1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phylib_stubs.h> 31 #include <linux/phy_led_triggers.h> 32 #include <linux/pse-pd/pse.h> 33 #include <linux/property.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/sfp.h> 36 #include <linux/skbuff.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/uaccess.h> 40 #include <linux/unistd.h> 41 42 MODULE_DESCRIPTION("PHY library"); 43 MODULE_AUTHOR("Andy Fleming"); 44 MODULE_LICENSE("GPL"); 45 46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 47 EXPORT_SYMBOL_GPL(phy_basic_features); 48 49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 50 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 51 52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 54 55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 56 EXPORT_SYMBOL_GPL(phy_gbit_features); 57 58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 60 61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 63 64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 65 EXPORT_SYMBOL_GPL(phy_10gbit_features); 66 67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 69 70 const int phy_basic_ports_array[3] = { 71 ETHTOOL_LINK_MODE_Autoneg_BIT, 72 ETHTOOL_LINK_MODE_TP_BIT, 73 ETHTOOL_LINK_MODE_MII_BIT, 74 }; 75 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 76 77 const int phy_fibre_port_array[1] = { 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 }; 80 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 81 82 const int phy_all_ports_features_array[7] = { 83 ETHTOOL_LINK_MODE_Autoneg_BIT, 84 ETHTOOL_LINK_MODE_TP_BIT, 85 ETHTOOL_LINK_MODE_MII_BIT, 86 ETHTOOL_LINK_MODE_FIBRE_BIT, 87 ETHTOOL_LINK_MODE_AUI_BIT, 88 ETHTOOL_LINK_MODE_BNC_BIT, 89 ETHTOOL_LINK_MODE_Backplane_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 92 93 const int phy_10_100_features_array[4] = { 94 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 95 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 97 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 98 }; 99 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 100 101 const int phy_basic_t1_features_array[3] = { 102 ETHTOOL_LINK_MODE_TP_BIT, 103 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 104 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 105 }; 106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 107 108 const int phy_basic_t1s_p2mp_features_array[2] = { 109 ETHTOOL_LINK_MODE_TP_BIT, 110 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 111 }; 112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 113 114 const int phy_gbit_features_array[2] = { 115 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 116 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 117 }; 118 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 119 120 const int phy_10gbit_features_array[1] = { 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 124 125 static const int phy_10gbit_fec_features_array[1] = { 126 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 127 }; 128 129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 131 132 static const int phy_10gbit_full_features_array[] = { 133 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 135 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 136 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 137 }; 138 139 static const int phy_eee_cap1_features_array[] = { 140 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 142 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 143 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 144 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 145 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 146 }; 147 148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 150 151 static void features_init(void) 152 { 153 /* 10/100 half/full*/ 154 linkmode_set_bit_array(phy_basic_ports_array, 155 ARRAY_SIZE(phy_basic_ports_array), 156 phy_basic_features); 157 linkmode_set_bit_array(phy_10_100_features_array, 158 ARRAY_SIZE(phy_10_100_features_array), 159 phy_basic_features); 160 161 /* 100 full, TP */ 162 linkmode_set_bit_array(phy_basic_t1_features_array, 163 ARRAY_SIZE(phy_basic_t1_features_array), 164 phy_basic_t1_features); 165 166 /* 10 half, P2MP, TP */ 167 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 168 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 169 phy_basic_t1s_p2mp_features); 170 171 /* 10/100 half/full + 1000 half/full */ 172 linkmode_set_bit_array(phy_basic_ports_array, 173 ARRAY_SIZE(phy_basic_ports_array), 174 phy_gbit_features); 175 linkmode_set_bit_array(phy_10_100_features_array, 176 ARRAY_SIZE(phy_10_100_features_array), 177 phy_gbit_features); 178 linkmode_set_bit_array(phy_gbit_features_array, 179 ARRAY_SIZE(phy_gbit_features_array), 180 phy_gbit_features); 181 182 /* 10/100 half/full + 1000 half/full + fibre*/ 183 linkmode_set_bit_array(phy_basic_ports_array, 184 ARRAY_SIZE(phy_basic_ports_array), 185 phy_gbit_fibre_features); 186 linkmode_set_bit_array(phy_10_100_features_array, 187 ARRAY_SIZE(phy_10_100_features_array), 188 phy_gbit_fibre_features); 189 linkmode_set_bit_array(phy_gbit_features_array, 190 ARRAY_SIZE(phy_gbit_features_array), 191 phy_gbit_fibre_features); 192 linkmode_set_bit_array(phy_fibre_port_array, 193 ARRAY_SIZE(phy_fibre_port_array), 194 phy_gbit_fibre_features); 195 196 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 197 linkmode_set_bit_array(phy_all_ports_features_array, 198 ARRAY_SIZE(phy_all_ports_features_array), 199 phy_gbit_all_ports_features); 200 linkmode_set_bit_array(phy_10_100_features_array, 201 ARRAY_SIZE(phy_10_100_features_array), 202 phy_gbit_all_ports_features); 203 linkmode_set_bit_array(phy_gbit_features_array, 204 ARRAY_SIZE(phy_gbit_features_array), 205 phy_gbit_all_ports_features); 206 207 /* 10/100 half/full + 1000 half/full + 10G full*/ 208 linkmode_set_bit_array(phy_all_ports_features_array, 209 ARRAY_SIZE(phy_all_ports_features_array), 210 phy_10gbit_features); 211 linkmode_set_bit_array(phy_10_100_features_array, 212 ARRAY_SIZE(phy_10_100_features_array), 213 phy_10gbit_features); 214 linkmode_set_bit_array(phy_gbit_features_array, 215 ARRAY_SIZE(phy_gbit_features_array), 216 phy_10gbit_features); 217 linkmode_set_bit_array(phy_10gbit_features_array, 218 ARRAY_SIZE(phy_10gbit_features_array), 219 phy_10gbit_features); 220 221 /* 10/100/1000/10G full */ 222 linkmode_set_bit_array(phy_all_ports_features_array, 223 ARRAY_SIZE(phy_all_ports_features_array), 224 phy_10gbit_full_features); 225 linkmode_set_bit_array(phy_10gbit_full_features_array, 226 ARRAY_SIZE(phy_10gbit_full_features_array), 227 phy_10gbit_full_features); 228 /* 10G FEC only */ 229 linkmode_set_bit_array(phy_10gbit_fec_features_array, 230 ARRAY_SIZE(phy_10gbit_fec_features_array), 231 phy_10gbit_fec_features); 232 linkmode_set_bit_array(phy_eee_cap1_features_array, 233 ARRAY_SIZE(phy_eee_cap1_features_array), 234 phy_eee_cap1_features); 235 236 } 237 238 void phy_device_free(struct phy_device *phydev) 239 { 240 put_device(&phydev->mdio.dev); 241 } 242 EXPORT_SYMBOL(phy_device_free); 243 244 static void phy_mdio_device_free(struct mdio_device *mdiodev) 245 { 246 struct phy_device *phydev; 247 248 phydev = container_of(mdiodev, struct phy_device, mdio); 249 phy_device_free(phydev); 250 } 251 252 static void phy_device_release(struct device *dev) 253 { 254 fwnode_handle_put(dev->fwnode); 255 kfree(to_phy_device(dev)); 256 } 257 258 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 259 { 260 struct phy_device *phydev; 261 262 phydev = container_of(mdiodev, struct phy_device, mdio); 263 phy_device_remove(phydev); 264 } 265 266 static struct phy_driver genphy_driver; 267 268 static LIST_HEAD(phy_fixup_list); 269 static DEFINE_MUTEX(phy_fixup_lock); 270 271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 272 { 273 struct device_driver *drv = phydev->mdio.dev.driver; 274 struct phy_driver *phydrv = to_phy_driver(drv); 275 struct net_device *netdev = phydev->attached_dev; 276 277 if (!drv || !phydrv->suspend) 278 return false; 279 280 /* PHY not attached? May suspend if the PHY has not already been 281 * suspended as part of a prior call to phy_disconnect() -> 282 * phy_detach() -> phy_suspend() because the parent netdev might be the 283 * MDIO bus driver and clock gated at this point. 284 */ 285 if (!netdev) 286 goto out; 287 288 if (netdev->wol_enabled) 289 return false; 290 291 /* As long as not all affected network drivers support the 292 * wol_enabled flag, let's check for hints that WoL is enabled. 293 * Don't suspend PHY if the attached netdev parent may wake up. 294 * The parent may point to a PCI device, as in tg3 driver. 295 */ 296 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 297 return false; 298 299 /* Also don't suspend PHY if the netdev itself may wakeup. This 300 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 301 * e.g. SoC devices. 302 */ 303 if (device_may_wakeup(&netdev->dev)) 304 return false; 305 306 out: 307 return !phydev->suspended; 308 } 309 310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 311 { 312 struct phy_device *phydev = to_phy_device(dev); 313 314 if (phydev->mac_managed_pm) 315 return 0; 316 317 /* Wakeup interrupts may occur during the system sleep transition when 318 * the PHY is inaccessible. Set flag to postpone handling until the PHY 319 * has resumed. Wait for concurrent interrupt handler to complete. 320 */ 321 if (phy_interrupt_is_valid(phydev)) { 322 phydev->irq_suspended = 1; 323 synchronize_irq(phydev->irq); 324 } 325 326 /* We must stop the state machine manually, otherwise it stops out of 327 * control, possibly with the phydev->lock held. Upon resume, netdev 328 * may call phy routines that try to grab the same lock, and that may 329 * lead to a deadlock. 330 */ 331 if (phydev->attached_dev && phydev->adjust_link) 332 phy_stop_machine(phydev); 333 334 if (!mdio_bus_phy_may_suspend(phydev)) 335 return 0; 336 337 phydev->suspended_by_mdio_bus = 1; 338 339 return phy_suspend(phydev); 340 } 341 342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 343 { 344 struct phy_device *phydev = to_phy_device(dev); 345 int ret; 346 347 if (phydev->mac_managed_pm) 348 return 0; 349 350 if (!phydev->suspended_by_mdio_bus) 351 goto no_resume; 352 353 phydev->suspended_by_mdio_bus = 0; 354 355 /* If we managed to get here with the PHY state machine in a state 356 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 357 * that something went wrong and we should most likely be using 358 * MAC managed PM, but we are not. 359 */ 360 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 361 phydev->state != PHY_UP); 362 363 ret = phy_init_hw(phydev); 364 if (ret < 0) 365 return ret; 366 367 ret = phy_resume(phydev); 368 if (ret < 0) 369 return ret; 370 no_resume: 371 if (phy_interrupt_is_valid(phydev)) { 372 phydev->irq_suspended = 0; 373 synchronize_irq(phydev->irq); 374 375 /* Rerun interrupts which were postponed by phy_interrupt() 376 * because they occurred during the system sleep transition. 377 */ 378 if (phydev->irq_rerun) { 379 phydev->irq_rerun = 0; 380 enable_irq(phydev->irq); 381 irq_wake_thread(phydev->irq, phydev); 382 } 383 } 384 385 if (phydev->attached_dev && phydev->adjust_link) 386 phy_start_machine(phydev); 387 388 return 0; 389 } 390 391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 392 mdio_bus_phy_resume); 393 394 /** 395 * phy_register_fixup - creates a new phy_fixup and adds it to the list 396 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 397 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 398 * It can also be PHY_ANY_UID 399 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 400 * comparison 401 * @run: The actual code to be run when a matching PHY is found 402 */ 403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 404 int (*run)(struct phy_device *)) 405 { 406 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 407 408 if (!fixup) 409 return -ENOMEM; 410 411 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 412 fixup->phy_uid = phy_uid; 413 fixup->phy_uid_mask = phy_uid_mask; 414 fixup->run = run; 415 416 mutex_lock(&phy_fixup_lock); 417 list_add_tail(&fixup->list, &phy_fixup_list); 418 mutex_unlock(&phy_fixup_lock); 419 420 return 0; 421 } 422 EXPORT_SYMBOL(phy_register_fixup); 423 424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 426 int (*run)(struct phy_device *)) 427 { 428 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 429 } 430 EXPORT_SYMBOL(phy_register_fixup_for_uid); 431 432 /* Registers a fixup to be run on the PHY with id string bus_id */ 433 int phy_register_fixup_for_id(const char *bus_id, 434 int (*run)(struct phy_device *)) 435 { 436 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 437 } 438 EXPORT_SYMBOL(phy_register_fixup_for_id); 439 440 /** 441 * phy_unregister_fixup - remove a phy_fixup from the list 442 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 443 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 444 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 445 */ 446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 447 { 448 struct list_head *pos, *n; 449 struct phy_fixup *fixup; 450 int ret; 451 452 ret = -ENODEV; 453 454 mutex_lock(&phy_fixup_lock); 455 list_for_each_safe(pos, n, &phy_fixup_list) { 456 fixup = list_entry(pos, struct phy_fixup, list); 457 458 if ((!strcmp(fixup->bus_id, bus_id)) && 459 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) { 460 list_del(&fixup->list); 461 kfree(fixup); 462 ret = 0; 463 break; 464 } 465 } 466 mutex_unlock(&phy_fixup_lock); 467 468 return ret; 469 } 470 EXPORT_SYMBOL(phy_unregister_fixup); 471 472 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 474 { 475 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 476 } 477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 478 479 /* Unregisters a fixup of the PHY with id string bus_id */ 480 int phy_unregister_fixup_for_id(const char *bus_id) 481 { 482 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 483 } 484 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 485 486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 487 * Fixups can be set to match any in one or more fields. 488 */ 489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 490 { 491 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 492 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 493 return 0; 494 495 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid, 496 fixup->phy_uid_mask)) 497 if (fixup->phy_uid != PHY_ANY_UID) 498 return 0; 499 500 return 1; 501 } 502 503 /* Runs any matching fixups for this phydev */ 504 static int phy_scan_fixups(struct phy_device *phydev) 505 { 506 struct phy_fixup *fixup; 507 508 mutex_lock(&phy_fixup_lock); 509 list_for_each_entry(fixup, &phy_fixup_list, list) { 510 if (phy_needs_fixup(phydev, fixup)) { 511 int err = fixup->run(phydev); 512 513 if (err < 0) { 514 mutex_unlock(&phy_fixup_lock); 515 return err; 516 } 517 phydev->has_fixups = true; 518 } 519 } 520 mutex_unlock(&phy_fixup_lock); 521 522 return 0; 523 } 524 525 static int phy_bus_match(struct device *dev, struct device_driver *drv) 526 { 527 struct phy_device *phydev = to_phy_device(dev); 528 struct phy_driver *phydrv = to_phy_driver(drv); 529 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 530 int i; 531 532 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 533 return 0; 534 535 if (phydrv->match_phy_device) 536 return phydrv->match_phy_device(phydev); 537 538 if (phydev->is_c45) { 539 for (i = 1; i < num_ids; i++) { 540 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 541 continue; 542 543 if (phy_id_compare(phydev->c45_ids.device_ids[i], 544 phydrv->phy_id, phydrv->phy_id_mask)) 545 return 1; 546 } 547 return 0; 548 } else { 549 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 550 phydrv->phy_id_mask); 551 } 552 } 553 554 static ssize_t 555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 556 { 557 struct phy_device *phydev = to_phy_device(dev); 558 559 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 560 } 561 static DEVICE_ATTR_RO(phy_id); 562 563 static ssize_t 564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 565 { 566 struct phy_device *phydev = to_phy_device(dev); 567 const char *mode = NULL; 568 569 if (phy_is_internal(phydev)) 570 mode = "internal"; 571 else 572 mode = phy_modes(phydev->interface); 573 574 return sysfs_emit(buf, "%s\n", mode); 575 } 576 static DEVICE_ATTR_RO(phy_interface); 577 578 static ssize_t 579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 580 char *buf) 581 { 582 struct phy_device *phydev = to_phy_device(dev); 583 584 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 585 } 586 static DEVICE_ATTR_RO(phy_has_fixups); 587 588 static ssize_t phy_dev_flags_show(struct device *dev, 589 struct device_attribute *attr, 590 char *buf) 591 { 592 struct phy_device *phydev = to_phy_device(dev); 593 594 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 595 } 596 static DEVICE_ATTR_RO(phy_dev_flags); 597 598 static struct attribute *phy_dev_attrs[] = { 599 &dev_attr_phy_id.attr, 600 &dev_attr_phy_interface.attr, 601 &dev_attr_phy_has_fixups.attr, 602 &dev_attr_phy_dev_flags.attr, 603 NULL, 604 }; 605 ATTRIBUTE_GROUPS(phy_dev); 606 607 static const struct device_type mdio_bus_phy_type = { 608 .name = "PHY", 609 .groups = phy_dev_groups, 610 .release = phy_device_release, 611 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 612 }; 613 614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 615 { 616 int ret; 617 618 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 619 MDIO_ID_ARGS(phy_id)); 620 /* We only check for failures in executing the usermode binary, 621 * not whether a PHY driver module exists for the PHY ID. 622 * Accept -ENOENT because this may occur in case no initramfs exists, 623 * then modprobe isn't available. 624 */ 625 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 626 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 627 ret, (unsigned long)phy_id); 628 return ret; 629 } 630 631 return 0; 632 } 633 634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 635 bool is_c45, 636 struct phy_c45_device_ids *c45_ids) 637 { 638 struct phy_device *dev; 639 struct mdio_device *mdiodev; 640 int ret = 0; 641 642 /* We allocate the device, and initialize the default values */ 643 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 644 if (!dev) 645 return ERR_PTR(-ENOMEM); 646 647 mdiodev = &dev->mdio; 648 mdiodev->dev.parent = &bus->dev; 649 mdiodev->dev.bus = &mdio_bus_type; 650 mdiodev->dev.type = &mdio_bus_phy_type; 651 mdiodev->bus = bus; 652 mdiodev->bus_match = phy_bus_match; 653 mdiodev->addr = addr; 654 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 655 mdiodev->device_free = phy_mdio_device_free; 656 mdiodev->device_remove = phy_mdio_device_remove; 657 mdiodev->reset_state = -1; 658 659 dev->speed = SPEED_UNKNOWN; 660 dev->duplex = DUPLEX_UNKNOWN; 661 dev->pause = 0; 662 dev->asym_pause = 0; 663 dev->link = 0; 664 dev->port = PORT_TP; 665 dev->interface = PHY_INTERFACE_MODE_GMII; 666 667 dev->autoneg = AUTONEG_ENABLE; 668 669 dev->pma_extable = -ENODATA; 670 dev->is_c45 = is_c45; 671 dev->phy_id = phy_id; 672 if (c45_ids) 673 dev->c45_ids = *c45_ids; 674 dev->irq = bus->irq[addr]; 675 676 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 677 device_initialize(&mdiodev->dev); 678 679 dev->state = PHY_DOWN; 680 INIT_LIST_HEAD(&dev->leds); 681 682 mutex_init(&dev->lock); 683 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 684 685 /* Request the appropriate module unconditionally; don't 686 * bother trying to do so only if it isn't already loaded, 687 * because that gets complicated. A hotplug event would have 688 * done an unconditional modprobe anyway. 689 * We don't do normal hotplug because it won't work for MDIO 690 * -- because it relies on the device staying around for long 691 * enough for the driver to get loaded. With MDIO, the NIC 692 * driver will get bored and give up as soon as it finds that 693 * there's no driver _already_ loaded. 694 */ 695 if (is_c45 && c45_ids) { 696 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 697 int i; 698 699 for (i = 1; i < num_ids; i++) { 700 if (c45_ids->device_ids[i] == 0xffffffff) 701 continue; 702 703 ret = phy_request_driver_module(dev, 704 c45_ids->device_ids[i]); 705 if (ret) 706 break; 707 } 708 } else { 709 ret = phy_request_driver_module(dev, phy_id); 710 } 711 712 if (ret) { 713 put_device(&mdiodev->dev); 714 dev = ERR_PTR(ret); 715 } 716 717 return dev; 718 } 719 EXPORT_SYMBOL(phy_device_create); 720 721 /* phy_c45_probe_present - checks to see if a MMD is present in the package 722 * @bus: the target MII bus 723 * @prtad: PHY package address on the MII bus 724 * @devad: PHY device (MMD) address 725 * 726 * Read the MDIO_STAT2 register, and check whether a device is responding 727 * at this address. 728 * 729 * Returns: negative error number on bus access error, zero if no device 730 * is responding, or positive if a device is present. 731 */ 732 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 733 { 734 int stat2; 735 736 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 737 if (stat2 < 0) 738 return stat2; 739 740 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 741 } 742 743 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 744 * @bus: the target MII bus 745 * @addr: PHY address on the MII bus 746 * @dev_addr: MMD address in the PHY. 747 * @devices_in_package: where to store the devices in package information. 748 * 749 * Description: reads devices in package registers of a MMD at @dev_addr 750 * from PHY at @addr on @bus. 751 * 752 * Returns: 0 on success, -EIO on failure. 753 */ 754 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 755 u32 *devices_in_package) 756 { 757 int phy_reg; 758 759 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 760 if (phy_reg < 0) 761 return -EIO; 762 *devices_in_package = phy_reg << 16; 763 764 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 765 if (phy_reg < 0) 766 return -EIO; 767 *devices_in_package |= phy_reg; 768 769 return 0; 770 } 771 772 /** 773 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 774 * @bus: the target MII bus 775 * @addr: PHY address on the MII bus 776 * @c45_ids: where to store the c45 ID information. 777 * 778 * Read the PHY "devices in package". If this appears to be valid, read 779 * the PHY identifiers for each device. Return the "devices in package" 780 * and identifiers in @c45_ids. 781 * 782 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 783 * the "devices in package" is invalid or no device responds. 784 */ 785 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 786 struct phy_c45_device_ids *c45_ids) 787 { 788 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 789 u32 devs_in_pkg = 0; 790 int i, ret, phy_reg; 791 792 /* Find first non-zero Devices In package. Device zero is reserved 793 * for 802.3 c45 complied PHYs, so don't probe it at first. 794 */ 795 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 796 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 797 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 798 /* Check that there is a device present at this 799 * address before reading the devices-in-package 800 * register to avoid reading garbage from the PHY. 801 * Some PHYs (88x3310) vendor space is not IEEE802.3 802 * compliant. 803 */ 804 ret = phy_c45_probe_present(bus, addr, i); 805 if (ret < 0) 806 /* returning -ENODEV doesn't stop bus 807 * scanning 808 */ 809 return (phy_reg == -EIO || 810 phy_reg == -ENODEV) ? -ENODEV : -EIO; 811 812 if (!ret) 813 continue; 814 } 815 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 816 if (phy_reg < 0) 817 return -EIO; 818 } 819 820 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 821 /* If mostly Fs, there is no device there, then let's probe 822 * MMD 0, as some 10G PHYs have zero Devices In package, 823 * e.g. Cortina CS4315/CS4340 PHY. 824 */ 825 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 826 if (phy_reg < 0) 827 return -EIO; 828 829 /* no device there, let's get out of here */ 830 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 831 return -ENODEV; 832 } 833 834 /* Now probe Device Identifiers for each device present. */ 835 for (i = 1; i < num_ids; i++) { 836 if (!(devs_in_pkg & (1 << i))) 837 continue; 838 839 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 840 /* Probe the "Device Present" bits for the vendor MMDs 841 * to ignore these if they do not contain IEEE 802.3 842 * registers. 843 */ 844 ret = phy_c45_probe_present(bus, addr, i); 845 if (ret < 0) 846 return ret; 847 848 if (!ret) 849 continue; 850 } 851 852 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 853 if (phy_reg < 0) 854 return -EIO; 855 c45_ids->device_ids[i] = phy_reg << 16; 856 857 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 858 if (phy_reg < 0) 859 return -EIO; 860 c45_ids->device_ids[i] |= phy_reg; 861 } 862 863 c45_ids->devices_in_package = devs_in_pkg; 864 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 865 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 866 867 return 0; 868 } 869 870 /** 871 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 872 * @bus: the target MII bus 873 * @addr: PHY address on the MII bus 874 * @phy_id: where to store the ID retrieved. 875 * 876 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 877 * placing it in @phy_id. Return zero on successful read and the ID is 878 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 879 * or invalid ID. 880 */ 881 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 882 { 883 int phy_reg; 884 885 /* Grab the bits from PHYIR1, and put them in the upper half */ 886 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 887 if (phy_reg < 0) { 888 /* returning -ENODEV doesn't stop bus scanning */ 889 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 890 } 891 892 *phy_id = phy_reg << 16; 893 894 /* Grab the bits from PHYIR2, and put them in the lower half */ 895 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 896 if (phy_reg < 0) { 897 /* returning -ENODEV doesn't stop bus scanning */ 898 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 899 } 900 901 *phy_id |= phy_reg; 902 903 /* If the phy_id is mostly Fs, there is no device there */ 904 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 905 return -ENODEV; 906 907 return 0; 908 } 909 910 /* Extract the phy ID from the compatible string of the form 911 * ethernet-phy-idAAAA.BBBB. 912 */ 913 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 914 { 915 unsigned int upper, lower; 916 const char *cp; 917 int ret; 918 919 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 920 if (ret) 921 return ret; 922 923 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 924 return -EINVAL; 925 926 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 927 return 0; 928 } 929 EXPORT_SYMBOL(fwnode_get_phy_id); 930 931 /** 932 * get_phy_device - reads the specified PHY device and returns its @phy_device 933 * struct 934 * @bus: the target MII bus 935 * @addr: PHY address on the MII bus 936 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 937 * 938 * Probe for a PHY at @addr on @bus. 939 * 940 * When probing for a clause 22 PHY, then read the ID registers. If we find 941 * a valid ID, allocate and return a &struct phy_device. 942 * 943 * When probing for a clause 45 PHY, read the "devices in package" registers. 944 * If the "devices in package" appears valid, read the ID registers for each 945 * MMD, allocate and return a &struct phy_device. 946 * 947 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 948 * no PHY present, or %-EIO on bus access error. 949 */ 950 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 951 { 952 struct phy_c45_device_ids c45_ids; 953 u32 phy_id = 0; 954 int r; 955 956 c45_ids.devices_in_package = 0; 957 c45_ids.mmds_present = 0; 958 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 959 960 if (is_c45) 961 r = get_phy_c45_ids(bus, addr, &c45_ids); 962 else 963 r = get_phy_c22_id(bus, addr, &phy_id); 964 965 if (r) 966 return ERR_PTR(r); 967 968 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 969 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 970 * probe with C45 to see if we're able to get a valid PHY ID in the C45 971 * space, if successful, create the C45 PHY device. 972 */ 973 if (!is_c45 && phy_id == 0 && bus->read_c45) { 974 r = get_phy_c45_ids(bus, addr, &c45_ids); 975 if (!r) 976 return phy_device_create(bus, addr, phy_id, 977 true, &c45_ids); 978 } 979 980 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 981 } 982 EXPORT_SYMBOL(get_phy_device); 983 984 /** 985 * phy_device_register - Register the phy device on the MDIO bus 986 * @phydev: phy_device structure to be added to the MDIO bus 987 */ 988 int phy_device_register(struct phy_device *phydev) 989 { 990 int err; 991 992 err = mdiobus_register_device(&phydev->mdio); 993 if (err) 994 return err; 995 996 /* Deassert the reset signal */ 997 phy_device_reset(phydev, 0); 998 999 /* Run all of the fixups for this PHY */ 1000 err = phy_scan_fixups(phydev); 1001 if (err) { 1002 phydev_err(phydev, "failed to initialize\n"); 1003 goto out; 1004 } 1005 1006 err = device_add(&phydev->mdio.dev); 1007 if (err) { 1008 phydev_err(phydev, "failed to add\n"); 1009 goto out; 1010 } 1011 1012 return 0; 1013 1014 out: 1015 /* Assert the reset signal */ 1016 phy_device_reset(phydev, 1); 1017 1018 mdiobus_unregister_device(&phydev->mdio); 1019 return err; 1020 } 1021 EXPORT_SYMBOL(phy_device_register); 1022 1023 /** 1024 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1025 * @phydev: phy_device structure to remove 1026 * 1027 * This doesn't free the phy_device itself, it merely reverses the effects 1028 * of phy_device_register(). Use phy_device_free() to free the device 1029 * after calling this function. 1030 */ 1031 void phy_device_remove(struct phy_device *phydev) 1032 { 1033 unregister_mii_timestamper(phydev->mii_ts); 1034 pse_control_put(phydev->psec); 1035 1036 device_del(&phydev->mdio.dev); 1037 1038 /* Assert the reset signal */ 1039 phy_device_reset(phydev, 1); 1040 1041 mdiobus_unregister_device(&phydev->mdio); 1042 } 1043 EXPORT_SYMBOL(phy_device_remove); 1044 1045 /** 1046 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1047 * @phydev: phy_device structure to read 802.3-c45 IDs 1048 * 1049 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1050 * the "devices in package" is invalid. 1051 */ 1052 int phy_get_c45_ids(struct phy_device *phydev) 1053 { 1054 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1055 &phydev->c45_ids); 1056 } 1057 EXPORT_SYMBOL(phy_get_c45_ids); 1058 1059 /** 1060 * phy_find_first - finds the first PHY device on the bus 1061 * @bus: the target MII bus 1062 */ 1063 struct phy_device *phy_find_first(struct mii_bus *bus) 1064 { 1065 struct phy_device *phydev; 1066 int addr; 1067 1068 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1069 phydev = mdiobus_get_phy(bus, addr); 1070 if (phydev) 1071 return phydev; 1072 } 1073 return NULL; 1074 } 1075 EXPORT_SYMBOL(phy_find_first); 1076 1077 static void phy_link_change(struct phy_device *phydev, bool up) 1078 { 1079 struct net_device *netdev = phydev->attached_dev; 1080 1081 if (up) 1082 netif_carrier_on(netdev); 1083 else 1084 netif_carrier_off(netdev); 1085 phydev->adjust_link(netdev); 1086 if (phydev->mii_ts && phydev->mii_ts->link_state) 1087 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1088 } 1089 1090 /** 1091 * phy_prepare_link - prepares the PHY layer to monitor link status 1092 * @phydev: target phy_device struct 1093 * @handler: callback function for link status change notifications 1094 * 1095 * Description: Tells the PHY infrastructure to handle the 1096 * gory details on monitoring link status (whether through 1097 * polling or an interrupt), and to call back to the 1098 * connected device driver when the link status changes. 1099 * If you want to monitor your own link state, don't call 1100 * this function. 1101 */ 1102 static void phy_prepare_link(struct phy_device *phydev, 1103 void (*handler)(struct net_device *)) 1104 { 1105 phydev->adjust_link = handler; 1106 } 1107 1108 /** 1109 * phy_connect_direct - connect an ethernet device to a specific phy_device 1110 * @dev: the network device to connect 1111 * @phydev: the pointer to the phy device 1112 * @handler: callback function for state change notifications 1113 * @interface: PHY device's interface 1114 */ 1115 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1116 void (*handler)(struct net_device *), 1117 phy_interface_t interface) 1118 { 1119 int rc; 1120 1121 if (!dev) 1122 return -EINVAL; 1123 1124 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1125 if (rc) 1126 return rc; 1127 1128 phy_prepare_link(phydev, handler); 1129 if (phy_interrupt_is_valid(phydev)) 1130 phy_request_interrupt(phydev); 1131 1132 return 0; 1133 } 1134 EXPORT_SYMBOL(phy_connect_direct); 1135 1136 /** 1137 * phy_connect - connect an ethernet device to a PHY device 1138 * @dev: the network device to connect 1139 * @bus_id: the id string of the PHY device to connect 1140 * @handler: callback function for state change notifications 1141 * @interface: PHY device's interface 1142 * 1143 * Description: Convenience function for connecting ethernet 1144 * devices to PHY devices. The default behavior is for 1145 * the PHY infrastructure to handle everything, and only notify 1146 * the connected driver when the link status changes. If you 1147 * don't want, or can't use the provided functionality, you may 1148 * choose to call only the subset of functions which provide 1149 * the desired functionality. 1150 */ 1151 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1152 void (*handler)(struct net_device *), 1153 phy_interface_t interface) 1154 { 1155 struct phy_device *phydev; 1156 struct device *d; 1157 int rc; 1158 1159 /* Search the list of PHY devices on the mdio bus for the 1160 * PHY with the requested name 1161 */ 1162 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1163 if (!d) { 1164 pr_err("PHY %s not found\n", bus_id); 1165 return ERR_PTR(-ENODEV); 1166 } 1167 phydev = to_phy_device(d); 1168 1169 rc = phy_connect_direct(dev, phydev, handler, interface); 1170 put_device(d); 1171 if (rc) 1172 return ERR_PTR(rc); 1173 1174 return phydev; 1175 } 1176 EXPORT_SYMBOL(phy_connect); 1177 1178 /** 1179 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1180 * device 1181 * @phydev: target phy_device struct 1182 */ 1183 void phy_disconnect(struct phy_device *phydev) 1184 { 1185 if (phy_is_started(phydev)) 1186 phy_stop(phydev); 1187 1188 if (phy_interrupt_is_valid(phydev)) 1189 phy_free_interrupt(phydev); 1190 1191 phydev->adjust_link = NULL; 1192 1193 phy_detach(phydev); 1194 } 1195 EXPORT_SYMBOL(phy_disconnect); 1196 1197 /** 1198 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1199 * @phydev: The PHY device to poll 1200 * 1201 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1202 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1203 * register must be polled until the BMCR_RESET bit clears. 1204 * 1205 * Furthermore, any attempts to write to PHY registers may have no effect 1206 * or even generate MDIO bus errors until this is complete. 1207 * 1208 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1209 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1210 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1211 * effort to support such broken PHYs, this function is separate from the 1212 * standard phy_init_hw() which will zero all the other bits in the BMCR 1213 * and reapply all driver-specific and board-specific fixups. 1214 */ 1215 static int phy_poll_reset(struct phy_device *phydev) 1216 { 1217 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1218 int ret, val; 1219 1220 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1221 50000, 600000, true); 1222 if (ret) 1223 return ret; 1224 /* Some chips (smsc911x) may still need up to another 1ms after the 1225 * BMCR_RESET bit is cleared before they are usable. 1226 */ 1227 msleep(1); 1228 return 0; 1229 } 1230 1231 int phy_init_hw(struct phy_device *phydev) 1232 { 1233 int ret = 0; 1234 1235 /* Deassert the reset signal */ 1236 phy_device_reset(phydev, 0); 1237 1238 if (!phydev->drv) 1239 return 0; 1240 1241 if (phydev->drv->soft_reset) { 1242 ret = phydev->drv->soft_reset(phydev); 1243 if (ret < 0) 1244 return ret; 1245 1246 /* see comment in genphy_soft_reset for an explanation */ 1247 phydev->suspended = 0; 1248 } 1249 1250 ret = phy_scan_fixups(phydev); 1251 if (ret < 0) 1252 return ret; 1253 1254 phy_interface_zero(phydev->possible_interfaces); 1255 1256 if (phydev->drv->config_init) { 1257 ret = phydev->drv->config_init(phydev); 1258 if (ret < 0) 1259 return ret; 1260 } 1261 1262 if (phydev->drv->config_intr) { 1263 ret = phydev->drv->config_intr(phydev); 1264 if (ret < 0) 1265 return ret; 1266 } 1267 1268 return 0; 1269 } 1270 EXPORT_SYMBOL(phy_init_hw); 1271 1272 void phy_attached_info(struct phy_device *phydev) 1273 { 1274 phy_attached_print(phydev, NULL); 1275 } 1276 EXPORT_SYMBOL(phy_attached_info); 1277 1278 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1279 char *phy_attached_info_irq(struct phy_device *phydev) 1280 { 1281 char *irq_str; 1282 char irq_num[8]; 1283 1284 switch(phydev->irq) { 1285 case PHY_POLL: 1286 irq_str = "POLL"; 1287 break; 1288 case PHY_MAC_INTERRUPT: 1289 irq_str = "MAC"; 1290 break; 1291 default: 1292 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1293 irq_str = irq_num; 1294 break; 1295 } 1296 1297 return kasprintf(GFP_KERNEL, "%s", irq_str); 1298 } 1299 EXPORT_SYMBOL(phy_attached_info_irq); 1300 1301 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1302 { 1303 const char *unbound = phydev->drv ? "" : "[unbound] "; 1304 char *irq_str = phy_attached_info_irq(phydev); 1305 1306 if (!fmt) { 1307 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1308 phydev_name(phydev), irq_str); 1309 } else { 1310 va_list ap; 1311 1312 phydev_info(phydev, ATTACHED_FMT, unbound, 1313 phydev_name(phydev), irq_str); 1314 1315 va_start(ap, fmt); 1316 vprintk(fmt, ap); 1317 va_end(ap); 1318 } 1319 kfree(irq_str); 1320 } 1321 EXPORT_SYMBOL(phy_attached_print); 1322 1323 static void phy_sysfs_create_links(struct phy_device *phydev) 1324 { 1325 struct net_device *dev = phydev->attached_dev; 1326 int err; 1327 1328 if (!dev) 1329 return; 1330 1331 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1332 "attached_dev"); 1333 if (err) 1334 return; 1335 1336 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1337 &phydev->mdio.dev.kobj, 1338 "phydev"); 1339 if (err) { 1340 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1341 kobject_name(&phydev->mdio.dev.kobj), 1342 err); 1343 /* non-fatal - some net drivers can use one netdevice 1344 * with more then one phy 1345 */ 1346 } 1347 1348 phydev->sysfs_links = true; 1349 } 1350 1351 static ssize_t 1352 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1353 char *buf) 1354 { 1355 struct phy_device *phydev = to_phy_device(dev); 1356 1357 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1358 } 1359 static DEVICE_ATTR_RO(phy_standalone); 1360 1361 /** 1362 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1363 * @upstream: pointer to the phy device 1364 * @bus: sfp bus representing cage being attached 1365 * 1366 * This is used to fill in the sfp_upstream_ops .attach member. 1367 */ 1368 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1369 { 1370 struct phy_device *phydev = upstream; 1371 1372 if (phydev->attached_dev) 1373 phydev->attached_dev->sfp_bus = bus; 1374 phydev->sfp_bus_attached = true; 1375 } 1376 EXPORT_SYMBOL(phy_sfp_attach); 1377 1378 /** 1379 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1380 * @upstream: pointer to the phy device 1381 * @bus: sfp bus representing cage being attached 1382 * 1383 * This is used to fill in the sfp_upstream_ops .detach member. 1384 */ 1385 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1386 { 1387 struct phy_device *phydev = upstream; 1388 1389 if (phydev->attached_dev) 1390 phydev->attached_dev->sfp_bus = NULL; 1391 phydev->sfp_bus_attached = false; 1392 } 1393 EXPORT_SYMBOL(phy_sfp_detach); 1394 1395 /** 1396 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1397 * @phydev: Pointer to phy_device 1398 * @ops: SFP's upstream operations 1399 */ 1400 int phy_sfp_probe(struct phy_device *phydev, 1401 const struct sfp_upstream_ops *ops) 1402 { 1403 struct sfp_bus *bus; 1404 int ret = 0; 1405 1406 if (phydev->mdio.dev.fwnode) { 1407 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1408 if (IS_ERR(bus)) 1409 return PTR_ERR(bus); 1410 1411 phydev->sfp_bus = bus; 1412 1413 ret = sfp_bus_add_upstream(bus, phydev, ops); 1414 sfp_bus_put(bus); 1415 } 1416 return ret; 1417 } 1418 EXPORT_SYMBOL(phy_sfp_probe); 1419 1420 static bool phy_drv_supports_irq(const struct phy_driver *phydrv) 1421 { 1422 return phydrv->config_intr && phydrv->handle_interrupt; 1423 } 1424 1425 /** 1426 * phy_attach_direct - attach a network device to a given PHY device pointer 1427 * @dev: network device to attach 1428 * @phydev: Pointer to phy_device to attach 1429 * @flags: PHY device's dev_flags 1430 * @interface: PHY device's interface 1431 * 1432 * Description: Called by drivers to attach to a particular PHY 1433 * device. The phy_device is found, and properly hooked up 1434 * to the phy_driver. If no driver is attached, then a 1435 * generic driver is used. The phy_device is given a ptr to 1436 * the attaching device, and given a callback for link status 1437 * change. The phy_device is returned to the attaching driver. 1438 * This function takes a reference on the phy device. 1439 */ 1440 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1441 u32 flags, phy_interface_t interface) 1442 { 1443 struct mii_bus *bus = phydev->mdio.bus; 1444 struct device *d = &phydev->mdio.dev; 1445 struct module *ndev_owner = NULL; 1446 bool using_genphy = false; 1447 int err; 1448 1449 /* For Ethernet device drivers that register their own MDIO bus, we 1450 * will have bus->owner match ndev_mod, so we do not want to increment 1451 * our own module->refcnt here, otherwise we would not be able to 1452 * unload later on. 1453 */ 1454 if (dev) 1455 ndev_owner = dev->dev.parent->driver->owner; 1456 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1457 phydev_err(phydev, "failed to get the bus module\n"); 1458 return -EIO; 1459 } 1460 1461 get_device(d); 1462 1463 /* Assume that if there is no driver, that it doesn't 1464 * exist, and we should use the genphy driver. 1465 */ 1466 if (!d->driver) { 1467 if (phydev->is_c45) 1468 d->driver = &genphy_c45_driver.mdiodrv.driver; 1469 else 1470 d->driver = &genphy_driver.mdiodrv.driver; 1471 1472 using_genphy = true; 1473 } 1474 1475 if (!try_module_get(d->driver->owner)) { 1476 phydev_err(phydev, "failed to get the device driver module\n"); 1477 err = -EIO; 1478 goto error_put_device; 1479 } 1480 1481 if (using_genphy) { 1482 err = d->driver->probe(d); 1483 if (err >= 0) 1484 err = device_bind_driver(d); 1485 1486 if (err) 1487 goto error_module_put; 1488 } 1489 1490 if (phydev->attached_dev) { 1491 dev_err(&dev->dev, "PHY already attached\n"); 1492 err = -EBUSY; 1493 goto error; 1494 } 1495 1496 phydev->phy_link_change = phy_link_change; 1497 if (dev) { 1498 phydev->attached_dev = dev; 1499 dev->phydev = phydev; 1500 1501 if (phydev->sfp_bus_attached) 1502 dev->sfp_bus = phydev->sfp_bus; 1503 } 1504 1505 /* Some Ethernet drivers try to connect to a PHY device before 1506 * calling register_netdevice() -> netdev_register_kobject() and 1507 * does the dev->dev.kobj initialization. Here we only check for 1508 * success which indicates that the network device kobject is 1509 * ready. Once we do that we still need to keep track of whether 1510 * links were successfully set up or not for phy_detach() to 1511 * remove them accordingly. 1512 */ 1513 phydev->sysfs_links = false; 1514 1515 phy_sysfs_create_links(phydev); 1516 1517 if (!phydev->attached_dev) { 1518 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1519 &dev_attr_phy_standalone.attr); 1520 if (err) 1521 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1522 } 1523 1524 phydev->dev_flags |= flags; 1525 1526 phydev->interface = interface; 1527 1528 phydev->state = PHY_READY; 1529 1530 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1531 1532 /* PHYs can request to use poll mode even though they have an 1533 * associated interrupt line. This could be the case if they 1534 * detect a broken interrupt handling. 1535 */ 1536 if (phydev->dev_flags & PHY_F_NO_IRQ) 1537 phydev->irq = PHY_POLL; 1538 1539 if (!phy_drv_supports_irq(phydev->drv) && phy_interrupt_is_valid(phydev)) 1540 phydev->irq = PHY_POLL; 1541 1542 /* Port is set to PORT_TP by default and the actual PHY driver will set 1543 * it to different value depending on the PHY configuration. If we have 1544 * the generic PHY driver we can't figure it out, thus set the old 1545 * legacy PORT_MII value. 1546 */ 1547 if (using_genphy) 1548 phydev->port = PORT_MII; 1549 1550 /* Initial carrier state is off as the phy is about to be 1551 * (re)initialized. 1552 */ 1553 if (dev) 1554 netif_carrier_off(phydev->attached_dev); 1555 1556 /* Do initial configuration here, now that 1557 * we have certain key parameters 1558 * (dev_flags and interface) 1559 */ 1560 err = phy_init_hw(phydev); 1561 if (err) 1562 goto error; 1563 1564 phy_resume(phydev); 1565 if (!phydev->is_on_sfp_module) 1566 phy_led_triggers_register(phydev); 1567 1568 /** 1569 * If the external phy used by current mac interface is managed by 1570 * another mac interface, so we should create a device link between 1571 * phy dev and mac dev. 1572 */ 1573 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1574 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1575 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1576 1577 return err; 1578 1579 error: 1580 /* phy_detach() does all of the cleanup below */ 1581 phy_detach(phydev); 1582 return err; 1583 1584 error_module_put: 1585 module_put(d->driver->owner); 1586 d->driver = NULL; 1587 error_put_device: 1588 put_device(d); 1589 if (ndev_owner != bus->owner) 1590 module_put(bus->owner); 1591 return err; 1592 } 1593 EXPORT_SYMBOL(phy_attach_direct); 1594 1595 /** 1596 * phy_attach - attach a network device to a particular PHY device 1597 * @dev: network device to attach 1598 * @bus_id: Bus ID of PHY device to attach 1599 * @interface: PHY device's interface 1600 * 1601 * Description: Same as phy_attach_direct() except that a PHY bus_id 1602 * string is passed instead of a pointer to a struct phy_device. 1603 */ 1604 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1605 phy_interface_t interface) 1606 { 1607 struct bus_type *bus = &mdio_bus_type; 1608 struct phy_device *phydev; 1609 struct device *d; 1610 int rc; 1611 1612 if (!dev) 1613 return ERR_PTR(-EINVAL); 1614 1615 /* Search the list of PHY devices on the mdio bus for the 1616 * PHY with the requested name 1617 */ 1618 d = bus_find_device_by_name(bus, NULL, bus_id); 1619 if (!d) { 1620 pr_err("PHY %s not found\n", bus_id); 1621 return ERR_PTR(-ENODEV); 1622 } 1623 phydev = to_phy_device(d); 1624 1625 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1626 put_device(d); 1627 if (rc) 1628 return ERR_PTR(rc); 1629 1630 return phydev; 1631 } 1632 EXPORT_SYMBOL(phy_attach); 1633 1634 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1635 struct device_driver *driver) 1636 { 1637 struct device *d = &phydev->mdio.dev; 1638 bool ret = false; 1639 1640 if (!phydev->drv) 1641 return ret; 1642 1643 get_device(d); 1644 ret = d->driver == driver; 1645 put_device(d); 1646 1647 return ret; 1648 } 1649 1650 bool phy_driver_is_genphy(struct phy_device *phydev) 1651 { 1652 return phy_driver_is_genphy_kind(phydev, 1653 &genphy_driver.mdiodrv.driver); 1654 } 1655 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1656 1657 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1658 { 1659 return phy_driver_is_genphy_kind(phydev, 1660 &genphy_c45_driver.mdiodrv.driver); 1661 } 1662 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1663 1664 /** 1665 * phy_package_join - join a common PHY group 1666 * @phydev: target phy_device struct 1667 * @base_addr: cookie and base PHY address of PHY package for offset 1668 * calculation of global register access 1669 * @priv_size: if non-zero allocate this amount of bytes for private data 1670 * 1671 * This joins a PHY group and provides a shared storage for all phydevs in 1672 * this group. This is intended to be used for packages which contain 1673 * more than one PHY, for example a quad PHY transceiver. 1674 * 1675 * The base_addr parameter serves as cookie which has to have the same values 1676 * for all members of one group and as the base PHY address of the PHY package 1677 * for offset calculation to access generic registers of a PHY package. 1678 * Usually, one of the PHY addresses of the different PHYs in the package 1679 * provides access to these global registers. 1680 * The address which is given here, will be used in the phy_package_read() 1681 * and phy_package_write() convenience functions as base and added to the 1682 * passed offset in those functions. 1683 * 1684 * This will set the shared pointer of the phydev to the shared storage. 1685 * If this is the first call for a this cookie the shared storage will be 1686 * allocated. If priv_size is non-zero, the given amount of bytes are 1687 * allocated for the priv member. 1688 * 1689 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1690 * with the same cookie but a different priv_size is an error. 1691 */ 1692 int phy_package_join(struct phy_device *phydev, int base_addr, size_t priv_size) 1693 { 1694 struct mii_bus *bus = phydev->mdio.bus; 1695 struct phy_package_shared *shared; 1696 int ret; 1697 1698 if (base_addr < 0 || base_addr >= PHY_MAX_ADDR) 1699 return -EINVAL; 1700 1701 mutex_lock(&bus->shared_lock); 1702 shared = bus->shared[base_addr]; 1703 if (!shared) { 1704 ret = -ENOMEM; 1705 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1706 if (!shared) 1707 goto err_unlock; 1708 if (priv_size) { 1709 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1710 if (!shared->priv) 1711 goto err_free; 1712 shared->priv_size = priv_size; 1713 } 1714 shared->base_addr = base_addr; 1715 refcount_set(&shared->refcnt, 1); 1716 bus->shared[base_addr] = shared; 1717 } else { 1718 ret = -EINVAL; 1719 if (priv_size && priv_size != shared->priv_size) 1720 goto err_unlock; 1721 refcount_inc(&shared->refcnt); 1722 } 1723 mutex_unlock(&bus->shared_lock); 1724 1725 phydev->shared = shared; 1726 1727 return 0; 1728 1729 err_free: 1730 kfree(shared); 1731 err_unlock: 1732 mutex_unlock(&bus->shared_lock); 1733 return ret; 1734 } 1735 EXPORT_SYMBOL_GPL(phy_package_join); 1736 1737 /** 1738 * phy_package_leave - leave a common PHY group 1739 * @phydev: target phy_device struct 1740 * 1741 * This leaves a PHY group created by phy_package_join(). If this phydev 1742 * was the last user of the shared data between the group, this data is 1743 * freed. Resets the phydev->shared pointer to NULL. 1744 */ 1745 void phy_package_leave(struct phy_device *phydev) 1746 { 1747 struct phy_package_shared *shared = phydev->shared; 1748 struct mii_bus *bus = phydev->mdio.bus; 1749 1750 if (!shared) 1751 return; 1752 1753 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1754 bus->shared[shared->base_addr] = NULL; 1755 mutex_unlock(&bus->shared_lock); 1756 kfree(shared->priv); 1757 kfree(shared); 1758 } 1759 1760 phydev->shared = NULL; 1761 } 1762 EXPORT_SYMBOL_GPL(phy_package_leave); 1763 1764 static void devm_phy_package_leave(struct device *dev, void *res) 1765 { 1766 phy_package_leave(*(struct phy_device **)res); 1767 } 1768 1769 /** 1770 * devm_phy_package_join - resource managed phy_package_join() 1771 * @dev: device that is registering this PHY package 1772 * @phydev: target phy_device struct 1773 * @base_addr: cookie and base PHY address of PHY package for offset 1774 * calculation of global register access 1775 * @priv_size: if non-zero allocate this amount of bytes for private data 1776 * 1777 * Managed phy_package_join(). Shared storage fetched by this function, 1778 * phy_package_leave() is automatically called on driver detach. See 1779 * phy_package_join() for more information. 1780 */ 1781 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1782 int base_addr, size_t priv_size) 1783 { 1784 struct phy_device **ptr; 1785 int ret; 1786 1787 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1788 GFP_KERNEL); 1789 if (!ptr) 1790 return -ENOMEM; 1791 1792 ret = phy_package_join(phydev, base_addr, priv_size); 1793 1794 if (!ret) { 1795 *ptr = phydev; 1796 devres_add(dev, ptr); 1797 } else { 1798 devres_free(ptr); 1799 } 1800 1801 return ret; 1802 } 1803 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1804 1805 /** 1806 * phy_detach - detach a PHY device from its network device 1807 * @phydev: target phy_device struct 1808 * 1809 * This detaches the phy device from its network device and the phy 1810 * driver, and drops the reference count taken in phy_attach_direct(). 1811 */ 1812 void phy_detach(struct phy_device *phydev) 1813 { 1814 struct net_device *dev = phydev->attached_dev; 1815 struct module *ndev_owner = NULL; 1816 struct mii_bus *bus; 1817 1818 if (phydev->devlink) 1819 device_link_del(phydev->devlink); 1820 1821 if (phydev->sysfs_links) { 1822 if (dev) 1823 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1824 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1825 } 1826 1827 if (!phydev->attached_dev) 1828 sysfs_remove_file(&phydev->mdio.dev.kobj, 1829 &dev_attr_phy_standalone.attr); 1830 1831 phy_suspend(phydev); 1832 if (dev) { 1833 phydev->attached_dev->phydev = NULL; 1834 phydev->attached_dev = NULL; 1835 } 1836 phydev->phylink = NULL; 1837 1838 if (!phydev->is_on_sfp_module) 1839 phy_led_triggers_unregister(phydev); 1840 1841 if (phydev->mdio.dev.driver) 1842 module_put(phydev->mdio.dev.driver->owner); 1843 1844 /* If the device had no specific driver before (i.e. - it 1845 * was using the generic driver), we unbind the device 1846 * from the generic driver so that there's a chance a 1847 * real driver could be loaded 1848 */ 1849 if (phy_driver_is_genphy(phydev) || 1850 phy_driver_is_genphy_10g(phydev)) 1851 device_release_driver(&phydev->mdio.dev); 1852 1853 /* Assert the reset signal */ 1854 phy_device_reset(phydev, 1); 1855 1856 /* 1857 * The phydev might go away on the put_device() below, so avoid 1858 * a use-after-free bug by reading the underlying bus first. 1859 */ 1860 bus = phydev->mdio.bus; 1861 1862 put_device(&phydev->mdio.dev); 1863 if (dev) 1864 ndev_owner = dev->dev.parent->driver->owner; 1865 if (ndev_owner != bus->owner) 1866 module_put(bus->owner); 1867 } 1868 EXPORT_SYMBOL(phy_detach); 1869 1870 int phy_suspend(struct phy_device *phydev) 1871 { 1872 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1873 struct net_device *netdev = phydev->attached_dev; 1874 const struct phy_driver *phydrv = phydev->drv; 1875 int ret; 1876 1877 if (phydev->suspended) 1878 return 0; 1879 1880 phy_ethtool_get_wol(phydev, &wol); 1881 phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled); 1882 /* If the device has WOL enabled, we cannot suspend the PHY */ 1883 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 1884 return -EBUSY; 1885 1886 if (!phydrv || !phydrv->suspend) 1887 return 0; 1888 1889 ret = phydrv->suspend(phydev); 1890 if (!ret) 1891 phydev->suspended = true; 1892 1893 return ret; 1894 } 1895 EXPORT_SYMBOL(phy_suspend); 1896 1897 int __phy_resume(struct phy_device *phydev) 1898 { 1899 const struct phy_driver *phydrv = phydev->drv; 1900 int ret; 1901 1902 lockdep_assert_held(&phydev->lock); 1903 1904 if (!phydrv || !phydrv->resume) 1905 return 0; 1906 1907 ret = phydrv->resume(phydev); 1908 if (!ret) 1909 phydev->suspended = false; 1910 1911 return ret; 1912 } 1913 EXPORT_SYMBOL(__phy_resume); 1914 1915 int phy_resume(struct phy_device *phydev) 1916 { 1917 int ret; 1918 1919 mutex_lock(&phydev->lock); 1920 ret = __phy_resume(phydev); 1921 mutex_unlock(&phydev->lock); 1922 1923 return ret; 1924 } 1925 EXPORT_SYMBOL(phy_resume); 1926 1927 int phy_loopback(struct phy_device *phydev, bool enable) 1928 { 1929 int ret = 0; 1930 1931 if (!phydev->drv) 1932 return -EIO; 1933 1934 mutex_lock(&phydev->lock); 1935 1936 if (enable && phydev->loopback_enabled) { 1937 ret = -EBUSY; 1938 goto out; 1939 } 1940 1941 if (!enable && !phydev->loopback_enabled) { 1942 ret = -EINVAL; 1943 goto out; 1944 } 1945 1946 if (phydev->drv->set_loopback) 1947 ret = phydev->drv->set_loopback(phydev, enable); 1948 else 1949 ret = genphy_loopback(phydev, enable); 1950 1951 if (ret) 1952 goto out; 1953 1954 phydev->loopback_enabled = enable; 1955 1956 out: 1957 mutex_unlock(&phydev->lock); 1958 return ret; 1959 } 1960 EXPORT_SYMBOL(phy_loopback); 1961 1962 /** 1963 * phy_reset_after_clk_enable - perform a PHY reset if needed 1964 * @phydev: target phy_device struct 1965 * 1966 * Description: Some PHYs are known to need a reset after their refclk was 1967 * enabled. This function evaluates the flags and perform the reset if it's 1968 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1969 * was reset. 1970 */ 1971 int phy_reset_after_clk_enable(struct phy_device *phydev) 1972 { 1973 if (!phydev || !phydev->drv) 1974 return -ENODEV; 1975 1976 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1977 phy_device_reset(phydev, 1); 1978 phy_device_reset(phydev, 0); 1979 return 1; 1980 } 1981 1982 return 0; 1983 } 1984 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1985 1986 /* Generic PHY support and helper functions */ 1987 1988 /** 1989 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1990 * @phydev: target phy_device struct 1991 * 1992 * Description: Writes MII_ADVERTISE with the appropriate values, 1993 * after sanitizing the values to make sure we only advertise 1994 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1995 * hasn't changed, and > 0 if it has changed. 1996 */ 1997 static int genphy_config_advert(struct phy_device *phydev) 1998 { 1999 int err, bmsr, changed = 0; 2000 u32 adv; 2001 2002 /* Only allow advertising what this PHY supports */ 2003 linkmode_and(phydev->advertising, phydev->advertising, 2004 phydev->supported); 2005 2006 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 2007 2008 /* Setup standard advertisement */ 2009 err = phy_modify_changed(phydev, MII_ADVERTISE, 2010 ADVERTISE_ALL | ADVERTISE_100BASE4 | 2011 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 2012 adv); 2013 if (err < 0) 2014 return err; 2015 if (err > 0) 2016 changed = 1; 2017 2018 bmsr = phy_read(phydev, MII_BMSR); 2019 if (bmsr < 0) 2020 return bmsr; 2021 2022 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2023 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2024 * logical 1. 2025 */ 2026 if (!(bmsr & BMSR_ESTATEN)) 2027 return changed; 2028 2029 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2030 2031 err = phy_modify_changed(phydev, MII_CTRL1000, 2032 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2033 adv); 2034 if (err < 0) 2035 return err; 2036 if (err > 0) 2037 changed = 1; 2038 2039 return changed; 2040 } 2041 2042 /** 2043 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2044 * @phydev: target phy_device struct 2045 * 2046 * Description: Writes MII_ADVERTISE with the appropriate values, 2047 * after sanitizing the values to make sure we only advertise 2048 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2049 * hasn't changed, and > 0 if it has changed. This function is intended 2050 * for Clause 37 1000Base-X mode. 2051 */ 2052 static int genphy_c37_config_advert(struct phy_device *phydev) 2053 { 2054 u16 adv = 0; 2055 2056 /* Only allow advertising what this PHY supports */ 2057 linkmode_and(phydev->advertising, phydev->advertising, 2058 phydev->supported); 2059 2060 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2061 phydev->advertising)) 2062 adv |= ADVERTISE_1000XFULL; 2063 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2064 phydev->advertising)) 2065 adv |= ADVERTISE_1000XPAUSE; 2066 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2067 phydev->advertising)) 2068 adv |= ADVERTISE_1000XPSE_ASYM; 2069 2070 return phy_modify_changed(phydev, MII_ADVERTISE, 2071 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2072 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2073 adv); 2074 } 2075 2076 /** 2077 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2078 * @phydev: target phy_device struct 2079 * 2080 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2081 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2082 * changed, and 1 if it has changed. 2083 */ 2084 int genphy_config_eee_advert(struct phy_device *phydev) 2085 { 2086 int err; 2087 2088 /* Nothing to disable */ 2089 if (!phydev->eee_broken_modes) 2090 return 0; 2091 2092 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2093 phydev->eee_broken_modes, 0); 2094 /* If the call failed, we assume that EEE is not supported */ 2095 return err < 0 ? 0 : err; 2096 } 2097 EXPORT_SYMBOL(genphy_config_eee_advert); 2098 2099 /** 2100 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2101 * @phydev: target phy_device struct 2102 * 2103 * Description: Configures MII_BMCR to force speed/duplex 2104 * to the values in phydev. Assumes that the values are valid. 2105 * Please see phy_sanitize_settings(). 2106 */ 2107 int genphy_setup_forced(struct phy_device *phydev) 2108 { 2109 u16 ctl; 2110 2111 phydev->pause = 0; 2112 phydev->asym_pause = 0; 2113 2114 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2115 2116 return phy_modify(phydev, MII_BMCR, 2117 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2118 } 2119 EXPORT_SYMBOL(genphy_setup_forced); 2120 2121 static int genphy_setup_master_slave(struct phy_device *phydev) 2122 { 2123 u16 ctl = 0; 2124 2125 if (!phydev->is_gigabit_capable) 2126 return 0; 2127 2128 switch (phydev->master_slave_set) { 2129 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2130 ctl |= CTL1000_PREFER_MASTER; 2131 break; 2132 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2133 break; 2134 case MASTER_SLAVE_CFG_MASTER_FORCE: 2135 ctl |= CTL1000_AS_MASTER; 2136 fallthrough; 2137 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2138 ctl |= CTL1000_ENABLE_MASTER; 2139 break; 2140 case MASTER_SLAVE_CFG_UNKNOWN: 2141 case MASTER_SLAVE_CFG_UNSUPPORTED: 2142 return 0; 2143 default: 2144 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2145 return -EOPNOTSUPP; 2146 } 2147 2148 return phy_modify_changed(phydev, MII_CTRL1000, 2149 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2150 CTL1000_PREFER_MASTER), ctl); 2151 } 2152 2153 int genphy_read_master_slave(struct phy_device *phydev) 2154 { 2155 int cfg, state; 2156 int val; 2157 2158 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2159 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2160 2161 val = phy_read(phydev, MII_CTRL1000); 2162 if (val < 0) 2163 return val; 2164 2165 if (val & CTL1000_ENABLE_MASTER) { 2166 if (val & CTL1000_AS_MASTER) 2167 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2168 else 2169 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2170 } else { 2171 if (val & CTL1000_PREFER_MASTER) 2172 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2173 else 2174 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2175 } 2176 2177 val = phy_read(phydev, MII_STAT1000); 2178 if (val < 0) 2179 return val; 2180 2181 if (val & LPA_1000MSFAIL) { 2182 state = MASTER_SLAVE_STATE_ERR; 2183 } else if (phydev->link) { 2184 /* this bits are valid only for active link */ 2185 if (val & LPA_1000MSRES) 2186 state = MASTER_SLAVE_STATE_MASTER; 2187 else 2188 state = MASTER_SLAVE_STATE_SLAVE; 2189 } else { 2190 state = MASTER_SLAVE_STATE_UNKNOWN; 2191 } 2192 2193 phydev->master_slave_get = cfg; 2194 phydev->master_slave_state = state; 2195 2196 return 0; 2197 } 2198 EXPORT_SYMBOL(genphy_read_master_slave); 2199 2200 /** 2201 * genphy_restart_aneg - Enable and Restart Autonegotiation 2202 * @phydev: target phy_device struct 2203 */ 2204 int genphy_restart_aneg(struct phy_device *phydev) 2205 { 2206 /* Don't isolate the PHY if we're negotiating */ 2207 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2208 BMCR_ANENABLE | BMCR_ANRESTART); 2209 } 2210 EXPORT_SYMBOL(genphy_restart_aneg); 2211 2212 /** 2213 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2214 * @phydev: target phy_device struct 2215 * @restart: whether aneg restart is requested 2216 * 2217 * Check, and restart auto-negotiation if needed. 2218 */ 2219 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2220 { 2221 int ret; 2222 2223 if (!restart) { 2224 /* Advertisement hasn't changed, but maybe aneg was never on to 2225 * begin with? Or maybe phy was isolated? 2226 */ 2227 ret = phy_read(phydev, MII_BMCR); 2228 if (ret < 0) 2229 return ret; 2230 2231 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2232 restart = true; 2233 } 2234 2235 if (restart) 2236 return genphy_restart_aneg(phydev); 2237 2238 return 0; 2239 } 2240 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2241 2242 /** 2243 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2244 * @phydev: target phy_device struct 2245 * @changed: whether autoneg is requested 2246 * 2247 * Description: If auto-negotiation is enabled, we configure the 2248 * advertising, and then restart auto-negotiation. If it is not 2249 * enabled, then we write the BMCR. 2250 */ 2251 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2252 { 2253 int err; 2254 2255 err = genphy_c45_an_config_eee_aneg(phydev); 2256 if (err < 0) 2257 return err; 2258 else if (err) 2259 changed = true; 2260 2261 err = genphy_setup_master_slave(phydev); 2262 if (err < 0) 2263 return err; 2264 else if (err) 2265 changed = true; 2266 2267 if (AUTONEG_ENABLE != phydev->autoneg) 2268 return genphy_setup_forced(phydev); 2269 2270 err = genphy_config_advert(phydev); 2271 if (err < 0) /* error */ 2272 return err; 2273 else if (err) 2274 changed = true; 2275 2276 return genphy_check_and_restart_aneg(phydev, changed); 2277 } 2278 EXPORT_SYMBOL(__genphy_config_aneg); 2279 2280 /** 2281 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2282 * @phydev: target phy_device struct 2283 * 2284 * Description: If auto-negotiation is enabled, we configure the 2285 * advertising, and then restart auto-negotiation. If it is not 2286 * enabled, then we write the BMCR. This function is intended 2287 * for use with Clause 37 1000Base-X mode. 2288 */ 2289 int genphy_c37_config_aneg(struct phy_device *phydev) 2290 { 2291 int err, changed; 2292 2293 if (phydev->autoneg != AUTONEG_ENABLE) 2294 return genphy_setup_forced(phydev); 2295 2296 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2297 BMCR_SPEED1000); 2298 if (err) 2299 return err; 2300 2301 changed = genphy_c37_config_advert(phydev); 2302 if (changed < 0) /* error */ 2303 return changed; 2304 2305 if (!changed) { 2306 /* Advertisement hasn't changed, but maybe aneg was never on to 2307 * begin with? Or maybe phy was isolated? 2308 */ 2309 int ctl = phy_read(phydev, MII_BMCR); 2310 2311 if (ctl < 0) 2312 return ctl; 2313 2314 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2315 changed = 1; /* do restart aneg */ 2316 } 2317 2318 /* Only restart aneg if we are advertising something different 2319 * than we were before. 2320 */ 2321 if (changed > 0) 2322 return genphy_restart_aneg(phydev); 2323 2324 return 0; 2325 } 2326 EXPORT_SYMBOL(genphy_c37_config_aneg); 2327 2328 /** 2329 * genphy_aneg_done - return auto-negotiation status 2330 * @phydev: target phy_device struct 2331 * 2332 * Description: Reads the status register and returns 0 either if 2333 * auto-negotiation is incomplete, or if there was an error. 2334 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2335 */ 2336 int genphy_aneg_done(struct phy_device *phydev) 2337 { 2338 int retval = phy_read(phydev, MII_BMSR); 2339 2340 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2341 } 2342 EXPORT_SYMBOL(genphy_aneg_done); 2343 2344 /** 2345 * genphy_update_link - update link status in @phydev 2346 * @phydev: target phy_device struct 2347 * 2348 * Description: Update the value in phydev->link to reflect the 2349 * current link value. In order to do this, we need to read 2350 * the status register twice, keeping the second value. 2351 */ 2352 int genphy_update_link(struct phy_device *phydev) 2353 { 2354 int status = 0, bmcr; 2355 2356 bmcr = phy_read(phydev, MII_BMCR); 2357 if (bmcr < 0) 2358 return bmcr; 2359 2360 /* Autoneg is being started, therefore disregard BMSR value and 2361 * report link as down. 2362 */ 2363 if (bmcr & BMCR_ANRESTART) 2364 goto done; 2365 2366 /* The link state is latched low so that momentary link 2367 * drops can be detected. Do not double-read the status 2368 * in polling mode to detect such short link drops except 2369 * the link was already down. 2370 */ 2371 if (!phy_polling_mode(phydev) || !phydev->link) { 2372 status = phy_read(phydev, MII_BMSR); 2373 if (status < 0) 2374 return status; 2375 else if (status & BMSR_LSTATUS) 2376 goto done; 2377 } 2378 2379 /* Read link and autonegotiation status */ 2380 status = phy_read(phydev, MII_BMSR); 2381 if (status < 0) 2382 return status; 2383 done: 2384 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2385 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2386 2387 /* Consider the case that autoneg was started and "aneg complete" 2388 * bit has been reset, but "link up" bit not yet. 2389 */ 2390 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2391 phydev->link = 0; 2392 2393 return 0; 2394 } 2395 EXPORT_SYMBOL(genphy_update_link); 2396 2397 int genphy_read_lpa(struct phy_device *phydev) 2398 { 2399 int lpa, lpagb; 2400 2401 if (phydev->autoneg == AUTONEG_ENABLE) { 2402 if (!phydev->autoneg_complete) { 2403 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2404 0); 2405 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2406 return 0; 2407 } 2408 2409 if (phydev->is_gigabit_capable) { 2410 lpagb = phy_read(phydev, MII_STAT1000); 2411 if (lpagb < 0) 2412 return lpagb; 2413 2414 if (lpagb & LPA_1000MSFAIL) { 2415 int adv = phy_read(phydev, MII_CTRL1000); 2416 2417 if (adv < 0) 2418 return adv; 2419 2420 if (adv & CTL1000_ENABLE_MASTER) 2421 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2422 else 2423 phydev_err(phydev, "Master/Slave resolution failed\n"); 2424 return -ENOLINK; 2425 } 2426 2427 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2428 lpagb); 2429 } 2430 2431 lpa = phy_read(phydev, MII_LPA); 2432 if (lpa < 0) 2433 return lpa; 2434 2435 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2436 } else { 2437 linkmode_zero(phydev->lp_advertising); 2438 } 2439 2440 return 0; 2441 } 2442 EXPORT_SYMBOL(genphy_read_lpa); 2443 2444 /** 2445 * genphy_read_status_fixed - read the link parameters for !aneg mode 2446 * @phydev: target phy_device struct 2447 * 2448 * Read the current duplex and speed state for a PHY operating with 2449 * autonegotiation disabled. 2450 */ 2451 int genphy_read_status_fixed(struct phy_device *phydev) 2452 { 2453 int bmcr = phy_read(phydev, MII_BMCR); 2454 2455 if (bmcr < 0) 2456 return bmcr; 2457 2458 if (bmcr & BMCR_FULLDPLX) 2459 phydev->duplex = DUPLEX_FULL; 2460 else 2461 phydev->duplex = DUPLEX_HALF; 2462 2463 if (bmcr & BMCR_SPEED1000) 2464 phydev->speed = SPEED_1000; 2465 else if (bmcr & BMCR_SPEED100) 2466 phydev->speed = SPEED_100; 2467 else 2468 phydev->speed = SPEED_10; 2469 2470 return 0; 2471 } 2472 EXPORT_SYMBOL(genphy_read_status_fixed); 2473 2474 /** 2475 * genphy_read_status - check the link status and update current link state 2476 * @phydev: target phy_device struct 2477 * 2478 * Description: Check the link, then figure out the current state 2479 * by comparing what we advertise with what the link partner 2480 * advertises. Start by checking the gigabit possibilities, 2481 * then move on to 10/100. 2482 */ 2483 int genphy_read_status(struct phy_device *phydev) 2484 { 2485 int err, old_link = phydev->link; 2486 2487 /* Update the link, but return if there was an error */ 2488 err = genphy_update_link(phydev); 2489 if (err) 2490 return err; 2491 2492 /* why bother the PHY if nothing can have changed */ 2493 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2494 return 0; 2495 2496 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2497 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2498 phydev->speed = SPEED_UNKNOWN; 2499 phydev->duplex = DUPLEX_UNKNOWN; 2500 phydev->pause = 0; 2501 phydev->asym_pause = 0; 2502 2503 if (phydev->is_gigabit_capable) { 2504 err = genphy_read_master_slave(phydev); 2505 if (err < 0) 2506 return err; 2507 } 2508 2509 err = genphy_read_lpa(phydev); 2510 if (err < 0) 2511 return err; 2512 2513 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2514 phy_resolve_aneg_linkmode(phydev); 2515 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2516 err = genphy_read_status_fixed(phydev); 2517 if (err < 0) 2518 return err; 2519 } 2520 2521 return 0; 2522 } 2523 EXPORT_SYMBOL(genphy_read_status); 2524 2525 /** 2526 * genphy_c37_read_status - check the link status and update current link state 2527 * @phydev: target phy_device struct 2528 * 2529 * Description: Check the link, then figure out the current state 2530 * by comparing what we advertise with what the link partner 2531 * advertises. This function is for Clause 37 1000Base-X mode. 2532 */ 2533 int genphy_c37_read_status(struct phy_device *phydev) 2534 { 2535 int lpa, err, old_link = phydev->link; 2536 2537 /* Update the link, but return if there was an error */ 2538 err = genphy_update_link(phydev); 2539 if (err) 2540 return err; 2541 2542 /* why bother the PHY if nothing can have changed */ 2543 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2544 return 0; 2545 2546 phydev->duplex = DUPLEX_UNKNOWN; 2547 phydev->pause = 0; 2548 phydev->asym_pause = 0; 2549 2550 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2551 lpa = phy_read(phydev, MII_LPA); 2552 if (lpa < 0) 2553 return lpa; 2554 2555 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2556 phydev->lp_advertising, lpa & LPA_LPACK); 2557 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2558 phydev->lp_advertising, lpa & LPA_1000XFULL); 2559 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2560 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2561 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2562 phydev->lp_advertising, 2563 lpa & LPA_1000XPAUSE_ASYM); 2564 2565 phy_resolve_aneg_linkmode(phydev); 2566 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2567 int bmcr = phy_read(phydev, MII_BMCR); 2568 2569 if (bmcr < 0) 2570 return bmcr; 2571 2572 if (bmcr & BMCR_FULLDPLX) 2573 phydev->duplex = DUPLEX_FULL; 2574 else 2575 phydev->duplex = DUPLEX_HALF; 2576 } 2577 2578 return 0; 2579 } 2580 EXPORT_SYMBOL(genphy_c37_read_status); 2581 2582 /** 2583 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2584 * @phydev: target phy_device struct 2585 * 2586 * Description: Perform a software PHY reset using the standard 2587 * BMCR_RESET bit and poll for the reset bit to be cleared. 2588 * 2589 * Returns: 0 on success, < 0 on failure 2590 */ 2591 int genphy_soft_reset(struct phy_device *phydev) 2592 { 2593 u16 res = BMCR_RESET; 2594 int ret; 2595 2596 if (phydev->autoneg == AUTONEG_ENABLE) 2597 res |= BMCR_ANRESTART; 2598 2599 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2600 if (ret < 0) 2601 return ret; 2602 2603 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2604 * to their default value. Therefore the POWER DOWN bit is supposed to 2605 * be cleared after soft reset. 2606 */ 2607 phydev->suspended = 0; 2608 2609 ret = phy_poll_reset(phydev); 2610 if (ret) 2611 return ret; 2612 2613 /* BMCR may be reset to defaults */ 2614 if (phydev->autoneg == AUTONEG_DISABLE) 2615 ret = genphy_setup_forced(phydev); 2616 2617 return ret; 2618 } 2619 EXPORT_SYMBOL(genphy_soft_reset); 2620 2621 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2622 { 2623 /* It seems there are cases where the interrupts are handled by another 2624 * entity (ie an IRQ controller embedded inside the PHY) and do not 2625 * need any other interraction from phylib. In this case, just trigger 2626 * the state machine directly. 2627 */ 2628 phy_trigger_machine(phydev); 2629 2630 return 0; 2631 } 2632 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2633 2634 /** 2635 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2636 * @phydev: target phy_device struct 2637 * 2638 * Description: Reads the PHY's abilities and populates 2639 * phydev->supported accordingly. 2640 * 2641 * Returns: 0 on success, < 0 on failure 2642 */ 2643 int genphy_read_abilities(struct phy_device *phydev) 2644 { 2645 int val; 2646 2647 linkmode_set_bit_array(phy_basic_ports_array, 2648 ARRAY_SIZE(phy_basic_ports_array), 2649 phydev->supported); 2650 2651 val = phy_read(phydev, MII_BMSR); 2652 if (val < 0) 2653 return val; 2654 2655 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2656 val & BMSR_ANEGCAPABLE); 2657 2658 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2659 val & BMSR_100FULL); 2660 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2661 val & BMSR_100HALF); 2662 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2663 val & BMSR_10FULL); 2664 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2665 val & BMSR_10HALF); 2666 2667 if (val & BMSR_ESTATEN) { 2668 val = phy_read(phydev, MII_ESTATUS); 2669 if (val < 0) 2670 return val; 2671 2672 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2673 phydev->supported, val & ESTATUS_1000_TFULL); 2674 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2675 phydev->supported, val & ESTATUS_1000_THALF); 2676 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2677 phydev->supported, val & ESTATUS_1000_XFULL); 2678 } 2679 2680 /* This is optional functionality. If not supported, we may get an error 2681 * which should be ignored. 2682 */ 2683 genphy_c45_read_eee_abilities(phydev); 2684 2685 return 0; 2686 } 2687 EXPORT_SYMBOL(genphy_read_abilities); 2688 2689 /* This is used for the phy device which doesn't support the MMD extended 2690 * register access, but it does have side effect when we are trying to access 2691 * the MMD register via indirect method. 2692 */ 2693 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2694 { 2695 return -EOPNOTSUPP; 2696 } 2697 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2698 2699 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2700 u16 regnum, u16 val) 2701 { 2702 return -EOPNOTSUPP; 2703 } 2704 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2705 2706 int genphy_suspend(struct phy_device *phydev) 2707 { 2708 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2709 } 2710 EXPORT_SYMBOL(genphy_suspend); 2711 2712 int genphy_resume(struct phy_device *phydev) 2713 { 2714 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2715 } 2716 EXPORT_SYMBOL(genphy_resume); 2717 2718 int genphy_loopback(struct phy_device *phydev, bool enable) 2719 { 2720 if (enable) { 2721 u16 val, ctl = BMCR_LOOPBACK; 2722 int ret; 2723 2724 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2725 2726 phy_modify(phydev, MII_BMCR, ~0, ctl); 2727 2728 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2729 val & BMSR_LSTATUS, 2730 5000, 500000, true); 2731 if (ret) 2732 return ret; 2733 } else { 2734 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2735 2736 phy_config_aneg(phydev); 2737 } 2738 2739 return 0; 2740 } 2741 EXPORT_SYMBOL(genphy_loopback); 2742 2743 /** 2744 * phy_remove_link_mode - Remove a supported link mode 2745 * @phydev: phy_device structure to remove link mode from 2746 * @link_mode: Link mode to be removed 2747 * 2748 * Description: Some MACs don't support all link modes which the PHY 2749 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2750 * to remove a link mode. 2751 */ 2752 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2753 { 2754 linkmode_clear_bit(link_mode, phydev->supported); 2755 phy_advertise_supported(phydev); 2756 } 2757 EXPORT_SYMBOL(phy_remove_link_mode); 2758 2759 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2760 { 2761 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2762 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2763 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2764 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2765 } 2766 2767 /** 2768 * phy_advertise_supported - Advertise all supported modes 2769 * @phydev: target phy_device struct 2770 * 2771 * Description: Called to advertise all supported modes, doesn't touch 2772 * pause mode advertising. 2773 */ 2774 void phy_advertise_supported(struct phy_device *phydev) 2775 { 2776 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2777 2778 linkmode_copy(new, phydev->supported); 2779 phy_copy_pause_bits(new, phydev->advertising); 2780 linkmode_copy(phydev->advertising, new); 2781 } 2782 EXPORT_SYMBOL(phy_advertise_supported); 2783 2784 /** 2785 * phy_advertise_eee_all - Advertise all supported EEE modes 2786 * @phydev: target phy_device struct 2787 * 2788 * Description: Per default phylib preserves the EEE advertising at the time of 2789 * phy probing, which might be a subset of the supported EEE modes. Use this 2790 * function when all supported EEE modes should be advertised. This does not 2791 * trigger auto-negotiation, so must be called before phy_start()/ 2792 * phylink_start() which will start auto-negotiation. 2793 */ 2794 void phy_advertise_eee_all(struct phy_device *phydev) 2795 { 2796 linkmode_copy(phydev->advertising_eee, phydev->supported_eee); 2797 } 2798 EXPORT_SYMBOL_GPL(phy_advertise_eee_all); 2799 2800 /** 2801 * phy_support_sym_pause - Enable support of symmetrical pause 2802 * @phydev: target phy_device struct 2803 * 2804 * Description: Called by the MAC to indicate is supports symmetrical 2805 * Pause, but not asym pause. 2806 */ 2807 void phy_support_sym_pause(struct phy_device *phydev) 2808 { 2809 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2810 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2811 } 2812 EXPORT_SYMBOL(phy_support_sym_pause); 2813 2814 /** 2815 * phy_support_asym_pause - Enable support of asym pause 2816 * @phydev: target phy_device struct 2817 * 2818 * Description: Called by the MAC to indicate is supports Asym Pause. 2819 */ 2820 void phy_support_asym_pause(struct phy_device *phydev) 2821 { 2822 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2823 } 2824 EXPORT_SYMBOL(phy_support_asym_pause); 2825 2826 /** 2827 * phy_set_sym_pause - Configure symmetric Pause 2828 * @phydev: target phy_device struct 2829 * @rx: Receiver Pause is supported 2830 * @tx: Transmit Pause is supported 2831 * @autoneg: Auto neg should be used 2832 * 2833 * Description: Configure advertised Pause support depending on if 2834 * receiver pause and pause auto neg is supported. Generally called 2835 * from the set_pauseparam .ndo. 2836 */ 2837 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2838 bool autoneg) 2839 { 2840 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2841 2842 if (rx && tx && autoneg) 2843 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2844 phydev->supported); 2845 2846 linkmode_copy(phydev->advertising, phydev->supported); 2847 } 2848 EXPORT_SYMBOL(phy_set_sym_pause); 2849 2850 /** 2851 * phy_set_asym_pause - Configure Pause and Asym Pause 2852 * @phydev: target phy_device struct 2853 * @rx: Receiver Pause is supported 2854 * @tx: Transmit Pause is supported 2855 * 2856 * Description: Configure advertised Pause support depending on if 2857 * transmit and receiver pause is supported. If there has been a 2858 * change in adverting, trigger a new autoneg. Generally called from 2859 * the set_pauseparam .ndo. 2860 */ 2861 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2862 { 2863 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2864 2865 linkmode_copy(oldadv, phydev->advertising); 2866 linkmode_set_pause(phydev->advertising, tx, rx); 2867 2868 if (!linkmode_equal(oldadv, phydev->advertising) && 2869 phydev->autoneg) 2870 phy_start_aneg(phydev); 2871 } 2872 EXPORT_SYMBOL(phy_set_asym_pause); 2873 2874 /** 2875 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2876 * @phydev: phy_device struct 2877 * @pp: requested pause configuration 2878 * 2879 * Description: Test if the PHY/MAC combination supports the Pause 2880 * configuration the user is requesting. Returns True if it is 2881 * supported, false otherwise. 2882 */ 2883 bool phy_validate_pause(struct phy_device *phydev, 2884 struct ethtool_pauseparam *pp) 2885 { 2886 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2887 phydev->supported) && pp->rx_pause) 2888 return false; 2889 2890 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2891 phydev->supported) && 2892 pp->rx_pause != pp->tx_pause) 2893 return false; 2894 2895 return true; 2896 } 2897 EXPORT_SYMBOL(phy_validate_pause); 2898 2899 /** 2900 * phy_get_pause - resolve negotiated pause modes 2901 * @phydev: phy_device struct 2902 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2903 * enabled. 2904 * @rx_pause: pointer to bool to indicate whether receive pause should be 2905 * enabled. 2906 * 2907 * Resolve and return the flow control modes according to the negotiation 2908 * result. This includes checking that we are operating in full duplex mode. 2909 * See linkmode_resolve_pause() for further details. 2910 */ 2911 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2912 { 2913 if (phydev->duplex != DUPLEX_FULL) { 2914 *tx_pause = false; 2915 *rx_pause = false; 2916 return; 2917 } 2918 2919 return linkmode_resolve_pause(phydev->advertising, 2920 phydev->lp_advertising, 2921 tx_pause, rx_pause); 2922 } 2923 EXPORT_SYMBOL(phy_get_pause); 2924 2925 #if IS_ENABLED(CONFIG_OF_MDIO) 2926 static int phy_get_int_delay_property(struct device *dev, const char *name) 2927 { 2928 s32 int_delay; 2929 int ret; 2930 2931 ret = device_property_read_u32(dev, name, &int_delay); 2932 if (ret) 2933 return ret; 2934 2935 return int_delay; 2936 } 2937 #else 2938 static int phy_get_int_delay_property(struct device *dev, const char *name) 2939 { 2940 return -EINVAL; 2941 } 2942 #endif 2943 2944 /** 2945 * phy_get_internal_delay - returns the index of the internal delay 2946 * @phydev: phy_device struct 2947 * @dev: pointer to the devices device struct 2948 * @delay_values: array of delays the PHY supports 2949 * @size: the size of the delay array 2950 * @is_rx: boolean to indicate to get the rx internal delay 2951 * 2952 * Returns the index within the array of internal delay passed in. 2953 * If the device property is not present then the interface type is checked 2954 * if the interface defines use of internal delay then a 1 is returned otherwise 2955 * a 0 is returned. 2956 * The array must be in ascending order. If PHY does not have an ascending order 2957 * array then size = 0 and the value of the delay property is returned. 2958 * Return -EINVAL if the delay is invalid or cannot be found. 2959 */ 2960 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2961 const int *delay_values, int size, bool is_rx) 2962 { 2963 s32 delay; 2964 int i; 2965 2966 if (is_rx) { 2967 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2968 if (delay < 0 && size == 0) { 2969 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2970 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2971 return 1; 2972 else 2973 return 0; 2974 } 2975 2976 } else { 2977 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2978 if (delay < 0 && size == 0) { 2979 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2980 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2981 return 1; 2982 else 2983 return 0; 2984 } 2985 } 2986 2987 if (delay < 0) 2988 return delay; 2989 2990 if (delay && size == 0) 2991 return delay; 2992 2993 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2994 phydev_err(phydev, "Delay %d is out of range\n", delay); 2995 return -EINVAL; 2996 } 2997 2998 if (delay == delay_values[0]) 2999 return 0; 3000 3001 for (i = 1; i < size; i++) { 3002 if (delay == delay_values[i]) 3003 return i; 3004 3005 /* Find an approximate index by looking up the table */ 3006 if (delay > delay_values[i - 1] && 3007 delay < delay_values[i]) { 3008 if (delay - delay_values[i - 1] < 3009 delay_values[i] - delay) 3010 return i - 1; 3011 else 3012 return i; 3013 } 3014 } 3015 3016 phydev_err(phydev, "error finding internal delay index for %d\n", 3017 delay); 3018 3019 return -EINVAL; 3020 } 3021 EXPORT_SYMBOL(phy_get_internal_delay); 3022 3023 static int phy_led_set_brightness(struct led_classdev *led_cdev, 3024 enum led_brightness value) 3025 { 3026 struct phy_led *phyled = to_phy_led(led_cdev); 3027 struct phy_device *phydev = phyled->phydev; 3028 int err; 3029 3030 mutex_lock(&phydev->lock); 3031 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3032 mutex_unlock(&phydev->lock); 3033 3034 return err; 3035 } 3036 3037 static int phy_led_blink_set(struct led_classdev *led_cdev, 3038 unsigned long *delay_on, 3039 unsigned long *delay_off) 3040 { 3041 struct phy_led *phyled = to_phy_led(led_cdev); 3042 struct phy_device *phydev = phyled->phydev; 3043 int err; 3044 3045 mutex_lock(&phydev->lock); 3046 err = phydev->drv->led_blink_set(phydev, phyled->index, 3047 delay_on, delay_off); 3048 mutex_unlock(&phydev->lock); 3049 3050 return err; 3051 } 3052 3053 static __maybe_unused struct device * 3054 phy_led_hw_control_get_device(struct led_classdev *led_cdev) 3055 { 3056 struct phy_led *phyled = to_phy_led(led_cdev); 3057 struct phy_device *phydev = phyled->phydev; 3058 3059 if (phydev->attached_dev) 3060 return &phydev->attached_dev->dev; 3061 return NULL; 3062 } 3063 3064 static int __maybe_unused 3065 phy_led_hw_control_get(struct led_classdev *led_cdev, 3066 unsigned long *rules) 3067 { 3068 struct phy_led *phyled = to_phy_led(led_cdev); 3069 struct phy_device *phydev = phyled->phydev; 3070 int err; 3071 3072 mutex_lock(&phydev->lock); 3073 err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules); 3074 mutex_unlock(&phydev->lock); 3075 3076 return err; 3077 } 3078 3079 static int __maybe_unused 3080 phy_led_hw_control_set(struct led_classdev *led_cdev, 3081 unsigned long rules) 3082 { 3083 struct phy_led *phyled = to_phy_led(led_cdev); 3084 struct phy_device *phydev = phyled->phydev; 3085 int err; 3086 3087 mutex_lock(&phydev->lock); 3088 err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules); 3089 mutex_unlock(&phydev->lock); 3090 3091 return err; 3092 } 3093 3094 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev, 3095 unsigned long rules) 3096 { 3097 struct phy_led *phyled = to_phy_led(led_cdev); 3098 struct phy_device *phydev = phyled->phydev; 3099 int err; 3100 3101 mutex_lock(&phydev->lock); 3102 err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules); 3103 mutex_unlock(&phydev->lock); 3104 3105 return err; 3106 } 3107 3108 static void phy_leds_unregister(struct phy_device *phydev) 3109 { 3110 struct phy_led *phyled; 3111 3112 list_for_each_entry(phyled, &phydev->leds, list) { 3113 led_classdev_unregister(&phyled->led_cdev); 3114 } 3115 } 3116 3117 static int of_phy_led(struct phy_device *phydev, 3118 struct device_node *led) 3119 { 3120 struct device *dev = &phydev->mdio.dev; 3121 struct led_init_data init_data = {}; 3122 struct led_classdev *cdev; 3123 unsigned long modes = 0; 3124 struct phy_led *phyled; 3125 u32 index; 3126 int err; 3127 3128 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3129 if (!phyled) 3130 return -ENOMEM; 3131 3132 cdev = &phyled->led_cdev; 3133 phyled->phydev = phydev; 3134 3135 err = of_property_read_u32(led, "reg", &index); 3136 if (err) 3137 return err; 3138 if (index > U8_MAX) 3139 return -EINVAL; 3140 3141 if (of_property_read_bool(led, "active-low")) 3142 set_bit(PHY_LED_ACTIVE_LOW, &modes); 3143 if (of_property_read_bool(led, "inactive-high-impedance")) 3144 set_bit(PHY_LED_INACTIVE_HIGH_IMPEDANCE, &modes); 3145 3146 if (modes) { 3147 /* Return error if asked to set polarity modes but not supported */ 3148 if (!phydev->drv->led_polarity_set) 3149 return -EINVAL; 3150 3151 err = phydev->drv->led_polarity_set(phydev, index, modes); 3152 if (err) 3153 return err; 3154 } 3155 3156 phyled->index = index; 3157 if (phydev->drv->led_brightness_set) 3158 cdev->brightness_set_blocking = phy_led_set_brightness; 3159 if (phydev->drv->led_blink_set) 3160 cdev->blink_set = phy_led_blink_set; 3161 3162 #ifdef CONFIG_LEDS_TRIGGERS 3163 if (phydev->drv->led_hw_is_supported && 3164 phydev->drv->led_hw_control_set && 3165 phydev->drv->led_hw_control_get) { 3166 cdev->hw_control_is_supported = phy_led_hw_is_supported; 3167 cdev->hw_control_set = phy_led_hw_control_set; 3168 cdev->hw_control_get = phy_led_hw_control_get; 3169 cdev->hw_control_trigger = "netdev"; 3170 } 3171 3172 cdev->hw_control_get_device = phy_led_hw_control_get_device; 3173 #endif 3174 cdev->max_brightness = 1; 3175 init_data.devicename = dev_name(&phydev->mdio.dev); 3176 init_data.fwnode = of_fwnode_handle(led); 3177 init_data.devname_mandatory = true; 3178 3179 err = led_classdev_register_ext(dev, cdev, &init_data); 3180 if (err) 3181 return err; 3182 3183 list_add(&phyled->list, &phydev->leds); 3184 3185 return 0; 3186 } 3187 3188 static int of_phy_leds(struct phy_device *phydev) 3189 { 3190 struct device_node *node = phydev->mdio.dev.of_node; 3191 struct device_node *leds, *led; 3192 int err; 3193 3194 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3195 return 0; 3196 3197 if (!node) 3198 return 0; 3199 3200 leds = of_get_child_by_name(node, "leds"); 3201 if (!leds) 3202 return 0; 3203 3204 for_each_available_child_of_node(leds, led) { 3205 err = of_phy_led(phydev, led); 3206 if (err) { 3207 of_node_put(led); 3208 phy_leds_unregister(phydev); 3209 return err; 3210 } 3211 } 3212 3213 return 0; 3214 } 3215 3216 /** 3217 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3218 * @fwnode: pointer to the mdio_device's fwnode 3219 * 3220 * If successful, returns a pointer to the mdio_device with the embedded 3221 * struct device refcount incremented by one, or NULL on failure. 3222 * The caller should call put_device() on the mdio_device after its use. 3223 */ 3224 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3225 { 3226 struct device *d; 3227 3228 if (!fwnode) 3229 return NULL; 3230 3231 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3232 if (!d) 3233 return NULL; 3234 3235 return to_mdio_device(d); 3236 } 3237 EXPORT_SYMBOL(fwnode_mdio_find_device); 3238 3239 /** 3240 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3241 * 3242 * @phy_fwnode: Pointer to the phy's fwnode. 3243 * 3244 * If successful, returns a pointer to the phy_device with the embedded 3245 * struct device refcount incremented by one, or NULL on failure. 3246 */ 3247 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3248 { 3249 struct mdio_device *mdiodev; 3250 3251 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3252 if (!mdiodev) 3253 return NULL; 3254 3255 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3256 return to_phy_device(&mdiodev->dev); 3257 3258 put_device(&mdiodev->dev); 3259 3260 return NULL; 3261 } 3262 EXPORT_SYMBOL(fwnode_phy_find_device); 3263 3264 /** 3265 * device_phy_find_device - For the given device, get the phy_device 3266 * @dev: Pointer to the given device 3267 * 3268 * Refer return conditions of fwnode_phy_find_device(). 3269 */ 3270 struct phy_device *device_phy_find_device(struct device *dev) 3271 { 3272 return fwnode_phy_find_device(dev_fwnode(dev)); 3273 } 3274 EXPORT_SYMBOL_GPL(device_phy_find_device); 3275 3276 /** 3277 * fwnode_get_phy_node - Get the phy_node using the named reference. 3278 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3279 * 3280 * Refer return conditions of fwnode_find_reference(). 3281 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3282 * and "phy-device" are not supported in ACPI. DT supports all the three 3283 * named references to the phy node. 3284 */ 3285 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3286 { 3287 struct fwnode_handle *phy_node; 3288 3289 /* Only phy-handle is used for ACPI */ 3290 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3291 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3292 return phy_node; 3293 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3294 if (IS_ERR(phy_node)) 3295 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3296 return phy_node; 3297 } 3298 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3299 3300 /** 3301 * phy_probe - probe and init a PHY device 3302 * @dev: device to probe and init 3303 * 3304 * Take care of setting up the phy_device structure, set the state to READY. 3305 */ 3306 static int phy_probe(struct device *dev) 3307 { 3308 struct phy_device *phydev = to_phy_device(dev); 3309 struct device_driver *drv = phydev->mdio.dev.driver; 3310 struct phy_driver *phydrv = to_phy_driver(drv); 3311 int err = 0; 3312 3313 phydev->drv = phydrv; 3314 3315 /* Disable the interrupt if the PHY doesn't support it 3316 * but the interrupt is still a valid one 3317 */ 3318 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3319 phydev->irq = PHY_POLL; 3320 3321 if (phydrv->flags & PHY_IS_INTERNAL) 3322 phydev->is_internal = true; 3323 3324 /* Deassert the reset signal */ 3325 phy_device_reset(phydev, 0); 3326 3327 if (phydev->drv->probe) { 3328 err = phydev->drv->probe(phydev); 3329 if (err) 3330 goto out; 3331 } 3332 3333 phy_disable_interrupts(phydev); 3334 3335 /* Start out supporting everything. Eventually, 3336 * a controller will attach, and may modify one 3337 * or both of these values 3338 */ 3339 if (phydrv->features) { 3340 linkmode_copy(phydev->supported, phydrv->features); 3341 genphy_c45_read_eee_abilities(phydev); 3342 } 3343 else if (phydrv->get_features) 3344 err = phydrv->get_features(phydev); 3345 else if (phydev->is_c45) 3346 err = genphy_c45_pma_read_abilities(phydev); 3347 else 3348 err = genphy_read_abilities(phydev); 3349 3350 if (err) 3351 goto out; 3352 3353 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3354 phydev->supported)) 3355 phydev->autoneg = 0; 3356 3357 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3358 phydev->supported)) 3359 phydev->is_gigabit_capable = 1; 3360 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3361 phydev->supported)) 3362 phydev->is_gigabit_capable = 1; 3363 3364 of_set_phy_supported(phydev); 3365 phy_advertise_supported(phydev); 3366 3367 /* Get PHY default EEE advertising modes and handle them as potentially 3368 * safe initial configuration. 3369 */ 3370 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3371 if (err) 3372 goto out; 3373 3374 /* There is no "enabled" flag. If PHY is advertising, assume it is 3375 * kind of enabled. 3376 */ 3377 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3378 3379 /* Some PHYs may advertise, by default, not support EEE modes. So, 3380 * we need to clean them. 3381 */ 3382 if (phydev->eee_enabled) 3383 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3384 phydev->advertising_eee); 3385 3386 /* Get the EEE modes we want to prohibit. We will ask 3387 * the PHY stop advertising these mode later on 3388 */ 3389 of_set_phy_eee_broken(phydev); 3390 3391 /* The Pause Frame bits indicate that the PHY can support passing 3392 * pause frames. During autonegotiation, the PHYs will determine if 3393 * they should allow pause frames to pass. The MAC driver should then 3394 * use that result to determine whether to enable flow control via 3395 * pause frames. 3396 * 3397 * Normally, PHY drivers should not set the Pause bits, and instead 3398 * allow phylib to do that. However, there may be some situations 3399 * (e.g. hardware erratum) where the driver wants to set only one 3400 * of these bits. 3401 */ 3402 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3403 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3404 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3405 phydev->supported); 3406 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3407 phydev->supported); 3408 } 3409 3410 /* Set the state to READY by default */ 3411 phydev->state = PHY_READY; 3412 3413 /* Get the LEDs from the device tree, and instantiate standard 3414 * LEDs for them. 3415 */ 3416 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3417 err = of_phy_leds(phydev); 3418 3419 out: 3420 /* Re-assert the reset signal on error */ 3421 if (err) 3422 phy_device_reset(phydev, 1); 3423 3424 return err; 3425 } 3426 3427 static int phy_remove(struct device *dev) 3428 { 3429 struct phy_device *phydev = to_phy_device(dev); 3430 3431 cancel_delayed_work_sync(&phydev->state_queue); 3432 3433 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3434 phy_leds_unregister(phydev); 3435 3436 phydev->state = PHY_DOWN; 3437 3438 sfp_bus_del_upstream(phydev->sfp_bus); 3439 phydev->sfp_bus = NULL; 3440 3441 if (phydev->drv && phydev->drv->remove) 3442 phydev->drv->remove(phydev); 3443 3444 /* Assert the reset signal */ 3445 phy_device_reset(phydev, 1); 3446 3447 phydev->drv = NULL; 3448 3449 return 0; 3450 } 3451 3452 /** 3453 * phy_driver_register - register a phy_driver with the PHY layer 3454 * @new_driver: new phy_driver to register 3455 * @owner: module owning this PHY 3456 */ 3457 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3458 { 3459 int retval; 3460 3461 /* Either the features are hard coded, or dynamically 3462 * determined. It cannot be both. 3463 */ 3464 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3465 pr_err("%s: features and get_features must not both be set\n", 3466 new_driver->name); 3467 return -EINVAL; 3468 } 3469 3470 /* PHYLIB device drivers must not match using a DT compatible table 3471 * as this bypasses our checks that the mdiodev that is being matched 3472 * is backed by a struct phy_device. If such a case happens, we will 3473 * make out-of-bounds accesses and lockup in phydev->lock. 3474 */ 3475 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3476 "%s: driver must not provide a DT match table\n", 3477 new_driver->name)) 3478 return -EINVAL; 3479 3480 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3481 new_driver->mdiodrv.driver.name = new_driver->name; 3482 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3483 new_driver->mdiodrv.driver.probe = phy_probe; 3484 new_driver->mdiodrv.driver.remove = phy_remove; 3485 new_driver->mdiodrv.driver.owner = owner; 3486 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3487 3488 retval = driver_register(&new_driver->mdiodrv.driver); 3489 if (retval) { 3490 pr_err("%s: Error %d in registering driver\n", 3491 new_driver->name, retval); 3492 3493 return retval; 3494 } 3495 3496 pr_debug("%s: Registered new driver\n", new_driver->name); 3497 3498 return 0; 3499 } 3500 EXPORT_SYMBOL(phy_driver_register); 3501 3502 int phy_drivers_register(struct phy_driver *new_driver, int n, 3503 struct module *owner) 3504 { 3505 int i, ret = 0; 3506 3507 for (i = 0; i < n; i++) { 3508 ret = phy_driver_register(new_driver + i, owner); 3509 if (ret) { 3510 while (i-- > 0) 3511 phy_driver_unregister(new_driver + i); 3512 break; 3513 } 3514 } 3515 return ret; 3516 } 3517 EXPORT_SYMBOL(phy_drivers_register); 3518 3519 void phy_driver_unregister(struct phy_driver *drv) 3520 { 3521 driver_unregister(&drv->mdiodrv.driver); 3522 } 3523 EXPORT_SYMBOL(phy_driver_unregister); 3524 3525 void phy_drivers_unregister(struct phy_driver *drv, int n) 3526 { 3527 int i; 3528 3529 for (i = 0; i < n; i++) 3530 phy_driver_unregister(drv + i); 3531 } 3532 EXPORT_SYMBOL(phy_drivers_unregister); 3533 3534 static struct phy_driver genphy_driver = { 3535 .phy_id = 0xffffffff, 3536 .phy_id_mask = 0xffffffff, 3537 .name = "Generic PHY", 3538 .get_features = genphy_read_abilities, 3539 .suspend = genphy_suspend, 3540 .resume = genphy_resume, 3541 .set_loopback = genphy_loopback, 3542 }; 3543 3544 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3545 .get_sset_count = phy_ethtool_get_sset_count, 3546 .get_strings = phy_ethtool_get_strings, 3547 .get_stats = phy_ethtool_get_stats, 3548 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3549 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3550 .get_plca_status = phy_ethtool_get_plca_status, 3551 .start_cable_test = phy_start_cable_test, 3552 .start_cable_test_tdr = phy_start_cable_test_tdr, 3553 }; 3554 3555 static const struct phylib_stubs __phylib_stubs = { 3556 .hwtstamp_get = __phy_hwtstamp_get, 3557 .hwtstamp_set = __phy_hwtstamp_set, 3558 }; 3559 3560 static void phylib_register_stubs(void) 3561 { 3562 phylib_stubs = &__phylib_stubs; 3563 } 3564 3565 static void phylib_unregister_stubs(void) 3566 { 3567 phylib_stubs = NULL; 3568 } 3569 3570 static int __init phy_init(void) 3571 { 3572 int rc; 3573 3574 rtnl_lock(); 3575 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3576 phylib_register_stubs(); 3577 rtnl_unlock(); 3578 3579 rc = mdio_bus_init(); 3580 if (rc) 3581 goto err_ethtool_phy_ops; 3582 3583 features_init(); 3584 3585 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3586 if (rc) 3587 goto err_mdio_bus; 3588 3589 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3590 if (rc) 3591 goto err_c45; 3592 3593 return 0; 3594 3595 err_c45: 3596 phy_driver_unregister(&genphy_c45_driver); 3597 err_mdio_bus: 3598 mdio_bus_exit(); 3599 err_ethtool_phy_ops: 3600 rtnl_lock(); 3601 phylib_unregister_stubs(); 3602 ethtool_set_ethtool_phy_ops(NULL); 3603 rtnl_unlock(); 3604 3605 return rc; 3606 } 3607 3608 static void __exit phy_exit(void) 3609 { 3610 phy_driver_unregister(&genphy_c45_driver); 3611 phy_driver_unregister(&genphy_driver); 3612 mdio_bus_exit(); 3613 rtnl_lock(); 3614 phylib_unregister_stubs(); 3615 ethtool_set_ethtool_phy_ops(NULL); 3616 rtnl_unlock(); 3617 } 3618 3619 subsys_initcall(phy_init); 3620 module_exit(phy_exit); 3621