xref: /linux/drivers/net/phy/phy_device.c (revision 37a93dd5c49b5fda807fd204edf2547c3493319c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/mii.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/netdevice.h>
29 #include <linux/phy.h>
30 #include <linux/phylib_stubs.h>
31 #include <linux/phy_led_triggers.h>
32 #include <linux/phy_link_topology.h>
33 #include <linux/phy_port.h>
34 #include <linux/pse-pd/pse.h>
35 #include <linux/property.h>
36 #include <linux/ptp_clock_kernel.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/sfp.h>
39 #include <linux/skbuff.h>
40 #include <linux/slab.h>
41 #include <linux/string.h>
42 #include <linux/uaccess.h>
43 #include <linux/unistd.h>
44 
45 #include "phylib-internal.h"
46 #include "phy-caps.h"
47 
48 MODULE_DESCRIPTION("PHY library");
49 MODULE_AUTHOR("Andy Fleming");
50 MODULE_LICENSE("GPL");
51 
52 struct phy_fixup {
53 	struct list_head list;
54 	char bus_id[MII_BUS_ID_SIZE + 3];
55 	u32 phy_uid;
56 	u32 phy_uid_mask;
57 	int (*run)(struct phy_device *phydev);
58 };
59 
60 static struct phy_driver genphy_c45_driver = {
61 	.phy_id         = 0xffffffff,
62 	.phy_id_mask    = 0xffffffff,
63 	.name           = "Generic Clause 45 PHY",
64 	.read_status    = genphy_c45_read_status,
65 };
66 
67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
68 EXPORT_SYMBOL_GPL(phy_basic_features);
69 
70 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
71 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
72 
73 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init;
74 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features);
75 
76 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
77 EXPORT_SYMBOL_GPL(phy_gbit_features);
78 
79 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
80 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
81 
82 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
83 EXPORT_SYMBOL_GPL(phy_10gbit_features);
84 
85 const int phy_basic_ports_array[3] = {
86 	ETHTOOL_LINK_MODE_Autoneg_BIT,
87 	ETHTOOL_LINK_MODE_TP_BIT,
88 	ETHTOOL_LINK_MODE_MII_BIT,
89 };
90 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
91 
92 static const int phy_all_ports_features_array[7] __initconst = {
93 	ETHTOOL_LINK_MODE_Autoneg_BIT,
94 	ETHTOOL_LINK_MODE_TP_BIT,
95 	ETHTOOL_LINK_MODE_MII_BIT,
96 	ETHTOOL_LINK_MODE_FIBRE_BIT,
97 	ETHTOOL_LINK_MODE_AUI_BIT,
98 	ETHTOOL_LINK_MODE_BNC_BIT,
99 	ETHTOOL_LINK_MODE_Backplane_BIT,
100 };
101 
102 static const int phy_10_100_features_array[4] __initconst = {
103 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
104 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
105 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
106 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
107 };
108 
109 static const int phy_basic_t1_features_array[3] __initconst = {
110 	ETHTOOL_LINK_MODE_TP_BIT,
111 	ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
112 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
113 };
114 
115 static const int phy_basic_t1s_p2mp_features_array[2] __initconst = {
116 	ETHTOOL_LINK_MODE_TP_BIT,
117 	ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT,
118 };
119 
120 static const int phy_gbit_features_array[2] __initconst = {
121 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
122 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
123 };
124 
125 static const int phy_eee_cap1_features_array[] __initconst = {
126 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
127 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
128 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
129 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
130 	ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
131 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
132 };
133 
134 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init;
135 EXPORT_SYMBOL_GPL(phy_eee_cap1_features);
136 
137 static const int phy_eee_cap2_features_array[] __initconst = {
138 	ETHTOOL_LINK_MODE_2500baseT_Full_BIT,
139 	ETHTOOL_LINK_MODE_5000baseT_Full_BIT,
140 };
141 
142 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap2_features) __ro_after_init;
143 EXPORT_SYMBOL_GPL(phy_eee_cap2_features);
144 
145 static void __init features_init(void)
146 {
147 	/* 10/100 half/full*/
148 	linkmode_set_bit_array(phy_basic_ports_array,
149 			       ARRAY_SIZE(phy_basic_ports_array),
150 			       phy_basic_features);
151 	linkmode_set_bit_array(phy_10_100_features_array,
152 			       ARRAY_SIZE(phy_10_100_features_array),
153 			       phy_basic_features);
154 
155 	/* 100 full, TP */
156 	linkmode_set_bit_array(phy_basic_t1_features_array,
157 			       ARRAY_SIZE(phy_basic_t1_features_array),
158 			       phy_basic_t1_features);
159 
160 	/* 10 half, P2MP, TP */
161 	linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array,
162 			       ARRAY_SIZE(phy_basic_t1s_p2mp_features_array),
163 			       phy_basic_t1s_p2mp_features);
164 
165 	/* 10/100 half/full + 1000 half/full */
166 	linkmode_set_bit_array(phy_basic_ports_array,
167 			       ARRAY_SIZE(phy_basic_ports_array),
168 			       phy_gbit_features);
169 	linkmode_set_bit_array(phy_10_100_features_array,
170 			       ARRAY_SIZE(phy_10_100_features_array),
171 			       phy_gbit_features);
172 	linkmode_set_bit_array(phy_gbit_features_array,
173 			       ARRAY_SIZE(phy_gbit_features_array),
174 			       phy_gbit_features);
175 
176 	/* 10/100 half/full + 1000 half/full + fibre*/
177 	linkmode_set_bit_array(phy_basic_ports_array,
178 			       ARRAY_SIZE(phy_basic_ports_array),
179 			       phy_gbit_fibre_features);
180 	linkmode_set_bit_array(phy_10_100_features_array,
181 			       ARRAY_SIZE(phy_10_100_features_array),
182 			       phy_gbit_fibre_features);
183 	linkmode_set_bit_array(phy_gbit_features_array,
184 			       ARRAY_SIZE(phy_gbit_features_array),
185 			       phy_gbit_fibre_features);
186 	linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phy_gbit_fibre_features);
187 
188 	/* 10/100 half/full + 1000 half/full + 10G full*/
189 	linkmode_set_bit_array(phy_all_ports_features_array,
190 			       ARRAY_SIZE(phy_all_ports_features_array),
191 			       phy_10gbit_features);
192 	linkmode_set_bit_array(phy_10_100_features_array,
193 			       ARRAY_SIZE(phy_10_100_features_array),
194 			       phy_10gbit_features);
195 	linkmode_set_bit_array(phy_gbit_features_array,
196 			       ARRAY_SIZE(phy_gbit_features_array),
197 			       phy_10gbit_features);
198 	linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
199 			 phy_10gbit_features);
200 
201 	linkmode_set_bit_array(phy_eee_cap1_features_array,
202 			       ARRAY_SIZE(phy_eee_cap1_features_array),
203 			       phy_eee_cap1_features);
204 	linkmode_set_bit_array(phy_eee_cap2_features_array,
205 			       ARRAY_SIZE(phy_eee_cap2_features_array),
206 			       phy_eee_cap2_features);
207 
208 }
209 
210 void phy_device_free(struct phy_device *phydev)
211 {
212 	put_device(&phydev->mdio.dev);
213 }
214 EXPORT_SYMBOL(phy_device_free);
215 
216 static void phy_mdio_device_free(struct mdio_device *mdiodev)
217 {
218 	struct phy_device *phydev;
219 
220 	phydev = container_of(mdiodev, struct phy_device, mdio);
221 	phy_device_free(phydev);
222 }
223 
224 static void phy_device_release(struct device *dev)
225 {
226 	fwnode_handle_put(dev->fwnode);
227 	kfree(to_phy_device(dev));
228 }
229 
230 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
231 {
232 	struct phy_device *phydev;
233 
234 	phydev = container_of(mdiodev, struct phy_device, mdio);
235 	phy_device_remove(phydev);
236 }
237 
238 static struct phy_driver genphy_driver;
239 
240 static LIST_HEAD(phy_fixup_list);
241 static DEFINE_MUTEX(phy_fixup_lock);
242 
243 static bool phy_drv_wol_enabled(struct phy_device *phydev)
244 {
245 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
246 
247 	phy_ethtool_get_wol(phydev, &wol);
248 
249 	return wol.wolopts != 0;
250 }
251 
252 bool phy_may_wakeup(struct phy_device *phydev)
253 {
254 	/* If the PHY is using driver-model based wakeup, use that state. */
255 	if (phy_can_wakeup(phydev))
256 		return device_may_wakeup(&phydev->mdio.dev);
257 
258 	return phy_drv_wol_enabled(phydev);
259 }
260 EXPORT_SYMBOL_GPL(phy_may_wakeup);
261 
262 static void phy_link_change(struct phy_device *phydev, bool up)
263 {
264 	struct net_device *netdev = phydev->attached_dev;
265 
266 	if (up)
267 		netif_carrier_on(netdev);
268 	else
269 		netif_carrier_off(netdev);
270 	phydev->adjust_link(netdev);
271 	if (phydev->mii_ts && phydev->mii_ts->link_state)
272 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
273 }
274 
275 /**
276  * phy_uses_state_machine - test whether consumer driver uses PAL state machine
277  * @phydev: the target PHY device structure
278  *
279  * Ultimately, this aims to indirectly determine whether the PHY is attached
280  * to a consumer which uses the state machine by calling phy_start() and
281  * phy_stop().
282  *
283  * When the PHY driver consumer uses phylib, it must have previously called
284  * phy_connect_direct() or one of its derivatives, so that phy_prepare_link()
285  * has set up a hook for monitoring state changes.
286  *
287  * When the PHY driver is used by the MAC driver consumer through phylink (the
288  * only other provider of a phy_link_change() method), using the PHY state
289  * machine is not optional.
290  *
291  * Return: true if consumer calls phy_start() and phy_stop(), false otherwise.
292  */
293 static bool phy_uses_state_machine(struct phy_device *phydev)
294 {
295 	if (phydev->phy_link_change == phy_link_change)
296 		return phydev->attached_dev && phydev->adjust_link;
297 
298 	return !!phydev->phy_link_change;
299 }
300 
301 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
302 {
303 	struct device_driver *drv = phydev->mdio.dev.driver;
304 	struct phy_driver *phydrv = to_phy_driver(drv);
305 	struct net_device *netdev = phydev->attached_dev;
306 
307 	if (!drv || !phydrv->suspend)
308 		return false;
309 
310 	/* If the PHY on the mido bus is not attached but has WOL enabled
311 	 * we cannot suspend the PHY.
312 	 */
313 	if (!netdev && phy_may_wakeup(phydev))
314 		return false;
315 
316 	/* PHY not attached? May suspend if the PHY has not already been
317 	 * suspended as part of a prior call to phy_disconnect() ->
318 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
319 	 * MDIO bus driver and clock gated at this point.
320 	 */
321 	if (!netdev)
322 		goto out;
323 
324 	if (netdev->ethtool->wol_enabled)
325 		return false;
326 
327 	/* As long as not all affected network drivers support the
328 	 * wol_enabled flag, let's check for hints that WoL is enabled.
329 	 * Don't suspend PHY if the attached netdev parent may wake up.
330 	 * The parent may point to a PCI device, as in tg3 driver.
331 	 */
332 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
333 		return false;
334 
335 	/* Also don't suspend PHY if the netdev itself may wakeup. This
336 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
337 	 * e.g. SoC devices.
338 	 */
339 	if (device_may_wakeup(&netdev->dev))
340 		return false;
341 
342 out:
343 	return !phydev->suspended;
344 }
345 
346 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
347 {
348 	struct phy_device *phydev = to_phy_device(dev);
349 
350 	if (phydev->mac_managed_pm)
351 		return 0;
352 
353 	/* Wakeup interrupts may occur during the system sleep transition when
354 	 * the PHY is inaccessible. Set flag to postpone handling until the PHY
355 	 * has resumed. Wait for concurrent interrupt handler to complete.
356 	 */
357 	if (phy_interrupt_is_valid(phydev)) {
358 		phydev->irq_suspended = 1;
359 		synchronize_irq(phydev->irq);
360 	}
361 
362 	/* We must stop the state machine manually, otherwise it stops out of
363 	 * control, possibly with the phydev->lock held. Upon resume, netdev
364 	 * may call phy routines that try to grab the same lock, and that may
365 	 * lead to a deadlock.
366 	 */
367 	if (phy_uses_state_machine(phydev))
368 		phy_stop_machine(phydev);
369 
370 	if (!mdio_bus_phy_may_suspend(phydev))
371 		return 0;
372 
373 	phydev->suspended_by_mdio_bus = 1;
374 
375 	return phy_suspend(phydev);
376 }
377 
378 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
379 {
380 	struct phy_device *phydev = to_phy_device(dev);
381 	int ret;
382 
383 	if (phydev->mac_managed_pm)
384 		return 0;
385 
386 	if (!phydev->suspended_by_mdio_bus)
387 		goto no_resume;
388 
389 	phydev->suspended_by_mdio_bus = 0;
390 
391 	/* If we managed to get here with the PHY state machine in a state
392 	 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
393 	 * that something went wrong and we should most likely be using
394 	 * MAC managed PM, but we are not.
395 	 */
396 	WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
397 		phydev->state != PHY_UP);
398 
399 	ret = phy_init_hw(phydev);
400 	if (ret < 0)
401 		return ret;
402 
403 	ret = phy_resume(phydev);
404 	if (ret < 0)
405 		return ret;
406 no_resume:
407 	if (phy_interrupt_is_valid(phydev)) {
408 		phydev->irq_suspended = 0;
409 		synchronize_irq(phydev->irq);
410 
411 		/* Rerun interrupts which were postponed by phy_interrupt()
412 		 * because they occurred during the system sleep transition.
413 		 */
414 		if (phydev->irq_rerun) {
415 			phydev->irq_rerun = 0;
416 			enable_irq(phydev->irq);
417 			irq_wake_thread(phydev->irq, phydev);
418 		}
419 	}
420 
421 	if (phy_uses_state_machine(phydev))
422 		phy_start_machine(phydev);
423 
424 	return 0;
425 }
426 
427 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
428 			 mdio_bus_phy_resume);
429 
430 /**
431  * phy_register_fixup - creates a new phy_fixup and adds it to the list
432  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or NULL)
433  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
434  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
435  *	comparison (or 0 to disable id-based matching)
436  * @run: The actual code to be run when a matching PHY is found
437  */
438 static int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
439 			      int (*run)(struct phy_device *))
440 {
441 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
442 
443 	if (!fixup)
444 		return -ENOMEM;
445 
446 	if (bus_id)
447 		strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
448 	fixup->phy_uid = phy_uid;
449 	fixup->phy_uid_mask = phy_uid_mask;
450 	fixup->run = run;
451 
452 	mutex_lock(&phy_fixup_lock);
453 	list_add_tail(&fixup->list, &phy_fixup_list);
454 	mutex_unlock(&phy_fixup_lock);
455 
456 	return 0;
457 }
458 
459 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
460 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
461 			       int (*run)(struct phy_device *))
462 {
463 	return phy_register_fixup(NULL, phy_uid, phy_uid_mask, run);
464 }
465 EXPORT_SYMBOL(phy_register_fixup_for_uid);
466 
467 /* Registers a fixup to be run on the PHY with id string bus_id */
468 int phy_register_fixup_for_id(const char *bus_id,
469 			      int (*run)(struct phy_device *))
470 {
471 	return phy_register_fixup(bus_id, 0, 0, run);
472 }
473 EXPORT_SYMBOL(phy_register_fixup_for_id);
474 
475 static bool phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
476 {
477 	if (!strcmp(fixup->bus_id, phydev_name(phydev)))
478 		return true;
479 
480 	if (fixup->phy_uid_mask &&
481 	    phy_id_compare(phydev->phy_id, fixup->phy_uid, fixup->phy_uid_mask))
482 		return true;
483 
484 	return false;
485 }
486 
487 /* Runs any matching fixups for this phydev */
488 static int phy_scan_fixups(struct phy_device *phydev)
489 {
490 	struct phy_fixup *fixup;
491 
492 	mutex_lock(&phy_fixup_lock);
493 	list_for_each_entry(fixup, &phy_fixup_list, list) {
494 		if (phy_needs_fixup(phydev, fixup)) {
495 			int err = fixup->run(phydev);
496 
497 			if (err < 0) {
498 				mutex_unlock(&phy_fixup_lock);
499 				return err;
500 			}
501 			phydev->has_fixups = true;
502 		}
503 	}
504 	mutex_unlock(&phy_fixup_lock);
505 
506 	return 0;
507 }
508 
509 /**
510  * genphy_match_phy_device - match a PHY device with a PHY driver
511  * @phydev: target phy_device struct
512  * @phydrv: target phy_driver struct
513  *
514  * Description: Checks whether the given PHY device matches the specified
515  * PHY driver. For Clause 45 PHYs, iterates over the available device
516  * identifiers and compares them against the driver's expected PHY ID,
517  * applying the provided mask. For Clause 22 PHYs, a direct ID comparison
518  * is performed.
519  *
520  * Return: 1 if the PHY device matches the driver, 0 otherwise.
521  */
522 int genphy_match_phy_device(struct phy_device *phydev,
523 			    const struct phy_driver *phydrv)
524 {
525 	if (phydev->is_c45) {
526 		const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
527 		int i;
528 
529 		for (i = 1; i < num_ids; i++) {
530 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
531 				continue;
532 
533 			if (phy_id_compare(phydev->c45_ids.device_ids[i],
534 					   phydrv->phy_id, phydrv->phy_id_mask))
535 				return 1;
536 		}
537 
538 		return 0;
539 	}
540 
541 	return phy_id_compare(phydev->phy_id, phydrv->phy_id,
542 			      phydrv->phy_id_mask);
543 }
544 EXPORT_SYMBOL_GPL(genphy_match_phy_device);
545 
546 static int phy_bus_match(struct device *dev, const struct device_driver *drv)
547 {
548 	struct phy_device *phydev = to_phy_device(dev);
549 	const struct phy_driver *phydrv = to_phy_driver(drv);
550 
551 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
552 		return 0;
553 
554 	if (phydrv->match_phy_device)
555 		return phydrv->match_phy_device(phydev, phydrv);
556 
557 	return genphy_match_phy_device(phydev, phydrv);
558 }
559 
560 static ssize_t
561 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
562 {
563 	struct phy_device *phydev = to_phy_device(dev);
564 
565 	return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
566 }
567 static DEVICE_ATTR_RO(phy_id);
568 
569 static ssize_t
570 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
571 {
572 	struct phy_device *phydev = to_phy_device(dev);
573 	const char *mode = NULL;
574 
575 	if (phydev->is_internal)
576 		mode = "internal";
577 	else
578 		mode = phy_modes(phydev->interface);
579 
580 	return sysfs_emit(buf, "%s\n", mode);
581 }
582 static DEVICE_ATTR_RO(phy_interface);
583 
584 static ssize_t
585 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
586 		    char *buf)
587 {
588 	struct phy_device *phydev = to_phy_device(dev);
589 
590 	return sysfs_emit(buf, "%d\n", phydev->has_fixups);
591 }
592 static DEVICE_ATTR_RO(phy_has_fixups);
593 
594 static ssize_t phy_dev_flags_show(struct device *dev,
595 				  struct device_attribute *attr,
596 				  char *buf)
597 {
598 	struct phy_device *phydev = to_phy_device(dev);
599 
600 	return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags);
601 }
602 static DEVICE_ATTR_RO(phy_dev_flags);
603 
604 static struct attribute *phy_dev_attrs[] = {
605 	&dev_attr_phy_id.attr,
606 	&dev_attr_phy_interface.attr,
607 	&dev_attr_phy_has_fixups.attr,
608 	&dev_attr_phy_dev_flags.attr,
609 	NULL,
610 };
611 
612 static const struct attribute_group phy_dev_group = {
613 	.attrs = phy_dev_attrs,
614 };
615 
616 #define MMD_DEVICE_ID_ATTR(n) \
617 static ssize_t mmd##n##_device_id_show(struct device *dev, \
618 				struct device_attribute *attr, char *buf) \
619 { \
620 	struct phy_device *phydev = to_phy_device(dev); \
621 	return sysfs_emit(buf, "0x%.8lx\n", \
622 			 (unsigned long)phydev->c45_ids.device_ids[n]); \
623 } \
624 static DEVICE_ATTR_RO(mmd##n##_device_id)
625 
626 MMD_DEVICE_ID_ATTR(1);
627 MMD_DEVICE_ID_ATTR(2);
628 MMD_DEVICE_ID_ATTR(3);
629 MMD_DEVICE_ID_ATTR(4);
630 MMD_DEVICE_ID_ATTR(5);
631 MMD_DEVICE_ID_ATTR(6);
632 MMD_DEVICE_ID_ATTR(7);
633 MMD_DEVICE_ID_ATTR(8);
634 MMD_DEVICE_ID_ATTR(9);
635 MMD_DEVICE_ID_ATTR(10);
636 MMD_DEVICE_ID_ATTR(11);
637 MMD_DEVICE_ID_ATTR(12);
638 MMD_DEVICE_ID_ATTR(13);
639 MMD_DEVICE_ID_ATTR(14);
640 MMD_DEVICE_ID_ATTR(15);
641 MMD_DEVICE_ID_ATTR(16);
642 MMD_DEVICE_ID_ATTR(17);
643 MMD_DEVICE_ID_ATTR(18);
644 MMD_DEVICE_ID_ATTR(19);
645 MMD_DEVICE_ID_ATTR(20);
646 MMD_DEVICE_ID_ATTR(21);
647 MMD_DEVICE_ID_ATTR(22);
648 MMD_DEVICE_ID_ATTR(23);
649 MMD_DEVICE_ID_ATTR(24);
650 MMD_DEVICE_ID_ATTR(25);
651 MMD_DEVICE_ID_ATTR(26);
652 MMD_DEVICE_ID_ATTR(27);
653 MMD_DEVICE_ID_ATTR(28);
654 MMD_DEVICE_ID_ATTR(29);
655 MMD_DEVICE_ID_ATTR(30);
656 MMD_DEVICE_ID_ATTR(31);
657 
658 static struct attribute *phy_mmd_attrs[] = {
659 	&dev_attr_mmd1_device_id.attr,
660 	&dev_attr_mmd2_device_id.attr,
661 	&dev_attr_mmd3_device_id.attr,
662 	&dev_attr_mmd4_device_id.attr,
663 	&dev_attr_mmd5_device_id.attr,
664 	&dev_attr_mmd6_device_id.attr,
665 	&dev_attr_mmd7_device_id.attr,
666 	&dev_attr_mmd8_device_id.attr,
667 	&dev_attr_mmd9_device_id.attr,
668 	&dev_attr_mmd10_device_id.attr,
669 	&dev_attr_mmd11_device_id.attr,
670 	&dev_attr_mmd12_device_id.attr,
671 	&dev_attr_mmd13_device_id.attr,
672 	&dev_attr_mmd14_device_id.attr,
673 	&dev_attr_mmd15_device_id.attr,
674 	&dev_attr_mmd16_device_id.attr,
675 	&dev_attr_mmd17_device_id.attr,
676 	&dev_attr_mmd18_device_id.attr,
677 	&dev_attr_mmd19_device_id.attr,
678 	&dev_attr_mmd20_device_id.attr,
679 	&dev_attr_mmd21_device_id.attr,
680 	&dev_attr_mmd22_device_id.attr,
681 	&dev_attr_mmd23_device_id.attr,
682 	&dev_attr_mmd24_device_id.attr,
683 	&dev_attr_mmd25_device_id.attr,
684 	&dev_attr_mmd26_device_id.attr,
685 	&dev_attr_mmd27_device_id.attr,
686 	&dev_attr_mmd28_device_id.attr,
687 	&dev_attr_mmd29_device_id.attr,
688 	&dev_attr_mmd30_device_id.attr,
689 	&dev_attr_mmd31_device_id.attr,
690 	NULL
691 };
692 
693 static umode_t phy_mmd_is_visible(struct kobject *kobj,
694 				  struct attribute *attr, int index)
695 {
696 	struct device *dev = kobj_to_dev(kobj);
697 	struct phy_device *phydev = to_phy_device(dev);
698 	const int i = index + 1;
699 
700 	if (!phydev->is_c45)
701 		return 0;
702 	if (i >= ARRAY_SIZE(phydev->c45_ids.device_ids) ||
703 	    phydev->c45_ids.device_ids[i] == 0xffffffff)
704 		return 0;
705 
706 	return attr->mode;
707 }
708 
709 static const struct attribute_group phy_mmd_group = {
710 	.name = "c45_phy_ids",
711 	.attrs = phy_mmd_attrs,
712 	.is_visible = phy_mmd_is_visible,
713 };
714 
715 static const struct attribute_group *phy_device_groups[] = {
716 	&phy_dev_group,
717 	&phy_mmd_group,
718 	NULL,
719 };
720 
721 static const struct device_type mdio_bus_phy_type = {
722 	.name = "PHY",
723 	.groups = phy_device_groups,
724 	.release = phy_device_release,
725 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
726 };
727 
728 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
729 {
730 	int ret;
731 
732 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
733 			     MDIO_ID_ARGS(phy_id));
734 	/* We only check for failures in executing the usermode binary,
735 	 * not whether a PHY driver module exists for the PHY ID.
736 	 * Accept -ENOENT because this may occur in case no initramfs exists,
737 	 * then modprobe isn't available.
738 	 */
739 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
740 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
741 			   ret, (unsigned long)phy_id);
742 		return ret;
743 	}
744 
745 	return 0;
746 }
747 
748 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
749 				     bool is_c45,
750 				     struct phy_c45_device_ids *c45_ids)
751 {
752 	struct phy_device *dev;
753 	struct mdio_device *mdiodev;
754 	int ret = 0;
755 
756 	/* We allocate the device, and initialize the default values */
757 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
758 	if (!dev)
759 		return ERR_PTR(-ENOMEM);
760 
761 	mdiodev = &dev->mdio;
762 	mdiodev->dev.parent = &bus->dev;
763 	mdiodev->dev.bus = &mdio_bus_type;
764 	mdiodev->dev.type = &mdio_bus_phy_type;
765 	mdiodev->bus = bus;
766 	mdiodev->bus_match = phy_bus_match;
767 	mdiodev->addr = addr;
768 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
769 	mdiodev->device_free = phy_mdio_device_free;
770 	mdiodev->device_remove = phy_mdio_device_remove;
771 	mdiodev->reset_state = -1;
772 
773 	dev->speed = SPEED_UNKNOWN;
774 	dev->duplex = DUPLEX_UNKNOWN;
775 	dev->pause = false;
776 	dev->asym_pause = false;
777 	dev->link = 0;
778 	dev->port = PORT_TP;
779 	dev->interface = PHY_INTERFACE_MODE_GMII;
780 
781 	dev->autoneg = AUTONEG_ENABLE;
782 
783 	dev->pma_extable = -ENODATA;
784 	dev->is_c45 = is_c45;
785 	dev->phy_id = phy_id;
786 	if (c45_ids)
787 		dev->c45_ids = *c45_ids;
788 	dev->irq = bus->irq[addr];
789 
790 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
791 	device_initialize(&mdiodev->dev);
792 
793 	dev->state = PHY_DOWN;
794 	INIT_LIST_HEAD(&dev->leds);
795 	INIT_LIST_HEAD(&dev->ports);
796 
797 	/* The driver's probe function must change that to the real number
798 	 * of ports possible on the PHY. We assume by default we are dealing
799 	 * with a single-port PHY
800 	 */
801 	dev->max_n_ports = 1;
802 
803 	mutex_init(&dev->lock);
804 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
805 
806 	/* Request the appropriate module unconditionally; don't
807 	 * bother trying to do so only if it isn't already loaded,
808 	 * because that gets complicated. A hotplug event would have
809 	 * done an unconditional modprobe anyway.
810 	 * We don't do normal hotplug because it won't work for MDIO
811 	 * -- because it relies on the device staying around for long
812 	 * enough for the driver to get loaded. With MDIO, the NIC
813 	 * driver will get bored and give up as soon as it finds that
814 	 * there's no driver _already_ loaded.
815 	 */
816 	if (is_c45 && c45_ids) {
817 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
818 		int i;
819 
820 		for (i = 1; i < num_ids; i++) {
821 			if (c45_ids->device_ids[i] == 0xffffffff)
822 				continue;
823 
824 			ret = phy_request_driver_module(dev,
825 						c45_ids->device_ids[i]);
826 			if (ret)
827 				break;
828 		}
829 	} else {
830 		ret = phy_request_driver_module(dev, phy_id);
831 	}
832 
833 	if (ret) {
834 		put_device(&mdiodev->dev);
835 		dev = ERR_PTR(ret);
836 	}
837 
838 	return dev;
839 }
840 EXPORT_SYMBOL(phy_device_create);
841 
842 /* phy_c45_probe_present - checks to see if a MMD is present in the package
843  * @bus: the target MII bus
844  * @prtad: PHY package address on the MII bus
845  * @devad: PHY device (MMD) address
846  *
847  * Read the MDIO_STAT2 register, and check whether a device is responding
848  * at this address.
849  *
850  * Returns: negative error number on bus access error, zero if no device
851  * is responding, or positive if a device is present.
852  */
853 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
854 {
855 	int stat2;
856 
857 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
858 	if (stat2 < 0)
859 		return stat2;
860 
861 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
862 }
863 
864 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
865  * @bus: the target MII bus
866  * @addr: PHY address on the MII bus
867  * @dev_addr: MMD address in the PHY.
868  * @devices_in_package: where to store the devices in package information.
869  *
870  * Description: reads devices in package registers of a MMD at @dev_addr
871  * from PHY at @addr on @bus.
872  *
873  * Returns: 0 on success, -EIO on failure.
874  */
875 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
876 				   u32 *devices_in_package)
877 {
878 	int phy_reg;
879 
880 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
881 	if (phy_reg < 0)
882 		return -EIO;
883 	*devices_in_package = phy_reg << 16;
884 
885 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
886 	if (phy_reg < 0)
887 		return -EIO;
888 	*devices_in_package |= phy_reg;
889 
890 	return 0;
891 }
892 
893 /**
894  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
895  * @bus: the target MII bus
896  * @addr: PHY address on the MII bus
897  * @c45_ids: where to store the c45 ID information.
898  *
899  * Read the PHY "devices in package". If this appears to be valid, read
900  * the PHY identifiers for each device. Return the "devices in package"
901  * and identifiers in @c45_ids.
902  *
903  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
904  * the "devices in package" is invalid or no device responds.
905  */
906 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
907 			   struct phy_c45_device_ids *c45_ids)
908 {
909 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
910 	u32 devs_in_pkg = 0;
911 	int i, ret, phy_reg;
912 
913 	/* Find first non-zero Devices In package. Device zero is reserved
914 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
915 	 */
916 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
917 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
918 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
919 			/* Check that there is a device present at this
920 			 * address before reading the devices-in-package
921 			 * register to avoid reading garbage from the PHY.
922 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
923 			 * compliant.
924 			 */
925 			ret = phy_c45_probe_present(bus, addr, i);
926 			if (ret < 0)
927 				/* returning -ENODEV doesn't stop bus
928 				 * scanning
929 				 */
930 				return (phy_reg == -EIO ||
931 					phy_reg == -ENODEV) ? -ENODEV : -EIO;
932 
933 			if (!ret)
934 				continue;
935 		}
936 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
937 		if (phy_reg < 0)
938 			return -EIO;
939 	}
940 
941 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
942 		/* If mostly Fs, there is no device there, then let's probe
943 		 * MMD 0, as some 10G PHYs have zero Devices In package,
944 		 * e.g. Cortina CS4315/CS4340 PHY.
945 		 */
946 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
947 		if (phy_reg < 0)
948 			return -EIO;
949 
950 		/* no device there, let's get out of here */
951 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
952 			return -ENODEV;
953 	}
954 
955 	/* Now probe Device Identifiers for each device present. */
956 	for (i = 1; i < num_ids; i++) {
957 		if (!(devs_in_pkg & (1 << i)))
958 			continue;
959 
960 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
961 			/* Probe the "Device Present" bits for the vendor MMDs
962 			 * to ignore these if they do not contain IEEE 802.3
963 			 * registers.
964 			 */
965 			ret = phy_c45_probe_present(bus, addr, i);
966 			if (ret < 0)
967 				return ret;
968 
969 			if (!ret)
970 				continue;
971 		}
972 
973 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
974 		if (phy_reg < 0)
975 			return -EIO;
976 		c45_ids->device_ids[i] = phy_reg << 16;
977 
978 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
979 		if (phy_reg < 0)
980 			return -EIO;
981 		c45_ids->device_ids[i] |= phy_reg;
982 	}
983 
984 	c45_ids->devices_in_package = devs_in_pkg;
985 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
986 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
987 
988 	return 0;
989 }
990 
991 /**
992  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
993  * @bus: the target MII bus
994  * @addr: PHY address on the MII bus
995  * @phy_id: where to store the ID retrieved.
996  *
997  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
998  * placing it in @phy_id. Return zero on successful read and the ID is
999  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
1000  * or invalid ID.
1001  */
1002 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
1003 {
1004 	int phy_reg;
1005 
1006 	/* Grab the bits from PHYIR1, and put them in the upper half */
1007 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
1008 	if (phy_reg < 0) {
1009 		/* returning -ENODEV doesn't stop bus scanning */
1010 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
1011 	}
1012 
1013 	*phy_id = phy_reg << 16;
1014 
1015 	/* Grab the bits from PHYIR2, and put them in the lower half */
1016 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
1017 	if (phy_reg < 0) {
1018 		/* returning -ENODEV doesn't stop bus scanning */
1019 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
1020 	}
1021 
1022 	*phy_id |= phy_reg;
1023 
1024 	/* If the phy_id is mostly Fs, there is no device there */
1025 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
1026 		return -ENODEV;
1027 
1028 	return 0;
1029 }
1030 
1031 /* Extract the phy ID from the compatible string of the form
1032  * ethernet-phy-idAAAA.BBBB.
1033  */
1034 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
1035 {
1036 	unsigned int upper, lower;
1037 	const char *cp;
1038 	int ret;
1039 
1040 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
1041 	if (ret)
1042 		return ret;
1043 
1044 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
1045 		return -EINVAL;
1046 
1047 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
1048 	return 0;
1049 }
1050 EXPORT_SYMBOL(fwnode_get_phy_id);
1051 
1052 /**
1053  * get_phy_device - reads the specified PHY device and returns its @phy_device
1054  *		    struct
1055  * @bus: the target MII bus
1056  * @addr: PHY address on the MII bus
1057  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
1058  *
1059  * Probe for a PHY at @addr on @bus.
1060  *
1061  * When probing for a clause 22 PHY, then read the ID registers. If we find
1062  * a valid ID, allocate and return a &struct phy_device.
1063  *
1064  * When probing for a clause 45 PHY, read the "devices in package" registers.
1065  * If the "devices in package" appears valid, read the ID registers for each
1066  * MMD, allocate and return a &struct phy_device.
1067  *
1068  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
1069  * no PHY present, or %-EIO on bus access error.
1070  */
1071 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
1072 {
1073 	struct phy_c45_device_ids c45_ids;
1074 	u32 phy_id = 0;
1075 	int r;
1076 
1077 	c45_ids.devices_in_package = 0;
1078 	c45_ids.mmds_present = 0;
1079 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
1080 
1081 	if (is_c45)
1082 		r = get_phy_c45_ids(bus, addr, &c45_ids);
1083 	else
1084 		r = get_phy_c22_id(bus, addr, &phy_id);
1085 
1086 	if (r)
1087 		return ERR_PTR(r);
1088 
1089 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
1090 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
1091 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
1092 	 * space, if successful, create the C45 PHY device.
1093 	 */
1094 	if (!is_c45 && phy_id == 0 && bus->read_c45) {
1095 		r = get_phy_c45_ids(bus, addr, &c45_ids);
1096 		if (!r)
1097 			return phy_device_create(bus, addr, phy_id,
1098 						 true, &c45_ids);
1099 	}
1100 
1101 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
1102 }
1103 EXPORT_SYMBOL(get_phy_device);
1104 
1105 /**
1106  * phy_device_register - Register the phy device on the MDIO bus
1107  * @phydev: phy_device structure to be added to the MDIO bus
1108  */
1109 int phy_device_register(struct phy_device *phydev)
1110 {
1111 	int err;
1112 
1113 	err = mdiobus_register_device(&phydev->mdio);
1114 	if (err)
1115 		return err;
1116 
1117 	/* Deassert the reset signal */
1118 	phy_device_reset(phydev, 0);
1119 
1120 	/* Run all of the fixups for this PHY */
1121 	err = phy_scan_fixups(phydev);
1122 	if (err) {
1123 		phydev_err(phydev, "failed to initialize\n");
1124 		goto out;
1125 	}
1126 
1127 	err = device_add(&phydev->mdio.dev);
1128 	if (err) {
1129 		phydev_err(phydev, "failed to add\n");
1130 		goto out;
1131 	}
1132 
1133 	return 0;
1134 
1135  out:
1136 	/* Assert the reset signal */
1137 	phy_device_reset(phydev, 1);
1138 
1139 	mdiobus_unregister_device(&phydev->mdio);
1140 	return err;
1141 }
1142 EXPORT_SYMBOL(phy_device_register);
1143 
1144 /**
1145  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
1146  * @phydev: phy_device structure to remove
1147  *
1148  * This doesn't free the phy_device itself, it merely reverses the effects
1149  * of phy_device_register(). Use phy_device_free() to free the device
1150  * after calling this function.
1151  */
1152 void phy_device_remove(struct phy_device *phydev)
1153 {
1154 	unregister_mii_timestamper(phydev->mii_ts);
1155 	pse_control_put(phydev->psec);
1156 
1157 	device_del(&phydev->mdio.dev);
1158 
1159 	/* Assert the reset signal */
1160 	phy_device_reset(phydev, 1);
1161 
1162 	mdiobus_unregister_device(&phydev->mdio);
1163 }
1164 EXPORT_SYMBOL(phy_device_remove);
1165 
1166 /**
1167  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1168  * @phydev: phy_device structure to read 802.3-c45 IDs
1169  *
1170  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1171  * the "devices in package" is invalid.
1172  */
1173 int phy_get_c45_ids(struct phy_device *phydev)
1174 {
1175 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1176 			       &phydev->c45_ids);
1177 }
1178 EXPORT_SYMBOL(phy_get_c45_ids);
1179 
1180 /**
1181  * phy_find_next - finds the next PHY device on the bus
1182  * @bus: the target MII bus
1183  * @pos: cursor
1184  *
1185  * Return: next phy_device on the bus, or NULL
1186  */
1187 struct phy_device *phy_find_next(struct mii_bus *bus, struct phy_device *pos)
1188 {
1189 	for (int addr = pos ? pos->mdio.addr + 1 : 0;
1190 	     addr < PHY_MAX_ADDR; addr++) {
1191 		struct phy_device *phydev = mdiobus_get_phy(bus, addr);
1192 
1193 		if (phydev)
1194 			return phydev;
1195 	}
1196 	return NULL;
1197 }
1198 EXPORT_SYMBOL_GPL(phy_find_next);
1199 
1200 /**
1201  * phy_prepare_link - prepares the PHY layer to monitor link status
1202  * @phydev: target phy_device struct
1203  * @handler: callback function for link status change notifications
1204  *
1205  * Description: Tells the PHY infrastructure to handle the
1206  *   gory details on monitoring link status (whether through
1207  *   polling or an interrupt), and to call back to the
1208  *   connected device driver when the link status changes.
1209  *   If you want to monitor your own link state, don't call
1210  *   this function.
1211  */
1212 static void phy_prepare_link(struct phy_device *phydev,
1213 			     void (*handler)(struct net_device *))
1214 {
1215 	phydev->adjust_link = handler;
1216 }
1217 
1218 /**
1219  * phy_connect_direct - connect an ethernet device to a specific phy_device
1220  * @dev: the network device to connect
1221  * @phydev: the pointer to the phy device
1222  * @handler: callback function for state change notifications
1223  * @interface: PHY device's interface
1224  */
1225 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1226 		       void (*handler)(struct net_device *),
1227 		       phy_interface_t interface)
1228 {
1229 	int rc;
1230 
1231 	if (!dev)
1232 		return -EINVAL;
1233 
1234 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1235 	if (rc)
1236 		return rc;
1237 
1238 	phy_prepare_link(phydev, handler);
1239 	if (phy_interrupt_is_valid(phydev))
1240 		phy_request_interrupt(phydev);
1241 
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL(phy_connect_direct);
1245 
1246 /**
1247  * phy_connect - connect an ethernet device to a PHY device
1248  * @dev: the network device to connect
1249  * @bus_id: the id string of the PHY device to connect
1250  * @handler: callback function for state change notifications
1251  * @interface: PHY device's interface
1252  *
1253  * Description: Convenience function for connecting ethernet
1254  *   devices to PHY devices.  The default behavior is for
1255  *   the PHY infrastructure to handle everything, and only notify
1256  *   the connected driver when the link status changes.  If you
1257  *   don't want, or can't use the provided functionality, you may
1258  *   choose to call only the subset of functions which provide
1259  *   the desired functionality.
1260  */
1261 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1262 			       void (*handler)(struct net_device *),
1263 			       phy_interface_t interface)
1264 {
1265 	struct phy_device *phydev;
1266 	struct device *d;
1267 	int rc;
1268 
1269 	/* Search the list of PHY devices on the mdio bus for the
1270 	 * PHY with the requested name
1271 	 */
1272 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1273 	if (!d) {
1274 		pr_err("PHY %s not found\n", bus_id);
1275 		return ERR_PTR(-ENODEV);
1276 	}
1277 	phydev = to_phy_device(d);
1278 
1279 	rc = phy_connect_direct(dev, phydev, handler, interface);
1280 	put_device(d);
1281 	if (rc)
1282 		return ERR_PTR(rc);
1283 
1284 	return phydev;
1285 }
1286 EXPORT_SYMBOL(phy_connect);
1287 
1288 /**
1289  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1290  *		    device
1291  * @phydev: target phy_device struct
1292  */
1293 void phy_disconnect(struct phy_device *phydev)
1294 {
1295 	if (phy_is_started(phydev))
1296 		phy_stop(phydev);
1297 
1298 	if (phy_interrupt_is_valid(phydev))
1299 		phy_free_interrupt(phydev);
1300 
1301 	phydev->adjust_link = NULL;
1302 
1303 	phy_detach(phydev);
1304 }
1305 EXPORT_SYMBOL(phy_disconnect);
1306 
1307 /**
1308  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1309  * @phydev: The PHY device to poll
1310  *
1311  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1312  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1313  *   register must be polled until the BMCR_RESET bit clears.
1314  *
1315  *   Furthermore, any attempts to write to PHY registers may have no effect
1316  *   or even generate MDIO bus errors until this is complete.
1317  *
1318  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1319  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1320  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1321  *   effort to support such broken PHYs, this function is separate from the
1322  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1323  *   and reapply all driver-specific and board-specific fixups.
1324  */
1325 static int phy_poll_reset(struct phy_device *phydev)
1326 {
1327 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1328 	int ret, val;
1329 
1330 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1331 				    50000, 600000, true);
1332 	if (ret)
1333 		return ret;
1334 	/* Some chips (smsc911x) may still need up to another 1ms after the
1335 	 * BMCR_RESET bit is cleared before they are usable.
1336 	 */
1337 	msleep(1);
1338 	return 0;
1339 }
1340 
1341 int phy_init_hw(struct phy_device *phydev)
1342 {
1343 	int ret = 0;
1344 
1345 	/* Deassert the reset signal */
1346 	phy_device_reset(phydev, 0);
1347 
1348 	if (!phydev->drv)
1349 		return 0;
1350 
1351 	if (phydev->drv->soft_reset) {
1352 		ret = phydev->drv->soft_reset(phydev);
1353 		if (ret < 0)
1354 			return ret;
1355 
1356 		/* see comment in genphy_soft_reset for an explanation */
1357 		phydev->suspended = 0;
1358 	}
1359 
1360 	ret = phy_scan_fixups(phydev);
1361 	if (ret < 0)
1362 		return ret;
1363 
1364 	phy_interface_zero(phydev->possible_interfaces);
1365 
1366 	if (phydev->drv->config_init) {
1367 		ret = phydev->drv->config_init(phydev);
1368 		if (ret < 0)
1369 			return ret;
1370 	}
1371 
1372 	if (phydev->drv->config_intr) {
1373 		ret = phydev->drv->config_intr(phydev);
1374 		if (ret < 0)
1375 			return ret;
1376 	}
1377 
1378 	return 0;
1379 }
1380 EXPORT_SYMBOL(phy_init_hw);
1381 
1382 void phy_attached_info(struct phy_device *phydev)
1383 {
1384 	phy_attached_print(phydev, NULL);
1385 }
1386 EXPORT_SYMBOL(phy_attached_info);
1387 
1388 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1389 char *phy_attached_info_irq(struct phy_device *phydev)
1390 {
1391 	char *irq_str;
1392 	char irq_num[8];
1393 
1394 	switch(phydev->irq) {
1395 	case PHY_POLL:
1396 		irq_str = "POLL";
1397 		break;
1398 	case PHY_MAC_INTERRUPT:
1399 		irq_str = "MAC";
1400 		break;
1401 	default:
1402 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1403 		irq_str = irq_num;
1404 		break;
1405 	}
1406 
1407 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1408 }
1409 EXPORT_SYMBOL(phy_attached_info_irq);
1410 
1411 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1412 {
1413 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1414 	char *irq_str = phy_attached_info_irq(phydev);
1415 
1416 	if (!fmt) {
1417 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1418 			    phydev_name(phydev), irq_str);
1419 	} else {
1420 		va_list ap;
1421 
1422 		phydev_info(phydev, ATTACHED_FMT, unbound,
1423 			    phydev_name(phydev), irq_str);
1424 
1425 		va_start(ap, fmt);
1426 		vprintk(fmt, ap);
1427 		va_end(ap);
1428 	}
1429 	kfree(irq_str);
1430 }
1431 EXPORT_SYMBOL(phy_attached_print);
1432 
1433 static void phy_sysfs_create_links(struct phy_device *phydev)
1434 {
1435 	struct net_device *dev = phydev->attached_dev;
1436 	int err;
1437 
1438 	if (!dev)
1439 		return;
1440 
1441 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1442 				"attached_dev");
1443 	if (err)
1444 		return;
1445 
1446 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1447 				       &phydev->mdio.dev.kobj,
1448 				       "phydev");
1449 	if (err) {
1450 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1451 			kobject_name(&phydev->mdio.dev.kobj),
1452 			err);
1453 		/* non-fatal - some net drivers can use one netdevice
1454 		 * with more then one phy
1455 		 */
1456 	}
1457 
1458 	phydev->sysfs_links = true;
1459 }
1460 
1461 static ssize_t
1462 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1463 		    char *buf)
1464 {
1465 	struct phy_device *phydev = to_phy_device(dev);
1466 
1467 	return sysfs_emit(buf, "%d\n", !phydev->attached_dev);
1468 }
1469 static DEVICE_ATTR_RO(phy_standalone);
1470 
1471 /**
1472  * phy_sfp_connect_phy - Connect the SFP module's PHY to the upstream PHY
1473  * @upstream: pointer to the upstream phy device
1474  * @phy: pointer to the SFP module's phy device
1475  *
1476  * This helper allows keeping track of PHY devices on the link. It adds the
1477  * SFP module's phy to the phy namespace of the upstream phy
1478  *
1479  * Return: 0 on success, otherwise a negative error code.
1480  */
1481 static int phy_sfp_connect_phy(void *upstream, struct phy_device *phy)
1482 {
1483 	struct phy_device *phydev = upstream;
1484 	struct net_device *dev = phydev->attached_dev;
1485 
1486 	if (dev)
1487 		return phy_link_topo_add_phy(dev, phy, PHY_UPSTREAM_PHY, phydev);
1488 
1489 	return 0;
1490 }
1491 
1492 /**
1493  * phy_sfp_disconnect_phy - Disconnect the SFP module's PHY from the upstream PHY
1494  * @upstream: pointer to the upstream phy device
1495  * @phy: pointer to the SFP module's phy device
1496  *
1497  * This helper allows keeping track of PHY devices on the link. It removes the
1498  * SFP module's phy to the phy namespace of the upstream phy. As the module phy
1499  * will be destroyed, re-inserting the same module will add a new phy with a
1500  * new index.
1501  */
1502 static void phy_sfp_disconnect_phy(void *upstream, struct phy_device *phy)
1503 {
1504 	struct phy_device *phydev = upstream;
1505 	struct net_device *dev = phydev->attached_dev;
1506 
1507 	if (dev)
1508 		phy_link_topo_del_phy(dev, phy);
1509 }
1510 
1511 /**
1512  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1513  * @upstream: pointer to the phy device
1514  * @bus: sfp bus representing cage being attached
1515  *
1516  * This is used to fill in the sfp_upstream_ops .attach member.
1517  */
1518 static void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1519 {
1520 	struct phy_device *phydev = upstream;
1521 
1522 	if (phydev->attached_dev)
1523 		phydev->attached_dev->sfp_bus = bus;
1524 	phydev->sfp_bus_attached = true;
1525 }
1526 
1527 /**
1528  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1529  * @upstream: pointer to the phy device
1530  * @bus: sfp bus representing cage being attached
1531  *
1532  * This is used to fill in the sfp_upstream_ops .detach member.
1533  */
1534 static void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1535 {
1536 	struct phy_device *phydev = upstream;
1537 
1538 	if (phydev->attached_dev)
1539 		phydev->attached_dev->sfp_bus = NULL;
1540 	phydev->sfp_bus_attached = false;
1541 }
1542 
1543 static int phy_sfp_module_insert(void *upstream, const struct sfp_eeprom_id *id)
1544 {
1545 	__ETHTOOL_DECLARE_LINK_MODE_MASK(sfp_support);
1546 	struct phy_device *phydev = upstream;
1547 	const struct sfp_module_caps *caps;
1548 	struct phy_port *port;
1549 
1550 	phy_interface_t iface;
1551 
1552 	linkmode_zero(sfp_support);
1553 
1554 	port = phy_get_sfp_port(phydev);
1555 	if (!port)
1556 		return -EINVAL;
1557 
1558 	caps = sfp_get_module_caps(phydev->sfp_bus);
1559 
1560 	linkmode_and(sfp_support, port->supported, caps->link_modes);
1561 	if (linkmode_empty(sfp_support)) {
1562 		dev_err(&phydev->mdio.dev, "incompatible SFP module inserted, no common linkmode\n");
1563 		return -EINVAL;
1564 	}
1565 
1566 	iface = sfp_select_interface(phydev->sfp_bus, sfp_support);
1567 	if (iface == PHY_INTERFACE_MODE_NA) {
1568 		dev_err(&phydev->mdio.dev, "PHY %s does not support the SFP module's requested MII interfaces\n",
1569 			phydev_name(phydev));
1570 		return -EINVAL;
1571 	}
1572 
1573 	if (phydev->n_ports == 1)
1574 		phydev->port = caps->port;
1575 
1576 	if (port->ops && port->ops->configure_mii)
1577 		return port->ops->configure_mii(port, true, iface);
1578 
1579 	return 0;
1580 }
1581 
1582 static void phy_sfp_module_remove(void *upstream)
1583 {
1584 	struct phy_device *phydev = upstream;
1585 	struct phy_port *port = phy_get_sfp_port(phydev);
1586 
1587 	if (port && port->ops && port->ops->configure_mii)
1588 		port->ops->configure_mii(port, false, PHY_INTERFACE_MODE_NA);
1589 
1590 	if (phydev->n_ports == 1)
1591 		phydev->port = PORT_NONE;
1592 }
1593 
1594 static void phy_sfp_link_up(void *upstream)
1595 {
1596 	struct phy_device *phydev = upstream;
1597 	struct phy_port *port = phy_get_sfp_port(phydev);
1598 
1599 	if (port && port->ops && port->ops->link_up)
1600 		port->ops->link_up(port);
1601 }
1602 
1603 static void phy_sfp_link_down(void *upstream)
1604 {
1605 	struct phy_device *phydev = upstream;
1606 	struct phy_port *port = phy_get_sfp_port(phydev);
1607 
1608 	if (port && port->ops && port->ops->link_down)
1609 		port->ops->link_down(port);
1610 }
1611 
1612 static const struct sfp_upstream_ops sfp_phydev_ops = {
1613 	.attach = phy_sfp_attach,
1614 	.detach = phy_sfp_detach,
1615 	.module_insert = phy_sfp_module_insert,
1616 	.module_remove = phy_sfp_module_remove,
1617 	.link_up = phy_sfp_link_up,
1618 	.link_down = phy_sfp_link_down,
1619 	.connect_phy = phy_sfp_connect_phy,
1620 	.disconnect_phy = phy_sfp_disconnect_phy,
1621 };
1622 
1623 static int phy_add_port(struct phy_device *phydev, struct phy_port *port)
1624 {
1625 	int ret = 0;
1626 
1627 	if (phydev->n_ports == phydev->max_n_ports)
1628 		return -EBUSY;
1629 
1630 	/* We set all ports as active by default, PHY drivers may deactivate
1631 	 * them (when unused)
1632 	 */
1633 	port->active = true;
1634 
1635 	if (port->is_mii) {
1636 		if (phydev->drv && phydev->drv->attach_mii_port)
1637 			ret = phydev->drv->attach_mii_port(phydev, port);
1638 	} else {
1639 		if (phydev->drv && phydev->drv->attach_mdi_port)
1640 			ret = phydev->drv->attach_mdi_port(phydev, port);
1641 	}
1642 
1643 	if (ret)
1644 		return ret;
1645 
1646 	/* The PHY driver might have added, removed or set medium/pairs info,
1647 	 * so update the port supported accordingly.
1648 	 */
1649 	phy_port_update_supported(port);
1650 
1651 	list_add(&port->head, &phydev->ports);
1652 
1653 	phydev->n_ports++;
1654 
1655 	return 0;
1656 }
1657 
1658 static void phy_del_port(struct phy_device *phydev, struct phy_port *port)
1659 {
1660 	if (!phydev->n_ports)
1661 		return;
1662 
1663 	list_del(&port->head);
1664 
1665 	phydev->n_ports--;
1666 }
1667 
1668 static int phy_setup_sfp_port(struct phy_device *phydev)
1669 {
1670 	struct phy_port *port = phy_port_alloc();
1671 	int ret;
1672 
1673 	if (!port)
1674 		return -ENOMEM;
1675 
1676 	port->parent_type = PHY_PORT_PHY;
1677 	port->phy = phydev;
1678 
1679 	/* The PHY is a media converter, the port connected to the SFP cage
1680 	 * is a MII port.
1681 	 */
1682 	port->is_mii = true;
1683 	port->is_sfp = true;
1684 
1685 	/* The port->supported and port->interfaces list will be populated
1686 	 * when attaching the port to the phydev.
1687 	 */
1688 	ret = phy_add_port(phydev, port);
1689 	if (ret)
1690 		phy_port_destroy(port);
1691 
1692 	return ret;
1693 }
1694 
1695 /**
1696  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1697  * @phydev: Pointer to phy_device
1698  */
1699 static int phy_sfp_probe(struct phy_device *phydev)
1700 {
1701 	struct sfp_bus *bus;
1702 	int ret = 0;
1703 
1704 	if (phydev->mdio.dev.fwnode) {
1705 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1706 		if (IS_ERR(bus))
1707 			return PTR_ERR(bus);
1708 
1709 		phydev->sfp_bus = bus;
1710 
1711 		ret = sfp_bus_add_upstream(bus, phydev, &sfp_phydev_ops);
1712 		sfp_bus_put(bus);
1713 	}
1714 
1715 	if (!ret && phydev->sfp_bus)
1716 		ret = phy_setup_sfp_port(phydev);
1717 
1718 	return ret;
1719 }
1720 
1721 static bool phy_drv_supports_irq(const struct phy_driver *phydrv)
1722 {
1723 	return phydrv->config_intr && phydrv->handle_interrupt;
1724 }
1725 
1726 /**
1727  * phy_attach_direct - attach a network device to a given PHY device pointer
1728  * @dev: network device to attach
1729  * @phydev: Pointer to phy_device to attach
1730  * @flags: PHY device's dev_flags
1731  * @interface: PHY device's interface
1732  *
1733  * Description: Called by drivers to attach to a particular PHY
1734  *     device. The phy_device is found, and properly hooked up
1735  *     to the phy_driver.  If no driver is attached, then a
1736  *     generic driver is used.  The phy_device is given a ptr to
1737  *     the attaching device, and given a callback for link status
1738  *     change.  The phy_device is returned to the attaching driver.
1739  *     This function takes a reference on the phy device.
1740  */
1741 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1742 		      u32 flags, phy_interface_t interface)
1743 {
1744 	struct mii_bus *bus = phydev->mdio.bus;
1745 	struct device *d = &phydev->mdio.dev;
1746 	struct module *ndev_owner = NULL;
1747 	int err;
1748 
1749 	/* For Ethernet device drivers that register their own MDIO bus, we
1750 	 * will have bus->owner match ndev_mod, so we do not want to increment
1751 	 * our own module->refcnt here, otherwise we would not be able to
1752 	 * unload later on.
1753 	 */
1754 	if (dev)
1755 		ndev_owner = dev->dev.parent->driver->owner;
1756 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1757 		phydev_err(phydev, "failed to get the bus module\n");
1758 		return -EIO;
1759 	}
1760 
1761 	get_device(d);
1762 
1763 	/* Assume that if there is no driver, that it doesn't
1764 	 * exist, and we should use the genphy driver.
1765 	 */
1766 	if (!d->driver) {
1767 		if (phydev->is_c45)
1768 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1769 		else
1770 			d->driver = &genphy_driver.mdiodrv.driver;
1771 
1772 		phydev->is_genphy_driven = 1;
1773 	}
1774 
1775 	if (!try_module_get(d->driver->owner)) {
1776 		phydev_err(phydev, "failed to get the device driver module\n");
1777 		err = -EIO;
1778 		goto error_put_device;
1779 	}
1780 
1781 	if (phydev->is_genphy_driven) {
1782 		err = d->driver->probe(d);
1783 		if (err >= 0)
1784 			err = device_bind_driver(d);
1785 
1786 		if (err)
1787 			goto error_module_put;
1788 	}
1789 
1790 	if (phydev->attached_dev) {
1791 		dev_err(&dev->dev, "PHY already attached\n");
1792 		err = -EBUSY;
1793 		goto error;
1794 	}
1795 
1796 	phydev->phy_link_change = phy_link_change;
1797 	if (dev) {
1798 		phydev->attached_dev = dev;
1799 		dev->phydev = phydev;
1800 
1801 		if (phydev->sfp_bus_attached)
1802 			dev->sfp_bus = phydev->sfp_bus;
1803 
1804 		err = phy_link_topo_add_phy(dev, phydev, PHY_UPSTREAM_MAC, dev);
1805 		if (err)
1806 			goto error;
1807 	}
1808 
1809 	/* Some Ethernet drivers try to connect to a PHY device before
1810 	 * calling register_netdevice() -> netdev_register_kobject() and
1811 	 * does the dev->dev.kobj initialization. Here we only check for
1812 	 * success which indicates that the network device kobject is
1813 	 * ready. Once we do that we still need to keep track of whether
1814 	 * links were successfully set up or not for phy_detach() to
1815 	 * remove them accordingly.
1816 	 */
1817 	phydev->sysfs_links = false;
1818 
1819 	phy_sysfs_create_links(phydev);
1820 
1821 	if (!phydev->attached_dev) {
1822 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1823 					&dev_attr_phy_standalone.attr);
1824 		if (err)
1825 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1826 	}
1827 
1828 	phydev->dev_flags |= flags;
1829 
1830 	phydev->interface = interface;
1831 
1832 	phydev->state = PHY_READY;
1833 
1834 	phydev->interrupts = PHY_INTERRUPT_DISABLED;
1835 
1836 	/* PHYs can request to use poll mode even though they have an
1837 	 * associated interrupt line. This could be the case if they
1838 	 * detect a broken interrupt handling.
1839 	 */
1840 	if (phydev->dev_flags & PHY_F_NO_IRQ)
1841 		phydev->irq = PHY_POLL;
1842 
1843 	if (!phy_drv_supports_irq(phydev->drv) && phy_interrupt_is_valid(phydev))
1844 		phydev->irq = PHY_POLL;
1845 
1846 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1847 	 * it to different value depending on the PHY configuration. If we have
1848 	 * the generic PHY driver we can't figure it out, thus set the old
1849 	 * legacy PORT_MII value.
1850 	 */
1851 	if (phydev->is_genphy_driven)
1852 		phydev->port = PORT_MII;
1853 
1854 	/* Initial carrier state is off as the phy is about to be
1855 	 * (re)initialized.
1856 	 */
1857 	if (dev)
1858 		netif_carrier_off(phydev->attached_dev);
1859 
1860 	/* Do initial configuration here, now that
1861 	 * we have certain key parameters
1862 	 * (dev_flags and interface)
1863 	 */
1864 	err = phy_init_hw(phydev);
1865 	if (err)
1866 		goto error;
1867 
1868 	phy_resume(phydev);
1869 	if (!phydev->is_on_sfp_module)
1870 		phy_led_triggers_register(phydev);
1871 
1872 	/**
1873 	 * If the external phy used by current mac interface is managed by
1874 	 * another mac interface, so we should create a device link between
1875 	 * phy dev and mac dev.
1876 	 */
1877 	if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
1878 		phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
1879 						  DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
1880 
1881 	return err;
1882 
1883 error:
1884 	/* phy_detach() does all of the cleanup below */
1885 	phy_detach(phydev);
1886 	return err;
1887 
1888 error_module_put:
1889 	module_put(d->driver->owner);
1890 	phydev->is_genphy_driven = 0;
1891 	d->driver = NULL;
1892 error_put_device:
1893 	put_device(d);
1894 	if (ndev_owner != bus->owner)
1895 		module_put(bus->owner);
1896 	return err;
1897 }
1898 EXPORT_SYMBOL(phy_attach_direct);
1899 
1900 /**
1901  * phy_attach - attach a network device to a particular PHY device
1902  * @dev: network device to attach
1903  * @bus_id: Bus ID of PHY device to attach
1904  * @interface: PHY device's interface
1905  *
1906  * Description: Same as phy_attach_direct() except that a PHY bus_id
1907  *     string is passed instead of a pointer to a struct phy_device.
1908  */
1909 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1910 			      phy_interface_t interface)
1911 {
1912 	struct phy_device *phydev;
1913 	struct device *d;
1914 	int rc;
1915 
1916 	if (!dev)
1917 		return ERR_PTR(-EINVAL);
1918 
1919 	/* Search the list of PHY devices on the mdio bus for the
1920 	 * PHY with the requested name
1921 	 */
1922 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1923 	if (!d) {
1924 		pr_err("PHY %s not found\n", bus_id);
1925 		return ERR_PTR(-ENODEV);
1926 	}
1927 	phydev = to_phy_device(d);
1928 
1929 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1930 	put_device(d);
1931 	if (rc)
1932 		return ERR_PTR(rc);
1933 
1934 	return phydev;
1935 }
1936 EXPORT_SYMBOL(phy_attach);
1937 
1938 /**
1939  * phy_detach - detach a PHY device from its network device
1940  * @phydev: target phy_device struct
1941  *
1942  * This detaches the phy device from its network device and the phy
1943  * driver, and drops the reference count taken in phy_attach_direct().
1944  */
1945 void phy_detach(struct phy_device *phydev)
1946 {
1947 	struct net_device *dev = phydev->attached_dev;
1948 	struct module *ndev_owner = NULL;
1949 	struct mii_bus *bus;
1950 
1951 	if (phydev->devlink) {
1952 		device_link_del(phydev->devlink);
1953 		phydev->devlink = NULL;
1954 	}
1955 
1956 	if (phydev->sysfs_links) {
1957 		if (dev)
1958 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1959 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1960 	}
1961 
1962 	if (!phydev->attached_dev)
1963 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1964 				  &dev_attr_phy_standalone.attr);
1965 
1966 	phy_suspend(phydev);
1967 	if (dev) {
1968 		struct hwtstamp_provider *hwprov;
1969 
1970 		hwprov = rtnl_dereference(dev->hwprov);
1971 		/* Disable timestamp if it is the one selected */
1972 		if (hwprov && hwprov->phydev == phydev) {
1973 			rcu_assign_pointer(dev->hwprov, NULL);
1974 			kfree_rcu(hwprov, rcu_head);
1975 		}
1976 
1977 		phydev->attached_dev->phydev = NULL;
1978 		phydev->attached_dev = NULL;
1979 		phy_link_topo_del_phy(dev, phydev);
1980 	}
1981 
1982 	phydev->phy_link_change = NULL;
1983 	phydev->phylink = NULL;
1984 
1985 	if (!phydev->is_on_sfp_module)
1986 		phy_led_triggers_unregister(phydev);
1987 
1988 	if (phydev->mdio.dev.driver)
1989 		module_put(phydev->mdio.dev.driver->owner);
1990 
1991 	/* If the device had no specific driver before (i.e. - it
1992 	 * was using the generic driver), we unbind the device
1993 	 * from the generic driver so that there's a chance a
1994 	 * real driver could be loaded
1995 	 */
1996 	if (phydev->is_genphy_driven) {
1997 		device_release_driver(&phydev->mdio.dev);
1998 		phydev->is_genphy_driven = 0;
1999 	}
2000 
2001 	/* Assert the reset signal */
2002 	phy_device_reset(phydev, 1);
2003 
2004 	/*
2005 	 * The phydev might go away on the put_device() below, so avoid
2006 	 * a use-after-free bug by reading the underlying bus first.
2007 	 */
2008 	bus = phydev->mdio.bus;
2009 
2010 	put_device(&phydev->mdio.dev);
2011 	if (dev)
2012 		ndev_owner = dev->dev.parent->driver->owner;
2013 	if (ndev_owner != bus->owner)
2014 		module_put(bus->owner);
2015 }
2016 EXPORT_SYMBOL(phy_detach);
2017 
2018 int phy_suspend(struct phy_device *phydev)
2019 {
2020 	struct net_device *netdev = phydev->attached_dev;
2021 	const struct phy_driver *phydrv = phydev->drv;
2022 	int ret;
2023 
2024 	if (phydev->suspended || !phydrv)
2025 		return 0;
2026 
2027 	phydev->wol_enabled = phy_may_wakeup(phydev) ||
2028 			      (netdev && netdev->ethtool->wol_enabled);
2029 	/* If the device has WOL enabled, we cannot suspend the PHY */
2030 	if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND))
2031 		return -EBUSY;
2032 
2033 	if (!phydrv->suspend)
2034 		return 0;
2035 
2036 	ret = phydrv->suspend(phydev);
2037 	if (!ret)
2038 		phydev->suspended = true;
2039 
2040 	return ret;
2041 }
2042 EXPORT_SYMBOL(phy_suspend);
2043 
2044 int __phy_resume(struct phy_device *phydev)
2045 {
2046 	const struct phy_driver *phydrv = phydev->drv;
2047 	int ret;
2048 
2049 	lockdep_assert_held(&phydev->lock);
2050 
2051 	if (!phydrv || !phydrv->resume)
2052 		return 0;
2053 
2054 	ret = phydrv->resume(phydev);
2055 	if (!ret)
2056 		phydev->suspended = false;
2057 
2058 	return ret;
2059 }
2060 EXPORT_SYMBOL(__phy_resume);
2061 
2062 int phy_resume(struct phy_device *phydev)
2063 {
2064 	int ret;
2065 
2066 	mutex_lock(&phydev->lock);
2067 	ret = __phy_resume(phydev);
2068 	mutex_unlock(&phydev->lock);
2069 
2070 	return ret;
2071 }
2072 EXPORT_SYMBOL(phy_resume);
2073 
2074 /**
2075  * phy_reset_after_clk_enable - perform a PHY reset if needed
2076  * @phydev: target phy_device struct
2077  *
2078  * Description: Some PHYs are known to need a reset after their refclk was
2079  *   enabled. This function evaluates the flags and perform the reset if it's
2080  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
2081  *   was reset.
2082  */
2083 int phy_reset_after_clk_enable(struct phy_device *phydev)
2084 {
2085 	if (!phydev || !phydev->drv)
2086 		return -ENODEV;
2087 
2088 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
2089 		phy_device_reset(phydev, 1);
2090 		phy_device_reset(phydev, 0);
2091 		return 1;
2092 	}
2093 
2094 	return 0;
2095 }
2096 EXPORT_SYMBOL(phy_reset_after_clk_enable);
2097 
2098 /* Generic PHY support and helper functions */
2099 
2100 /**
2101  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
2102  * @phydev: target phy_device struct
2103  * @advert: auto-negotiation parameters to advertise
2104  *
2105  * Description: Writes MII_ADVERTISE with the appropriate values,
2106  *   after sanitizing the values to make sure we only advertise
2107  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2108  *   hasn't changed, and > 0 if it has changed.
2109  */
2110 static int genphy_config_advert(struct phy_device *phydev,
2111 				const unsigned long *advert)
2112 {
2113 	int err, bmsr, changed = 0;
2114 	u32 adv;
2115 
2116 	adv = linkmode_adv_to_mii_adv_t(advert);
2117 
2118 	/* Setup standard advertisement */
2119 	err = phy_modify_changed(phydev, MII_ADVERTISE,
2120 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
2121 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
2122 				 adv);
2123 	if (err < 0)
2124 		return err;
2125 	if (err > 0)
2126 		changed = 1;
2127 
2128 	bmsr = phy_read(phydev, MII_BMSR);
2129 	if (bmsr < 0)
2130 		return bmsr;
2131 
2132 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
2133 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
2134 	 * logical 1.
2135 	 */
2136 	if (!(bmsr & BMSR_ESTATEN))
2137 		return changed;
2138 
2139 	adv = linkmode_adv_to_mii_ctrl1000_t(advert);
2140 
2141 	err = phy_modify_changed(phydev, MII_CTRL1000,
2142 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
2143 				 adv);
2144 	if (err < 0)
2145 		return err;
2146 	if (err > 0)
2147 		changed = 1;
2148 
2149 	return changed;
2150 }
2151 
2152 /**
2153  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
2154  * @phydev: target phy_device struct
2155  *
2156  * Description: Writes MII_ADVERTISE with the appropriate values,
2157  *   after sanitizing the values to make sure we only advertise
2158  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2159  *   hasn't changed, and > 0 if it has changed. This function is intended
2160  *   for Clause 37 1000Base-X mode.
2161  */
2162 static int genphy_c37_config_advert(struct phy_device *phydev)
2163 {
2164 	u16 adv = 0;
2165 
2166 	/* Only allow advertising what this PHY supports */
2167 	linkmode_and(phydev->advertising, phydev->advertising,
2168 		     phydev->supported);
2169 
2170 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2171 			      phydev->advertising))
2172 		adv |= ADVERTISE_1000XFULL;
2173 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2174 			      phydev->advertising))
2175 		adv |= ADVERTISE_1000XPAUSE;
2176 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2177 			      phydev->advertising))
2178 		adv |= ADVERTISE_1000XPSE_ASYM;
2179 
2180 	return phy_modify_changed(phydev, MII_ADVERTISE,
2181 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
2182 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
2183 				  adv);
2184 }
2185 
2186 /**
2187  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2188  * @phydev: target phy_device struct
2189  *
2190  * Description: Configures MII_BMCR to force speed/duplex
2191  *   to the values in phydev. Assumes that the values are valid.
2192  *   Please see phy_sanitize_settings().
2193  */
2194 int genphy_setup_forced(struct phy_device *phydev)
2195 {
2196 	u16 ctl;
2197 
2198 	phydev->pause = false;
2199 	phydev->asym_pause = false;
2200 
2201 	ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2202 
2203 	return phy_modify(phydev, MII_BMCR,
2204 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2205 }
2206 EXPORT_SYMBOL(genphy_setup_forced);
2207 
2208 static int genphy_setup_master_slave(struct phy_device *phydev)
2209 {
2210 	u16 ctl = 0;
2211 
2212 	if (!phydev->is_gigabit_capable)
2213 		return 0;
2214 
2215 	switch (phydev->master_slave_set) {
2216 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2217 		ctl |= CTL1000_PREFER_MASTER;
2218 		break;
2219 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2220 		break;
2221 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2222 		ctl |= CTL1000_AS_MASTER;
2223 		fallthrough;
2224 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2225 		ctl |= CTL1000_ENABLE_MASTER;
2226 		break;
2227 	case MASTER_SLAVE_CFG_UNKNOWN:
2228 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2229 		return 0;
2230 	default:
2231 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2232 		return -EOPNOTSUPP;
2233 	}
2234 
2235 	return phy_modify_changed(phydev, MII_CTRL1000,
2236 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2237 				   CTL1000_PREFER_MASTER), ctl);
2238 }
2239 
2240 int genphy_read_master_slave(struct phy_device *phydev)
2241 {
2242 	int cfg, state;
2243 	int val;
2244 
2245 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2246 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2247 
2248 	val = phy_read(phydev, MII_CTRL1000);
2249 	if (val < 0)
2250 		return val;
2251 
2252 	if (val & CTL1000_ENABLE_MASTER) {
2253 		if (val & CTL1000_AS_MASTER)
2254 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2255 		else
2256 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2257 	} else {
2258 		if (val & CTL1000_PREFER_MASTER)
2259 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2260 		else
2261 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2262 	}
2263 
2264 	val = phy_read(phydev, MII_STAT1000);
2265 	if (val < 0)
2266 		return val;
2267 
2268 	if (val & LPA_1000MSFAIL) {
2269 		state = MASTER_SLAVE_STATE_ERR;
2270 	} else if (phydev->link) {
2271 		/* this bits are valid only for active link */
2272 		if (val & LPA_1000MSRES)
2273 			state = MASTER_SLAVE_STATE_MASTER;
2274 		else
2275 			state = MASTER_SLAVE_STATE_SLAVE;
2276 	} else {
2277 		state = MASTER_SLAVE_STATE_UNKNOWN;
2278 	}
2279 
2280 	phydev->master_slave_get = cfg;
2281 	phydev->master_slave_state = state;
2282 
2283 	return 0;
2284 }
2285 EXPORT_SYMBOL(genphy_read_master_slave);
2286 
2287 /**
2288  * genphy_restart_aneg - Enable and Restart Autonegotiation
2289  * @phydev: target phy_device struct
2290  */
2291 int genphy_restart_aneg(struct phy_device *phydev)
2292 {
2293 	/* Don't isolate the PHY if we're negotiating */
2294 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2295 			  BMCR_ANENABLE | BMCR_ANRESTART);
2296 }
2297 EXPORT_SYMBOL(genphy_restart_aneg);
2298 
2299 /**
2300  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2301  * @phydev: target phy_device struct
2302  * @restart: whether aneg restart is requested
2303  *
2304  * Check, and restart auto-negotiation if needed.
2305  */
2306 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2307 {
2308 	int ret;
2309 
2310 	if (!restart) {
2311 		/* Advertisement hasn't changed, but maybe aneg was never on to
2312 		 * begin with?  Or maybe phy was isolated?
2313 		 */
2314 		ret = phy_read(phydev, MII_BMCR);
2315 		if (ret < 0)
2316 			return ret;
2317 
2318 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2319 			restart = true;
2320 	}
2321 
2322 	if (restart)
2323 		return genphy_restart_aneg(phydev);
2324 
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2328 
2329 /**
2330  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2331  * @phydev: target phy_device struct
2332  * @changed: whether autoneg is requested
2333  *
2334  * Description: If auto-negotiation is enabled, we configure the
2335  *   advertising, and then restart auto-negotiation.  If it is not
2336  *   enabled, then we write the BMCR.
2337  */
2338 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2339 {
2340 	__ETHTOOL_DECLARE_LINK_MODE_MASK(fixed_advert);
2341 	const struct link_capabilities *c;
2342 	unsigned long *advert;
2343 	int err;
2344 
2345 	err = genphy_c45_an_config_eee_aneg(phydev);
2346 	if (err < 0)
2347 		return err;
2348 	else if (err)
2349 		changed = true;
2350 
2351 	err = genphy_setup_master_slave(phydev);
2352 	if (err < 0)
2353 		return err;
2354 	else if (err)
2355 		changed = true;
2356 
2357 	if (phydev->autoneg == AUTONEG_ENABLE) {
2358 		/* Only allow advertising what this PHY supports */
2359 		linkmode_and(phydev->advertising, phydev->advertising,
2360 			     phydev->supported);
2361 		advert = phydev->advertising;
2362 	} else if (phydev->speed < SPEED_1000) {
2363 		return genphy_setup_forced(phydev);
2364 	} else {
2365 		linkmode_zero(fixed_advert);
2366 
2367 		c = phy_caps_lookup(phydev->speed, phydev->duplex,
2368 				    phydev->supported, true);
2369 		if (c)
2370 			linkmode_and(fixed_advert, phydev->supported,
2371 				     c->linkmodes);
2372 
2373 		advert = fixed_advert;
2374 	}
2375 
2376 	err = genphy_config_advert(phydev, advert);
2377 	if (err < 0) /* error */
2378 		return err;
2379 	else if (err)
2380 		changed = true;
2381 
2382 	return genphy_check_and_restart_aneg(phydev, changed);
2383 }
2384 EXPORT_SYMBOL(__genphy_config_aneg);
2385 
2386 /**
2387  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2388  * @phydev: target phy_device struct
2389  *
2390  * Description: If auto-negotiation is enabled, we configure the
2391  *   advertising, and then restart auto-negotiation.  If it is not
2392  *   enabled, then we write the BMCR. This function is intended
2393  *   for use with Clause 37 1000Base-X mode.
2394  */
2395 int genphy_c37_config_aneg(struct phy_device *phydev)
2396 {
2397 	int err, changed;
2398 
2399 	if (phydev->autoneg != AUTONEG_ENABLE)
2400 		return genphy_setup_forced(phydev);
2401 
2402 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2403 			 BMCR_SPEED1000);
2404 	if (err)
2405 		return err;
2406 
2407 	changed = genphy_c37_config_advert(phydev);
2408 	if (changed < 0) /* error */
2409 		return changed;
2410 
2411 	if (!changed) {
2412 		/* Advertisement hasn't changed, but maybe aneg was never on to
2413 		 * begin with?  Or maybe phy was isolated?
2414 		 */
2415 		int ctl = phy_read(phydev, MII_BMCR);
2416 
2417 		if (ctl < 0)
2418 			return ctl;
2419 
2420 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2421 			changed = 1; /* do restart aneg */
2422 	}
2423 
2424 	/* Only restart aneg if we are advertising something different
2425 	 * than we were before.
2426 	 */
2427 	if (changed > 0)
2428 		return genphy_restart_aneg(phydev);
2429 
2430 	return 0;
2431 }
2432 EXPORT_SYMBOL(genphy_c37_config_aneg);
2433 
2434 /**
2435  * genphy_aneg_done - return auto-negotiation status
2436  * @phydev: target phy_device struct
2437  *
2438  * Description: Reads the status register and returns 0 either if
2439  *   auto-negotiation is incomplete, or if there was an error.
2440  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2441  */
2442 int genphy_aneg_done(struct phy_device *phydev)
2443 {
2444 	int retval = phy_read(phydev, MII_BMSR);
2445 
2446 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2447 }
2448 EXPORT_SYMBOL(genphy_aneg_done);
2449 
2450 /**
2451  * genphy_update_link - update link status in @phydev
2452  * @phydev: target phy_device struct
2453  *
2454  * Description: Update the value in phydev->link to reflect the
2455  *   current link value.  In order to do this, we need to read
2456  *   the status register twice, keeping the second value.
2457  */
2458 int genphy_update_link(struct phy_device *phydev)
2459 {
2460 	int status = 0, bmcr;
2461 
2462 	bmcr = phy_read(phydev, MII_BMCR);
2463 	if (bmcr < 0)
2464 		return bmcr;
2465 
2466 	/* Autoneg is being started, therefore disregard BMSR value and
2467 	 * report link as down.
2468 	 */
2469 	if (bmcr & BMCR_ANRESTART)
2470 		goto done;
2471 
2472 	/* The link state is latched low so that momentary link
2473 	 * drops can be detected. Do not double-read the status
2474 	 * in polling mode to detect such short link drops except
2475 	 * if the link was already down.
2476 	 */
2477 	if (!phy_polling_mode(phydev) || !phydev->link) {
2478 		status = phy_read(phydev, MII_BMSR);
2479 		if (status < 0)
2480 			return status;
2481 		else if (status & BMSR_LSTATUS)
2482 			goto done;
2483 	}
2484 
2485 	/* Read link and autonegotiation status */
2486 	status = phy_read(phydev, MII_BMSR);
2487 	if (status < 0)
2488 		return status;
2489 done:
2490 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2491 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2492 
2493 	/* Consider the case that autoneg was started and "aneg complete"
2494 	 * bit has been reset, but "link up" bit not yet.
2495 	 */
2496 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2497 		phydev->link = 0;
2498 
2499 	return 0;
2500 }
2501 EXPORT_SYMBOL(genphy_update_link);
2502 
2503 int genphy_read_lpa(struct phy_device *phydev)
2504 {
2505 	int lpa, lpagb;
2506 
2507 	if (phydev->autoneg == AUTONEG_ENABLE) {
2508 		if (!phydev->autoneg_complete) {
2509 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2510 							0);
2511 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2512 			return 0;
2513 		}
2514 
2515 		if (phydev->is_gigabit_capable) {
2516 			lpagb = phy_read(phydev, MII_STAT1000);
2517 			if (lpagb < 0)
2518 				return lpagb;
2519 
2520 			if (lpagb & LPA_1000MSFAIL) {
2521 				int adv = phy_read(phydev, MII_CTRL1000);
2522 
2523 				if (adv < 0)
2524 					return adv;
2525 
2526 				if (adv & CTL1000_ENABLE_MASTER)
2527 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2528 				else
2529 					phydev_err(phydev, "Master/Slave resolution failed\n");
2530 				return -ENOLINK;
2531 			}
2532 
2533 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2534 							lpagb);
2535 		}
2536 
2537 		lpa = phy_read(phydev, MII_LPA);
2538 		if (lpa < 0)
2539 			return lpa;
2540 
2541 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2542 	} else {
2543 		linkmode_zero(phydev->lp_advertising);
2544 	}
2545 
2546 	return 0;
2547 }
2548 EXPORT_SYMBOL(genphy_read_lpa);
2549 
2550 /**
2551  * genphy_read_status_fixed - read the link parameters for !aneg mode
2552  * @phydev: target phy_device struct
2553  *
2554  * Read the current duplex and speed state for a PHY operating with
2555  * autonegotiation disabled.
2556  */
2557 int genphy_read_status_fixed(struct phy_device *phydev)
2558 {
2559 	int bmcr = phy_read(phydev, MII_BMCR);
2560 
2561 	if (bmcr < 0)
2562 		return bmcr;
2563 
2564 	if (bmcr & BMCR_FULLDPLX)
2565 		phydev->duplex = DUPLEX_FULL;
2566 	else
2567 		phydev->duplex = DUPLEX_HALF;
2568 
2569 	if (bmcr & BMCR_SPEED1000)
2570 		phydev->speed = SPEED_1000;
2571 	else if (bmcr & BMCR_SPEED100)
2572 		phydev->speed = SPEED_100;
2573 	else
2574 		phydev->speed = SPEED_10;
2575 
2576 	return 0;
2577 }
2578 EXPORT_SYMBOL(genphy_read_status_fixed);
2579 
2580 /**
2581  * genphy_read_status - check the link status and update current link state
2582  * @phydev: target phy_device struct
2583  *
2584  * Description: Check the link, then figure out the current state
2585  *   by comparing what we advertise with what the link partner
2586  *   advertises.  Start by checking the gigabit possibilities,
2587  *   then move on to 10/100.
2588  */
2589 int genphy_read_status(struct phy_device *phydev)
2590 {
2591 	int err, old_link = phydev->link;
2592 
2593 	/* Update the link, but return if there was an error */
2594 	err = genphy_update_link(phydev);
2595 	if (err)
2596 		return err;
2597 
2598 	/* why bother the PHY if nothing can have changed */
2599 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2600 		return 0;
2601 
2602 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2603 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2604 	phydev->speed = SPEED_UNKNOWN;
2605 	phydev->duplex = DUPLEX_UNKNOWN;
2606 	phydev->pause = false;
2607 	phydev->asym_pause = false;
2608 
2609 	if (phydev->is_gigabit_capable) {
2610 		err = genphy_read_master_slave(phydev);
2611 		if (err < 0)
2612 			return err;
2613 	}
2614 
2615 	err = genphy_read_lpa(phydev);
2616 	if (err < 0)
2617 		return err;
2618 
2619 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2620 		phy_resolve_aneg_linkmode(phydev);
2621 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2622 		err = genphy_read_status_fixed(phydev);
2623 		if (err < 0)
2624 			return err;
2625 	}
2626 
2627 	return 0;
2628 }
2629 EXPORT_SYMBOL(genphy_read_status);
2630 
2631 /**
2632  * genphy_c37_read_status - check the link status and update current link state
2633  * @phydev: target phy_device struct
2634  * @changed: pointer where to store if link changed
2635  *
2636  * Description: Check the link, then figure out the current state
2637  *   by comparing what we advertise with what the link partner
2638  *   advertises. This function is for Clause 37 1000Base-X mode.
2639  *
2640  *   If link has changed, @changed is set to true, false otherwise.
2641  */
2642 int genphy_c37_read_status(struct phy_device *phydev, bool *changed)
2643 {
2644 	int lpa, err, old_link = phydev->link;
2645 
2646 	/* Update the link, but return if there was an error */
2647 	err = genphy_update_link(phydev);
2648 	if (err)
2649 		return err;
2650 
2651 	/* why bother the PHY if nothing can have changed */
2652 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) {
2653 		*changed = false;
2654 		return 0;
2655 	}
2656 
2657 	/* Signal link has changed */
2658 	*changed = true;
2659 	phydev->duplex = DUPLEX_UNKNOWN;
2660 	phydev->pause = false;
2661 	phydev->asym_pause = false;
2662 
2663 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2664 		lpa = phy_read(phydev, MII_LPA);
2665 		if (lpa < 0)
2666 			return lpa;
2667 
2668 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2669 				 phydev->lp_advertising, lpa & LPA_LPACK);
2670 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2671 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2672 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2673 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2674 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2675 				 phydev->lp_advertising,
2676 				 lpa & LPA_1000XPAUSE_ASYM);
2677 
2678 		phy_resolve_aneg_linkmode(phydev);
2679 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2680 		int bmcr = phy_read(phydev, MII_BMCR);
2681 
2682 		if (bmcr < 0)
2683 			return bmcr;
2684 
2685 		if (bmcr & BMCR_FULLDPLX)
2686 			phydev->duplex = DUPLEX_FULL;
2687 		else
2688 			phydev->duplex = DUPLEX_HALF;
2689 	}
2690 
2691 	return 0;
2692 }
2693 EXPORT_SYMBOL(genphy_c37_read_status);
2694 
2695 /**
2696  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2697  * @phydev: target phy_device struct
2698  *
2699  * Description: Perform a software PHY reset using the standard
2700  * BMCR_RESET bit and poll for the reset bit to be cleared.
2701  *
2702  * Returns: 0 on success, < 0 on failure
2703  */
2704 int genphy_soft_reset(struct phy_device *phydev)
2705 {
2706 	u16 res = BMCR_RESET;
2707 	int ret;
2708 
2709 	if (phydev->autoneg == AUTONEG_ENABLE)
2710 		res |= BMCR_ANRESTART;
2711 
2712 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2713 	if (ret < 0)
2714 		return ret;
2715 
2716 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2717 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2718 	 * be cleared after soft reset.
2719 	 */
2720 	phydev->suspended = 0;
2721 
2722 	ret = phy_poll_reset(phydev);
2723 	if (ret)
2724 		return ret;
2725 
2726 	/* BMCR may be reset to defaults */
2727 	if (phydev->autoneg == AUTONEG_DISABLE)
2728 		ret = genphy_setup_forced(phydev);
2729 
2730 	return ret;
2731 }
2732 EXPORT_SYMBOL(genphy_soft_reset);
2733 
2734 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2735 {
2736 	/* It seems there are cases where the interrupts are handled by another
2737 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2738 	 * need any other interraction from phylib. In this case, just trigger
2739 	 * the state machine directly.
2740 	 */
2741 	phy_trigger_machine(phydev);
2742 
2743 	return 0;
2744 }
2745 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2746 
2747 /**
2748  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2749  * @phydev: target phy_device struct
2750  *
2751  * Description: Reads the PHY's abilities and populates
2752  * phydev->supported accordingly.
2753  *
2754  * Returns: 0 on success, < 0 on failure
2755  */
2756 int genphy_read_abilities(struct phy_device *phydev)
2757 {
2758 	int val;
2759 
2760 	linkmode_set_bit_array(phy_basic_ports_array,
2761 			       ARRAY_SIZE(phy_basic_ports_array),
2762 			       phydev->supported);
2763 
2764 	val = phy_read(phydev, MII_BMSR);
2765 	if (val < 0)
2766 		return val;
2767 
2768 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2769 			 val & BMSR_ANEGCAPABLE);
2770 
2771 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2772 			 val & BMSR_100FULL);
2773 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2774 			 val & BMSR_100HALF);
2775 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2776 			 val & BMSR_10FULL);
2777 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2778 			 val & BMSR_10HALF);
2779 
2780 	if (val & BMSR_ESTATEN) {
2781 		val = phy_read(phydev, MII_ESTATUS);
2782 		if (val < 0)
2783 			return val;
2784 
2785 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2786 				 phydev->supported, val & ESTATUS_1000_TFULL);
2787 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2788 				 phydev->supported, val & ESTATUS_1000_THALF);
2789 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2790 				 phydev->supported, val & ESTATUS_1000_XFULL);
2791 	}
2792 
2793 	/* This is optional functionality. If not supported, we may get an error
2794 	 * which should be ignored.
2795 	 */
2796 	genphy_c45_read_eee_abilities(phydev);
2797 
2798 	return 0;
2799 }
2800 EXPORT_SYMBOL(genphy_read_abilities);
2801 
2802 /* This is used for the phy device which doesn't support the MMD extended
2803  * register access, but it does have side effect when we are trying to access
2804  * the MMD register via indirect method.
2805  */
2806 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2807 {
2808 	return -EOPNOTSUPP;
2809 }
2810 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2811 
2812 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2813 				 u16 regnum, u16 val)
2814 {
2815 	return -EOPNOTSUPP;
2816 }
2817 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2818 
2819 int genphy_suspend(struct phy_device *phydev)
2820 {
2821 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2822 }
2823 EXPORT_SYMBOL(genphy_suspend);
2824 
2825 int genphy_resume(struct phy_device *phydev)
2826 {
2827 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2828 }
2829 EXPORT_SYMBOL(genphy_resume);
2830 
2831 int genphy_loopback(struct phy_device *phydev, bool enable, int speed)
2832 {
2833 	if (enable) {
2834 		u16 ctl = BMCR_LOOPBACK;
2835 		int ret, val;
2836 
2837 		if (speed == SPEED_10 || speed == SPEED_100 ||
2838 		    speed == SPEED_1000)
2839 			phydev->speed = speed;
2840 		else if (speed)
2841 			return -EINVAL;
2842 
2843 		ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2844 
2845 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2846 
2847 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2848 					    val & BMSR_LSTATUS,
2849 				    5000, 500000, true);
2850 		if (ret)
2851 			return ret;
2852 	} else {
2853 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2854 
2855 		phy_config_aneg(phydev);
2856 	}
2857 
2858 	return 0;
2859 }
2860 EXPORT_SYMBOL(genphy_loopback);
2861 
2862 /**
2863  * phy_remove_link_mode - Remove a supported link mode
2864  * @phydev: phy_device structure to remove link mode from
2865  * @link_mode: Link mode to be removed
2866  *
2867  * Description: Some MACs don't support all link modes which the PHY
2868  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2869  * to remove a link mode.
2870  */
2871 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2872 {
2873 	linkmode_clear_bit(link_mode, phydev->supported);
2874 	phy_advertise_supported(phydev);
2875 }
2876 EXPORT_SYMBOL(phy_remove_link_mode);
2877 
2878 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2879 {
2880 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2881 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2882 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2883 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2884 }
2885 
2886 /**
2887  * phy_advertise_supported - Advertise all supported modes
2888  * @phydev: target phy_device struct
2889  *
2890  * Description: Called to advertise all supported modes, doesn't touch
2891  * pause mode advertising.
2892  */
2893 void phy_advertise_supported(struct phy_device *phydev)
2894 {
2895 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2896 
2897 	linkmode_copy(new, phydev->supported);
2898 	phy_copy_pause_bits(new, phydev->advertising);
2899 	linkmode_copy(phydev->advertising, new);
2900 }
2901 EXPORT_SYMBOL(phy_advertise_supported);
2902 
2903 /**
2904  * phy_advertise_eee_all - Advertise all supported EEE modes
2905  * @phydev: target phy_device struct
2906  *
2907  * Description: Per default phylib preserves the EEE advertising at the time of
2908  * phy probing, which might be a subset of the supported EEE modes. Use this
2909  * function when all supported EEE modes should be advertised. This does not
2910  * trigger auto-negotiation, so must be called before phy_start()/
2911  * phylink_start() which will start auto-negotiation.
2912  */
2913 void phy_advertise_eee_all(struct phy_device *phydev)
2914 {
2915 	linkmode_copy(phydev->advertising_eee, phydev->supported_eee);
2916 }
2917 EXPORT_SYMBOL_GPL(phy_advertise_eee_all);
2918 
2919 /**
2920  * phy_support_eee - Set initial EEE policy configuration
2921  * @phydev: Target phy_device struct
2922  *
2923  * This function configures the initial policy for Energy Efficient Ethernet
2924  * (EEE) on the specified PHY device, influencing that EEE capabilities are
2925  * advertised before the link is established. It should be called during PHY
2926  * registration by the MAC driver and/or the PHY driver (for SmartEEE PHYs)
2927  * if MAC supports LPI or PHY is capable to compensate missing LPI functionality
2928  * of the MAC.
2929  *
2930  * The function sets default EEE policy parameters, including preparing the PHY
2931  * to advertise EEE capabilities based on hardware support.
2932  *
2933  * It also sets the expected configuration for Low Power Idle (LPI) in the MAC
2934  * driver. If the PHY framework determines that both local and remote
2935  * advertisements support EEE, and the negotiated link mode is compatible with
2936  * EEE, it will set enable_tx_lpi = true. The MAC driver is expected to act on
2937  * this setting by enabling the LPI timer if enable_tx_lpi is set.
2938  */
2939 void phy_support_eee(struct phy_device *phydev)
2940 {
2941 	linkmode_copy(phydev->advertising_eee, phydev->supported_eee);
2942 	phydev->eee_cfg.tx_lpi_enabled = true;
2943 	phydev->eee_cfg.eee_enabled = true;
2944 }
2945 EXPORT_SYMBOL(phy_support_eee);
2946 
2947 /**
2948  * phy_disable_eee - Disable EEE for the PHY
2949  * @phydev: Target phy_device struct
2950  *
2951  * This function is used by MAC drivers for MAC's which don't support EEE.
2952  * It disables EEE on the PHY layer.
2953  */
2954 void phy_disable_eee(struct phy_device *phydev)
2955 {
2956 	linkmode_zero(phydev->advertising_eee);
2957 	phydev->eee_cfg.tx_lpi_enabled = false;
2958 	phydev->eee_cfg.eee_enabled = false;
2959 	/* don't let userspace re-enable EEE advertisement */
2960 	linkmode_fill(phydev->eee_disabled_modes);
2961 }
2962 EXPORT_SYMBOL_GPL(phy_disable_eee);
2963 
2964 /**
2965  * phy_support_sym_pause - Enable support of symmetrical pause
2966  * @phydev: target phy_device struct
2967  *
2968  * Description: Called by the MAC to indicate is supports symmetrical
2969  * Pause, but not asym pause.
2970  */
2971 void phy_support_sym_pause(struct phy_device *phydev)
2972 {
2973 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2974 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2975 }
2976 EXPORT_SYMBOL(phy_support_sym_pause);
2977 
2978 /**
2979  * phy_support_asym_pause - Enable support of asym pause
2980  * @phydev: target phy_device struct
2981  *
2982  * Description: Called by the MAC to indicate is supports Asym Pause.
2983  */
2984 void phy_support_asym_pause(struct phy_device *phydev)
2985 {
2986 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2987 }
2988 EXPORT_SYMBOL(phy_support_asym_pause);
2989 
2990 /**
2991  * phy_set_sym_pause - Configure symmetric Pause
2992  * @phydev: target phy_device struct
2993  * @rx: Receiver Pause is supported
2994  * @tx: Transmit Pause is supported
2995  * @autoneg: Auto neg should be used
2996  *
2997  * Description: Configure advertised Pause support depending on if
2998  * receiver pause and pause auto neg is supported. Generally called
2999  * from the set_pauseparam .ndo.
3000  */
3001 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
3002 		       bool autoneg)
3003 {
3004 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
3005 
3006 	if (rx && tx && autoneg)
3007 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3008 				 phydev->supported);
3009 
3010 	linkmode_copy(phydev->advertising, phydev->supported);
3011 }
3012 EXPORT_SYMBOL(phy_set_sym_pause);
3013 
3014 /**
3015  * phy_set_asym_pause - Configure Pause and Asym Pause
3016  * @phydev: target phy_device struct
3017  * @rx: Receiver Pause is supported
3018  * @tx: Transmit Pause is supported
3019  *
3020  * Description: Configure advertised Pause support depending on if
3021  * transmit and receiver pause is supported. If there has been a
3022  * change in adverting, trigger a new autoneg. Generally called from
3023  * the set_pauseparam .ndo.
3024  */
3025 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
3026 {
3027 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
3028 
3029 	linkmode_copy(oldadv, phydev->advertising);
3030 	linkmode_set_pause(phydev->advertising, tx, rx);
3031 
3032 	if (!linkmode_equal(oldadv, phydev->advertising) &&
3033 	    phydev->autoneg)
3034 		phy_start_aneg(phydev);
3035 }
3036 EXPORT_SYMBOL(phy_set_asym_pause);
3037 
3038 /**
3039  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
3040  * @phydev: phy_device struct
3041  * @pp: requested pause configuration
3042  *
3043  * Description: Test if the PHY/MAC combination supports the Pause
3044  * configuration the user is requesting. Returns True if it is
3045  * supported, false otherwise.
3046  */
3047 bool phy_validate_pause(struct phy_device *phydev,
3048 			struct ethtool_pauseparam *pp)
3049 {
3050 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3051 			       phydev->supported) && pp->rx_pause)
3052 		return false;
3053 
3054 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3055 			       phydev->supported) &&
3056 	    pp->rx_pause != pp->tx_pause)
3057 		return false;
3058 
3059 	return true;
3060 }
3061 EXPORT_SYMBOL(phy_validate_pause);
3062 
3063 /**
3064  * phy_get_pause - resolve negotiated pause modes
3065  * @phydev: phy_device struct
3066  * @tx_pause: pointer to bool to indicate whether transmit pause should be
3067  * enabled.
3068  * @rx_pause: pointer to bool to indicate whether receive pause should be
3069  * enabled.
3070  *
3071  * Resolve and return the flow control modes according to the negotiation
3072  * result. This includes checking that we are operating in full duplex mode.
3073  * See linkmode_resolve_pause() for further details.
3074  */
3075 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
3076 {
3077 	if (phydev->duplex != DUPLEX_FULL) {
3078 		*tx_pause = false;
3079 		*rx_pause = false;
3080 		return;
3081 	}
3082 
3083 	return linkmode_resolve_pause(phydev->advertising,
3084 				      phydev->lp_advertising,
3085 				      tx_pause, rx_pause);
3086 }
3087 EXPORT_SYMBOL(phy_get_pause);
3088 
3089 #if IS_ENABLED(CONFIG_OF_MDIO)
3090 static int phy_get_u32_property(struct device *dev, const char *name, u32 *val)
3091 {
3092 	return device_property_read_u32(dev, name, val);
3093 }
3094 #else
3095 static int phy_get_u32_property(struct device *dev, const char *name, u32 *val)
3096 {
3097 	return -EINVAL;
3098 }
3099 #endif
3100 
3101 /**
3102  * phy_get_internal_delay - returns the index of the internal delay
3103  * @phydev: phy_device struct
3104  * @delay_values: array of delays the PHY supports
3105  * @size: the size of the delay array
3106  * @is_rx: boolean to indicate to get the rx internal delay
3107  *
3108  * Returns the index within the array of internal delay passed in.
3109  * If the device property is not present then the interface type is checked
3110  * if the interface defines use of internal delay then a 1 is returned otherwise
3111  * a 0 is returned.
3112  * The array must be in ascending order. If PHY does not have an ascending order
3113  * array then size = 0 and the value of the delay property is returned.
3114  * Return -EINVAL if the delay is invalid or cannot be found.
3115  */
3116 s32 phy_get_internal_delay(struct phy_device *phydev, const int *delay_values,
3117 			   int size, bool is_rx)
3118 {
3119 	struct device *dev = &phydev->mdio.dev;
3120 	int i, ret;
3121 	u32 delay;
3122 
3123 	if (is_rx) {
3124 		ret = phy_get_u32_property(dev, "rx-internal-delay-ps", &delay);
3125 		if (ret < 0 && size == 0) {
3126 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
3127 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
3128 				return 1;
3129 			else
3130 				return 0;
3131 		}
3132 
3133 	} else {
3134 		ret = phy_get_u32_property(dev, "tx-internal-delay-ps", &delay);
3135 		if (ret < 0 && size == 0) {
3136 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
3137 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
3138 				return 1;
3139 			else
3140 				return 0;
3141 		}
3142 	}
3143 
3144 	if (ret < 0)
3145 		return ret;
3146 
3147 	if (size == 0)
3148 		return delay;
3149 
3150 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
3151 		phydev_err(phydev, "Delay %d is out of range\n", delay);
3152 		return -EINVAL;
3153 	}
3154 
3155 	if (delay == delay_values[0])
3156 		return 0;
3157 
3158 	for (i = 1; i < size; i++) {
3159 		if (delay == delay_values[i])
3160 			return i;
3161 
3162 		/* Find an approximate index by looking up the table */
3163 		if (delay > delay_values[i - 1] &&
3164 		    delay < delay_values[i]) {
3165 			if (delay - delay_values[i - 1] <
3166 			    delay_values[i] - delay)
3167 				return i - 1;
3168 			else
3169 				return i;
3170 		}
3171 	}
3172 
3173 	phydev_err(phydev, "error finding internal delay index for %d\n",
3174 		   delay);
3175 
3176 	return -EINVAL;
3177 }
3178 EXPORT_SYMBOL(phy_get_internal_delay);
3179 
3180 /**
3181  * phy_get_tx_amplitude_gain - stores tx amplitude gain in @val
3182  * @phydev: phy_device struct
3183  * @dev: pointer to the devices device struct
3184  * @linkmode: linkmode for which the tx amplitude gain should be retrieved
3185  * @val: tx amplitude gain
3186  *
3187  * Returns: 0 on success, < 0 on failure
3188  */
3189 int phy_get_tx_amplitude_gain(struct phy_device *phydev, struct device *dev,
3190 			      enum ethtool_link_mode_bit_indices linkmode,
3191 			      u32 *val)
3192 {
3193 	switch (linkmode) {
3194 	case ETHTOOL_LINK_MODE_100baseT_Full_BIT:
3195 		return phy_get_u32_property(dev,
3196 					    "tx-amplitude-100base-tx-percent",
3197 					    val);
3198 	default:
3199 		return -EINVAL;
3200 	}
3201 }
3202 EXPORT_SYMBOL_GPL(phy_get_tx_amplitude_gain);
3203 
3204 /**
3205  * phy_get_mac_termination - stores MAC termination in @val
3206  * @phydev: phy_device struct
3207  * @dev: pointer to the devices device struct
3208  * @val: MAC termination
3209  *
3210  * Returns: 0 on success, < 0 on failure
3211  */
3212 int phy_get_mac_termination(struct phy_device *phydev, struct device *dev,
3213 			    u32 *val)
3214 {
3215 	return phy_get_u32_property(dev, "mac-termination-ohms", val);
3216 }
3217 EXPORT_SYMBOL_GPL(phy_get_mac_termination);
3218 
3219 static int phy_led_set_brightness(struct led_classdev *led_cdev,
3220 				  enum led_brightness value)
3221 {
3222 	struct phy_led *phyled = to_phy_led(led_cdev);
3223 	struct phy_device *phydev = phyled->phydev;
3224 	int err;
3225 
3226 	mutex_lock(&phydev->lock);
3227 	err = phydev->drv->led_brightness_set(phydev, phyled->index, value);
3228 	mutex_unlock(&phydev->lock);
3229 
3230 	return err;
3231 }
3232 
3233 static int phy_led_blink_set(struct led_classdev *led_cdev,
3234 			     unsigned long *delay_on,
3235 			     unsigned long *delay_off)
3236 {
3237 	struct phy_led *phyled = to_phy_led(led_cdev);
3238 	struct phy_device *phydev = phyled->phydev;
3239 	int err;
3240 
3241 	mutex_lock(&phydev->lock);
3242 	err = phydev->drv->led_blink_set(phydev, phyled->index,
3243 					 delay_on, delay_off);
3244 	mutex_unlock(&phydev->lock);
3245 
3246 	return err;
3247 }
3248 
3249 static __maybe_unused struct device *
3250 phy_led_hw_control_get_device(struct led_classdev *led_cdev)
3251 {
3252 	struct phy_led *phyled = to_phy_led(led_cdev);
3253 	struct phy_device *phydev = phyled->phydev;
3254 
3255 	if (phydev->attached_dev)
3256 		return &phydev->attached_dev->dev;
3257 	return NULL;
3258 }
3259 
3260 static int __maybe_unused
3261 phy_led_hw_control_get(struct led_classdev *led_cdev,
3262 		       unsigned long *rules)
3263 {
3264 	struct phy_led *phyled = to_phy_led(led_cdev);
3265 	struct phy_device *phydev = phyled->phydev;
3266 	int err;
3267 
3268 	mutex_lock(&phydev->lock);
3269 	err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules);
3270 	mutex_unlock(&phydev->lock);
3271 
3272 	return err;
3273 }
3274 
3275 static int __maybe_unused
3276 phy_led_hw_control_set(struct led_classdev *led_cdev,
3277 		       unsigned long rules)
3278 {
3279 	struct phy_led *phyled = to_phy_led(led_cdev);
3280 	struct phy_device *phydev = phyled->phydev;
3281 	int err;
3282 
3283 	mutex_lock(&phydev->lock);
3284 	err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules);
3285 	mutex_unlock(&phydev->lock);
3286 
3287 	return err;
3288 }
3289 
3290 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev,
3291 						  unsigned long rules)
3292 {
3293 	struct phy_led *phyled = to_phy_led(led_cdev);
3294 	struct phy_device *phydev = phyled->phydev;
3295 	int err;
3296 
3297 	mutex_lock(&phydev->lock);
3298 	err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules);
3299 	mutex_unlock(&phydev->lock);
3300 
3301 	return err;
3302 }
3303 
3304 static void phy_leds_unregister(struct phy_device *phydev)
3305 {
3306 	struct phy_led *phyled, *tmp;
3307 
3308 	list_for_each_entry_safe(phyled, tmp, &phydev->leds, list) {
3309 		led_classdev_unregister(&phyled->led_cdev);
3310 		list_del(&phyled->list);
3311 	}
3312 }
3313 
3314 static int of_phy_led(struct phy_device *phydev,
3315 		      struct device_node *led)
3316 {
3317 	struct device *dev = &phydev->mdio.dev;
3318 	struct led_init_data init_data = {};
3319 	struct led_classdev *cdev;
3320 	unsigned long modes = 0;
3321 	struct phy_led *phyled;
3322 	u32 index;
3323 	int err;
3324 
3325 	phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL);
3326 	if (!phyled)
3327 		return -ENOMEM;
3328 
3329 	cdev = &phyled->led_cdev;
3330 	phyled->phydev = phydev;
3331 
3332 	err = of_property_read_u32(led, "reg", &index);
3333 	if (err)
3334 		return err;
3335 	if (index > U8_MAX)
3336 		return -EINVAL;
3337 
3338 	if (of_property_read_bool(led, "active-high"))
3339 		set_bit(PHY_LED_ACTIVE_HIGH, &modes);
3340 	if (of_property_read_bool(led, "active-low"))
3341 		set_bit(PHY_LED_ACTIVE_LOW, &modes);
3342 	if (of_property_read_bool(led, "inactive-high-impedance"))
3343 		set_bit(PHY_LED_INACTIVE_HIGH_IMPEDANCE, &modes);
3344 
3345 	if (WARN_ON(modes & BIT(PHY_LED_ACTIVE_LOW) &&
3346 		    modes & BIT(PHY_LED_ACTIVE_HIGH)))
3347 		return -EINVAL;
3348 
3349 	if (modes) {
3350 		/* Return error if asked to set polarity modes but not supported */
3351 		if (!phydev->drv->led_polarity_set)
3352 			return -EINVAL;
3353 
3354 		err = phydev->drv->led_polarity_set(phydev, index, modes);
3355 		if (err)
3356 			return err;
3357 	}
3358 
3359 	phyled->index = index;
3360 	if (phydev->drv->led_brightness_set)
3361 		cdev->brightness_set_blocking = phy_led_set_brightness;
3362 	if (phydev->drv->led_blink_set)
3363 		cdev->blink_set = phy_led_blink_set;
3364 
3365 #ifdef CONFIG_LEDS_TRIGGERS
3366 	if (phydev->drv->led_hw_is_supported &&
3367 	    phydev->drv->led_hw_control_set &&
3368 	    phydev->drv->led_hw_control_get) {
3369 		cdev->hw_control_is_supported = phy_led_hw_is_supported;
3370 		cdev->hw_control_set = phy_led_hw_control_set;
3371 		cdev->hw_control_get = phy_led_hw_control_get;
3372 		cdev->hw_control_trigger = "netdev";
3373 	}
3374 
3375 	cdev->hw_control_get_device = phy_led_hw_control_get_device;
3376 #endif
3377 	cdev->max_brightness = 1;
3378 	init_data.devicename = dev_name(&phydev->mdio.dev);
3379 	init_data.fwnode = of_fwnode_handle(led);
3380 	init_data.devname_mandatory = true;
3381 
3382 	err = led_classdev_register_ext(dev, cdev, &init_data);
3383 	if (err)
3384 		return err;
3385 
3386 	list_add(&phyled->list, &phydev->leds);
3387 
3388 	return 0;
3389 }
3390 
3391 static int of_phy_leds(struct phy_device *phydev)
3392 {
3393 	struct device_node *node = phydev->mdio.dev.of_node;
3394 	struct device_node *leds;
3395 	int err;
3396 
3397 	if (!IS_ENABLED(CONFIG_OF_MDIO))
3398 		return 0;
3399 
3400 	if (!node)
3401 		return 0;
3402 
3403 	leds = of_get_child_by_name(node, "leds");
3404 	if (!leds)
3405 		return 0;
3406 
3407 	/* Check if the PHY driver have at least an OP to
3408 	 * set the LEDs.
3409 	 */
3410 	if (!(phydev->drv->led_brightness_set ||
3411 	      phydev->drv->led_blink_set ||
3412 	      phydev->drv->led_hw_control_set)) {
3413 		phydev_dbg(phydev, "ignoring leds node defined with no PHY driver support\n");
3414 		goto exit;
3415 	}
3416 
3417 	for_each_available_child_of_node_scoped(leds, led) {
3418 		err = of_phy_led(phydev, led);
3419 		if (err) {
3420 			of_node_put(leds);
3421 			phy_leds_unregister(phydev);
3422 			return err;
3423 		}
3424 	}
3425 
3426 exit:
3427 	of_node_put(leds);
3428 	return 0;
3429 }
3430 
3431 static void phy_cleanup_ports(struct phy_device *phydev)
3432 {
3433 	struct phy_port *tmp, *port;
3434 
3435 	list_for_each_entry_safe(port, tmp, &phydev->ports, head) {
3436 		phy_del_port(phydev, port);
3437 		phy_port_destroy(port);
3438 	}
3439 }
3440 
3441 static int phy_default_setup_single_port(struct phy_device *phydev)
3442 {
3443 	struct phy_port *port = phy_port_alloc();
3444 	unsigned long mode;
3445 
3446 	if (!port)
3447 		return -ENOMEM;
3448 
3449 	port->parent_type = PHY_PORT_PHY;
3450 	port->phy = phydev;
3451 
3452 	/* Let the PHY driver know that this port was never described anywhere.
3453 	 * This is the usual case, where we assume single-port PHY devices with
3454 	 * no SFP. In that case, the port supports exactly the same thing as
3455 	 * the PHY itself.
3456 	 *
3457 	 * However, this can also be because we have a combo-port PHY, with
3458 	 * only one port described in DT, through SFP for example.
3459 	 *
3460 	 * In that case, the PHY driver will be in charge of saying what we can
3461 	 * do on that non-represented port.
3462 	 */
3463 	port->not_described = true;
3464 	linkmode_copy(port->supported, phydev->supported);
3465 	port->mediums = phy_caps_mediums_from_linkmodes(port->supported);
3466 
3467 	for_each_set_bit(mode, port->supported, __ETHTOOL_LINK_MODE_MASK_NBITS)
3468 		port->pairs = max_t(int, port->pairs,
3469 				    ethtool_linkmode_n_pairs(mode));
3470 
3471 	phy_add_port(phydev, port);
3472 
3473 	return 0;
3474 }
3475 
3476 static int of_phy_ports(struct phy_device *phydev)
3477 {
3478 	struct device_node *node = phydev->mdio.dev.of_node;
3479 	struct device_node *mdi;
3480 	struct phy_port *port;
3481 	int err;
3482 
3483 	if (!IS_ENABLED(CONFIG_OF_MDIO))
3484 		return 0;
3485 
3486 	if (!node)
3487 		return 0;
3488 
3489 	mdi = of_get_child_by_name(node, "mdi");
3490 	if (!mdi)
3491 		return 0;
3492 
3493 	for_each_available_child_of_node_scoped(mdi, port_node) {
3494 		port = phy_of_parse_port(port_node);
3495 		if (IS_ERR(port)) {
3496 			err = PTR_ERR(port);
3497 			goto out_err;
3498 		}
3499 
3500 		port->parent_type = PHY_PORT_PHY;
3501 		port->phy = phydev;
3502 		err = phy_add_port(phydev, port);
3503 		if (err) {
3504 			phy_port_destroy(port);
3505 			goto out_err;
3506 		}
3507 	}
3508 	of_node_put(mdi);
3509 
3510 	return 0;
3511 
3512 out_err:
3513 	phy_cleanup_ports(phydev);
3514 	of_node_put(mdi);
3515 	return err;
3516 }
3517 
3518 static int phy_setup_ports(struct phy_device *phydev)
3519 {
3520 	__ETHTOOL_DECLARE_LINK_MODE_MASK(ports_supported);
3521 	struct phy_port *port;
3522 	int ret;
3523 
3524 	ret = of_phy_ports(phydev);
3525 	if (ret)
3526 		return ret;
3527 
3528 	ret = phy_sfp_probe(phydev);
3529 	if (ret)
3530 		goto out;
3531 
3532 	if (phydev->n_ports < phydev->max_n_ports) {
3533 		ret = phy_default_setup_single_port(phydev);
3534 		if (ret)
3535 			goto out;
3536 	}
3537 
3538 	linkmode_zero(ports_supported);
3539 
3540 	/* Aggregate the supported modes, which are made-up of :
3541 	 *  - What the PHY itself supports
3542 	 *  - What the sum of all ports support
3543 	 */
3544 	list_for_each_entry(port, &phydev->ports, head)
3545 		if (port->active)
3546 			linkmode_or(ports_supported, ports_supported,
3547 				    port->supported);
3548 
3549 	if (!linkmode_empty(ports_supported))
3550 		linkmode_and(phydev->supported, phydev->supported,
3551 			     ports_supported);
3552 
3553 	/* For now, the phy->port field is set as the first active port's type */
3554 	list_for_each_entry(port, &phydev->ports, head)
3555 		if (port->active) {
3556 			phydev->port = phy_port_get_type(port);
3557 			break;
3558 		}
3559 
3560 	return 0;
3561 
3562 out:
3563 	phy_cleanup_ports(phydev);
3564 	return ret;
3565 }
3566 
3567 /**
3568  * phy_get_sfp_port() - Returns the first valid SFP port of a PHY
3569  * @phydev: pointer to the PHY device to get the SFP port from
3570  *
3571  * Returns: The first active SFP (serdes) port of a PHY device, NULL if none
3572  * exist.
3573  */
3574 struct phy_port *phy_get_sfp_port(struct phy_device *phydev)
3575 {
3576 	struct phy_port *port;
3577 
3578 	list_for_each_entry(port, &phydev->ports, head)
3579 		if (port->active && port->is_sfp)
3580 			return port;
3581 
3582 	return NULL;
3583 }
3584 EXPORT_SYMBOL_GPL(phy_get_sfp_port);
3585 
3586 /**
3587  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
3588  * @fwnode: pointer to the mdio_device's fwnode
3589  *
3590  * If successful, returns a pointer to the mdio_device with the embedded
3591  * struct device refcount incremented by one, or NULL on failure.
3592  * The caller should call put_device() on the mdio_device after its use.
3593  */
3594 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
3595 {
3596 	struct device *d;
3597 
3598 	if (!fwnode)
3599 		return NULL;
3600 
3601 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
3602 	if (!d)
3603 		return NULL;
3604 
3605 	return to_mdio_device(d);
3606 }
3607 EXPORT_SYMBOL(fwnode_mdio_find_device);
3608 
3609 /**
3610  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
3611  *
3612  * @phy_fwnode: Pointer to the phy's fwnode.
3613  *
3614  * If successful, returns a pointer to the phy_device with the embedded
3615  * struct device refcount incremented by one, or NULL on failure.
3616  */
3617 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
3618 {
3619 	struct mdio_device *mdiodev;
3620 
3621 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
3622 	if (!mdiodev)
3623 		return NULL;
3624 
3625 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
3626 		return to_phy_device(&mdiodev->dev);
3627 
3628 	put_device(&mdiodev->dev);
3629 
3630 	return NULL;
3631 }
3632 EXPORT_SYMBOL(fwnode_phy_find_device);
3633 
3634 /**
3635  * fwnode_get_phy_node - Get the phy_node using the named reference.
3636  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
3637  *
3638  * Refer return conditions of fwnode_find_reference().
3639  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
3640  * and "phy-device" are not supported in ACPI. DT supports all the three
3641  * named references to the phy node.
3642  */
3643 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode)
3644 {
3645 	struct fwnode_handle *phy_node;
3646 
3647 	/* Only phy-handle is used for ACPI */
3648 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3649 	if (!IS_ERR(phy_node) || is_acpi_node(fwnode))
3650 		return phy_node;
3651 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
3652 	if (!IS_ERR(phy_node))
3653 		return phy_node;
3654 	return fwnode_find_reference(fwnode, "phy-device", 0);
3655 }
3656 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3657 
3658 /**
3659  * phy_probe - probe and init a PHY device
3660  * @dev: device to probe and init
3661  *
3662  * Take care of setting up the phy_device structure, set the state to READY.
3663  */
3664 static int phy_probe(struct device *dev)
3665 {
3666 	struct phy_device *phydev = to_phy_device(dev);
3667 	struct device_driver *drv = phydev->mdio.dev.driver;
3668 	struct phy_driver *phydrv = to_phy_driver(drv);
3669 	int err = 0;
3670 
3671 	phydev->drv = phydrv;
3672 
3673 	/* Disable the interrupt if the PHY doesn't support it
3674 	 * but the interrupt is still a valid one
3675 	 */
3676 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3677 		phydev->irq = PHY_POLL;
3678 
3679 	if (phydrv->flags & PHY_IS_INTERNAL)
3680 		phydev->is_internal = true;
3681 
3682 	/* Deassert the reset signal */
3683 	phy_device_reset(phydev, 0);
3684 
3685 	if (phydev->drv->probe) {
3686 		err = phydev->drv->probe(phydev);
3687 		if (err)
3688 			goto out;
3689 	}
3690 
3691 	phy_disable_interrupts(phydev);
3692 
3693 	/* Start out supporting everything. Eventually,
3694 	 * a controller will attach, and may modify one
3695 	 * or both of these values
3696 	 */
3697 	if (phydrv->features) {
3698 		linkmode_copy(phydev->supported, phydrv->features);
3699 		genphy_c45_read_eee_abilities(phydev);
3700 	}
3701 	else if (phydrv->get_features)
3702 		err = phydrv->get_features(phydev);
3703 	else if (phydev->is_c45)
3704 		err = genphy_c45_pma_read_abilities(phydev);
3705 	else
3706 		err = genphy_read_abilities(phydev);
3707 
3708 	if (err)
3709 		goto out;
3710 
3711 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3712 			       phydev->supported))
3713 		phydev->autoneg = 0;
3714 
3715 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3716 			      phydev->supported))
3717 		phydev->is_gigabit_capable = 1;
3718 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3719 			      phydev->supported))
3720 		phydev->is_gigabit_capable = 1;
3721 
3722 	of_set_phy_supported(phydev);
3723 
3724 	err = phy_setup_ports(phydev);
3725 	if (err)
3726 		goto out;
3727 
3728 	phy_advertise_supported(phydev);
3729 
3730 	/* Get PHY default EEE advertising modes and handle them as potentially
3731 	 * safe initial configuration.
3732 	 */
3733 	err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee);
3734 	if (err)
3735 		goto out;
3736 
3737 	/* Get the EEE modes we want to prohibit. */
3738 	of_set_phy_eee_broken(phydev);
3739 
3740 	/* Some PHYs may advertise, by default, not support EEE modes. So,
3741 	 * we need to clean them. In addition remove all disabled EEE modes.
3742 	 */
3743 	linkmode_and(phydev->advertising_eee, phydev->supported_eee,
3744 		     phydev->advertising_eee);
3745 	linkmode_andnot(phydev->advertising_eee, phydev->advertising_eee,
3746 			phydev->eee_disabled_modes);
3747 
3748 	/* There is no "enabled" flag. If PHY is advertising, assume it is
3749 	 * kind of enabled.
3750 	 */
3751 	phydev->eee_cfg.eee_enabled = !linkmode_empty(phydev->advertising_eee);
3752 
3753 	/* Get master/slave strap overrides */
3754 	of_set_phy_timing_role(phydev);
3755 
3756 	/* The Pause Frame bits indicate that the PHY can support passing
3757 	 * pause frames. During autonegotiation, the PHYs will determine if
3758 	 * they should allow pause frames to pass.  The MAC driver should then
3759 	 * use that result to determine whether to enable flow control via
3760 	 * pause frames.
3761 	 *
3762 	 * Normally, PHY drivers should not set the Pause bits, and instead
3763 	 * allow phylib to do that.  However, there may be some situations
3764 	 * (e.g. hardware erratum) where the driver wants to set only one
3765 	 * of these bits.
3766 	 */
3767 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3768 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3769 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3770 				 phydev->supported);
3771 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3772 				 phydev->supported);
3773 	}
3774 
3775 	/* Set the state to READY by default */
3776 	phydev->state = PHY_READY;
3777 
3778 	/* Get the LEDs from the device tree, and instantiate standard
3779 	 * LEDs for them.
3780 	 */
3781 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS) && !phy_driver_is_genphy(phydev))
3782 		err = of_phy_leds(phydev);
3783 
3784 out:
3785 	/* Re-assert the reset signal on error */
3786 	if (err)
3787 		phy_device_reset(phydev, 1);
3788 
3789 	return err;
3790 }
3791 
3792 static int phy_remove(struct device *dev)
3793 {
3794 	struct phy_device *phydev = to_phy_device(dev);
3795 
3796 	cancel_delayed_work_sync(&phydev->state_queue);
3797 
3798 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS) && !phy_driver_is_genphy(phydev))
3799 		phy_leds_unregister(phydev);
3800 
3801 	phydev->state = PHY_DOWN;
3802 
3803 	phy_cleanup_ports(phydev);
3804 
3805 	sfp_bus_del_upstream(phydev->sfp_bus);
3806 	phydev->sfp_bus = NULL;
3807 
3808 	if (phydev->drv && phydev->drv->remove)
3809 		phydev->drv->remove(phydev);
3810 
3811 	/* Assert the reset signal */
3812 	phy_device_reset(phydev, 1);
3813 
3814 	phydev->drv = NULL;
3815 
3816 	return 0;
3817 }
3818 
3819 /**
3820  * phy_driver_register - register a phy_driver with the PHY layer
3821  * @new_driver: new phy_driver to register
3822  * @owner: module owning this PHY
3823  */
3824 static int phy_driver_register(struct phy_driver *new_driver,
3825 			       struct module *owner)
3826 {
3827 	int retval;
3828 
3829 	/* Either the features are hard coded, or dynamically
3830 	 * determined. It cannot be both.
3831 	 */
3832 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3833 		pr_err("%s: features and get_features must not both be set\n",
3834 		       new_driver->name);
3835 		return -EINVAL;
3836 	}
3837 
3838 	/* PHYLIB device drivers must not match using a DT compatible table
3839 	 * as this bypasses our checks that the mdiodev that is being matched
3840 	 * is backed by a struct phy_device. If such a case happens, we will
3841 	 * make out-of-bounds accesses and lockup in phydev->lock.
3842 	 */
3843 	if (WARN(new_driver->mdiodrv.driver.of_match_table,
3844 		 "%s: driver must not provide a DT match table\n",
3845 		 new_driver->name))
3846 		return -EINVAL;
3847 
3848 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3849 	new_driver->mdiodrv.driver.name = new_driver->name;
3850 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3851 	new_driver->mdiodrv.driver.probe = phy_probe;
3852 	new_driver->mdiodrv.driver.remove = phy_remove;
3853 	new_driver->mdiodrv.driver.owner = owner;
3854 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3855 
3856 	retval = driver_register(&new_driver->mdiodrv.driver);
3857 	if (retval) {
3858 		pr_err("%s: Error %d in registering driver\n",
3859 		       new_driver->name, retval);
3860 
3861 		return retval;
3862 	}
3863 
3864 	pr_debug("%s: Registered new driver\n", new_driver->name);
3865 
3866 	return 0;
3867 }
3868 
3869 static void phy_driver_unregister(struct phy_driver *drv)
3870 {
3871 	driver_unregister(&drv->mdiodrv.driver);
3872 }
3873 
3874 int phy_drivers_register(struct phy_driver *new_driver, int n,
3875 			 struct module *owner)
3876 {
3877 	int i, ret = 0;
3878 
3879 	for (i = 0; i < n; i++) {
3880 		ret = phy_driver_register(new_driver + i, owner);
3881 		if (ret) {
3882 			while (i-- > 0)
3883 				phy_driver_unregister(new_driver + i);
3884 			break;
3885 		}
3886 	}
3887 	return ret;
3888 }
3889 EXPORT_SYMBOL(phy_drivers_register);
3890 
3891 void phy_drivers_unregister(struct phy_driver *drv, int n)
3892 {
3893 	int i;
3894 
3895 	for (i = 0; i < n; i++)
3896 		phy_driver_unregister(drv + i);
3897 }
3898 EXPORT_SYMBOL(phy_drivers_unregister);
3899 
3900 static struct phy_driver genphy_driver = {
3901 	.phy_id		= 0xffffffff,
3902 	.phy_id_mask	= 0xffffffff,
3903 	.name		= "Generic PHY",
3904 	.get_features	= genphy_read_abilities,
3905 	.suspend	= genphy_suspend,
3906 	.resume		= genphy_resume,
3907 	.set_loopback   = genphy_loopback,
3908 };
3909 
3910 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3911 	.get_sset_count		= phy_ethtool_get_sset_count,
3912 	.get_strings		= phy_ethtool_get_strings,
3913 	.get_stats		= phy_ethtool_get_stats,
3914 	.get_plca_cfg		= phy_ethtool_get_plca_cfg,
3915 	.set_plca_cfg		= phy_ethtool_set_plca_cfg,
3916 	.get_plca_status	= phy_ethtool_get_plca_status,
3917 	.start_cable_test	= phy_start_cable_test,
3918 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3919 };
3920 
3921 static const struct phylib_stubs __phylib_stubs = {
3922 	.hwtstamp_get = __phy_hwtstamp_get,
3923 	.hwtstamp_set = __phy_hwtstamp_set,
3924 	.get_phy_stats = __phy_ethtool_get_phy_stats,
3925 	.get_link_ext_stats = __phy_ethtool_get_link_ext_stats,
3926 };
3927 
3928 static void phylib_register_stubs(void)
3929 {
3930 	phylib_stubs = &__phylib_stubs;
3931 }
3932 
3933 static void phylib_unregister_stubs(void)
3934 {
3935 	phylib_stubs = NULL;
3936 }
3937 
3938 static int __init phy_init(void)
3939 {
3940 	int rc;
3941 
3942 	rtnl_lock();
3943 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3944 	phylib_register_stubs();
3945 	rtnl_unlock();
3946 
3947 	rc = phy_caps_init();
3948 	if (rc)
3949 		goto err_ethtool_phy_ops;
3950 
3951 	features_init();
3952 
3953 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3954 	if (rc)
3955 		goto err_ethtool_phy_ops;
3956 
3957 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3958 	if (rc)
3959 		goto err_c45;
3960 
3961 	return 0;
3962 
3963 err_c45:
3964 	phy_driver_unregister(&genphy_c45_driver);
3965 err_ethtool_phy_ops:
3966 	rtnl_lock();
3967 	phylib_unregister_stubs();
3968 	ethtool_set_ethtool_phy_ops(NULL);
3969 	rtnl_unlock();
3970 
3971 	return rc;
3972 }
3973 
3974 static void __exit phy_exit(void)
3975 {
3976 	phy_driver_unregister(&genphy_c45_driver);
3977 	phy_driver_unregister(&genphy_driver);
3978 	rtnl_lock();
3979 	phylib_unregister_stubs();
3980 	ethtool_set_ethtool_phy_ops(NULL);
3981 	rtnl_unlock();
3982 }
3983 
3984 subsys_initcall(phy_init);
3985 module_exit(phy_exit);
3986