep transition when
318 	 * the PHY is inaccessible. Set flag to postpone handling until the PHY
319 	 * has resumed. Wait for concurrent interrupt handler to complete.
320 	 */
321 	if (phy_interrupt_is_valid(phydev)) {
322 		phydev->irq_suspended = 1;
323 		synchronize_irq(phydev->irq);
324 	}
325 
326 	/* We must stop the state machine manually, otherwise it stops out of
327 	 * control, possibly with the phydev->lock held. Upon resume, netdev
328 	 * may call phy routines that try to grab the same lock, and that may
329 	 * lead to a deadlock.
330 	 */
331 	if (phydev->attached_dev && phydev->adjust_link)
332 		phy_stop_machine(phydev);
333 
334 	if (!mdio_bus_phy_may_suspend(phydev))
335 		return 0;
336 
337 	phydev->suspended_by_mdio_bus = 1;
338 
339 	return phy_suspend(phydev);
340 }
341 
342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
343 {
344 	struct phy_device *phydev = to_phy_device(dev);
345 	int ret;
346 
347 	if (phydev->mac_managed_pm)
348 		return 0;
349 
350 	if (!phydev->suspended_by_mdio_bus)
351 		goto no_resume;
352 
353 	phydev->suspended_by_mdio_bus = 0;
354 
355 	/* If we managed to get here with the PHY state machine in a state
356 	 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
357 	 * that something went wrong and we should most likely be using
358 	 * MAC managed PM, but we are not.
359 	 */
360 	WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
361 		phydev->state != PHY_UP);
362 
363 	ret = phy_init_hw(phydev);
364 	if (ret < 0)
365 		return ret;
366 
367 	ret = phy_resume(phydev);
368 	if (ret < 0)
369 		return ret;
370 no_resume:
371 	if (phy_interrupt_is_valid(phydev)) {
372 		phydev->irq_suspended = 0;
373 		synchronize_irq(phydev->irq);
374 
375 		/* Rerun interrupts which were postponed by phy_interrupt()
376 		 * because they occurred during the system sleep transition.
377 		 */
378 		if (phydev->irq_rerun) {
379 			phydev->irq_rerun = 0;
380 			enable_irq(phydev->irq);
381 			irq_wake_thread(phydev->irq, phydev);
382 		}
383 	}
384 
385 	if (phydev->attached_dev && phydev->adjust_link)
386 		phy_start_machine(phydev);
387 
388 	return 0;
389 }
390 
391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
392 			 mdio_bus_phy_resume);
393 
394 /**
395  * phy_register_fixup - creates a new phy_fixup and adds it to the list
396  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
397  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
398  *	It can also be PHY_ANY_UID
399  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
400  *	comparison
401  * @run: The actual code to be run when a matching PHY is found
402  */
403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
404 		       int (*run)(struct phy_device *))
405 {
406 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
407 
408 	if (!fixup)
409 		return -ENOMEM;
410 
411 	strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
412 	fixup->phy_uid = phy_uid;
413 	fixup->phy_uid_mask = phy_uid_mask;
414 	fixup->run = run;
415 
416 	mutex_lock(&phy_fixup_lock);
417 	list_add_tail(&fixup->list, &phy_fixup_list);
418 	mutex_unlock(&phy_fixup_lock);
419 
420 	return 0;
421 }
422 EXPORT_SYMBOL(phy_register_fixup);
423 
424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
426 			       int (*run)(struct phy_device *))
427 {
428 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
429 }
430 EXPORT_SYMBOL(phy_register_fixup_for_uid);
431 
432 /* Registers a fixup to be run on the PHY with id string bus_id */
433 int phy_register_fixup_for_id(const char *bus_id,
434 			      int (*run)(struct phy_device *))
435 {
436 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
437 }
438 EXPORT_SYMBOL(phy_register_fixup_for_id);
439 
440 /**
441  * phy_unregister_fixup - remove a phy_fixup from the list
442  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
443  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
444  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
445  */
446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
447 {
448 	struct list_head *pos, *n;
449 	struct phy_fixup *fixup;
450 	int ret;
451 
452 	ret = -ENODEV;
453 
454 	mutex_lock(&phy_fixup_lock);
455 	list_for_each_safe(pos, n, &phy_fixup_list) {
456 		fixup = list_entry(pos, struct phy_fixup, list);
457 
458 		if ((!strcmp(fixup->bus_id, bus_id)) &&
459 		    phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) {
460 			list_del(&fixup->list);
461 			kfree(fixup);
462 			ret = 0;
463 			break;
464 		}
465 	}
466 	mutex_unlock(&phy_fixup_lock);
467 
468 	return ret;
469 }
470 EXPORT_SYMBOL(phy_unregister_fixup);
471 
472 /* Unregisters a fixup of any PHY with the UID in phy_uid */
473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
474 {
475 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
476 }
477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
478 
479 /* Unregisters a fixup of the PHY with id string bus_id */
480 int phy_unregister_fixup_for_id(const char *bus_id)
481 {
482 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
483 }
484 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
485 
486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
487  * Fixups can be set to match any in one or more fields.
488  */
489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
490 {
491 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
492 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
493 			return 0;
494 
495 	if (!phy_id_compare(phydev->phy_id, fixup->phy_uid,
496 			    fixup->phy_uid_mask))
497 		if (fixup->phy_uid != PHY_ANY_UID)
498 			return 0;
499 
500 	return 1;
501 }
502 
503 /* Runs any matching fixups for this phydev */
504 static int phy_scan_fixups(struct phy_device *phydev)
505 {
506 	struct phy_fixup *fixup;
507 
508 	mutex_lock(&phy_fixup_lock);
509 	list_for_each_entry(fixup, &phy_fixup_list, list) {
510 		if (phy_needs_fixup(phydev, fixup)) {
511 			int err = fixup->run(phydev);
512 
513 			if (err < 0) {
514 				mutex_unlock(&phy_fixup_lock);
515 				return err;
516 			}
517 			phydev->has_fixups = true;
518 		}
519 	}
520 	mutex_unlock(&phy_fixup_lock);
521 
522 	return 0;
523 }
524 
525 static int phy_bus_match(struct device *dev, struct device_driver *drv)
526 {
527 	struct phy_device *phydev = to_phy_device(dev);
528 	struct phy_driver *phydrv = to_phy_driver(drv);
529 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
530 	int i;
531 
532 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
533 		return 0;
534 
535 	if (phydrv->match_phy_device)
536 		return phydrv->match_phy_device(phydev);
537 
538 	if (phydev->is_c45) {
539 		for (i = 1; i < num_ids; i++) {
540 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
541 				continue;
542 
543 			if (phy_id_compare(phydev->c45_ids.device_ids[i],
544 					   phydrv->phy_id, phydrv->phy_id_mask))
545 				return 1;
546 		}
547 		return 0;
548 	} else {
549 		return phy_id_compare(phydev->phy_id, phydrv->phy_id,
550 				      phydrv->phy_id_mask);
551 	}
552 }
553 
554 static ssize_t
555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
556 {
557 	struct phy_device *phydev = to_phy_device(dev);
558 
559 	return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
560 }
561 static DEVICE_ATTR_RO(phy_id);
562 
563 static ssize_t
564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
565 {
566 	struct phy_device *phydev = to_phy_device(dev);
567 	const char *mode = NULL;
568 
569 	if (phy_is_internal(phydev))
570 		mode = "internal";
571 	else
572 		mode = phy_modes(phydev->interface);
573 
574 	return sysfs_emit(buf, "%s\n", mode);
575 }
576 static DEVICE_ATTR_RO(phy_interface);
577 
578 static ssize_t
579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
580 		    char *buf)
581 {
582 	struct phy_device *phydev = to_phy_device(dev);
583 
584 	return sysfs_emit(buf, "%d\n", phydev->has_fixups);
585 }
586 static DEVICE_ATTR_RO(phy_has_fixups);
587 
588 static ssize_t phy_dev_flags_show(struct device *dev,
589 				  struct device_attribute *attr,
590 				  char *buf)
591 {
592 	struct phy_device *phydev = to_phy_device(dev);
593 
594 	return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags);
595 }
596 static DEVICE_ATTR_RO(phy_dev_flags);
597 
598 static struct attribute *phy_dev_attrs[] = {
599 	&dev_attr_phy_id.attr,
600 	&dev_attr_phy_interface.attr,
601 	&dev_attr_phy_has_fixups.attr,
602 	&dev_attr_phy_dev_flags.attr,
603 	NULL,
604 };
605 ATTRIBUTE_GROUPS(phy_dev);
606 
607 static const struct device_type mdio_bus_phy_type = {
608 	.name = "PHY",
609 	.groups = phy_dev_groups,
610 	.release = phy_device_release,
611 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
612 };
613 
614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
615 {
616 	int ret;
617 
618 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
619 			     MDIO_ID_ARGS(phy_id));
620 	/* We only check for failures in executing the usermode binary,
621 	 * not whether a PHY driver module exists for the PHY ID.
622 	 * Accept -ENOENT because this may occur in case no initramfs exists,
623 	 * then modprobe isn't available.
624 	 */
625 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
626 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
627 			   ret, (unsigned long)phy_id);
628 		return ret;
629 	}
630 
631 	return 0;
632 }
633 
634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
635 				     bool is_c45,
636 				     struct phy_c45_device_ids *c45_ids)
637 {
638 	struct phy_device *dev;
639 	struct mdio_device *mdiodev;
640 	int ret = 0;
641 
642 	/* We allocate the device, and initialize the default values */
643 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
644 	if (!dev)
645 		return ERR_PTR(-ENOMEM);
646 
647 	mdiodev = &dev->mdio;
648 	mdiodev->dev.parent = &bus->dev;
649 	mdiodev->dev.bus = &mdio_bus_type;
650 	mdiodev->dev.type = &mdio_bus_phy_type;
651 	mdiodev->bus = bus;
652 	mdiodev->bus_match = phy_bus_match;
653 	mdiodev->addr = addr;
654 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
655 	mdiodev->device_free = phy_mdio_device_free;
656 	mdiodev->device_remove = phy_mdio_device_remove;
657 
658 	dev->speed = SPEED_UNKNOWN;
659 	dev->duplex = DUPLEX_UNKNOWN;
660 	dev->pause = 0;
661 	dev->asym_pause = 0;
662 	dev->link = 0;
663 	dev->port = PORT_TP;
664 	dev->interface = PHY_INTERFACE_MODE_GMII;
665 
666 	dev->autoneg = AUTONEG_ENABLE;
667 
668 	dev->pma_extable = -ENODATA;
669 	dev->is_c45 = is_c45;
670 	dev->phy_id = phy_id;
671 	if (c45_ids)
672 		dev->c45_ids = *c45_ids;
673 	dev->irq = bus->irq[addr];
674 
675 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
676 	device_initialize(&mdiodev->dev);
677 
678 	dev->state = PHY_DOWN;
679 	INIT_LIST_HEAD(&dev->leds);
680 
681 	mutex_init(&dev->lock);
682 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
683 
684 	/* Request the appropriate module unconditionally; don't
685 	 * bother trying to do so only if it isn't already loaded,
686 	 * because that gets complicated. A hotplug event would have
687 	 * done an unconditional modprobe anyway.
688 	 * We don't do normal hotplug because it won't work for MDIO
689 	 * -- because it relies on the device staying around for long
690 	 * enough for the driver to get loaded. With MDIO, the NIC
691 	 * driver will get bored and give up as soon as it finds that
692 	 * there's no driver _already_ loaded.
693 	 */
694 	if (is_c45 && c45_ids) {
695 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
696 		int i;
697 
698 		for (i = 1; i < num_ids; i++) {
699 			if (c45_ids->device_ids[i] == 0xffffffff)
700 				continue;
701 
702 			ret = phy_request_driver_module(dev,
703 						c45_ids->device_ids[i]);
704 			if (ret)
705 				break;
706 		}
707 	} else {
708 		ret = phy_request_driver_module(dev, phy_id);
709 	}
710 
711 	if (ret) {
712 		put_device(&mdiodev->dev);
713 		dev = ERR_PTR(ret);
714 	}
715 
716 	return dev;
717 }
718 EXPORT_SYMBOL(phy_device_create);
719 
720 /* phy_c45_probe_present - checks to see if a MMD is present in the package
721  * @bus: the target MII bus
722  * @prtad: PHY package address on the MII bus
723  * @devad: PHY device (MMD) address
724  *
725  * Read the MDIO_STAT2 register, and check whether a device is responding
726  * at this address.
727  *
728  * Returns: negative error number on bus access error, zero if no device
729  * is responding, or positive if a device is present.
730  */
731 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
732 {
733 	int stat2;
734 
735 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
736 	if (stat2 < 0)
737 		return stat2;
738 
739 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
740 }
741 
742 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
743  * @bus: the target MII bus
744  * @addr: PHY address on the MII bus
745  * @dev_addr: MMD address in the PHY.
746  * @devices_in_package: where to store the devices in package information.
747  *
748  * Description: reads devices in package registers of a MMD at @dev_addr
749  * from PHY at @addr on @bus.
750  *
751  * Returns: 0 on success, -EIO on failure.
752  */
753 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
754 				   u32 *devices_in_package)
755 {
756 	int phy_reg;
757 
758 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
759 	if (phy_reg < 0)
760 		return -EIO;
761 	*devices_in_package = phy_reg << 16;
762 
763 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
764 	if (phy_reg < 0)
765 		return -EIO;
766 	*devices_in_package |= phy_reg;
767 
768 	return 0;
769 }
770 
771 /**
772  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
773  * @bus: the target MII bus
774  * @addr: PHY address on the MII bus
775  * @c45_ids: where to store the c45 ID information.
776  *
777  * Read the PHY "devices in package". If this appears to be valid, read
778  * the PHY identifiers for each device. Return the "devices in package"
779  * and identifiers in @c45_ids.
780  *
781  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
782  * the "devices in package" is invalid.
783  */
784 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
785 			   struct phy_c45_device_ids *c45_ids)
786 {
787 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
788 	u32 devs_in_pkg = 0;
789 	int i, ret, phy_reg;
790 
791 	/* Find first non-zero Devices In package. Device zero is reserved
792 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
793 	 */
794 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
795 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
796 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
797 			/* Check that there is a device present at this
798 			 * address before reading the devices-in-package
799 			 * register to avoid reading garbage from the PHY.
800 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
801 			 * compliant.
802 			 */
803 			ret = phy_c45_probe_present(bus, addr, i);
804 			if (ret < 0)
805 				return -EIO;
806 
807 			if (!ret)
808 				continue;
809 		}
810 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
811 		if (phy_reg < 0)
812 			return -EIO;
813 	}
814 
815 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
816 		/* If mostly Fs, there is no device there, then let's probe
817 		 * MMD 0, as some 10G PHYs have zero Devices In package,
818 		 * e.g. Cortina CS4315/CS4340 PHY.
819 		 */
820 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
821 		if (phy_reg < 0)
822 			return -EIO;
823 
824 		/* no device there, let's get out of here */
825 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
826 			return -ENODEV;
827 	}
828 
829 	/* Now probe Device Identifiers for each device present. */
830 	for (i = 1; i < num_ids; i++) {
831 		if (!(devs_in_pkg & (1 << i)))
832 			continue;
833 
834 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
835 			/* Probe the "Device Present" bits for the vendor MMDs
836 			 * to ignore these if they do not contain IEEE 802.3
837 			 * registers.
838 			 */
839 			ret = phy_c45_probe_present(bus, addr, i);
840 			if (ret < 0)
841 				return ret;
842 
843 			if (!ret)
844 				continue;
845 		}
846 
847 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
848 		if (phy_reg < 0)
849 			return -EIO;
850 		c45_ids->device_ids[i] = phy_reg << 16;
851 
852 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
853 		if (phy_reg < 0)
854 			return -EIO;
855 		c45_ids->device_ids[i] |= phy_reg;
856 	}
857 
858 	c45_ids->devices_in_package = devs_in_pkg;
859 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
860 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
861 
862 	return 0;
863 }
864 
865 /**
866  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
867  * @bus: the target MII bus
868  * @addr: PHY address on the MII bus
869  * @phy_id: where to store the ID retrieved.
870  *
871  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
872  * placing it in @phy_id. Return zero on successful read and the ID is
873  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
874  * or invalid ID.
875  */
876 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
877 {
878 	int phy_reg;
879 
880 	/* Grab the bits from PHYIR1, and put them in the upper half */
881 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
882 	if (phy_reg < 0) {
883 		/* returning -ENODEV doesn't stop bus scanning */
884 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
885 	}
886 
887 	*phy_id = phy_reg << 16;
888 
889 	/* Grab the bits from PHYIR2, and put them in the lower half */
890 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
891 	if (phy_reg < 0) {
892 		/* returning -ENODEV doesn't stop bus scanning */
893 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
894 	}
895 
896 	*phy_id |= phy_reg;
897 
898 	/* If the phy_id is mostly Fs, there is no device there */
899 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
900 		return -ENODEV;
901 
902 	return 0;
903 }
904 
905 /* Extract the phy ID from the compatible string of the form
906  * ethernet-phy-idAAAA.BBBB.
907  */
908 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
909 {
910 	unsigned int upper, lower;
911 	const char *cp;
912 	int ret;
913 
914 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
915 	if (ret)
916 		return ret;
917 
918 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
919 		return -EINVAL;
920 
921 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
922 	return 0;
923 }
924 EXPORT_SYMBOL(fwnode_get_phy_id);
925 
926 /**
927  * get_phy_device - reads the specified PHY device and returns its @phy_device
928  *		    struct
929  * @bus: the target MII bus
930  * @addr: PHY address on the MII bus
931  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
932  *
933  * Probe for a PHY at @addr on @bus.
934  *
935  * When probing for a clause 22 PHY, then read the ID registers. If we find
936  * a valid ID, allocate and return a &struct phy_device.
937  *
938  * When probing for a clause 45 PHY, read the "devices in package" registers.
939  * If the "devices in package" appears valid, read the ID registers for each
940  * MMD, allocate and return a &struct phy_device.
941  *
942  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
943  * no PHY present, or %-EIO on bus access error.
944  */
945 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
946 {
947 	struct phy_c45_device_ids c45_ids;
948 	u32 phy_id = 0;
949 	int r;
950 
951 	c45_ids.devices_in_package = 0;
952 	c45_ids.mmds_present = 0;
953 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
954 
955 	if (is_c45)
956 		r = get_phy_c45_ids(bus, addr, &c45_ids);
957 	else
958 		r = get_phy_c22_id(bus, addr, &phy_id);
959 
960 	if (r)
961 		return ERR_PTR(r);
962 
963 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
964 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
965 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
966 	 * space, if successful, create the C45 PHY device.
967 	 */
968 	if (!is_c45 && phy_id == 0 && bus->read_c45) {
969 		r = get_phy_c45_ids(bus, addr, &c45_ids);
970 		if (!r)
971 			return phy_device_create(bus, addr, phy_id,
972 						 true, &c45_ids);
973 	}
974 
975 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
976 }
977 EXPORT_SYMBOL(get_phy_device);
978 
979 /**
980  * phy_device_register - Register the phy device on the MDIO bus
981  * @phydev: phy_device structure to be added to the MDIO bus
982  */
983 int phy_device_register(struct phy_device *phydev)
984 {
985 	int err;
986 
987 	err = mdiobus_register_device(&phydev->mdio);
988 	if (err)
989 		return err;
990 
991 	/* Deassert the reset signal */
992 	phy_device_reset(phydev, 0);
993 
994 	/* Run all of the fixups for this PHY */
995 	err = phy_scan_fixups(phydev);
996 	if (err) {
997 		phydev_err(phydev, "failed to initialize\n");
998 		goto out;
999 	}
1000 
1001 	err = device_add(&phydev->mdio.dev);
1002 	if (err) {
1003 		phydev_err(phydev, "failed to add\n");
1004 		goto out;
1005 	}
1006 
1007 	return 0;
1008 
1009  out:
1010 	/* Assert the reset signal */
1011 	phy_device_reset(phydev, 1);
1012 
1013 	mdiobus_unregister_device(&phydev->mdio);
1014 	return err;
1015 }
1016 EXPORT_SYMBOL(phy_device_register);
1017 
1018 /**
1019  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
1020  * @phydev: phy_device structure to remove
1021  *
1022  * This doesn't free the phy_device itself, it merely reverses the effects
1023  * of phy_device_register(). Use phy_device_free() to free the device
1024  * after calling this function.
1025  */
1026 void phy_device_remove(struct phy_device *phydev)
1027 {
1028 	unregister_mii_timestamper(phydev->mii_ts);
1029 	pse_control_put(phydev->psec);
1030 
1031 	device_del(&phydev->mdio.dev);
1032 
1033 	/* Assert the reset signal */
1034 	phy_device_reset(phydev, 1);
1035 
1036 	mdiobus_unregister_device(&phydev->mdio);
1037 }
1038 EXPORT_SYMBOL(phy_device_remove);
1039 
1040 /**
1041  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1042  * @phydev: phy_device structure to read 802.3-c45 IDs
1043  *
1044  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1045  * the "devices in package" is invalid.
1046  */
1047 int phy_get_c45_ids(struct phy_device *phydev)
1048 {
1049 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1050 			       &phydev->c45_ids);
1051 }
1052 EXPORT_SYMBOL(phy_get_c45_ids);
1053 
1054 /**
1055  * phy_find_first - finds the first PHY device on the bus
1056  * @bus: the target MII bus
1057  */
1058 struct phy_device *phy_find_first(struct mii_bus *bus)
1059 {
1060 	struct phy_device *phydev;
1061 	int addr;
1062 
1063 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1064 		phydev = mdiobus_get_phy(bus, addr);
1065 		if (phydev)
1066 			return phydev;
1067 	}
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(phy_find_first);
1071 
1072 static void phy_link_change(struct phy_device *phydev, bool up)
1073 {
1074 	struct net_device *netdev = phydev->attached_dev;
1075 
1076 	if (up)
1077 		netif_carrier_on(netdev);
1078 	else
1079 		netif_carrier_off(netdev);
1080 	phydev->adjust_link(netdev);
1081 	if (phydev->mii_ts && phydev->mii_ts->link_state)
1082 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1083 }
1084 
1085 /**
1086  * phy_prepare_link - prepares the PHY layer to monitor link status
1087  * @phydev: target phy_device struct
1088  * @handler: callback function for link status change notifications
1089  *
1090  * Description: Tells the PHY infrastructure to handle the
1091  *   gory details on monitoring link status (whether through
1092  *   polling or an interrupt), and to call back to the
1093  *   connected device driver when the link status changes.
1094  *   If you want to monitor your own link state, don't call
1095  *   this function.
1096  */
1097 static void phy_prepare_link(struct phy_device *phydev,
1098 			     void (*handler)(struct net_device *))
1099 {
1100 	phydev->adjust_link = handler;
1101 }
1102 
1103 /**
1104  * phy_connect_direct - connect an ethernet device to a specific phy_device
1105  * @dev: the network device to connect
1106  * @phydev: the pointer to the phy device
1107  * @handler: callback function for state change notifications
1108  * @interface: PHY device's interface
1109  */
1110 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1111 		       void (*handler)(struct net_device *),
1112 		       phy_interface_t interface)
1113 {
1114 	int rc;
1115 
1116 	if (!dev)
1117 		return -EINVAL;
1118 
1119 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1120 	if (rc)
1121 		return rc;
1122 
1123 	phy_prepare_link(phydev, handler);
1124 	if (phy_interrupt_is_valid(phydev))
1125 		phy_request_interrupt(phydev);
1126 
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL(phy_connect_direct);
1130 
1131 /**
1132  * phy_connect - connect an ethernet device to a PHY device
1133  * @dev: the network device to connect
1134  * @bus_id: the id string of the PHY device to connect
1135  * @handler: callback function for state change notifications
1136  * @interface: PHY device's interface
1137  *
1138  * Description: Convenience function for connecting ethernet
1139  *   devices to PHY devices.  The default behavior is for
1140  *   the PHY infrastructure to handle everything, and only notify
1141  *   the connected driver when the link status changes.  If you
1142  *   don't want, or can't use the provided functionality, you may
1143  *   choose to call only the subset of functions which provide
1144  *   the desired functionality.
1145  */
1146 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1147 			       void (*handler)(struct net_device *),
1148 			       phy_interface_t interface)
1149 {
1150 	struct phy_device *phydev;
1151 	struct device *d;
1152 	int rc;
1153 
1154 	/* Search the list of PHY devices on the mdio bus for the
1155 	 * PHY with the requested name
1156 	 */
1157 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1158 	if (!d) {
1159 		pr_err("PHY %s not found\n", bus_id);
1160 		return ERR_PTR(-ENODEV);
1161 	}
1162 	phydev = to_phy_device(d);
1163 
1164 	rc = phy_connect_direct(dev, phydev, handler, interface);
1165 	put_device(d);
1166 	if (rc)
1167 		return ERR_PTR(rc);
1168 
1169 	return phydev;
1170 }
1171 EXPORT_SYMBOL(phy_connect);
1172 
1173 /**
1174  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1175  *		    device
1176  * @phydev: target phy_device struct
1177  */
1178 void phy_disconnect(struct phy_device *phydev)
1179 {
1180 	if (phy_is_started(phydev))
1181 		phy_stop(phydev);
1182 
1183 	if (phy_interrupt_is_valid(phydev))
1184 		phy_free_interrupt(phydev);
1185 
1186 	phydev->adjust_link = NULL;
1187 
1188 	phy_detach(phydev);
1189 }
1190 EXPORT_SYMBOL(phy_disconnect);
1191 
1192 /**
1193  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1194  * @phydev: The PHY device to poll
1195  *
1196  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1197  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1198  *   register must be polled until the BMCR_RESET bit clears.
1199  *
1200  *   Furthermore, any attempts to write to PHY registers may have no effect
1201  *   or even generate MDIO bus errors until this is complete.
1202  *
1203  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1204  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1205  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1206  *   effort to support such broken PHYs, this function is separate from the
1207  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1208  *   and reapply all driver-specific and board-specific fixups.
1209  */
1210 static int phy_poll_reset(struct phy_device *phydev)
1211 {
1212 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1213 	int ret, val;
1214 
1215 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1216 				    50000, 600000, true);
1217 	if (ret)
1218 		return ret;
1219 	/* Some chips (smsc911x) may still need up to another 1ms after the
1220 	 * BMCR_RESET bit is cleared before they are usable.
1221 	 */
1222 	msleep(1);
1223 	return 0;
1224 }
1225 
1226 int phy_init_hw(struct phy_device *phydev)
1227 {
1228 	int ret = 0;
1229 
1230 	/* Deassert the reset signal */
1231 	phy_device_reset(phydev, 0);
1232 
1233 	if (!phydev->drv)
1234 		return 0;
1235 
1236 	if (phydev->drv->soft_reset) {
1237 		ret = phydev->drv->soft_reset(phydev);
1238 		if (ret < 0)
1239 			return ret;
1240 
1241 		/* see comment in genphy_soft_reset for an explanation */
1242 		phydev->suspended = 0;
1243 	}
1244 
1245 	ret = phy_scan_fixups(phydev);
1246 	if (ret < 0)
1247 		return ret;
1248 
1249 	if (phydev->drv->config_init) {
1250 		ret = phydev->drv->config_init(phydev);
1251 		if (ret < 0)
1252 			return ret;
1253 	}
1254 
1255 	if (phydev->drv->config_intr) {
1256 		ret = phydev->drv->config_intr(phydev);
1257 		if (ret < 0)
1258 			return ret;
1259 	}
1260 
1261 	return 0;
1262 }
1263 EXPORT_SYMBOL(phy_init_hw);
1264 
1265 void phy_attached_info(struct phy_device *phydev)
1266 {
1267 	phy_attached_print(phydev, NULL);
1268 }
1269 EXPORT_SYMBOL(phy_attached_info);
1270 
1271 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1272 char *phy_attached_info_irq(struct phy_device *phydev)
1273 {
1274 	char *irq_str;
1275 	char irq_num[8];
1276 
1277 	switch(phydev->irq) {
1278 	case PHY_POLL:
1279 		irq_str = "POLL";
1280 		break;
1281 	case PHY_MAC_INTERRUPT:
1282 		irq_str = "MAC";
1283 		break;
1284 	default:
1285 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1286 		irq_str = irq_num;
1287 		break;
1288 	}
1289 
1290 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1291 }
1292 EXPORT_SYMBOL(phy_attached_info_irq);
1293 
1294 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1295 {
1296 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1297 	char *irq_str = phy_attached_info_irq(phydev);
1298 
1299 	if (!fmt) {
1300 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1301 			    phydev_name(phydev), irq_str);
1302 	} else {
1303 		va_list ap;
1304 
1305 		phydev_info(phydev, ATTACHED_FMT, unbound,
1306 			    phydev_name(phydev), irq_str);
1307 
1308 		va_start(ap, fmt);
1309 		vprintk(fmt, ap);
1310 		va_end(ap);
1311 	}
1312 	kfree(irq_str);
1313 }
1314 EXPORT_SYMBOL(phy_attached_print);
1315 
1316 static void phy_sysfs_create_links(struct phy_device *phydev)
1317 {
1318 	struct net_device *dev = phydev->attached_dev;
1319 	int err;
1320 
1321 	if (!dev)
1322 		return;
1323 
1324 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1325 				"attached_dev");
1326 	if (err)
1327 		return;
1328 
1329 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1330 				       &phydev->mdio.dev.kobj,
1331 				       "phydev");
1332 	if (err) {
1333 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1334 			kobject_name(&phydev->mdio.dev.kobj),
1335 			err);
1336 		/* non-fatal - some net drivers can use one netdevice
1337 		 * with more then one phy
1338 		 */
1339 	}
1340 
1341 	phydev->sysfs_links = true;
1342 }
1343 
1344 static ssize_t
1345 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1346 		    char *buf)
1347 {
1348 	struct phy_device *phydev = to_phy_device(dev);
1349 
1350 	return sysfs_emit(buf, "%d\n", !phydev->attached_dev);
1351 }
1352 static DEVICE_ATTR_RO(phy_standalone);
1353 
1354 /**
1355  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1356  * @upstream: pointer to the phy device
1357  * @bus: sfp bus representing cage being attached
1358  *
1359  * This is used to fill in the sfp_upstream_ops .attach member.
1360  */
1361 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1362 {
1363 	struct phy_device *phydev = upstream;
1364 
1365 	if (phydev->attached_dev)
1366 		phydev->attached_dev->sfp_bus = bus;
1367 	phydev->sfp_bus_attached = true;
1368 }
1369 EXPORT_SYMBOL(phy_sfp_attach);
1370 
1371 /**
1372  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1373  * @upstream: pointer to the phy device
1374  * @bus: sfp bus representing cage being attached
1375  *
1376  * This is used to fill in the sfp_upstream_ops .detach member.
1377  */
1378 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1379 {
1380 	struct phy_device *phydev = upstream;
1381 
1382 	if (phydev->attached_dev)
1383 		phydev->attached_dev->sfp_bus = NULL;
1384 	phydev->sfp_bus_attached = false;
1385 }
1386 EXPORT_SYMBOL(phy_sfp_detach);
1387 
1388 /**
1389  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1390  * @phydev: Pointer to phy_device
1391  * @ops: SFP's upstream operations
1392  */
1393 int phy_sfp_probe(struct phy_device *phydev,
1394 		  const struct sfp_upstream_ops *ops)
1395 {
1396 	struct sfp_bus *bus;
1397 	int ret = 0;
1398 
1399 	if (phydev->mdio.dev.fwnode) {
1400 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1401 		if (IS_ERR(bus))
1402 			return PTR_ERR(bus);
1403 
1404 		phydev->sfp_bus = bus;
1405 
1406 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1407 		sfp_bus_put(bus);
1408 	}
1409 	return ret;
1410 }
1411 EXPORT_SYMBOL(phy_sfp_probe);
1412 
1413 /**
1414  * phy_attach_direct - attach a network device to a given PHY device pointer
1415  * @dev: network device to attach
1416  * @phydev: Pointer to phy_device to attach
1417  * @flags: PHY device's dev_flags
1418  * @interface: PHY device's interface
1419  *
1420  * Description: Called by drivers to attach to a particular PHY
1421  *     device. The phy_device is found, and properly hooked up
1422  *     to the phy_driver.  If no driver is attached, then a
1423  *     generic driver is used.  The phy_device is given a ptr to
1424  *     the attaching device, and given a callback for link status
1425  *     change.  The phy_device is returned to the attaching driver.
1426  *     This function takes a reference on the phy device.
1427  */
1428 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1429 		      u32 flags, phy_interface_t interface)
1430 {
1431 	struct mii_bus *bus = phydev->mdio.bus;
1432 	struct device *d = &phydev->mdio.dev;
1433 	struct module *ndev_owner = NULL;
1434 	bool using_genphy = false;
1435 	int err;
1436 
1437 	/* For Ethernet device drivers that register their own MDIO bus, we
1438 	 * will have bus->owner match ndev_mod, so we do not want to increment
1439 	 * our own module->refcnt here, otherwise we would not be able to
1440 	 * unload later on.
1441 	 */
1442 	if (dev)
1443 		ndev_owner = dev->dev.parent->driver->owner;
1444 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1445 		phydev_err(phydev, "failed to get the bus module\n");
1446 		return -EIO;
1447 	}
1448 
1449 	get_device(d);
1450 
1451 	/* Assume that if there is no driver, that it doesn't
1452 	 * exist, and we should use the genphy driver.
1453 	 */
1454 	if (!d->driver) {
1455 		if (phydev->is_c45)
1456 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1457 		else
1458 			d->driver = &genphy_driver.mdiodrv.driver;
1459 
1460 		using_genphy = true;
1461 	}
1462 
1463 	if (!try_module_get(d->driver->owner)) {
1464 		phydev_err(phydev, "failed to get the device driver module\n");
1465 		err = -EIO;
1466 		goto error_put_device;
1467 	}
1468 
1469 	if (using_genphy) {
1470 		err = d->driver->probe(d);
1471 		if (err >= 0)
1472 			err = device_bind_driver(d);
1473 
1474 		if (err)
1475 			goto error_module_put;
1476 	}
1477 
1478 	if (phydev->attached_dev) {
1479 		dev_err(&dev->dev, "PHY already attached\n");
1480 		err = -EBUSY;
1481 		goto error;
1482 	}
1483 
1484 	phydev->phy_link_change = phy_link_change;
1485 	if (dev) {
1486 		phydev->attached_dev = dev;
1487 		dev->phydev = phydev;
1488 
1489 		if (phydev->sfp_bus_attached)
1490 			dev->sfp_bus = phydev->sfp_bus;
1491 	}
1492 
1493 	/* Some Ethernet drivers try to connect to a PHY device before
1494 	 * calling register_netdevice() -> netdev_register_kobject() and
1495 	 * does the dev->dev.kobj initialization. Here we only check for
1496 	 * success which indicates that the network device kobject is
1497 	 * ready. Once we do that we still need to keep track of whether
1498 	 * links were successfully set up or not for phy_detach() to
1499 	 * remove them accordingly.
1500 	 */
1501 	phydev->sysfs_links = false;
1502 
1503 	phy_sysfs_create_links(phydev);
1504 
1505 	if (!phydev->attached_dev) {
1506 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1507 					&dev_attr_phy_standalone.attr);
1508 		if (err)
1509 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1510 	}
1511 
1512 	phydev->dev_flags |= flags;
1513 
1514 	phydev->interface = interface;
1515 
1516 	phydev->state = PHY_READY;
1517 
1518 	phydev->interrupts = PHY_INTERRUPT_DISABLED;
1519 
1520 	/* PHYs can request to use poll mode even though they have an
1521 	 * associated interrupt line. This could be the case if they
1522 	 * detect a broken interrupt handling.
1523 	 */
1524 	if (phydev->dev_flags & PHY_F_NO_IRQ)
1525 		phydev->irq = PHY_POLL;
1526 
1527 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1528 	 * it to different value depending on the PHY configuration. If we have
1529 	 * the generic PHY driver we can't figure it out, thus set the old
1530 	 * legacy PORT_MII value.
1531 	 */
1532 	if (using_genphy)
1533 		phydev->port = PORT_MII;
1534 
1535 	/* Initial carrier state is off as the phy is about to be
1536 	 * (re)initialized.
1537 	 */
1538 	if (dev)
1539 		netif_carrier_off(phydev->attached_dev);
1540 
1541 	/* Do initial configuration here, now that
1542 	 * we have certain key parameters
1543 	 * (dev_flags and interface)
1544 	 */
1545 	err = phy_init_hw(phydev);
1546 	if (err)
1547 		goto error;
1548 
1549 	phy_resume(phydev);
1550 	phy_led_triggers_register(phydev);
1551 
1552 	/**
1553 	 * If the external phy used by current mac interface is managed by
1554 	 * another mac interface, so we should create a device link between
1555 	 * phy dev and mac dev.
1556 	 */
1557 	if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
1558 		phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
1559 						  DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
1560 
1561 	return err;
1562 
1563 error:
1564 	/* phy_detach() does all of the cleanup below */
1565 	phy_detach(phydev);
1566 	return err;
1567 
1568 error_module_put:
1569 	module_put(d->driver->owner);
1570 	d->driver = NULL;
1571 error_put_device:
1572 	put_device(d);
1573 	if (ndev_owner != bus->owner)
1574 		module_put(bus->owner);
1575 	return err;
1576 }
1577 EXPORT_SYMBOL(phy_attach_direct);
1578 
1579 /**
1580  * phy_attach - attach a network device to a particular PHY device
1581  * @dev: network device to attach
1582  * @bus_id: Bus ID of PHY device to attach
1583  * @interface: PHY device's interface
1584  *
1585  * Description: Same as phy_attach_direct() except that a PHY bus_id
1586  *     string is passed instead of a pointer to a struct phy_device.
1587  */
1588 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1589 			      phy_interface_t interface)
1590 {
1591 	struct bus_type *bus = &mdio_bus_type;
1592 	struct phy_device *phydev;
1593 	struct device *d;
1594 	int rc;
1595 
1596 	if (!dev)
1597 		return ERR_PTR(-EINVAL);
1598 
1599 	/* Search the list of PHY devices on the mdio bus for the
1600 	 * PHY with the requested name
1601 	 */
1602 	d = bus_find_device_by_name(bus, NULL, bus_id);
1603 	if (!d) {
1604 		pr_err("PHY %s not found\n", bus_id);
1605 		return ERR_PTR(-ENODEV);
1606 	}
1607 	phydev = to_phy_device(d);
1608 
1609 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1610 	put_device(d);
1611 	if (rc)
1612 		return ERR_PTR(rc);
1613 
1614 	return phydev;
1615 }
1616 EXPORT_SYMBOL(phy_attach);
1617 
1618 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1619 				      struct device_driver *driver)
1620 {
1621 	struct device *d = &phydev->mdio.dev;
1622 	bool ret = false;
1623 
1624 	if (!phydev->drv)
1625 		return ret;
1626 
1627 	get_device(d);
1628 	ret = d->driver == driver;
1629 	put_device(d);
1630 
1631 	return ret;
1632 }
1633 
1634 bool phy_driver_is_genphy(struct phy_device *phydev)
1635 {
1636 	return phy_driver_is_genphy_kind(phydev,
1637 					 &genphy_driver.mdiodrv.driver);
1638 }
1639 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1640 
1641 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1642 {
1643 	return phy_driver_is_genphy_kind(phydev,
1644 					 &genphy_c45_driver.mdiodrv.driver);
1645 }
1646 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1647 
1648 /**
1649  * phy_package_join - join a common PHY group
1650  * @phydev: target phy_device struct
1651  * @addr: cookie and PHY address for global register access
1652  * @priv_size: if non-zero allocate this amount of bytes for private data
1653  *
1654  * This joins a PHY group and provides a shared storage for all phydevs in
1655  * this group. This is intended to be used for packages which contain
1656  * more than one PHY, for example a quad PHY transceiver.
1657  *
1658  * The addr parameter serves as a cookie which has to have the same value
1659  * for all members of one group and as a PHY address to access generic
1660  * registers of a PHY package. Usually, one of the PHY addresses of the
1661  * different PHYs in the package provides access to these global registers.
1662  * The address which is given here, will be used in the phy_package_read()
1663  * and phy_package_write() convenience functions. If your PHY doesn't have
1664  * global registers you can just pick any of the PHY addresses.
1665  *
1666  * This will set the shared pointer of the phydev to the shared storage.
1667  * If this is the first call for a this cookie the shared storage will be
1668  * allocated. If priv_size is non-zero, the given amount of bytes are
1669  * allocated for the priv member.
1670  *
1671  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1672  * with the same cookie but a different priv_size is an error.
1673  */
1674 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size)
1675 {
1676 	struct mii_bus *bus = phydev->mdio.bus;
1677 	struct phy_package_shared *shared;
1678 	int ret;
1679 
1680 	if (addr < 0 || addr >= PHY_MAX_ADDR)
1681 		return -EINVAL;
1682 
1683 	mutex_lock(&bus->shared_lock);
1684 	shared = bus->shared[addr];
1685 	if (!shared) {
1686 		ret = -ENOMEM;
1687 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1688 		if (!shared)
1689 			goto err_unlock;
1690 		if (priv_size) {
1691 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1692 			if (!shared->priv)
1693 				goto err_free;
1694 			shared->priv_size = priv_size;
1695 		}
1696 		shared->addr = addr;
1697 		refcount_set(&shared->refcnt, 1);
1698 		bus->shared[addr] = shared;
1699 	} else {
1700 		ret = -EINVAL;
1701 		if (priv_size && priv_size != shared->priv_size)
1702 			goto err_unlock;
1703 		refcount_inc(&shared->refcnt);
1704 	}
1705 	mutex_unlock(&bus->shared_lock);
1706 
1707 	phydev->shared = shared;
1708 
1709 	return 0;
1710 
1711 err_free:
1712 	kfree(shared);
1713 err_unlock:
1714 	mutex_unlock(&bus->shared_lock);
1715 	return ret;
1716 }
1717 EXPORT_SYMBOL_GPL(phy_package_join);
1718 
1719 /**
1720  * phy_package_leave - leave a common PHY group
1721  * @phydev: target phy_device struct
1722  *
1723  * This leaves a PHY group created by phy_package_join(). If this phydev
1724  * was the last user of the shared data between the group, this data is
1725  * freed. Resets the phydev->shared pointer to NULL.
1726  */
1727 void phy_package_leave(struct phy_device *phydev)
1728 {
1729 	struct phy_package_shared *shared = phydev->shared;
1730 	struct mii_bus *bus = phydev->mdio.bus;
1731 
1732 	if (!shared)
1733 		return;
1734 
1735 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1736 		bus->shared[shared->addr] = NULL;
1737 		mutex_unlock(&bus->shared_lock);
1738 		kfree(shared->priv);
1739 		kfree(shared);
1740 	}
1741 
1742 	phydev->shared = NULL;
1743 }
1744 EXPORT_SYMBOL_GPL(phy_package_leave);
1745 
1746 static void devm_phy_package_leave(struct device *dev, void *res)
1747 {
1748 	phy_package_leave(*(struct phy_device **)res);
1749 }
1750 
1751 /**
1752  * devm_phy_package_join - resource managed phy_package_join()
1753  * @dev: device that is registering this PHY package
1754  * @phydev: target phy_device struct
1755  * @addr: cookie and PHY address for global register access
1756  * @priv_size: if non-zero allocate this amount of bytes for private data
1757  *
1758  * Managed phy_package_join(). Shared storage fetched by this function,
1759  * phy_package_leave() is automatically called on driver detach. See
1760  * phy_package_join() for more information.
1761  */
1762 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1763 			  int addr, size_t priv_size)
1764 {
1765 	struct phy_device **ptr;
1766 	int ret;
1767 
1768 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1769 			   GFP_KERNEL);
1770 	if (!ptr)
1771 		return -ENOMEM;
1772 
1773 	ret = phy_package_join(phydev, addr, priv_size);
1774 
1775 	if (!ret) {
1776 		*ptr = phydev;
1777 		devres_add(dev, ptr);
1778 	} else {
1779 		devres_free(ptr);
1780 	}
1781 
1782 	return ret;
1783 }
1784 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1785 
1786 /**
1787  * phy_detach - detach a PHY device from its network device
1788  * @phydev: target phy_device struct
1789  *
1790  * This detaches the phy device from its network device and the phy
1791  * driver, and drops the reference count taken in phy_attach_direct().
1792  */
1793 void phy_detach(struct phy_device *phydev)
1794 {
1795 	struct net_device *dev = phydev->attached_dev;
1796 	struct module *ndev_owner = NULL;
1797 	struct mii_bus *bus;
1798 
1799 	if (phydev->devlink)
1800 		device_link_del(phydev->devlink);
1801 
1802 	if (phydev->sysfs_links) {
1803 		if (dev)
1804 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1805 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1806 	}
1807 
1808 	if (!phydev->attached_dev)
1809 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1810 				  &dev_attr_phy_standalone.attr);
1811 
1812 	phy_suspend(phydev);
1813 	if (dev) {
1814 		phydev->attached_dev->phydev = NULL;
1815 		phydev->attached_dev = NULL;
1816 	}
1817 	phydev->phylink = NULL;
1818 
1819 	phy_led_triggers_unregister(phydev);
1820 
1821 	if (phydev->mdio.dev.driver)
1822 		module_put(phydev->mdio.dev.driver->owner);
1823 
1824 	/* If the device had no specific driver before (i.e. - it
1825 	 * was using the generic driver), we unbind the device
1826 	 * from the generic driver so that there's a chance a
1827 	 * real driver could be loaded
1828 	 */
1829 	if (phy_driver_is_genphy(phydev) ||
1830 	    phy_driver_is_genphy_10g(phydev))
1831 		device_release_driver(&phydev->mdio.dev);
1832 
1833 	/* Assert the reset signal */
1834 	phy_device_reset(phydev, 1);
1835 
1836 	/*
1837 	 * The phydev might go away on the put_device() below, so avoid
1838 	 * a use-after-free bug by reading the underlying bus first.
1839 	 */
1840 	bus = phydev->mdio.bus;
1841 
1842 	put_device(&phydev->mdio.dev);
1843 	if (dev)
1844 		ndev_owner = dev->dev.parent->driver->owner;
1845 	if (ndev_owner != bus->owner)
1846 		module_put(bus->owner);
1847 }
1848 EXPORT_SYMBOL(phy_detach);
1849 
1850 int phy_suspend(struct phy_device *phydev)
1851 {
1852 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1853 	struct net_device *netdev = phydev->attached_dev;
1854 	struct phy_driver *phydrv = phydev->drv;
1855 	int ret;
1856 
1857 	if (phydev->suspended)
1858 		return 0;
1859 
1860 	phy_ethtool_get_wol(phydev, &wol);
1861 	phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled);
1862 	/* If the device has WOL enabled, we cannot suspend the PHY */
1863 	if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND))
1864 		return -EBUSY;
1865 
1866 	if (!phydrv || !phydrv->suspend)
1867 		return 0;
1868 
1869 	ret = phydrv->suspend(phydev);
1870 	if (!ret)
1871 		phydev->suspended = true;
1872 
1873 	return ret;
1874 }
1875 EXPORT_SYMBOL(phy_suspend);
1876 
1877 int __phy_resume(struct phy_device *phydev)
1878 {
1879 	struct phy_driver *phydrv = phydev->drv;
1880 	int ret;
1881 
1882 	lockdep_assert_held(&phydev->lock);
1883 
1884 	if (!phydrv || !phydrv->resume)
1885 		return 0;
1886 
1887 	ret = phydrv->resume(phydev);
1888 	if (!ret)
1889 		phydev->suspended = false;
1890 
1891 	return ret;
1892 }
1893 EXPORT_SYMBOL(__phy_resume);
1894 
1895 int phy_resume(struct phy_device *phydev)
1896 {
1897 	int ret;
1898 
1899 	mutex_lock(&phydev->lock);
1900 	ret = __phy_resume(phydev);
1901 	mutex_unlock(&phydev->lock);
1902 
1903 	return ret;
1904 }
1905 EXPORT_SYMBOL(phy_resume);
1906 
1907 int phy_loopback(struct phy_device *phydev, bool enable)
1908 {
1909 	int ret = 0;
1910 
1911 	if (!phydev->drv)
1912 		return -EIO;
1913 
1914 	mutex_lock(&phydev->lock);
1915 
1916 	if (enable && phydev->loopback_enabled) {
1917 		ret = -EBUSY;
1918 		goto out;
1919 	}
1920 
1921 	if (!enable && !phydev->loopback_enabled) {
1922 		ret = -EINVAL;
1923 		goto out;
1924 	}
1925 
1926 	if (phydev->drv->set_loopback)
1927 		ret = phydev->drv->set_loopback(phydev, enable);
1928 	else
1929 		ret = genphy_loopback(phydev, enable);
1930 
1931 	if (ret)
1932 		goto out;
1933 
1934 	phydev->loopback_enabled = enable;
1935 
1936 out:
1937 	mutex_unlock(&phydev->lock);
1938 	return ret;
1939 }
1940 EXPORT_SYMBOL(phy_loopback);
1941 
1942 /**
1943  * phy_reset_after_clk_enable - perform a PHY reset if needed
1944  * @phydev: target phy_device struct
1945  *
1946  * Description: Some PHYs are known to need a reset after their refclk was
1947  *   enabled. This function evaluates the flags and perform the reset if it's
1948  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1949  *   was reset.
1950  */
1951 int phy_reset_after_clk_enable(struct phy_device *phydev)
1952 {
1953 	if (!phydev || !phydev->drv)
1954 		return -ENODEV;
1955 
1956 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1957 		phy_device_reset(phydev, 1);
1958 		phy_device_reset(phydev, 0);
1959 		return 1;
1960 	}
1961 
1962 	return 0;
1963 }
1964 EXPORT_SYMBOL(phy_reset_after_clk_enable);
1965 
1966 /* Generic PHY support and helper functions */
1967 
1968 /**
1969  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1970  * @phydev: target phy_device struct
1971  *
1972  * Description: Writes MII_ADVERTISE with the appropriate values,
1973  *   after sanitizing the values to make sure we only advertise
1974  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1975  *   hasn't changed, and > 0 if it has changed.
1976  */
1977 static int genphy_config_advert(struct phy_device *phydev)
1978 {
1979 	int err, bmsr, changed = 0;
1980 	u32 adv;
1981 
1982 	/* Only allow advertising what this PHY supports */
1983 	linkmode_and(phydev->advertising, phydev->advertising,
1984 		     phydev->supported);
1985 
1986 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1987 
1988 	/* Setup standard advertisement */
1989 	err = phy_modify_changed(phydev, MII_ADVERTISE,
1990 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
1991 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
1992 				 adv);
1993 	if (err < 0)
1994 		return err;
1995 	if (err > 0)
1996 		changed = 1;
1997 
1998 	bmsr = phy_read(phydev, MII_BMSR);
1999 	if (bmsr < 0)
2000 		return bmsr;
2001 
2002 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
2003 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
2004 	 * logical 1.
2005 	 */
2006 	if (!(bmsr & BMSR_ESTATEN))
2007 		return changed;
2008 
2009 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
2010 
2011 	err = phy_modify_changed(phydev, MII_CTRL1000,
2012 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
2013 				 adv);
2014 	if (err < 0)
2015 		return err;
2016 	if (err > 0)
2017 		changed = 1;
2018 
2019 	return changed;
2020 }
2021 
2022 /**
2023  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
2024  * @phydev: target phy_device struct
2025  *
2026  * Description: Writes MII_ADVERTISE with the appropriate values,
2027  *   after sanitizing the values to make sure we only advertise
2028  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2029  *   hasn't changed, and > 0 if it has changed. This function is intended
2030  *   for Clause 37 1000Base-X mode.
2031  */
2032 static int genphy_c37_config_advert(struct phy_device *phydev)
2033 {
2034 	u16 adv = 0;
2035 
2036 	/* Only allow advertising what this PHY supports */
2037 	linkmode_and(phydev->advertising, phydev->advertising,
2038 		     phydev->supported);
2039 
2040 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2041 			      phydev->advertising))
2042 		adv |= ADVERTISE_1000XFULL;
2043 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2044 			      phydev->advertising))
2045 		adv |= ADVERTISE_1000XPAUSE;
2046 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2047 			      phydev->advertising))
2048 		adv |= ADVERTISE_1000XPSE_ASYM;
2049 
2050 	return phy_modify_changed(phydev, MII_ADVERTISE,
2051 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
2052 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
2053 				  adv);
2054 }
2055 
2056 /**
2057  * genphy_config_eee_advert - disable unwanted eee mode advertisement
2058  * @phydev: target phy_device struct
2059  *
2060  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2061  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2062  *   changed, and 1 if it has changed.
2063  */
2064 int genphy_config_eee_advert(struct phy_device *phydev)
2065 {
2066 	int err;
2067 
2068 	/* Nothing to disable */
2069 	if (!phydev->eee_broken_modes)
2070 		return 0;
2071 
2072 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2073 				     phydev->eee_broken_modes, 0);
2074 	/* If the call failed, we assume that EEE is not supported */
2075 	return err < 0 ? 0 : err;
2076 }
2077 EXPORT_SYMBOL(genphy_config_eee_advert);
2078 
2079 /**
2080  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2081  * @phydev: target phy_device struct
2082  *
2083  * Description: Configures MII_BMCR to force speed/duplex
2084  *   to the values in phydev. Assumes that the values are valid.
2085  *   Please see phy_sanitize_settings().
2086  */
2087 int genphy_setup_forced(struct phy_device *phydev)
2088 {
2089 	u16 ctl;
2090 
2091 	phydev->pause = 0;
2092 	phydev->asym_pause = 0;
2093 
2094 	ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2095 
2096 	return phy_modify(phydev, MII_BMCR,
2097 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2098 }
2099 EXPORT_SYMBOL(genphy_setup_forced);
2100 
2101 static int genphy_setup_master_slave(struct phy_device *phydev)
2102 {
2103 	u16 ctl = 0;
2104 
2105 	if (!phydev->is_gigabit_capable)
2106 		return 0;
2107 
2108 	switch (phydev->master_slave_set) {
2109 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2110 		ctl |= CTL1000_PREFER_MASTER;
2111 		break;
2112 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2113 		break;
2114 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2115 		ctl |= CTL1000_AS_MASTER;
2116 		fallthrough;
2117 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2118 		ctl |= CTL1000_ENABLE_MASTER;
2119 		break;
2120 	case MASTER_SLAVE_CFG_UNKNOWN:
2121 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2122 		return 0;
2123 	default:
2124 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2125 		return -EOPNOTSUPP;
2126 	}
2127 
2128 	return phy_modify_changed(phydev, MII_CTRL1000,
2129 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2130 				   CTL1000_PREFER_MASTER), ctl);
2131 }
2132 
2133 int genphy_read_master_slave(struct phy_device *phydev)
2134 {
2135 	int cfg, state;
2136 	int val;
2137 
2138 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2139 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2140 
2141 	val = phy_read(phydev, MII_CTRL1000);
2142 	if (val < 0)
2143 		return val;
2144 
2145 	if (val & CTL1000_ENABLE_MASTER) {
2146 		if (val & CTL1000_AS_MASTER)
2147 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2148 		else
2149 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2150 	} else {
2151 		if (val & CTL1000_PREFER_MASTER)
2152 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2153 		else
2154 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2155 	}
2156 
2157 	val = phy_read(phydev, MII_STAT1000);
2158 	if (val < 0)
2159 		return val;
2160 
2161 	if (val & LPA_1000MSFAIL) {
2162 		state = MASTER_SLAVE_STATE_ERR;
2163 	} else if (phydev->link) {
2164 		/* this bits are valid only for active link */
2165 		if (val & LPA_1000MSRES)
2166 			state = MASTER_SLAVE_STATE_MASTER;
2167 		else
2168 			state = MASTER_SLAVE_STATE_SLAVE;
2169 	} else {
2170 		state = MASTER_SLAVE_STATE_UNKNOWN;
2171 	}
2172 
2173 	phydev->master_slave_get = cfg;
2174 	phydev->master_slave_state = state;
2175 
2176 	return 0;
2177 }
2178 EXPORT_SYMBOL(genphy_read_master_slave);
2179 
2180 /**
2181  * genphy_restart_aneg - Enable and Restart Autonegotiation
2182  * @phydev: target phy_device struct
2183  */
2184 int genphy_restart_aneg(struct phy_device *phydev)
2185 {
2186 	/* Don't isolate the PHY if we're negotiating */
2187 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2188 			  BMCR_ANENABLE | BMCR_ANRESTART);
2189 }
2190 EXPORT_SYMBOL(genphy_restart_aneg);
2191 
2192 /**
2193  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2194  * @phydev: target phy_device struct
2195  * @restart: whether aneg restart is requested
2196  *
2197  * Check, and restart auto-negotiation if needed.
2198  */
2199 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2200 {
2201 	int ret;
2202 
2203 	if (!restart) {
2204 		/* Advertisement hasn't changed, but maybe aneg was never on to
2205 		 * begin with?  Or maybe phy was isolated?
2206 		 */
2207 		ret = phy_read(phydev, MII_BMCR);
2208 		if (ret < 0)
2209 			return ret;
2210 
2211 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2212 			restart = true;
2213 	}
2214 
2215 	if (restart)
2216 		return genphy_restart_aneg(phydev);
2217 
2218 	return 0;
2219 }
2220 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2221 
2222 /**
2223  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2224  * @phydev: target phy_device struct
2225  * @changed: whether autoneg is requested
2226  *
2227  * Description: If auto-negotiation is enabled, we configure the
2228  *   advertising, and then restart auto-negotiation.  If it is not
2229  *   enabled, then we write the BMCR.
2230  */
2231 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2232 {
2233 	int err;
2234 
2235 	err = genphy_c45_an_config_eee_aneg(phydev);
2236 	if (err < 0)
2237 		return err;
2238 	else if (err)
2239 		changed = true;
2240 
2241 	err = genphy_setup_master_slave(phydev);
2242 	if (err < 0)
2243 		return err;
2244 	else if (err)
2245 		changed = true;
2246 
2247 	if (AUTONEG_ENABLE != phydev->autoneg)
2248 		return genphy_setup_forced(phydev);
2249 
2250 	err = genphy_config_advert(phydev);
2251 	if (err < 0) /* error */
2252 		return err;
2253 	else if (err)
2254 		changed = true;
2255 
2256 	return genphy_check_and_restart_aneg(phydev, changed);
2257 }
2258 EXPORT_SYMBOL(__genphy_config_aneg);
2259 
2260 /**
2261  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2262  * @phydev: target phy_device struct
2263  *
2264  * Description: If auto-negotiation is enabled, we configure the
2265  *   advertising, and then restart auto-negotiation.  If it is not
2266  *   enabled, then we write the BMCR. This function is intended
2267  *   for use with Clause 37 1000Base-X mode.
2268  */
2269 int genphy_c37_config_aneg(struct phy_device *phydev)
2270 {
2271 	int err, changed;
2272 
2273 	if (phydev->autoneg != AUTONEG_ENABLE)
2274 		return genphy_setup_forced(phydev);
2275 
2276 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2277 			 BMCR_SPEED1000);
2278 	if (err)
2279 		return err;
2280 
2281 	changed = genphy_c37_config_advert(phydev);
2282 	if (changed < 0) /* error */
2283 		return changed;
2284 
2285 	if (!changed) {
2286 		/* Advertisement hasn't changed, but maybe aneg was never on to
2287 		 * begin with?  Or maybe phy was isolated?
2288 		 */
2289 		int ctl = phy_read(phydev, MII_BMCR);
2290 
2291 		if (ctl < 0)
2292 			return ctl;
2293 
2294 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2295 			changed = 1; /* do restart aneg */
2296 	}
2297 
2298 	/* Only restart aneg if we are advertising something different
2299 	 * than we were before.
2300 	 */
2301 	if (changed > 0)
2302 		return genphy_restart_aneg(phydev);
2303 
2304 	return 0;
2305 }
2306 EXPORT_SYMBOL(genphy_c37_config_aneg);
2307 
2308 /**
2309  * genphy_aneg_done - return auto-negotiation status
2310  * @phydev: target phy_device struct
2311  *
2312  * Description: Reads the status register and returns 0 either if
2313  *   auto-negotiation is incomplete, or if there was an error.
2314  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2315  */
2316 int genphy_aneg_done(struct phy_device *phydev)
2317 {
2318 	int retval = phy_read(phydev, MII_BMSR);
2319 
2320 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2321 }
2322 EXPORT_SYMBOL(genphy_aneg_done);
2323 
2324 /**
2325  * genphy_update_link - update link status in @phydev
2326  * @phydev: target phy_device struct
2327  *
2328  * Description: Update the value in phydev->link to reflect the
2329  *   current link value.  In order to do this, we need to read
2330  *   the status register twice, keeping the second value.
2331  */
2332 int genphy_update_link(struct phy_device *phydev)
2333 {
2334 	int status = 0, bmcr;
2335 
2336 	bmcr = phy_read(phydev, MII_BMCR);
2337 	if (bmcr < 0)
2338 		return bmcr;
2339 
2340 	/* Autoneg is being started, therefore disregard BMSR value and
2341 	 * report link as down.
2342 	 */
2343 	if (bmcr & BMCR_ANRESTART)
2344 		goto done;
2345 
2346 	/* The link state is latched low so that momentary link
2347 	 * drops can be detected. Do not double-read the status
2348 	 * in polling mode to detect such short link drops except
2349 	 * the link was already down.
2350 	 */
2351 	if (!phy_polling_mode(phydev) || !phydev->link) {
2352 		status = phy_read(phydev, MII_BMSR);
2353 		if (status < 0)
2354 			return status;
2355 		else if (status & BMSR_LSTATUS)
2356 			goto done;
2357 	}
2358 
2359 	/* Read link and autonegotiation status */
2360 	status = phy_read(phydev, MII_BMSR);
2361 	if (status < 0)
2362 		return status;
2363 done:
2364 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2365 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2366 
2367 	/* Consider the case that autoneg was started and "aneg complete"
2368 	 * bit has been reset, but "link up" bit not yet.
2369 	 */
2370 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2371 		phydev->link = 0;
2372 
2373 	return 0;
2374 }
2375 EXPORT_SYMBOL(genphy_update_link);
2376 
2377 int genphy_read_lpa(struct phy_device *phydev)
2378 {
2379 	int lpa, lpagb;
2380 
2381 	if (phydev->autoneg == AUTONEG_ENABLE) {
2382 		if (!phydev->autoneg_complete) {
2383 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2384 							0);
2385 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2386 			return 0;
2387 		}
2388 
2389 		if (phydev->is_gigabit_capable) {
2390 			lpagb = phy_read(phydev, MII_STAT1000);
2391 			if (lpagb < 0)
2392 				return lpagb;
2393 
2394 			if (lpagb & LPA_1000MSFAIL) {
2395 				int adv = phy_read(phydev, MII_CTRL1000);
2396 
2397 				if (adv < 0)
2398 					return adv;
2399 
2400 				if (adv & CTL1000_ENABLE_MASTER)
2401 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2402 				else
2403 					phydev_err(phydev, "Master/Slave resolution failed\n");
2404 				return -ENOLINK;
2405 			}
2406 
2407 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2408 							lpagb);
2409 		}
2410 
2411 		lpa = phy_read(phydev, MII_LPA);
2412 		if (lpa < 0)
2413 			return lpa;
2414 
2415 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2416 	} else {
2417 		linkmode_zero(phydev->lp_advertising);
2418 	}
2419 
2420 	return 0;
2421 }
2422 EXPORT_SYMBOL(genphy_read_lpa);
2423 
2424 /**
2425  * genphy_read_status_fixed - read the link parameters for !aneg mode
2426  * @phydev: target phy_device struct
2427  *
2428  * Read the current duplex and speed state for a PHY operating with
2429  * autonegotiation disabled.
2430  */
2431 int genphy_read_status_fixed(struct phy_device *phydev)
2432 {
2433 	int bmcr = phy_read(phydev, MII_BMCR);
2434 
2435 	if (bmcr < 0)
2436 		return bmcr;
2437 
2438 	if (bmcr & BMCR_FULLDPLX)
2439 		phydev->duplex = DUPLEX_FULL;
2440 	else
2441 		phydev->duplex = DUPLEX_HALF;
2442 
2443 	if (bmcr & BMCR_SPEED1000)
2444 		phydev->speed = SPEED_1000;
2445 	else if (bmcr & BMCR_SPEED100)
2446 		phydev->speed = SPEED_100;
2447 	else
2448 		phydev->speed = SPEED_10;
2449 
2450 	return 0;
2451 }
2452 EXPORT_SYMBOL(genphy_read_status_fixed);
2453 
2454 /**
2455  * genphy_read_status - check the link status and update current link state
2456  * @phydev: target phy_device struct
2457  *
2458  * Description: Check the link, then figure out the current state
2459  *   by comparing what we advertise with what the link partner
2460  *   advertises.  Start by checking the gigabit possibilities,
2461  *   then move on to 10/100.
2462  */
2463 int genphy_read_status(struct phy_device *phydev)
2464 {
2465 	int err, old_link = phydev->link;
2466 
2467 	/* Update the link, but return if there was an error */
2468 	err = genphy_update_link(phydev);
2469 	if (err)
2470 		return err;
2471 
2472 	/* why bother the PHY if nothing can have changed */
2473 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2474 		return 0;
2475 
2476 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2477 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2478 	phydev->speed = SPEED_UNKNOWN;
2479 	phydev->duplex = DUPLEX_UNKNOWN;
2480 	phydev->pause = 0;
2481 	phydev->asym_pause = 0;
2482 
2483 	if (phydev->is_gigabit_capable) {
2484 		err = genphy_read_master_slave(phydev);
2485 		if (err < 0)
2486 			return err;
2487 	}
2488 
2489 	err = genphy_read_lpa(phydev);
2490 	if (err < 0)
2491 		return err;
2492 
2493 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2494 		phy_resolve_aneg_linkmode(phydev);
2495 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2496 		err = genphy_read_status_fixed(phydev);
2497 		if (err < 0)
2498 			return err;
2499 	}
2500 
2501 	return 0;
2502 }
2503 EXPORT_SYMBOL(genphy_read_status);
2504 
2505 /**
2506  * genphy_c37_read_status - check the link status and update current link state
2507  * @phydev: target phy_device struct
2508  *
2509  * Description: Check the link, then figure out the current state
2510  *   by comparing what we advertise with what the link partner
2511  *   advertises. This function is for Clause 37 1000Base-X mode.
2512  */
2513 int genphy_c37_read_status(struct phy_device *phydev)
2514 {
2515 	int lpa, err, old_link = phydev->link;
2516 
2517 	/* Update the link, but return if there was an error */
2518 	err = genphy_update_link(phydev);
2519 	if (err)
2520 		return err;
2521 
2522 	/* why bother the PHY if nothing can have changed */
2523 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2524 		return 0;
2525 
2526 	phydev->duplex = DUPLEX_UNKNOWN;
2527 	phydev->pause = 0;
2528 	phydev->asym_pause = 0;
2529 
2530 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2531 		lpa = phy_read(phydev, MII_LPA);
2532 		if (lpa < 0)
2533 			return lpa;
2534 
2535 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2536 				 phydev->lp_advertising, lpa & LPA_LPACK);
2537 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2538 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2539 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2540 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2541 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2542 				 phydev->lp_advertising,
2543 				 lpa & LPA_1000XPAUSE_ASYM);
2544 
2545 		phy_resolve_aneg_linkmode(phydev);
2546 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2547 		int bmcr = phy_read(phydev, MII_BMCR);
2548 
2549 		if (bmcr < 0)
2550 			return bmcr;
2551 
2552 		if (bmcr & BMCR_FULLDPLX)
2553 			phydev->duplex = DUPLEX_FULL;
2554 		else
2555 			phydev->duplex = DUPLEX_HALF;
2556 	}
2557 
2558 	return 0;
2559 }
2560 EXPORT_SYMBOL(genphy_c37_read_status);
2561 
2562 /**
2563  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2564  * @phydev: target phy_device struct
2565  *
2566  * Description: Perform a software PHY reset using the standard
2567  * BMCR_RESET bit and poll for the reset bit to be cleared.
2568  *
2569  * Returns: 0 on success, < 0 on failure
2570  */
2571 int genphy_soft_reset(struct phy_device *phydev)
2572 {
2573 	u16 res = BMCR_RESET;
2574 	int ret;
2575 
2576 	if (phydev->autoneg == AUTONEG_ENABLE)
2577 		res |= BMCR_ANRESTART;
2578 
2579 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2580 	if (ret < 0)
2581 		return ret;
2582 
2583 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2584 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2585 	 * be cleared after soft reset.
2586 	 */
2587 	phydev->suspended = 0;
2588 
2589 	ret = phy_poll_reset(phydev);
2590 	if (ret)
2591 		return ret;
2592 
2593 	/* BMCR may be reset to defaults */
2594 	if (phydev->autoneg == AUTONEG_DISABLE)
2595 		ret = genphy_setup_forced(phydev);
2596 
2597 	return ret;
2598 }
2599 EXPORT_SYMBOL(genphy_soft_reset);
2600 
2601 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2602 {
2603 	/* It seems there are cases where the interrupts are handled by another
2604 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2605 	 * need any other interraction from phylib. In this case, just trigger
2606 	 * the state machine directly.
2607 	 */
2608 	phy_trigger_machine(phydev);
2609 
2610 	return 0;
2611 }
2612 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2613 
2614 /**
2615  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2616  * @phydev: target phy_device struct
2617  *
2618  * Description: Reads the PHY's abilities and populates
2619  * phydev->supported accordingly.
2620  *
2621  * Returns: 0 on success, < 0 on failure
2622  */
2623 int genphy_read_abilities(struct phy_device *phydev)
2624 {
2625 	int val;
2626 
2627 	linkmode_set_bit_array(phy_basic_ports_array,
2628 			       ARRAY_SIZE(phy_basic_ports_array),
2629 			       phydev->supported);
2630 
2631 	val = phy_read(phydev, MII_BMSR);
2632 	if (val < 0)
2633 		return val;
2634 
2635 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2636 			 val & BMSR_ANEGCAPABLE);
2637 
2638 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2639 			 val & BMSR_100FULL);
2640 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2641 			 val & BMSR_100HALF);
2642 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2643 			 val & BMSR_10FULL);
2644 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2645 			 val & BMSR_10HALF);
2646 
2647 	if (val & BMSR_ESTATEN) {
2648 		val = phy_read(phydev, MII_ESTATUS);
2649 		if (val < 0)
2650 			return val;
2651 
2652 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2653 				 phydev->supported, val & ESTATUS_1000_TFULL);
2654 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2655 				 phydev->supported, val & ESTATUS_1000_THALF);
2656 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2657 				 phydev->supported, val & ESTATUS_1000_XFULL);
2658 	}
2659 
2660 	/* This is optional functionality. If not supported, we may get an error
2661 	 * which should be ignored.
2662 	 */
2663 	genphy_c45_read_eee_abilities(phydev);
2664 
2665 	return 0;
2666 }
2667 EXPORT_SYMBOL(genphy_read_abilities);
2668 
2669 /* This is used for the phy device which doesn't support the MMD extended
2670  * register access, but it does have side effect when we are trying to access
2671  * the MMD register via indirect method.
2672  */
2673 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2674 {
2675 	return -EOPNOTSUPP;
2676 }
2677 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2678 
2679 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2680 				 u16 regnum, u16 val)
2681 {
2682 	return -EOPNOTSUPP;
2683 }
2684 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2685 
2686 int genphy_suspend(struct phy_device *phydev)
2687 {
2688 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2689 }
2690 EXPORT_SYMBOL(genphy_suspend);
2691 
2692 int genphy_resume(struct phy_device *phydev)
2693 {
2694 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2695 }
2696 EXPORT_SYMBOL(genphy_resume);
2697 
2698 int genphy_loopback(struct phy_device *phydev, bool enable)
2699 {
2700 	if (enable) {
2701 		u16 val, ctl = BMCR_LOOPBACK;
2702 		int ret;
2703 
2704 		ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2705 
2706 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2707 
2708 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2709 					    val & BMSR_LSTATUS,
2710 				    5000, 500000, true);
2711 		if (ret)
2712 			return ret;
2713 	} else {
2714 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2715 
2716 		phy_config_aneg(phydev);
2717 	}
2718 
2719 	return 0;
2720 }
2721 EXPORT_SYMBOL(genphy_loopback);
2722 
2723 /**
2724  * phy_remove_link_mode - Remove a supported link mode
2725  * @phydev: phy_device structure to remove link mode from
2726  * @link_mode: Link mode to be removed
2727  *
2728  * Description: Some MACs don't support all link modes which the PHY
2729  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2730  * to remove a link mode.
2731  */
2732 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2733 {
2734 	linkmode_clear_bit(link_mode, phydev->supported);
2735 	phy_advertise_supported(phydev);
2736 }
2737 EXPORT_SYMBOL(phy_remove_link_mode);
2738 
2739 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2740 {
2741 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2742 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2743 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2744 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2745 }
2746 
2747 /**
2748  * phy_advertise_supported - Advertise all supported modes
2749  * @phydev: target phy_device struct
2750  *
2751  * Description: Called to advertise all supported modes, doesn't touch
2752  * pause mode advertising.
2753  */
2754 void phy_advertise_supported(struct phy_device *phydev)
2755 {
2756 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2757 
2758 	linkmode_copy(new, phydev->supported);
2759 	phy_copy_pause_bits(new, phydev->advertising);
2760 	linkmode_copy(phydev->advertising, new);
2761 }
2762 EXPORT_SYMBOL(phy_advertise_supported);
2763 
2764 /**
2765  * phy_support_sym_pause - Enable support of symmetrical pause
2766  * @phydev: target phy_device struct
2767  *
2768  * Description: Called by the MAC to indicate is supports symmetrical
2769  * Pause, but not asym pause.
2770  */
2771 void phy_support_sym_pause(struct phy_device *phydev)
2772 {
2773 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2774 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2775 }
2776 EXPORT_SYMBOL(phy_support_sym_pause);
2777 
2778 /**
2779  * phy_support_asym_pause - Enable support of asym pause
2780  * @phydev: target phy_device struct
2781  *
2782  * Description: Called by the MAC to indicate is supports Asym Pause.
2783  */
2784 void phy_support_asym_pause(struct phy_device *phydev)
2785 {
2786 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2787 }
2788 EXPORT_SYMBOL(phy_support_asym_pause);
2789 
2790 /**
2791  * phy_set_sym_pause - Configure symmetric Pause
2792  * @phydev: target phy_device struct
2793  * @rx: Receiver Pause is supported
2794  * @tx: Transmit Pause is supported
2795  * @autoneg: Auto neg should be used
2796  *
2797  * Description: Configure advertised Pause support depending on if
2798  * receiver pause and pause auto neg is supported. Generally called
2799  * from the set_pauseparam .ndo.
2800  */
2801 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2802 		       bool autoneg)
2803 {
2804 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2805 
2806 	if (rx && tx && autoneg)
2807 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2808 				 phydev->supported);
2809 
2810 	linkmode_copy(phydev->advertising, phydev->supported);
2811 }
2812 EXPORT_SYMBOL(phy_set_sym_pause);
2813 
2814 /**
2815  * phy_set_asym_pause - Configure Pause and Asym Pause
2816  * @phydev: target phy_device struct
2817  * @rx: Receiver Pause is supported
2818  * @tx: Transmit Pause is supported
2819  *
2820  * Description: Configure advertised Pause support depending on if
2821  * transmit and receiver pause is supported. If there has been a
2822  * change in adverting, trigger a new autoneg. Generally called from
2823  * the set_pauseparam .ndo.
2824  */
2825 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2826 {
2827 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2828 
2829 	linkmode_copy(oldadv, phydev->advertising);
2830 	linkmode_set_pause(phydev->advertising, tx, rx);
2831 
2832 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2833 	    phydev->autoneg)
2834 		phy_start_aneg(phydev);
2835 }
2836 EXPORT_SYMBOL(phy_set_asym_pause);
2837 
2838 /**
2839  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2840  * @phydev: phy_device struct
2841  * @pp: requested pause configuration
2842  *
2843  * Description: Test if the PHY/MAC combination supports the Pause
2844  * configuration the user is requesting. Returns True if it is
2845  * supported, false otherwise.
2846  */
2847 bool phy_validate_pause(struct phy_device *phydev,
2848 			struct ethtool_pauseparam *pp)
2849 {
2850 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2851 			       phydev->supported) && pp->rx_pause)
2852 		return false;
2853 
2854 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2855 			       phydev->supported) &&
2856 	    pp->rx_pause != pp->tx_pause)
2857 		return false;
2858 
2859 	return true;
2860 }
2861 EXPORT_SYMBOL(phy_validate_pause);
2862 
2863 /**
2864  * phy_get_pause - resolve negotiated pause modes
2865  * @phydev: phy_device struct
2866  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2867  * enabled.
2868  * @rx_pause: pointer to bool to indicate whether receive pause should be
2869  * enabled.
2870  *
2871  * Resolve and return the flow control modes according to the negotiation
2872  * result. This includes checking that we are operating in full duplex mode.
2873  * See linkmode_resolve_pause() for further details.
2874  */
2875 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2876 {
2877 	if (phydev->duplex != DUPLEX_FULL) {
2878 		*tx_pause = false;
2879 		*rx_pause = false;
2880 		return;
2881 	}
2882 
2883 	return linkmode_resolve_pause(phydev->advertising,
2884 				      phydev->lp_advertising,
2885 				      tx_pause, rx_pause);
2886 }
2887 EXPORT_SYMBOL(phy_get_pause);
2888 
2889 #if IS_ENABLED(CONFIG_OF_MDIO)
2890 static int phy_get_int_delay_property(struct device *dev, const char *name)
2891 {
2892 	s32 int_delay;
2893 	int ret;
2894 
2895 	ret = device_property_read_u32(dev, name, &int_delay);
2896 	if (ret)
2897 		return ret;
2898 
2899 	return int_delay;
2900 }
2901 #else
2902 static int phy_get_int_delay_property(struct device *dev, const char *name)
2903 {
2904 	return -EINVAL;
2905 }
2906 #endif
2907 
2908 /**
2909  * phy_get_internal_delay - returns the index of the internal delay
2910  * @phydev: phy_device struct
2911  * @dev: pointer to the devices device struct
2912  * @delay_values: array of delays the PHY supports
2913  * @size: the size of the delay array
2914  * @is_rx: boolean to indicate to get the rx internal delay
2915  *
2916  * Returns the index within the array of internal delay passed in.
2917  * If the device property is not present then the interface type is checked
2918  * if the interface defines use of internal delay then a 1 is returned otherwise
2919  * a 0 is returned.
2920  * The array must be in ascending order. If PHY does not have an ascending order
2921  * array then size = 0 and the value of the delay property is returned.
2922  * Return -EINVAL if the delay is invalid or cannot be found.
2923  */
2924 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2925 			   const int *delay_values, int size, bool is_rx)
2926 {
2927 	s32 delay;
2928 	int i;
2929 
2930 	if (is_rx) {
2931 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2932 		if (delay < 0 && size == 0) {
2933 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2934 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2935 				return 1;
2936 			else
2937 				return 0;
2938 		}
2939 
2940 	} else {
2941 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2942 		if (delay < 0 && size == 0) {
2943 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2944 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2945 				return 1;
2946 			else
2947 				return 0;
2948 		}
2949 	}
2950 
2951 	if (delay < 0)
2952 		return delay;
2953 
2954 	if (delay && size == 0)
2955 		return delay;
2956 
2957 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2958 		phydev_err(phydev, "Delay %d is out of range\n", delay);
2959 		return -EINVAL;
2960 	}
2961 
2962 	if (delay == delay_values[0])
2963 		return 0;
2964 
2965 	for (i = 1; i < size; i++) {
2966 		if (delay == delay_values[i])
2967 			return i;
2968 
2969 		/* Find an approximate index by looking up the table */
2970 		if (delay > delay_values[i - 1] &&
2971 		    delay < delay_values[i]) {
2972 			if (delay - delay_values[i - 1] <
2973 			    delay_values[i] - delay)
2974 				return i - 1;
2975 			else
2976 				return i;
2977 		}
2978 	}
2979 
2980 	phydev_err(phydev, "error finding internal delay index for %d\n",
2981 		   delay);
2982 
2983 	return -EINVAL;
2984 }
2985 EXPORT_SYMBOL(phy_get_internal_delay);
2986 
2987 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2988 {
2989 	return phydrv->config_intr && phydrv->handle_interrupt;
2990 }
2991 
2992 static int phy_led_set_brightness(struct led_classdev *led_cdev,
2993 				  enum led_brightness value)
2994 {
2995 	struct phy_led *phyled = to_phy_led(led_cdev);
2996 	struct phy_device *phydev = phyled->phydev;
2997 	int err;
2998 
2999 	mutex_lock(&phydev->lock);
3000 	err = phydev->drv->led_brightness_set(phydev, phyled->index, value);
3001 	mutex_unlock(&phydev->lock);
3002 
3003 	return err;
3004 }
3005 
3006 static int phy_led_blink_set(struct led_classdev *led_cdev,
3007 			     unsigned long *delay_on,
3008 			     unsigned long *delay_off)
3009 {
3010 	struct phy_led *phyled = to_phy_led(led_cdev);
3011 	struct phy_device *phydev = phyled->phydev;
3012 	int err;
3013 
3014 	mutex_lock(&phydev->lock);
3015 	err = phydev->drv->led_blink_set(phydev, phyled->index,
3016 					 delay_on, delay_off);
3017 	mutex_unlock(&phydev->lock);
3018 
3019 	return err;
3020 }
3021 
3022 static __maybe_unused struct device *
3023 phy_led_hw_control_get_device(struct led_classdev *led_cdev)
3024 {
3025 	struct phy_led *phyled = to_phy_led(led_cdev);
3026 	struct phy_device *phydev = phyled->phydev;
3027 
3028 	if (phydev->attached_dev)
3029 		return &phydev->attached_dev->dev;
3030 	return NULL;
3031 }
3032 
3033 static int __maybe_unused
3034 phy_led_hw_control_get(struct led_classdev *led_cdev,
3035 		       unsigned long *rules)
3036 {
3037 	struct phy_led *phyled = to_phy_led(led_cdev);
3038 	struct phy_device *phydev = phyled->phydev;
3039 	int err;
3040 
3041 	mutex_lock(&phydev->lock);
3042 	err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules);
3043 	mutex_unlock(&phydev->lock);
3044 
3045 	return err;
3046 }
3047 
3048 static int __maybe_unused
3049 phy_led_hw_control_set(struct led_classdev *led_cdev,
3050 		       unsigned long rules)
3051 {
3052 	struct phy_led *phyled = to_phy_led(led_cdev);
3053 	struct phy_device *phydev = phyled->phydev;
3054 	int err;
3055 
3056 	mutex_lock(&phydev->lock);
3057 	err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules);
3058 	mutex_unlock(&phydev->lock);
3059 
3060 	return err;
3061 }
3062 
3063 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev,
3064 						  unsigned long rules)
3065 {
3066 	struct phy_led *phyled = to_phy_led(led_cdev);
3067 	struct phy_device *phydev = phyled->phydev;
3068 	int err;
3069 
3070 	mutex_lock(&phydev->lock);
3071 	err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules);
3072 	mutex_unlock(&phydev->lock);
3073 
3074 	return err;
3075 }
3076 
3077 static void phy_leds_unregister(struct phy_device *phydev)
3078 {
3079 	struct phy_led *phyled;
3080 
3081 	list_for_each_entry(phyled, &phydev->leds, list) {
3082 		led_classdev_unregister(&phyled->led_cdev);
3083 	}
3084 }
3085 
3086 static int of_phy_led(struct phy_device *phydev,
3087 		      struct device_node *led)
3088 {
3089 	struct device *dev = &phydev->mdio.dev;
3090 	struct led_init_data init_data = {};
3091 	struct led_classdev *cdev;
3092 	struct phy_led *phyled;
3093 	u32 index;
3094 	int err;
3095 
3096 	phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL);
3097 	if (!phyled)
3098 		return -ENOMEM;
3099 
3100 	cdev = &phyled->led_cdev;
3101 	phyled->phydev = phydev;
3102 
3103 	err = of_property_read_u32(led, "reg", &index);
3104 	if (err)
3105 		return err;
3106 	if (index > U8_MAX)
3107 		return -EINVAL;
3108 
3109 	phyled->index = index;
3110 	if (phydev->drv->led_brightness_set)
3111 		cdev->brightness_set_blocking = phy_led_set_brightness;
3112 	if (phydev->drv->led_blink_set)
3113 		cdev->blink_set = phy_led_blink_set;
3114 
3115 #ifdef CONFIG_LEDS_TRIGGERS
3116 	if (phydev->drv->led_hw_is_supported &&
3117 	    phydev->drv->led_hw_control_set &&
3118 	    phydev->drv->led_hw_control_get) {
3119 		cdev->hw_control_is_supported = phy_led_hw_is_supported;
3120 		cdev->hw_control_set = phy_led_hw_control_set;
3121 		cdev->hw_control_get = phy_led_hw_control_get;
3122 		cdev->hw_control_trigger = "netdev";
3123 	}
3124 
3125 	cdev->hw_control_get_device = phy_led_hw_control_get_device;
3126 #endif
3127 	cdev->max_brightness = 1;
3128 	init_data.devicename = dev_name(&phydev->mdio.dev);
3129 	init_data.fwnode = of_fwnode_handle(led);
3130 	init_data.devname_mandatory = true;
3131 
3132 	err = led_classdev_register_ext(dev, cdev, &init_data);
3133 	if (err)
3134 		return err;
3135 
3136 	list_add(&phyled->list, &phydev->leds);
3137 
3138 	return 0;
3139 }
3140 
3141 static int of_phy_leds(struct phy_device *phydev)
3142 {
3143 	struct device_node *node = phydev->mdio.dev.of_node;
3144 	struct device_node *leds, *led;
3145 	int err;
3146 
3147 	if (!IS_ENABLED(CONFIG_OF_MDIO))
3148 		return 0;
3149 
3150 	if (!node)
3151 		return 0;
3152 
3153 	leds = of_get_child_by_name(node, "leds");
3154 	if (!leds)
3155 		return 0;
3156 
3157 	for_each_available_child_of_node(leds, led) {
3158 		err = of_phy_led(phydev, led);
3159 		if (err) {
3160 			of_node_put(led);
3161 			phy_leds_unregister(phydev);
3162 			return err;
3163 		}
3164 	}
3165 
3166 	return 0;
3167 }
3168 
3169 /**
3170  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
3171  * @fwnode: pointer to the mdio_device's fwnode
3172  *
3173  * If successful, returns a pointer to the mdio_device with the embedded
3174  * struct device refcount incremented by one, or NULL on failure.
3175  * The caller should call put_device() on the mdio_device after its use.
3176  */
3177 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
3178 {
3179 	struct device *d;
3180 
3181 	if (!fwnode)
3182 		return NULL;
3183 
3184 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
3185 	if (!d)
3186 		return NULL;
3187 
3188 	return to_mdio_device(d);
3189 }
3190 EXPORT_SYMBOL(fwnode_mdio_find_device);
3191 
3192 /**
3193  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
3194  *
3195  * @phy_fwnode: Pointer to the phy's fwnode.
3196  *
3197  * If successful, returns a pointer to the phy_device with the embedded
3198  * struct device refcount incremented by one, or NULL on failure.
3199  */
3200 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
3201 {
3202 	struct mdio_device *mdiodev;
3203 
3204 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
3205 	if (!mdiodev)
3206 		return NULL;
3207 
3208 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
3209 		return to_phy_device(&mdiodev->dev);
3210 
3211 	put_device(&mdiodev->dev);
3212 
3213 	return NULL;
3214 }
3215 EXPORT_SYMBOL(fwnode_phy_find_device);
3216 
3217 /**
3218  * device_phy_find_device - For the given device, get the phy_device
3219  * @dev: Pointer to the given device
3220  *
3221  * Refer return conditions of fwnode_phy_find_device().
3222  */
3223 struct phy_device *device_phy_find_device(struct device *dev)
3224 {
3225 	return fwnode_phy_find_device(dev_fwnode(dev));
3226 }
3227 EXPORT_SYMBOL_GPL(device_phy_find_device);
3228 
3229 /**
3230  * fwnode_get_phy_node - Get the phy_node using the named reference.
3231  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
3232  *
3233  * Refer return conditions of fwnode_find_reference().
3234  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
3235  * and "phy-device" are not supported in ACPI. DT supports all the three
3236  * named references to the phy node.
3237  */
3238 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode)
3239 {
3240 	struct fwnode_handle *phy_node;
3241 
3242 	/* Only phy-handle is used for ACPI */
3243 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3244 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3245 		return phy_node;
3246 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
3247 	if (IS_ERR(phy_node))
3248 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3249 	return phy_node;
3250 }
3251 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3252 
3253 /**
3254  * phy_probe - probe and init a PHY device
3255  * @dev: device to probe and init
3256  *
3257  * Take care of setting up the phy_device structure, set the state to READY.
3258  */
3259 static int phy_probe(struct device *dev)
3260 {
3261 	struct phy_device *phydev = to_phy_device(dev);
3262 	struct device_driver *drv = phydev->mdio.dev.driver;
3263 	struct phy_driver *phydrv = to_phy_driver(drv);
3264 	int err = 0;
3265 
3266 	phydev->drv = phydrv;
3267 
3268 	/* Disable the interrupt if the PHY doesn't support it
3269 	 * but the interrupt is still a valid one
3270 	 */
3271 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3272 		phydev->irq = PHY_POLL;
3273 
3274 	if (phydrv->flags & PHY_IS_INTERNAL)
3275 		phydev->is_internal = true;
3276 
3277 	/* Deassert the reset signal */
3278 	phy_device_reset(phydev, 0);
3279 
3280 	if (phydev->drv->probe) {
3281 		err = phydev->drv->probe(phydev);
3282 		if (err)
3283 			goto out;
3284 	}
3285 
3286 	phy_disable_interrupts(phydev);
3287 
3288 	/* Start out supporting everything. Eventually,
3289 	 * a controller will attach, and may modify one
3290 	 * or both of these values
3291 	 */
3292 	if (phydrv->features) {
3293 		linkmode_copy(phydev->supported, phydrv->features);
3294 		genphy_c45_read_eee_abilities(phydev);
3295 	}
3296 	else if (phydrv->get_features)
3297 		err = phydrv->get_features(phydev);
3298 	else if (phydev->is_c45)
3299 		err = genphy_c45_pma_read_abilities(phydev);
3300 	else
3301 		err = genphy_read_abilities(phydev);
3302 
3303 	if (err)
3304 		goto out;
3305 
3306 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3307 			       phydev->supported))
3308 		phydev->autoneg = 0;
3309 
3310 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3311 			      phydev->supported))
3312 		phydev->is_gigabit_capable = 1;
3313 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3314 			      phydev->supported))
3315 		phydev->is_gigabit_capable = 1;
3316 
3317 	of_set_phy_supported(phydev);
3318 	phy_advertise_supported(phydev);
3319 
3320 	/* Get PHY default EEE advertising modes and handle them as potentially
3321 	 * safe initial configuration.
3322 	 */
3323 	err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee);
3324 	if (err)
3325 		goto out;
3326 
3327 	/* There is no "enabled" flag. If PHY is advertising, assume it is
3328 	 * kind of enabled.
3329 	 */
3330 	phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee);
3331 
3332 	/* Some PHYs may advertise, by default, not support EEE modes. So,
3333 	 * we need to clean them.
3334 	 */
3335 	if (phydev->eee_enabled)
3336 		linkmode_and(phydev->advertising_eee, phydev->supported_eee,
3337 			     phydev->advertising_eee);
3338 
3339 	/* Get the EEE modes we want to prohibit. We will ask
3340 	 * the PHY stop advertising these mode later on
3341 	 */
3342 	of_set_phy_eee_broken(phydev);
3343 
3344 	/* The Pause Frame bits indicate that the PHY can support passing
3345 	 * pause frames. During autonegotiation, the PHYs will determine if
3346 	 * they should allow pause frames to pass.  The MAC driver should then
3347 	 * use that result to determine whether to enable flow control via
3348 	 * pause frames.
3349 	 *
3350 	 * Normally, PHY drivers should not set the Pause bits, and instead
3351 	 * allow phylib to do that.  However, there may be some situations
3352 	 * (e.g. hardware erratum) where the driver wants to set only one
3353 	 * of these bits.
3354 	 */
3355 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3356 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3357 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3358 				 phydev->supported);
3359 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3360 				 phydev->supported);
3361 	}
3362 
3363 	/* Set the state to READY by default */
3364 	phydev->state = PHY_READY;
3365 
3366 	/* Get the LEDs from the device tree, and instantiate standard
3367 	 * LEDs for them.
3368 	 */
3369 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3370 		err = of_phy_leds(phydev);
3371 
3372 out:
3373 	/* Re-assert the reset signal on error */
3374 	if (err)
3375 		phy_device_reset(phydev, 1);
3376 
3377 	return err;
3378 }
3379 
3380 static int phy_remove(struct device *dev)
3381 {
3382 	struct phy_device *phydev = to_phy_device(dev);
3383 
3384 	cancel_delayed_work_sync(&phydev->state_queue);
3385 
3386 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3387 		phy_leds_unregister(phydev);
3388 
3389 	phydev->state = PHY_DOWN;
3390 
3391 	sfp_bus_del_upstream(phydev->sfp_bus);
3392 	phydev->sfp_bus = NULL;
3393 
3394 	if (phydev->drv && phydev->drv->remove)
3395 		phydev->drv->remove(phydev);
3396 
3397 	/* Assert the reset signal */
3398 	phy_device_reset(phydev, 1);
3399 
3400 	phydev->drv = NULL;
3401 
3402 	return 0;
3403 }
3404 
3405 /**
3406  * phy_driver_register - register a phy_driver with the PHY layer
3407  * @new_driver: new phy_driver to register
3408  * @owner: module owning this PHY
3409  */
3410 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3411 {
3412 	int retval;
3413 
3414 	/* Either the features are hard coded, or dynamically
3415 	 * determined. It cannot be both.
3416 	 */
3417 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3418 		pr_err("%s: features and get_features must not both be set\n",
3419 		       new_driver->name);
3420 		return -EINVAL;
3421 	}
3422 
3423 	/* PHYLIB device drivers must not match using a DT compatible table
3424 	 * as this bypasses our checks that the mdiodev that is being matched
3425 	 * is backed by a struct phy_device. If such a case happens, we will
3426 	 * make out-of-bounds accesses and lockup in phydev->lock.
3427 	 */
3428 	if (WARN(new_driver->mdiodrv.driver.of_match_table,
3429 		 "%s: driver must not provide a DT match table\n",
3430 		 new_driver->name))
3431 		return -EINVAL;
3432 
3433 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3434 	new_driver->mdiodrv.driver.name = new_driver->name;
3435 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3436 	new_driver->mdiodrv.driver.probe = phy_probe;
3437 	new_driver->mdiodrv.driver.remove = phy_remove;
3438 	new_driver->mdiodrv.driver.owner = owner;
3439 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3440 
3441 	retval = driver_register(&new_driver->mdiodrv.driver);
3442 	if (retval) {
3443 		pr_err("%s: Error %d in registering driver\n",
3444 		       new_driver->name, retval);
3445 
3446 		return retval;
3447 	}
3448 
3449 	pr_debug("%s: Registered new driver\n", new_driver->name);
3450 
3451 	return 0;
3452 }
3453 EXPORT_SYMBOL(phy_driver_register);
3454 
3455 int phy_drivers_register(struct phy_driver *new_driver, int n,
3456 			 struct module *owner)
3457 {
3458 	int i, ret = 0;
3459 
3460 	for (i = 0; i < n; i++) {
3461 		ret = phy_driver_register(new_driver + i, owner);
3462 		if (ret) {
3463 			while (i-- > 0)
3464 				phy_driver_unregister(new_driver + i);
3465 			break;
3466 		}
3467 	}
3468 	return ret;
3469 }
3470 EXPORT_SYMBOL(phy_drivers_register);
3471 
3472 void phy_driver_unregister(struct phy_driver *drv)
3473 {
3474 	driver_unregister(&drv->mdiodrv.driver);
3475 }
3476 EXPORT_SYMBOL(phy_driver_unregister);
3477 
3478 void phy_drivers_unregister(struct phy_driver *drv, int n)
3479 {
3480 	int i;
3481 
3482 	for (i = 0; i < n; i++)
3483 		phy_driver_unregister(drv + i);
3484 }
3485 EXPORT_SYMBOL(phy_drivers_unregister);
3486 
3487 static struct phy_driver genphy_driver = {
3488 	.phy_id		= 0xffffffff,
3489 	.phy_id_mask	= 0xffffffff,
3490 	.name		= "Generic PHY",
3491 	.get_features	= genphy_read_abilities,
3492 	.suspend	= genphy_suspend,
3493 	.resume		= genphy_resume,
3494 	.set_loopback   = genphy_loopback,
3495 };
3496 
3497 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3498 	.get_sset_count		= phy_ethtool_get_sset_count,
3499 	.get_strings		= phy_ethtool_get_strings,
3500 	.get_stats		= phy_ethtool_get_stats,
3501 	.get_plca_cfg		= phy_ethtool_get_plca_cfg,
3502 	.set_plca_cfg		= phy_ethtool_set_plca_cfg,
3503 	.get_plca_status	= phy_ethtool_get_plca_status,
3504 	.start_cable_test	= phy_start_cable_test,
3505 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3506 };
3507 
3508 static const struct phylib_stubs __phylib_stubs = {
3509 	.hwtstamp_get = __phy_hwtstamp_get,
3510 	.hwtstamp_set = __phy_hwtstamp_set,
3511 };
3512 
3513 static void phylib_register_stubs(void)
3514 {
3515 	phylib_stubs = &__phylib_stubs;
3516 }
3517 
3518 static void phylib_unregister_stubs(void)
3519 {
3520 	phylib_stubs = NULL;
3521 }
3522 
3523 static int __init phy_init(void)
3524 {
3525 	int rc;
3526 
3527 	rtnl_lock();
3528 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3529 	phylib_register_stubs();
3530 	rtnl_unlock();
3531 
3532 	rc = mdio_bus_init();
3533 	if (rc)
3534 		goto err_ethtool_phy_ops;
3535 
3536 	features_init();
3537 
3538 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3539 	if (rc)
3540 		goto err_mdio_bus;
3541 
3542 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3543 	if (rc)
3544 		goto err_c45;
3545 
3546 	return 0;
3547 
3548 err_c45:
3549 	phy_driver_unregister(&genphy_c45_driver);
3550 err_mdio_bus:
3551 	mdio_bus_exit();
3552 err_ethtool_phy_ops:
3553 	rtnl_lock();
3554 	phylib_unregister_stubs();
3555 	ethtool_set_ethtool_phy_ops(NULL);
3556 	rtnl_unlock();
3557 
3558 	return rc;
3559 }
3560 
3561 static void __exit phy_exit(void)
3562 {
3563 	phy_driver_unregister(&genphy_c45_driver);
3564 	phy_driver_unregister(&genphy_driver);
3565 	mdio_bus_exit();
3566 	rtnl_lock();
3567 	phylib_unregister_stubs();
3568 	ethtool_set_ethtool_phy_ops(NULL);
3569 	rtnl_unlock();
3570 }
3571 
3572 subsys_initcall(phy_init);
3573 module_exit(phy_exit);
3574