1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phylib_stubs.h> 31 #include <linux/phy_led_triggers.h> 32 #include <linux/phy_link_topology.h> 33 #include <linux/phy_port.h> 34 #include <linux/pse-pd/pse.h> 35 #include <linux/property.h> 36 #include <linux/ptp_clock_kernel.h> 37 #include <linux/rtnetlink.h> 38 #include <linux/sfp.h> 39 #include <linux/skbuff.h> 40 #include <linux/slab.h> 41 #include <linux/string.h> 42 #include <linux/uaccess.h> 43 #include <linux/unistd.h> 44 45 #include "phylib-internal.h" 46 #include "phy-caps.h" 47 48 MODULE_DESCRIPTION("PHY library"); 49 MODULE_AUTHOR("Andy Fleming"); 50 MODULE_LICENSE("GPL"); 51 52 struct phy_fixup { 53 struct list_head list; 54 char bus_id[MII_BUS_ID_SIZE + 3]; 55 u32 phy_uid; 56 u32 phy_uid_mask; 57 int (*run)(struct phy_device *phydev); 58 }; 59 60 static struct phy_driver genphy_c45_driver = { 61 .phy_id = 0xffffffff, 62 .phy_id_mask = 0xffffffff, 63 .name = "Generic Clause 45 PHY", 64 .read_status = genphy_c45_read_status, 65 }; 66 67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 68 EXPORT_SYMBOL_GPL(phy_basic_features); 69 70 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 71 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 72 73 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 74 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 75 76 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 77 EXPORT_SYMBOL_GPL(phy_gbit_features); 78 79 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 80 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 81 82 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 83 EXPORT_SYMBOL_GPL(phy_10gbit_features); 84 85 const int phy_basic_ports_array[3] = { 86 ETHTOOL_LINK_MODE_Autoneg_BIT, 87 ETHTOOL_LINK_MODE_TP_BIT, 88 ETHTOOL_LINK_MODE_MII_BIT, 89 }; 90 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 91 92 static const int phy_all_ports_features_array[7] __initconst = { 93 ETHTOOL_LINK_MODE_Autoneg_BIT, 94 ETHTOOL_LINK_MODE_TP_BIT, 95 ETHTOOL_LINK_MODE_MII_BIT, 96 ETHTOOL_LINK_MODE_FIBRE_BIT, 97 ETHTOOL_LINK_MODE_AUI_BIT, 98 ETHTOOL_LINK_MODE_BNC_BIT, 99 ETHTOOL_LINK_MODE_Backplane_BIT, 100 }; 101 102 static const int phy_10_100_features_array[4] __initconst = { 103 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 104 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 105 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 106 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 107 }; 108 109 static const int phy_basic_t1_features_array[3] __initconst = { 110 ETHTOOL_LINK_MODE_TP_BIT, 111 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 112 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 113 }; 114 115 static const int phy_basic_t1s_p2mp_features_array[2] __initconst = { 116 ETHTOOL_LINK_MODE_TP_BIT, 117 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 118 }; 119 120 static const int phy_gbit_features_array[2] __initconst = { 121 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 122 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 123 }; 124 125 static const int phy_eee_cap1_features_array[] __initconst = { 126 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 127 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 128 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 129 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 130 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 131 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 132 }; 133 134 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 135 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 136 137 static const int phy_eee_cap2_features_array[] __initconst = { 138 ETHTOOL_LINK_MODE_2500baseT_Full_BIT, 139 ETHTOOL_LINK_MODE_5000baseT_Full_BIT, 140 }; 141 142 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap2_features) __ro_after_init; 143 EXPORT_SYMBOL_GPL(phy_eee_cap2_features); 144 145 static void __init features_init(void) 146 { 147 /* 10/100 half/full*/ 148 linkmode_set_bit_array(phy_basic_ports_array, 149 ARRAY_SIZE(phy_basic_ports_array), 150 phy_basic_features); 151 linkmode_set_bit_array(phy_10_100_features_array, 152 ARRAY_SIZE(phy_10_100_features_array), 153 phy_basic_features); 154 155 /* 100 full, TP */ 156 linkmode_set_bit_array(phy_basic_t1_features_array, 157 ARRAY_SIZE(phy_basic_t1_features_array), 158 phy_basic_t1_features); 159 160 /* 10 half, P2MP, TP */ 161 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 162 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 163 phy_basic_t1s_p2mp_features); 164 165 /* 10/100 half/full + 1000 half/full */ 166 linkmode_set_bit_array(phy_basic_ports_array, 167 ARRAY_SIZE(phy_basic_ports_array), 168 phy_gbit_features); 169 linkmode_set_bit_array(phy_10_100_features_array, 170 ARRAY_SIZE(phy_10_100_features_array), 171 phy_gbit_features); 172 linkmode_set_bit_array(phy_gbit_features_array, 173 ARRAY_SIZE(phy_gbit_features_array), 174 phy_gbit_features); 175 176 /* 10/100 half/full + 1000 half/full + fibre*/ 177 linkmode_set_bit_array(phy_basic_ports_array, 178 ARRAY_SIZE(phy_basic_ports_array), 179 phy_gbit_fibre_features); 180 linkmode_set_bit_array(phy_10_100_features_array, 181 ARRAY_SIZE(phy_10_100_features_array), 182 phy_gbit_fibre_features); 183 linkmode_set_bit_array(phy_gbit_features_array, 184 ARRAY_SIZE(phy_gbit_features_array), 185 phy_gbit_fibre_features); 186 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phy_gbit_fibre_features); 187 188 /* 10/100 half/full + 1000 half/full + 10G full*/ 189 linkmode_set_bit_array(phy_all_ports_features_array, 190 ARRAY_SIZE(phy_all_ports_features_array), 191 phy_10gbit_features); 192 linkmode_set_bit_array(phy_10_100_features_array, 193 ARRAY_SIZE(phy_10_100_features_array), 194 phy_10gbit_features); 195 linkmode_set_bit_array(phy_gbit_features_array, 196 ARRAY_SIZE(phy_gbit_features_array), 197 phy_10gbit_features); 198 linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 199 phy_10gbit_features); 200 201 linkmode_set_bit_array(phy_eee_cap1_features_array, 202 ARRAY_SIZE(phy_eee_cap1_features_array), 203 phy_eee_cap1_features); 204 linkmode_set_bit_array(phy_eee_cap2_features_array, 205 ARRAY_SIZE(phy_eee_cap2_features_array), 206 phy_eee_cap2_features); 207 208 } 209 210 void phy_device_free(struct phy_device *phydev) 211 { 212 put_device(&phydev->mdio.dev); 213 } 214 EXPORT_SYMBOL(phy_device_free); 215 216 static void phy_mdio_device_free(struct mdio_device *mdiodev) 217 { 218 struct phy_device *phydev; 219 220 phydev = container_of(mdiodev, struct phy_device, mdio); 221 phy_device_free(phydev); 222 } 223 224 static void phy_device_release(struct device *dev) 225 { 226 fwnode_handle_put(dev->fwnode); 227 kfree(to_phy_device(dev)); 228 } 229 230 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 231 { 232 struct phy_device *phydev; 233 234 phydev = container_of(mdiodev, struct phy_device, mdio); 235 phy_device_remove(phydev); 236 } 237 238 static struct phy_driver genphy_driver; 239 240 static LIST_HEAD(phy_fixup_list); 241 static DEFINE_MUTEX(phy_fixup_lock); 242 243 static bool phy_drv_wol_enabled(struct phy_device *phydev) 244 { 245 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 246 247 phy_ethtool_get_wol(phydev, &wol); 248 249 return wol.wolopts != 0; 250 } 251 252 bool phy_may_wakeup(struct phy_device *phydev) 253 { 254 /* If the PHY is using driver-model based wakeup, use that state. */ 255 if (phy_can_wakeup(phydev)) 256 return device_may_wakeup(&phydev->mdio.dev); 257 258 return phy_drv_wol_enabled(phydev); 259 } 260 EXPORT_SYMBOL_GPL(phy_may_wakeup); 261 262 static void phy_link_change(struct phy_device *phydev, bool up) 263 { 264 struct net_device *netdev = phydev->attached_dev; 265 266 if (up) 267 netif_carrier_on(netdev); 268 else 269 netif_carrier_off(netdev); 270 phydev->adjust_link(netdev); 271 if (phydev->mii_ts && phydev->mii_ts->link_state) 272 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 273 } 274 275 /** 276 * phy_uses_state_machine - test whether consumer driver uses PAL state machine 277 * @phydev: the target PHY device structure 278 * 279 * Ultimately, this aims to indirectly determine whether the PHY is attached 280 * to a consumer which uses the state machine by calling phy_start() and 281 * phy_stop(). 282 * 283 * When the PHY driver consumer uses phylib, it must have previously called 284 * phy_connect_direct() or one of its derivatives, so that phy_prepare_link() 285 * has set up a hook for monitoring state changes. 286 * 287 * When the PHY driver is used by the MAC driver consumer through phylink (the 288 * only other provider of a phy_link_change() method), using the PHY state 289 * machine is not optional. 290 * 291 * Return: true if consumer calls phy_start() and phy_stop(), false otherwise. 292 */ 293 static bool phy_uses_state_machine(struct phy_device *phydev) 294 { 295 if (phydev->phy_link_change == phy_link_change) 296 return phydev->attached_dev && phydev->adjust_link; 297 298 return !!phydev->phy_link_change; 299 } 300 301 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 302 { 303 struct device_driver *drv = phydev->mdio.dev.driver; 304 struct phy_driver *phydrv = to_phy_driver(drv); 305 struct net_device *netdev = phydev->attached_dev; 306 307 if (!drv || !phydrv->suspend) 308 return false; 309 310 /* If the PHY on the mido bus is not attached but has WOL enabled 311 * we cannot suspend the PHY. 312 */ 313 if (!netdev && phy_may_wakeup(phydev)) 314 return false; 315 316 /* PHY not attached? May suspend if the PHY has not already been 317 * suspended as part of a prior call to phy_disconnect() -> 318 * phy_detach() -> phy_suspend() because the parent netdev might be the 319 * MDIO bus driver and clock gated at this point. 320 */ 321 if (!netdev) 322 goto out; 323 324 if (netdev->ethtool->wol_enabled) 325 return false; 326 327 /* As long as not all affected network drivers support the 328 * wol_enabled flag, let's check for hints that WoL is enabled. 329 * Don't suspend PHY if the attached netdev parent may wake up. 330 * The parent may point to a PCI device, as in tg3 driver. 331 */ 332 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 333 return false; 334 335 /* Also don't suspend PHY if the netdev itself may wakeup. This 336 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 337 * e.g. SoC devices. 338 */ 339 if (device_may_wakeup(&netdev->dev)) 340 return false; 341 342 out: 343 return !phydev->suspended; 344 } 345 346 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 347 { 348 struct phy_device *phydev = to_phy_device(dev); 349 350 if (phydev->mac_managed_pm) 351 return 0; 352 353 /* Wakeup interrupts may occur during the system sleep transition when 354 * the PHY is inaccessible. Set flag to postpone handling until the PHY 355 * has resumed. Wait for concurrent interrupt handler to complete. 356 */ 357 if (phy_interrupt_is_valid(phydev)) { 358 phydev->irq_suspended = 1; 359 synchronize_irq(phydev->irq); 360 } 361 362 /* We must stop the state machine manually, otherwise it stops out of 363 * control, possibly with the phydev->lock held. Upon resume, netdev 364 * may call phy routines that try to grab the same lock, and that may 365 * lead to a deadlock. 366 */ 367 if (phy_uses_state_machine(phydev)) 368 phy_stop_machine(phydev); 369 370 if (!mdio_bus_phy_may_suspend(phydev)) 371 return 0; 372 373 phydev->suspended_by_mdio_bus = 1; 374 375 return phy_suspend(phydev); 376 } 377 378 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 379 { 380 struct phy_device *phydev = to_phy_device(dev); 381 int ret; 382 383 if (phydev->mac_managed_pm) 384 return 0; 385 386 if (!phydev->suspended_by_mdio_bus) 387 goto no_resume; 388 389 phydev->suspended_by_mdio_bus = 0; 390 391 /* If we managed to get here with the PHY state machine in a state 392 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 393 * that something went wrong and we should most likely be using 394 * MAC managed PM, but we are not. 395 */ 396 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 397 phydev->state != PHY_UP); 398 399 ret = phy_init_hw(phydev); 400 if (ret < 0) 401 return ret; 402 403 ret = phy_resume(phydev); 404 if (ret < 0) 405 return ret; 406 no_resume: 407 if (phy_interrupt_is_valid(phydev)) { 408 phydev->irq_suspended = 0; 409 synchronize_irq(phydev->irq); 410 411 /* Rerun interrupts which were postponed by phy_interrupt() 412 * because they occurred during the system sleep transition. 413 */ 414 if (phydev->irq_rerun) { 415 phydev->irq_rerun = 0; 416 enable_irq(phydev->irq); 417 irq_wake_thread(phydev->irq, phydev); 418 } 419 } 420 421 if (phy_uses_state_machine(phydev)) 422 phy_start_machine(phydev); 423 424 return 0; 425 } 426 427 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 428 mdio_bus_phy_resume); 429 430 /** 431 * phy_register_fixup - creates a new phy_fixup and adds it to the list 432 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or NULL) 433 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 434 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 435 * comparison (or 0 to disable id-based matching) 436 * @run: The actual code to be run when a matching PHY is found 437 */ 438 static int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 439 int (*run)(struct phy_device *)) 440 { 441 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 442 443 if (!fixup) 444 return -ENOMEM; 445 446 if (bus_id) 447 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 448 fixup->phy_uid = phy_uid; 449 fixup->phy_uid_mask = phy_uid_mask; 450 fixup->run = run; 451 452 mutex_lock(&phy_fixup_lock); 453 list_add_tail(&fixup->list, &phy_fixup_list); 454 mutex_unlock(&phy_fixup_lock); 455 456 return 0; 457 } 458 459 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 460 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 461 int (*run)(struct phy_device *)) 462 { 463 return phy_register_fixup(NULL, phy_uid, phy_uid_mask, run); 464 } 465 EXPORT_SYMBOL(phy_register_fixup_for_uid); 466 467 /* Registers a fixup to be run on the PHY with id string bus_id */ 468 int phy_register_fixup_for_id(const char *bus_id, 469 int (*run)(struct phy_device *)) 470 { 471 return phy_register_fixup(bus_id, 0, 0, run); 472 } 473 EXPORT_SYMBOL(phy_register_fixup_for_id); 474 475 static bool phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 476 { 477 if (!strcmp(fixup->bus_id, phydev_name(phydev))) 478 return true; 479 480 if (fixup->phy_uid_mask && 481 phy_id_compare(phydev->phy_id, fixup->phy_uid, fixup->phy_uid_mask)) 482 return true; 483 484 return false; 485 } 486 487 /* Runs any matching fixups for this phydev */ 488 static int phy_scan_fixups(struct phy_device *phydev) 489 { 490 struct phy_fixup *fixup; 491 492 mutex_lock(&phy_fixup_lock); 493 list_for_each_entry(fixup, &phy_fixup_list, list) { 494 if (phy_needs_fixup(phydev, fixup)) { 495 int err = fixup->run(phydev); 496 497 if (err < 0) { 498 mutex_unlock(&phy_fixup_lock); 499 return err; 500 } 501 phydev->has_fixups = true; 502 } 503 } 504 mutex_unlock(&phy_fixup_lock); 505 506 return 0; 507 } 508 509 /** 510 * genphy_match_phy_device - match a PHY device with a PHY driver 511 * @phydev: target phy_device struct 512 * @phydrv: target phy_driver struct 513 * 514 * Description: Checks whether the given PHY device matches the specified 515 * PHY driver. For Clause 45 PHYs, iterates over the available device 516 * identifiers and compares them against the driver's expected PHY ID, 517 * applying the provided mask. For Clause 22 PHYs, a direct ID comparison 518 * is performed. 519 * 520 * Return: 1 if the PHY device matches the driver, 0 otherwise. 521 */ 522 int genphy_match_phy_device(struct phy_device *phydev, 523 const struct phy_driver *phydrv) 524 { 525 if (phydev->is_c45) { 526 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 527 int i; 528 529 for (i = 1; i < num_ids; i++) { 530 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 531 continue; 532 533 if (phy_id_compare(phydev->c45_ids.device_ids[i], 534 phydrv->phy_id, phydrv->phy_id_mask)) 535 return 1; 536 } 537 538 return 0; 539 } 540 541 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 542 phydrv->phy_id_mask); 543 } 544 EXPORT_SYMBOL_GPL(genphy_match_phy_device); 545 546 static int phy_bus_match(struct device *dev, const struct device_driver *drv) 547 { 548 struct phy_device *phydev = to_phy_device(dev); 549 const struct phy_driver *phydrv = to_phy_driver(drv); 550 551 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 552 return 0; 553 554 if (phydrv->match_phy_device) 555 return phydrv->match_phy_device(phydev, phydrv); 556 557 return genphy_match_phy_device(phydev, phydrv); 558 } 559 560 static ssize_t 561 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 562 { 563 struct phy_device *phydev = to_phy_device(dev); 564 565 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 566 } 567 static DEVICE_ATTR_RO(phy_id); 568 569 static ssize_t 570 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 571 { 572 struct phy_device *phydev = to_phy_device(dev); 573 const char *mode = NULL; 574 575 if (phydev->is_internal) 576 mode = "internal"; 577 else 578 mode = phy_modes(phydev->interface); 579 580 return sysfs_emit(buf, "%s\n", mode); 581 } 582 static DEVICE_ATTR_RO(phy_interface); 583 584 static ssize_t 585 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 586 char *buf) 587 { 588 struct phy_device *phydev = to_phy_device(dev); 589 590 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 591 } 592 static DEVICE_ATTR_RO(phy_has_fixups); 593 594 static ssize_t phy_dev_flags_show(struct device *dev, 595 struct device_attribute *attr, 596 char *buf) 597 { 598 struct phy_device *phydev = to_phy_device(dev); 599 600 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 601 } 602 static DEVICE_ATTR_RO(phy_dev_flags); 603 604 static struct attribute *phy_dev_attrs[] = { 605 &dev_attr_phy_id.attr, 606 &dev_attr_phy_interface.attr, 607 &dev_attr_phy_has_fixups.attr, 608 &dev_attr_phy_dev_flags.attr, 609 NULL, 610 }; 611 612 static const struct attribute_group phy_dev_group = { 613 .attrs = phy_dev_attrs, 614 }; 615 616 #define MMD_DEVICE_ID_ATTR(n) \ 617 static ssize_t mmd##n##_device_id_show(struct device *dev, \ 618 struct device_attribute *attr, char *buf) \ 619 { \ 620 struct phy_device *phydev = to_phy_device(dev); \ 621 return sysfs_emit(buf, "0x%.8lx\n", \ 622 (unsigned long)phydev->c45_ids.device_ids[n]); \ 623 } \ 624 static DEVICE_ATTR_RO(mmd##n##_device_id) 625 626 MMD_DEVICE_ID_ATTR(1); 627 MMD_DEVICE_ID_ATTR(2); 628 MMD_DEVICE_ID_ATTR(3); 629 MMD_DEVICE_ID_ATTR(4); 630 MMD_DEVICE_ID_ATTR(5); 631 MMD_DEVICE_ID_ATTR(6); 632 MMD_DEVICE_ID_ATTR(7); 633 MMD_DEVICE_ID_ATTR(8); 634 MMD_DEVICE_ID_ATTR(9); 635 MMD_DEVICE_ID_ATTR(10); 636 MMD_DEVICE_ID_ATTR(11); 637 MMD_DEVICE_ID_ATTR(12); 638 MMD_DEVICE_ID_ATTR(13); 639 MMD_DEVICE_ID_ATTR(14); 640 MMD_DEVICE_ID_ATTR(15); 641 MMD_DEVICE_ID_ATTR(16); 642 MMD_DEVICE_ID_ATTR(17); 643 MMD_DEVICE_ID_ATTR(18); 644 MMD_DEVICE_ID_ATTR(19); 645 MMD_DEVICE_ID_ATTR(20); 646 MMD_DEVICE_ID_ATTR(21); 647 MMD_DEVICE_ID_ATTR(22); 648 MMD_DEVICE_ID_ATTR(23); 649 MMD_DEVICE_ID_ATTR(24); 650 MMD_DEVICE_ID_ATTR(25); 651 MMD_DEVICE_ID_ATTR(26); 652 MMD_DEVICE_ID_ATTR(27); 653 MMD_DEVICE_ID_ATTR(28); 654 MMD_DEVICE_ID_ATTR(29); 655 MMD_DEVICE_ID_ATTR(30); 656 MMD_DEVICE_ID_ATTR(31); 657 658 static struct attribute *phy_mmd_attrs[] = { 659 &dev_attr_mmd1_device_id.attr, 660 &dev_attr_mmd2_device_id.attr, 661 &dev_attr_mmd3_device_id.attr, 662 &dev_attr_mmd4_device_id.attr, 663 &dev_attr_mmd5_device_id.attr, 664 &dev_attr_mmd6_device_id.attr, 665 &dev_attr_mmd7_device_id.attr, 666 &dev_attr_mmd8_device_id.attr, 667 &dev_attr_mmd9_device_id.attr, 668 &dev_attr_mmd10_device_id.attr, 669 &dev_attr_mmd11_device_id.attr, 670 &dev_attr_mmd12_device_id.attr, 671 &dev_attr_mmd13_device_id.attr, 672 &dev_attr_mmd14_device_id.attr, 673 &dev_attr_mmd15_device_id.attr, 674 &dev_attr_mmd16_device_id.attr, 675 &dev_attr_mmd17_device_id.attr, 676 &dev_attr_mmd18_device_id.attr, 677 &dev_attr_mmd19_device_id.attr, 678 &dev_attr_mmd20_device_id.attr, 679 &dev_attr_mmd21_device_id.attr, 680 &dev_attr_mmd22_device_id.attr, 681 &dev_attr_mmd23_device_id.attr, 682 &dev_attr_mmd24_device_id.attr, 683 &dev_attr_mmd25_device_id.attr, 684 &dev_attr_mmd26_device_id.attr, 685 &dev_attr_mmd27_device_id.attr, 686 &dev_attr_mmd28_device_id.attr, 687 &dev_attr_mmd29_device_id.attr, 688 &dev_attr_mmd30_device_id.attr, 689 &dev_attr_mmd31_device_id.attr, 690 NULL 691 }; 692 693 static umode_t phy_mmd_is_visible(struct kobject *kobj, 694 struct attribute *attr, int index) 695 { 696 struct device *dev = kobj_to_dev(kobj); 697 struct phy_device *phydev = to_phy_device(dev); 698 const int i = index + 1; 699 700 if (!phydev->is_c45) 701 return 0; 702 if (i >= ARRAY_SIZE(phydev->c45_ids.device_ids) || 703 phydev->c45_ids.device_ids[i] == 0xffffffff) 704 return 0; 705 706 return attr->mode; 707 } 708 709 static const struct attribute_group phy_mmd_group = { 710 .name = "c45_phy_ids", 711 .attrs = phy_mmd_attrs, 712 .is_visible = phy_mmd_is_visible, 713 }; 714 715 static const struct attribute_group *phy_device_groups[] = { 716 &phy_dev_group, 717 &phy_mmd_group, 718 NULL, 719 }; 720 721 static const struct device_type mdio_bus_phy_type = { 722 .name = "PHY", 723 .groups = phy_device_groups, 724 .release = phy_device_release, 725 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 726 }; 727 728 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 729 { 730 int ret; 731 732 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 733 MDIO_ID_ARGS(phy_id)); 734 /* We only check for failures in executing the usermode binary, 735 * not whether a PHY driver module exists for the PHY ID. 736 * Accept -ENOENT because this may occur in case no initramfs exists, 737 * then modprobe isn't available. 738 */ 739 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 740 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 741 ret, (unsigned long)phy_id); 742 return ret; 743 } 744 745 return 0; 746 } 747 748 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 749 bool is_c45, 750 struct phy_c45_device_ids *c45_ids) 751 { 752 struct phy_device *dev; 753 struct mdio_device *mdiodev; 754 int ret = 0; 755 756 /* We allocate the device, and initialize the default values */ 757 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 758 if (!dev) 759 return ERR_PTR(-ENOMEM); 760 761 mdiodev = &dev->mdio; 762 mdiodev->dev.parent = &bus->dev; 763 mdiodev->dev.bus = &mdio_bus_type; 764 mdiodev->dev.type = &mdio_bus_phy_type; 765 mdiodev->bus = bus; 766 mdiodev->bus_match = phy_bus_match; 767 mdiodev->addr = addr; 768 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 769 mdiodev->device_free = phy_mdio_device_free; 770 mdiodev->device_remove = phy_mdio_device_remove; 771 mdiodev->reset_state = -1; 772 773 dev->speed = SPEED_UNKNOWN; 774 dev->duplex = DUPLEX_UNKNOWN; 775 dev->pause = false; 776 dev->asym_pause = false; 777 dev->link = 0; 778 dev->port = PORT_TP; 779 dev->interface = PHY_INTERFACE_MODE_GMII; 780 781 dev->autoneg = AUTONEG_ENABLE; 782 783 dev->pma_extable = -ENODATA; 784 dev->is_c45 = is_c45; 785 dev->phy_id = phy_id; 786 if (c45_ids) 787 dev->c45_ids = *c45_ids; 788 dev->irq = bus->irq[addr]; 789 790 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 791 device_initialize(&mdiodev->dev); 792 793 dev->state = PHY_DOWN; 794 INIT_LIST_HEAD(&dev->leds); 795 INIT_LIST_HEAD(&dev->ports); 796 797 /* The driver's probe function must change that to the real number 798 * of ports possible on the PHY. We assume by default we are dealing 799 * with a single-port PHY 800 */ 801 dev->max_n_ports = 1; 802 803 mutex_init(&dev->lock); 804 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 805 806 /* Request the appropriate module unconditionally; don't 807 * bother trying to do so only if it isn't already loaded, 808 * because that gets complicated. A hotplug event would have 809 * done an unconditional modprobe anyway. 810 * We don't do normal hotplug because it won't work for MDIO 811 * -- because it relies on the device staying around for long 812 * enough for the driver to get loaded. With MDIO, the NIC 813 * driver will get bored and give up as soon as it finds that 814 * there's no driver _already_ loaded. 815 */ 816 if (is_c45 && c45_ids) { 817 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 818 int i; 819 820 for (i = 1; i < num_ids; i++) { 821 if (c45_ids->device_ids[i] == 0xffffffff) 822 continue; 823 824 ret = phy_request_driver_module(dev, 825 c45_ids->device_ids[i]); 826 if (ret) 827 break; 828 } 829 } else { 830 ret = phy_request_driver_module(dev, phy_id); 831 } 832 833 if (ret) { 834 put_device(&mdiodev->dev); 835 dev = ERR_PTR(ret); 836 } 837 838 return dev; 839 } 840 EXPORT_SYMBOL(phy_device_create); 841 842 /* phy_c45_probe_present - checks to see if a MMD is present in the package 843 * @bus: the target MII bus 844 * @prtad: PHY package address on the MII bus 845 * @devad: PHY device (MMD) address 846 * 847 * Read the MDIO_STAT2 register, and check whether a device is responding 848 * at this address. 849 * 850 * Returns: negative error number on bus access error, zero if no device 851 * is responding, or positive if a device is present. 852 */ 853 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 854 { 855 int stat2; 856 857 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 858 if (stat2 < 0) 859 return stat2; 860 861 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 862 } 863 864 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 865 * @bus: the target MII bus 866 * @addr: PHY address on the MII bus 867 * @dev_addr: MMD address in the PHY. 868 * @devices_in_package: where to store the devices in package information. 869 * 870 * Description: reads devices in package registers of a MMD at @dev_addr 871 * from PHY at @addr on @bus. 872 * 873 * Returns: 0 on success, -EIO on failure. 874 */ 875 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 876 u32 *devices_in_package) 877 { 878 int phy_reg; 879 880 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 881 if (phy_reg < 0) 882 return -EIO; 883 *devices_in_package = phy_reg << 16; 884 885 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 886 if (phy_reg < 0) 887 return -EIO; 888 *devices_in_package |= phy_reg; 889 890 return 0; 891 } 892 893 /** 894 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 895 * @bus: the target MII bus 896 * @addr: PHY address on the MII bus 897 * @c45_ids: where to store the c45 ID information. 898 * 899 * Read the PHY "devices in package". If this appears to be valid, read 900 * the PHY identifiers for each device. Return the "devices in package" 901 * and identifiers in @c45_ids. 902 * 903 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 904 * the "devices in package" is invalid or no device responds. 905 */ 906 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 907 struct phy_c45_device_ids *c45_ids) 908 { 909 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 910 u32 devs_in_pkg = 0; 911 int i, ret, phy_reg; 912 913 /* Find first non-zero Devices In package. Device zero is reserved 914 * for 802.3 c45 complied PHYs, so don't probe it at first. 915 */ 916 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 917 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 918 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 919 /* Check that there is a device present at this 920 * address before reading the devices-in-package 921 * register to avoid reading garbage from the PHY. 922 * Some PHYs (88x3310) vendor space is not IEEE802.3 923 * compliant. 924 */ 925 ret = phy_c45_probe_present(bus, addr, i); 926 if (ret < 0) 927 /* returning -ENODEV doesn't stop bus 928 * scanning 929 */ 930 return (phy_reg == -EIO || 931 phy_reg == -ENODEV) ? -ENODEV : -EIO; 932 933 if (!ret) 934 continue; 935 } 936 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 937 if (phy_reg < 0) 938 return -EIO; 939 } 940 941 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 942 /* If mostly Fs, there is no device there, then let's probe 943 * MMD 0, as some 10G PHYs have zero Devices In package, 944 * e.g. Cortina CS4315/CS4340 PHY. 945 */ 946 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 947 if (phy_reg < 0) 948 return -EIO; 949 950 /* no device there, let's get out of here */ 951 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 952 return -ENODEV; 953 } 954 955 /* Now probe Device Identifiers for each device present. */ 956 for (i = 1; i < num_ids; i++) { 957 if (!(devs_in_pkg & (1 << i))) 958 continue; 959 960 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 961 /* Probe the "Device Present" bits for the vendor MMDs 962 * to ignore these if they do not contain IEEE 802.3 963 * registers. 964 */ 965 ret = phy_c45_probe_present(bus, addr, i); 966 if (ret < 0) 967 return ret; 968 969 if (!ret) 970 continue; 971 } 972 973 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 974 if (phy_reg < 0) 975 return -EIO; 976 c45_ids->device_ids[i] = phy_reg << 16; 977 978 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 979 if (phy_reg < 0) 980 return -EIO; 981 c45_ids->device_ids[i] |= phy_reg; 982 } 983 984 c45_ids->devices_in_package = devs_in_pkg; 985 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 986 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 987 988 return 0; 989 } 990 991 /** 992 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 993 * @bus: the target MII bus 994 * @addr: PHY address on the MII bus 995 * @phy_id: where to store the ID retrieved. 996 * 997 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 998 * placing it in @phy_id. Return zero on successful read and the ID is 999 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 1000 * or invalid ID. 1001 */ 1002 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 1003 { 1004 int phy_reg; 1005 1006 /* Grab the bits from PHYIR1, and put them in the upper half */ 1007 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 1008 if (phy_reg < 0) { 1009 /* returning -ENODEV doesn't stop bus scanning */ 1010 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 1011 } 1012 1013 *phy_id = phy_reg << 16; 1014 1015 /* Grab the bits from PHYIR2, and put them in the lower half */ 1016 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 1017 if (phy_reg < 0) { 1018 /* returning -ENODEV doesn't stop bus scanning */ 1019 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 1020 } 1021 1022 *phy_id |= phy_reg; 1023 1024 /* If the phy_id is mostly Fs, there is no device there */ 1025 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 1026 return -ENODEV; 1027 1028 return 0; 1029 } 1030 1031 /* Extract the phy ID from the compatible string of the form 1032 * ethernet-phy-idAAAA.BBBB. 1033 */ 1034 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 1035 { 1036 unsigned int upper, lower; 1037 const char *cp; 1038 int ret; 1039 1040 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 1041 if (ret) 1042 return ret; 1043 1044 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 1045 return -EINVAL; 1046 1047 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 1048 return 0; 1049 } 1050 EXPORT_SYMBOL(fwnode_get_phy_id); 1051 1052 /** 1053 * get_phy_device - reads the specified PHY device and returns its @phy_device 1054 * struct 1055 * @bus: the target MII bus 1056 * @addr: PHY address on the MII bus 1057 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 1058 * 1059 * Probe for a PHY at @addr on @bus. 1060 * 1061 * When probing for a clause 22 PHY, then read the ID registers. If we find 1062 * a valid ID, allocate and return a &struct phy_device. 1063 * 1064 * When probing for a clause 45 PHY, read the "devices in package" registers. 1065 * If the "devices in package" appears valid, read the ID registers for each 1066 * MMD, allocate and return a &struct phy_device. 1067 * 1068 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 1069 * no PHY present, or %-EIO on bus access error. 1070 */ 1071 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 1072 { 1073 struct phy_c45_device_ids c45_ids; 1074 u32 phy_id = 0; 1075 int r; 1076 1077 c45_ids.devices_in_package = 0; 1078 c45_ids.mmds_present = 0; 1079 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 1080 1081 if (is_c45) 1082 r = get_phy_c45_ids(bus, addr, &c45_ids); 1083 else 1084 r = get_phy_c22_id(bus, addr, &phy_id); 1085 1086 if (r) 1087 return ERR_PTR(r); 1088 1089 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 1090 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 1091 * probe with C45 to see if we're able to get a valid PHY ID in the C45 1092 * space, if successful, create the C45 PHY device. 1093 */ 1094 if (!is_c45 && phy_id == 0 && bus->read_c45) { 1095 r = get_phy_c45_ids(bus, addr, &c45_ids); 1096 if (!r) 1097 return phy_device_create(bus, addr, phy_id, 1098 true, &c45_ids); 1099 } 1100 1101 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 1102 } 1103 EXPORT_SYMBOL(get_phy_device); 1104 1105 /** 1106 * phy_device_register - Register the phy device on the MDIO bus 1107 * @phydev: phy_device structure to be added to the MDIO bus 1108 */ 1109 int phy_device_register(struct phy_device *phydev) 1110 { 1111 int err; 1112 1113 err = mdiobus_register_device(&phydev->mdio); 1114 if (err) 1115 return err; 1116 1117 /* Deassert the reset signal */ 1118 phy_device_reset(phydev, 0); 1119 1120 /* Run all of the fixups for this PHY */ 1121 err = phy_scan_fixups(phydev); 1122 if (err) { 1123 phydev_err(phydev, "failed to initialize\n"); 1124 goto out; 1125 } 1126 1127 err = device_add(&phydev->mdio.dev); 1128 if (err) { 1129 phydev_err(phydev, "failed to add\n"); 1130 goto out; 1131 } 1132 1133 return 0; 1134 1135 out: 1136 /* Assert the reset signal */ 1137 phy_device_reset(phydev, 1); 1138 1139 mdiobus_unregister_device(&phydev->mdio); 1140 return err; 1141 } 1142 EXPORT_SYMBOL(phy_device_register); 1143 1144 /** 1145 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1146 * @phydev: phy_device structure to remove 1147 * 1148 * This doesn't free the phy_device itself, it merely reverses the effects 1149 * of phy_device_register(). Use phy_device_free() to free the device 1150 * after calling this function. 1151 */ 1152 void phy_device_remove(struct phy_device *phydev) 1153 { 1154 unregister_mii_timestamper(phydev->mii_ts); 1155 pse_control_put(phydev->psec); 1156 1157 device_del(&phydev->mdio.dev); 1158 1159 /* Assert the reset signal */ 1160 phy_device_reset(phydev, 1); 1161 1162 mdiobus_unregister_device(&phydev->mdio); 1163 } 1164 EXPORT_SYMBOL(phy_device_remove); 1165 1166 /** 1167 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1168 * @phydev: phy_device structure to read 802.3-c45 IDs 1169 * 1170 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1171 * the "devices in package" is invalid. 1172 */ 1173 int phy_get_c45_ids(struct phy_device *phydev) 1174 { 1175 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1176 &phydev->c45_ids); 1177 } 1178 EXPORT_SYMBOL(phy_get_c45_ids); 1179 1180 /** 1181 * phy_find_next - finds the next PHY device on the bus 1182 * @bus: the target MII bus 1183 * @pos: cursor 1184 * 1185 * Return: next phy_device on the bus, or NULL 1186 */ 1187 struct phy_device *phy_find_next(struct mii_bus *bus, struct phy_device *pos) 1188 { 1189 for (int addr = pos ? pos->mdio.addr + 1 : 0; 1190 addr < PHY_MAX_ADDR; addr++) { 1191 struct phy_device *phydev = mdiobus_get_phy(bus, addr); 1192 1193 if (phydev) 1194 return phydev; 1195 } 1196 return NULL; 1197 } 1198 EXPORT_SYMBOL_GPL(phy_find_next); 1199 1200 /** 1201 * phy_prepare_link - prepares the PHY layer to monitor link status 1202 * @phydev: target phy_device struct 1203 * @handler: callback function for link status change notifications 1204 * 1205 * Description: Tells the PHY infrastructure to handle the 1206 * gory details on monitoring link status (whether through 1207 * polling or an interrupt), and to call back to the 1208 * connected device driver when the link status changes. 1209 * If you want to monitor your own link state, don't call 1210 * this function. 1211 */ 1212 static void phy_prepare_link(struct phy_device *phydev, 1213 void (*handler)(struct net_device *)) 1214 { 1215 phydev->adjust_link = handler; 1216 } 1217 1218 /** 1219 * phy_connect_direct - connect an ethernet device to a specific phy_device 1220 * @dev: the network device to connect 1221 * @phydev: the pointer to the phy device 1222 * @handler: callback function for state change notifications 1223 * @interface: PHY device's interface 1224 */ 1225 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1226 void (*handler)(struct net_device *), 1227 phy_interface_t interface) 1228 { 1229 int rc; 1230 1231 if (!dev) 1232 return -EINVAL; 1233 1234 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1235 if (rc) 1236 return rc; 1237 1238 phy_prepare_link(phydev, handler); 1239 if (phy_interrupt_is_valid(phydev)) 1240 phy_request_interrupt(phydev); 1241 1242 return 0; 1243 } 1244 EXPORT_SYMBOL(phy_connect_direct); 1245 1246 /** 1247 * phy_connect - connect an ethernet device to a PHY device 1248 * @dev: the network device to connect 1249 * @bus_id: the id string of the PHY device to connect 1250 * @handler: callback function for state change notifications 1251 * @interface: PHY device's interface 1252 * 1253 * Description: Convenience function for connecting ethernet 1254 * devices to PHY devices. The default behavior is for 1255 * the PHY infrastructure to handle everything, and only notify 1256 * the connected driver when the link status changes. If you 1257 * don't want, or can't use the provided functionality, you may 1258 * choose to call only the subset of functions which provide 1259 * the desired functionality. 1260 */ 1261 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1262 void (*handler)(struct net_device *), 1263 phy_interface_t interface) 1264 { 1265 struct phy_device *phydev; 1266 struct device *d; 1267 int rc; 1268 1269 /* Search the list of PHY devices on the mdio bus for the 1270 * PHY with the requested name 1271 */ 1272 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1273 if (!d) { 1274 pr_err("PHY %s not found\n", bus_id); 1275 return ERR_PTR(-ENODEV); 1276 } 1277 phydev = to_phy_device(d); 1278 1279 rc = phy_connect_direct(dev, phydev, handler, interface); 1280 put_device(d); 1281 if (rc) 1282 return ERR_PTR(rc); 1283 1284 return phydev; 1285 } 1286 EXPORT_SYMBOL(phy_connect); 1287 1288 /** 1289 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1290 * device 1291 * @phydev: target phy_device struct 1292 */ 1293 void phy_disconnect(struct phy_device *phydev) 1294 { 1295 if (phy_is_started(phydev)) 1296 phy_stop(phydev); 1297 1298 if (phy_interrupt_is_valid(phydev)) 1299 phy_free_interrupt(phydev); 1300 1301 phydev->adjust_link = NULL; 1302 1303 phy_detach(phydev); 1304 } 1305 EXPORT_SYMBOL(phy_disconnect); 1306 1307 /** 1308 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1309 * @phydev: The PHY device to poll 1310 * 1311 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1312 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1313 * register must be polled until the BMCR_RESET bit clears. 1314 * 1315 * Furthermore, any attempts to write to PHY registers may have no effect 1316 * or even generate MDIO bus errors until this is complete. 1317 * 1318 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1319 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1320 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1321 * effort to support such broken PHYs, this function is separate from the 1322 * standard phy_init_hw() which will zero all the other bits in the BMCR 1323 * and reapply all driver-specific and board-specific fixups. 1324 */ 1325 static int phy_poll_reset(struct phy_device *phydev) 1326 { 1327 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1328 int ret, val; 1329 1330 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1331 50000, 600000, true); 1332 if (ret) 1333 return ret; 1334 /* Some chips (smsc911x) may still need up to another 1ms after the 1335 * BMCR_RESET bit is cleared before they are usable. 1336 */ 1337 msleep(1); 1338 return 0; 1339 } 1340 1341 int phy_init_hw(struct phy_device *phydev) 1342 { 1343 int ret = 0; 1344 1345 /* Deassert the reset signal */ 1346 phy_device_reset(phydev, 0); 1347 1348 if (!phydev->drv) 1349 return 0; 1350 1351 if (phydev->drv->soft_reset) { 1352 ret = phydev->drv->soft_reset(phydev); 1353 if (ret < 0) 1354 return ret; 1355 1356 /* see comment in genphy_soft_reset for an explanation */ 1357 phydev->suspended = 0; 1358 } 1359 1360 ret = phy_scan_fixups(phydev); 1361 if (ret < 0) 1362 return ret; 1363 1364 phy_interface_zero(phydev->possible_interfaces); 1365 1366 if (phydev->drv->config_init) { 1367 ret = phydev->drv->config_init(phydev); 1368 if (ret < 0) 1369 return ret; 1370 } 1371 1372 if (phydev->drv->config_intr) { 1373 ret = phydev->drv->config_intr(phydev); 1374 if (ret < 0) 1375 return ret; 1376 } 1377 1378 return 0; 1379 } 1380 EXPORT_SYMBOL(phy_init_hw); 1381 1382 void phy_attached_info(struct phy_device *phydev) 1383 { 1384 phy_attached_print(phydev, NULL); 1385 } 1386 EXPORT_SYMBOL(phy_attached_info); 1387 1388 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1389 char *phy_attached_info_irq(struct phy_device *phydev) 1390 { 1391 char *irq_str; 1392 char irq_num[8]; 1393 1394 switch(phydev->irq) { 1395 case PHY_POLL: 1396 irq_str = "POLL"; 1397 break; 1398 case PHY_MAC_INTERRUPT: 1399 irq_str = "MAC"; 1400 break; 1401 default: 1402 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1403 irq_str = irq_num; 1404 break; 1405 } 1406 1407 return kasprintf(GFP_KERNEL, "%s", irq_str); 1408 } 1409 EXPORT_SYMBOL(phy_attached_info_irq); 1410 1411 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1412 { 1413 const char *unbound = phydev->drv ? "" : "[unbound] "; 1414 char *irq_str = phy_attached_info_irq(phydev); 1415 1416 if (!fmt) { 1417 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1418 phydev_name(phydev), irq_str); 1419 } else { 1420 va_list ap; 1421 1422 phydev_info(phydev, ATTACHED_FMT, unbound, 1423 phydev_name(phydev), irq_str); 1424 1425 va_start(ap, fmt); 1426 vprintk(fmt, ap); 1427 va_end(ap); 1428 } 1429 kfree(irq_str); 1430 } 1431 EXPORT_SYMBOL(phy_attached_print); 1432 1433 static void phy_sysfs_create_links(struct phy_device *phydev) 1434 { 1435 struct net_device *dev = phydev->attached_dev; 1436 int err; 1437 1438 if (!dev) 1439 return; 1440 1441 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1442 "attached_dev"); 1443 if (err) 1444 return; 1445 1446 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1447 &phydev->mdio.dev.kobj, 1448 "phydev"); 1449 if (err) { 1450 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1451 kobject_name(&phydev->mdio.dev.kobj), 1452 err); 1453 /* non-fatal - some net drivers can use one netdevice 1454 * with more then one phy 1455 */ 1456 } 1457 1458 phydev->sysfs_links = true; 1459 } 1460 1461 static ssize_t 1462 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1463 char *buf) 1464 { 1465 struct phy_device *phydev = to_phy_device(dev); 1466 1467 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1468 } 1469 static DEVICE_ATTR_RO(phy_standalone); 1470 1471 /** 1472 * phy_sfp_connect_phy - Connect the SFP module's PHY to the upstream PHY 1473 * @upstream: pointer to the upstream phy device 1474 * @phy: pointer to the SFP module's phy device 1475 * 1476 * This helper allows keeping track of PHY devices on the link. It adds the 1477 * SFP module's phy to the phy namespace of the upstream phy 1478 * 1479 * Return: 0 on success, otherwise a negative error code. 1480 */ 1481 static int phy_sfp_connect_phy(void *upstream, struct phy_device *phy) 1482 { 1483 struct phy_device *phydev = upstream; 1484 struct net_device *dev = phydev->attached_dev; 1485 1486 if (dev) 1487 return phy_link_topo_add_phy(dev, phy, PHY_UPSTREAM_PHY, phydev); 1488 1489 return 0; 1490 } 1491 1492 /** 1493 * phy_sfp_disconnect_phy - Disconnect the SFP module's PHY from the upstream PHY 1494 * @upstream: pointer to the upstream phy device 1495 * @phy: pointer to the SFP module's phy device 1496 * 1497 * This helper allows keeping track of PHY devices on the link. It removes the 1498 * SFP module's phy to the phy namespace of the upstream phy. As the module phy 1499 * will be destroyed, re-inserting the same module will add a new phy with a 1500 * new index. 1501 */ 1502 static void phy_sfp_disconnect_phy(void *upstream, struct phy_device *phy) 1503 { 1504 struct phy_device *phydev = upstream; 1505 struct net_device *dev = phydev->attached_dev; 1506 1507 if (dev) 1508 phy_link_topo_del_phy(dev, phy); 1509 } 1510 1511 /** 1512 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1513 * @upstream: pointer to the phy device 1514 * @bus: sfp bus representing cage being attached 1515 * 1516 * This is used to fill in the sfp_upstream_ops .attach member. 1517 */ 1518 static void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1519 { 1520 struct phy_device *phydev = upstream; 1521 1522 if (phydev->attached_dev) 1523 phydev->attached_dev->sfp_bus = bus; 1524 phydev->sfp_bus_attached = true; 1525 } 1526 1527 /** 1528 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1529 * @upstream: pointer to the phy device 1530 * @bus: sfp bus representing cage being attached 1531 * 1532 * This is used to fill in the sfp_upstream_ops .detach member. 1533 */ 1534 static void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1535 { 1536 struct phy_device *phydev = upstream; 1537 1538 if (phydev->attached_dev) 1539 phydev->attached_dev->sfp_bus = NULL; 1540 phydev->sfp_bus_attached = false; 1541 } 1542 1543 static int phy_sfp_module_insert(void *upstream, const struct sfp_eeprom_id *id) 1544 { 1545 __ETHTOOL_DECLARE_LINK_MODE_MASK(sfp_support); 1546 struct phy_device *phydev = upstream; 1547 const struct sfp_module_caps *caps; 1548 struct phy_port *port; 1549 1550 phy_interface_t iface; 1551 1552 linkmode_zero(sfp_support); 1553 1554 port = phy_get_sfp_port(phydev); 1555 if (!port) 1556 return -EINVAL; 1557 1558 caps = sfp_get_module_caps(phydev->sfp_bus); 1559 1560 linkmode_and(sfp_support, port->supported, caps->link_modes); 1561 if (linkmode_empty(sfp_support)) { 1562 dev_err(&phydev->mdio.dev, "incompatible SFP module inserted, no common linkmode\n"); 1563 return -EINVAL; 1564 } 1565 1566 iface = sfp_select_interface(phydev->sfp_bus, sfp_support); 1567 if (iface == PHY_INTERFACE_MODE_NA) { 1568 dev_err(&phydev->mdio.dev, "PHY %s does not support the SFP module's requested MII interfaces\n", 1569 phydev_name(phydev)); 1570 return -EINVAL; 1571 } 1572 1573 if (phydev->n_ports == 1) 1574 phydev->port = caps->port; 1575 1576 if (port->ops && port->ops->configure_mii) 1577 return port->ops->configure_mii(port, true, iface); 1578 1579 return 0; 1580 } 1581 1582 static void phy_sfp_module_remove(void *upstream) 1583 { 1584 struct phy_device *phydev = upstream; 1585 struct phy_port *port = phy_get_sfp_port(phydev); 1586 1587 if (port && port->ops && port->ops->configure_mii) 1588 port->ops->configure_mii(port, false, PHY_INTERFACE_MODE_NA); 1589 1590 if (phydev->n_ports == 1) 1591 phydev->port = PORT_NONE; 1592 } 1593 1594 static void phy_sfp_link_up(void *upstream) 1595 { 1596 struct phy_device *phydev = upstream; 1597 struct phy_port *port = phy_get_sfp_port(phydev); 1598 1599 if (port && port->ops && port->ops->link_up) 1600 port->ops->link_up(port); 1601 } 1602 1603 static void phy_sfp_link_down(void *upstream) 1604 { 1605 struct phy_device *phydev = upstream; 1606 struct phy_port *port = phy_get_sfp_port(phydev); 1607 1608 if (port && port->ops && port->ops->link_down) 1609 port->ops->link_down(port); 1610 } 1611 1612 static const struct sfp_upstream_ops sfp_phydev_ops = { 1613 .attach = phy_sfp_attach, 1614 .detach = phy_sfp_detach, 1615 .module_insert = phy_sfp_module_insert, 1616 .module_remove = phy_sfp_module_remove, 1617 .link_up = phy_sfp_link_up, 1618 .link_down = phy_sfp_link_down, 1619 .connect_phy = phy_sfp_connect_phy, 1620 .disconnect_phy = phy_sfp_disconnect_phy, 1621 }; 1622 1623 static int phy_add_port(struct phy_device *phydev, struct phy_port *port) 1624 { 1625 int ret = 0; 1626 1627 if (phydev->n_ports == phydev->max_n_ports) 1628 return -EBUSY; 1629 1630 /* We set all ports as active by default, PHY drivers may deactivate 1631 * them (when unused) 1632 */ 1633 port->active = true; 1634 1635 if (port->is_mii) { 1636 if (phydev->drv && phydev->drv->attach_mii_port) 1637 ret = phydev->drv->attach_mii_port(phydev, port); 1638 } else { 1639 if (phydev->drv && phydev->drv->attach_mdi_port) 1640 ret = phydev->drv->attach_mdi_port(phydev, port); 1641 } 1642 1643 if (ret) 1644 return ret; 1645 1646 /* The PHY driver might have added, removed or set medium/pairs info, 1647 * so update the port supported accordingly. 1648 */ 1649 phy_port_update_supported(port); 1650 1651 list_add(&port->head, &phydev->ports); 1652 1653 phydev->n_ports++; 1654 1655 return 0; 1656 } 1657 1658 static void phy_del_port(struct phy_device *phydev, struct phy_port *port) 1659 { 1660 if (!phydev->n_ports) 1661 return; 1662 1663 list_del(&port->head); 1664 1665 phydev->n_ports--; 1666 } 1667 1668 static int phy_setup_sfp_port(struct phy_device *phydev) 1669 { 1670 struct phy_port *port = phy_port_alloc(); 1671 int ret; 1672 1673 if (!port) 1674 return -ENOMEM; 1675 1676 port->parent_type = PHY_PORT_PHY; 1677 port->phy = phydev; 1678 1679 /* The PHY is a media converter, the port connected to the SFP cage 1680 * is a MII port. 1681 */ 1682 port->is_mii = true; 1683 port->is_sfp = true; 1684 1685 /* The port->supported and port->interfaces list will be populated 1686 * when attaching the port to the phydev. 1687 */ 1688 ret = phy_add_port(phydev, port); 1689 if (ret) 1690 phy_port_destroy(port); 1691 1692 return ret; 1693 } 1694 1695 /** 1696 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1697 * @phydev: Pointer to phy_device 1698 */ 1699 static int phy_sfp_probe(struct phy_device *phydev) 1700 { 1701 struct sfp_bus *bus; 1702 int ret = 0; 1703 1704 if (phydev->mdio.dev.fwnode) { 1705 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1706 if (IS_ERR(bus)) 1707 return PTR_ERR(bus); 1708 1709 phydev->sfp_bus = bus; 1710 1711 ret = sfp_bus_add_upstream(bus, phydev, &sfp_phydev_ops); 1712 sfp_bus_put(bus); 1713 } 1714 1715 if (!ret && phydev->sfp_bus) 1716 ret = phy_setup_sfp_port(phydev); 1717 1718 return ret; 1719 } 1720 1721 static bool phy_drv_supports_irq(const struct phy_driver *phydrv) 1722 { 1723 return phydrv->config_intr && phydrv->handle_interrupt; 1724 } 1725 1726 /** 1727 * phy_attach_direct - attach a network device to a given PHY device pointer 1728 * @dev: network device to attach 1729 * @phydev: Pointer to phy_device to attach 1730 * @flags: PHY device's dev_flags 1731 * @interface: PHY device's interface 1732 * 1733 * Description: Called by drivers to attach to a particular PHY 1734 * device. The phy_device is found, and properly hooked up 1735 * to the phy_driver. If no driver is attached, then a 1736 * generic driver is used. The phy_device is given a ptr to 1737 * the attaching device, and given a callback for link status 1738 * change. The phy_device is returned to the attaching driver. 1739 * This function takes a reference on the phy device. 1740 */ 1741 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1742 u32 flags, phy_interface_t interface) 1743 { 1744 struct mii_bus *bus = phydev->mdio.bus; 1745 struct device *d = &phydev->mdio.dev; 1746 struct module *ndev_owner = NULL; 1747 int err; 1748 1749 /* For Ethernet device drivers that register their own MDIO bus, we 1750 * will have bus->owner match ndev_mod, so we do not want to increment 1751 * our own module->refcnt here, otherwise we would not be able to 1752 * unload later on. 1753 */ 1754 if (dev) 1755 ndev_owner = dev->dev.parent->driver->owner; 1756 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1757 phydev_err(phydev, "failed to get the bus module\n"); 1758 return -EIO; 1759 } 1760 1761 get_device(d); 1762 1763 /* Assume that if there is no driver, that it doesn't 1764 * exist, and we should use the genphy driver. 1765 */ 1766 if (!d->driver) { 1767 if (phydev->is_c45) 1768 d->driver = &genphy_c45_driver.mdiodrv.driver; 1769 else 1770 d->driver = &genphy_driver.mdiodrv.driver; 1771 1772 phydev->is_genphy_driven = 1; 1773 } 1774 1775 if (!try_module_get(d->driver->owner)) { 1776 phydev_err(phydev, "failed to get the device driver module\n"); 1777 err = -EIO; 1778 goto error_put_device; 1779 } 1780 1781 if (phydev->is_genphy_driven) { 1782 err = d->driver->probe(d); 1783 if (err >= 0) 1784 err = device_bind_driver(d); 1785 1786 if (err) 1787 goto error_module_put; 1788 } 1789 1790 if (phydev->attached_dev) { 1791 dev_err(&dev->dev, "PHY already attached\n"); 1792 err = -EBUSY; 1793 goto error; 1794 } 1795 1796 phydev->phy_link_change = phy_link_change; 1797 if (dev) { 1798 phydev->attached_dev = dev; 1799 dev->phydev = phydev; 1800 1801 if (phydev->sfp_bus_attached) 1802 dev->sfp_bus = phydev->sfp_bus; 1803 1804 err = phy_link_topo_add_phy(dev, phydev, PHY_UPSTREAM_MAC, dev); 1805 if (err) 1806 goto error; 1807 } 1808 1809 /* Some Ethernet drivers try to connect to a PHY device before 1810 * calling register_netdevice() -> netdev_register_kobject() and 1811 * does the dev->dev.kobj initialization. Here we only check for 1812 * success which indicates that the network device kobject is 1813 * ready. Once we do that we still need to keep track of whether 1814 * links were successfully set up or not for phy_detach() to 1815 * remove them accordingly. 1816 */ 1817 phydev->sysfs_links = false; 1818 1819 phy_sysfs_create_links(phydev); 1820 1821 if (!phydev->attached_dev) { 1822 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1823 &dev_attr_phy_standalone.attr); 1824 if (err) 1825 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1826 } 1827 1828 phydev->dev_flags |= flags; 1829 1830 phydev->interface = interface; 1831 1832 phydev->state = PHY_READY; 1833 1834 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1835 1836 /* PHYs can request to use poll mode even though they have an 1837 * associated interrupt line. This could be the case if they 1838 * detect a broken interrupt handling. 1839 */ 1840 if (phydev->dev_flags & PHY_F_NO_IRQ) 1841 phydev->irq = PHY_POLL; 1842 1843 if (!phy_drv_supports_irq(phydev->drv) && phy_interrupt_is_valid(phydev)) 1844 phydev->irq = PHY_POLL; 1845 1846 /* Port is set to PORT_TP by default and the actual PHY driver will set 1847 * it to different value depending on the PHY configuration. If we have 1848 * the generic PHY driver we can't figure it out, thus set the old 1849 * legacy PORT_MII value. 1850 */ 1851 if (phydev->is_genphy_driven) 1852 phydev->port = PORT_MII; 1853 1854 /* Initial carrier state is off as the phy is about to be 1855 * (re)initialized. 1856 */ 1857 if (dev) 1858 netif_carrier_off(phydev->attached_dev); 1859 1860 /* Do initial configuration here, now that 1861 * we have certain key parameters 1862 * (dev_flags and interface) 1863 */ 1864 err = phy_init_hw(phydev); 1865 if (err) 1866 goto error; 1867 1868 phy_resume(phydev); 1869 if (!phydev->is_on_sfp_module) 1870 phy_led_triggers_register(phydev); 1871 1872 /** 1873 * If the external phy used by current mac interface is managed by 1874 * another mac interface, so we should create a device link between 1875 * phy dev and mac dev. 1876 */ 1877 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1878 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1879 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1880 1881 return err; 1882 1883 error: 1884 /* phy_detach() does all of the cleanup below */ 1885 phy_detach(phydev); 1886 return err; 1887 1888 error_module_put: 1889 module_put(d->driver->owner); 1890 phydev->is_genphy_driven = 0; 1891 d->driver = NULL; 1892 error_put_device: 1893 put_device(d); 1894 if (ndev_owner != bus->owner) 1895 module_put(bus->owner); 1896 return err; 1897 } 1898 EXPORT_SYMBOL(phy_attach_direct); 1899 1900 /** 1901 * phy_attach - attach a network device to a particular PHY device 1902 * @dev: network device to attach 1903 * @bus_id: Bus ID of PHY device to attach 1904 * @interface: PHY device's interface 1905 * 1906 * Description: Same as phy_attach_direct() except that a PHY bus_id 1907 * string is passed instead of a pointer to a struct phy_device. 1908 */ 1909 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1910 phy_interface_t interface) 1911 { 1912 struct phy_device *phydev; 1913 struct device *d; 1914 int rc; 1915 1916 if (!dev) 1917 return ERR_PTR(-EINVAL); 1918 1919 /* Search the list of PHY devices on the mdio bus for the 1920 * PHY with the requested name 1921 */ 1922 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1923 if (!d) { 1924 pr_err("PHY %s not found\n", bus_id); 1925 return ERR_PTR(-ENODEV); 1926 } 1927 phydev = to_phy_device(d); 1928 1929 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1930 put_device(d); 1931 if (rc) 1932 return ERR_PTR(rc); 1933 1934 return phydev; 1935 } 1936 EXPORT_SYMBOL(phy_attach); 1937 1938 /** 1939 * phy_detach - detach a PHY device from its network device 1940 * @phydev: target phy_device struct 1941 * 1942 * This detaches the phy device from its network device and the phy 1943 * driver, and drops the reference count taken in phy_attach_direct(). 1944 */ 1945 void phy_detach(struct phy_device *phydev) 1946 { 1947 struct net_device *dev = phydev->attached_dev; 1948 struct module *ndev_owner = NULL; 1949 struct mii_bus *bus; 1950 1951 if (phydev->devlink) { 1952 device_link_del(phydev->devlink); 1953 phydev->devlink = NULL; 1954 } 1955 1956 if (phydev->sysfs_links) { 1957 if (dev) 1958 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1959 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1960 } 1961 1962 if (!phydev->attached_dev) 1963 sysfs_remove_file(&phydev->mdio.dev.kobj, 1964 &dev_attr_phy_standalone.attr); 1965 1966 phy_suspend(phydev); 1967 if (dev) { 1968 struct hwtstamp_provider *hwprov; 1969 1970 hwprov = rtnl_dereference(dev->hwprov); 1971 /* Disable timestamp if it is the one selected */ 1972 if (hwprov && hwprov->phydev == phydev) { 1973 rcu_assign_pointer(dev->hwprov, NULL); 1974 kfree_rcu(hwprov, rcu_head); 1975 } 1976 1977 phydev->attached_dev->phydev = NULL; 1978 phydev->attached_dev = NULL; 1979 phy_link_topo_del_phy(dev, phydev); 1980 } 1981 1982 phydev->phy_link_change = NULL; 1983 phydev->phylink = NULL; 1984 1985 if (!phydev->is_on_sfp_module) 1986 phy_led_triggers_unregister(phydev); 1987 1988 if (phydev->mdio.dev.driver) 1989 module_put(phydev->mdio.dev.driver->owner); 1990 1991 /* If the device had no specific driver before (i.e. - it 1992 * was using the generic driver), we unbind the device 1993 * from the generic driver so that there's a chance a 1994 * real driver could be loaded 1995 */ 1996 if (phydev->is_genphy_driven) { 1997 device_release_driver(&phydev->mdio.dev); 1998 phydev->is_genphy_driven = 0; 1999 } 2000 2001 /* Assert the reset signal */ 2002 phy_device_reset(phydev, 1); 2003 2004 /* 2005 * The phydev might go away on the put_device() below, so avoid 2006 * a use-after-free bug by reading the underlying bus first. 2007 */ 2008 bus = phydev->mdio.bus; 2009 2010 put_device(&phydev->mdio.dev); 2011 if (dev) 2012 ndev_owner = dev->dev.parent->driver->owner; 2013 if (ndev_owner != bus->owner) 2014 module_put(bus->owner); 2015 } 2016 EXPORT_SYMBOL(phy_detach); 2017 2018 int phy_suspend(struct phy_device *phydev) 2019 { 2020 struct net_device *netdev = phydev->attached_dev; 2021 const struct phy_driver *phydrv = phydev->drv; 2022 int ret; 2023 2024 if (phydev->suspended || !phydrv) 2025 return 0; 2026 2027 phydev->wol_enabled = phy_may_wakeup(phydev) || 2028 (netdev && netdev->ethtool->wol_enabled); 2029 /* If the device has WOL enabled, we cannot suspend the PHY */ 2030 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 2031 return -EBUSY; 2032 2033 if (!phydrv->suspend) 2034 return 0; 2035 2036 ret = phydrv->suspend(phydev); 2037 if (!ret) 2038 phydev->suspended = true; 2039 2040 return ret; 2041 } 2042 EXPORT_SYMBOL(phy_suspend); 2043 2044 int __phy_resume(struct phy_device *phydev) 2045 { 2046 const struct phy_driver *phydrv = phydev->drv; 2047 int ret; 2048 2049 lockdep_assert_held(&phydev->lock); 2050 2051 if (!phydrv || !phydrv->resume) 2052 return 0; 2053 2054 ret = phydrv->resume(phydev); 2055 if (!ret) 2056 phydev->suspended = false; 2057 2058 return ret; 2059 } 2060 EXPORT_SYMBOL(__phy_resume); 2061 2062 int phy_resume(struct phy_device *phydev) 2063 { 2064 int ret; 2065 2066 mutex_lock(&phydev->lock); 2067 ret = __phy_resume(phydev); 2068 mutex_unlock(&phydev->lock); 2069 2070 return ret; 2071 } 2072 EXPORT_SYMBOL(phy_resume); 2073 2074 /** 2075 * phy_reset_after_clk_enable - perform a PHY reset if needed 2076 * @phydev: target phy_device struct 2077 * 2078 * Description: Some PHYs are known to need a reset after their refclk was 2079 * enabled. This function evaluates the flags and perform the reset if it's 2080 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 2081 * was reset. 2082 */ 2083 int phy_reset_after_clk_enable(struct phy_device *phydev) 2084 { 2085 if (!phydev || !phydev->drv) 2086 return -ENODEV; 2087 2088 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 2089 phy_device_reset(phydev, 1); 2090 phy_device_reset(phydev, 0); 2091 return 1; 2092 } 2093 2094 return 0; 2095 } 2096 EXPORT_SYMBOL(phy_reset_after_clk_enable); 2097 2098 /* Generic PHY support and helper functions */ 2099 2100 /** 2101 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 2102 * @phydev: target phy_device struct 2103 * @advert: auto-negotiation parameters to advertise 2104 * 2105 * Description: Writes MII_ADVERTISE with the appropriate values, 2106 * after sanitizing the values to make sure we only advertise 2107 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2108 * hasn't changed, and > 0 if it has changed. 2109 */ 2110 static int genphy_config_advert(struct phy_device *phydev, 2111 const unsigned long *advert) 2112 { 2113 int err, bmsr, changed = 0; 2114 u32 adv; 2115 2116 adv = linkmode_adv_to_mii_adv_t(advert); 2117 2118 /* Setup standard advertisement */ 2119 err = phy_modify_changed(phydev, MII_ADVERTISE, 2120 ADVERTISE_ALL | ADVERTISE_100BASE4 | 2121 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 2122 adv); 2123 if (err < 0) 2124 return err; 2125 if (err > 0) 2126 changed = 1; 2127 2128 bmsr = phy_read(phydev, MII_BMSR); 2129 if (bmsr < 0) 2130 return bmsr; 2131 2132 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2133 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2134 * logical 1. 2135 */ 2136 if (!(bmsr & BMSR_ESTATEN)) 2137 return changed; 2138 2139 adv = linkmode_adv_to_mii_ctrl1000_t(advert); 2140 2141 err = phy_modify_changed(phydev, MII_CTRL1000, 2142 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2143 adv); 2144 if (err < 0) 2145 return err; 2146 if (err > 0) 2147 changed = 1; 2148 2149 return changed; 2150 } 2151 2152 /** 2153 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2154 * @phydev: target phy_device struct 2155 * 2156 * Description: Writes MII_ADVERTISE with the appropriate values, 2157 * after sanitizing the values to make sure we only advertise 2158 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2159 * hasn't changed, and > 0 if it has changed. This function is intended 2160 * for Clause 37 1000Base-X mode. 2161 */ 2162 static int genphy_c37_config_advert(struct phy_device *phydev) 2163 { 2164 u16 adv = 0; 2165 2166 /* Only allow advertising what this PHY supports */ 2167 linkmode_and(phydev->advertising, phydev->advertising, 2168 phydev->supported); 2169 2170 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2171 phydev->advertising)) 2172 adv |= ADVERTISE_1000XFULL; 2173 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2174 phydev->advertising)) 2175 adv |= ADVERTISE_1000XPAUSE; 2176 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2177 phydev->advertising)) 2178 adv |= ADVERTISE_1000XPSE_ASYM; 2179 2180 return phy_modify_changed(phydev, MII_ADVERTISE, 2181 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2182 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2183 adv); 2184 } 2185 2186 /** 2187 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2188 * @phydev: target phy_device struct 2189 * 2190 * Description: Configures MII_BMCR to force speed/duplex 2191 * to the values in phydev. Assumes that the values are valid. 2192 * Please see phy_sanitize_settings(). 2193 */ 2194 int genphy_setup_forced(struct phy_device *phydev) 2195 { 2196 u16 ctl; 2197 2198 phydev->pause = false; 2199 phydev->asym_pause = false; 2200 2201 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2202 2203 return phy_modify(phydev, MII_BMCR, 2204 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2205 } 2206 EXPORT_SYMBOL(genphy_setup_forced); 2207 2208 static int genphy_setup_master_slave(struct phy_device *phydev) 2209 { 2210 u16 ctl = 0; 2211 2212 if (!phydev->is_gigabit_capable) 2213 return 0; 2214 2215 switch (phydev->master_slave_set) { 2216 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2217 ctl |= CTL1000_PREFER_MASTER; 2218 break; 2219 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2220 break; 2221 case MASTER_SLAVE_CFG_MASTER_FORCE: 2222 ctl |= CTL1000_AS_MASTER; 2223 fallthrough; 2224 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2225 ctl |= CTL1000_ENABLE_MASTER; 2226 break; 2227 case MASTER_SLAVE_CFG_UNKNOWN: 2228 case MASTER_SLAVE_CFG_UNSUPPORTED: 2229 return 0; 2230 default: 2231 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2232 return -EOPNOTSUPP; 2233 } 2234 2235 return phy_modify_changed(phydev, MII_CTRL1000, 2236 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2237 CTL1000_PREFER_MASTER), ctl); 2238 } 2239 2240 int genphy_read_master_slave(struct phy_device *phydev) 2241 { 2242 int cfg, state; 2243 int val; 2244 2245 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2246 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2247 2248 val = phy_read(phydev, MII_CTRL1000); 2249 if (val < 0) 2250 return val; 2251 2252 if (val & CTL1000_ENABLE_MASTER) { 2253 if (val & CTL1000_AS_MASTER) 2254 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2255 else 2256 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2257 } else { 2258 if (val & CTL1000_PREFER_MASTER) 2259 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2260 else 2261 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2262 } 2263 2264 val = phy_read(phydev, MII_STAT1000); 2265 if (val < 0) 2266 return val; 2267 2268 if (val & LPA_1000MSFAIL) { 2269 state = MASTER_SLAVE_STATE_ERR; 2270 } else if (phydev->link) { 2271 /* this bits are valid only for active link */ 2272 if (val & LPA_1000MSRES) 2273 state = MASTER_SLAVE_STATE_MASTER; 2274 else 2275 state = MASTER_SLAVE_STATE_SLAVE; 2276 } else { 2277 state = MASTER_SLAVE_STATE_UNKNOWN; 2278 } 2279 2280 phydev->master_slave_get = cfg; 2281 phydev->master_slave_state = state; 2282 2283 return 0; 2284 } 2285 EXPORT_SYMBOL(genphy_read_master_slave); 2286 2287 /** 2288 * genphy_restart_aneg - Enable and Restart Autonegotiation 2289 * @phydev: target phy_device struct 2290 */ 2291 int genphy_restart_aneg(struct phy_device *phydev) 2292 { 2293 /* Don't isolate the PHY if we're negotiating */ 2294 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2295 BMCR_ANENABLE | BMCR_ANRESTART); 2296 } 2297 EXPORT_SYMBOL(genphy_restart_aneg); 2298 2299 /** 2300 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2301 * @phydev: target phy_device struct 2302 * @restart: whether aneg restart is requested 2303 * 2304 * Check, and restart auto-negotiation if needed. 2305 */ 2306 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2307 { 2308 int ret; 2309 2310 if (!restart) { 2311 /* Advertisement hasn't changed, but maybe aneg was never on to 2312 * begin with? Or maybe phy was isolated? 2313 */ 2314 ret = phy_read(phydev, MII_BMCR); 2315 if (ret < 0) 2316 return ret; 2317 2318 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2319 restart = true; 2320 } 2321 2322 if (restart) 2323 return genphy_restart_aneg(phydev); 2324 2325 return 0; 2326 } 2327 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2328 2329 /** 2330 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2331 * @phydev: target phy_device struct 2332 * @changed: whether autoneg is requested 2333 * 2334 * Description: If auto-negotiation is enabled, we configure the 2335 * advertising, and then restart auto-negotiation. If it is not 2336 * enabled, then we write the BMCR. 2337 */ 2338 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2339 { 2340 __ETHTOOL_DECLARE_LINK_MODE_MASK(fixed_advert); 2341 const struct link_capabilities *c; 2342 unsigned long *advert; 2343 int err; 2344 2345 err = genphy_c45_an_config_eee_aneg(phydev); 2346 if (err < 0) 2347 return err; 2348 else if (err) 2349 changed = true; 2350 2351 err = genphy_setup_master_slave(phydev); 2352 if (err < 0) 2353 return err; 2354 else if (err) 2355 changed = true; 2356 2357 if (phydev->autoneg == AUTONEG_ENABLE) { 2358 /* Only allow advertising what this PHY supports */ 2359 linkmode_and(phydev->advertising, phydev->advertising, 2360 phydev->supported); 2361 advert = phydev->advertising; 2362 } else if (phydev->speed < SPEED_1000) { 2363 return genphy_setup_forced(phydev); 2364 } else { 2365 linkmode_zero(fixed_advert); 2366 2367 c = phy_caps_lookup(phydev->speed, phydev->duplex, 2368 phydev->supported, true); 2369 if (c) 2370 linkmode_and(fixed_advert, phydev->supported, 2371 c->linkmodes); 2372 2373 advert = fixed_advert; 2374 } 2375 2376 err = genphy_config_advert(phydev, advert); 2377 if (err < 0) /* error */ 2378 return err; 2379 else if (err) 2380 changed = true; 2381 2382 return genphy_check_and_restart_aneg(phydev, changed); 2383 } 2384 EXPORT_SYMBOL(__genphy_config_aneg); 2385 2386 /** 2387 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2388 * @phydev: target phy_device struct 2389 * 2390 * Description: If auto-negotiation is enabled, we configure the 2391 * advertising, and then restart auto-negotiation. If it is not 2392 * enabled, then we write the BMCR. This function is intended 2393 * for use with Clause 37 1000Base-X mode. 2394 */ 2395 int genphy_c37_config_aneg(struct phy_device *phydev) 2396 { 2397 int err, changed; 2398 2399 if (phydev->autoneg != AUTONEG_ENABLE) 2400 return genphy_setup_forced(phydev); 2401 2402 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2403 BMCR_SPEED1000); 2404 if (err) 2405 return err; 2406 2407 changed = genphy_c37_config_advert(phydev); 2408 if (changed < 0) /* error */ 2409 return changed; 2410 2411 if (!changed) { 2412 /* Advertisement hasn't changed, but maybe aneg was never on to 2413 * begin with? Or maybe phy was isolated? 2414 */ 2415 int ctl = phy_read(phydev, MII_BMCR); 2416 2417 if (ctl < 0) 2418 return ctl; 2419 2420 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2421 changed = 1; /* do restart aneg */ 2422 } 2423 2424 /* Only restart aneg if we are advertising something different 2425 * than we were before. 2426 */ 2427 if (changed > 0) 2428 return genphy_restart_aneg(phydev); 2429 2430 return 0; 2431 } 2432 EXPORT_SYMBOL(genphy_c37_config_aneg); 2433 2434 /** 2435 * genphy_aneg_done - return auto-negotiation status 2436 * @phydev: target phy_device struct 2437 * 2438 * Description: Reads the status register and returns 0 either if 2439 * auto-negotiation is incomplete, or if there was an error. 2440 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2441 */ 2442 int genphy_aneg_done(struct phy_device *phydev) 2443 { 2444 int retval = phy_read(phydev, MII_BMSR); 2445 2446 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2447 } 2448 EXPORT_SYMBOL(genphy_aneg_done); 2449 2450 /** 2451 * genphy_update_link - update link status in @phydev 2452 * @phydev: target phy_device struct 2453 * 2454 * Description: Update the value in phydev->link to reflect the 2455 * current link value. In order to do this, we need to read 2456 * the status register twice, keeping the second value. 2457 */ 2458 int genphy_update_link(struct phy_device *phydev) 2459 { 2460 int status = 0, bmcr; 2461 2462 bmcr = phy_read(phydev, MII_BMCR); 2463 if (bmcr < 0) 2464 return bmcr; 2465 2466 /* Autoneg is being started, therefore disregard BMSR value and 2467 * report link as down. 2468 */ 2469 if (bmcr & BMCR_ANRESTART) 2470 goto done; 2471 2472 /* The link state is latched low so that momentary link 2473 * drops can be detected. Do not double-read the status 2474 * in polling mode to detect such short link drops except 2475 * if the link was already down. 2476 */ 2477 if (!phy_polling_mode(phydev) || !phydev->link) { 2478 status = phy_read(phydev, MII_BMSR); 2479 if (status < 0) 2480 return status; 2481 else if (status & BMSR_LSTATUS) 2482 goto done; 2483 } 2484 2485 /* Read link and autonegotiation status */ 2486 status = phy_read(phydev, MII_BMSR); 2487 if (status < 0) 2488 return status; 2489 done: 2490 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2491 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2492 2493 /* Consider the case that autoneg was started and "aneg complete" 2494 * bit has been reset, but "link up" bit not yet. 2495 */ 2496 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2497 phydev->link = 0; 2498 2499 return 0; 2500 } 2501 EXPORT_SYMBOL(genphy_update_link); 2502 2503 int genphy_read_lpa(struct phy_device *phydev) 2504 { 2505 int lpa, lpagb; 2506 2507 if (phydev->autoneg == AUTONEG_ENABLE) { 2508 if (!phydev->autoneg_complete) { 2509 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2510 0); 2511 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2512 return 0; 2513 } 2514 2515 if (phydev->is_gigabit_capable) { 2516 lpagb = phy_read(phydev, MII_STAT1000); 2517 if (lpagb < 0) 2518 return lpagb; 2519 2520 if (lpagb & LPA_1000MSFAIL) { 2521 int adv = phy_read(phydev, MII_CTRL1000); 2522 2523 if (adv < 0) 2524 return adv; 2525 2526 if (adv & CTL1000_ENABLE_MASTER) 2527 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2528 else 2529 phydev_err(phydev, "Master/Slave resolution failed\n"); 2530 return -ENOLINK; 2531 } 2532 2533 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2534 lpagb); 2535 } 2536 2537 lpa = phy_read(phydev, MII_LPA); 2538 if (lpa < 0) 2539 return lpa; 2540 2541 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2542 } else { 2543 linkmode_zero(phydev->lp_advertising); 2544 } 2545 2546 return 0; 2547 } 2548 EXPORT_SYMBOL(genphy_read_lpa); 2549 2550 /** 2551 * genphy_read_status_fixed - read the link parameters for !aneg mode 2552 * @phydev: target phy_device struct 2553 * 2554 * Read the current duplex and speed state for a PHY operating with 2555 * autonegotiation disabled. 2556 */ 2557 int genphy_read_status_fixed(struct phy_device *phydev) 2558 { 2559 int bmcr = phy_read(phydev, MII_BMCR); 2560 2561 if (bmcr < 0) 2562 return bmcr; 2563 2564 if (bmcr & BMCR_FULLDPLX) 2565 phydev->duplex = DUPLEX_FULL; 2566 else 2567 phydev->duplex = DUPLEX_HALF; 2568 2569 if (bmcr & BMCR_SPEED1000) 2570 phydev->speed = SPEED_1000; 2571 else if (bmcr & BMCR_SPEED100) 2572 phydev->speed = SPEED_100; 2573 else 2574 phydev->speed = SPEED_10; 2575 2576 return 0; 2577 } 2578 EXPORT_SYMBOL(genphy_read_status_fixed); 2579 2580 /** 2581 * genphy_read_status - check the link status and update current link state 2582 * @phydev: target phy_device struct 2583 * 2584 * Description: Check the link, then figure out the current state 2585 * by comparing what we advertise with what the link partner 2586 * advertises. Start by checking the gigabit possibilities, 2587 * then move on to 10/100. 2588 */ 2589 int genphy_read_status(struct phy_device *phydev) 2590 { 2591 int err, old_link = phydev->link; 2592 2593 /* Update the link, but return if there was an error */ 2594 err = genphy_update_link(phydev); 2595 if (err) 2596 return err; 2597 2598 /* why bother the PHY if nothing can have changed */ 2599 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2600 return 0; 2601 2602 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2603 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2604 phydev->speed = SPEED_UNKNOWN; 2605 phydev->duplex = DUPLEX_UNKNOWN; 2606 phydev->pause = false; 2607 phydev->asym_pause = false; 2608 2609 if (phydev->is_gigabit_capable) { 2610 err = genphy_read_master_slave(phydev); 2611 if (err < 0) 2612 return err; 2613 } 2614 2615 err = genphy_read_lpa(phydev); 2616 if (err < 0) 2617 return err; 2618 2619 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2620 phy_resolve_aneg_linkmode(phydev); 2621 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2622 err = genphy_read_status_fixed(phydev); 2623 if (err < 0) 2624 return err; 2625 } 2626 2627 return 0; 2628 } 2629 EXPORT_SYMBOL(genphy_read_status); 2630 2631 /** 2632 * genphy_c37_read_status - check the link status and update current link state 2633 * @phydev: target phy_device struct 2634 * @changed: pointer where to store if link changed 2635 * 2636 * Description: Check the link, then figure out the current state 2637 * by comparing what we advertise with what the link partner 2638 * advertises. This function is for Clause 37 1000Base-X mode. 2639 * 2640 * If link has changed, @changed is set to true, false otherwise. 2641 */ 2642 int genphy_c37_read_status(struct phy_device *phydev, bool *changed) 2643 { 2644 int lpa, err, old_link = phydev->link; 2645 2646 /* Update the link, but return if there was an error */ 2647 err = genphy_update_link(phydev); 2648 if (err) 2649 return err; 2650 2651 /* why bother the PHY if nothing can have changed */ 2652 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) { 2653 *changed = false; 2654 return 0; 2655 } 2656 2657 /* Signal link has changed */ 2658 *changed = true; 2659 phydev->duplex = DUPLEX_UNKNOWN; 2660 phydev->pause = false; 2661 phydev->asym_pause = false; 2662 2663 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2664 lpa = phy_read(phydev, MII_LPA); 2665 if (lpa < 0) 2666 return lpa; 2667 2668 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2669 phydev->lp_advertising, lpa & LPA_LPACK); 2670 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2671 phydev->lp_advertising, lpa & LPA_1000XFULL); 2672 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2673 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2674 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2675 phydev->lp_advertising, 2676 lpa & LPA_1000XPAUSE_ASYM); 2677 2678 phy_resolve_aneg_linkmode(phydev); 2679 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2680 int bmcr = phy_read(phydev, MII_BMCR); 2681 2682 if (bmcr < 0) 2683 return bmcr; 2684 2685 if (bmcr & BMCR_FULLDPLX) 2686 phydev->duplex = DUPLEX_FULL; 2687 else 2688 phydev->duplex = DUPLEX_HALF; 2689 } 2690 2691 return 0; 2692 } 2693 EXPORT_SYMBOL(genphy_c37_read_status); 2694 2695 /** 2696 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2697 * @phydev: target phy_device struct 2698 * 2699 * Description: Perform a software PHY reset using the standard 2700 * BMCR_RESET bit and poll for the reset bit to be cleared. 2701 * 2702 * Returns: 0 on success, < 0 on failure 2703 */ 2704 int genphy_soft_reset(struct phy_device *phydev) 2705 { 2706 u16 res = BMCR_RESET; 2707 int ret; 2708 2709 if (phydev->autoneg == AUTONEG_ENABLE) 2710 res |= BMCR_ANRESTART; 2711 2712 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2713 if (ret < 0) 2714 return ret; 2715 2716 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2717 * to their default value. Therefore the POWER DOWN bit is supposed to 2718 * be cleared after soft reset. 2719 */ 2720 phydev->suspended = 0; 2721 2722 ret = phy_poll_reset(phydev); 2723 if (ret) 2724 return ret; 2725 2726 /* BMCR may be reset to defaults */ 2727 if (phydev->autoneg == AUTONEG_DISABLE) 2728 ret = genphy_setup_forced(phydev); 2729 2730 return ret; 2731 } 2732 EXPORT_SYMBOL(genphy_soft_reset); 2733 2734 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2735 { 2736 /* It seems there are cases where the interrupts are handled by another 2737 * entity (ie an IRQ controller embedded inside the PHY) and do not 2738 * need any other interraction from phylib. In this case, just trigger 2739 * the state machine directly. 2740 */ 2741 phy_trigger_machine(phydev); 2742 2743 return 0; 2744 } 2745 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2746 2747 /** 2748 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2749 * @phydev: target phy_device struct 2750 * 2751 * Description: Reads the PHY's abilities and populates 2752 * phydev->supported accordingly. 2753 * 2754 * Returns: 0 on success, < 0 on failure 2755 */ 2756 int genphy_read_abilities(struct phy_device *phydev) 2757 { 2758 int val; 2759 2760 linkmode_set_bit_array(phy_basic_ports_array, 2761 ARRAY_SIZE(phy_basic_ports_array), 2762 phydev->supported); 2763 2764 val = phy_read(phydev, MII_BMSR); 2765 if (val < 0) 2766 return val; 2767 2768 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2769 val & BMSR_ANEGCAPABLE); 2770 2771 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2772 val & BMSR_100FULL); 2773 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2774 val & BMSR_100HALF); 2775 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2776 val & BMSR_10FULL); 2777 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2778 val & BMSR_10HALF); 2779 2780 if (val & BMSR_ESTATEN) { 2781 val = phy_read(phydev, MII_ESTATUS); 2782 if (val < 0) 2783 return val; 2784 2785 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2786 phydev->supported, val & ESTATUS_1000_TFULL); 2787 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2788 phydev->supported, val & ESTATUS_1000_THALF); 2789 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2790 phydev->supported, val & ESTATUS_1000_XFULL); 2791 } 2792 2793 /* This is optional functionality. If not supported, we may get an error 2794 * which should be ignored. 2795 */ 2796 genphy_c45_read_eee_abilities(phydev); 2797 2798 return 0; 2799 } 2800 EXPORT_SYMBOL(genphy_read_abilities); 2801 2802 /* This is used for the phy device which doesn't support the MMD extended 2803 * register access, but it does have side effect when we are trying to access 2804 * the MMD register via indirect method. 2805 */ 2806 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2807 { 2808 return -EOPNOTSUPP; 2809 } 2810 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2811 2812 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2813 u16 regnum, u16 val) 2814 { 2815 return -EOPNOTSUPP; 2816 } 2817 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2818 2819 int genphy_suspend(struct phy_device *phydev) 2820 { 2821 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2822 } 2823 EXPORT_SYMBOL(genphy_suspend); 2824 2825 int genphy_resume(struct phy_device *phydev) 2826 { 2827 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2828 } 2829 EXPORT_SYMBOL(genphy_resume); 2830 2831 int genphy_loopback(struct phy_device *phydev, bool enable, int speed) 2832 { 2833 if (enable) { 2834 u16 ctl = BMCR_LOOPBACK; 2835 int ret, val; 2836 2837 if (speed == SPEED_10 || speed == SPEED_100 || 2838 speed == SPEED_1000) 2839 phydev->speed = speed; 2840 else if (speed) 2841 return -EINVAL; 2842 2843 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2844 2845 phy_modify(phydev, MII_BMCR, ~0, ctl); 2846 2847 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2848 val & BMSR_LSTATUS, 2849 5000, 500000, true); 2850 if (ret) 2851 return ret; 2852 } else { 2853 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2854 2855 phy_config_aneg(phydev); 2856 } 2857 2858 return 0; 2859 } 2860 EXPORT_SYMBOL(genphy_loopback); 2861 2862 /** 2863 * phy_remove_link_mode - Remove a supported link mode 2864 * @phydev: phy_device structure to remove link mode from 2865 * @link_mode: Link mode to be removed 2866 * 2867 * Description: Some MACs don't support all link modes which the PHY 2868 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2869 * to remove a link mode. 2870 */ 2871 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2872 { 2873 linkmode_clear_bit(link_mode, phydev->supported); 2874 phy_advertise_supported(phydev); 2875 } 2876 EXPORT_SYMBOL(phy_remove_link_mode); 2877 2878 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2879 { 2880 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2881 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2882 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2883 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2884 } 2885 2886 /** 2887 * phy_advertise_supported - Advertise all supported modes 2888 * @phydev: target phy_device struct 2889 * 2890 * Description: Called to advertise all supported modes, doesn't touch 2891 * pause mode advertising. 2892 */ 2893 void phy_advertise_supported(struct phy_device *phydev) 2894 { 2895 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2896 2897 linkmode_copy(new, phydev->supported); 2898 phy_copy_pause_bits(new, phydev->advertising); 2899 linkmode_copy(phydev->advertising, new); 2900 } 2901 EXPORT_SYMBOL(phy_advertise_supported); 2902 2903 /** 2904 * phy_advertise_eee_all - Advertise all supported EEE modes 2905 * @phydev: target phy_device struct 2906 * 2907 * Description: Per default phylib preserves the EEE advertising at the time of 2908 * phy probing, which might be a subset of the supported EEE modes. Use this 2909 * function when all supported EEE modes should be advertised. This does not 2910 * trigger auto-negotiation, so must be called before phy_start()/ 2911 * phylink_start() which will start auto-negotiation. 2912 */ 2913 void phy_advertise_eee_all(struct phy_device *phydev) 2914 { 2915 linkmode_copy(phydev->advertising_eee, phydev->supported_eee); 2916 } 2917 EXPORT_SYMBOL_GPL(phy_advertise_eee_all); 2918 2919 /** 2920 * phy_support_eee - Set initial EEE policy configuration 2921 * @phydev: Target phy_device struct 2922 * 2923 * This function configures the initial policy for Energy Efficient Ethernet 2924 * (EEE) on the specified PHY device, influencing that EEE capabilities are 2925 * advertised before the link is established. It should be called during PHY 2926 * registration by the MAC driver and/or the PHY driver (for SmartEEE PHYs) 2927 * if MAC supports LPI or PHY is capable to compensate missing LPI functionality 2928 * of the MAC. 2929 * 2930 * The function sets default EEE policy parameters, including preparing the PHY 2931 * to advertise EEE capabilities based on hardware support. 2932 * 2933 * It also sets the expected configuration for Low Power Idle (LPI) in the MAC 2934 * driver. If the PHY framework determines that both local and remote 2935 * advertisements support EEE, and the negotiated link mode is compatible with 2936 * EEE, it will set enable_tx_lpi = true. The MAC driver is expected to act on 2937 * this setting by enabling the LPI timer if enable_tx_lpi is set. 2938 */ 2939 void phy_support_eee(struct phy_device *phydev) 2940 { 2941 linkmode_copy(phydev->advertising_eee, phydev->supported_eee); 2942 phydev->eee_cfg.tx_lpi_enabled = true; 2943 phydev->eee_cfg.eee_enabled = true; 2944 } 2945 EXPORT_SYMBOL(phy_support_eee); 2946 2947 /** 2948 * phy_disable_eee - Disable EEE for the PHY 2949 * @phydev: Target phy_device struct 2950 * 2951 * This function is used by MAC drivers for MAC's which don't support EEE. 2952 * It disables EEE on the PHY layer. 2953 */ 2954 void phy_disable_eee(struct phy_device *phydev) 2955 { 2956 linkmode_zero(phydev->advertising_eee); 2957 phydev->eee_cfg.tx_lpi_enabled = false; 2958 phydev->eee_cfg.eee_enabled = false; 2959 /* don't let userspace re-enable EEE advertisement */ 2960 linkmode_fill(phydev->eee_disabled_modes); 2961 } 2962 EXPORT_SYMBOL_GPL(phy_disable_eee); 2963 2964 /** 2965 * phy_support_sym_pause - Enable support of symmetrical pause 2966 * @phydev: target phy_device struct 2967 * 2968 * Description: Called by the MAC to indicate is supports symmetrical 2969 * Pause, but not asym pause. 2970 */ 2971 void phy_support_sym_pause(struct phy_device *phydev) 2972 { 2973 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2974 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2975 } 2976 EXPORT_SYMBOL(phy_support_sym_pause); 2977 2978 /** 2979 * phy_support_asym_pause - Enable support of asym pause 2980 * @phydev: target phy_device struct 2981 * 2982 * Description: Called by the MAC to indicate is supports Asym Pause. 2983 */ 2984 void phy_support_asym_pause(struct phy_device *phydev) 2985 { 2986 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2987 } 2988 EXPORT_SYMBOL(phy_support_asym_pause); 2989 2990 /** 2991 * phy_set_sym_pause - Configure symmetric Pause 2992 * @phydev: target phy_device struct 2993 * @rx: Receiver Pause is supported 2994 * @tx: Transmit Pause is supported 2995 * @autoneg: Auto neg should be used 2996 * 2997 * Description: Configure advertised Pause support depending on if 2998 * receiver pause and pause auto neg is supported. Generally called 2999 * from the set_pauseparam .ndo. 3000 */ 3001 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 3002 bool autoneg) 3003 { 3004 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 3005 3006 if (rx && tx && autoneg) 3007 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3008 phydev->supported); 3009 3010 linkmode_copy(phydev->advertising, phydev->supported); 3011 } 3012 EXPORT_SYMBOL(phy_set_sym_pause); 3013 3014 /** 3015 * phy_set_asym_pause - Configure Pause and Asym Pause 3016 * @phydev: target phy_device struct 3017 * @rx: Receiver Pause is supported 3018 * @tx: Transmit Pause is supported 3019 * 3020 * Description: Configure advertised Pause support depending on if 3021 * transmit and receiver pause is supported. If there has been a 3022 * change in adverting, trigger a new autoneg. Generally called from 3023 * the set_pauseparam .ndo. 3024 */ 3025 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 3026 { 3027 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 3028 3029 linkmode_copy(oldadv, phydev->advertising); 3030 linkmode_set_pause(phydev->advertising, tx, rx); 3031 3032 if (!linkmode_equal(oldadv, phydev->advertising) && 3033 phydev->autoneg) 3034 phy_start_aneg(phydev); 3035 } 3036 EXPORT_SYMBOL(phy_set_asym_pause); 3037 3038 /** 3039 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 3040 * @phydev: phy_device struct 3041 * @pp: requested pause configuration 3042 * 3043 * Description: Test if the PHY/MAC combination supports the Pause 3044 * configuration the user is requesting. Returns True if it is 3045 * supported, false otherwise. 3046 */ 3047 bool phy_validate_pause(struct phy_device *phydev, 3048 struct ethtool_pauseparam *pp) 3049 { 3050 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3051 phydev->supported) && pp->rx_pause) 3052 return false; 3053 3054 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3055 phydev->supported) && 3056 pp->rx_pause != pp->tx_pause) 3057 return false; 3058 3059 return true; 3060 } 3061 EXPORT_SYMBOL(phy_validate_pause); 3062 3063 /** 3064 * phy_get_pause - resolve negotiated pause modes 3065 * @phydev: phy_device struct 3066 * @tx_pause: pointer to bool to indicate whether transmit pause should be 3067 * enabled. 3068 * @rx_pause: pointer to bool to indicate whether receive pause should be 3069 * enabled. 3070 * 3071 * Resolve and return the flow control modes according to the negotiation 3072 * result. This includes checking that we are operating in full duplex mode. 3073 * See linkmode_resolve_pause() for further details. 3074 */ 3075 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 3076 { 3077 if (phydev->duplex != DUPLEX_FULL) { 3078 *tx_pause = false; 3079 *rx_pause = false; 3080 return; 3081 } 3082 3083 return linkmode_resolve_pause(phydev->advertising, 3084 phydev->lp_advertising, 3085 tx_pause, rx_pause); 3086 } 3087 EXPORT_SYMBOL(phy_get_pause); 3088 3089 #if IS_ENABLED(CONFIG_OF_MDIO) 3090 static int phy_get_u32_property(struct device *dev, const char *name, u32 *val) 3091 { 3092 return device_property_read_u32(dev, name, val); 3093 } 3094 #else 3095 static int phy_get_u32_property(struct device *dev, const char *name, u32 *val) 3096 { 3097 return -EINVAL; 3098 } 3099 #endif 3100 3101 /** 3102 * phy_get_internal_delay - returns the index of the internal delay 3103 * @phydev: phy_device struct 3104 * @delay_values: array of delays the PHY supports 3105 * @size: the size of the delay array 3106 * @is_rx: boolean to indicate to get the rx internal delay 3107 * 3108 * Returns the index within the array of internal delay passed in. 3109 * If the device property is not present then the interface type is checked 3110 * if the interface defines use of internal delay then a 1 is returned otherwise 3111 * a 0 is returned. 3112 * The array must be in ascending order. If PHY does not have an ascending order 3113 * array then size = 0 and the value of the delay property is returned. 3114 * Return -EINVAL if the delay is invalid or cannot be found. 3115 */ 3116 s32 phy_get_internal_delay(struct phy_device *phydev, const int *delay_values, 3117 int size, bool is_rx) 3118 { 3119 struct device *dev = &phydev->mdio.dev; 3120 int i, ret; 3121 u32 delay; 3122 3123 if (is_rx) { 3124 ret = phy_get_u32_property(dev, "rx-internal-delay-ps", &delay); 3125 if (ret < 0 && size == 0) { 3126 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 3127 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 3128 return 1; 3129 else 3130 return 0; 3131 } 3132 3133 } else { 3134 ret = phy_get_u32_property(dev, "tx-internal-delay-ps", &delay); 3135 if (ret < 0 && size == 0) { 3136 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 3137 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 3138 return 1; 3139 else 3140 return 0; 3141 } 3142 } 3143 3144 if (ret < 0) 3145 return ret; 3146 3147 if (size == 0) 3148 return delay; 3149 3150 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 3151 phydev_err(phydev, "Delay %d is out of range\n", delay); 3152 return -EINVAL; 3153 } 3154 3155 if (delay == delay_values[0]) 3156 return 0; 3157 3158 for (i = 1; i < size; i++) { 3159 if (delay == delay_values[i]) 3160 return i; 3161 3162 /* Find an approximate index by looking up the table */ 3163 if (delay > delay_values[i - 1] && 3164 delay < delay_values[i]) { 3165 if (delay - delay_values[i - 1] < 3166 delay_values[i] - delay) 3167 return i - 1; 3168 else 3169 return i; 3170 } 3171 } 3172 3173 phydev_err(phydev, "error finding internal delay index for %d\n", 3174 delay); 3175 3176 return -EINVAL; 3177 } 3178 EXPORT_SYMBOL(phy_get_internal_delay); 3179 3180 /** 3181 * phy_get_tx_amplitude_gain - stores tx amplitude gain in @val 3182 * @phydev: phy_device struct 3183 * @dev: pointer to the devices device struct 3184 * @linkmode: linkmode for which the tx amplitude gain should be retrieved 3185 * @val: tx amplitude gain 3186 * 3187 * Returns: 0 on success, < 0 on failure 3188 */ 3189 int phy_get_tx_amplitude_gain(struct phy_device *phydev, struct device *dev, 3190 enum ethtool_link_mode_bit_indices linkmode, 3191 u32 *val) 3192 { 3193 switch (linkmode) { 3194 case ETHTOOL_LINK_MODE_100baseT_Full_BIT: 3195 return phy_get_u32_property(dev, 3196 "tx-amplitude-100base-tx-percent", 3197 val); 3198 default: 3199 return -EINVAL; 3200 } 3201 } 3202 EXPORT_SYMBOL_GPL(phy_get_tx_amplitude_gain); 3203 3204 /** 3205 * phy_get_mac_termination - stores MAC termination in @val 3206 * @phydev: phy_device struct 3207 * @dev: pointer to the devices device struct 3208 * @val: MAC termination 3209 * 3210 * Returns: 0 on success, < 0 on failure 3211 */ 3212 int phy_get_mac_termination(struct phy_device *phydev, struct device *dev, 3213 u32 *val) 3214 { 3215 return phy_get_u32_property(dev, "mac-termination-ohms", val); 3216 } 3217 EXPORT_SYMBOL_GPL(phy_get_mac_termination); 3218 3219 static int phy_led_set_brightness(struct led_classdev *led_cdev, 3220 enum led_brightness value) 3221 { 3222 struct phy_led *phyled = to_phy_led(led_cdev); 3223 struct phy_device *phydev = phyled->phydev; 3224 int err; 3225 3226 mutex_lock(&phydev->lock); 3227 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3228 mutex_unlock(&phydev->lock); 3229 3230 return err; 3231 } 3232 3233 static int phy_led_blink_set(struct led_classdev *led_cdev, 3234 unsigned long *delay_on, 3235 unsigned long *delay_off) 3236 { 3237 struct phy_led *phyled = to_phy_led(led_cdev); 3238 struct phy_device *phydev = phyled->phydev; 3239 int err; 3240 3241 mutex_lock(&phydev->lock); 3242 err = phydev->drv->led_blink_set(phydev, phyled->index, 3243 delay_on, delay_off); 3244 mutex_unlock(&phydev->lock); 3245 3246 return err; 3247 } 3248 3249 static __maybe_unused struct device * 3250 phy_led_hw_control_get_device(struct led_classdev *led_cdev) 3251 { 3252 struct phy_led *phyled = to_phy_led(led_cdev); 3253 struct phy_device *phydev = phyled->phydev; 3254 3255 if (phydev->attached_dev) 3256 return &phydev->attached_dev->dev; 3257 return NULL; 3258 } 3259 3260 static int __maybe_unused 3261 phy_led_hw_control_get(struct led_classdev *led_cdev, 3262 unsigned long *rules) 3263 { 3264 struct phy_led *phyled = to_phy_led(led_cdev); 3265 struct phy_device *phydev = phyled->phydev; 3266 int err; 3267 3268 mutex_lock(&phydev->lock); 3269 err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules); 3270 mutex_unlock(&phydev->lock); 3271 3272 return err; 3273 } 3274 3275 static int __maybe_unused 3276 phy_led_hw_control_set(struct led_classdev *led_cdev, 3277 unsigned long rules) 3278 { 3279 struct phy_led *phyled = to_phy_led(led_cdev); 3280 struct phy_device *phydev = phyled->phydev; 3281 int err; 3282 3283 mutex_lock(&phydev->lock); 3284 err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules); 3285 mutex_unlock(&phydev->lock); 3286 3287 return err; 3288 } 3289 3290 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev, 3291 unsigned long rules) 3292 { 3293 struct phy_led *phyled = to_phy_led(led_cdev); 3294 struct phy_device *phydev = phyled->phydev; 3295 int err; 3296 3297 mutex_lock(&phydev->lock); 3298 err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules); 3299 mutex_unlock(&phydev->lock); 3300 3301 return err; 3302 } 3303 3304 static void phy_leds_unregister(struct phy_device *phydev) 3305 { 3306 struct phy_led *phyled, *tmp; 3307 3308 list_for_each_entry_safe(phyled, tmp, &phydev->leds, list) { 3309 led_classdev_unregister(&phyled->led_cdev); 3310 list_del(&phyled->list); 3311 } 3312 } 3313 3314 static int of_phy_led(struct phy_device *phydev, 3315 struct device_node *led) 3316 { 3317 struct device *dev = &phydev->mdio.dev; 3318 struct led_init_data init_data = {}; 3319 struct led_classdev *cdev; 3320 unsigned long modes = 0; 3321 struct phy_led *phyled; 3322 u32 index; 3323 int err; 3324 3325 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3326 if (!phyled) 3327 return -ENOMEM; 3328 3329 cdev = &phyled->led_cdev; 3330 phyled->phydev = phydev; 3331 3332 err = of_property_read_u32(led, "reg", &index); 3333 if (err) 3334 return err; 3335 if (index > U8_MAX) 3336 return -EINVAL; 3337 3338 if (of_property_read_bool(led, "active-high")) 3339 set_bit(PHY_LED_ACTIVE_HIGH, &modes); 3340 if (of_property_read_bool(led, "active-low")) 3341 set_bit(PHY_LED_ACTIVE_LOW, &modes); 3342 if (of_property_read_bool(led, "inactive-high-impedance")) 3343 set_bit(PHY_LED_INACTIVE_HIGH_IMPEDANCE, &modes); 3344 3345 if (WARN_ON(modes & BIT(PHY_LED_ACTIVE_LOW) && 3346 modes & BIT(PHY_LED_ACTIVE_HIGH))) 3347 return -EINVAL; 3348 3349 if (modes) { 3350 /* Return error if asked to set polarity modes but not supported */ 3351 if (!phydev->drv->led_polarity_set) 3352 return -EINVAL; 3353 3354 err = phydev->drv->led_polarity_set(phydev, index, modes); 3355 if (err) 3356 return err; 3357 } 3358 3359 phyled->index = index; 3360 if (phydev->drv->led_brightness_set) 3361 cdev->brightness_set_blocking = phy_led_set_brightness; 3362 if (phydev->drv->led_blink_set) 3363 cdev->blink_set = phy_led_blink_set; 3364 3365 #ifdef CONFIG_LEDS_TRIGGERS 3366 if (phydev->drv->led_hw_is_supported && 3367 phydev->drv->led_hw_control_set && 3368 phydev->drv->led_hw_control_get) { 3369 cdev->hw_control_is_supported = phy_led_hw_is_supported; 3370 cdev->hw_control_set = phy_led_hw_control_set; 3371 cdev->hw_control_get = phy_led_hw_control_get; 3372 cdev->hw_control_trigger = "netdev"; 3373 } 3374 3375 cdev->hw_control_get_device = phy_led_hw_control_get_device; 3376 #endif 3377 cdev->max_brightness = 1; 3378 init_data.devicename = dev_name(&phydev->mdio.dev); 3379 init_data.fwnode = of_fwnode_handle(led); 3380 init_data.devname_mandatory = true; 3381 3382 err = led_classdev_register_ext(dev, cdev, &init_data); 3383 if (err) 3384 return err; 3385 3386 list_add(&phyled->list, &phydev->leds); 3387 3388 return 0; 3389 } 3390 3391 static int of_phy_leds(struct phy_device *phydev) 3392 { 3393 struct device_node *node = phydev->mdio.dev.of_node; 3394 struct device_node *leds; 3395 int err; 3396 3397 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3398 return 0; 3399 3400 if (!node) 3401 return 0; 3402 3403 leds = of_get_child_by_name(node, "leds"); 3404 if (!leds) 3405 return 0; 3406 3407 /* Check if the PHY driver have at least an OP to 3408 * set the LEDs. 3409 */ 3410 if (!(phydev->drv->led_brightness_set || 3411 phydev->drv->led_blink_set || 3412 phydev->drv->led_hw_control_set)) { 3413 phydev_dbg(phydev, "ignoring leds node defined with no PHY driver support\n"); 3414 goto exit; 3415 } 3416 3417 for_each_available_child_of_node_scoped(leds, led) { 3418 err = of_phy_led(phydev, led); 3419 if (err) { 3420 of_node_put(leds); 3421 phy_leds_unregister(phydev); 3422 return err; 3423 } 3424 } 3425 3426 exit: 3427 of_node_put(leds); 3428 return 0; 3429 } 3430 3431 static void phy_cleanup_ports(struct phy_device *phydev) 3432 { 3433 struct phy_port *tmp, *port; 3434 3435 list_for_each_entry_safe(port, tmp, &phydev->ports, head) { 3436 phy_del_port(phydev, port); 3437 phy_port_destroy(port); 3438 } 3439 } 3440 3441 static int phy_default_setup_single_port(struct phy_device *phydev) 3442 { 3443 struct phy_port *port = phy_port_alloc(); 3444 unsigned long mode; 3445 3446 if (!port) 3447 return -ENOMEM; 3448 3449 port->parent_type = PHY_PORT_PHY; 3450 port->phy = phydev; 3451 3452 /* Let the PHY driver know that this port was never described anywhere. 3453 * This is the usual case, where we assume single-port PHY devices with 3454 * no SFP. In that case, the port supports exactly the same thing as 3455 * the PHY itself. 3456 * 3457 * However, this can also be because we have a combo-port PHY, with 3458 * only one port described in DT, through SFP for example. 3459 * 3460 * In that case, the PHY driver will be in charge of saying what we can 3461 * do on that non-represented port. 3462 */ 3463 port->not_described = true; 3464 linkmode_copy(port->supported, phydev->supported); 3465 port->mediums = phy_caps_mediums_from_linkmodes(port->supported); 3466 3467 for_each_set_bit(mode, port->supported, __ETHTOOL_LINK_MODE_MASK_NBITS) 3468 port->pairs = max_t(int, port->pairs, 3469 ethtool_linkmode_n_pairs(mode)); 3470 3471 phy_add_port(phydev, port); 3472 3473 return 0; 3474 } 3475 3476 static int of_phy_ports(struct phy_device *phydev) 3477 { 3478 struct device_node *node = phydev->mdio.dev.of_node; 3479 struct device_node *mdi; 3480 struct phy_port *port; 3481 int err; 3482 3483 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3484 return 0; 3485 3486 if (!node) 3487 return 0; 3488 3489 mdi = of_get_child_by_name(node, "mdi"); 3490 if (!mdi) 3491 return 0; 3492 3493 for_each_available_child_of_node_scoped(mdi, port_node) { 3494 port = phy_of_parse_port(port_node); 3495 if (IS_ERR(port)) { 3496 err = PTR_ERR(port); 3497 goto out_err; 3498 } 3499 3500 port->parent_type = PHY_PORT_PHY; 3501 port->phy = phydev; 3502 err = phy_add_port(phydev, port); 3503 if (err) { 3504 phy_port_destroy(port); 3505 goto out_err; 3506 } 3507 } 3508 of_node_put(mdi); 3509 3510 return 0; 3511 3512 out_err: 3513 phy_cleanup_ports(phydev); 3514 of_node_put(mdi); 3515 return err; 3516 } 3517 3518 static int phy_setup_ports(struct phy_device *phydev) 3519 { 3520 __ETHTOOL_DECLARE_LINK_MODE_MASK(ports_supported); 3521 struct phy_port *port; 3522 int ret; 3523 3524 ret = of_phy_ports(phydev); 3525 if (ret) 3526 return ret; 3527 3528 ret = phy_sfp_probe(phydev); 3529 if (ret) 3530 goto out; 3531 3532 if (phydev->n_ports < phydev->max_n_ports) { 3533 ret = phy_default_setup_single_port(phydev); 3534 if (ret) 3535 goto out; 3536 } 3537 3538 linkmode_zero(ports_supported); 3539 3540 /* Aggregate the supported modes, which are made-up of : 3541 * - What the PHY itself supports 3542 * - What the sum of all ports support 3543 */ 3544 list_for_each_entry(port, &phydev->ports, head) 3545 if (port->active) 3546 linkmode_or(ports_supported, ports_supported, 3547 port->supported); 3548 3549 if (!linkmode_empty(ports_supported)) 3550 linkmode_and(phydev->supported, phydev->supported, 3551 ports_supported); 3552 3553 /* For now, the phy->port field is set as the first active port's type */ 3554 list_for_each_entry(port, &phydev->ports, head) 3555 if (port->active) { 3556 phydev->port = phy_port_get_type(port); 3557 break; 3558 } 3559 3560 return 0; 3561 3562 out: 3563 phy_cleanup_ports(phydev); 3564 return ret; 3565 } 3566 3567 /** 3568 * phy_get_sfp_port() - Returns the first valid SFP port of a PHY 3569 * @phydev: pointer to the PHY device to get the SFP port from 3570 * 3571 * Returns: The first active SFP (serdes) port of a PHY device, NULL if none 3572 * exist. 3573 */ 3574 struct phy_port *phy_get_sfp_port(struct phy_device *phydev) 3575 { 3576 struct phy_port *port; 3577 3578 list_for_each_entry(port, &phydev->ports, head) 3579 if (port->active && port->is_sfp) 3580 return port; 3581 3582 return NULL; 3583 } 3584 EXPORT_SYMBOL_GPL(phy_get_sfp_port); 3585 3586 /** 3587 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3588 * @fwnode: pointer to the mdio_device's fwnode 3589 * 3590 * If successful, returns a pointer to the mdio_device with the embedded 3591 * struct device refcount incremented by one, or NULL on failure. 3592 * The caller should call put_device() on the mdio_device after its use. 3593 */ 3594 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3595 { 3596 struct device *d; 3597 3598 if (!fwnode) 3599 return NULL; 3600 3601 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3602 if (!d) 3603 return NULL; 3604 3605 return to_mdio_device(d); 3606 } 3607 EXPORT_SYMBOL(fwnode_mdio_find_device); 3608 3609 /** 3610 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3611 * 3612 * @phy_fwnode: Pointer to the phy's fwnode. 3613 * 3614 * If successful, returns a pointer to the phy_device with the embedded 3615 * struct device refcount incremented by one, or NULL on failure. 3616 */ 3617 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3618 { 3619 struct mdio_device *mdiodev; 3620 3621 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3622 if (!mdiodev) 3623 return NULL; 3624 3625 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3626 return to_phy_device(&mdiodev->dev); 3627 3628 put_device(&mdiodev->dev); 3629 3630 return NULL; 3631 } 3632 EXPORT_SYMBOL(fwnode_phy_find_device); 3633 3634 /** 3635 * fwnode_get_phy_node - Get the phy_node using the named reference. 3636 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3637 * 3638 * Refer return conditions of fwnode_find_reference(). 3639 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3640 * and "phy-device" are not supported in ACPI. DT supports all the three 3641 * named references to the phy node. 3642 */ 3643 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3644 { 3645 struct fwnode_handle *phy_node; 3646 3647 /* Only phy-handle is used for ACPI */ 3648 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3649 if (!IS_ERR(phy_node) || is_acpi_node(fwnode)) 3650 return phy_node; 3651 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3652 if (!IS_ERR(phy_node)) 3653 return phy_node; 3654 return fwnode_find_reference(fwnode, "phy-device", 0); 3655 } 3656 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3657 3658 /** 3659 * phy_probe - probe and init a PHY device 3660 * @dev: device to probe and init 3661 * 3662 * Take care of setting up the phy_device structure, set the state to READY. 3663 */ 3664 static int phy_probe(struct device *dev) 3665 { 3666 struct phy_device *phydev = to_phy_device(dev); 3667 struct device_driver *drv = phydev->mdio.dev.driver; 3668 struct phy_driver *phydrv = to_phy_driver(drv); 3669 int err = 0; 3670 3671 phydev->drv = phydrv; 3672 3673 /* Disable the interrupt if the PHY doesn't support it 3674 * but the interrupt is still a valid one 3675 */ 3676 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3677 phydev->irq = PHY_POLL; 3678 3679 if (phydrv->flags & PHY_IS_INTERNAL) 3680 phydev->is_internal = true; 3681 3682 /* Deassert the reset signal */ 3683 phy_device_reset(phydev, 0); 3684 3685 if (phydev->drv->probe) { 3686 err = phydev->drv->probe(phydev); 3687 if (err) 3688 goto out; 3689 } 3690 3691 phy_disable_interrupts(phydev); 3692 3693 /* Start out supporting everything. Eventually, 3694 * a controller will attach, and may modify one 3695 * or both of these values 3696 */ 3697 if (phydrv->features) { 3698 linkmode_copy(phydev->supported, phydrv->features); 3699 genphy_c45_read_eee_abilities(phydev); 3700 } 3701 else if (phydrv->get_features) 3702 err = phydrv->get_features(phydev); 3703 else if (phydev->is_c45) 3704 err = genphy_c45_pma_read_abilities(phydev); 3705 else 3706 err = genphy_read_abilities(phydev); 3707 3708 if (err) 3709 goto out; 3710 3711 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3712 phydev->supported)) 3713 phydev->autoneg = 0; 3714 3715 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3716 phydev->supported)) 3717 phydev->is_gigabit_capable = 1; 3718 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3719 phydev->supported)) 3720 phydev->is_gigabit_capable = 1; 3721 3722 of_set_phy_supported(phydev); 3723 3724 err = phy_setup_ports(phydev); 3725 if (err) 3726 goto out; 3727 3728 phy_advertise_supported(phydev); 3729 3730 /* Get PHY default EEE advertising modes and handle them as potentially 3731 * safe initial configuration. 3732 */ 3733 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3734 if (err) 3735 goto out; 3736 3737 /* Get the EEE modes we want to prohibit. */ 3738 of_set_phy_eee_broken(phydev); 3739 3740 /* Some PHYs may advertise, by default, not support EEE modes. So, 3741 * we need to clean them. In addition remove all disabled EEE modes. 3742 */ 3743 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3744 phydev->advertising_eee); 3745 linkmode_andnot(phydev->advertising_eee, phydev->advertising_eee, 3746 phydev->eee_disabled_modes); 3747 3748 /* There is no "enabled" flag. If PHY is advertising, assume it is 3749 * kind of enabled. 3750 */ 3751 phydev->eee_cfg.eee_enabled = !linkmode_empty(phydev->advertising_eee); 3752 3753 /* Get master/slave strap overrides */ 3754 of_set_phy_timing_role(phydev); 3755 3756 /* The Pause Frame bits indicate that the PHY can support passing 3757 * pause frames. During autonegotiation, the PHYs will determine if 3758 * they should allow pause frames to pass. The MAC driver should then 3759 * use that result to determine whether to enable flow control via 3760 * pause frames. 3761 * 3762 * Normally, PHY drivers should not set the Pause bits, and instead 3763 * allow phylib to do that. However, there may be some situations 3764 * (e.g. hardware erratum) where the driver wants to set only one 3765 * of these bits. 3766 */ 3767 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3768 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3769 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3770 phydev->supported); 3771 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3772 phydev->supported); 3773 } 3774 3775 /* Set the state to READY by default */ 3776 phydev->state = PHY_READY; 3777 3778 /* Get the LEDs from the device tree, and instantiate standard 3779 * LEDs for them. 3780 */ 3781 if (IS_ENABLED(CONFIG_PHYLIB_LEDS) && !phy_driver_is_genphy(phydev)) 3782 err = of_phy_leds(phydev); 3783 3784 out: 3785 /* Re-assert the reset signal on error */ 3786 if (err) 3787 phy_device_reset(phydev, 1); 3788 3789 return err; 3790 } 3791 3792 static int phy_remove(struct device *dev) 3793 { 3794 struct phy_device *phydev = to_phy_device(dev); 3795 3796 cancel_delayed_work_sync(&phydev->state_queue); 3797 3798 if (IS_ENABLED(CONFIG_PHYLIB_LEDS) && !phy_driver_is_genphy(phydev)) 3799 phy_leds_unregister(phydev); 3800 3801 phydev->state = PHY_DOWN; 3802 3803 phy_cleanup_ports(phydev); 3804 3805 sfp_bus_del_upstream(phydev->sfp_bus); 3806 phydev->sfp_bus = NULL; 3807 3808 if (phydev->drv && phydev->drv->remove) 3809 phydev->drv->remove(phydev); 3810 3811 /* Assert the reset signal */ 3812 phy_device_reset(phydev, 1); 3813 3814 phydev->drv = NULL; 3815 3816 return 0; 3817 } 3818 3819 /** 3820 * phy_driver_register - register a phy_driver with the PHY layer 3821 * @new_driver: new phy_driver to register 3822 * @owner: module owning this PHY 3823 */ 3824 static int phy_driver_register(struct phy_driver *new_driver, 3825 struct module *owner) 3826 { 3827 int retval; 3828 3829 /* Either the features are hard coded, or dynamically 3830 * determined. It cannot be both. 3831 */ 3832 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3833 pr_err("%s: features and get_features must not both be set\n", 3834 new_driver->name); 3835 return -EINVAL; 3836 } 3837 3838 /* PHYLIB device drivers must not match using a DT compatible table 3839 * as this bypasses our checks that the mdiodev that is being matched 3840 * is backed by a struct phy_device. If such a case happens, we will 3841 * make out-of-bounds accesses and lockup in phydev->lock. 3842 */ 3843 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3844 "%s: driver must not provide a DT match table\n", 3845 new_driver->name)) 3846 return -EINVAL; 3847 3848 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3849 new_driver->mdiodrv.driver.name = new_driver->name; 3850 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3851 new_driver->mdiodrv.driver.probe = phy_probe; 3852 new_driver->mdiodrv.driver.remove = phy_remove; 3853 new_driver->mdiodrv.driver.owner = owner; 3854 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3855 3856 retval = driver_register(&new_driver->mdiodrv.driver); 3857 if (retval) { 3858 pr_err("%s: Error %d in registering driver\n", 3859 new_driver->name, retval); 3860 3861 return retval; 3862 } 3863 3864 pr_debug("%s: Registered new driver\n", new_driver->name); 3865 3866 return 0; 3867 } 3868 3869 static void phy_driver_unregister(struct phy_driver *drv) 3870 { 3871 driver_unregister(&drv->mdiodrv.driver); 3872 } 3873 3874 int phy_drivers_register(struct phy_driver *new_driver, int n, 3875 struct module *owner) 3876 { 3877 int i, ret = 0; 3878 3879 for (i = 0; i < n; i++) { 3880 ret = phy_driver_register(new_driver + i, owner); 3881 if (ret) { 3882 while (i-- > 0) 3883 phy_driver_unregister(new_driver + i); 3884 break; 3885 } 3886 } 3887 return ret; 3888 } 3889 EXPORT_SYMBOL(phy_drivers_register); 3890 3891 void phy_drivers_unregister(struct phy_driver *drv, int n) 3892 { 3893 int i; 3894 3895 for (i = 0; i < n; i++) 3896 phy_driver_unregister(drv + i); 3897 } 3898 EXPORT_SYMBOL(phy_drivers_unregister); 3899 3900 static struct phy_driver genphy_driver = { 3901 .phy_id = 0xffffffff, 3902 .phy_id_mask = 0xffffffff, 3903 .name = "Generic PHY", 3904 .get_features = genphy_read_abilities, 3905 .suspend = genphy_suspend, 3906 .resume = genphy_resume, 3907 .set_loopback = genphy_loopback, 3908 }; 3909 3910 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3911 .get_sset_count = phy_ethtool_get_sset_count, 3912 .get_strings = phy_ethtool_get_strings, 3913 .get_stats = phy_ethtool_get_stats, 3914 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3915 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3916 .get_plca_status = phy_ethtool_get_plca_status, 3917 .start_cable_test = phy_start_cable_test, 3918 .start_cable_test_tdr = phy_start_cable_test_tdr, 3919 }; 3920 3921 static const struct phylib_stubs __phylib_stubs = { 3922 .hwtstamp_get = __phy_hwtstamp_get, 3923 .hwtstamp_set = __phy_hwtstamp_set, 3924 .get_phy_stats = __phy_ethtool_get_phy_stats, 3925 .get_link_ext_stats = __phy_ethtool_get_link_ext_stats, 3926 }; 3927 3928 static void phylib_register_stubs(void) 3929 { 3930 phylib_stubs = &__phylib_stubs; 3931 } 3932 3933 static void phylib_unregister_stubs(void) 3934 { 3935 phylib_stubs = NULL; 3936 } 3937 3938 static int __init phy_init(void) 3939 { 3940 int rc; 3941 3942 rtnl_lock(); 3943 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3944 phylib_register_stubs(); 3945 rtnl_unlock(); 3946 3947 rc = phy_caps_init(); 3948 if (rc) 3949 goto err_ethtool_phy_ops; 3950 3951 features_init(); 3952 3953 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3954 if (rc) 3955 goto err_ethtool_phy_ops; 3956 3957 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3958 if (rc) 3959 goto err_c45; 3960 3961 return 0; 3962 3963 err_c45: 3964 phy_driver_unregister(&genphy_c45_driver); 3965 err_ethtool_phy_ops: 3966 rtnl_lock(); 3967 phylib_unregister_stubs(); 3968 ethtool_set_ethtool_phy_ops(NULL); 3969 rtnl_unlock(); 3970 3971 return rc; 3972 } 3973 3974 static void __exit phy_exit(void) 3975 { 3976 phy_driver_unregister(&genphy_c45_driver); 3977 phy_driver_unregister(&genphy_driver); 3978 rtnl_lock(); 3979 phylib_unregister_stubs(); 3980 ethtool_set_ethtool_phy_ops(NULL); 3981 rtnl_unlock(); 3982 } 3983 3984 subsys_initcall(phy_init); 3985 module_exit(phy_exit); 3986