1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phylib_stubs.h> 31 #include <linux/phy_led_triggers.h> 32 #include <linux/pse-pd/pse.h> 33 #include <linux/property.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/sfp.h> 36 #include <linux/skbuff.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/uaccess.h> 40 #include <linux/unistd.h> 41 42 MODULE_DESCRIPTION("PHY library"); 43 MODULE_AUTHOR("Andy Fleming"); 44 MODULE_LICENSE("GPL"); 45 46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 47 EXPORT_SYMBOL_GPL(phy_basic_features); 48 49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 50 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 51 52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 54 55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 56 EXPORT_SYMBOL_GPL(phy_gbit_features); 57 58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 60 61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 63 64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 65 EXPORT_SYMBOL_GPL(phy_10gbit_features); 66 67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 69 70 const int phy_basic_ports_array[3] = { 71 ETHTOOL_LINK_MODE_Autoneg_BIT, 72 ETHTOOL_LINK_MODE_TP_BIT, 73 ETHTOOL_LINK_MODE_MII_BIT, 74 }; 75 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 76 77 const int phy_fibre_port_array[1] = { 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 }; 80 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 81 82 const int phy_all_ports_features_array[7] = { 83 ETHTOOL_LINK_MODE_Autoneg_BIT, 84 ETHTOOL_LINK_MODE_TP_BIT, 85 ETHTOOL_LINK_MODE_MII_BIT, 86 ETHTOOL_LINK_MODE_FIBRE_BIT, 87 ETHTOOL_LINK_MODE_AUI_BIT, 88 ETHTOOL_LINK_MODE_BNC_BIT, 89 ETHTOOL_LINK_MODE_Backplane_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 92 93 const int phy_10_100_features_array[4] = { 94 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 95 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 97 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 98 }; 99 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 100 101 const int phy_basic_t1_features_array[3] = { 102 ETHTOOL_LINK_MODE_TP_BIT, 103 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 104 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 105 }; 106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 107 108 const int phy_basic_t1s_p2mp_features_array[2] = { 109 ETHTOOL_LINK_MODE_TP_BIT, 110 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 111 }; 112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 113 114 const int phy_gbit_features_array[2] = { 115 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 116 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 117 }; 118 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 119 120 const int phy_10gbit_features_array[1] = { 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 124 125 static const int phy_10gbit_fec_features_array[1] = { 126 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 127 }; 128 129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 131 132 static const int phy_10gbit_full_features_array[] = { 133 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 135 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 136 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 137 }; 138 139 static const int phy_eee_cap1_features_array[] = { 140 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 142 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 143 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 144 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 145 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 146 }; 147 148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 150 151 static void features_init(void) 152 { 153 /* 10/100 half/full*/ 154 linkmode_set_bit_array(phy_basic_ports_array, 155 ARRAY_SIZE(phy_basic_ports_array), 156 phy_basic_features); 157 linkmode_set_bit_array(phy_10_100_features_array, 158 ARRAY_SIZE(phy_10_100_features_array), 159 phy_basic_features); 160 161 /* 100 full, TP */ 162 linkmode_set_bit_array(phy_basic_t1_features_array, 163 ARRAY_SIZE(phy_basic_t1_features_array), 164 phy_basic_t1_features); 165 166 /* 10 half, P2MP, TP */ 167 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 168 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 169 phy_basic_t1s_p2mp_features); 170 171 /* 10/100 half/full + 1000 half/full */ 172 linkmode_set_bit_array(phy_basic_ports_array, 173 ARRAY_SIZE(phy_basic_ports_array), 174 phy_gbit_features); 175 linkmode_set_bit_array(phy_10_100_features_array, 176 ARRAY_SIZE(phy_10_100_features_array), 177 phy_gbit_features); 178 linkmode_set_bit_array(phy_gbit_features_array, 179 ARRAY_SIZE(phy_gbit_features_array), 180 phy_gbit_features); 181 182 /* 10/100 half/full + 1000 half/full + fibre*/ 183 linkmode_set_bit_array(phy_basic_ports_array, 184 ARRAY_SIZE(phy_basic_ports_array), 185 phy_gbit_fibre_features); 186 linkmode_set_bit_array(phy_10_100_features_array, 187 ARRAY_SIZE(phy_10_100_features_array), 188 phy_gbit_fibre_features); 189 linkmode_set_bit_array(phy_gbit_features_array, 190 ARRAY_SIZE(phy_gbit_features_array), 191 phy_gbit_fibre_features); 192 linkmode_set_bit_array(phy_fibre_port_array, 193 ARRAY_SIZE(phy_fibre_port_array), 194 phy_gbit_fibre_features); 195 196 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 197 linkmode_set_bit_array(phy_all_ports_features_array, 198 ARRAY_SIZE(phy_all_ports_features_array), 199 phy_gbit_all_ports_features); 200 linkmode_set_bit_array(phy_10_100_features_array, 201 ARRAY_SIZE(phy_10_100_features_array), 202 phy_gbit_all_ports_features); 203 linkmode_set_bit_array(phy_gbit_features_array, 204 ARRAY_SIZE(phy_gbit_features_array), 205 phy_gbit_all_ports_features); 206 207 /* 10/100 half/full + 1000 half/full + 10G full*/ 208 linkmode_set_bit_array(phy_all_ports_features_array, 209 ARRAY_SIZE(phy_all_ports_features_array), 210 phy_10gbit_features); 211 linkmode_set_bit_array(phy_10_100_features_array, 212 ARRAY_SIZE(phy_10_100_features_array), 213 phy_10gbit_features); 214 linkmode_set_bit_array(phy_gbit_features_array, 215 ARRAY_SIZE(phy_gbit_features_array), 216 phy_10gbit_features); 217 linkmode_set_bit_array(phy_10gbit_features_array, 218 ARRAY_SIZE(phy_10gbit_features_array), 219 phy_10gbit_features); 220 221 /* 10/100/1000/10G full */ 222 linkmode_set_bit_array(phy_all_ports_features_array, 223 ARRAY_SIZE(phy_all_ports_features_array), 224 phy_10gbit_full_features); 225 linkmode_set_bit_array(phy_10gbit_full_features_array, 226 ARRAY_SIZE(phy_10gbit_full_features_array), 227 phy_10gbit_full_features); 228 /* 10G FEC only */ 229 linkmode_set_bit_array(phy_10gbit_fec_features_array, 230 ARRAY_SIZE(phy_10gbit_fec_features_array), 231 phy_10gbit_fec_features); 232 linkmode_set_bit_array(phy_eee_cap1_features_array, 233 ARRAY_SIZE(phy_eee_cap1_features_array), 234 phy_eee_cap1_features); 235 236 } 237 238 void phy_device_free(struct phy_device *phydev) 239 { 240 put_device(&phydev->mdio.dev); 241 } 242 EXPORT_SYMBOL(phy_device_free); 243 244 static void phy_mdio_device_free(struct mdio_device *mdiodev) 245 { 246 struct phy_device *phydev; 247 248 phydev = container_of(mdiodev, struct phy_device, mdio); 249 phy_device_free(phydev); 250 } 251 252 static void phy_device_release(struct device *dev) 253 { 254 fwnode_handle_put(dev->fwnode); 255 kfree(to_phy_device(dev)); 256 } 257 258 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 259 { 260 struct phy_device *phydev; 261 262 phydev = container_of(mdiodev, struct phy_device, mdio); 263 phy_device_remove(phydev); 264 } 265 266 static struct phy_driver genphy_driver; 267 268 static LIST_HEAD(phy_fixup_list); 269 static DEFINE_MUTEX(phy_fixup_lock); 270 271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 272 { 273 struct device_driver *drv = phydev->mdio.dev.driver; 274 struct phy_driver *phydrv = to_phy_driver(drv); 275 struct net_device *netdev = phydev->attached_dev; 276 277 if (!drv || !phydrv->suspend) 278 return false; 279 280 /* PHY not attached? May suspend if the PHY has not already been 281 * suspended as part of a prior call to phy_disconnect() -> 282 * phy_detach() -> phy_suspend() because the parent netdev might be the 283 * MDIO bus driver and clock gated at this point. 284 */ 285 if (!netdev) 286 goto out; 287 288 if (netdev->wol_enabled) 289 return false; 290 291 /* As long as not all affected network drivers support the 292 * wol_enabled flag, let's check for hints that WoL is enabled. 293 * Don't suspend PHY if the attached netdev parent may wake up. 294 * The parent may point to a PCI device, as in tg3 driver. 295 */ 296 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 297 return false; 298 299 /* Also don't suspend PHY if the netdev itself may wakeup. This 300 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 301 * e.g. SoC devices. 302 */ 303 if (device_may_wakeup(&netdev->dev)) 304 return false; 305 306 out: 307 return !phydev->suspended; 308 } 309 310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 311 { 312 struct phy_device *phydev = to_phy_device(dev); 313 314 if (phydev->mac_managed_pm) 315 return 0; 316 317 /* Wakeup interrupts may occur during the system sleep transition when 318 * the PHY is inaccessible. Set flag to postpone handling until the PHY 319 * has resumed. Wait for concurrent interrupt handler to complete. 320 */ 321 if (phy_interrupt_is_valid(phydev)) { 322 phydev->irq_suspended = 1; 323 synchronize_irq(phydev->irq); 324 } 325 326 /* We must stop the state machine manually, otherwise it stops out of 327 * control, possibly with the phydev->lock held. Upon resume, netdev 328 * may call phy routines that try to grab the same lock, and that may 329 * lead to a deadlock. 330 */ 331 if (phydev->attached_dev && phydev->adjust_link) 332 phy_stop_machine(phydev); 333 334 if (!mdio_bus_phy_may_suspend(phydev)) 335 return 0; 336 337 phydev->suspended_by_mdio_bus = 1; 338 339 return phy_suspend(phydev); 340 } 341 342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 343 { 344 struct phy_device *phydev = to_phy_device(dev); 345 int ret; 346 347 if (phydev->mac_managed_pm) 348 return 0; 349 350 if (!phydev->suspended_by_mdio_bus) 351 goto no_resume; 352 353 phydev->suspended_by_mdio_bus = 0; 354 355 /* If we managed to get here with the PHY state machine in a state 356 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 357 * that something went wrong and we should most likely be using 358 * MAC managed PM, but we are not. 359 */ 360 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 361 phydev->state != PHY_UP); 362 363 ret = phy_init_hw(phydev); 364 if (ret < 0) 365 return ret; 366 367 ret = phy_resume(phydev); 368 if (ret < 0) 369 return ret; 370 no_resume: 371 if (phy_interrupt_is_valid(phydev)) { 372 phydev->irq_suspended = 0; 373 synchronize_irq(phydev->irq); 374 375 /* Rerun interrupts which were postponed by phy_interrupt() 376 * because they occurred during the system sleep transition. 377 */ 378 if (phydev->irq_rerun) { 379 phydev->irq_rerun = 0; 380 enable_irq(phydev->irq); 381 irq_wake_thread(phydev->irq, phydev); 382 } 383 } 384 385 if (phydev->attached_dev && phydev->adjust_link) 386 phy_start_machine(phydev); 387 388 return 0; 389 } 390 391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 392 mdio_bus_phy_resume); 393 394 /** 395 * phy_register_fixup - creates a new phy_fixup and adds it to the list 396 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 397 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 398 * It can also be PHY_ANY_UID 399 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 400 * comparison 401 * @run: The actual code to be run when a matching PHY is found 402 */ 403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 404 int (*run)(struct phy_device *)) 405 { 406 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 407 408 if (!fixup) 409 return -ENOMEM; 410 411 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 412 fixup->phy_uid = phy_uid; 413 fixup->phy_uid_mask = phy_uid_mask; 414 fixup->run = run; 415 416 mutex_lock(&phy_fixup_lock); 417 list_add_tail(&fixup->list, &phy_fixup_list); 418 mutex_unlock(&phy_fixup_lock); 419 420 return 0; 421 } 422 EXPORT_SYMBOL(phy_register_fixup); 423 424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 426 int (*run)(struct phy_device *)) 427 { 428 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 429 } 430 EXPORT_SYMBOL(phy_register_fixup_for_uid); 431 432 /* Registers a fixup to be run on the PHY with id string bus_id */ 433 int phy_register_fixup_for_id(const char *bus_id, 434 int (*run)(struct phy_device *)) 435 { 436 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 437 } 438 EXPORT_SYMBOL(phy_register_fixup_for_id); 439 440 /** 441 * phy_unregister_fixup - remove a phy_fixup from the list 442 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 443 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 444 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 445 */ 446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 447 { 448 struct list_head *pos, *n; 449 struct phy_fixup *fixup; 450 int ret; 451 452 ret = -ENODEV; 453 454 mutex_lock(&phy_fixup_lock); 455 list_for_each_safe(pos, n, &phy_fixup_list) { 456 fixup = list_entry(pos, struct phy_fixup, list); 457 458 if ((!strcmp(fixup->bus_id, bus_id)) && 459 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) { 460 list_del(&fixup->list); 461 kfree(fixup); 462 ret = 0; 463 break; 464 } 465 } 466 mutex_unlock(&phy_fixup_lock); 467 468 return ret; 469 } 470 EXPORT_SYMBOL(phy_unregister_fixup); 471 472 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 474 { 475 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 476 } 477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 478 479 /* Unregisters a fixup of the PHY with id string bus_id */ 480 int phy_unregister_fixup_for_id(const char *bus_id) 481 { 482 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 483 } 484 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 485 486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 487 * Fixups can be set to match any in one or more fields. 488 */ 489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 490 { 491 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 492 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 493 return 0; 494 495 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid, 496 fixup->phy_uid_mask)) 497 if (fixup->phy_uid != PHY_ANY_UID) 498 return 0; 499 500 return 1; 501 } 502 503 /* Runs any matching fixups for this phydev */ 504 static int phy_scan_fixups(struct phy_device *phydev) 505 { 506 struct phy_fixup *fixup; 507 508 mutex_lock(&phy_fixup_lock); 509 list_for_each_entry(fixup, &phy_fixup_list, list) { 510 if (phy_needs_fixup(phydev, fixup)) { 511 int err = fixup->run(phydev); 512 513 if (err < 0) { 514 mutex_unlock(&phy_fixup_lock); 515 return err; 516 } 517 phydev->has_fixups = true; 518 } 519 } 520 mutex_unlock(&phy_fixup_lock); 521 522 return 0; 523 } 524 525 static int phy_bus_match(struct device *dev, struct device_driver *drv) 526 { 527 struct phy_device *phydev = to_phy_device(dev); 528 struct phy_driver *phydrv = to_phy_driver(drv); 529 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 530 int i; 531 532 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 533 return 0; 534 535 if (phydrv->match_phy_device) 536 return phydrv->match_phy_device(phydev); 537 538 if (phydev->is_c45) { 539 for (i = 1; i < num_ids; i++) { 540 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 541 continue; 542 543 if (phy_id_compare(phydev->c45_ids.device_ids[i], 544 phydrv->phy_id, phydrv->phy_id_mask)) 545 return 1; 546 } 547 return 0; 548 } else { 549 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 550 phydrv->phy_id_mask); 551 } 552 } 553 554 static ssize_t 555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 556 { 557 struct phy_device *phydev = to_phy_device(dev); 558 559 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 560 } 561 static DEVICE_ATTR_RO(phy_id); 562 563 static ssize_t 564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 565 { 566 struct phy_device *phydev = to_phy_device(dev); 567 const char *mode = NULL; 568 569 if (phy_is_internal(phydev)) 570 mode = "internal"; 571 else 572 mode = phy_modes(phydev->interface); 573 574 return sysfs_emit(buf, "%s\n", mode); 575 } 576 static DEVICE_ATTR_RO(phy_interface); 577 578 static ssize_t 579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 580 char *buf) 581 { 582 struct phy_device *phydev = to_phy_device(dev); 583 584 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 585 } 586 static DEVICE_ATTR_RO(phy_has_fixups); 587 588 static ssize_t phy_dev_flags_show(struct device *dev, 589 struct device_attribute *attr, 590 char *buf) 591 { 592 struct phy_device *phydev = to_phy_device(dev); 593 594 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 595 } 596 static DEVICE_ATTR_RO(phy_dev_flags); 597 598 static struct attribute *phy_dev_attrs[] = { 599 &dev_attr_phy_id.attr, 600 &dev_attr_phy_interface.attr, 601 &dev_attr_phy_has_fixups.attr, 602 &dev_attr_phy_dev_flags.attr, 603 NULL, 604 }; 605 ATTRIBUTE_GROUPS(phy_dev); 606 607 static const struct device_type mdio_bus_phy_type = { 608 .name = "PHY", 609 .groups = phy_dev_groups, 610 .release = phy_device_release, 611 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 612 }; 613 614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 615 { 616 int ret; 617 618 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 619 MDIO_ID_ARGS(phy_id)); 620 /* We only check for failures in executing the usermode binary, 621 * not whether a PHY driver module exists for the PHY ID. 622 * Accept -ENOENT because this may occur in case no initramfs exists, 623 * then modprobe isn't available. 624 */ 625 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 626 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 627 ret, (unsigned long)phy_id); 628 return ret; 629 } 630 631 return 0; 632 } 633 634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 635 bool is_c45, 636 struct phy_c45_device_ids *c45_ids) 637 { 638 struct phy_device *dev; 639 struct mdio_device *mdiodev; 640 int ret = 0; 641 642 /* We allocate the device, and initialize the default values */ 643 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 644 if (!dev) 645 return ERR_PTR(-ENOMEM); 646 647 mdiodev = &dev->mdio; 648 mdiodev->dev.parent = &bus->dev; 649 mdiodev->dev.bus = &mdio_bus_type; 650 mdiodev->dev.type = &mdio_bus_phy_type; 651 mdiodev->bus = bus; 652 mdiodev->bus_match = phy_bus_match; 653 mdiodev->addr = addr; 654 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 655 mdiodev->device_free = phy_mdio_device_free; 656 mdiodev->device_remove = phy_mdio_device_remove; 657 mdiodev->reset_state = -1; 658 659 dev->speed = SPEED_UNKNOWN; 660 dev->duplex = DUPLEX_UNKNOWN; 661 dev->pause = 0; 662 dev->asym_pause = 0; 663 dev->link = 0; 664 dev->port = PORT_TP; 665 dev->interface = PHY_INTERFACE_MODE_GMII; 666 667 dev->autoneg = AUTONEG_ENABLE; 668 669 dev->pma_extable = -ENODATA; 670 dev->is_c45 = is_c45; 671 dev->phy_id = phy_id; 672 if (c45_ids) 673 dev->c45_ids = *c45_ids; 674 dev->irq = bus->irq[addr]; 675 676 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 677 device_initialize(&mdiodev->dev); 678 679 dev->state = PHY_DOWN; 680 INIT_LIST_HEAD(&dev->leds); 681 682 mutex_init(&dev->lock); 683 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 684 685 /* Request the appropriate module unconditionally; don't 686 * bother trying to do so only if it isn't already loaded, 687 * because that gets complicated. A hotplug event would have 688 * done an unconditional modprobe anyway. 689 * We don't do normal hotplug because it won't work for MDIO 690 * -- because it relies on the device staying around for long 691 * enough for the driver to get loaded. With MDIO, the NIC 692 * driver will get bored and give up as soon as it finds that 693 * there's no driver _already_ loaded. 694 */ 695 if (is_c45 && c45_ids) { 696 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 697 int i; 698 699 for (i = 1; i < num_ids; i++) { 700 if (c45_ids->device_ids[i] == 0xffffffff) 701 continue; 702 703 ret = phy_request_driver_module(dev, 704 c45_ids->device_ids[i]); 705 if (ret) 706 break; 707 } 708 } else { 709 ret = phy_request_driver_module(dev, phy_id); 710 } 711 712 if (ret) { 713 put_device(&mdiodev->dev); 714 dev = ERR_PTR(ret); 715 } 716 717 return dev; 718 } 719 EXPORT_SYMBOL(phy_device_create); 720 721 /* phy_c45_probe_present - checks to see if a MMD is present in the package 722 * @bus: the target MII bus 723 * @prtad: PHY package address on the MII bus 724 * @devad: PHY device (MMD) address 725 * 726 * Read the MDIO_STAT2 register, and check whether a device is responding 727 * at this address. 728 * 729 * Returns: negative error number on bus access error, zero if no device 730 * is responding, or positive if a device is present. 731 */ 732 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 733 { 734 int stat2; 735 736 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 737 if (stat2 < 0) 738 return stat2; 739 740 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 741 } 742 743 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 744 * @bus: the target MII bus 745 * @addr: PHY address on the MII bus 746 * @dev_addr: MMD address in the PHY. 747 * @devices_in_package: where to store the devices in package information. 748 * 749 * Description: reads devices in package registers of a MMD at @dev_addr 750 * from PHY at @addr on @bus. 751 * 752 * Returns: 0 on success, -EIO on failure. 753 */ 754 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 755 u32 *devices_in_package) 756 { 757 int phy_reg; 758 759 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 760 if (phy_reg < 0) 761 return -EIO; 762 *devices_in_package = phy_reg << 16; 763 764 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 765 if (phy_reg < 0) 766 return -EIO; 767 *devices_in_package |= phy_reg; 768 769 return 0; 770 } 771 772 /** 773 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 774 * @bus: the target MII bus 775 * @addr: PHY address on the MII bus 776 * @c45_ids: where to store the c45 ID information. 777 * 778 * Read the PHY "devices in package". If this appears to be valid, read 779 * the PHY identifiers for each device. Return the "devices in package" 780 * and identifiers in @c45_ids. 781 * 782 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 783 * the "devices in package" is invalid. 784 */ 785 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 786 struct phy_c45_device_ids *c45_ids) 787 { 788 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 789 u32 devs_in_pkg = 0; 790 int i, ret, phy_reg; 791 792 /* Find first non-zero Devices In package. Device zero is reserved 793 * for 802.3 c45 complied PHYs, so don't probe it at first. 794 */ 795 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 796 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 797 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 798 /* Check that there is a device present at this 799 * address before reading the devices-in-package 800 * register to avoid reading garbage from the PHY. 801 * Some PHYs (88x3310) vendor space is not IEEE802.3 802 * compliant. 803 */ 804 ret = phy_c45_probe_present(bus, addr, i); 805 if (ret < 0) 806 return -EIO; 807 808 if (!ret) 809 continue; 810 } 811 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 812 if (phy_reg < 0) 813 return -EIO; 814 } 815 816 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 817 /* If mostly Fs, there is no device there, then let's probe 818 * MMD 0, as some 10G PHYs have zero Devices In package, 819 * e.g. Cortina CS4315/CS4340 PHY. 820 */ 821 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 822 if (phy_reg < 0) 823 return -EIO; 824 825 /* no device there, let's get out of here */ 826 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 827 return -ENODEV; 828 } 829 830 /* Now probe Device Identifiers for each device present. */ 831 for (i = 1; i < num_ids; i++) { 832 if (!(devs_in_pkg & (1 << i))) 833 continue; 834 835 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 836 /* Probe the "Device Present" bits for the vendor MMDs 837 * to ignore these if they do not contain IEEE 802.3 838 * registers. 839 */ 840 ret = phy_c45_probe_present(bus, addr, i); 841 if (ret < 0) 842 return ret; 843 844 if (!ret) 845 continue; 846 } 847 848 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 849 if (phy_reg < 0) 850 return -EIO; 851 c45_ids->device_ids[i] = phy_reg << 16; 852 853 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 854 if (phy_reg < 0) 855 return -EIO; 856 c45_ids->device_ids[i] |= phy_reg; 857 } 858 859 c45_ids->devices_in_package = devs_in_pkg; 860 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 861 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 862 863 return 0; 864 } 865 866 /** 867 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 868 * @bus: the target MII bus 869 * @addr: PHY address on the MII bus 870 * @phy_id: where to store the ID retrieved. 871 * 872 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 873 * placing it in @phy_id. Return zero on successful read and the ID is 874 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 875 * or invalid ID. 876 */ 877 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 878 { 879 int phy_reg; 880 881 /* Grab the bits from PHYIR1, and put them in the upper half */ 882 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 883 if (phy_reg < 0) { 884 /* returning -ENODEV doesn't stop bus scanning */ 885 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 886 } 887 888 *phy_id = phy_reg << 16; 889 890 /* Grab the bits from PHYIR2, and put them in the lower half */ 891 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 892 if (phy_reg < 0) { 893 /* returning -ENODEV doesn't stop bus scanning */ 894 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 895 } 896 897 *phy_id |= phy_reg; 898 899 /* If the phy_id is mostly Fs, there is no device there */ 900 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 901 return -ENODEV; 902 903 return 0; 904 } 905 906 /* Extract the phy ID from the compatible string of the form 907 * ethernet-phy-idAAAA.BBBB. 908 */ 909 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 910 { 911 unsigned int upper, lower; 912 const char *cp; 913 int ret; 914 915 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 916 if (ret) 917 return ret; 918 919 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 920 return -EINVAL; 921 922 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 923 return 0; 924 } 925 EXPORT_SYMBOL(fwnode_get_phy_id); 926 927 /** 928 * get_phy_device - reads the specified PHY device and returns its @phy_device 929 * struct 930 * @bus: the target MII bus 931 * @addr: PHY address on the MII bus 932 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 933 * 934 * Probe for a PHY at @addr on @bus. 935 * 936 * When probing for a clause 22 PHY, then read the ID registers. If we find 937 * a valid ID, allocate and return a &struct phy_device. 938 * 939 * When probing for a clause 45 PHY, read the "devices in package" registers. 940 * If the "devices in package" appears valid, read the ID registers for each 941 * MMD, allocate and return a &struct phy_device. 942 * 943 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 944 * no PHY present, or %-EIO on bus access error. 945 */ 946 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 947 { 948 struct phy_c45_device_ids c45_ids; 949 u32 phy_id = 0; 950 int r; 951 952 c45_ids.devices_in_package = 0; 953 c45_ids.mmds_present = 0; 954 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 955 956 if (is_c45) 957 r = get_phy_c45_ids(bus, addr, &c45_ids); 958 else 959 r = get_phy_c22_id(bus, addr, &phy_id); 960 961 if (r) 962 return ERR_PTR(r); 963 964 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 965 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 966 * probe with C45 to see if we're able to get a valid PHY ID in the C45 967 * space, if successful, create the C45 PHY device. 968 */ 969 if (!is_c45 && phy_id == 0 && bus->read_c45) { 970 r = get_phy_c45_ids(bus, addr, &c45_ids); 971 if (!r) 972 return phy_device_create(bus, addr, phy_id, 973 true, &c45_ids); 974 } 975 976 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 977 } 978 EXPORT_SYMBOL(get_phy_device); 979 980 /** 981 * phy_device_register - Register the phy device on the MDIO bus 982 * @phydev: phy_device structure to be added to the MDIO bus 983 */ 984 int phy_device_register(struct phy_device *phydev) 985 { 986 int err; 987 988 err = mdiobus_register_device(&phydev->mdio); 989 if (err) 990 return err; 991 992 /* Deassert the reset signal */ 993 phy_device_reset(phydev, 0); 994 995 /* Run all of the fixups for this PHY */ 996 err = phy_scan_fixups(phydev); 997 if (err) { 998 phydev_err(phydev, "failed to initialize\n"); 999 goto out; 1000 } 1001 1002 err = device_add(&phydev->mdio.dev); 1003 if (err) { 1004 phydev_err(phydev, "failed to add\n"); 1005 goto out; 1006 } 1007 1008 return 0; 1009 1010 out: 1011 /* Assert the reset signal */ 1012 phy_device_reset(phydev, 1); 1013 1014 mdiobus_unregister_device(&phydev->mdio); 1015 return err; 1016 } 1017 EXPORT_SYMBOL(phy_device_register); 1018 1019 /** 1020 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1021 * @phydev: phy_device structure to remove 1022 * 1023 * This doesn't free the phy_device itself, it merely reverses the effects 1024 * of phy_device_register(). Use phy_device_free() to free the device 1025 * after calling this function. 1026 */ 1027 void phy_device_remove(struct phy_device *phydev) 1028 { 1029 unregister_mii_timestamper(phydev->mii_ts); 1030 pse_control_put(phydev->psec); 1031 1032 device_del(&phydev->mdio.dev); 1033 1034 /* Assert the reset signal */ 1035 phy_device_reset(phydev, 1); 1036 1037 mdiobus_unregister_device(&phydev->mdio); 1038 } 1039 EXPORT_SYMBOL(phy_device_remove); 1040 1041 /** 1042 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1043 * @phydev: phy_device structure to read 802.3-c45 IDs 1044 * 1045 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1046 * the "devices in package" is invalid. 1047 */ 1048 int phy_get_c45_ids(struct phy_device *phydev) 1049 { 1050 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1051 &phydev->c45_ids); 1052 } 1053 EXPORT_SYMBOL(phy_get_c45_ids); 1054 1055 /** 1056 * phy_find_first - finds the first PHY device on the bus 1057 * @bus: the target MII bus 1058 */ 1059 struct phy_device *phy_find_first(struct mii_bus *bus) 1060 { 1061 struct phy_device *phydev; 1062 int addr; 1063 1064 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1065 phydev = mdiobus_get_phy(bus, addr); 1066 if (phydev) 1067 return phydev; 1068 } 1069 return NULL; 1070 } 1071 EXPORT_SYMBOL(phy_find_first); 1072 1073 static void phy_link_change(struct phy_device *phydev, bool up) 1074 { 1075 struct net_device *netdev = phydev->attached_dev; 1076 1077 if (up) 1078 netif_carrier_on(netdev); 1079 else 1080 netif_carrier_off(netdev); 1081 phydev->adjust_link(netdev); 1082 if (phydev->mii_ts && phydev->mii_ts->link_state) 1083 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1084 } 1085 1086 /** 1087 * phy_prepare_link - prepares the PHY layer to monitor link status 1088 * @phydev: target phy_device struct 1089 * @handler: callback function for link status change notifications 1090 * 1091 * Description: Tells the PHY infrastructure to handle the 1092 * gory details on monitoring link status (whether through 1093 * polling or an interrupt), and to call back to the 1094 * connected device driver when the link status changes. 1095 * If you want to monitor your own link state, don't call 1096 * this function. 1097 */ 1098 static void phy_prepare_link(struct phy_device *phydev, 1099 void (*handler)(struct net_device *)) 1100 { 1101 phydev->adjust_link = handler; 1102 } 1103 1104 /** 1105 * phy_connect_direct - connect an ethernet device to a specific phy_device 1106 * @dev: the network device to connect 1107 * @phydev: the pointer to the phy device 1108 * @handler: callback function for state change notifications 1109 * @interface: PHY device's interface 1110 */ 1111 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1112 void (*handler)(struct net_device *), 1113 phy_interface_t interface) 1114 { 1115 int rc; 1116 1117 if (!dev) 1118 return -EINVAL; 1119 1120 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1121 if (rc) 1122 return rc; 1123 1124 phy_prepare_link(phydev, handler); 1125 if (phy_interrupt_is_valid(phydev)) 1126 phy_request_interrupt(phydev); 1127 1128 return 0; 1129 } 1130 EXPORT_SYMBOL(phy_connect_direct); 1131 1132 /** 1133 * phy_connect - connect an ethernet device to a PHY device 1134 * @dev: the network device to connect 1135 * @bus_id: the id string of the PHY device to connect 1136 * @handler: callback function for state change notifications 1137 * @interface: PHY device's interface 1138 * 1139 * Description: Convenience function for connecting ethernet 1140 * devices to PHY devices. The default behavior is for 1141 * the PHY infrastructure to handle everything, and only notify 1142 * the connected driver when the link status changes. If you 1143 * don't want, or can't use the provided functionality, you may 1144 * choose to call only the subset of functions which provide 1145 * the desired functionality. 1146 */ 1147 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1148 void (*handler)(struct net_device *), 1149 phy_interface_t interface) 1150 { 1151 struct phy_device *phydev; 1152 struct device *d; 1153 int rc; 1154 1155 /* Search the list of PHY devices on the mdio bus for the 1156 * PHY with the requested name 1157 */ 1158 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1159 if (!d) { 1160 pr_err("PHY %s not found\n", bus_id); 1161 return ERR_PTR(-ENODEV); 1162 } 1163 phydev = to_phy_device(d); 1164 1165 rc = phy_connect_direct(dev, phydev, handler, interface); 1166 put_device(d); 1167 if (rc) 1168 return ERR_PTR(rc); 1169 1170 return phydev; 1171 } 1172 EXPORT_SYMBOL(phy_connect); 1173 1174 /** 1175 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1176 * device 1177 * @phydev: target phy_device struct 1178 */ 1179 void phy_disconnect(struct phy_device *phydev) 1180 { 1181 if (phy_is_started(phydev)) 1182 phy_stop(phydev); 1183 1184 if (phy_interrupt_is_valid(phydev)) 1185 phy_free_interrupt(phydev); 1186 1187 phydev->adjust_link = NULL; 1188 1189 phy_detach(phydev); 1190 } 1191 EXPORT_SYMBOL(phy_disconnect); 1192 1193 /** 1194 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1195 * @phydev: The PHY device to poll 1196 * 1197 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1198 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1199 * register must be polled until the BMCR_RESET bit clears. 1200 * 1201 * Furthermore, any attempts to write to PHY registers may have no effect 1202 * or even generate MDIO bus errors until this is complete. 1203 * 1204 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1205 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1206 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1207 * effort to support such broken PHYs, this function is separate from the 1208 * standard phy_init_hw() which will zero all the other bits in the BMCR 1209 * and reapply all driver-specific and board-specific fixups. 1210 */ 1211 static int phy_poll_reset(struct phy_device *phydev) 1212 { 1213 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1214 int ret, val; 1215 1216 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1217 50000, 600000, true); 1218 if (ret) 1219 return ret; 1220 /* Some chips (smsc911x) may still need up to another 1ms after the 1221 * BMCR_RESET bit is cleared before they are usable. 1222 */ 1223 msleep(1); 1224 return 0; 1225 } 1226 1227 int phy_init_hw(struct phy_device *phydev) 1228 { 1229 int ret = 0; 1230 1231 /* Deassert the reset signal */ 1232 phy_device_reset(phydev, 0); 1233 1234 if (!phydev->drv) 1235 return 0; 1236 1237 if (phydev->drv->soft_reset) { 1238 ret = phydev->drv->soft_reset(phydev); 1239 if (ret < 0) 1240 return ret; 1241 1242 /* see comment in genphy_soft_reset for an explanation */ 1243 phydev->suspended = 0; 1244 } 1245 1246 ret = phy_scan_fixups(phydev); 1247 if (ret < 0) 1248 return ret; 1249 1250 phy_interface_zero(phydev->possible_interfaces); 1251 1252 if (phydev->drv->config_init) { 1253 ret = phydev->drv->config_init(phydev); 1254 if (ret < 0) 1255 return ret; 1256 } 1257 1258 if (phydev->drv->config_intr) { 1259 ret = phydev->drv->config_intr(phydev); 1260 if (ret < 0) 1261 return ret; 1262 } 1263 1264 return 0; 1265 } 1266 EXPORT_SYMBOL(phy_init_hw); 1267 1268 void phy_attached_info(struct phy_device *phydev) 1269 { 1270 phy_attached_print(phydev, NULL); 1271 } 1272 EXPORT_SYMBOL(phy_attached_info); 1273 1274 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1275 char *phy_attached_info_irq(struct phy_device *phydev) 1276 { 1277 char *irq_str; 1278 char irq_num[8]; 1279 1280 switch(phydev->irq) { 1281 case PHY_POLL: 1282 irq_str = "POLL"; 1283 break; 1284 case PHY_MAC_INTERRUPT: 1285 irq_str = "MAC"; 1286 break; 1287 default: 1288 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1289 irq_str = irq_num; 1290 break; 1291 } 1292 1293 return kasprintf(GFP_KERNEL, "%s", irq_str); 1294 } 1295 EXPORT_SYMBOL(phy_attached_info_irq); 1296 1297 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1298 { 1299 const char *unbound = phydev->drv ? "" : "[unbound] "; 1300 char *irq_str = phy_attached_info_irq(phydev); 1301 1302 if (!fmt) { 1303 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1304 phydev_name(phydev), irq_str); 1305 } else { 1306 va_list ap; 1307 1308 phydev_info(phydev, ATTACHED_FMT, unbound, 1309 phydev_name(phydev), irq_str); 1310 1311 va_start(ap, fmt); 1312 vprintk(fmt, ap); 1313 va_end(ap); 1314 } 1315 kfree(irq_str); 1316 } 1317 EXPORT_SYMBOL(phy_attached_print); 1318 1319 static void phy_sysfs_create_links(struct phy_device *phydev) 1320 { 1321 struct net_device *dev = phydev->attached_dev; 1322 int err; 1323 1324 if (!dev) 1325 return; 1326 1327 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1328 "attached_dev"); 1329 if (err) 1330 return; 1331 1332 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1333 &phydev->mdio.dev.kobj, 1334 "phydev"); 1335 if (err) { 1336 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1337 kobject_name(&phydev->mdio.dev.kobj), 1338 err); 1339 /* non-fatal - some net drivers can use one netdevice 1340 * with more then one phy 1341 */ 1342 } 1343 1344 phydev->sysfs_links = true; 1345 } 1346 1347 static ssize_t 1348 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1349 char *buf) 1350 { 1351 struct phy_device *phydev = to_phy_device(dev); 1352 1353 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1354 } 1355 static DEVICE_ATTR_RO(phy_standalone); 1356 1357 /** 1358 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1359 * @upstream: pointer to the phy device 1360 * @bus: sfp bus representing cage being attached 1361 * 1362 * This is used to fill in the sfp_upstream_ops .attach member. 1363 */ 1364 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1365 { 1366 struct phy_device *phydev = upstream; 1367 1368 if (phydev->attached_dev) 1369 phydev->attached_dev->sfp_bus = bus; 1370 phydev->sfp_bus_attached = true; 1371 } 1372 EXPORT_SYMBOL(phy_sfp_attach); 1373 1374 /** 1375 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1376 * @upstream: pointer to the phy device 1377 * @bus: sfp bus representing cage being attached 1378 * 1379 * This is used to fill in the sfp_upstream_ops .detach member. 1380 */ 1381 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1382 { 1383 struct phy_device *phydev = upstream; 1384 1385 if (phydev->attached_dev) 1386 phydev->attached_dev->sfp_bus = NULL; 1387 phydev->sfp_bus_attached = false; 1388 } 1389 EXPORT_SYMBOL(phy_sfp_detach); 1390 1391 /** 1392 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1393 * @phydev: Pointer to phy_device 1394 * @ops: SFP's upstream operations 1395 */ 1396 int phy_sfp_probe(struct phy_device *phydev, 1397 const struct sfp_upstream_ops *ops) 1398 { 1399 struct sfp_bus *bus; 1400 int ret = 0; 1401 1402 if (phydev->mdio.dev.fwnode) { 1403 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1404 if (IS_ERR(bus)) 1405 return PTR_ERR(bus); 1406 1407 phydev->sfp_bus = bus; 1408 1409 ret = sfp_bus_add_upstream(bus, phydev, ops); 1410 sfp_bus_put(bus); 1411 } 1412 return ret; 1413 } 1414 EXPORT_SYMBOL(phy_sfp_probe); 1415 1416 /** 1417 * phy_attach_direct - attach a network device to a given PHY device pointer 1418 * @dev: network device to attach 1419 * @phydev: Pointer to phy_device to attach 1420 * @flags: PHY device's dev_flags 1421 * @interface: PHY device's interface 1422 * 1423 * Description: Called by drivers to attach to a particular PHY 1424 * device. The phy_device is found, and properly hooked up 1425 * to the phy_driver. If no driver is attached, then a 1426 * generic driver is used. The phy_device is given a ptr to 1427 * the attaching device, and given a callback for link status 1428 * change. The phy_device is returned to the attaching driver. 1429 * This function takes a reference on the phy device. 1430 */ 1431 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1432 u32 flags, phy_interface_t interface) 1433 { 1434 struct mii_bus *bus = phydev->mdio.bus; 1435 struct device *d = &phydev->mdio.dev; 1436 struct module *ndev_owner = NULL; 1437 bool using_genphy = false; 1438 int err; 1439 1440 /* For Ethernet device drivers that register their own MDIO bus, we 1441 * will have bus->owner match ndev_mod, so we do not want to increment 1442 * our own module->refcnt here, otherwise we would not be able to 1443 * unload later on. 1444 */ 1445 if (dev) 1446 ndev_owner = dev->dev.parent->driver->owner; 1447 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1448 phydev_err(phydev, "failed to get the bus module\n"); 1449 return -EIO; 1450 } 1451 1452 get_device(d); 1453 1454 /* Assume that if there is no driver, that it doesn't 1455 * exist, and we should use the genphy driver. 1456 */ 1457 if (!d->driver) { 1458 if (phydev->is_c45) 1459 d->driver = &genphy_c45_driver.mdiodrv.driver; 1460 else 1461 d->driver = &genphy_driver.mdiodrv.driver; 1462 1463 using_genphy = true; 1464 } 1465 1466 if (!try_module_get(d->driver->owner)) { 1467 phydev_err(phydev, "failed to get the device driver module\n"); 1468 err = -EIO; 1469 goto error_put_device; 1470 } 1471 1472 if (using_genphy) { 1473 err = d->driver->probe(d); 1474 if (err >= 0) 1475 err = device_bind_driver(d); 1476 1477 if (err) 1478 goto error_module_put; 1479 } 1480 1481 if (phydev->attached_dev) { 1482 dev_err(&dev->dev, "PHY already attached\n"); 1483 err = -EBUSY; 1484 goto error; 1485 } 1486 1487 phydev->phy_link_change = phy_link_change; 1488 if (dev) { 1489 phydev->attached_dev = dev; 1490 dev->phydev = phydev; 1491 1492 if (phydev->sfp_bus_attached) 1493 dev->sfp_bus = phydev->sfp_bus; 1494 } 1495 1496 /* Some Ethernet drivers try to connect to a PHY device before 1497 * calling register_netdevice() -> netdev_register_kobject() and 1498 * does the dev->dev.kobj initialization. Here we only check for 1499 * success which indicates that the network device kobject is 1500 * ready. Once we do that we still need to keep track of whether 1501 * links were successfully set up or not for phy_detach() to 1502 * remove them accordingly. 1503 */ 1504 phydev->sysfs_links = false; 1505 1506 phy_sysfs_create_links(phydev); 1507 1508 if (!phydev->attached_dev) { 1509 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1510 &dev_attr_phy_standalone.attr); 1511 if (err) 1512 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1513 } 1514 1515 phydev->dev_flags |= flags; 1516 1517 phydev->interface = interface; 1518 1519 phydev->state = PHY_READY; 1520 1521 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1522 1523 /* PHYs can request to use poll mode even though they have an 1524 * associated interrupt line. This could be the case if they 1525 * detect a broken interrupt handling. 1526 */ 1527 if (phydev->dev_flags & PHY_F_NO_IRQ) 1528 phydev->irq = PHY_POLL; 1529 1530 /* Port is set to PORT_TP by default and the actual PHY driver will set 1531 * it to different value depending on the PHY configuration. If we have 1532 * the generic PHY driver we can't figure it out, thus set the old 1533 * legacy PORT_MII value. 1534 */ 1535 if (using_genphy) 1536 phydev->port = PORT_MII; 1537 1538 /* Initial carrier state is off as the phy is about to be 1539 * (re)initialized. 1540 */ 1541 if (dev) 1542 netif_carrier_off(phydev->attached_dev); 1543 1544 /* Do initial configuration here, now that 1545 * we have certain key parameters 1546 * (dev_flags and interface) 1547 */ 1548 err = phy_init_hw(phydev); 1549 if (err) 1550 goto error; 1551 1552 phy_resume(phydev); 1553 if (!phydev->is_on_sfp_module) 1554 phy_led_triggers_register(phydev); 1555 1556 /** 1557 * If the external phy used by current mac interface is managed by 1558 * another mac interface, so we should create a device link between 1559 * phy dev and mac dev. 1560 */ 1561 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1562 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1563 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1564 1565 return err; 1566 1567 error: 1568 /* phy_detach() does all of the cleanup below */ 1569 phy_detach(phydev); 1570 return err; 1571 1572 error_module_put: 1573 module_put(d->driver->owner); 1574 d->driver = NULL; 1575 error_put_device: 1576 put_device(d); 1577 if (ndev_owner != bus->owner) 1578 module_put(bus->owner); 1579 return err; 1580 } 1581 EXPORT_SYMBOL(phy_attach_direct); 1582 1583 /** 1584 * phy_attach - attach a network device to a particular PHY device 1585 * @dev: network device to attach 1586 * @bus_id: Bus ID of PHY device to attach 1587 * @interface: PHY device's interface 1588 * 1589 * Description: Same as phy_attach_direct() except that a PHY bus_id 1590 * string is passed instead of a pointer to a struct phy_device. 1591 */ 1592 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1593 phy_interface_t interface) 1594 { 1595 struct bus_type *bus = &mdio_bus_type; 1596 struct phy_device *phydev; 1597 struct device *d; 1598 int rc; 1599 1600 if (!dev) 1601 return ERR_PTR(-EINVAL); 1602 1603 /* Search the list of PHY devices on the mdio bus for the 1604 * PHY with the requested name 1605 */ 1606 d = bus_find_device_by_name(bus, NULL, bus_id); 1607 if (!d) { 1608 pr_err("PHY %s not found\n", bus_id); 1609 return ERR_PTR(-ENODEV); 1610 } 1611 phydev = to_phy_device(d); 1612 1613 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1614 put_device(d); 1615 if (rc) 1616 return ERR_PTR(rc); 1617 1618 return phydev; 1619 } 1620 EXPORT_SYMBOL(phy_attach); 1621 1622 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1623 struct device_driver *driver) 1624 { 1625 struct device *d = &phydev->mdio.dev; 1626 bool ret = false; 1627 1628 if (!phydev->drv) 1629 return ret; 1630 1631 get_device(d); 1632 ret = d->driver == driver; 1633 put_device(d); 1634 1635 return ret; 1636 } 1637 1638 bool phy_driver_is_genphy(struct phy_device *phydev) 1639 { 1640 return phy_driver_is_genphy_kind(phydev, 1641 &genphy_driver.mdiodrv.driver); 1642 } 1643 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1644 1645 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1646 { 1647 return phy_driver_is_genphy_kind(phydev, 1648 &genphy_c45_driver.mdiodrv.driver); 1649 } 1650 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1651 1652 /** 1653 * phy_package_join - join a common PHY group 1654 * @phydev: target phy_device struct 1655 * @base_addr: cookie and base PHY address of PHY package for offset 1656 * calculation of global register access 1657 * @priv_size: if non-zero allocate this amount of bytes for private data 1658 * 1659 * This joins a PHY group and provides a shared storage for all phydevs in 1660 * this group. This is intended to be used for packages which contain 1661 * more than one PHY, for example a quad PHY transceiver. 1662 * 1663 * The base_addr parameter serves as cookie which has to have the same values 1664 * for all members of one group and as the base PHY address of the PHY package 1665 * for offset calculation to access generic registers of a PHY package. 1666 * Usually, one of the PHY addresses of the different PHYs in the package 1667 * provides access to these global registers. 1668 * The address which is given here, will be used in the phy_package_read() 1669 * and phy_package_write() convenience functions as base and added to the 1670 * passed offset in those functions. 1671 * 1672 * This will set the shared pointer of the phydev to the shared storage. 1673 * If this is the first call for a this cookie the shared storage will be 1674 * allocated. If priv_size is non-zero, the given amount of bytes are 1675 * allocated for the priv member. 1676 * 1677 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1678 * with the same cookie but a different priv_size is an error. 1679 */ 1680 int phy_package_join(struct phy_device *phydev, int base_addr, size_t priv_size) 1681 { 1682 struct mii_bus *bus = phydev->mdio.bus; 1683 struct phy_package_shared *shared; 1684 int ret; 1685 1686 if (base_addr < 0 || base_addr >= PHY_MAX_ADDR) 1687 return -EINVAL; 1688 1689 mutex_lock(&bus->shared_lock); 1690 shared = bus->shared[base_addr]; 1691 if (!shared) { 1692 ret = -ENOMEM; 1693 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1694 if (!shared) 1695 goto err_unlock; 1696 if (priv_size) { 1697 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1698 if (!shared->priv) 1699 goto err_free; 1700 shared->priv_size = priv_size; 1701 } 1702 shared->base_addr = base_addr; 1703 refcount_set(&shared->refcnt, 1); 1704 bus->shared[base_addr] = shared; 1705 } else { 1706 ret = -EINVAL; 1707 if (priv_size && priv_size != shared->priv_size) 1708 goto err_unlock; 1709 refcount_inc(&shared->refcnt); 1710 } 1711 mutex_unlock(&bus->shared_lock); 1712 1713 phydev->shared = shared; 1714 1715 return 0; 1716 1717 err_free: 1718 kfree(shared); 1719 err_unlock: 1720 mutex_unlock(&bus->shared_lock); 1721 return ret; 1722 } 1723 EXPORT_SYMBOL_GPL(phy_package_join); 1724 1725 /** 1726 * phy_package_leave - leave a common PHY group 1727 * @phydev: target phy_device struct 1728 * 1729 * This leaves a PHY group created by phy_package_join(). If this phydev 1730 * was the last user of the shared data between the group, this data is 1731 * freed. Resets the phydev->shared pointer to NULL. 1732 */ 1733 void phy_package_leave(struct phy_device *phydev) 1734 { 1735 struct phy_package_shared *shared = phydev->shared; 1736 struct mii_bus *bus = phydev->mdio.bus; 1737 1738 if (!shared) 1739 return; 1740 1741 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1742 bus->shared[shared->base_addr] = NULL; 1743 mutex_unlock(&bus->shared_lock); 1744 kfree(shared->priv); 1745 kfree(shared); 1746 } 1747 1748 phydev->shared = NULL; 1749 } 1750 EXPORT_SYMBOL_GPL(phy_package_leave); 1751 1752 static void devm_phy_package_leave(struct device *dev, void *res) 1753 { 1754 phy_package_leave(*(struct phy_device **)res); 1755 } 1756 1757 /** 1758 * devm_phy_package_join - resource managed phy_package_join() 1759 * @dev: device that is registering this PHY package 1760 * @phydev: target phy_device struct 1761 * @base_addr: cookie and base PHY address of PHY package for offset 1762 * calculation of global register access 1763 * @priv_size: if non-zero allocate this amount of bytes for private data 1764 * 1765 * Managed phy_package_join(). Shared storage fetched by this function, 1766 * phy_package_leave() is automatically called on driver detach. See 1767 * phy_package_join() for more information. 1768 */ 1769 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1770 int base_addr, size_t priv_size) 1771 { 1772 struct phy_device **ptr; 1773 int ret; 1774 1775 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1776 GFP_KERNEL); 1777 if (!ptr) 1778 return -ENOMEM; 1779 1780 ret = phy_package_join(phydev, base_addr, priv_size); 1781 1782 if (!ret) { 1783 *ptr = phydev; 1784 devres_add(dev, ptr); 1785 } else { 1786 devres_free(ptr); 1787 } 1788 1789 return ret; 1790 } 1791 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1792 1793 /** 1794 * phy_detach - detach a PHY device from its network device 1795 * @phydev: target phy_device struct 1796 * 1797 * This detaches the phy device from its network device and the phy 1798 * driver, and drops the reference count taken in phy_attach_direct(). 1799 */ 1800 void phy_detach(struct phy_device *phydev) 1801 { 1802 struct net_device *dev = phydev->attached_dev; 1803 struct module *ndev_owner = NULL; 1804 struct mii_bus *bus; 1805 1806 if (phydev->devlink) 1807 device_link_del(phydev->devlink); 1808 1809 if (phydev->sysfs_links) { 1810 if (dev) 1811 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1812 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1813 } 1814 1815 if (!phydev->attached_dev) 1816 sysfs_remove_file(&phydev->mdio.dev.kobj, 1817 &dev_attr_phy_standalone.attr); 1818 1819 phy_suspend(phydev); 1820 if (dev) { 1821 phydev->attached_dev->phydev = NULL; 1822 phydev->attached_dev = NULL; 1823 } 1824 phydev->phylink = NULL; 1825 1826 if (!phydev->is_on_sfp_module) 1827 phy_led_triggers_unregister(phydev); 1828 1829 if (phydev->mdio.dev.driver) 1830 module_put(phydev->mdio.dev.driver->owner); 1831 1832 /* If the device had no specific driver before (i.e. - it 1833 * was using the generic driver), we unbind the device 1834 * from the generic driver so that there's a chance a 1835 * real driver could be loaded 1836 */ 1837 if (phy_driver_is_genphy(phydev) || 1838 phy_driver_is_genphy_10g(phydev)) 1839 device_release_driver(&phydev->mdio.dev); 1840 1841 /* Assert the reset signal */ 1842 phy_device_reset(phydev, 1); 1843 1844 /* 1845 * The phydev might go away on the put_device() below, so avoid 1846 * a use-after-free bug by reading the underlying bus first. 1847 */ 1848 bus = phydev->mdio.bus; 1849 1850 put_device(&phydev->mdio.dev); 1851 if (dev) 1852 ndev_owner = dev->dev.parent->driver->owner; 1853 if (ndev_owner != bus->owner) 1854 module_put(bus->owner); 1855 } 1856 EXPORT_SYMBOL(phy_detach); 1857 1858 int phy_suspend(struct phy_device *phydev) 1859 { 1860 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1861 struct net_device *netdev = phydev->attached_dev; 1862 struct phy_driver *phydrv = phydev->drv; 1863 int ret; 1864 1865 if (phydev->suspended) 1866 return 0; 1867 1868 phy_ethtool_get_wol(phydev, &wol); 1869 phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled); 1870 /* If the device has WOL enabled, we cannot suspend the PHY */ 1871 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 1872 return -EBUSY; 1873 1874 if (!phydrv || !phydrv->suspend) 1875 return 0; 1876 1877 ret = phydrv->suspend(phydev); 1878 if (!ret) 1879 phydev->suspended = true; 1880 1881 return ret; 1882 } 1883 EXPORT_SYMBOL(phy_suspend); 1884 1885 int __phy_resume(struct phy_device *phydev) 1886 { 1887 struct phy_driver *phydrv = phydev->drv; 1888 int ret; 1889 1890 lockdep_assert_held(&phydev->lock); 1891 1892 if (!phydrv || !phydrv->resume) 1893 return 0; 1894 1895 ret = phydrv->resume(phydev); 1896 if (!ret) 1897 phydev->suspended = false; 1898 1899 return ret; 1900 } 1901 EXPORT_SYMBOL(__phy_resume); 1902 1903 int phy_resume(struct phy_device *phydev) 1904 { 1905 int ret; 1906 1907 mutex_lock(&phydev->lock); 1908 ret = __phy_resume(phydev); 1909 mutex_unlock(&phydev->lock); 1910 1911 return ret; 1912 } 1913 EXPORT_SYMBOL(phy_resume); 1914 1915 int phy_loopback(struct phy_device *phydev, bool enable) 1916 { 1917 int ret = 0; 1918 1919 if (!phydev->drv) 1920 return -EIO; 1921 1922 mutex_lock(&phydev->lock); 1923 1924 if (enable && phydev->loopback_enabled) { 1925 ret = -EBUSY; 1926 goto out; 1927 } 1928 1929 if (!enable && !phydev->loopback_enabled) { 1930 ret = -EINVAL; 1931 goto out; 1932 } 1933 1934 if (phydev->drv->set_loopback) 1935 ret = phydev->drv->set_loopback(phydev, enable); 1936 else 1937 ret = genphy_loopback(phydev, enable); 1938 1939 if (ret) 1940 goto out; 1941 1942 phydev->loopback_enabled = enable; 1943 1944 out: 1945 mutex_unlock(&phydev->lock); 1946 return ret; 1947 } 1948 EXPORT_SYMBOL(phy_loopback); 1949 1950 /** 1951 * phy_reset_after_clk_enable - perform a PHY reset if needed 1952 * @phydev: target phy_device struct 1953 * 1954 * Description: Some PHYs are known to need a reset after their refclk was 1955 * enabled. This function evaluates the flags and perform the reset if it's 1956 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1957 * was reset. 1958 */ 1959 int phy_reset_after_clk_enable(struct phy_device *phydev) 1960 { 1961 if (!phydev || !phydev->drv) 1962 return -ENODEV; 1963 1964 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1965 phy_device_reset(phydev, 1); 1966 phy_device_reset(phydev, 0); 1967 return 1; 1968 } 1969 1970 return 0; 1971 } 1972 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1973 1974 /* Generic PHY support and helper functions */ 1975 1976 /** 1977 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1978 * @phydev: target phy_device struct 1979 * 1980 * Description: Writes MII_ADVERTISE with the appropriate values, 1981 * after sanitizing the values to make sure we only advertise 1982 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1983 * hasn't changed, and > 0 if it has changed. 1984 */ 1985 static int genphy_config_advert(struct phy_device *phydev) 1986 { 1987 int err, bmsr, changed = 0; 1988 u32 adv; 1989 1990 /* Only allow advertising what this PHY supports */ 1991 linkmode_and(phydev->advertising, phydev->advertising, 1992 phydev->supported); 1993 1994 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1995 1996 /* Setup standard advertisement */ 1997 err = phy_modify_changed(phydev, MII_ADVERTISE, 1998 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1999 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 2000 adv); 2001 if (err < 0) 2002 return err; 2003 if (err > 0) 2004 changed = 1; 2005 2006 bmsr = phy_read(phydev, MII_BMSR); 2007 if (bmsr < 0) 2008 return bmsr; 2009 2010 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2011 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2012 * logical 1. 2013 */ 2014 if (!(bmsr & BMSR_ESTATEN)) 2015 return changed; 2016 2017 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2018 2019 err = phy_modify_changed(phydev, MII_CTRL1000, 2020 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2021 adv); 2022 if (err < 0) 2023 return err; 2024 if (err > 0) 2025 changed = 1; 2026 2027 return changed; 2028 } 2029 2030 /** 2031 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2032 * @phydev: target phy_device struct 2033 * 2034 * Description: Writes MII_ADVERTISE with the appropriate values, 2035 * after sanitizing the values to make sure we only advertise 2036 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2037 * hasn't changed, and > 0 if it has changed. This function is intended 2038 * for Clause 37 1000Base-X mode. 2039 */ 2040 static int genphy_c37_config_advert(struct phy_device *phydev) 2041 { 2042 u16 adv = 0; 2043 2044 /* Only allow advertising what this PHY supports */ 2045 linkmode_and(phydev->advertising, phydev->advertising, 2046 phydev->supported); 2047 2048 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2049 phydev->advertising)) 2050 adv |= ADVERTISE_1000XFULL; 2051 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2052 phydev->advertising)) 2053 adv |= ADVERTISE_1000XPAUSE; 2054 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2055 phydev->advertising)) 2056 adv |= ADVERTISE_1000XPSE_ASYM; 2057 2058 return phy_modify_changed(phydev, MII_ADVERTISE, 2059 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2060 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2061 adv); 2062 } 2063 2064 /** 2065 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2066 * @phydev: target phy_device struct 2067 * 2068 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2069 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2070 * changed, and 1 if it has changed. 2071 */ 2072 int genphy_config_eee_advert(struct phy_device *phydev) 2073 { 2074 int err; 2075 2076 /* Nothing to disable */ 2077 if (!phydev->eee_broken_modes) 2078 return 0; 2079 2080 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2081 phydev->eee_broken_modes, 0); 2082 /* If the call failed, we assume that EEE is not supported */ 2083 return err < 0 ? 0 : err; 2084 } 2085 EXPORT_SYMBOL(genphy_config_eee_advert); 2086 2087 /** 2088 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2089 * @phydev: target phy_device struct 2090 * 2091 * Description: Configures MII_BMCR to force speed/duplex 2092 * to the values in phydev. Assumes that the values are valid. 2093 * Please see phy_sanitize_settings(). 2094 */ 2095 int genphy_setup_forced(struct phy_device *phydev) 2096 { 2097 u16 ctl; 2098 2099 phydev->pause = 0; 2100 phydev->asym_pause = 0; 2101 2102 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2103 2104 return phy_modify(phydev, MII_BMCR, 2105 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2106 } 2107 EXPORT_SYMBOL(genphy_setup_forced); 2108 2109 static int genphy_setup_master_slave(struct phy_device *phydev) 2110 { 2111 u16 ctl = 0; 2112 2113 if (!phydev->is_gigabit_capable) 2114 return 0; 2115 2116 switch (phydev->master_slave_set) { 2117 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2118 ctl |= CTL1000_PREFER_MASTER; 2119 break; 2120 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2121 break; 2122 case MASTER_SLAVE_CFG_MASTER_FORCE: 2123 ctl |= CTL1000_AS_MASTER; 2124 fallthrough; 2125 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2126 ctl |= CTL1000_ENABLE_MASTER; 2127 break; 2128 case MASTER_SLAVE_CFG_UNKNOWN: 2129 case MASTER_SLAVE_CFG_UNSUPPORTED: 2130 return 0; 2131 default: 2132 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2133 return -EOPNOTSUPP; 2134 } 2135 2136 return phy_modify_changed(phydev, MII_CTRL1000, 2137 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2138 CTL1000_PREFER_MASTER), ctl); 2139 } 2140 2141 int genphy_read_master_slave(struct phy_device *phydev) 2142 { 2143 int cfg, state; 2144 int val; 2145 2146 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2147 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2148 2149 val = phy_read(phydev, MII_CTRL1000); 2150 if (val < 0) 2151 return val; 2152 2153 if (val & CTL1000_ENABLE_MASTER) { 2154 if (val & CTL1000_AS_MASTER) 2155 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2156 else 2157 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2158 } else { 2159 if (val & CTL1000_PREFER_MASTER) 2160 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2161 else 2162 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2163 } 2164 2165 val = phy_read(phydev, MII_STAT1000); 2166 if (val < 0) 2167 return val; 2168 2169 if (val & LPA_1000MSFAIL) { 2170 state = MASTER_SLAVE_STATE_ERR; 2171 } else if (phydev->link) { 2172 /* this bits are valid only for active link */ 2173 if (val & LPA_1000MSRES) 2174 state = MASTER_SLAVE_STATE_MASTER; 2175 else 2176 state = MASTER_SLAVE_STATE_SLAVE; 2177 } else { 2178 state = MASTER_SLAVE_STATE_UNKNOWN; 2179 } 2180 2181 phydev->master_slave_get = cfg; 2182 phydev->master_slave_state = state; 2183 2184 return 0; 2185 } 2186 EXPORT_SYMBOL(genphy_read_master_slave); 2187 2188 /** 2189 * genphy_restart_aneg - Enable and Restart Autonegotiation 2190 * @phydev: target phy_device struct 2191 */ 2192 int genphy_restart_aneg(struct phy_device *phydev) 2193 { 2194 /* Don't isolate the PHY if we're negotiating */ 2195 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2196 BMCR_ANENABLE | BMCR_ANRESTART); 2197 } 2198 EXPORT_SYMBOL(genphy_restart_aneg); 2199 2200 /** 2201 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2202 * @phydev: target phy_device struct 2203 * @restart: whether aneg restart is requested 2204 * 2205 * Check, and restart auto-negotiation if needed. 2206 */ 2207 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2208 { 2209 int ret; 2210 2211 if (!restart) { 2212 /* Advertisement hasn't changed, but maybe aneg was never on to 2213 * begin with? Or maybe phy was isolated? 2214 */ 2215 ret = phy_read(phydev, MII_BMCR); 2216 if (ret < 0) 2217 return ret; 2218 2219 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2220 restart = true; 2221 } 2222 2223 if (restart) 2224 return genphy_restart_aneg(phydev); 2225 2226 return 0; 2227 } 2228 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2229 2230 /** 2231 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2232 * @phydev: target phy_device struct 2233 * @changed: whether autoneg is requested 2234 * 2235 * Description: If auto-negotiation is enabled, we configure the 2236 * advertising, and then restart auto-negotiation. If it is not 2237 * enabled, then we write the BMCR. 2238 */ 2239 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2240 { 2241 int err; 2242 2243 err = genphy_c45_an_config_eee_aneg(phydev); 2244 if (err < 0) 2245 return err; 2246 else if (err) 2247 changed = true; 2248 2249 err = genphy_setup_master_slave(phydev); 2250 if (err < 0) 2251 return err; 2252 else if (err) 2253 changed = true; 2254 2255 if (AUTONEG_ENABLE != phydev->autoneg) 2256 return genphy_setup_forced(phydev); 2257 2258 err = genphy_config_advert(phydev); 2259 if (err < 0) /* error */ 2260 return err; 2261 else if (err) 2262 changed = true; 2263 2264 return genphy_check_and_restart_aneg(phydev, changed); 2265 } 2266 EXPORT_SYMBOL(__genphy_config_aneg); 2267 2268 /** 2269 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2270 * @phydev: target phy_device struct 2271 * 2272 * Description: If auto-negotiation is enabled, we configure the 2273 * advertising, and then restart auto-negotiation. If it is not 2274 * enabled, then we write the BMCR. This function is intended 2275 * for use with Clause 37 1000Base-X mode. 2276 */ 2277 int genphy_c37_config_aneg(struct phy_device *phydev) 2278 { 2279 int err, changed; 2280 2281 if (phydev->autoneg != AUTONEG_ENABLE) 2282 return genphy_setup_forced(phydev); 2283 2284 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2285 BMCR_SPEED1000); 2286 if (err) 2287 return err; 2288 2289 changed = genphy_c37_config_advert(phydev); 2290 if (changed < 0) /* error */ 2291 return changed; 2292 2293 if (!changed) { 2294 /* Advertisement hasn't changed, but maybe aneg was never on to 2295 * begin with? Or maybe phy was isolated? 2296 */ 2297 int ctl = phy_read(phydev, MII_BMCR); 2298 2299 if (ctl < 0) 2300 return ctl; 2301 2302 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2303 changed = 1; /* do restart aneg */ 2304 } 2305 2306 /* Only restart aneg if we are advertising something different 2307 * than we were before. 2308 */ 2309 if (changed > 0) 2310 return genphy_restart_aneg(phydev); 2311 2312 return 0; 2313 } 2314 EXPORT_SYMBOL(genphy_c37_config_aneg); 2315 2316 /** 2317 * genphy_aneg_done - return auto-negotiation status 2318 * @phydev: target phy_device struct 2319 * 2320 * Description: Reads the status register and returns 0 either if 2321 * auto-negotiation is incomplete, or if there was an error. 2322 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2323 */ 2324 int genphy_aneg_done(struct phy_device *phydev) 2325 { 2326 int retval = phy_read(phydev, MII_BMSR); 2327 2328 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2329 } 2330 EXPORT_SYMBOL(genphy_aneg_done); 2331 2332 /** 2333 * genphy_update_link - update link status in @phydev 2334 * @phydev: target phy_device struct 2335 * 2336 * Description: Update the value in phydev->link to reflect the 2337 * current link value. In order to do this, we need to read 2338 * the status register twice, keeping the second value. 2339 */ 2340 int genphy_update_link(struct phy_device *phydev) 2341 { 2342 int status = 0, bmcr; 2343 2344 bmcr = phy_read(phydev, MII_BMCR); 2345 if (bmcr < 0) 2346 return bmcr; 2347 2348 /* Autoneg is being started, therefore disregard BMSR value and 2349 * report link as down. 2350 */ 2351 if (bmcr & BMCR_ANRESTART) 2352 goto done; 2353 2354 /* The link state is latched low so that momentary link 2355 * drops can be detected. Do not double-read the status 2356 * in polling mode to detect such short link drops except 2357 * the link was already down. 2358 */ 2359 if (!phy_polling_mode(phydev) || !phydev->link) { 2360 status = phy_read(phydev, MII_BMSR); 2361 if (status < 0) 2362 return status; 2363 else if (status & BMSR_LSTATUS) 2364 goto done; 2365 } 2366 2367 /* Read link and autonegotiation status */ 2368 status = phy_read(phydev, MII_BMSR); 2369 if (status < 0) 2370 return status; 2371 done: 2372 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2373 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2374 2375 /* Consider the case that autoneg was started and "aneg complete" 2376 * bit has been reset, but "link up" bit not yet. 2377 */ 2378 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2379 phydev->link = 0; 2380 2381 return 0; 2382 } 2383 EXPORT_SYMBOL(genphy_update_link); 2384 2385 int genphy_read_lpa(struct phy_device *phydev) 2386 { 2387 int lpa, lpagb; 2388 2389 if (phydev->autoneg == AUTONEG_ENABLE) { 2390 if (!phydev->autoneg_complete) { 2391 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2392 0); 2393 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2394 return 0; 2395 } 2396 2397 if (phydev->is_gigabit_capable) { 2398 lpagb = phy_read(phydev, MII_STAT1000); 2399 if (lpagb < 0) 2400 return lpagb; 2401 2402 if (lpagb & LPA_1000MSFAIL) { 2403 int adv = phy_read(phydev, MII_CTRL1000); 2404 2405 if (adv < 0) 2406 return adv; 2407 2408 if (adv & CTL1000_ENABLE_MASTER) 2409 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2410 else 2411 phydev_err(phydev, "Master/Slave resolution failed\n"); 2412 return -ENOLINK; 2413 } 2414 2415 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2416 lpagb); 2417 } 2418 2419 lpa = phy_read(phydev, MII_LPA); 2420 if (lpa < 0) 2421 return lpa; 2422 2423 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2424 } else { 2425 linkmode_zero(phydev->lp_advertising); 2426 } 2427 2428 return 0; 2429 } 2430 EXPORT_SYMBOL(genphy_read_lpa); 2431 2432 /** 2433 * genphy_read_status_fixed - read the link parameters for !aneg mode 2434 * @phydev: target phy_device struct 2435 * 2436 * Read the current duplex and speed state for a PHY operating with 2437 * autonegotiation disabled. 2438 */ 2439 int genphy_read_status_fixed(struct phy_device *phydev) 2440 { 2441 int bmcr = phy_read(phydev, MII_BMCR); 2442 2443 if (bmcr < 0) 2444 return bmcr; 2445 2446 if (bmcr & BMCR_FULLDPLX) 2447 phydev->duplex = DUPLEX_FULL; 2448 else 2449 phydev->duplex = DUPLEX_HALF; 2450 2451 if (bmcr & BMCR_SPEED1000) 2452 phydev->speed = SPEED_1000; 2453 else if (bmcr & BMCR_SPEED100) 2454 phydev->speed = SPEED_100; 2455 else 2456 phydev->speed = SPEED_10; 2457 2458 return 0; 2459 } 2460 EXPORT_SYMBOL(genphy_read_status_fixed); 2461 2462 /** 2463 * genphy_read_status - check the link status and update current link state 2464 * @phydev: target phy_device struct 2465 * 2466 * Description: Check the link, then figure out the current state 2467 * by comparing what we advertise with what the link partner 2468 * advertises. Start by checking the gigabit possibilities, 2469 * then move on to 10/100. 2470 */ 2471 int genphy_read_status(struct phy_device *phydev) 2472 { 2473 int err, old_link = phydev->link; 2474 2475 /* Update the link, but return if there was an error */ 2476 err = genphy_update_link(phydev); 2477 if (err) 2478 return err; 2479 2480 /* why bother the PHY if nothing can have changed */ 2481 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2482 return 0; 2483 2484 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2485 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2486 phydev->speed = SPEED_UNKNOWN; 2487 phydev->duplex = DUPLEX_UNKNOWN; 2488 phydev->pause = 0; 2489 phydev->asym_pause = 0; 2490 2491 if (phydev->is_gigabit_capable) { 2492 err = genphy_read_master_slave(phydev); 2493 if (err < 0) 2494 return err; 2495 } 2496 2497 err = genphy_read_lpa(phydev); 2498 if (err < 0) 2499 return err; 2500 2501 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2502 phy_resolve_aneg_linkmode(phydev); 2503 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2504 err = genphy_read_status_fixed(phydev); 2505 if (err < 0) 2506 return err; 2507 } 2508 2509 return 0; 2510 } 2511 EXPORT_SYMBOL(genphy_read_status); 2512 2513 /** 2514 * genphy_c37_read_status - check the link status and update current link state 2515 * @phydev: target phy_device struct 2516 * 2517 * Description: Check the link, then figure out the current state 2518 * by comparing what we advertise with what the link partner 2519 * advertises. This function is for Clause 37 1000Base-X mode. 2520 */ 2521 int genphy_c37_read_status(struct phy_device *phydev) 2522 { 2523 int lpa, err, old_link = phydev->link; 2524 2525 /* Update the link, but return if there was an error */ 2526 err = genphy_update_link(phydev); 2527 if (err) 2528 return err; 2529 2530 /* why bother the PHY if nothing can have changed */ 2531 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2532 return 0; 2533 2534 phydev->duplex = DUPLEX_UNKNOWN; 2535 phydev->pause = 0; 2536 phydev->asym_pause = 0; 2537 2538 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2539 lpa = phy_read(phydev, MII_LPA); 2540 if (lpa < 0) 2541 return lpa; 2542 2543 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2544 phydev->lp_advertising, lpa & LPA_LPACK); 2545 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2546 phydev->lp_advertising, lpa & LPA_1000XFULL); 2547 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2548 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2549 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2550 phydev->lp_advertising, 2551 lpa & LPA_1000XPAUSE_ASYM); 2552 2553 phy_resolve_aneg_linkmode(phydev); 2554 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2555 int bmcr = phy_read(phydev, MII_BMCR); 2556 2557 if (bmcr < 0) 2558 return bmcr; 2559 2560 if (bmcr & BMCR_FULLDPLX) 2561 phydev->duplex = DUPLEX_FULL; 2562 else 2563 phydev->duplex = DUPLEX_HALF; 2564 } 2565 2566 return 0; 2567 } 2568 EXPORT_SYMBOL(genphy_c37_read_status); 2569 2570 /** 2571 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2572 * @phydev: target phy_device struct 2573 * 2574 * Description: Perform a software PHY reset using the standard 2575 * BMCR_RESET bit and poll for the reset bit to be cleared. 2576 * 2577 * Returns: 0 on success, < 0 on failure 2578 */ 2579 int genphy_soft_reset(struct phy_device *phydev) 2580 { 2581 u16 res = BMCR_RESET; 2582 int ret; 2583 2584 if (phydev->autoneg == AUTONEG_ENABLE) 2585 res |= BMCR_ANRESTART; 2586 2587 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2588 if (ret < 0) 2589 return ret; 2590 2591 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2592 * to their default value. Therefore the POWER DOWN bit is supposed to 2593 * be cleared after soft reset. 2594 */ 2595 phydev->suspended = 0; 2596 2597 ret = phy_poll_reset(phydev); 2598 if (ret) 2599 return ret; 2600 2601 /* BMCR may be reset to defaults */ 2602 if (phydev->autoneg == AUTONEG_DISABLE) 2603 ret = genphy_setup_forced(phydev); 2604 2605 return ret; 2606 } 2607 EXPORT_SYMBOL(genphy_soft_reset); 2608 2609 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2610 { 2611 /* It seems there are cases where the interrupts are handled by another 2612 * entity (ie an IRQ controller embedded inside the PHY) and do not 2613 * need any other interraction from phylib. In this case, just trigger 2614 * the state machine directly. 2615 */ 2616 phy_trigger_machine(phydev); 2617 2618 return 0; 2619 } 2620 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2621 2622 /** 2623 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2624 * @phydev: target phy_device struct 2625 * 2626 * Description: Reads the PHY's abilities and populates 2627 * phydev->supported accordingly. 2628 * 2629 * Returns: 0 on success, < 0 on failure 2630 */ 2631 int genphy_read_abilities(struct phy_device *phydev) 2632 { 2633 int val; 2634 2635 linkmode_set_bit_array(phy_basic_ports_array, 2636 ARRAY_SIZE(phy_basic_ports_array), 2637 phydev->supported); 2638 2639 val = phy_read(phydev, MII_BMSR); 2640 if (val < 0) 2641 return val; 2642 2643 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2644 val & BMSR_ANEGCAPABLE); 2645 2646 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2647 val & BMSR_100FULL); 2648 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2649 val & BMSR_100HALF); 2650 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2651 val & BMSR_10FULL); 2652 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2653 val & BMSR_10HALF); 2654 2655 if (val & BMSR_ESTATEN) { 2656 val = phy_read(phydev, MII_ESTATUS); 2657 if (val < 0) 2658 return val; 2659 2660 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2661 phydev->supported, val & ESTATUS_1000_TFULL); 2662 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2663 phydev->supported, val & ESTATUS_1000_THALF); 2664 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2665 phydev->supported, val & ESTATUS_1000_XFULL); 2666 } 2667 2668 /* This is optional functionality. If not supported, we may get an error 2669 * which should be ignored. 2670 */ 2671 genphy_c45_read_eee_abilities(phydev); 2672 2673 return 0; 2674 } 2675 EXPORT_SYMBOL(genphy_read_abilities); 2676 2677 /* This is used for the phy device which doesn't support the MMD extended 2678 * register access, but it does have side effect when we are trying to access 2679 * the MMD register via indirect method. 2680 */ 2681 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2682 { 2683 return -EOPNOTSUPP; 2684 } 2685 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2686 2687 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2688 u16 regnum, u16 val) 2689 { 2690 return -EOPNOTSUPP; 2691 } 2692 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2693 2694 int genphy_suspend(struct phy_device *phydev) 2695 { 2696 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2697 } 2698 EXPORT_SYMBOL(genphy_suspend); 2699 2700 int genphy_resume(struct phy_device *phydev) 2701 { 2702 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2703 } 2704 EXPORT_SYMBOL(genphy_resume); 2705 2706 int genphy_loopback(struct phy_device *phydev, bool enable) 2707 { 2708 if (enable) { 2709 u16 val, ctl = BMCR_LOOPBACK; 2710 int ret; 2711 2712 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2713 2714 phy_modify(phydev, MII_BMCR, ~0, ctl); 2715 2716 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2717 val & BMSR_LSTATUS, 2718 5000, 500000, true); 2719 if (ret) 2720 return ret; 2721 } else { 2722 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2723 2724 phy_config_aneg(phydev); 2725 } 2726 2727 return 0; 2728 } 2729 EXPORT_SYMBOL(genphy_loopback); 2730 2731 /** 2732 * phy_remove_link_mode - Remove a supported link mode 2733 * @phydev: phy_device structure to remove link mode from 2734 * @link_mode: Link mode to be removed 2735 * 2736 * Description: Some MACs don't support all link modes which the PHY 2737 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2738 * to remove a link mode. 2739 */ 2740 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2741 { 2742 linkmode_clear_bit(link_mode, phydev->supported); 2743 phy_advertise_supported(phydev); 2744 } 2745 EXPORT_SYMBOL(phy_remove_link_mode); 2746 2747 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2748 { 2749 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2750 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2751 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2752 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2753 } 2754 2755 /** 2756 * phy_advertise_supported - Advertise all supported modes 2757 * @phydev: target phy_device struct 2758 * 2759 * Description: Called to advertise all supported modes, doesn't touch 2760 * pause mode advertising. 2761 */ 2762 void phy_advertise_supported(struct phy_device *phydev) 2763 { 2764 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2765 2766 linkmode_copy(new, phydev->supported); 2767 phy_copy_pause_bits(new, phydev->advertising); 2768 linkmode_copy(phydev->advertising, new); 2769 } 2770 EXPORT_SYMBOL(phy_advertise_supported); 2771 2772 /** 2773 * phy_support_sym_pause - Enable support of symmetrical pause 2774 * @phydev: target phy_device struct 2775 * 2776 * Description: Called by the MAC to indicate is supports symmetrical 2777 * Pause, but not asym pause. 2778 */ 2779 void phy_support_sym_pause(struct phy_device *phydev) 2780 { 2781 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2782 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2783 } 2784 EXPORT_SYMBOL(phy_support_sym_pause); 2785 2786 /** 2787 * phy_support_asym_pause - Enable support of asym pause 2788 * @phydev: target phy_device struct 2789 * 2790 * Description: Called by the MAC to indicate is supports Asym Pause. 2791 */ 2792 void phy_support_asym_pause(struct phy_device *phydev) 2793 { 2794 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2795 } 2796 EXPORT_SYMBOL(phy_support_asym_pause); 2797 2798 /** 2799 * phy_set_sym_pause - Configure symmetric Pause 2800 * @phydev: target phy_device struct 2801 * @rx: Receiver Pause is supported 2802 * @tx: Transmit Pause is supported 2803 * @autoneg: Auto neg should be used 2804 * 2805 * Description: Configure advertised Pause support depending on if 2806 * receiver pause and pause auto neg is supported. Generally called 2807 * from the set_pauseparam .ndo. 2808 */ 2809 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2810 bool autoneg) 2811 { 2812 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2813 2814 if (rx && tx && autoneg) 2815 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2816 phydev->supported); 2817 2818 linkmode_copy(phydev->advertising, phydev->supported); 2819 } 2820 EXPORT_SYMBOL(phy_set_sym_pause); 2821 2822 /** 2823 * phy_set_asym_pause - Configure Pause and Asym Pause 2824 * @phydev: target phy_device struct 2825 * @rx: Receiver Pause is supported 2826 * @tx: Transmit Pause is supported 2827 * 2828 * Description: Configure advertised Pause support depending on if 2829 * transmit and receiver pause is supported. If there has been a 2830 * change in adverting, trigger a new autoneg. Generally called from 2831 * the set_pauseparam .ndo. 2832 */ 2833 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2834 { 2835 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2836 2837 linkmode_copy(oldadv, phydev->advertising); 2838 linkmode_set_pause(phydev->advertising, tx, rx); 2839 2840 if (!linkmode_equal(oldadv, phydev->advertising) && 2841 phydev->autoneg) 2842 phy_start_aneg(phydev); 2843 } 2844 EXPORT_SYMBOL(phy_set_asym_pause); 2845 2846 /** 2847 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2848 * @phydev: phy_device struct 2849 * @pp: requested pause configuration 2850 * 2851 * Description: Test if the PHY/MAC combination supports the Pause 2852 * configuration the user is requesting. Returns True if it is 2853 * supported, false otherwise. 2854 */ 2855 bool phy_validate_pause(struct phy_device *phydev, 2856 struct ethtool_pauseparam *pp) 2857 { 2858 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2859 phydev->supported) && pp->rx_pause) 2860 return false; 2861 2862 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2863 phydev->supported) && 2864 pp->rx_pause != pp->tx_pause) 2865 return false; 2866 2867 return true; 2868 } 2869 EXPORT_SYMBOL(phy_validate_pause); 2870 2871 /** 2872 * phy_get_pause - resolve negotiated pause modes 2873 * @phydev: phy_device struct 2874 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2875 * enabled. 2876 * @rx_pause: pointer to bool to indicate whether receive pause should be 2877 * enabled. 2878 * 2879 * Resolve and return the flow control modes according to the negotiation 2880 * result. This includes checking that we are operating in full duplex mode. 2881 * See linkmode_resolve_pause() for further details. 2882 */ 2883 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2884 { 2885 if (phydev->duplex != DUPLEX_FULL) { 2886 *tx_pause = false; 2887 *rx_pause = false; 2888 return; 2889 } 2890 2891 return linkmode_resolve_pause(phydev->advertising, 2892 phydev->lp_advertising, 2893 tx_pause, rx_pause); 2894 } 2895 EXPORT_SYMBOL(phy_get_pause); 2896 2897 #if IS_ENABLED(CONFIG_OF_MDIO) 2898 static int phy_get_int_delay_property(struct device *dev, const char *name) 2899 { 2900 s32 int_delay; 2901 int ret; 2902 2903 ret = device_property_read_u32(dev, name, &int_delay); 2904 if (ret) 2905 return ret; 2906 2907 return int_delay; 2908 } 2909 #else 2910 static int phy_get_int_delay_property(struct device *dev, const char *name) 2911 { 2912 return -EINVAL; 2913 } 2914 #endif 2915 2916 /** 2917 * phy_get_internal_delay - returns the index of the internal delay 2918 * @phydev: phy_device struct 2919 * @dev: pointer to the devices device struct 2920 * @delay_values: array of delays the PHY supports 2921 * @size: the size of the delay array 2922 * @is_rx: boolean to indicate to get the rx internal delay 2923 * 2924 * Returns the index within the array of internal delay passed in. 2925 * If the device property is not present then the interface type is checked 2926 * if the interface defines use of internal delay then a 1 is returned otherwise 2927 * a 0 is returned. 2928 * The array must be in ascending order. If PHY does not have an ascending order 2929 * array then size = 0 and the value of the delay property is returned. 2930 * Return -EINVAL if the delay is invalid or cannot be found. 2931 */ 2932 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2933 const int *delay_values, int size, bool is_rx) 2934 { 2935 s32 delay; 2936 int i; 2937 2938 if (is_rx) { 2939 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2940 if (delay < 0 && size == 0) { 2941 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2942 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2943 return 1; 2944 else 2945 return 0; 2946 } 2947 2948 } else { 2949 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2950 if (delay < 0 && size == 0) { 2951 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2952 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2953 return 1; 2954 else 2955 return 0; 2956 } 2957 } 2958 2959 if (delay < 0) 2960 return delay; 2961 2962 if (delay && size == 0) 2963 return delay; 2964 2965 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2966 phydev_err(phydev, "Delay %d is out of range\n", delay); 2967 return -EINVAL; 2968 } 2969 2970 if (delay == delay_values[0]) 2971 return 0; 2972 2973 for (i = 1; i < size; i++) { 2974 if (delay == delay_values[i]) 2975 return i; 2976 2977 /* Find an approximate index by looking up the table */ 2978 if (delay > delay_values[i - 1] && 2979 delay < delay_values[i]) { 2980 if (delay - delay_values[i - 1] < 2981 delay_values[i] - delay) 2982 return i - 1; 2983 else 2984 return i; 2985 } 2986 } 2987 2988 phydev_err(phydev, "error finding internal delay index for %d\n", 2989 delay); 2990 2991 return -EINVAL; 2992 } 2993 EXPORT_SYMBOL(phy_get_internal_delay); 2994 2995 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2996 { 2997 return phydrv->config_intr && phydrv->handle_interrupt; 2998 } 2999 3000 static int phy_led_set_brightness(struct led_classdev *led_cdev, 3001 enum led_brightness value) 3002 { 3003 struct phy_led *phyled = to_phy_led(led_cdev); 3004 struct phy_device *phydev = phyled->phydev; 3005 int err; 3006 3007 mutex_lock(&phydev->lock); 3008 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3009 mutex_unlock(&phydev->lock); 3010 3011 return err; 3012 } 3013 3014 static int phy_led_blink_set(struct led_classdev *led_cdev, 3015 unsigned long *delay_on, 3016 unsigned long *delay_off) 3017 { 3018 struct phy_led *phyled = to_phy_led(led_cdev); 3019 struct phy_device *phydev = phyled->phydev; 3020 int err; 3021 3022 mutex_lock(&phydev->lock); 3023 err = phydev->drv->led_blink_set(phydev, phyled->index, 3024 delay_on, delay_off); 3025 mutex_unlock(&phydev->lock); 3026 3027 return err; 3028 } 3029 3030 static __maybe_unused struct device * 3031 phy_led_hw_control_get_device(struct led_classdev *led_cdev) 3032 { 3033 struct phy_led *phyled = to_phy_led(led_cdev); 3034 struct phy_device *phydev = phyled->phydev; 3035 3036 if (phydev->attached_dev) 3037 return &phydev->attached_dev->dev; 3038 return NULL; 3039 } 3040 3041 static int __maybe_unused 3042 phy_led_hw_control_get(struct led_classdev *led_cdev, 3043 unsigned long *rules) 3044 { 3045 struct phy_led *phyled = to_phy_led(led_cdev); 3046 struct phy_device *phydev = phyled->phydev; 3047 int err; 3048 3049 mutex_lock(&phydev->lock); 3050 err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules); 3051 mutex_unlock(&phydev->lock); 3052 3053 return err; 3054 } 3055 3056 static int __maybe_unused 3057 phy_led_hw_control_set(struct led_classdev *led_cdev, 3058 unsigned long rules) 3059 { 3060 struct phy_led *phyled = to_phy_led(led_cdev); 3061 struct phy_device *phydev = phyled->phydev; 3062 int err; 3063 3064 mutex_lock(&phydev->lock); 3065 err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules); 3066 mutex_unlock(&phydev->lock); 3067 3068 return err; 3069 } 3070 3071 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev, 3072 unsigned long rules) 3073 { 3074 struct phy_led *phyled = to_phy_led(led_cdev); 3075 struct phy_device *phydev = phyled->phydev; 3076 int err; 3077 3078 mutex_lock(&phydev->lock); 3079 err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules); 3080 mutex_unlock(&phydev->lock); 3081 3082 return err; 3083 } 3084 3085 static void phy_leds_unregister(struct phy_device *phydev) 3086 { 3087 struct phy_led *phyled; 3088 3089 list_for_each_entry(phyled, &phydev->leds, list) { 3090 led_classdev_unregister(&phyled->led_cdev); 3091 } 3092 } 3093 3094 static int of_phy_led(struct phy_device *phydev, 3095 struct device_node *led) 3096 { 3097 struct device *dev = &phydev->mdio.dev; 3098 struct led_init_data init_data = {}; 3099 struct led_classdev *cdev; 3100 struct phy_led *phyled; 3101 u32 index; 3102 int err; 3103 3104 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3105 if (!phyled) 3106 return -ENOMEM; 3107 3108 cdev = &phyled->led_cdev; 3109 phyled->phydev = phydev; 3110 3111 err = of_property_read_u32(led, "reg", &index); 3112 if (err) 3113 return err; 3114 if (index > U8_MAX) 3115 return -EINVAL; 3116 3117 phyled->index = index; 3118 if (phydev->drv->led_brightness_set) 3119 cdev->brightness_set_blocking = phy_led_set_brightness; 3120 if (phydev->drv->led_blink_set) 3121 cdev->blink_set = phy_led_blink_set; 3122 3123 #ifdef CONFIG_LEDS_TRIGGERS 3124 if (phydev->drv->led_hw_is_supported && 3125 phydev->drv->led_hw_control_set && 3126 phydev->drv->led_hw_control_get) { 3127 cdev->hw_control_is_supported = phy_led_hw_is_supported; 3128 cdev->hw_control_set = phy_led_hw_control_set; 3129 cdev->hw_control_get = phy_led_hw_control_get; 3130 cdev->hw_control_trigger = "netdev"; 3131 } 3132 3133 cdev->hw_control_get_device = phy_led_hw_control_get_device; 3134 #endif 3135 cdev->max_brightness = 1; 3136 init_data.devicename = dev_name(&phydev->mdio.dev); 3137 init_data.fwnode = of_fwnode_handle(led); 3138 init_data.devname_mandatory = true; 3139 3140 err = led_classdev_register_ext(dev, cdev, &init_data); 3141 if (err) 3142 return err; 3143 3144 list_add(&phyled->list, &phydev->leds); 3145 3146 return 0; 3147 } 3148 3149 static int of_phy_leds(struct phy_device *phydev) 3150 { 3151 struct device_node *node = phydev->mdio.dev.of_node; 3152 struct device_node *leds, *led; 3153 int err; 3154 3155 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3156 return 0; 3157 3158 if (!node) 3159 return 0; 3160 3161 leds = of_get_child_by_name(node, "leds"); 3162 if (!leds) 3163 return 0; 3164 3165 for_each_available_child_of_node(leds, led) { 3166 err = of_phy_led(phydev, led); 3167 if (err) { 3168 of_node_put(led); 3169 phy_leds_unregister(phydev); 3170 return err; 3171 } 3172 } 3173 3174 return 0; 3175 } 3176 3177 /** 3178 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3179 * @fwnode: pointer to the mdio_device's fwnode 3180 * 3181 * If successful, returns a pointer to the mdio_device with the embedded 3182 * struct device refcount incremented by one, or NULL on failure. 3183 * The caller should call put_device() on the mdio_device after its use. 3184 */ 3185 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3186 { 3187 struct device *d; 3188 3189 if (!fwnode) 3190 return NULL; 3191 3192 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3193 if (!d) 3194 return NULL; 3195 3196 return to_mdio_device(d); 3197 } 3198 EXPORT_SYMBOL(fwnode_mdio_find_device); 3199 3200 /** 3201 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3202 * 3203 * @phy_fwnode: Pointer to the phy's fwnode. 3204 * 3205 * If successful, returns a pointer to the phy_device with the embedded 3206 * struct device refcount incremented by one, or NULL on failure. 3207 */ 3208 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3209 { 3210 struct mdio_device *mdiodev; 3211 3212 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3213 if (!mdiodev) 3214 return NULL; 3215 3216 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3217 return to_phy_device(&mdiodev->dev); 3218 3219 put_device(&mdiodev->dev); 3220 3221 return NULL; 3222 } 3223 EXPORT_SYMBOL(fwnode_phy_find_device); 3224 3225 /** 3226 * device_phy_find_device - For the given device, get the phy_device 3227 * @dev: Pointer to the given device 3228 * 3229 * Refer return conditions of fwnode_phy_find_device(). 3230 */ 3231 struct phy_device *device_phy_find_device(struct device *dev) 3232 { 3233 return fwnode_phy_find_device(dev_fwnode(dev)); 3234 } 3235 EXPORT_SYMBOL_GPL(device_phy_find_device); 3236 3237 /** 3238 * fwnode_get_phy_node - Get the phy_node using the named reference. 3239 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3240 * 3241 * Refer return conditions of fwnode_find_reference(). 3242 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3243 * and "phy-device" are not supported in ACPI. DT supports all the three 3244 * named references to the phy node. 3245 */ 3246 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3247 { 3248 struct fwnode_handle *phy_node; 3249 3250 /* Only phy-handle is used for ACPI */ 3251 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3252 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3253 return phy_node; 3254 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3255 if (IS_ERR(phy_node)) 3256 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3257 return phy_node; 3258 } 3259 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3260 3261 /** 3262 * phy_probe - probe and init a PHY device 3263 * @dev: device to probe and init 3264 * 3265 * Take care of setting up the phy_device structure, set the state to READY. 3266 */ 3267 static int phy_probe(struct device *dev) 3268 { 3269 struct phy_device *phydev = to_phy_device(dev); 3270 struct device_driver *drv = phydev->mdio.dev.driver; 3271 struct phy_driver *phydrv = to_phy_driver(drv); 3272 int err = 0; 3273 3274 phydev->drv = phydrv; 3275 3276 /* Disable the interrupt if the PHY doesn't support it 3277 * but the interrupt is still a valid one 3278 */ 3279 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3280 phydev->irq = PHY_POLL; 3281 3282 if (phydrv->flags & PHY_IS_INTERNAL) 3283 phydev->is_internal = true; 3284 3285 /* Deassert the reset signal */ 3286 phy_device_reset(phydev, 0); 3287 3288 if (phydev->drv->probe) { 3289 err = phydev->drv->probe(phydev); 3290 if (err) 3291 goto out; 3292 } 3293 3294 phy_disable_interrupts(phydev); 3295 3296 /* Start out supporting everything. Eventually, 3297 * a controller will attach, and may modify one 3298 * or both of these values 3299 */ 3300 if (phydrv->features) { 3301 linkmode_copy(phydev->supported, phydrv->features); 3302 genphy_c45_read_eee_abilities(phydev); 3303 } 3304 else if (phydrv->get_features) 3305 err = phydrv->get_features(phydev); 3306 else if (phydev->is_c45) 3307 err = genphy_c45_pma_read_abilities(phydev); 3308 else 3309 err = genphy_read_abilities(phydev); 3310 3311 if (err) 3312 goto out; 3313 3314 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3315 phydev->supported)) 3316 phydev->autoneg = 0; 3317 3318 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3319 phydev->supported)) 3320 phydev->is_gigabit_capable = 1; 3321 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3322 phydev->supported)) 3323 phydev->is_gigabit_capable = 1; 3324 3325 of_set_phy_supported(phydev); 3326 phy_advertise_supported(phydev); 3327 3328 /* Get PHY default EEE advertising modes and handle them as potentially 3329 * safe initial configuration. 3330 */ 3331 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3332 if (err) 3333 goto out; 3334 3335 /* There is no "enabled" flag. If PHY is advertising, assume it is 3336 * kind of enabled. 3337 */ 3338 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3339 3340 /* Some PHYs may advertise, by default, not support EEE modes. So, 3341 * we need to clean them. 3342 */ 3343 if (phydev->eee_enabled) 3344 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3345 phydev->advertising_eee); 3346 3347 /* Get the EEE modes we want to prohibit. We will ask 3348 * the PHY stop advertising these mode later on 3349 */ 3350 of_set_phy_eee_broken(phydev); 3351 3352 /* The Pause Frame bits indicate that the PHY can support passing 3353 * pause frames. During autonegotiation, the PHYs will determine if 3354 * they should allow pause frames to pass. The MAC driver should then 3355 * use that result to determine whether to enable flow control via 3356 * pause frames. 3357 * 3358 * Normally, PHY drivers should not set the Pause bits, and instead 3359 * allow phylib to do that. However, there may be some situations 3360 * (e.g. hardware erratum) where the driver wants to set only one 3361 * of these bits. 3362 */ 3363 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3364 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3365 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3366 phydev->supported); 3367 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3368 phydev->supported); 3369 } 3370 3371 /* Set the state to READY by default */ 3372 phydev->state = PHY_READY; 3373 3374 /* Get the LEDs from the device tree, and instantiate standard 3375 * LEDs for them. 3376 */ 3377 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3378 err = of_phy_leds(phydev); 3379 3380 out: 3381 /* Re-assert the reset signal on error */ 3382 if (err) 3383 phy_device_reset(phydev, 1); 3384 3385 return err; 3386 } 3387 3388 static int phy_remove(struct device *dev) 3389 { 3390 struct phy_device *phydev = to_phy_device(dev); 3391 3392 cancel_delayed_work_sync(&phydev->state_queue); 3393 3394 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3395 phy_leds_unregister(phydev); 3396 3397 phydev->state = PHY_DOWN; 3398 3399 sfp_bus_del_upstream(phydev->sfp_bus); 3400 phydev->sfp_bus = NULL; 3401 3402 if (phydev->drv && phydev->drv->remove) 3403 phydev->drv->remove(phydev); 3404 3405 /* Assert the reset signal */ 3406 phy_device_reset(phydev, 1); 3407 3408 phydev->drv = NULL; 3409 3410 return 0; 3411 } 3412 3413 /** 3414 * phy_driver_register - register a phy_driver with the PHY layer 3415 * @new_driver: new phy_driver to register 3416 * @owner: module owning this PHY 3417 */ 3418 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3419 { 3420 int retval; 3421 3422 /* Either the features are hard coded, or dynamically 3423 * determined. It cannot be both. 3424 */ 3425 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3426 pr_err("%s: features and get_features must not both be set\n", 3427 new_driver->name); 3428 return -EINVAL; 3429 } 3430 3431 /* PHYLIB device drivers must not match using a DT compatible table 3432 * as this bypasses our checks that the mdiodev that is being matched 3433 * is backed by a struct phy_device. If such a case happens, we will 3434 * make out-of-bounds accesses and lockup in phydev->lock. 3435 */ 3436 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3437 "%s: driver must not provide a DT match table\n", 3438 new_driver->name)) 3439 return -EINVAL; 3440 3441 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3442 new_driver->mdiodrv.driver.name = new_driver->name; 3443 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3444 new_driver->mdiodrv.driver.probe = phy_probe; 3445 new_driver->mdiodrv.driver.remove = phy_remove; 3446 new_driver->mdiodrv.driver.owner = owner; 3447 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3448 3449 retval = driver_register(&new_driver->mdiodrv.driver); 3450 if (retval) { 3451 pr_err("%s: Error %d in registering driver\n", 3452 new_driver->name, retval); 3453 3454 return retval; 3455 } 3456 3457 pr_debug("%s: Registered new driver\n", new_driver->name); 3458 3459 return 0; 3460 } 3461 EXPORT_SYMBOL(phy_driver_register); 3462 3463 int phy_drivers_register(struct phy_driver *new_driver, int n, 3464 struct module *owner) 3465 { 3466 int i, ret = 0; 3467 3468 for (i = 0; i < n; i++) { 3469 ret = phy_driver_register(new_driver + i, owner); 3470 if (ret) { 3471 while (i-- > 0) 3472 phy_driver_unregister(new_driver + i); 3473 break; 3474 } 3475 } 3476 return ret; 3477 } 3478 EXPORT_SYMBOL(phy_drivers_register); 3479 3480 void phy_driver_unregister(struct phy_driver *drv) 3481 { 3482 driver_unregister(&drv->mdiodrv.driver); 3483 } 3484 EXPORT_SYMBOL(phy_driver_unregister); 3485 3486 void phy_drivers_unregister(struct phy_driver *drv, int n) 3487 { 3488 int i; 3489 3490 for (i = 0; i < n; i++) 3491 phy_driver_unregister(drv + i); 3492 } 3493 EXPORT_SYMBOL(phy_drivers_unregister); 3494 3495 static struct phy_driver genphy_driver = { 3496 .phy_id = 0xffffffff, 3497 .phy_id_mask = 0xffffffff, 3498 .name = "Generic PHY", 3499 .get_features = genphy_read_abilities, 3500 .suspend = genphy_suspend, 3501 .resume = genphy_resume, 3502 .set_loopback = genphy_loopback, 3503 }; 3504 3505 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3506 .get_sset_count = phy_ethtool_get_sset_count, 3507 .get_strings = phy_ethtool_get_strings, 3508 .get_stats = phy_ethtool_get_stats, 3509 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3510 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3511 .get_plca_status = phy_ethtool_get_plca_status, 3512 .start_cable_test = phy_start_cable_test, 3513 .start_cable_test_tdr = phy_start_cable_test_tdr, 3514 }; 3515 3516 static const struct phylib_stubs __phylib_stubs = { 3517 .hwtstamp_get = __phy_hwtstamp_get, 3518 .hwtstamp_set = __phy_hwtstamp_set, 3519 }; 3520 3521 static void phylib_register_stubs(void) 3522 { 3523 phylib_stubs = &__phylib_stubs; 3524 } 3525 3526 static void phylib_unregister_stubs(void) 3527 { 3528 phylib_stubs = NULL; 3529 } 3530 3531 static int __init phy_init(void) 3532 { 3533 int rc; 3534 3535 rtnl_lock(); 3536 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3537 phylib_register_stubs(); 3538 rtnl_unlock(); 3539 3540 rc = mdio_bus_init(); 3541 if (rc) 3542 goto err_ethtool_phy_ops; 3543 3544 features_init(); 3545 3546 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3547 if (rc) 3548 goto err_mdio_bus; 3549 3550 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3551 if (rc) 3552 goto err_c45; 3553 3554 return 0; 3555 3556 err_c45: 3557 phy_driver_unregister(&genphy_c45_driver); 3558 err_mdio_bus: 3559 mdio_bus_exit(); 3560 err_ethtool_phy_ops: 3561 rtnl_lock(); 3562 phylib_unregister_stubs(); 3563 ethtool_set_ethtool_phy_ops(NULL); 3564 rtnl_unlock(); 3565 3566 return rc; 3567 } 3568 3569 static void __exit phy_exit(void) 3570 { 3571 phy_driver_unregister(&genphy_c45_driver); 3572 phy_driver_unregister(&genphy_driver); 3573 mdio_bus_exit(); 3574 rtnl_lock(); 3575 phylib_unregister_stubs(); 3576 ethtool_set_ethtool_phy_ops(NULL); 3577 rtnl_unlock(); 3578 } 3579 3580 subsys_initcall(phy_init); 3581 module_exit(phy_exit); 3582