1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mdio.h> 23 #include <linux/mii.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/netdevice.h> 27 #include <linux/phy.h> 28 #include <linux/phy_led_triggers.h> 29 #include <linux/property.h> 30 #include <linux/sfp.h> 31 #include <linux/skbuff.h> 32 #include <linux/slab.h> 33 #include <linux/string.h> 34 #include <linux/uaccess.h> 35 #include <linux/unistd.h> 36 37 MODULE_DESCRIPTION("PHY library"); 38 MODULE_AUTHOR("Andy Fleming"); 39 MODULE_LICENSE("GPL"); 40 41 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 42 EXPORT_SYMBOL_GPL(phy_basic_features); 43 44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 45 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 46 47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 48 EXPORT_SYMBOL_GPL(phy_gbit_features); 49 50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 51 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 52 53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 54 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 55 56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 57 EXPORT_SYMBOL_GPL(phy_10gbit_features); 58 59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 60 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 61 62 const int phy_basic_ports_array[3] = { 63 ETHTOOL_LINK_MODE_Autoneg_BIT, 64 ETHTOOL_LINK_MODE_TP_BIT, 65 ETHTOOL_LINK_MODE_MII_BIT, 66 }; 67 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 68 69 const int phy_fibre_port_array[1] = { 70 ETHTOOL_LINK_MODE_FIBRE_BIT, 71 }; 72 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 73 74 const int phy_all_ports_features_array[7] = { 75 ETHTOOL_LINK_MODE_Autoneg_BIT, 76 ETHTOOL_LINK_MODE_TP_BIT, 77 ETHTOOL_LINK_MODE_MII_BIT, 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 ETHTOOL_LINK_MODE_AUI_BIT, 80 ETHTOOL_LINK_MODE_BNC_BIT, 81 ETHTOOL_LINK_MODE_Backplane_BIT, 82 }; 83 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 84 85 const int phy_10_100_features_array[4] = { 86 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 87 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 88 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 89 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 92 93 const int phy_basic_t1_features_array[3] = { 94 ETHTOOL_LINK_MODE_TP_BIT, 95 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 97 }; 98 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 99 100 const int phy_gbit_features_array[2] = { 101 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 102 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 103 }; 104 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 105 106 const int phy_10gbit_features_array[1] = { 107 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 108 }; 109 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 110 111 static const int phy_10gbit_fec_features_array[1] = { 112 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 113 }; 114 115 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 116 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 117 118 static const int phy_10gbit_full_features_array[] = { 119 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 120 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 121 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 122 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 123 }; 124 125 static void features_init(void) 126 { 127 /* 10/100 half/full*/ 128 linkmode_set_bit_array(phy_basic_ports_array, 129 ARRAY_SIZE(phy_basic_ports_array), 130 phy_basic_features); 131 linkmode_set_bit_array(phy_10_100_features_array, 132 ARRAY_SIZE(phy_10_100_features_array), 133 phy_basic_features); 134 135 /* 100 full, TP */ 136 linkmode_set_bit_array(phy_basic_t1_features_array, 137 ARRAY_SIZE(phy_basic_t1_features_array), 138 phy_basic_t1_features); 139 140 /* 10/100 half/full + 1000 half/full */ 141 linkmode_set_bit_array(phy_basic_ports_array, 142 ARRAY_SIZE(phy_basic_ports_array), 143 phy_gbit_features); 144 linkmode_set_bit_array(phy_10_100_features_array, 145 ARRAY_SIZE(phy_10_100_features_array), 146 phy_gbit_features); 147 linkmode_set_bit_array(phy_gbit_features_array, 148 ARRAY_SIZE(phy_gbit_features_array), 149 phy_gbit_features); 150 151 /* 10/100 half/full + 1000 half/full + fibre*/ 152 linkmode_set_bit_array(phy_basic_ports_array, 153 ARRAY_SIZE(phy_basic_ports_array), 154 phy_gbit_fibre_features); 155 linkmode_set_bit_array(phy_10_100_features_array, 156 ARRAY_SIZE(phy_10_100_features_array), 157 phy_gbit_fibre_features); 158 linkmode_set_bit_array(phy_gbit_features_array, 159 ARRAY_SIZE(phy_gbit_features_array), 160 phy_gbit_fibre_features); 161 linkmode_set_bit_array(phy_fibre_port_array, 162 ARRAY_SIZE(phy_fibre_port_array), 163 phy_gbit_fibre_features); 164 165 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 166 linkmode_set_bit_array(phy_all_ports_features_array, 167 ARRAY_SIZE(phy_all_ports_features_array), 168 phy_gbit_all_ports_features); 169 linkmode_set_bit_array(phy_10_100_features_array, 170 ARRAY_SIZE(phy_10_100_features_array), 171 phy_gbit_all_ports_features); 172 linkmode_set_bit_array(phy_gbit_features_array, 173 ARRAY_SIZE(phy_gbit_features_array), 174 phy_gbit_all_ports_features); 175 176 /* 10/100 half/full + 1000 half/full + 10G full*/ 177 linkmode_set_bit_array(phy_all_ports_features_array, 178 ARRAY_SIZE(phy_all_ports_features_array), 179 phy_10gbit_features); 180 linkmode_set_bit_array(phy_10_100_features_array, 181 ARRAY_SIZE(phy_10_100_features_array), 182 phy_10gbit_features); 183 linkmode_set_bit_array(phy_gbit_features_array, 184 ARRAY_SIZE(phy_gbit_features_array), 185 phy_10gbit_features); 186 linkmode_set_bit_array(phy_10gbit_features_array, 187 ARRAY_SIZE(phy_10gbit_features_array), 188 phy_10gbit_features); 189 190 /* 10/100/1000/10G full */ 191 linkmode_set_bit_array(phy_all_ports_features_array, 192 ARRAY_SIZE(phy_all_ports_features_array), 193 phy_10gbit_full_features); 194 linkmode_set_bit_array(phy_10gbit_full_features_array, 195 ARRAY_SIZE(phy_10gbit_full_features_array), 196 phy_10gbit_full_features); 197 /* 10G FEC only */ 198 linkmode_set_bit_array(phy_10gbit_fec_features_array, 199 ARRAY_SIZE(phy_10gbit_fec_features_array), 200 phy_10gbit_fec_features); 201 } 202 203 void phy_device_free(struct phy_device *phydev) 204 { 205 put_device(&phydev->mdio.dev); 206 } 207 EXPORT_SYMBOL(phy_device_free); 208 209 static void phy_mdio_device_free(struct mdio_device *mdiodev) 210 { 211 struct phy_device *phydev; 212 213 phydev = container_of(mdiodev, struct phy_device, mdio); 214 phy_device_free(phydev); 215 } 216 217 static void phy_device_release(struct device *dev) 218 { 219 kfree(to_phy_device(dev)); 220 } 221 222 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 223 { 224 struct phy_device *phydev; 225 226 phydev = container_of(mdiodev, struct phy_device, mdio); 227 phy_device_remove(phydev); 228 } 229 230 static struct phy_driver genphy_driver; 231 232 static LIST_HEAD(phy_fixup_list); 233 static DEFINE_MUTEX(phy_fixup_lock); 234 235 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 236 { 237 struct device_driver *drv = phydev->mdio.dev.driver; 238 struct phy_driver *phydrv = to_phy_driver(drv); 239 struct net_device *netdev = phydev->attached_dev; 240 241 if (!drv || !phydrv->suspend) 242 return false; 243 244 /* PHY not attached? May suspend if the PHY has not already been 245 * suspended as part of a prior call to phy_disconnect() -> 246 * phy_detach() -> phy_suspend() because the parent netdev might be the 247 * MDIO bus driver and clock gated at this point. 248 */ 249 if (!netdev) 250 goto out; 251 252 if (netdev->wol_enabled) 253 return false; 254 255 /* As long as not all affected network drivers support the 256 * wol_enabled flag, let's check for hints that WoL is enabled. 257 * Don't suspend PHY if the attached netdev parent may wake up. 258 * The parent may point to a PCI device, as in tg3 driver. 259 */ 260 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 261 return false; 262 263 /* Also don't suspend PHY if the netdev itself may wakeup. This 264 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 265 * e.g. SoC devices. 266 */ 267 if (device_may_wakeup(&netdev->dev)) 268 return false; 269 270 out: 271 return !phydev->suspended; 272 } 273 274 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 275 { 276 struct phy_device *phydev = to_phy_device(dev); 277 278 if (phydev->mac_managed_pm) 279 return 0; 280 281 /* We must stop the state machine manually, otherwise it stops out of 282 * control, possibly with the phydev->lock held. Upon resume, netdev 283 * may call phy routines that try to grab the same lock, and that may 284 * lead to a deadlock. 285 */ 286 if (phydev->attached_dev && phydev->adjust_link) 287 phy_stop_machine(phydev); 288 289 if (!mdio_bus_phy_may_suspend(phydev)) 290 return 0; 291 292 phydev->suspended_by_mdio_bus = 1; 293 294 return phy_suspend(phydev); 295 } 296 297 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 298 { 299 struct phy_device *phydev = to_phy_device(dev); 300 int ret; 301 302 if (phydev->mac_managed_pm) 303 return 0; 304 305 if (!phydev->suspended_by_mdio_bus) 306 goto no_resume; 307 308 phydev->suspended_by_mdio_bus = 0; 309 310 ret = phy_init_hw(phydev); 311 if (ret < 0) 312 return ret; 313 314 ret = phy_resume(phydev); 315 if (ret < 0) 316 return ret; 317 no_resume: 318 if (phydev->attached_dev && phydev->adjust_link) 319 phy_start_machine(phydev); 320 321 return 0; 322 } 323 324 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 325 mdio_bus_phy_resume); 326 327 /** 328 * phy_register_fixup - creates a new phy_fixup and adds it to the list 329 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 330 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 331 * It can also be PHY_ANY_UID 332 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 333 * comparison 334 * @run: The actual code to be run when a matching PHY is found 335 */ 336 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 337 int (*run)(struct phy_device *)) 338 { 339 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 340 341 if (!fixup) 342 return -ENOMEM; 343 344 strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 345 fixup->phy_uid = phy_uid; 346 fixup->phy_uid_mask = phy_uid_mask; 347 fixup->run = run; 348 349 mutex_lock(&phy_fixup_lock); 350 list_add_tail(&fixup->list, &phy_fixup_list); 351 mutex_unlock(&phy_fixup_lock); 352 353 return 0; 354 } 355 EXPORT_SYMBOL(phy_register_fixup); 356 357 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 358 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 359 int (*run)(struct phy_device *)) 360 { 361 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 362 } 363 EXPORT_SYMBOL(phy_register_fixup_for_uid); 364 365 /* Registers a fixup to be run on the PHY with id string bus_id */ 366 int phy_register_fixup_for_id(const char *bus_id, 367 int (*run)(struct phy_device *)) 368 { 369 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 370 } 371 EXPORT_SYMBOL(phy_register_fixup_for_id); 372 373 /** 374 * phy_unregister_fixup - remove a phy_fixup from the list 375 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 376 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 377 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 378 */ 379 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 380 { 381 struct list_head *pos, *n; 382 struct phy_fixup *fixup; 383 int ret; 384 385 ret = -ENODEV; 386 387 mutex_lock(&phy_fixup_lock); 388 list_for_each_safe(pos, n, &phy_fixup_list) { 389 fixup = list_entry(pos, struct phy_fixup, list); 390 391 if ((!strcmp(fixup->bus_id, bus_id)) && 392 ((fixup->phy_uid & phy_uid_mask) == 393 (phy_uid & phy_uid_mask))) { 394 list_del(&fixup->list); 395 kfree(fixup); 396 ret = 0; 397 break; 398 } 399 } 400 mutex_unlock(&phy_fixup_lock); 401 402 return ret; 403 } 404 EXPORT_SYMBOL(phy_unregister_fixup); 405 406 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 407 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 408 { 409 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 410 } 411 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 412 413 /* Unregisters a fixup of the PHY with id string bus_id */ 414 int phy_unregister_fixup_for_id(const char *bus_id) 415 { 416 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 417 } 418 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 419 420 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 421 * Fixups can be set to match any in one or more fields. 422 */ 423 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 424 { 425 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 426 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 427 return 0; 428 429 if ((fixup->phy_uid & fixup->phy_uid_mask) != 430 (phydev->phy_id & fixup->phy_uid_mask)) 431 if (fixup->phy_uid != PHY_ANY_UID) 432 return 0; 433 434 return 1; 435 } 436 437 /* Runs any matching fixups for this phydev */ 438 static int phy_scan_fixups(struct phy_device *phydev) 439 { 440 struct phy_fixup *fixup; 441 442 mutex_lock(&phy_fixup_lock); 443 list_for_each_entry(fixup, &phy_fixup_list, list) { 444 if (phy_needs_fixup(phydev, fixup)) { 445 int err = fixup->run(phydev); 446 447 if (err < 0) { 448 mutex_unlock(&phy_fixup_lock); 449 return err; 450 } 451 phydev->has_fixups = true; 452 } 453 } 454 mutex_unlock(&phy_fixup_lock); 455 456 return 0; 457 } 458 459 static int phy_bus_match(struct device *dev, struct device_driver *drv) 460 { 461 struct phy_device *phydev = to_phy_device(dev); 462 struct phy_driver *phydrv = to_phy_driver(drv); 463 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 464 int i; 465 466 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 467 return 0; 468 469 if (phydrv->match_phy_device) 470 return phydrv->match_phy_device(phydev); 471 472 if (phydev->is_c45) { 473 for (i = 1; i < num_ids; i++) { 474 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 475 continue; 476 477 if ((phydrv->phy_id & phydrv->phy_id_mask) == 478 (phydev->c45_ids.device_ids[i] & 479 phydrv->phy_id_mask)) 480 return 1; 481 } 482 return 0; 483 } else { 484 return (phydrv->phy_id & phydrv->phy_id_mask) == 485 (phydev->phy_id & phydrv->phy_id_mask); 486 } 487 } 488 489 static ssize_t 490 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 491 { 492 struct phy_device *phydev = to_phy_device(dev); 493 494 return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 495 } 496 static DEVICE_ATTR_RO(phy_id); 497 498 static ssize_t 499 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 500 { 501 struct phy_device *phydev = to_phy_device(dev); 502 const char *mode = NULL; 503 504 if (phy_is_internal(phydev)) 505 mode = "internal"; 506 else 507 mode = phy_modes(phydev->interface); 508 509 return sprintf(buf, "%s\n", mode); 510 } 511 static DEVICE_ATTR_RO(phy_interface); 512 513 static ssize_t 514 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 515 char *buf) 516 { 517 struct phy_device *phydev = to_phy_device(dev); 518 519 return sprintf(buf, "%d\n", phydev->has_fixups); 520 } 521 static DEVICE_ATTR_RO(phy_has_fixups); 522 523 static ssize_t phy_dev_flags_show(struct device *dev, 524 struct device_attribute *attr, 525 char *buf) 526 { 527 struct phy_device *phydev = to_phy_device(dev); 528 529 return sprintf(buf, "0x%08x\n", phydev->dev_flags); 530 } 531 static DEVICE_ATTR_RO(phy_dev_flags); 532 533 static struct attribute *phy_dev_attrs[] = { 534 &dev_attr_phy_id.attr, 535 &dev_attr_phy_interface.attr, 536 &dev_attr_phy_has_fixups.attr, 537 &dev_attr_phy_dev_flags.attr, 538 NULL, 539 }; 540 ATTRIBUTE_GROUPS(phy_dev); 541 542 static const struct device_type mdio_bus_phy_type = { 543 .name = "PHY", 544 .groups = phy_dev_groups, 545 .release = phy_device_release, 546 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 547 }; 548 549 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 550 { 551 int ret; 552 553 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 554 MDIO_ID_ARGS(phy_id)); 555 /* We only check for failures in executing the usermode binary, 556 * not whether a PHY driver module exists for the PHY ID. 557 * Accept -ENOENT because this may occur in case no initramfs exists, 558 * then modprobe isn't available. 559 */ 560 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 561 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 562 ret, (unsigned long)phy_id); 563 return ret; 564 } 565 566 return 0; 567 } 568 569 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 570 bool is_c45, 571 struct phy_c45_device_ids *c45_ids) 572 { 573 struct phy_device *dev; 574 struct mdio_device *mdiodev; 575 int ret = 0; 576 577 /* We allocate the device, and initialize the default values */ 578 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 579 if (!dev) 580 return ERR_PTR(-ENOMEM); 581 582 mdiodev = &dev->mdio; 583 mdiodev->dev.parent = &bus->dev; 584 mdiodev->dev.bus = &mdio_bus_type; 585 mdiodev->dev.type = &mdio_bus_phy_type; 586 mdiodev->bus = bus; 587 mdiodev->bus_match = phy_bus_match; 588 mdiodev->addr = addr; 589 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 590 mdiodev->device_free = phy_mdio_device_free; 591 mdiodev->device_remove = phy_mdio_device_remove; 592 593 dev->speed = SPEED_UNKNOWN; 594 dev->duplex = DUPLEX_UNKNOWN; 595 dev->pause = 0; 596 dev->asym_pause = 0; 597 dev->link = 0; 598 dev->port = PORT_TP; 599 dev->interface = PHY_INTERFACE_MODE_GMII; 600 601 dev->autoneg = AUTONEG_ENABLE; 602 603 dev->pma_extable = -ENODATA; 604 dev->is_c45 = is_c45; 605 dev->phy_id = phy_id; 606 if (c45_ids) 607 dev->c45_ids = *c45_ids; 608 dev->irq = bus->irq[addr]; 609 610 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 611 device_initialize(&mdiodev->dev); 612 613 dev->state = PHY_DOWN; 614 615 mutex_init(&dev->lock); 616 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 617 618 /* Request the appropriate module unconditionally; don't 619 * bother trying to do so only if it isn't already loaded, 620 * because that gets complicated. A hotplug event would have 621 * done an unconditional modprobe anyway. 622 * We don't do normal hotplug because it won't work for MDIO 623 * -- because it relies on the device staying around for long 624 * enough for the driver to get loaded. With MDIO, the NIC 625 * driver will get bored and give up as soon as it finds that 626 * there's no driver _already_ loaded. 627 */ 628 if (is_c45 && c45_ids) { 629 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 630 int i; 631 632 for (i = 1; i < num_ids; i++) { 633 if (c45_ids->device_ids[i] == 0xffffffff) 634 continue; 635 636 ret = phy_request_driver_module(dev, 637 c45_ids->device_ids[i]); 638 if (ret) 639 break; 640 } 641 } else { 642 ret = phy_request_driver_module(dev, phy_id); 643 } 644 645 if (ret) { 646 put_device(&mdiodev->dev); 647 dev = ERR_PTR(ret); 648 } 649 650 return dev; 651 } 652 EXPORT_SYMBOL(phy_device_create); 653 654 /* phy_c45_probe_present - checks to see if a MMD is present in the package 655 * @bus: the target MII bus 656 * @prtad: PHY package address on the MII bus 657 * @devad: PHY device (MMD) address 658 * 659 * Read the MDIO_STAT2 register, and check whether a device is responding 660 * at this address. 661 * 662 * Returns: negative error number on bus access error, zero if no device 663 * is responding, or positive if a device is present. 664 */ 665 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 666 { 667 int stat2; 668 669 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 670 if (stat2 < 0) 671 return stat2; 672 673 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 674 } 675 676 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 677 * @bus: the target MII bus 678 * @addr: PHY address on the MII bus 679 * @dev_addr: MMD address in the PHY. 680 * @devices_in_package: where to store the devices in package information. 681 * 682 * Description: reads devices in package registers of a MMD at @dev_addr 683 * from PHY at @addr on @bus. 684 * 685 * Returns: 0 on success, -EIO on failure. 686 */ 687 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 688 u32 *devices_in_package) 689 { 690 int phy_reg; 691 692 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 693 if (phy_reg < 0) 694 return -EIO; 695 *devices_in_package = phy_reg << 16; 696 697 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 698 if (phy_reg < 0) 699 return -EIO; 700 *devices_in_package |= phy_reg; 701 702 return 0; 703 } 704 705 /** 706 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 707 * @bus: the target MII bus 708 * @addr: PHY address on the MII bus 709 * @c45_ids: where to store the c45 ID information. 710 * 711 * Read the PHY "devices in package". If this appears to be valid, read 712 * the PHY identifiers for each device. Return the "devices in package" 713 * and identifiers in @c45_ids. 714 * 715 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 716 * the "devices in package" is invalid. 717 */ 718 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 719 struct phy_c45_device_ids *c45_ids) 720 { 721 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 722 u32 devs_in_pkg = 0; 723 int i, ret, phy_reg; 724 725 /* Find first non-zero Devices In package. Device zero is reserved 726 * for 802.3 c45 complied PHYs, so don't probe it at first. 727 */ 728 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 729 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 730 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 731 /* Check that there is a device present at this 732 * address before reading the devices-in-package 733 * register to avoid reading garbage from the PHY. 734 * Some PHYs (88x3310) vendor space is not IEEE802.3 735 * compliant. 736 */ 737 ret = phy_c45_probe_present(bus, addr, i); 738 if (ret < 0) 739 return -EIO; 740 741 if (!ret) 742 continue; 743 } 744 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 745 if (phy_reg < 0) 746 return -EIO; 747 } 748 749 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 750 /* If mostly Fs, there is no device there, then let's probe 751 * MMD 0, as some 10G PHYs have zero Devices In package, 752 * e.g. Cortina CS4315/CS4340 PHY. 753 */ 754 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 755 if (phy_reg < 0) 756 return -EIO; 757 758 /* no device there, let's get out of here */ 759 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 760 return -ENODEV; 761 } 762 763 /* Now probe Device Identifiers for each device present. */ 764 for (i = 1; i < num_ids; i++) { 765 if (!(devs_in_pkg & (1 << i))) 766 continue; 767 768 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 769 /* Probe the "Device Present" bits for the vendor MMDs 770 * to ignore these if they do not contain IEEE 802.3 771 * registers. 772 */ 773 ret = phy_c45_probe_present(bus, addr, i); 774 if (ret < 0) 775 return ret; 776 777 if (!ret) 778 continue; 779 } 780 781 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 782 if (phy_reg < 0) 783 return -EIO; 784 c45_ids->device_ids[i] = phy_reg << 16; 785 786 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 787 if (phy_reg < 0) 788 return -EIO; 789 c45_ids->device_ids[i] |= phy_reg; 790 } 791 792 c45_ids->devices_in_package = devs_in_pkg; 793 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 794 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 795 796 return 0; 797 } 798 799 /** 800 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 801 * @bus: the target MII bus 802 * @addr: PHY address on the MII bus 803 * @phy_id: where to store the ID retrieved. 804 * 805 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 806 * placing it in @phy_id. Return zero on successful read and the ID is 807 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 808 * or invalid ID. 809 */ 810 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 811 { 812 int phy_reg; 813 814 /* Grab the bits from PHYIR1, and put them in the upper half */ 815 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 816 if (phy_reg < 0) { 817 /* returning -ENODEV doesn't stop bus scanning */ 818 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 819 } 820 821 *phy_id = phy_reg << 16; 822 823 /* Grab the bits from PHYIR2, and put them in the lower half */ 824 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 825 if (phy_reg < 0) { 826 /* returning -ENODEV doesn't stop bus scanning */ 827 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 828 } 829 830 *phy_id |= phy_reg; 831 832 /* If the phy_id is mostly Fs, there is no device there */ 833 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 834 return -ENODEV; 835 836 return 0; 837 } 838 839 /* Extract the phy ID from the compatible string of the form 840 * ethernet-phy-idAAAA.BBBB. 841 */ 842 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 843 { 844 unsigned int upper, lower; 845 const char *cp; 846 int ret; 847 848 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 849 if (ret) 850 return ret; 851 852 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 853 return -EINVAL; 854 855 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 856 return 0; 857 } 858 EXPORT_SYMBOL(fwnode_get_phy_id); 859 860 /** 861 * get_phy_device - reads the specified PHY device and returns its @phy_device 862 * struct 863 * @bus: the target MII bus 864 * @addr: PHY address on the MII bus 865 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 866 * 867 * Probe for a PHY at @addr on @bus. 868 * 869 * When probing for a clause 22 PHY, then read the ID registers. If we find 870 * a valid ID, allocate and return a &struct phy_device. 871 * 872 * When probing for a clause 45 PHY, read the "devices in package" registers. 873 * If the "devices in package" appears valid, read the ID registers for each 874 * MMD, allocate and return a &struct phy_device. 875 * 876 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 877 * no PHY present, or %-EIO on bus access error. 878 */ 879 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 880 { 881 struct phy_c45_device_ids c45_ids; 882 u32 phy_id = 0; 883 int r; 884 885 c45_ids.devices_in_package = 0; 886 c45_ids.mmds_present = 0; 887 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 888 889 if (is_c45) 890 r = get_phy_c45_ids(bus, addr, &c45_ids); 891 else 892 r = get_phy_c22_id(bus, addr, &phy_id); 893 894 if (r) 895 return ERR_PTR(r); 896 897 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 898 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 899 * probe with C45 to see if we're able to get a valid PHY ID in the C45 900 * space, if successful, create the C45 PHY device. 901 */ 902 if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) { 903 r = get_phy_c45_ids(bus, addr, &c45_ids); 904 if (!r) 905 return phy_device_create(bus, addr, phy_id, 906 true, &c45_ids); 907 } 908 909 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 910 } 911 EXPORT_SYMBOL(get_phy_device); 912 913 /** 914 * phy_device_register - Register the phy device on the MDIO bus 915 * @phydev: phy_device structure to be added to the MDIO bus 916 */ 917 int phy_device_register(struct phy_device *phydev) 918 { 919 int err; 920 921 err = mdiobus_register_device(&phydev->mdio); 922 if (err) 923 return err; 924 925 /* Deassert the reset signal */ 926 phy_device_reset(phydev, 0); 927 928 /* Run all of the fixups for this PHY */ 929 err = phy_scan_fixups(phydev); 930 if (err) { 931 phydev_err(phydev, "failed to initialize\n"); 932 goto out; 933 } 934 935 err = device_add(&phydev->mdio.dev); 936 if (err) { 937 phydev_err(phydev, "failed to add\n"); 938 goto out; 939 } 940 941 return 0; 942 943 out: 944 /* Assert the reset signal */ 945 phy_device_reset(phydev, 1); 946 947 mdiobus_unregister_device(&phydev->mdio); 948 return err; 949 } 950 EXPORT_SYMBOL(phy_device_register); 951 952 /** 953 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 954 * @phydev: phy_device structure to remove 955 * 956 * This doesn't free the phy_device itself, it merely reverses the effects 957 * of phy_device_register(). Use phy_device_free() to free the device 958 * after calling this function. 959 */ 960 void phy_device_remove(struct phy_device *phydev) 961 { 962 unregister_mii_timestamper(phydev->mii_ts); 963 964 device_del(&phydev->mdio.dev); 965 966 /* Assert the reset signal */ 967 phy_device_reset(phydev, 1); 968 969 mdiobus_unregister_device(&phydev->mdio); 970 } 971 EXPORT_SYMBOL(phy_device_remove); 972 973 /** 974 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 975 * @phydev: phy_device structure to read 802.3-c45 IDs 976 * 977 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 978 * the "devices in package" is invalid. 979 */ 980 int phy_get_c45_ids(struct phy_device *phydev) 981 { 982 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 983 &phydev->c45_ids); 984 } 985 EXPORT_SYMBOL(phy_get_c45_ids); 986 987 /** 988 * phy_find_first - finds the first PHY device on the bus 989 * @bus: the target MII bus 990 */ 991 struct phy_device *phy_find_first(struct mii_bus *bus) 992 { 993 struct phy_device *phydev; 994 int addr; 995 996 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 997 phydev = mdiobus_get_phy(bus, addr); 998 if (phydev) 999 return phydev; 1000 } 1001 return NULL; 1002 } 1003 EXPORT_SYMBOL(phy_find_first); 1004 1005 static void phy_link_change(struct phy_device *phydev, bool up) 1006 { 1007 struct net_device *netdev = phydev->attached_dev; 1008 1009 if (up) 1010 netif_carrier_on(netdev); 1011 else 1012 netif_carrier_off(netdev); 1013 phydev->adjust_link(netdev); 1014 if (phydev->mii_ts && phydev->mii_ts->link_state) 1015 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1016 } 1017 1018 /** 1019 * phy_prepare_link - prepares the PHY layer to monitor link status 1020 * @phydev: target phy_device struct 1021 * @handler: callback function for link status change notifications 1022 * 1023 * Description: Tells the PHY infrastructure to handle the 1024 * gory details on monitoring link status (whether through 1025 * polling or an interrupt), and to call back to the 1026 * connected device driver when the link status changes. 1027 * If you want to monitor your own link state, don't call 1028 * this function. 1029 */ 1030 static void phy_prepare_link(struct phy_device *phydev, 1031 void (*handler)(struct net_device *)) 1032 { 1033 phydev->adjust_link = handler; 1034 } 1035 1036 /** 1037 * phy_connect_direct - connect an ethernet device to a specific phy_device 1038 * @dev: the network device to connect 1039 * @phydev: the pointer to the phy device 1040 * @handler: callback function for state change notifications 1041 * @interface: PHY device's interface 1042 */ 1043 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1044 void (*handler)(struct net_device *), 1045 phy_interface_t interface) 1046 { 1047 int rc; 1048 1049 if (!dev) 1050 return -EINVAL; 1051 1052 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1053 if (rc) 1054 return rc; 1055 1056 phy_prepare_link(phydev, handler); 1057 if (phy_interrupt_is_valid(phydev)) 1058 phy_request_interrupt(phydev); 1059 1060 return 0; 1061 } 1062 EXPORT_SYMBOL(phy_connect_direct); 1063 1064 /** 1065 * phy_connect - connect an ethernet device to a PHY device 1066 * @dev: the network device to connect 1067 * @bus_id: the id string of the PHY device to connect 1068 * @handler: callback function for state change notifications 1069 * @interface: PHY device's interface 1070 * 1071 * Description: Convenience function for connecting ethernet 1072 * devices to PHY devices. The default behavior is for 1073 * the PHY infrastructure to handle everything, and only notify 1074 * the connected driver when the link status changes. If you 1075 * don't want, or can't use the provided functionality, you may 1076 * choose to call only the subset of functions which provide 1077 * the desired functionality. 1078 */ 1079 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1080 void (*handler)(struct net_device *), 1081 phy_interface_t interface) 1082 { 1083 struct phy_device *phydev; 1084 struct device *d; 1085 int rc; 1086 1087 /* Search the list of PHY devices on the mdio bus for the 1088 * PHY with the requested name 1089 */ 1090 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1091 if (!d) { 1092 pr_err("PHY %s not found\n", bus_id); 1093 return ERR_PTR(-ENODEV); 1094 } 1095 phydev = to_phy_device(d); 1096 1097 rc = phy_connect_direct(dev, phydev, handler, interface); 1098 put_device(d); 1099 if (rc) 1100 return ERR_PTR(rc); 1101 1102 return phydev; 1103 } 1104 EXPORT_SYMBOL(phy_connect); 1105 1106 /** 1107 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1108 * device 1109 * @phydev: target phy_device struct 1110 */ 1111 void phy_disconnect(struct phy_device *phydev) 1112 { 1113 if (phy_is_started(phydev)) 1114 phy_stop(phydev); 1115 1116 if (phy_interrupt_is_valid(phydev)) 1117 phy_free_interrupt(phydev); 1118 1119 phydev->adjust_link = NULL; 1120 1121 phy_detach(phydev); 1122 } 1123 EXPORT_SYMBOL(phy_disconnect); 1124 1125 /** 1126 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1127 * @phydev: The PHY device to poll 1128 * 1129 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1130 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1131 * register must be polled until the BMCR_RESET bit clears. 1132 * 1133 * Furthermore, any attempts to write to PHY registers may have no effect 1134 * or even generate MDIO bus errors until this is complete. 1135 * 1136 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1137 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1138 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1139 * effort to support such broken PHYs, this function is separate from the 1140 * standard phy_init_hw() which will zero all the other bits in the BMCR 1141 * and reapply all driver-specific and board-specific fixups. 1142 */ 1143 static int phy_poll_reset(struct phy_device *phydev) 1144 { 1145 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1146 int ret, val; 1147 1148 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1149 50000, 600000, true); 1150 if (ret) 1151 return ret; 1152 /* Some chips (smsc911x) may still need up to another 1ms after the 1153 * BMCR_RESET bit is cleared before they are usable. 1154 */ 1155 msleep(1); 1156 return 0; 1157 } 1158 1159 int phy_init_hw(struct phy_device *phydev) 1160 { 1161 int ret = 0; 1162 1163 /* Deassert the reset signal */ 1164 phy_device_reset(phydev, 0); 1165 1166 if (!phydev->drv) 1167 return 0; 1168 1169 if (phydev->drv->soft_reset) { 1170 ret = phydev->drv->soft_reset(phydev); 1171 /* see comment in genphy_soft_reset for an explanation */ 1172 if (!ret) 1173 phydev->suspended = 0; 1174 } 1175 1176 if (ret < 0) 1177 return ret; 1178 1179 ret = phy_scan_fixups(phydev); 1180 if (ret < 0) 1181 return ret; 1182 1183 if (phydev->drv->config_init) { 1184 ret = phydev->drv->config_init(phydev); 1185 if (ret < 0) 1186 return ret; 1187 } 1188 1189 if (phydev->drv->config_intr) { 1190 ret = phydev->drv->config_intr(phydev); 1191 if (ret < 0) 1192 return ret; 1193 } 1194 1195 return 0; 1196 } 1197 EXPORT_SYMBOL(phy_init_hw); 1198 1199 void phy_attached_info(struct phy_device *phydev) 1200 { 1201 phy_attached_print(phydev, NULL); 1202 } 1203 EXPORT_SYMBOL(phy_attached_info); 1204 1205 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1206 char *phy_attached_info_irq(struct phy_device *phydev) 1207 { 1208 char *irq_str; 1209 char irq_num[8]; 1210 1211 switch(phydev->irq) { 1212 case PHY_POLL: 1213 irq_str = "POLL"; 1214 break; 1215 case PHY_MAC_INTERRUPT: 1216 irq_str = "MAC"; 1217 break; 1218 default: 1219 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1220 irq_str = irq_num; 1221 break; 1222 } 1223 1224 return kasprintf(GFP_KERNEL, "%s", irq_str); 1225 } 1226 EXPORT_SYMBOL(phy_attached_info_irq); 1227 1228 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1229 { 1230 const char *unbound = phydev->drv ? "" : "[unbound] "; 1231 char *irq_str = phy_attached_info_irq(phydev); 1232 1233 if (!fmt) { 1234 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1235 phydev_name(phydev), irq_str); 1236 } else { 1237 va_list ap; 1238 1239 phydev_info(phydev, ATTACHED_FMT, unbound, 1240 phydev_name(phydev), irq_str); 1241 1242 va_start(ap, fmt); 1243 vprintk(fmt, ap); 1244 va_end(ap); 1245 } 1246 kfree(irq_str); 1247 } 1248 EXPORT_SYMBOL(phy_attached_print); 1249 1250 static void phy_sysfs_create_links(struct phy_device *phydev) 1251 { 1252 struct net_device *dev = phydev->attached_dev; 1253 int err; 1254 1255 if (!dev) 1256 return; 1257 1258 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1259 "attached_dev"); 1260 if (err) 1261 return; 1262 1263 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1264 &phydev->mdio.dev.kobj, 1265 "phydev"); 1266 if (err) { 1267 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1268 kobject_name(&phydev->mdio.dev.kobj), 1269 err); 1270 /* non-fatal - some net drivers can use one netdevice 1271 * with more then one phy 1272 */ 1273 } 1274 1275 phydev->sysfs_links = true; 1276 } 1277 1278 static ssize_t 1279 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1280 char *buf) 1281 { 1282 struct phy_device *phydev = to_phy_device(dev); 1283 1284 return sprintf(buf, "%d\n", !phydev->attached_dev); 1285 } 1286 static DEVICE_ATTR_RO(phy_standalone); 1287 1288 /** 1289 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1290 * @upstream: pointer to the phy device 1291 * @bus: sfp bus representing cage being attached 1292 * 1293 * This is used to fill in the sfp_upstream_ops .attach member. 1294 */ 1295 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1296 { 1297 struct phy_device *phydev = upstream; 1298 1299 if (phydev->attached_dev) 1300 phydev->attached_dev->sfp_bus = bus; 1301 phydev->sfp_bus_attached = true; 1302 } 1303 EXPORT_SYMBOL(phy_sfp_attach); 1304 1305 /** 1306 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1307 * @upstream: pointer to the phy device 1308 * @bus: sfp bus representing cage being attached 1309 * 1310 * This is used to fill in the sfp_upstream_ops .detach member. 1311 */ 1312 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1313 { 1314 struct phy_device *phydev = upstream; 1315 1316 if (phydev->attached_dev) 1317 phydev->attached_dev->sfp_bus = NULL; 1318 phydev->sfp_bus_attached = false; 1319 } 1320 EXPORT_SYMBOL(phy_sfp_detach); 1321 1322 /** 1323 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1324 * @phydev: Pointer to phy_device 1325 * @ops: SFP's upstream operations 1326 */ 1327 int phy_sfp_probe(struct phy_device *phydev, 1328 const struct sfp_upstream_ops *ops) 1329 { 1330 struct sfp_bus *bus; 1331 int ret = 0; 1332 1333 if (phydev->mdio.dev.fwnode) { 1334 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1335 if (IS_ERR(bus)) 1336 return PTR_ERR(bus); 1337 1338 phydev->sfp_bus = bus; 1339 1340 ret = sfp_bus_add_upstream(bus, phydev, ops); 1341 sfp_bus_put(bus); 1342 } 1343 return ret; 1344 } 1345 EXPORT_SYMBOL(phy_sfp_probe); 1346 1347 /** 1348 * phy_attach_direct - attach a network device to a given PHY device pointer 1349 * @dev: network device to attach 1350 * @phydev: Pointer to phy_device to attach 1351 * @flags: PHY device's dev_flags 1352 * @interface: PHY device's interface 1353 * 1354 * Description: Called by drivers to attach to a particular PHY 1355 * device. The phy_device is found, and properly hooked up 1356 * to the phy_driver. If no driver is attached, then a 1357 * generic driver is used. The phy_device is given a ptr to 1358 * the attaching device, and given a callback for link status 1359 * change. The phy_device is returned to the attaching driver. 1360 * This function takes a reference on the phy device. 1361 */ 1362 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1363 u32 flags, phy_interface_t interface) 1364 { 1365 struct mii_bus *bus = phydev->mdio.bus; 1366 struct device *d = &phydev->mdio.dev; 1367 struct module *ndev_owner = NULL; 1368 bool using_genphy = false; 1369 int err; 1370 1371 /* For Ethernet device drivers that register their own MDIO bus, we 1372 * will have bus->owner match ndev_mod, so we do not want to increment 1373 * our own module->refcnt here, otherwise we would not be able to 1374 * unload later on. 1375 */ 1376 if (dev) 1377 ndev_owner = dev->dev.parent->driver->owner; 1378 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1379 phydev_err(phydev, "failed to get the bus module\n"); 1380 return -EIO; 1381 } 1382 1383 get_device(d); 1384 1385 /* Assume that if there is no driver, that it doesn't 1386 * exist, and we should use the genphy driver. 1387 */ 1388 if (!d->driver) { 1389 if (phydev->is_c45) 1390 d->driver = &genphy_c45_driver.mdiodrv.driver; 1391 else 1392 d->driver = &genphy_driver.mdiodrv.driver; 1393 1394 using_genphy = true; 1395 } 1396 1397 if (!try_module_get(d->driver->owner)) { 1398 phydev_err(phydev, "failed to get the device driver module\n"); 1399 err = -EIO; 1400 goto error_put_device; 1401 } 1402 1403 if (using_genphy) { 1404 err = d->driver->probe(d); 1405 if (err >= 0) 1406 err = device_bind_driver(d); 1407 1408 if (err) 1409 goto error_module_put; 1410 } 1411 1412 if (phydev->attached_dev) { 1413 dev_err(&dev->dev, "PHY already attached\n"); 1414 err = -EBUSY; 1415 goto error; 1416 } 1417 1418 phydev->phy_link_change = phy_link_change; 1419 if (dev) { 1420 phydev->attached_dev = dev; 1421 dev->phydev = phydev; 1422 1423 if (phydev->sfp_bus_attached) 1424 dev->sfp_bus = phydev->sfp_bus; 1425 else if (dev->sfp_bus) 1426 phydev->is_on_sfp_module = true; 1427 } 1428 1429 /* Some Ethernet drivers try to connect to a PHY device before 1430 * calling register_netdevice() -> netdev_register_kobject() and 1431 * does the dev->dev.kobj initialization. Here we only check for 1432 * success which indicates that the network device kobject is 1433 * ready. Once we do that we still need to keep track of whether 1434 * links were successfully set up or not for phy_detach() to 1435 * remove them accordingly. 1436 */ 1437 phydev->sysfs_links = false; 1438 1439 phy_sysfs_create_links(phydev); 1440 1441 if (!phydev->attached_dev) { 1442 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1443 &dev_attr_phy_standalone.attr); 1444 if (err) 1445 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1446 } 1447 1448 phydev->dev_flags |= flags; 1449 1450 phydev->interface = interface; 1451 1452 phydev->state = PHY_READY; 1453 1454 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1455 1456 /* Port is set to PORT_TP by default and the actual PHY driver will set 1457 * it to different value depending on the PHY configuration. If we have 1458 * the generic PHY driver we can't figure it out, thus set the old 1459 * legacy PORT_MII value. 1460 */ 1461 if (using_genphy) 1462 phydev->port = PORT_MII; 1463 1464 /* Initial carrier state is off as the phy is about to be 1465 * (re)initialized. 1466 */ 1467 if (dev) 1468 netif_carrier_off(phydev->attached_dev); 1469 1470 /* Do initial configuration here, now that 1471 * we have certain key parameters 1472 * (dev_flags and interface) 1473 */ 1474 err = phy_init_hw(phydev); 1475 if (err) 1476 goto error; 1477 1478 phy_resume(phydev); 1479 phy_led_triggers_register(phydev); 1480 1481 return err; 1482 1483 error: 1484 /* phy_detach() does all of the cleanup below */ 1485 phy_detach(phydev); 1486 return err; 1487 1488 error_module_put: 1489 module_put(d->driver->owner); 1490 error_put_device: 1491 put_device(d); 1492 if (ndev_owner != bus->owner) 1493 module_put(bus->owner); 1494 return err; 1495 } 1496 EXPORT_SYMBOL(phy_attach_direct); 1497 1498 /** 1499 * phy_attach - attach a network device to a particular PHY device 1500 * @dev: network device to attach 1501 * @bus_id: Bus ID of PHY device to attach 1502 * @interface: PHY device's interface 1503 * 1504 * Description: Same as phy_attach_direct() except that a PHY bus_id 1505 * string is passed instead of a pointer to a struct phy_device. 1506 */ 1507 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1508 phy_interface_t interface) 1509 { 1510 struct bus_type *bus = &mdio_bus_type; 1511 struct phy_device *phydev; 1512 struct device *d; 1513 int rc; 1514 1515 if (!dev) 1516 return ERR_PTR(-EINVAL); 1517 1518 /* Search the list of PHY devices on the mdio bus for the 1519 * PHY with the requested name 1520 */ 1521 d = bus_find_device_by_name(bus, NULL, bus_id); 1522 if (!d) { 1523 pr_err("PHY %s not found\n", bus_id); 1524 return ERR_PTR(-ENODEV); 1525 } 1526 phydev = to_phy_device(d); 1527 1528 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1529 put_device(d); 1530 if (rc) 1531 return ERR_PTR(rc); 1532 1533 return phydev; 1534 } 1535 EXPORT_SYMBOL(phy_attach); 1536 1537 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1538 struct device_driver *driver) 1539 { 1540 struct device *d = &phydev->mdio.dev; 1541 bool ret = false; 1542 1543 if (!phydev->drv) 1544 return ret; 1545 1546 get_device(d); 1547 ret = d->driver == driver; 1548 put_device(d); 1549 1550 return ret; 1551 } 1552 1553 bool phy_driver_is_genphy(struct phy_device *phydev) 1554 { 1555 return phy_driver_is_genphy_kind(phydev, 1556 &genphy_driver.mdiodrv.driver); 1557 } 1558 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1559 1560 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1561 { 1562 return phy_driver_is_genphy_kind(phydev, 1563 &genphy_c45_driver.mdiodrv.driver); 1564 } 1565 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1566 1567 /** 1568 * phy_package_join - join a common PHY group 1569 * @phydev: target phy_device struct 1570 * @addr: cookie and PHY address for global register access 1571 * @priv_size: if non-zero allocate this amount of bytes for private data 1572 * 1573 * This joins a PHY group and provides a shared storage for all phydevs in 1574 * this group. This is intended to be used for packages which contain 1575 * more than one PHY, for example a quad PHY transceiver. 1576 * 1577 * The addr parameter serves as a cookie which has to have the same value 1578 * for all members of one group and as a PHY address to access generic 1579 * registers of a PHY package. Usually, one of the PHY addresses of the 1580 * different PHYs in the package provides access to these global registers. 1581 * The address which is given here, will be used in the phy_package_read() 1582 * and phy_package_write() convenience functions. If your PHY doesn't have 1583 * global registers you can just pick any of the PHY addresses. 1584 * 1585 * This will set the shared pointer of the phydev to the shared storage. 1586 * If this is the first call for a this cookie the shared storage will be 1587 * allocated. If priv_size is non-zero, the given amount of bytes are 1588 * allocated for the priv member. 1589 * 1590 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1591 * with the same cookie but a different priv_size is an error. 1592 */ 1593 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1594 { 1595 struct mii_bus *bus = phydev->mdio.bus; 1596 struct phy_package_shared *shared; 1597 int ret; 1598 1599 if (addr < 0 || addr >= PHY_MAX_ADDR) 1600 return -EINVAL; 1601 1602 mutex_lock(&bus->shared_lock); 1603 shared = bus->shared[addr]; 1604 if (!shared) { 1605 ret = -ENOMEM; 1606 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1607 if (!shared) 1608 goto err_unlock; 1609 if (priv_size) { 1610 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1611 if (!shared->priv) 1612 goto err_free; 1613 shared->priv_size = priv_size; 1614 } 1615 shared->addr = addr; 1616 refcount_set(&shared->refcnt, 1); 1617 bus->shared[addr] = shared; 1618 } else { 1619 ret = -EINVAL; 1620 if (priv_size && priv_size != shared->priv_size) 1621 goto err_unlock; 1622 refcount_inc(&shared->refcnt); 1623 } 1624 mutex_unlock(&bus->shared_lock); 1625 1626 phydev->shared = shared; 1627 1628 return 0; 1629 1630 err_free: 1631 kfree(shared); 1632 err_unlock: 1633 mutex_unlock(&bus->shared_lock); 1634 return ret; 1635 } 1636 EXPORT_SYMBOL_GPL(phy_package_join); 1637 1638 /** 1639 * phy_package_leave - leave a common PHY group 1640 * @phydev: target phy_device struct 1641 * 1642 * This leaves a PHY group created by phy_package_join(). If this phydev 1643 * was the last user of the shared data between the group, this data is 1644 * freed. Resets the phydev->shared pointer to NULL. 1645 */ 1646 void phy_package_leave(struct phy_device *phydev) 1647 { 1648 struct phy_package_shared *shared = phydev->shared; 1649 struct mii_bus *bus = phydev->mdio.bus; 1650 1651 if (!shared) 1652 return; 1653 1654 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1655 bus->shared[shared->addr] = NULL; 1656 mutex_unlock(&bus->shared_lock); 1657 kfree(shared->priv); 1658 kfree(shared); 1659 } 1660 1661 phydev->shared = NULL; 1662 } 1663 EXPORT_SYMBOL_GPL(phy_package_leave); 1664 1665 static void devm_phy_package_leave(struct device *dev, void *res) 1666 { 1667 phy_package_leave(*(struct phy_device **)res); 1668 } 1669 1670 /** 1671 * devm_phy_package_join - resource managed phy_package_join() 1672 * @dev: device that is registering this PHY package 1673 * @phydev: target phy_device struct 1674 * @addr: cookie and PHY address for global register access 1675 * @priv_size: if non-zero allocate this amount of bytes for private data 1676 * 1677 * Managed phy_package_join(). Shared storage fetched by this function, 1678 * phy_package_leave() is automatically called on driver detach. See 1679 * phy_package_join() for more information. 1680 */ 1681 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1682 int addr, size_t priv_size) 1683 { 1684 struct phy_device **ptr; 1685 int ret; 1686 1687 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1688 GFP_KERNEL); 1689 if (!ptr) 1690 return -ENOMEM; 1691 1692 ret = phy_package_join(phydev, addr, priv_size); 1693 1694 if (!ret) { 1695 *ptr = phydev; 1696 devres_add(dev, ptr); 1697 } else { 1698 devres_free(ptr); 1699 } 1700 1701 return ret; 1702 } 1703 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1704 1705 /** 1706 * phy_detach - detach a PHY device from its network device 1707 * @phydev: target phy_device struct 1708 * 1709 * This detaches the phy device from its network device and the phy 1710 * driver, and drops the reference count taken in phy_attach_direct(). 1711 */ 1712 void phy_detach(struct phy_device *phydev) 1713 { 1714 struct net_device *dev = phydev->attached_dev; 1715 struct module *ndev_owner = NULL; 1716 struct mii_bus *bus; 1717 1718 if (phydev->sysfs_links) { 1719 if (dev) 1720 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1721 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1722 } 1723 1724 if (!phydev->attached_dev) 1725 sysfs_remove_file(&phydev->mdio.dev.kobj, 1726 &dev_attr_phy_standalone.attr); 1727 1728 phy_suspend(phydev); 1729 if (dev) { 1730 phydev->attached_dev->phydev = NULL; 1731 phydev->attached_dev = NULL; 1732 } 1733 phydev->phylink = NULL; 1734 1735 phy_led_triggers_unregister(phydev); 1736 1737 if (phydev->mdio.dev.driver) 1738 module_put(phydev->mdio.dev.driver->owner); 1739 1740 /* If the device had no specific driver before (i.e. - it 1741 * was using the generic driver), we unbind the device 1742 * from the generic driver so that there's a chance a 1743 * real driver could be loaded 1744 */ 1745 if (phy_driver_is_genphy(phydev) || 1746 phy_driver_is_genphy_10g(phydev)) 1747 device_release_driver(&phydev->mdio.dev); 1748 1749 /* Assert the reset signal */ 1750 phy_device_reset(phydev, 1); 1751 1752 /* 1753 * The phydev might go away on the put_device() below, so avoid 1754 * a use-after-free bug by reading the underlying bus first. 1755 */ 1756 bus = phydev->mdio.bus; 1757 1758 put_device(&phydev->mdio.dev); 1759 if (dev) 1760 ndev_owner = dev->dev.parent->driver->owner; 1761 if (ndev_owner != bus->owner) 1762 module_put(bus->owner); 1763 } 1764 EXPORT_SYMBOL(phy_detach); 1765 1766 int phy_suspend(struct phy_device *phydev) 1767 { 1768 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1769 struct net_device *netdev = phydev->attached_dev; 1770 struct phy_driver *phydrv = phydev->drv; 1771 int ret; 1772 1773 if (phydev->suspended) 1774 return 0; 1775 1776 /* If the device has WOL enabled, we cannot suspend the PHY */ 1777 phy_ethtool_get_wol(phydev, &wol); 1778 if (wol.wolopts || (netdev && netdev->wol_enabled)) 1779 return -EBUSY; 1780 1781 if (!phydrv || !phydrv->suspend) 1782 return 0; 1783 1784 ret = phydrv->suspend(phydev); 1785 if (!ret) 1786 phydev->suspended = true; 1787 1788 return ret; 1789 } 1790 EXPORT_SYMBOL(phy_suspend); 1791 1792 int __phy_resume(struct phy_device *phydev) 1793 { 1794 struct phy_driver *phydrv = phydev->drv; 1795 int ret; 1796 1797 lockdep_assert_held(&phydev->lock); 1798 1799 if (!phydrv || !phydrv->resume) 1800 return 0; 1801 1802 ret = phydrv->resume(phydev); 1803 if (!ret) 1804 phydev->suspended = false; 1805 1806 return ret; 1807 } 1808 EXPORT_SYMBOL(__phy_resume); 1809 1810 int phy_resume(struct phy_device *phydev) 1811 { 1812 int ret; 1813 1814 mutex_lock(&phydev->lock); 1815 ret = __phy_resume(phydev); 1816 mutex_unlock(&phydev->lock); 1817 1818 return ret; 1819 } 1820 EXPORT_SYMBOL(phy_resume); 1821 1822 int phy_loopback(struct phy_device *phydev, bool enable) 1823 { 1824 int ret = 0; 1825 1826 if (!phydev->drv) 1827 return -EIO; 1828 1829 mutex_lock(&phydev->lock); 1830 1831 if (enable && phydev->loopback_enabled) { 1832 ret = -EBUSY; 1833 goto out; 1834 } 1835 1836 if (!enable && !phydev->loopback_enabled) { 1837 ret = -EINVAL; 1838 goto out; 1839 } 1840 1841 if (phydev->drv->set_loopback) 1842 ret = phydev->drv->set_loopback(phydev, enable); 1843 else 1844 ret = genphy_loopback(phydev, enable); 1845 1846 if (ret) 1847 goto out; 1848 1849 phydev->loopback_enabled = enable; 1850 1851 out: 1852 mutex_unlock(&phydev->lock); 1853 return ret; 1854 } 1855 EXPORT_SYMBOL(phy_loopback); 1856 1857 /** 1858 * phy_reset_after_clk_enable - perform a PHY reset if needed 1859 * @phydev: target phy_device struct 1860 * 1861 * Description: Some PHYs are known to need a reset after their refclk was 1862 * enabled. This function evaluates the flags and perform the reset if it's 1863 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1864 * was reset. 1865 */ 1866 int phy_reset_after_clk_enable(struct phy_device *phydev) 1867 { 1868 if (!phydev || !phydev->drv) 1869 return -ENODEV; 1870 1871 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1872 phy_device_reset(phydev, 1); 1873 phy_device_reset(phydev, 0); 1874 return 1; 1875 } 1876 1877 return 0; 1878 } 1879 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1880 1881 /* Generic PHY support and helper functions */ 1882 1883 /** 1884 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1885 * @phydev: target phy_device struct 1886 * 1887 * Description: Writes MII_ADVERTISE with the appropriate values, 1888 * after sanitizing the values to make sure we only advertise 1889 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1890 * hasn't changed, and > 0 if it has changed. 1891 */ 1892 static int genphy_config_advert(struct phy_device *phydev) 1893 { 1894 int err, bmsr, changed = 0; 1895 u32 adv; 1896 1897 /* Only allow advertising what this PHY supports */ 1898 linkmode_and(phydev->advertising, phydev->advertising, 1899 phydev->supported); 1900 1901 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1902 1903 /* Setup standard advertisement */ 1904 err = phy_modify_changed(phydev, MII_ADVERTISE, 1905 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1906 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1907 adv); 1908 if (err < 0) 1909 return err; 1910 if (err > 0) 1911 changed = 1; 1912 1913 bmsr = phy_read(phydev, MII_BMSR); 1914 if (bmsr < 0) 1915 return bmsr; 1916 1917 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 1918 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 1919 * logical 1. 1920 */ 1921 if (!(bmsr & BMSR_ESTATEN)) 1922 return changed; 1923 1924 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 1925 1926 err = phy_modify_changed(phydev, MII_CTRL1000, 1927 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 1928 adv); 1929 if (err < 0) 1930 return err; 1931 if (err > 0) 1932 changed = 1; 1933 1934 return changed; 1935 } 1936 1937 /** 1938 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 1939 * @phydev: target phy_device struct 1940 * 1941 * Description: Writes MII_ADVERTISE with the appropriate values, 1942 * after sanitizing the values to make sure we only advertise 1943 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1944 * hasn't changed, and > 0 if it has changed. This function is intended 1945 * for Clause 37 1000Base-X mode. 1946 */ 1947 static int genphy_c37_config_advert(struct phy_device *phydev) 1948 { 1949 u16 adv = 0; 1950 1951 /* Only allow advertising what this PHY supports */ 1952 linkmode_and(phydev->advertising, phydev->advertising, 1953 phydev->supported); 1954 1955 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1956 phydev->advertising)) 1957 adv |= ADVERTISE_1000XFULL; 1958 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 1959 phydev->advertising)) 1960 adv |= ADVERTISE_1000XPAUSE; 1961 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 1962 phydev->advertising)) 1963 adv |= ADVERTISE_1000XPSE_ASYM; 1964 1965 return phy_modify_changed(phydev, MII_ADVERTISE, 1966 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1967 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 1968 adv); 1969 } 1970 1971 /** 1972 * genphy_config_eee_advert - disable unwanted eee mode advertisement 1973 * @phydev: target phy_device struct 1974 * 1975 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 1976 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 1977 * changed, and 1 if it has changed. 1978 */ 1979 int genphy_config_eee_advert(struct phy_device *phydev) 1980 { 1981 int err; 1982 1983 /* Nothing to disable */ 1984 if (!phydev->eee_broken_modes) 1985 return 0; 1986 1987 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 1988 phydev->eee_broken_modes, 0); 1989 /* If the call failed, we assume that EEE is not supported */ 1990 return err < 0 ? 0 : err; 1991 } 1992 EXPORT_SYMBOL(genphy_config_eee_advert); 1993 1994 /** 1995 * genphy_setup_forced - configures/forces speed/duplex from @phydev 1996 * @phydev: target phy_device struct 1997 * 1998 * Description: Configures MII_BMCR to force speed/duplex 1999 * to the values in phydev. Assumes that the values are valid. 2000 * Please see phy_sanitize_settings(). 2001 */ 2002 int genphy_setup_forced(struct phy_device *phydev) 2003 { 2004 u16 ctl; 2005 2006 phydev->pause = 0; 2007 phydev->asym_pause = 0; 2008 2009 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2010 2011 return phy_modify(phydev, MII_BMCR, 2012 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2013 } 2014 EXPORT_SYMBOL(genphy_setup_forced); 2015 2016 static int genphy_setup_master_slave(struct phy_device *phydev) 2017 { 2018 u16 ctl = 0; 2019 2020 if (!phydev->is_gigabit_capable) 2021 return 0; 2022 2023 switch (phydev->master_slave_set) { 2024 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2025 ctl |= CTL1000_PREFER_MASTER; 2026 break; 2027 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2028 break; 2029 case MASTER_SLAVE_CFG_MASTER_FORCE: 2030 ctl |= CTL1000_AS_MASTER; 2031 fallthrough; 2032 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2033 ctl |= CTL1000_ENABLE_MASTER; 2034 break; 2035 case MASTER_SLAVE_CFG_UNKNOWN: 2036 case MASTER_SLAVE_CFG_UNSUPPORTED: 2037 return 0; 2038 default: 2039 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2040 return -EOPNOTSUPP; 2041 } 2042 2043 return phy_modify_changed(phydev, MII_CTRL1000, 2044 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2045 CTL1000_PREFER_MASTER), ctl); 2046 } 2047 2048 int genphy_read_master_slave(struct phy_device *phydev) 2049 { 2050 int cfg, state; 2051 int val; 2052 2053 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2054 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2055 2056 val = phy_read(phydev, MII_CTRL1000); 2057 if (val < 0) 2058 return val; 2059 2060 if (val & CTL1000_ENABLE_MASTER) { 2061 if (val & CTL1000_AS_MASTER) 2062 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2063 else 2064 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2065 } else { 2066 if (val & CTL1000_PREFER_MASTER) 2067 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2068 else 2069 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2070 } 2071 2072 val = phy_read(phydev, MII_STAT1000); 2073 if (val < 0) 2074 return val; 2075 2076 if (val & LPA_1000MSFAIL) { 2077 state = MASTER_SLAVE_STATE_ERR; 2078 } else if (phydev->link) { 2079 /* this bits are valid only for active link */ 2080 if (val & LPA_1000MSRES) 2081 state = MASTER_SLAVE_STATE_MASTER; 2082 else 2083 state = MASTER_SLAVE_STATE_SLAVE; 2084 } else { 2085 state = MASTER_SLAVE_STATE_UNKNOWN; 2086 } 2087 2088 phydev->master_slave_get = cfg; 2089 phydev->master_slave_state = state; 2090 2091 return 0; 2092 } 2093 EXPORT_SYMBOL(genphy_read_master_slave); 2094 2095 /** 2096 * genphy_restart_aneg - Enable and Restart Autonegotiation 2097 * @phydev: target phy_device struct 2098 */ 2099 int genphy_restart_aneg(struct phy_device *phydev) 2100 { 2101 /* Don't isolate the PHY if we're negotiating */ 2102 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2103 BMCR_ANENABLE | BMCR_ANRESTART); 2104 } 2105 EXPORT_SYMBOL(genphy_restart_aneg); 2106 2107 /** 2108 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2109 * @phydev: target phy_device struct 2110 * @restart: whether aneg restart is requested 2111 * 2112 * Check, and restart auto-negotiation if needed. 2113 */ 2114 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2115 { 2116 int ret; 2117 2118 if (!restart) { 2119 /* Advertisement hasn't changed, but maybe aneg was never on to 2120 * begin with? Or maybe phy was isolated? 2121 */ 2122 ret = phy_read(phydev, MII_BMCR); 2123 if (ret < 0) 2124 return ret; 2125 2126 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2127 restart = true; 2128 } 2129 2130 if (restart) 2131 return genphy_restart_aneg(phydev); 2132 2133 return 0; 2134 } 2135 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2136 2137 /** 2138 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2139 * @phydev: target phy_device struct 2140 * @changed: whether autoneg is requested 2141 * 2142 * Description: If auto-negotiation is enabled, we configure the 2143 * advertising, and then restart auto-negotiation. If it is not 2144 * enabled, then we write the BMCR. 2145 */ 2146 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2147 { 2148 int err; 2149 2150 if (genphy_config_eee_advert(phydev)) 2151 changed = true; 2152 2153 err = genphy_setup_master_slave(phydev); 2154 if (err < 0) 2155 return err; 2156 else if (err) 2157 changed = true; 2158 2159 if (AUTONEG_ENABLE != phydev->autoneg) 2160 return genphy_setup_forced(phydev); 2161 2162 err = genphy_config_advert(phydev); 2163 if (err < 0) /* error */ 2164 return err; 2165 else if (err) 2166 changed = true; 2167 2168 return genphy_check_and_restart_aneg(phydev, changed); 2169 } 2170 EXPORT_SYMBOL(__genphy_config_aneg); 2171 2172 /** 2173 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2174 * @phydev: target phy_device struct 2175 * 2176 * Description: If auto-negotiation is enabled, we configure the 2177 * advertising, and then restart auto-negotiation. If it is not 2178 * enabled, then we write the BMCR. This function is intended 2179 * for use with Clause 37 1000Base-X mode. 2180 */ 2181 int genphy_c37_config_aneg(struct phy_device *phydev) 2182 { 2183 int err, changed; 2184 2185 if (phydev->autoneg != AUTONEG_ENABLE) 2186 return genphy_setup_forced(phydev); 2187 2188 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2189 BMCR_SPEED1000); 2190 if (err) 2191 return err; 2192 2193 changed = genphy_c37_config_advert(phydev); 2194 if (changed < 0) /* error */ 2195 return changed; 2196 2197 if (!changed) { 2198 /* Advertisement hasn't changed, but maybe aneg was never on to 2199 * begin with? Or maybe phy was isolated? 2200 */ 2201 int ctl = phy_read(phydev, MII_BMCR); 2202 2203 if (ctl < 0) 2204 return ctl; 2205 2206 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2207 changed = 1; /* do restart aneg */ 2208 } 2209 2210 /* Only restart aneg if we are advertising something different 2211 * than we were before. 2212 */ 2213 if (changed > 0) 2214 return genphy_restart_aneg(phydev); 2215 2216 return 0; 2217 } 2218 EXPORT_SYMBOL(genphy_c37_config_aneg); 2219 2220 /** 2221 * genphy_aneg_done - return auto-negotiation status 2222 * @phydev: target phy_device struct 2223 * 2224 * Description: Reads the status register and returns 0 either if 2225 * auto-negotiation is incomplete, or if there was an error. 2226 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2227 */ 2228 int genphy_aneg_done(struct phy_device *phydev) 2229 { 2230 int retval = phy_read(phydev, MII_BMSR); 2231 2232 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2233 } 2234 EXPORT_SYMBOL(genphy_aneg_done); 2235 2236 /** 2237 * genphy_update_link - update link status in @phydev 2238 * @phydev: target phy_device struct 2239 * 2240 * Description: Update the value in phydev->link to reflect the 2241 * current link value. In order to do this, we need to read 2242 * the status register twice, keeping the second value. 2243 */ 2244 int genphy_update_link(struct phy_device *phydev) 2245 { 2246 int status = 0, bmcr; 2247 2248 bmcr = phy_read(phydev, MII_BMCR); 2249 if (bmcr < 0) 2250 return bmcr; 2251 2252 /* Autoneg is being started, therefore disregard BMSR value and 2253 * report link as down. 2254 */ 2255 if (bmcr & BMCR_ANRESTART) 2256 goto done; 2257 2258 /* The link state is latched low so that momentary link 2259 * drops can be detected. Do not double-read the status 2260 * in polling mode to detect such short link drops except 2261 * the link was already down. 2262 */ 2263 if (!phy_polling_mode(phydev) || !phydev->link) { 2264 status = phy_read(phydev, MII_BMSR); 2265 if (status < 0) 2266 return status; 2267 else if (status & BMSR_LSTATUS) 2268 goto done; 2269 } 2270 2271 /* Read link and autonegotiation status */ 2272 status = phy_read(phydev, MII_BMSR); 2273 if (status < 0) 2274 return status; 2275 done: 2276 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2277 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2278 2279 /* Consider the case that autoneg was started and "aneg complete" 2280 * bit has been reset, but "link up" bit not yet. 2281 */ 2282 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2283 phydev->link = 0; 2284 2285 return 0; 2286 } 2287 EXPORT_SYMBOL(genphy_update_link); 2288 2289 int genphy_read_lpa(struct phy_device *phydev) 2290 { 2291 int lpa, lpagb; 2292 2293 if (phydev->autoneg == AUTONEG_ENABLE) { 2294 if (!phydev->autoneg_complete) { 2295 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2296 0); 2297 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2298 return 0; 2299 } 2300 2301 if (phydev->is_gigabit_capable) { 2302 lpagb = phy_read(phydev, MII_STAT1000); 2303 if (lpagb < 0) 2304 return lpagb; 2305 2306 if (lpagb & LPA_1000MSFAIL) { 2307 int adv = phy_read(phydev, MII_CTRL1000); 2308 2309 if (adv < 0) 2310 return adv; 2311 2312 if (adv & CTL1000_ENABLE_MASTER) 2313 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2314 else 2315 phydev_err(phydev, "Master/Slave resolution failed\n"); 2316 return -ENOLINK; 2317 } 2318 2319 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2320 lpagb); 2321 } 2322 2323 lpa = phy_read(phydev, MII_LPA); 2324 if (lpa < 0) 2325 return lpa; 2326 2327 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2328 } else { 2329 linkmode_zero(phydev->lp_advertising); 2330 } 2331 2332 return 0; 2333 } 2334 EXPORT_SYMBOL(genphy_read_lpa); 2335 2336 /** 2337 * genphy_read_status_fixed - read the link parameters for !aneg mode 2338 * @phydev: target phy_device struct 2339 * 2340 * Read the current duplex and speed state for a PHY operating with 2341 * autonegotiation disabled. 2342 */ 2343 int genphy_read_status_fixed(struct phy_device *phydev) 2344 { 2345 int bmcr = phy_read(phydev, MII_BMCR); 2346 2347 if (bmcr < 0) 2348 return bmcr; 2349 2350 if (bmcr & BMCR_FULLDPLX) 2351 phydev->duplex = DUPLEX_FULL; 2352 else 2353 phydev->duplex = DUPLEX_HALF; 2354 2355 if (bmcr & BMCR_SPEED1000) 2356 phydev->speed = SPEED_1000; 2357 else if (bmcr & BMCR_SPEED100) 2358 phydev->speed = SPEED_100; 2359 else 2360 phydev->speed = SPEED_10; 2361 2362 return 0; 2363 } 2364 EXPORT_SYMBOL(genphy_read_status_fixed); 2365 2366 /** 2367 * genphy_read_status - check the link status and update current link state 2368 * @phydev: target phy_device struct 2369 * 2370 * Description: Check the link, then figure out the current state 2371 * by comparing what we advertise with what the link partner 2372 * advertises. Start by checking the gigabit possibilities, 2373 * then move on to 10/100. 2374 */ 2375 int genphy_read_status(struct phy_device *phydev) 2376 { 2377 int err, old_link = phydev->link; 2378 2379 /* Update the link, but return if there was an error */ 2380 err = genphy_update_link(phydev); 2381 if (err) 2382 return err; 2383 2384 /* why bother the PHY if nothing can have changed */ 2385 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2386 return 0; 2387 2388 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2389 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2390 phydev->speed = SPEED_UNKNOWN; 2391 phydev->duplex = DUPLEX_UNKNOWN; 2392 phydev->pause = 0; 2393 phydev->asym_pause = 0; 2394 2395 if (phydev->is_gigabit_capable) { 2396 err = genphy_read_master_slave(phydev); 2397 if (err < 0) 2398 return err; 2399 } 2400 2401 err = genphy_read_lpa(phydev); 2402 if (err < 0) 2403 return err; 2404 2405 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2406 phy_resolve_aneg_linkmode(phydev); 2407 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2408 err = genphy_read_status_fixed(phydev); 2409 if (err < 0) 2410 return err; 2411 } 2412 2413 return 0; 2414 } 2415 EXPORT_SYMBOL(genphy_read_status); 2416 2417 /** 2418 * genphy_c37_read_status - check the link status and update current link state 2419 * @phydev: target phy_device struct 2420 * 2421 * Description: Check the link, then figure out the current state 2422 * by comparing what we advertise with what the link partner 2423 * advertises. This function is for Clause 37 1000Base-X mode. 2424 */ 2425 int genphy_c37_read_status(struct phy_device *phydev) 2426 { 2427 int lpa, err, old_link = phydev->link; 2428 2429 /* Update the link, but return if there was an error */ 2430 err = genphy_update_link(phydev); 2431 if (err) 2432 return err; 2433 2434 /* why bother the PHY if nothing can have changed */ 2435 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2436 return 0; 2437 2438 phydev->duplex = DUPLEX_UNKNOWN; 2439 phydev->pause = 0; 2440 phydev->asym_pause = 0; 2441 2442 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2443 lpa = phy_read(phydev, MII_LPA); 2444 if (lpa < 0) 2445 return lpa; 2446 2447 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2448 phydev->lp_advertising, lpa & LPA_LPACK); 2449 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2450 phydev->lp_advertising, lpa & LPA_1000XFULL); 2451 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2452 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2453 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2454 phydev->lp_advertising, 2455 lpa & LPA_1000XPAUSE_ASYM); 2456 2457 phy_resolve_aneg_linkmode(phydev); 2458 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2459 int bmcr = phy_read(phydev, MII_BMCR); 2460 2461 if (bmcr < 0) 2462 return bmcr; 2463 2464 if (bmcr & BMCR_FULLDPLX) 2465 phydev->duplex = DUPLEX_FULL; 2466 else 2467 phydev->duplex = DUPLEX_HALF; 2468 } 2469 2470 return 0; 2471 } 2472 EXPORT_SYMBOL(genphy_c37_read_status); 2473 2474 /** 2475 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2476 * @phydev: target phy_device struct 2477 * 2478 * Description: Perform a software PHY reset using the standard 2479 * BMCR_RESET bit and poll for the reset bit to be cleared. 2480 * 2481 * Returns: 0 on success, < 0 on failure 2482 */ 2483 int genphy_soft_reset(struct phy_device *phydev) 2484 { 2485 u16 res = BMCR_RESET; 2486 int ret; 2487 2488 if (phydev->autoneg == AUTONEG_ENABLE) 2489 res |= BMCR_ANRESTART; 2490 2491 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2492 if (ret < 0) 2493 return ret; 2494 2495 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2496 * to their default value. Therefore the POWER DOWN bit is supposed to 2497 * be cleared after soft reset. 2498 */ 2499 phydev->suspended = 0; 2500 2501 ret = phy_poll_reset(phydev); 2502 if (ret) 2503 return ret; 2504 2505 /* BMCR may be reset to defaults */ 2506 if (phydev->autoneg == AUTONEG_DISABLE) 2507 ret = genphy_setup_forced(phydev); 2508 2509 return ret; 2510 } 2511 EXPORT_SYMBOL(genphy_soft_reset); 2512 2513 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2514 { 2515 /* It seems there are cases where the interrupts are handled by another 2516 * entity (ie an IRQ controller embedded inside the PHY) and do not 2517 * need any other interraction from phylib. In this case, just trigger 2518 * the state machine directly. 2519 */ 2520 phy_trigger_machine(phydev); 2521 2522 return 0; 2523 } 2524 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2525 2526 /** 2527 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2528 * @phydev: target phy_device struct 2529 * 2530 * Description: Reads the PHY's abilities and populates 2531 * phydev->supported accordingly. 2532 * 2533 * Returns: 0 on success, < 0 on failure 2534 */ 2535 int genphy_read_abilities(struct phy_device *phydev) 2536 { 2537 int val; 2538 2539 linkmode_set_bit_array(phy_basic_ports_array, 2540 ARRAY_SIZE(phy_basic_ports_array), 2541 phydev->supported); 2542 2543 val = phy_read(phydev, MII_BMSR); 2544 if (val < 0) 2545 return val; 2546 2547 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2548 val & BMSR_ANEGCAPABLE); 2549 2550 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2551 val & BMSR_100FULL); 2552 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2553 val & BMSR_100HALF); 2554 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2555 val & BMSR_10FULL); 2556 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2557 val & BMSR_10HALF); 2558 2559 if (val & BMSR_ESTATEN) { 2560 val = phy_read(phydev, MII_ESTATUS); 2561 if (val < 0) 2562 return val; 2563 2564 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2565 phydev->supported, val & ESTATUS_1000_TFULL); 2566 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2567 phydev->supported, val & ESTATUS_1000_THALF); 2568 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2569 phydev->supported, val & ESTATUS_1000_XFULL); 2570 } 2571 2572 return 0; 2573 } 2574 EXPORT_SYMBOL(genphy_read_abilities); 2575 2576 /* This is used for the phy device which doesn't support the MMD extended 2577 * register access, but it does have side effect when we are trying to access 2578 * the MMD register via indirect method. 2579 */ 2580 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2581 { 2582 return -EOPNOTSUPP; 2583 } 2584 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2585 2586 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2587 u16 regnum, u16 val) 2588 { 2589 return -EOPNOTSUPP; 2590 } 2591 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2592 2593 int genphy_suspend(struct phy_device *phydev) 2594 { 2595 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2596 } 2597 EXPORT_SYMBOL(genphy_suspend); 2598 2599 int genphy_resume(struct phy_device *phydev) 2600 { 2601 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2602 } 2603 EXPORT_SYMBOL(genphy_resume); 2604 2605 int genphy_loopback(struct phy_device *phydev, bool enable) 2606 { 2607 if (enable) { 2608 u16 val, ctl = BMCR_LOOPBACK; 2609 int ret; 2610 2611 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2612 2613 phy_modify(phydev, MII_BMCR, ~0, ctl); 2614 2615 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2616 val & BMSR_LSTATUS, 2617 5000, 500000, true); 2618 if (ret) 2619 return ret; 2620 } else { 2621 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2622 2623 phy_config_aneg(phydev); 2624 } 2625 2626 return 0; 2627 } 2628 EXPORT_SYMBOL(genphy_loopback); 2629 2630 /** 2631 * phy_remove_link_mode - Remove a supported link mode 2632 * @phydev: phy_device structure to remove link mode from 2633 * @link_mode: Link mode to be removed 2634 * 2635 * Description: Some MACs don't support all link modes which the PHY 2636 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2637 * to remove a link mode. 2638 */ 2639 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2640 { 2641 linkmode_clear_bit(link_mode, phydev->supported); 2642 phy_advertise_supported(phydev); 2643 } 2644 EXPORT_SYMBOL(phy_remove_link_mode); 2645 2646 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2647 { 2648 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2649 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2650 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2651 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2652 } 2653 2654 /** 2655 * phy_advertise_supported - Advertise all supported modes 2656 * @phydev: target phy_device struct 2657 * 2658 * Description: Called to advertise all supported modes, doesn't touch 2659 * pause mode advertising. 2660 */ 2661 void phy_advertise_supported(struct phy_device *phydev) 2662 { 2663 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2664 2665 linkmode_copy(new, phydev->supported); 2666 phy_copy_pause_bits(new, phydev->advertising); 2667 linkmode_copy(phydev->advertising, new); 2668 } 2669 EXPORT_SYMBOL(phy_advertise_supported); 2670 2671 /** 2672 * phy_support_sym_pause - Enable support of symmetrical pause 2673 * @phydev: target phy_device struct 2674 * 2675 * Description: Called by the MAC to indicate is supports symmetrical 2676 * Pause, but not asym pause. 2677 */ 2678 void phy_support_sym_pause(struct phy_device *phydev) 2679 { 2680 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2681 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2682 } 2683 EXPORT_SYMBOL(phy_support_sym_pause); 2684 2685 /** 2686 * phy_support_asym_pause - Enable support of asym pause 2687 * @phydev: target phy_device struct 2688 * 2689 * Description: Called by the MAC to indicate is supports Asym Pause. 2690 */ 2691 void phy_support_asym_pause(struct phy_device *phydev) 2692 { 2693 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2694 } 2695 EXPORT_SYMBOL(phy_support_asym_pause); 2696 2697 /** 2698 * phy_set_sym_pause - Configure symmetric Pause 2699 * @phydev: target phy_device struct 2700 * @rx: Receiver Pause is supported 2701 * @tx: Transmit Pause is supported 2702 * @autoneg: Auto neg should be used 2703 * 2704 * Description: Configure advertised Pause support depending on if 2705 * receiver pause and pause auto neg is supported. Generally called 2706 * from the set_pauseparam .ndo. 2707 */ 2708 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2709 bool autoneg) 2710 { 2711 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2712 2713 if (rx && tx && autoneg) 2714 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2715 phydev->supported); 2716 2717 linkmode_copy(phydev->advertising, phydev->supported); 2718 } 2719 EXPORT_SYMBOL(phy_set_sym_pause); 2720 2721 /** 2722 * phy_set_asym_pause - Configure Pause and Asym Pause 2723 * @phydev: target phy_device struct 2724 * @rx: Receiver Pause is supported 2725 * @tx: Transmit Pause is supported 2726 * 2727 * Description: Configure advertised Pause support depending on if 2728 * transmit and receiver pause is supported. If there has been a 2729 * change in adverting, trigger a new autoneg. Generally called from 2730 * the set_pauseparam .ndo. 2731 */ 2732 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2733 { 2734 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2735 2736 linkmode_copy(oldadv, phydev->advertising); 2737 linkmode_set_pause(phydev->advertising, tx, rx); 2738 2739 if (!linkmode_equal(oldadv, phydev->advertising) && 2740 phydev->autoneg) 2741 phy_start_aneg(phydev); 2742 } 2743 EXPORT_SYMBOL(phy_set_asym_pause); 2744 2745 /** 2746 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2747 * @phydev: phy_device struct 2748 * @pp: requested pause configuration 2749 * 2750 * Description: Test if the PHY/MAC combination supports the Pause 2751 * configuration the user is requesting. Returns True if it is 2752 * supported, false otherwise. 2753 */ 2754 bool phy_validate_pause(struct phy_device *phydev, 2755 struct ethtool_pauseparam *pp) 2756 { 2757 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2758 phydev->supported) && pp->rx_pause) 2759 return false; 2760 2761 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2762 phydev->supported) && 2763 pp->rx_pause != pp->tx_pause) 2764 return false; 2765 2766 return true; 2767 } 2768 EXPORT_SYMBOL(phy_validate_pause); 2769 2770 /** 2771 * phy_get_pause - resolve negotiated pause modes 2772 * @phydev: phy_device struct 2773 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2774 * enabled. 2775 * @rx_pause: pointer to bool to indicate whether receive pause should be 2776 * enabled. 2777 * 2778 * Resolve and return the flow control modes according to the negotiation 2779 * result. This includes checking that we are operating in full duplex mode. 2780 * See linkmode_resolve_pause() for further details. 2781 */ 2782 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2783 { 2784 if (phydev->duplex != DUPLEX_FULL) { 2785 *tx_pause = false; 2786 *rx_pause = false; 2787 return; 2788 } 2789 2790 return linkmode_resolve_pause(phydev->advertising, 2791 phydev->lp_advertising, 2792 tx_pause, rx_pause); 2793 } 2794 EXPORT_SYMBOL(phy_get_pause); 2795 2796 #if IS_ENABLED(CONFIG_OF_MDIO) 2797 static int phy_get_int_delay_property(struct device *dev, const char *name) 2798 { 2799 s32 int_delay; 2800 int ret; 2801 2802 ret = device_property_read_u32(dev, name, &int_delay); 2803 if (ret) 2804 return ret; 2805 2806 return int_delay; 2807 } 2808 #else 2809 static int phy_get_int_delay_property(struct device *dev, const char *name) 2810 { 2811 return -EINVAL; 2812 } 2813 #endif 2814 2815 /** 2816 * phy_get_internal_delay - returns the index of the internal delay 2817 * @phydev: phy_device struct 2818 * @dev: pointer to the devices device struct 2819 * @delay_values: array of delays the PHY supports 2820 * @size: the size of the delay array 2821 * @is_rx: boolean to indicate to get the rx internal delay 2822 * 2823 * Returns the index within the array of internal delay passed in. 2824 * If the device property is not present then the interface type is checked 2825 * if the interface defines use of internal delay then a 1 is returned otherwise 2826 * a 0 is returned. 2827 * The array must be in ascending order. If PHY does not have an ascending order 2828 * array then size = 0 and the value of the delay property is returned. 2829 * Return -EINVAL if the delay is invalid or cannot be found. 2830 */ 2831 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2832 const int *delay_values, int size, bool is_rx) 2833 { 2834 s32 delay; 2835 int i; 2836 2837 if (is_rx) { 2838 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2839 if (delay < 0 && size == 0) { 2840 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2841 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2842 return 1; 2843 else 2844 return 0; 2845 } 2846 2847 } else { 2848 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2849 if (delay < 0 && size == 0) { 2850 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2851 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2852 return 1; 2853 else 2854 return 0; 2855 } 2856 } 2857 2858 if (delay < 0) 2859 return delay; 2860 2861 if (delay && size == 0) 2862 return delay; 2863 2864 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2865 phydev_err(phydev, "Delay %d is out of range\n", delay); 2866 return -EINVAL; 2867 } 2868 2869 if (delay == delay_values[0]) 2870 return 0; 2871 2872 for (i = 1; i < size; i++) { 2873 if (delay == delay_values[i]) 2874 return i; 2875 2876 /* Find an approximate index by looking up the table */ 2877 if (delay > delay_values[i - 1] && 2878 delay < delay_values[i]) { 2879 if (delay - delay_values[i - 1] < 2880 delay_values[i] - delay) 2881 return i - 1; 2882 else 2883 return i; 2884 } 2885 } 2886 2887 phydev_err(phydev, "error finding internal delay index for %d\n", 2888 delay); 2889 2890 return -EINVAL; 2891 } 2892 EXPORT_SYMBOL(phy_get_internal_delay); 2893 2894 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2895 { 2896 return phydrv->config_intr && phydrv->handle_interrupt; 2897 } 2898 2899 /** 2900 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 2901 * @fwnode: pointer to the mdio_device's fwnode 2902 * 2903 * If successful, returns a pointer to the mdio_device with the embedded 2904 * struct device refcount incremented by one, or NULL on failure. 2905 * The caller should call put_device() on the mdio_device after its use. 2906 */ 2907 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 2908 { 2909 struct device *d; 2910 2911 if (!fwnode) 2912 return NULL; 2913 2914 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 2915 if (!d) 2916 return NULL; 2917 2918 return to_mdio_device(d); 2919 } 2920 EXPORT_SYMBOL(fwnode_mdio_find_device); 2921 2922 /** 2923 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 2924 * 2925 * @phy_fwnode: Pointer to the phy's fwnode. 2926 * 2927 * If successful, returns a pointer to the phy_device with the embedded 2928 * struct device refcount incremented by one, or NULL on failure. 2929 */ 2930 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 2931 { 2932 struct mdio_device *mdiodev; 2933 2934 mdiodev = fwnode_mdio_find_device(phy_fwnode); 2935 if (!mdiodev) 2936 return NULL; 2937 2938 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 2939 return to_phy_device(&mdiodev->dev); 2940 2941 put_device(&mdiodev->dev); 2942 2943 return NULL; 2944 } 2945 EXPORT_SYMBOL(fwnode_phy_find_device); 2946 2947 /** 2948 * device_phy_find_device - For the given device, get the phy_device 2949 * @dev: Pointer to the given device 2950 * 2951 * Refer return conditions of fwnode_phy_find_device(). 2952 */ 2953 struct phy_device *device_phy_find_device(struct device *dev) 2954 { 2955 return fwnode_phy_find_device(dev_fwnode(dev)); 2956 } 2957 EXPORT_SYMBOL_GPL(device_phy_find_device); 2958 2959 /** 2960 * fwnode_get_phy_node - Get the phy_node using the named reference. 2961 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 2962 * 2963 * Refer return conditions of fwnode_find_reference(). 2964 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 2965 * and "phy-device" are not supported in ACPI. DT supports all the three 2966 * named references to the phy node. 2967 */ 2968 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode) 2969 { 2970 struct fwnode_handle *phy_node; 2971 2972 /* Only phy-handle is used for ACPI */ 2973 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 2974 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 2975 return phy_node; 2976 phy_node = fwnode_find_reference(fwnode, "phy", 0); 2977 if (IS_ERR(phy_node)) 2978 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 2979 return phy_node; 2980 } 2981 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 2982 2983 /** 2984 * phy_probe - probe and init a PHY device 2985 * @dev: device to probe and init 2986 * 2987 * Description: Take care of setting up the phy_device structure, 2988 * set the state to READY (the driver's init function should 2989 * set it to STARTING if needed). 2990 */ 2991 static int phy_probe(struct device *dev) 2992 { 2993 struct phy_device *phydev = to_phy_device(dev); 2994 struct device_driver *drv = phydev->mdio.dev.driver; 2995 struct phy_driver *phydrv = to_phy_driver(drv); 2996 int err = 0; 2997 2998 phydev->drv = phydrv; 2999 3000 /* Disable the interrupt if the PHY doesn't support it 3001 * but the interrupt is still a valid one 3002 */ 3003 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3004 phydev->irq = PHY_POLL; 3005 3006 if (phydrv->flags & PHY_IS_INTERNAL) 3007 phydev->is_internal = true; 3008 3009 mutex_lock(&phydev->lock); 3010 3011 /* Deassert the reset signal */ 3012 phy_device_reset(phydev, 0); 3013 3014 if (phydev->drv->probe) { 3015 err = phydev->drv->probe(phydev); 3016 if (err) 3017 goto out; 3018 } 3019 3020 /* Start out supporting everything. Eventually, 3021 * a controller will attach, and may modify one 3022 * or both of these values 3023 */ 3024 if (phydrv->features) 3025 linkmode_copy(phydev->supported, phydrv->features); 3026 else if (phydrv->get_features) 3027 err = phydrv->get_features(phydev); 3028 else if (phydev->is_c45) 3029 err = genphy_c45_pma_read_abilities(phydev); 3030 else 3031 err = genphy_read_abilities(phydev); 3032 3033 if (err) 3034 goto out; 3035 3036 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3037 phydev->supported)) 3038 phydev->autoneg = 0; 3039 3040 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3041 phydev->supported)) 3042 phydev->is_gigabit_capable = 1; 3043 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3044 phydev->supported)) 3045 phydev->is_gigabit_capable = 1; 3046 3047 of_set_phy_supported(phydev); 3048 phy_advertise_supported(phydev); 3049 3050 /* Get the EEE modes we want to prohibit. We will ask 3051 * the PHY stop advertising these mode later on 3052 */ 3053 of_set_phy_eee_broken(phydev); 3054 3055 /* The Pause Frame bits indicate that the PHY can support passing 3056 * pause frames. During autonegotiation, the PHYs will determine if 3057 * they should allow pause frames to pass. The MAC driver should then 3058 * use that result to determine whether to enable flow control via 3059 * pause frames. 3060 * 3061 * Normally, PHY drivers should not set the Pause bits, and instead 3062 * allow phylib to do that. However, there may be some situations 3063 * (e.g. hardware erratum) where the driver wants to set only one 3064 * of these bits. 3065 */ 3066 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3067 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3068 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3069 phydev->supported); 3070 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3071 phydev->supported); 3072 } 3073 3074 /* Set the state to READY by default */ 3075 phydev->state = PHY_READY; 3076 3077 out: 3078 /* Assert the reset signal */ 3079 if (err) 3080 phy_device_reset(phydev, 1); 3081 3082 mutex_unlock(&phydev->lock); 3083 3084 return err; 3085 } 3086 3087 static int phy_remove(struct device *dev) 3088 { 3089 struct phy_device *phydev = to_phy_device(dev); 3090 3091 cancel_delayed_work_sync(&phydev->state_queue); 3092 3093 mutex_lock(&phydev->lock); 3094 phydev->state = PHY_DOWN; 3095 mutex_unlock(&phydev->lock); 3096 3097 sfp_bus_del_upstream(phydev->sfp_bus); 3098 phydev->sfp_bus = NULL; 3099 3100 if (phydev->drv && phydev->drv->remove) 3101 phydev->drv->remove(phydev); 3102 3103 /* Assert the reset signal */ 3104 phy_device_reset(phydev, 1); 3105 3106 phydev->drv = NULL; 3107 3108 return 0; 3109 } 3110 3111 static void phy_shutdown(struct device *dev) 3112 { 3113 struct phy_device *phydev = to_phy_device(dev); 3114 3115 if (phydev->state == PHY_READY || !phydev->attached_dev) 3116 return; 3117 3118 phy_disable_interrupts(phydev); 3119 } 3120 3121 /** 3122 * phy_driver_register - register a phy_driver with the PHY layer 3123 * @new_driver: new phy_driver to register 3124 * @owner: module owning this PHY 3125 */ 3126 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3127 { 3128 int retval; 3129 3130 /* Either the features are hard coded, or dynamically 3131 * determined. It cannot be both. 3132 */ 3133 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3134 pr_err("%s: features and get_features must not both be set\n", 3135 new_driver->name); 3136 return -EINVAL; 3137 } 3138 3139 /* PHYLIB device drivers must not match using a DT compatible table 3140 * as this bypasses our checks that the mdiodev that is being matched 3141 * is backed by a struct phy_device. If such a case happens, we will 3142 * make out-of-bounds accesses and lockup in phydev->lock. 3143 */ 3144 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3145 "%s: driver must not provide a DT match table\n", 3146 new_driver->name)) 3147 return -EINVAL; 3148 3149 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3150 new_driver->mdiodrv.driver.name = new_driver->name; 3151 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3152 new_driver->mdiodrv.driver.probe = phy_probe; 3153 new_driver->mdiodrv.driver.remove = phy_remove; 3154 new_driver->mdiodrv.driver.shutdown = phy_shutdown; 3155 new_driver->mdiodrv.driver.owner = owner; 3156 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3157 3158 retval = driver_register(&new_driver->mdiodrv.driver); 3159 if (retval) { 3160 pr_err("%s: Error %d in registering driver\n", 3161 new_driver->name, retval); 3162 3163 return retval; 3164 } 3165 3166 pr_debug("%s: Registered new driver\n", new_driver->name); 3167 3168 return 0; 3169 } 3170 EXPORT_SYMBOL(phy_driver_register); 3171 3172 int phy_drivers_register(struct phy_driver *new_driver, int n, 3173 struct module *owner) 3174 { 3175 int i, ret = 0; 3176 3177 for (i = 0; i < n; i++) { 3178 ret = phy_driver_register(new_driver + i, owner); 3179 if (ret) { 3180 while (i-- > 0) 3181 phy_driver_unregister(new_driver + i); 3182 break; 3183 } 3184 } 3185 return ret; 3186 } 3187 EXPORT_SYMBOL(phy_drivers_register); 3188 3189 void phy_driver_unregister(struct phy_driver *drv) 3190 { 3191 driver_unregister(&drv->mdiodrv.driver); 3192 } 3193 EXPORT_SYMBOL(phy_driver_unregister); 3194 3195 void phy_drivers_unregister(struct phy_driver *drv, int n) 3196 { 3197 int i; 3198 3199 for (i = 0; i < n; i++) 3200 phy_driver_unregister(drv + i); 3201 } 3202 EXPORT_SYMBOL(phy_drivers_unregister); 3203 3204 static struct phy_driver genphy_driver = { 3205 .phy_id = 0xffffffff, 3206 .phy_id_mask = 0xffffffff, 3207 .name = "Generic PHY", 3208 .get_features = genphy_read_abilities, 3209 .suspend = genphy_suspend, 3210 .resume = genphy_resume, 3211 .set_loopback = genphy_loopback, 3212 }; 3213 3214 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3215 .get_sset_count = phy_ethtool_get_sset_count, 3216 .get_strings = phy_ethtool_get_strings, 3217 .get_stats = phy_ethtool_get_stats, 3218 .start_cable_test = phy_start_cable_test, 3219 .start_cable_test_tdr = phy_start_cable_test_tdr, 3220 }; 3221 3222 static int __init phy_init(void) 3223 { 3224 int rc; 3225 3226 rc = mdio_bus_init(); 3227 if (rc) 3228 return rc; 3229 3230 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3231 features_init(); 3232 3233 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3234 if (rc) 3235 goto err_c45; 3236 3237 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3238 if (rc) { 3239 phy_driver_unregister(&genphy_c45_driver); 3240 err_c45: 3241 mdio_bus_exit(); 3242 } 3243 3244 return rc; 3245 } 3246 3247 static void __exit phy_exit(void) 3248 { 3249 phy_driver_unregister(&genphy_c45_driver); 3250 phy_driver_unregister(&genphy_driver); 3251 mdio_bus_exit(); 3252 ethtool_set_ethtool_phy_ops(NULL); 3253 } 3254 3255 subsys_initcall(phy_init); 3256 module_exit(phy_exit); 3257