xref: /linux/drivers/net/phy/phy_device.c (revision 17b121ad0c43342bc894632f6710b894849ca372)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mdio.h>
23 #include <linux/mii.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/phy.h>
28 #include <linux/phy_led_triggers.h>
29 #include <linux/property.h>
30 #include <linux/sfp.h>
31 #include <linux/skbuff.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/uaccess.h>
35 #include <linux/unistd.h>
36 
37 MODULE_DESCRIPTION("PHY library");
38 MODULE_AUTHOR("Andy Fleming");
39 MODULE_LICENSE("GPL");
40 
41 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
42 EXPORT_SYMBOL_GPL(phy_basic_features);
43 
44 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
45 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
46 
47 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
48 EXPORT_SYMBOL_GPL(phy_gbit_features);
49 
50 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
51 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
52 
53 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
54 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
55 
56 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
57 EXPORT_SYMBOL_GPL(phy_10gbit_features);
58 
59 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
60 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
61 
62 const int phy_basic_ports_array[3] = {
63 	ETHTOOL_LINK_MODE_Autoneg_BIT,
64 	ETHTOOL_LINK_MODE_TP_BIT,
65 	ETHTOOL_LINK_MODE_MII_BIT,
66 };
67 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
68 
69 const int phy_fibre_port_array[1] = {
70 	ETHTOOL_LINK_MODE_FIBRE_BIT,
71 };
72 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
73 
74 const int phy_all_ports_features_array[7] = {
75 	ETHTOOL_LINK_MODE_Autoneg_BIT,
76 	ETHTOOL_LINK_MODE_TP_BIT,
77 	ETHTOOL_LINK_MODE_MII_BIT,
78 	ETHTOOL_LINK_MODE_FIBRE_BIT,
79 	ETHTOOL_LINK_MODE_AUI_BIT,
80 	ETHTOOL_LINK_MODE_BNC_BIT,
81 	ETHTOOL_LINK_MODE_Backplane_BIT,
82 };
83 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
84 
85 const int phy_10_100_features_array[4] = {
86 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
87 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
88 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
89 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
90 };
91 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
92 
93 const int phy_basic_t1_features_array[2] = {
94 	ETHTOOL_LINK_MODE_TP_BIT,
95 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
96 };
97 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
98 
99 const int phy_gbit_features_array[2] = {
100 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
101 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
102 };
103 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
104 
105 const int phy_10gbit_features_array[1] = {
106 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
107 };
108 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
109 
110 static const int phy_10gbit_fec_features_array[1] = {
111 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
112 };
113 
114 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
115 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
116 
117 static const int phy_10gbit_full_features_array[] = {
118 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
119 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
120 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
121 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
122 };
123 
124 static void features_init(void)
125 {
126 	/* 10/100 half/full*/
127 	linkmode_set_bit_array(phy_basic_ports_array,
128 			       ARRAY_SIZE(phy_basic_ports_array),
129 			       phy_basic_features);
130 	linkmode_set_bit_array(phy_10_100_features_array,
131 			       ARRAY_SIZE(phy_10_100_features_array),
132 			       phy_basic_features);
133 
134 	/* 100 full, TP */
135 	linkmode_set_bit_array(phy_basic_t1_features_array,
136 			       ARRAY_SIZE(phy_basic_t1_features_array),
137 			       phy_basic_t1_features);
138 
139 	/* 10/100 half/full + 1000 half/full */
140 	linkmode_set_bit_array(phy_basic_ports_array,
141 			       ARRAY_SIZE(phy_basic_ports_array),
142 			       phy_gbit_features);
143 	linkmode_set_bit_array(phy_10_100_features_array,
144 			       ARRAY_SIZE(phy_10_100_features_array),
145 			       phy_gbit_features);
146 	linkmode_set_bit_array(phy_gbit_features_array,
147 			       ARRAY_SIZE(phy_gbit_features_array),
148 			       phy_gbit_features);
149 
150 	/* 10/100 half/full + 1000 half/full + fibre*/
151 	linkmode_set_bit_array(phy_basic_ports_array,
152 			       ARRAY_SIZE(phy_basic_ports_array),
153 			       phy_gbit_fibre_features);
154 	linkmode_set_bit_array(phy_10_100_features_array,
155 			       ARRAY_SIZE(phy_10_100_features_array),
156 			       phy_gbit_fibre_features);
157 	linkmode_set_bit_array(phy_gbit_features_array,
158 			       ARRAY_SIZE(phy_gbit_features_array),
159 			       phy_gbit_fibre_features);
160 	linkmode_set_bit_array(phy_fibre_port_array,
161 			       ARRAY_SIZE(phy_fibre_port_array),
162 			       phy_gbit_fibre_features);
163 
164 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
165 	linkmode_set_bit_array(phy_all_ports_features_array,
166 			       ARRAY_SIZE(phy_all_ports_features_array),
167 			       phy_gbit_all_ports_features);
168 	linkmode_set_bit_array(phy_10_100_features_array,
169 			       ARRAY_SIZE(phy_10_100_features_array),
170 			       phy_gbit_all_ports_features);
171 	linkmode_set_bit_array(phy_gbit_features_array,
172 			       ARRAY_SIZE(phy_gbit_features_array),
173 			       phy_gbit_all_ports_features);
174 
175 	/* 10/100 half/full + 1000 half/full + 10G full*/
176 	linkmode_set_bit_array(phy_all_ports_features_array,
177 			       ARRAY_SIZE(phy_all_ports_features_array),
178 			       phy_10gbit_features);
179 	linkmode_set_bit_array(phy_10_100_features_array,
180 			       ARRAY_SIZE(phy_10_100_features_array),
181 			       phy_10gbit_features);
182 	linkmode_set_bit_array(phy_gbit_features_array,
183 			       ARRAY_SIZE(phy_gbit_features_array),
184 			       phy_10gbit_features);
185 	linkmode_set_bit_array(phy_10gbit_features_array,
186 			       ARRAY_SIZE(phy_10gbit_features_array),
187 			       phy_10gbit_features);
188 
189 	/* 10/100/1000/10G full */
190 	linkmode_set_bit_array(phy_all_ports_features_array,
191 			       ARRAY_SIZE(phy_all_ports_features_array),
192 			       phy_10gbit_full_features);
193 	linkmode_set_bit_array(phy_10gbit_full_features_array,
194 			       ARRAY_SIZE(phy_10gbit_full_features_array),
195 			       phy_10gbit_full_features);
196 	/* 10G FEC only */
197 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
198 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
199 			       phy_10gbit_fec_features);
200 }
201 
202 void phy_device_free(struct phy_device *phydev)
203 {
204 	put_device(&phydev->mdio.dev);
205 }
206 EXPORT_SYMBOL(phy_device_free);
207 
208 static void phy_mdio_device_free(struct mdio_device *mdiodev)
209 {
210 	struct phy_device *phydev;
211 
212 	phydev = container_of(mdiodev, struct phy_device, mdio);
213 	phy_device_free(phydev);
214 }
215 
216 static void phy_device_release(struct device *dev)
217 {
218 	kfree(to_phy_device(dev));
219 }
220 
221 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
222 {
223 	struct phy_device *phydev;
224 
225 	phydev = container_of(mdiodev, struct phy_device, mdio);
226 	phy_device_remove(phydev);
227 }
228 
229 static struct phy_driver genphy_driver;
230 
231 static LIST_HEAD(phy_fixup_list);
232 static DEFINE_MUTEX(phy_fixup_lock);
233 
234 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
235 {
236 	struct device_driver *drv = phydev->mdio.dev.driver;
237 	struct phy_driver *phydrv = to_phy_driver(drv);
238 	struct net_device *netdev = phydev->attached_dev;
239 
240 	if (!drv || !phydrv->suspend)
241 		return false;
242 
243 	/* PHY not attached? May suspend if the PHY has not already been
244 	 * suspended as part of a prior call to phy_disconnect() ->
245 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
246 	 * MDIO bus driver and clock gated at this point.
247 	 */
248 	if (!netdev)
249 		goto out;
250 
251 	if (netdev->wol_enabled)
252 		return false;
253 
254 	/* As long as not all affected network drivers support the
255 	 * wol_enabled flag, let's check for hints that WoL is enabled.
256 	 * Don't suspend PHY if the attached netdev parent may wake up.
257 	 * The parent may point to a PCI device, as in tg3 driver.
258 	 */
259 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
260 		return false;
261 
262 	/* Also don't suspend PHY if the netdev itself may wakeup. This
263 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
264 	 * e.g. SoC devices.
265 	 */
266 	if (device_may_wakeup(&netdev->dev))
267 		return false;
268 
269 out:
270 	return !phydev->suspended;
271 }
272 
273 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
274 {
275 	struct phy_device *phydev = to_phy_device(dev);
276 
277 	if (phydev->mac_managed_pm)
278 		return 0;
279 
280 	/* We must stop the state machine manually, otherwise it stops out of
281 	 * control, possibly with the phydev->lock held. Upon resume, netdev
282 	 * may call phy routines that try to grab the same lock, and that may
283 	 * lead to a deadlock.
284 	 */
285 	if (phydev->attached_dev && phydev->adjust_link)
286 		phy_stop_machine(phydev);
287 
288 	if (!mdio_bus_phy_may_suspend(phydev))
289 		return 0;
290 
291 	phydev->suspended_by_mdio_bus = 1;
292 
293 	return phy_suspend(phydev);
294 }
295 
296 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
297 {
298 	struct phy_device *phydev = to_phy_device(dev);
299 	int ret;
300 
301 	if (phydev->mac_managed_pm)
302 		return 0;
303 
304 	if (!phydev->suspended_by_mdio_bus)
305 		goto no_resume;
306 
307 	phydev->suspended_by_mdio_bus = 0;
308 
309 	ret = phy_init_hw(phydev);
310 	if (ret < 0)
311 		return ret;
312 
313 	ret = phy_resume(phydev);
314 	if (ret < 0)
315 		return ret;
316 no_resume:
317 	if (phydev->attached_dev && phydev->adjust_link)
318 		phy_start_machine(phydev);
319 
320 	return 0;
321 }
322 
323 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
324 			 mdio_bus_phy_resume);
325 
326 /**
327  * phy_register_fixup - creates a new phy_fixup and adds it to the list
328  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
329  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
330  *	It can also be PHY_ANY_UID
331  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
332  *	comparison
333  * @run: The actual code to be run when a matching PHY is found
334  */
335 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
336 		       int (*run)(struct phy_device *))
337 {
338 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
339 
340 	if (!fixup)
341 		return -ENOMEM;
342 
343 	strlcpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
344 	fixup->phy_uid = phy_uid;
345 	fixup->phy_uid_mask = phy_uid_mask;
346 	fixup->run = run;
347 
348 	mutex_lock(&phy_fixup_lock);
349 	list_add_tail(&fixup->list, &phy_fixup_list);
350 	mutex_unlock(&phy_fixup_lock);
351 
352 	return 0;
353 }
354 EXPORT_SYMBOL(phy_register_fixup);
355 
356 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
357 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
358 			       int (*run)(struct phy_device *))
359 {
360 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
361 }
362 EXPORT_SYMBOL(phy_register_fixup_for_uid);
363 
364 /* Registers a fixup to be run on the PHY with id string bus_id */
365 int phy_register_fixup_for_id(const char *bus_id,
366 			      int (*run)(struct phy_device *))
367 {
368 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
369 }
370 EXPORT_SYMBOL(phy_register_fixup_for_id);
371 
372 /**
373  * phy_unregister_fixup - remove a phy_fixup from the list
374  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
375  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
376  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
377  */
378 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
379 {
380 	struct list_head *pos, *n;
381 	struct phy_fixup *fixup;
382 	int ret;
383 
384 	ret = -ENODEV;
385 
386 	mutex_lock(&phy_fixup_lock);
387 	list_for_each_safe(pos, n, &phy_fixup_list) {
388 		fixup = list_entry(pos, struct phy_fixup, list);
389 
390 		if ((!strcmp(fixup->bus_id, bus_id)) &&
391 		    ((fixup->phy_uid & phy_uid_mask) ==
392 		     (phy_uid & phy_uid_mask))) {
393 			list_del(&fixup->list);
394 			kfree(fixup);
395 			ret = 0;
396 			break;
397 		}
398 	}
399 	mutex_unlock(&phy_fixup_lock);
400 
401 	return ret;
402 }
403 EXPORT_SYMBOL(phy_unregister_fixup);
404 
405 /* Unregisters a fixup of any PHY with the UID in phy_uid */
406 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
407 {
408 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
409 }
410 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
411 
412 /* Unregisters a fixup of the PHY with id string bus_id */
413 int phy_unregister_fixup_for_id(const char *bus_id)
414 {
415 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
416 }
417 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
418 
419 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
420  * Fixups can be set to match any in one or more fields.
421  */
422 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
423 {
424 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
425 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
426 			return 0;
427 
428 	if ((fixup->phy_uid & fixup->phy_uid_mask) !=
429 	    (phydev->phy_id & fixup->phy_uid_mask))
430 		if (fixup->phy_uid != PHY_ANY_UID)
431 			return 0;
432 
433 	return 1;
434 }
435 
436 /* Runs any matching fixups for this phydev */
437 static int phy_scan_fixups(struct phy_device *phydev)
438 {
439 	struct phy_fixup *fixup;
440 
441 	mutex_lock(&phy_fixup_lock);
442 	list_for_each_entry(fixup, &phy_fixup_list, list) {
443 		if (phy_needs_fixup(phydev, fixup)) {
444 			int err = fixup->run(phydev);
445 
446 			if (err < 0) {
447 				mutex_unlock(&phy_fixup_lock);
448 				return err;
449 			}
450 			phydev->has_fixups = true;
451 		}
452 	}
453 	mutex_unlock(&phy_fixup_lock);
454 
455 	return 0;
456 }
457 
458 static int phy_bus_match(struct device *dev, struct device_driver *drv)
459 {
460 	struct phy_device *phydev = to_phy_device(dev);
461 	struct phy_driver *phydrv = to_phy_driver(drv);
462 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
463 	int i;
464 
465 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
466 		return 0;
467 
468 	if (phydrv->match_phy_device)
469 		return phydrv->match_phy_device(phydev);
470 
471 	if (phydev->is_c45) {
472 		for (i = 1; i < num_ids; i++) {
473 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
474 				continue;
475 
476 			if ((phydrv->phy_id & phydrv->phy_id_mask) ==
477 			    (phydev->c45_ids.device_ids[i] &
478 			     phydrv->phy_id_mask))
479 				return 1;
480 		}
481 		return 0;
482 	} else {
483 		return (phydrv->phy_id & phydrv->phy_id_mask) ==
484 			(phydev->phy_id & phydrv->phy_id_mask);
485 	}
486 }
487 
488 static ssize_t
489 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
490 {
491 	struct phy_device *phydev = to_phy_device(dev);
492 
493 	return sprintf(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
494 }
495 static DEVICE_ATTR_RO(phy_id);
496 
497 static ssize_t
498 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
499 {
500 	struct phy_device *phydev = to_phy_device(dev);
501 	const char *mode = NULL;
502 
503 	if (phy_is_internal(phydev))
504 		mode = "internal";
505 	else
506 		mode = phy_modes(phydev->interface);
507 
508 	return sprintf(buf, "%s\n", mode);
509 }
510 static DEVICE_ATTR_RO(phy_interface);
511 
512 static ssize_t
513 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
514 		    char *buf)
515 {
516 	struct phy_device *phydev = to_phy_device(dev);
517 
518 	return sprintf(buf, "%d\n", phydev->has_fixups);
519 }
520 static DEVICE_ATTR_RO(phy_has_fixups);
521 
522 static ssize_t phy_dev_flags_show(struct device *dev,
523 				  struct device_attribute *attr,
524 				  char *buf)
525 {
526 	struct phy_device *phydev = to_phy_device(dev);
527 
528 	return sprintf(buf, "0x%08x\n", phydev->dev_flags);
529 }
530 static DEVICE_ATTR_RO(phy_dev_flags);
531 
532 static struct attribute *phy_dev_attrs[] = {
533 	&dev_attr_phy_id.attr,
534 	&dev_attr_phy_interface.attr,
535 	&dev_attr_phy_has_fixups.attr,
536 	&dev_attr_phy_dev_flags.attr,
537 	NULL,
538 };
539 ATTRIBUTE_GROUPS(phy_dev);
540 
541 static const struct device_type mdio_bus_phy_type = {
542 	.name = "PHY",
543 	.groups = phy_dev_groups,
544 	.release = phy_device_release,
545 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
546 };
547 
548 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
549 {
550 	int ret;
551 
552 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
553 			     MDIO_ID_ARGS(phy_id));
554 	/* We only check for failures in executing the usermode binary,
555 	 * not whether a PHY driver module exists for the PHY ID.
556 	 * Accept -ENOENT because this may occur in case no initramfs exists,
557 	 * then modprobe isn't available.
558 	 */
559 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
560 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
561 			   ret, (unsigned long)phy_id);
562 		return ret;
563 	}
564 
565 	return 0;
566 }
567 
568 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
569 				     bool is_c45,
570 				     struct phy_c45_device_ids *c45_ids)
571 {
572 	struct phy_device *dev;
573 	struct mdio_device *mdiodev;
574 	int ret = 0;
575 
576 	/* We allocate the device, and initialize the default values */
577 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
578 	if (!dev)
579 		return ERR_PTR(-ENOMEM);
580 
581 	mdiodev = &dev->mdio;
582 	mdiodev->dev.parent = &bus->dev;
583 	mdiodev->dev.bus = &mdio_bus_type;
584 	mdiodev->dev.type = &mdio_bus_phy_type;
585 	mdiodev->bus = bus;
586 	mdiodev->bus_match = phy_bus_match;
587 	mdiodev->addr = addr;
588 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
589 	mdiodev->device_free = phy_mdio_device_free;
590 	mdiodev->device_remove = phy_mdio_device_remove;
591 
592 	dev->speed = SPEED_UNKNOWN;
593 	dev->duplex = DUPLEX_UNKNOWN;
594 	dev->pause = 0;
595 	dev->asym_pause = 0;
596 	dev->link = 0;
597 	dev->port = PORT_TP;
598 	dev->interface = PHY_INTERFACE_MODE_GMII;
599 
600 	dev->autoneg = AUTONEG_ENABLE;
601 
602 	dev->is_c45 = is_c45;
603 	dev->phy_id = phy_id;
604 	if (c45_ids)
605 		dev->c45_ids = *c45_ids;
606 	dev->irq = bus->irq[addr];
607 
608 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
609 	device_initialize(&mdiodev->dev);
610 
611 	dev->state = PHY_DOWN;
612 
613 	mutex_init(&dev->lock);
614 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
615 
616 	/* Request the appropriate module unconditionally; don't
617 	 * bother trying to do so only if it isn't already loaded,
618 	 * because that gets complicated. A hotplug event would have
619 	 * done an unconditional modprobe anyway.
620 	 * We don't do normal hotplug because it won't work for MDIO
621 	 * -- because it relies on the device staying around for long
622 	 * enough for the driver to get loaded. With MDIO, the NIC
623 	 * driver will get bored and give up as soon as it finds that
624 	 * there's no driver _already_ loaded.
625 	 */
626 	if (is_c45 && c45_ids) {
627 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
628 		int i;
629 
630 		for (i = 1; i < num_ids; i++) {
631 			if (c45_ids->device_ids[i] == 0xffffffff)
632 				continue;
633 
634 			ret = phy_request_driver_module(dev,
635 						c45_ids->device_ids[i]);
636 			if (ret)
637 				break;
638 		}
639 	} else {
640 		ret = phy_request_driver_module(dev, phy_id);
641 	}
642 
643 	if (ret) {
644 		put_device(&mdiodev->dev);
645 		dev = ERR_PTR(ret);
646 	}
647 
648 	return dev;
649 }
650 EXPORT_SYMBOL(phy_device_create);
651 
652 /* phy_c45_probe_present - checks to see if a MMD is present in the package
653  * @bus: the target MII bus
654  * @prtad: PHY package address on the MII bus
655  * @devad: PHY device (MMD) address
656  *
657  * Read the MDIO_STAT2 register, and check whether a device is responding
658  * at this address.
659  *
660  * Returns: negative error number on bus access error, zero if no device
661  * is responding, or positive if a device is present.
662  */
663 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
664 {
665 	int stat2;
666 
667 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
668 	if (stat2 < 0)
669 		return stat2;
670 
671 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
672 }
673 
674 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
675  * @bus: the target MII bus
676  * @addr: PHY address on the MII bus
677  * @dev_addr: MMD address in the PHY.
678  * @devices_in_package: where to store the devices in package information.
679  *
680  * Description: reads devices in package registers of a MMD at @dev_addr
681  * from PHY at @addr on @bus.
682  *
683  * Returns: 0 on success, -EIO on failure.
684  */
685 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
686 				   u32 *devices_in_package)
687 {
688 	int phy_reg;
689 
690 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
691 	if (phy_reg < 0)
692 		return -EIO;
693 	*devices_in_package = phy_reg << 16;
694 
695 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
696 	if (phy_reg < 0)
697 		return -EIO;
698 	*devices_in_package |= phy_reg;
699 
700 	return 0;
701 }
702 
703 /**
704  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
705  * @bus: the target MII bus
706  * @addr: PHY address on the MII bus
707  * @c45_ids: where to store the c45 ID information.
708  *
709  * Read the PHY "devices in package". If this appears to be valid, read
710  * the PHY identifiers for each device. Return the "devices in package"
711  * and identifiers in @c45_ids.
712  *
713  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
714  * the "devices in package" is invalid.
715  */
716 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
717 			   struct phy_c45_device_ids *c45_ids)
718 {
719 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
720 	u32 devs_in_pkg = 0;
721 	int i, ret, phy_reg;
722 
723 	/* Find first non-zero Devices In package. Device zero is reserved
724 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
725 	 */
726 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
727 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
728 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
729 			/* Check that there is a device present at this
730 			 * address before reading the devices-in-package
731 			 * register to avoid reading garbage from the PHY.
732 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
733 			 * compliant.
734 			 */
735 			ret = phy_c45_probe_present(bus, addr, i);
736 			if (ret < 0)
737 				return -EIO;
738 
739 			if (!ret)
740 				continue;
741 		}
742 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
743 		if (phy_reg < 0)
744 			return -EIO;
745 	}
746 
747 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
748 		/* If mostly Fs, there is no device there, then let's probe
749 		 * MMD 0, as some 10G PHYs have zero Devices In package,
750 		 * e.g. Cortina CS4315/CS4340 PHY.
751 		 */
752 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
753 		if (phy_reg < 0)
754 			return -EIO;
755 
756 		/* no device there, let's get out of here */
757 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
758 			return -ENODEV;
759 	}
760 
761 	/* Now probe Device Identifiers for each device present. */
762 	for (i = 1; i < num_ids; i++) {
763 		if (!(devs_in_pkg & (1 << i)))
764 			continue;
765 
766 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
767 			/* Probe the "Device Present" bits for the vendor MMDs
768 			 * to ignore these if they do not contain IEEE 802.3
769 			 * registers.
770 			 */
771 			ret = phy_c45_probe_present(bus, addr, i);
772 			if (ret < 0)
773 				return ret;
774 
775 			if (!ret)
776 				continue;
777 		}
778 
779 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
780 		if (phy_reg < 0)
781 			return -EIO;
782 		c45_ids->device_ids[i] = phy_reg << 16;
783 
784 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
785 		if (phy_reg < 0)
786 			return -EIO;
787 		c45_ids->device_ids[i] |= phy_reg;
788 	}
789 
790 	c45_ids->devices_in_package = devs_in_pkg;
791 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
792 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
793 
794 	return 0;
795 }
796 
797 /**
798  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
799  * @bus: the target MII bus
800  * @addr: PHY address on the MII bus
801  * @phy_id: where to store the ID retrieved.
802  *
803  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
804  * placing it in @phy_id. Return zero on successful read and the ID is
805  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
806  * or invalid ID.
807  */
808 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
809 {
810 	int phy_reg;
811 
812 	/* Grab the bits from PHYIR1, and put them in the upper half */
813 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
814 	if (phy_reg < 0) {
815 		/* returning -ENODEV doesn't stop bus scanning */
816 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
817 	}
818 
819 	*phy_id = phy_reg << 16;
820 
821 	/* Grab the bits from PHYIR2, and put them in the lower half */
822 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
823 	if (phy_reg < 0) {
824 		/* returning -ENODEV doesn't stop bus scanning */
825 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
826 	}
827 
828 	*phy_id |= phy_reg;
829 
830 	/* If the phy_id is mostly Fs, there is no device there */
831 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
832 		return -ENODEV;
833 
834 	return 0;
835 }
836 
837 /* Extract the phy ID from the compatible string of the form
838  * ethernet-phy-idAAAA.BBBB.
839  */
840 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
841 {
842 	unsigned int upper, lower;
843 	const char *cp;
844 	int ret;
845 
846 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
847 	if (ret)
848 		return ret;
849 
850 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
851 		return -EINVAL;
852 
853 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
854 	return 0;
855 }
856 EXPORT_SYMBOL(fwnode_get_phy_id);
857 
858 /**
859  * get_phy_device - reads the specified PHY device and returns its @phy_device
860  *		    struct
861  * @bus: the target MII bus
862  * @addr: PHY address on the MII bus
863  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
864  *
865  * Probe for a PHY at @addr on @bus.
866  *
867  * When probing for a clause 22 PHY, then read the ID registers. If we find
868  * a valid ID, allocate and return a &struct phy_device.
869  *
870  * When probing for a clause 45 PHY, read the "devices in package" registers.
871  * If the "devices in package" appears valid, read the ID registers for each
872  * MMD, allocate and return a &struct phy_device.
873  *
874  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
875  * no PHY present, or %-EIO on bus access error.
876  */
877 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
878 {
879 	struct phy_c45_device_ids c45_ids;
880 	u32 phy_id = 0;
881 	int r;
882 
883 	c45_ids.devices_in_package = 0;
884 	c45_ids.mmds_present = 0;
885 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
886 
887 	if (is_c45)
888 		r = get_phy_c45_ids(bus, addr, &c45_ids);
889 	else
890 		r = get_phy_c22_id(bus, addr, &phy_id);
891 
892 	if (r)
893 		return ERR_PTR(r);
894 
895 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
896 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
897 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
898 	 * space, if successful, create the C45 PHY device.
899 	 */
900 	if (!is_c45 && phy_id == 0 && bus->probe_capabilities >= MDIOBUS_C45) {
901 		r = get_phy_c45_ids(bus, addr, &c45_ids);
902 		if (!r)
903 			return phy_device_create(bus, addr, phy_id,
904 						 true, &c45_ids);
905 	}
906 
907 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
908 }
909 EXPORT_SYMBOL(get_phy_device);
910 
911 /**
912  * phy_device_register - Register the phy device on the MDIO bus
913  * @phydev: phy_device structure to be added to the MDIO bus
914  */
915 int phy_device_register(struct phy_device *phydev)
916 {
917 	int err;
918 
919 	err = mdiobus_register_device(&phydev->mdio);
920 	if (err)
921 		return err;
922 
923 	/* Deassert the reset signal */
924 	phy_device_reset(phydev, 0);
925 
926 	/* Run all of the fixups for this PHY */
927 	err = phy_scan_fixups(phydev);
928 	if (err) {
929 		phydev_err(phydev, "failed to initialize\n");
930 		goto out;
931 	}
932 
933 	err = device_add(&phydev->mdio.dev);
934 	if (err) {
935 		phydev_err(phydev, "failed to add\n");
936 		goto out;
937 	}
938 
939 	return 0;
940 
941  out:
942 	/* Assert the reset signal */
943 	phy_device_reset(phydev, 1);
944 
945 	mdiobus_unregister_device(&phydev->mdio);
946 	return err;
947 }
948 EXPORT_SYMBOL(phy_device_register);
949 
950 /**
951  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
952  * @phydev: phy_device structure to remove
953  *
954  * This doesn't free the phy_device itself, it merely reverses the effects
955  * of phy_device_register(). Use phy_device_free() to free the device
956  * after calling this function.
957  */
958 void phy_device_remove(struct phy_device *phydev)
959 {
960 	unregister_mii_timestamper(phydev->mii_ts);
961 
962 	device_del(&phydev->mdio.dev);
963 
964 	/* Assert the reset signal */
965 	phy_device_reset(phydev, 1);
966 
967 	mdiobus_unregister_device(&phydev->mdio);
968 }
969 EXPORT_SYMBOL(phy_device_remove);
970 
971 /**
972  * phy_find_first - finds the first PHY device on the bus
973  * @bus: the target MII bus
974  */
975 struct phy_device *phy_find_first(struct mii_bus *bus)
976 {
977 	struct phy_device *phydev;
978 	int addr;
979 
980 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
981 		phydev = mdiobus_get_phy(bus, addr);
982 		if (phydev)
983 			return phydev;
984 	}
985 	return NULL;
986 }
987 EXPORT_SYMBOL(phy_find_first);
988 
989 static void phy_link_change(struct phy_device *phydev, bool up)
990 {
991 	struct net_device *netdev = phydev->attached_dev;
992 
993 	if (up)
994 		netif_carrier_on(netdev);
995 	else
996 		netif_carrier_off(netdev);
997 	phydev->adjust_link(netdev);
998 	if (phydev->mii_ts && phydev->mii_ts->link_state)
999 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1000 }
1001 
1002 /**
1003  * phy_prepare_link - prepares the PHY layer to monitor link status
1004  * @phydev: target phy_device struct
1005  * @handler: callback function for link status change notifications
1006  *
1007  * Description: Tells the PHY infrastructure to handle the
1008  *   gory details on monitoring link status (whether through
1009  *   polling or an interrupt), and to call back to the
1010  *   connected device driver when the link status changes.
1011  *   If you want to monitor your own link state, don't call
1012  *   this function.
1013  */
1014 static void phy_prepare_link(struct phy_device *phydev,
1015 			     void (*handler)(struct net_device *))
1016 {
1017 	phydev->adjust_link = handler;
1018 }
1019 
1020 /**
1021  * phy_connect_direct - connect an ethernet device to a specific phy_device
1022  * @dev: the network device to connect
1023  * @phydev: the pointer to the phy device
1024  * @handler: callback function for state change notifications
1025  * @interface: PHY device's interface
1026  */
1027 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1028 		       void (*handler)(struct net_device *),
1029 		       phy_interface_t interface)
1030 {
1031 	int rc;
1032 
1033 	if (!dev)
1034 		return -EINVAL;
1035 
1036 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1037 	if (rc)
1038 		return rc;
1039 
1040 	phy_prepare_link(phydev, handler);
1041 	if (phy_interrupt_is_valid(phydev))
1042 		phy_request_interrupt(phydev);
1043 
1044 	return 0;
1045 }
1046 EXPORT_SYMBOL(phy_connect_direct);
1047 
1048 /**
1049  * phy_connect - connect an ethernet device to a PHY device
1050  * @dev: the network device to connect
1051  * @bus_id: the id string of the PHY device to connect
1052  * @handler: callback function for state change notifications
1053  * @interface: PHY device's interface
1054  *
1055  * Description: Convenience function for connecting ethernet
1056  *   devices to PHY devices.  The default behavior is for
1057  *   the PHY infrastructure to handle everything, and only notify
1058  *   the connected driver when the link status changes.  If you
1059  *   don't want, or can't use the provided functionality, you may
1060  *   choose to call only the subset of functions which provide
1061  *   the desired functionality.
1062  */
1063 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1064 			       void (*handler)(struct net_device *),
1065 			       phy_interface_t interface)
1066 {
1067 	struct phy_device *phydev;
1068 	struct device *d;
1069 	int rc;
1070 
1071 	/* Search the list of PHY devices on the mdio bus for the
1072 	 * PHY with the requested name
1073 	 */
1074 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1075 	if (!d) {
1076 		pr_err("PHY %s not found\n", bus_id);
1077 		return ERR_PTR(-ENODEV);
1078 	}
1079 	phydev = to_phy_device(d);
1080 
1081 	rc = phy_connect_direct(dev, phydev, handler, interface);
1082 	put_device(d);
1083 	if (rc)
1084 		return ERR_PTR(rc);
1085 
1086 	return phydev;
1087 }
1088 EXPORT_SYMBOL(phy_connect);
1089 
1090 /**
1091  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1092  *		    device
1093  * @phydev: target phy_device struct
1094  */
1095 void phy_disconnect(struct phy_device *phydev)
1096 {
1097 	if (phy_is_started(phydev))
1098 		phy_stop(phydev);
1099 
1100 	if (phy_interrupt_is_valid(phydev))
1101 		phy_free_interrupt(phydev);
1102 
1103 	phydev->adjust_link = NULL;
1104 
1105 	phy_detach(phydev);
1106 }
1107 EXPORT_SYMBOL(phy_disconnect);
1108 
1109 /**
1110  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1111  * @phydev: The PHY device to poll
1112  *
1113  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1114  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1115  *   register must be polled until the BMCR_RESET bit clears.
1116  *
1117  *   Furthermore, any attempts to write to PHY registers may have no effect
1118  *   or even generate MDIO bus errors until this is complete.
1119  *
1120  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1121  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1122  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1123  *   effort to support such broken PHYs, this function is separate from the
1124  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1125  *   and reapply all driver-specific and board-specific fixups.
1126  */
1127 static int phy_poll_reset(struct phy_device *phydev)
1128 {
1129 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1130 	int ret, val;
1131 
1132 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1133 				    50000, 600000, true);
1134 	if (ret)
1135 		return ret;
1136 	/* Some chips (smsc911x) may still need up to another 1ms after the
1137 	 * BMCR_RESET bit is cleared before they are usable.
1138 	 */
1139 	msleep(1);
1140 	return 0;
1141 }
1142 
1143 int phy_init_hw(struct phy_device *phydev)
1144 {
1145 	int ret = 0;
1146 
1147 	/* Deassert the reset signal */
1148 	phy_device_reset(phydev, 0);
1149 
1150 	if (!phydev->drv)
1151 		return 0;
1152 
1153 	if (phydev->drv->soft_reset) {
1154 		ret = phydev->drv->soft_reset(phydev);
1155 		/* see comment in genphy_soft_reset for an explanation */
1156 		if (!ret)
1157 			phydev->suspended = 0;
1158 	}
1159 
1160 	if (ret < 0)
1161 		return ret;
1162 
1163 	ret = phy_scan_fixups(phydev);
1164 	if (ret < 0)
1165 		return ret;
1166 
1167 	if (phydev->drv->config_init) {
1168 		ret = phydev->drv->config_init(phydev);
1169 		if (ret < 0)
1170 			return ret;
1171 	}
1172 
1173 	if (phydev->drv->config_intr) {
1174 		ret = phydev->drv->config_intr(phydev);
1175 		if (ret < 0)
1176 			return ret;
1177 	}
1178 
1179 	return 0;
1180 }
1181 EXPORT_SYMBOL(phy_init_hw);
1182 
1183 void phy_attached_info(struct phy_device *phydev)
1184 {
1185 	phy_attached_print(phydev, NULL);
1186 }
1187 EXPORT_SYMBOL(phy_attached_info);
1188 
1189 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1190 char *phy_attached_info_irq(struct phy_device *phydev)
1191 {
1192 	char *irq_str;
1193 	char irq_num[8];
1194 
1195 	switch(phydev->irq) {
1196 	case PHY_POLL:
1197 		irq_str = "POLL";
1198 		break;
1199 	case PHY_MAC_INTERRUPT:
1200 		irq_str = "MAC";
1201 		break;
1202 	default:
1203 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1204 		irq_str = irq_num;
1205 		break;
1206 	}
1207 
1208 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1209 }
1210 EXPORT_SYMBOL(phy_attached_info_irq);
1211 
1212 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1213 {
1214 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1215 	char *irq_str = phy_attached_info_irq(phydev);
1216 
1217 	if (!fmt) {
1218 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1219 			    phydev_name(phydev), irq_str);
1220 	} else {
1221 		va_list ap;
1222 
1223 		phydev_info(phydev, ATTACHED_FMT, unbound,
1224 			    phydev_name(phydev), irq_str);
1225 
1226 		va_start(ap, fmt);
1227 		vprintk(fmt, ap);
1228 		va_end(ap);
1229 	}
1230 	kfree(irq_str);
1231 }
1232 EXPORT_SYMBOL(phy_attached_print);
1233 
1234 static void phy_sysfs_create_links(struct phy_device *phydev)
1235 {
1236 	struct net_device *dev = phydev->attached_dev;
1237 	int err;
1238 
1239 	if (!dev)
1240 		return;
1241 
1242 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1243 				"attached_dev");
1244 	if (err)
1245 		return;
1246 
1247 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1248 				       &phydev->mdio.dev.kobj,
1249 				       "phydev");
1250 	if (err) {
1251 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1252 			kobject_name(&phydev->mdio.dev.kobj),
1253 			err);
1254 		/* non-fatal - some net drivers can use one netdevice
1255 		 * with more then one phy
1256 		 */
1257 	}
1258 
1259 	phydev->sysfs_links = true;
1260 }
1261 
1262 static ssize_t
1263 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1264 		    char *buf)
1265 {
1266 	struct phy_device *phydev = to_phy_device(dev);
1267 
1268 	return sprintf(buf, "%d\n", !phydev->attached_dev);
1269 }
1270 static DEVICE_ATTR_RO(phy_standalone);
1271 
1272 /**
1273  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1274  * @upstream: pointer to the phy device
1275  * @bus: sfp bus representing cage being attached
1276  *
1277  * This is used to fill in the sfp_upstream_ops .attach member.
1278  */
1279 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1280 {
1281 	struct phy_device *phydev = upstream;
1282 
1283 	if (phydev->attached_dev)
1284 		phydev->attached_dev->sfp_bus = bus;
1285 	phydev->sfp_bus_attached = true;
1286 }
1287 EXPORT_SYMBOL(phy_sfp_attach);
1288 
1289 /**
1290  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1291  * @upstream: pointer to the phy device
1292  * @bus: sfp bus representing cage being attached
1293  *
1294  * This is used to fill in the sfp_upstream_ops .detach member.
1295  */
1296 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1297 {
1298 	struct phy_device *phydev = upstream;
1299 
1300 	if (phydev->attached_dev)
1301 		phydev->attached_dev->sfp_bus = NULL;
1302 	phydev->sfp_bus_attached = false;
1303 }
1304 EXPORT_SYMBOL(phy_sfp_detach);
1305 
1306 /**
1307  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1308  * @phydev: Pointer to phy_device
1309  * @ops: SFP's upstream operations
1310  */
1311 int phy_sfp_probe(struct phy_device *phydev,
1312 		  const struct sfp_upstream_ops *ops)
1313 {
1314 	struct sfp_bus *bus;
1315 	int ret = 0;
1316 
1317 	if (phydev->mdio.dev.fwnode) {
1318 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1319 		if (IS_ERR(bus))
1320 			return PTR_ERR(bus);
1321 
1322 		phydev->sfp_bus = bus;
1323 
1324 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1325 		sfp_bus_put(bus);
1326 	}
1327 	return ret;
1328 }
1329 EXPORT_SYMBOL(phy_sfp_probe);
1330 
1331 /**
1332  * phy_attach_direct - attach a network device to a given PHY device pointer
1333  * @dev: network device to attach
1334  * @phydev: Pointer to phy_device to attach
1335  * @flags: PHY device's dev_flags
1336  * @interface: PHY device's interface
1337  *
1338  * Description: Called by drivers to attach to a particular PHY
1339  *     device. The phy_device is found, and properly hooked up
1340  *     to the phy_driver.  If no driver is attached, then a
1341  *     generic driver is used.  The phy_device is given a ptr to
1342  *     the attaching device, and given a callback for link status
1343  *     change.  The phy_device is returned to the attaching driver.
1344  *     This function takes a reference on the phy device.
1345  */
1346 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1347 		      u32 flags, phy_interface_t interface)
1348 {
1349 	struct mii_bus *bus = phydev->mdio.bus;
1350 	struct device *d = &phydev->mdio.dev;
1351 	struct module *ndev_owner = NULL;
1352 	bool using_genphy = false;
1353 	int err;
1354 
1355 	/* For Ethernet device drivers that register their own MDIO bus, we
1356 	 * will have bus->owner match ndev_mod, so we do not want to increment
1357 	 * our own module->refcnt here, otherwise we would not be able to
1358 	 * unload later on.
1359 	 */
1360 	if (dev)
1361 		ndev_owner = dev->dev.parent->driver->owner;
1362 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1363 		phydev_err(phydev, "failed to get the bus module\n");
1364 		return -EIO;
1365 	}
1366 
1367 	get_device(d);
1368 
1369 	/* Assume that if there is no driver, that it doesn't
1370 	 * exist, and we should use the genphy driver.
1371 	 */
1372 	if (!d->driver) {
1373 		if (phydev->is_c45)
1374 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1375 		else
1376 			d->driver = &genphy_driver.mdiodrv.driver;
1377 
1378 		using_genphy = true;
1379 	}
1380 
1381 	if (!try_module_get(d->driver->owner)) {
1382 		phydev_err(phydev, "failed to get the device driver module\n");
1383 		err = -EIO;
1384 		goto error_put_device;
1385 	}
1386 
1387 	if (using_genphy) {
1388 		err = d->driver->probe(d);
1389 		if (err >= 0)
1390 			err = device_bind_driver(d);
1391 
1392 		if (err)
1393 			goto error_module_put;
1394 	}
1395 
1396 	if (phydev->attached_dev) {
1397 		dev_err(&dev->dev, "PHY already attached\n");
1398 		err = -EBUSY;
1399 		goto error;
1400 	}
1401 
1402 	phydev->phy_link_change = phy_link_change;
1403 	if (dev) {
1404 		phydev->attached_dev = dev;
1405 		dev->phydev = phydev;
1406 
1407 		if (phydev->sfp_bus_attached)
1408 			dev->sfp_bus = phydev->sfp_bus;
1409 		else if (dev->sfp_bus)
1410 			phydev->is_on_sfp_module = true;
1411 	}
1412 
1413 	/* Some Ethernet drivers try to connect to a PHY device before
1414 	 * calling register_netdevice() -> netdev_register_kobject() and
1415 	 * does the dev->dev.kobj initialization. Here we only check for
1416 	 * success which indicates that the network device kobject is
1417 	 * ready. Once we do that we still need to keep track of whether
1418 	 * links were successfully set up or not for phy_detach() to
1419 	 * remove them accordingly.
1420 	 */
1421 	phydev->sysfs_links = false;
1422 
1423 	phy_sysfs_create_links(phydev);
1424 
1425 	if (!phydev->attached_dev) {
1426 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1427 					&dev_attr_phy_standalone.attr);
1428 		if (err)
1429 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1430 	}
1431 
1432 	phydev->dev_flags |= flags;
1433 
1434 	phydev->interface = interface;
1435 
1436 	phydev->state = PHY_READY;
1437 
1438 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1439 	 * it to different value depending on the PHY configuration. If we have
1440 	 * the generic PHY driver we can't figure it out, thus set the old
1441 	 * legacy PORT_MII value.
1442 	 */
1443 	if (using_genphy)
1444 		phydev->port = PORT_MII;
1445 
1446 	/* Initial carrier state is off as the phy is about to be
1447 	 * (re)initialized.
1448 	 */
1449 	if (dev)
1450 		netif_carrier_off(phydev->attached_dev);
1451 
1452 	/* Do initial configuration here, now that
1453 	 * we have certain key parameters
1454 	 * (dev_flags and interface)
1455 	 */
1456 	err = phy_init_hw(phydev);
1457 	if (err)
1458 		goto error;
1459 
1460 	err = phy_disable_interrupts(phydev);
1461 	if (err)
1462 		return err;
1463 
1464 	phy_resume(phydev);
1465 	phy_led_triggers_register(phydev);
1466 
1467 	return err;
1468 
1469 error:
1470 	/* phy_detach() does all of the cleanup below */
1471 	phy_detach(phydev);
1472 	return err;
1473 
1474 error_module_put:
1475 	module_put(d->driver->owner);
1476 error_put_device:
1477 	put_device(d);
1478 	if (ndev_owner != bus->owner)
1479 		module_put(bus->owner);
1480 	return err;
1481 }
1482 EXPORT_SYMBOL(phy_attach_direct);
1483 
1484 /**
1485  * phy_attach - attach a network device to a particular PHY device
1486  * @dev: network device to attach
1487  * @bus_id: Bus ID of PHY device to attach
1488  * @interface: PHY device's interface
1489  *
1490  * Description: Same as phy_attach_direct() except that a PHY bus_id
1491  *     string is passed instead of a pointer to a struct phy_device.
1492  */
1493 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1494 			      phy_interface_t interface)
1495 {
1496 	struct bus_type *bus = &mdio_bus_type;
1497 	struct phy_device *phydev;
1498 	struct device *d;
1499 	int rc;
1500 
1501 	if (!dev)
1502 		return ERR_PTR(-EINVAL);
1503 
1504 	/* Search the list of PHY devices on the mdio bus for the
1505 	 * PHY with the requested name
1506 	 */
1507 	d = bus_find_device_by_name(bus, NULL, bus_id);
1508 	if (!d) {
1509 		pr_err("PHY %s not found\n", bus_id);
1510 		return ERR_PTR(-ENODEV);
1511 	}
1512 	phydev = to_phy_device(d);
1513 
1514 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1515 	put_device(d);
1516 	if (rc)
1517 		return ERR_PTR(rc);
1518 
1519 	return phydev;
1520 }
1521 EXPORT_SYMBOL(phy_attach);
1522 
1523 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1524 				      struct device_driver *driver)
1525 {
1526 	struct device *d = &phydev->mdio.dev;
1527 	bool ret = false;
1528 
1529 	if (!phydev->drv)
1530 		return ret;
1531 
1532 	get_device(d);
1533 	ret = d->driver == driver;
1534 	put_device(d);
1535 
1536 	return ret;
1537 }
1538 
1539 bool phy_driver_is_genphy(struct phy_device *phydev)
1540 {
1541 	return phy_driver_is_genphy_kind(phydev,
1542 					 &genphy_driver.mdiodrv.driver);
1543 }
1544 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1545 
1546 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1547 {
1548 	return phy_driver_is_genphy_kind(phydev,
1549 					 &genphy_c45_driver.mdiodrv.driver);
1550 }
1551 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1552 
1553 /**
1554  * phy_package_join - join a common PHY group
1555  * @phydev: target phy_device struct
1556  * @addr: cookie and PHY address for global register access
1557  * @priv_size: if non-zero allocate this amount of bytes for private data
1558  *
1559  * This joins a PHY group and provides a shared storage for all phydevs in
1560  * this group. This is intended to be used for packages which contain
1561  * more than one PHY, for example a quad PHY transceiver.
1562  *
1563  * The addr parameter serves as a cookie which has to have the same value
1564  * for all members of one group and as a PHY address to access generic
1565  * registers of a PHY package. Usually, one of the PHY addresses of the
1566  * different PHYs in the package provides access to these global registers.
1567  * The address which is given here, will be used in the phy_package_read()
1568  * and phy_package_write() convenience functions. If your PHY doesn't have
1569  * global registers you can just pick any of the PHY addresses.
1570  *
1571  * This will set the shared pointer of the phydev to the shared storage.
1572  * If this is the first call for a this cookie the shared storage will be
1573  * allocated. If priv_size is non-zero, the given amount of bytes are
1574  * allocated for the priv member.
1575  *
1576  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1577  * with the same cookie but a different priv_size is an error.
1578  */
1579 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size)
1580 {
1581 	struct mii_bus *bus = phydev->mdio.bus;
1582 	struct phy_package_shared *shared;
1583 	int ret;
1584 
1585 	if (addr < 0 || addr >= PHY_MAX_ADDR)
1586 		return -EINVAL;
1587 
1588 	mutex_lock(&bus->shared_lock);
1589 	shared = bus->shared[addr];
1590 	if (!shared) {
1591 		ret = -ENOMEM;
1592 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1593 		if (!shared)
1594 			goto err_unlock;
1595 		if (priv_size) {
1596 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1597 			if (!shared->priv)
1598 				goto err_free;
1599 			shared->priv_size = priv_size;
1600 		}
1601 		shared->addr = addr;
1602 		refcount_set(&shared->refcnt, 1);
1603 		bus->shared[addr] = shared;
1604 	} else {
1605 		ret = -EINVAL;
1606 		if (priv_size && priv_size != shared->priv_size)
1607 			goto err_unlock;
1608 		refcount_inc(&shared->refcnt);
1609 	}
1610 	mutex_unlock(&bus->shared_lock);
1611 
1612 	phydev->shared = shared;
1613 
1614 	return 0;
1615 
1616 err_free:
1617 	kfree(shared);
1618 err_unlock:
1619 	mutex_unlock(&bus->shared_lock);
1620 	return ret;
1621 }
1622 EXPORT_SYMBOL_GPL(phy_package_join);
1623 
1624 /**
1625  * phy_package_leave - leave a common PHY group
1626  * @phydev: target phy_device struct
1627  *
1628  * This leaves a PHY group created by phy_package_join(). If this phydev
1629  * was the last user of the shared data between the group, this data is
1630  * freed. Resets the phydev->shared pointer to NULL.
1631  */
1632 void phy_package_leave(struct phy_device *phydev)
1633 {
1634 	struct phy_package_shared *shared = phydev->shared;
1635 	struct mii_bus *bus = phydev->mdio.bus;
1636 
1637 	if (!shared)
1638 		return;
1639 
1640 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1641 		bus->shared[shared->addr] = NULL;
1642 		mutex_unlock(&bus->shared_lock);
1643 		kfree(shared->priv);
1644 		kfree(shared);
1645 	}
1646 
1647 	phydev->shared = NULL;
1648 }
1649 EXPORT_SYMBOL_GPL(phy_package_leave);
1650 
1651 static void devm_phy_package_leave(struct device *dev, void *res)
1652 {
1653 	phy_package_leave(*(struct phy_device **)res);
1654 }
1655 
1656 /**
1657  * devm_phy_package_join - resource managed phy_package_join()
1658  * @dev: device that is registering this PHY package
1659  * @phydev: target phy_device struct
1660  * @addr: cookie and PHY address for global register access
1661  * @priv_size: if non-zero allocate this amount of bytes for private data
1662  *
1663  * Managed phy_package_join(). Shared storage fetched by this function,
1664  * phy_package_leave() is automatically called on driver detach. See
1665  * phy_package_join() for more information.
1666  */
1667 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1668 			  int addr, size_t priv_size)
1669 {
1670 	struct phy_device **ptr;
1671 	int ret;
1672 
1673 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1674 			   GFP_KERNEL);
1675 	if (!ptr)
1676 		return -ENOMEM;
1677 
1678 	ret = phy_package_join(phydev, addr, priv_size);
1679 
1680 	if (!ret) {
1681 		*ptr = phydev;
1682 		devres_add(dev, ptr);
1683 	} else {
1684 		devres_free(ptr);
1685 	}
1686 
1687 	return ret;
1688 }
1689 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1690 
1691 /**
1692  * phy_detach - detach a PHY device from its network device
1693  * @phydev: target phy_device struct
1694  *
1695  * This detaches the phy device from its network device and the phy
1696  * driver, and drops the reference count taken in phy_attach_direct().
1697  */
1698 void phy_detach(struct phy_device *phydev)
1699 {
1700 	struct net_device *dev = phydev->attached_dev;
1701 	struct module *ndev_owner = NULL;
1702 	struct mii_bus *bus;
1703 
1704 	if (phydev->sysfs_links) {
1705 		if (dev)
1706 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1707 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1708 	}
1709 
1710 	if (!phydev->attached_dev)
1711 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1712 				  &dev_attr_phy_standalone.attr);
1713 
1714 	phy_suspend(phydev);
1715 	if (dev) {
1716 		phydev->attached_dev->phydev = NULL;
1717 		phydev->attached_dev = NULL;
1718 	}
1719 	phydev->phylink = NULL;
1720 
1721 	phy_led_triggers_unregister(phydev);
1722 
1723 	if (phydev->mdio.dev.driver)
1724 		module_put(phydev->mdio.dev.driver->owner);
1725 
1726 	/* If the device had no specific driver before (i.e. - it
1727 	 * was using the generic driver), we unbind the device
1728 	 * from the generic driver so that there's a chance a
1729 	 * real driver could be loaded
1730 	 */
1731 	if (phy_driver_is_genphy(phydev) ||
1732 	    phy_driver_is_genphy_10g(phydev))
1733 		device_release_driver(&phydev->mdio.dev);
1734 
1735 	/*
1736 	 * The phydev might go away on the put_device() below, so avoid
1737 	 * a use-after-free bug by reading the underlying bus first.
1738 	 */
1739 	bus = phydev->mdio.bus;
1740 
1741 	put_device(&phydev->mdio.dev);
1742 	if (dev)
1743 		ndev_owner = dev->dev.parent->driver->owner;
1744 	if (ndev_owner != bus->owner)
1745 		module_put(bus->owner);
1746 
1747 	/* Assert the reset signal */
1748 	phy_device_reset(phydev, 1);
1749 }
1750 EXPORT_SYMBOL(phy_detach);
1751 
1752 int phy_suspend(struct phy_device *phydev)
1753 {
1754 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1755 	struct net_device *netdev = phydev->attached_dev;
1756 	struct phy_driver *phydrv = phydev->drv;
1757 	int ret;
1758 
1759 	if (phydev->suspended)
1760 		return 0;
1761 
1762 	/* If the device has WOL enabled, we cannot suspend the PHY */
1763 	phy_ethtool_get_wol(phydev, &wol);
1764 	if (wol.wolopts || (netdev && netdev->wol_enabled))
1765 		return -EBUSY;
1766 
1767 	if (!phydrv || !phydrv->suspend)
1768 		return 0;
1769 
1770 	ret = phydrv->suspend(phydev);
1771 	if (!ret)
1772 		phydev->suspended = true;
1773 
1774 	return ret;
1775 }
1776 EXPORT_SYMBOL(phy_suspend);
1777 
1778 int __phy_resume(struct phy_device *phydev)
1779 {
1780 	struct phy_driver *phydrv = phydev->drv;
1781 	int ret;
1782 
1783 	lockdep_assert_held(&phydev->lock);
1784 
1785 	if (!phydrv || !phydrv->resume)
1786 		return 0;
1787 
1788 	ret = phydrv->resume(phydev);
1789 	if (!ret)
1790 		phydev->suspended = false;
1791 
1792 	return ret;
1793 }
1794 EXPORT_SYMBOL(__phy_resume);
1795 
1796 int phy_resume(struct phy_device *phydev)
1797 {
1798 	int ret;
1799 
1800 	mutex_lock(&phydev->lock);
1801 	ret = __phy_resume(phydev);
1802 	mutex_unlock(&phydev->lock);
1803 
1804 	return ret;
1805 }
1806 EXPORT_SYMBOL(phy_resume);
1807 
1808 int phy_loopback(struct phy_device *phydev, bool enable)
1809 {
1810 	struct phy_driver *phydrv = to_phy_driver(phydev->mdio.dev.driver);
1811 	int ret = 0;
1812 
1813 	if (!phydrv)
1814 		return -ENODEV;
1815 
1816 	mutex_lock(&phydev->lock);
1817 
1818 	if (enable && phydev->loopback_enabled) {
1819 		ret = -EBUSY;
1820 		goto out;
1821 	}
1822 
1823 	if (!enable && !phydev->loopback_enabled) {
1824 		ret = -EINVAL;
1825 		goto out;
1826 	}
1827 
1828 	if (phydrv->set_loopback)
1829 		ret = phydrv->set_loopback(phydev, enable);
1830 	else
1831 		ret = genphy_loopback(phydev, enable);
1832 
1833 	if (ret)
1834 		goto out;
1835 
1836 	phydev->loopback_enabled = enable;
1837 
1838 out:
1839 	mutex_unlock(&phydev->lock);
1840 	return ret;
1841 }
1842 EXPORT_SYMBOL(phy_loopback);
1843 
1844 /**
1845  * phy_reset_after_clk_enable - perform a PHY reset if needed
1846  * @phydev: target phy_device struct
1847  *
1848  * Description: Some PHYs are known to need a reset after their refclk was
1849  *   enabled. This function evaluates the flags and perform the reset if it's
1850  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1851  *   was reset.
1852  */
1853 int phy_reset_after_clk_enable(struct phy_device *phydev)
1854 {
1855 	if (!phydev || !phydev->drv)
1856 		return -ENODEV;
1857 
1858 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1859 		phy_device_reset(phydev, 1);
1860 		phy_device_reset(phydev, 0);
1861 		return 1;
1862 	}
1863 
1864 	return 0;
1865 }
1866 EXPORT_SYMBOL(phy_reset_after_clk_enable);
1867 
1868 /* Generic PHY support and helper functions */
1869 
1870 /**
1871  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1872  * @phydev: target phy_device struct
1873  *
1874  * Description: Writes MII_ADVERTISE with the appropriate values,
1875  *   after sanitizing the values to make sure we only advertise
1876  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1877  *   hasn't changed, and > 0 if it has changed.
1878  */
1879 static int genphy_config_advert(struct phy_device *phydev)
1880 {
1881 	int err, bmsr, changed = 0;
1882 	u32 adv;
1883 
1884 	/* Only allow advertising what this PHY supports */
1885 	linkmode_and(phydev->advertising, phydev->advertising,
1886 		     phydev->supported);
1887 
1888 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1889 
1890 	/* Setup standard advertisement */
1891 	err = phy_modify_changed(phydev, MII_ADVERTISE,
1892 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
1893 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
1894 				 adv);
1895 	if (err < 0)
1896 		return err;
1897 	if (err > 0)
1898 		changed = 1;
1899 
1900 	bmsr = phy_read(phydev, MII_BMSR);
1901 	if (bmsr < 0)
1902 		return bmsr;
1903 
1904 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
1905 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
1906 	 * logical 1.
1907 	 */
1908 	if (!(bmsr & BMSR_ESTATEN))
1909 		return changed;
1910 
1911 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
1912 
1913 	err = phy_modify_changed(phydev, MII_CTRL1000,
1914 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
1915 				 adv);
1916 	if (err < 0)
1917 		return err;
1918 	if (err > 0)
1919 		changed = 1;
1920 
1921 	return changed;
1922 }
1923 
1924 /**
1925  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
1926  * @phydev: target phy_device struct
1927  *
1928  * Description: Writes MII_ADVERTISE with the appropriate values,
1929  *   after sanitizing the values to make sure we only advertise
1930  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1931  *   hasn't changed, and > 0 if it has changed. This function is intended
1932  *   for Clause 37 1000Base-X mode.
1933  */
1934 static int genphy_c37_config_advert(struct phy_device *phydev)
1935 {
1936 	u16 adv = 0;
1937 
1938 	/* Only allow advertising what this PHY supports */
1939 	linkmode_and(phydev->advertising, phydev->advertising,
1940 		     phydev->supported);
1941 
1942 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
1943 			      phydev->advertising))
1944 		adv |= ADVERTISE_1000XFULL;
1945 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
1946 			      phydev->advertising))
1947 		adv |= ADVERTISE_1000XPAUSE;
1948 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
1949 			      phydev->advertising))
1950 		adv |= ADVERTISE_1000XPSE_ASYM;
1951 
1952 	return phy_modify_changed(phydev, MII_ADVERTISE,
1953 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1954 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
1955 				  adv);
1956 }
1957 
1958 /**
1959  * genphy_config_eee_advert - disable unwanted eee mode advertisement
1960  * @phydev: target phy_device struct
1961  *
1962  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
1963  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
1964  *   changed, and 1 if it has changed.
1965  */
1966 int genphy_config_eee_advert(struct phy_device *phydev)
1967 {
1968 	int err;
1969 
1970 	/* Nothing to disable */
1971 	if (!phydev->eee_broken_modes)
1972 		return 0;
1973 
1974 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
1975 				     phydev->eee_broken_modes, 0);
1976 	/* If the call failed, we assume that EEE is not supported */
1977 	return err < 0 ? 0 : err;
1978 }
1979 EXPORT_SYMBOL(genphy_config_eee_advert);
1980 
1981 /**
1982  * genphy_setup_forced - configures/forces speed/duplex from @phydev
1983  * @phydev: target phy_device struct
1984  *
1985  * Description: Configures MII_BMCR to force speed/duplex
1986  *   to the values in phydev. Assumes that the values are valid.
1987  *   Please see phy_sanitize_settings().
1988  */
1989 int genphy_setup_forced(struct phy_device *phydev)
1990 {
1991 	u16 ctl = 0;
1992 
1993 	phydev->pause = 0;
1994 	phydev->asym_pause = 0;
1995 
1996 	if (SPEED_1000 == phydev->speed)
1997 		ctl |= BMCR_SPEED1000;
1998 	else if (SPEED_100 == phydev->speed)
1999 		ctl |= BMCR_SPEED100;
2000 
2001 	if (DUPLEX_FULL == phydev->duplex)
2002 		ctl |= BMCR_FULLDPLX;
2003 
2004 	return phy_modify(phydev, MII_BMCR,
2005 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2006 }
2007 EXPORT_SYMBOL(genphy_setup_forced);
2008 
2009 static int genphy_setup_master_slave(struct phy_device *phydev)
2010 {
2011 	u16 ctl = 0;
2012 
2013 	if (!phydev->is_gigabit_capable)
2014 		return 0;
2015 
2016 	switch (phydev->master_slave_set) {
2017 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2018 		ctl |= CTL1000_PREFER_MASTER;
2019 		break;
2020 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2021 		break;
2022 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2023 		ctl |= CTL1000_AS_MASTER;
2024 		fallthrough;
2025 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2026 		ctl |= CTL1000_ENABLE_MASTER;
2027 		break;
2028 	case MASTER_SLAVE_CFG_UNKNOWN:
2029 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2030 		return 0;
2031 	default:
2032 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2033 		return -EOPNOTSUPP;
2034 	}
2035 
2036 	return phy_modify_changed(phydev, MII_CTRL1000,
2037 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2038 				   CTL1000_PREFER_MASTER), ctl);
2039 }
2040 
2041 static int genphy_read_master_slave(struct phy_device *phydev)
2042 {
2043 	int cfg, state;
2044 	int val;
2045 
2046 	if (!phydev->is_gigabit_capable) {
2047 		phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2048 		phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2049 		return 0;
2050 	}
2051 
2052 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2053 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2054 
2055 	val = phy_read(phydev, MII_CTRL1000);
2056 	if (val < 0)
2057 		return val;
2058 
2059 	if (val & CTL1000_ENABLE_MASTER) {
2060 		if (val & CTL1000_AS_MASTER)
2061 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2062 		else
2063 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2064 	} else {
2065 		if (val & CTL1000_PREFER_MASTER)
2066 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2067 		else
2068 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2069 	}
2070 
2071 	val = phy_read(phydev, MII_STAT1000);
2072 	if (val < 0)
2073 		return val;
2074 
2075 	if (val & LPA_1000MSFAIL) {
2076 		state = MASTER_SLAVE_STATE_ERR;
2077 	} else if (phydev->link) {
2078 		/* this bits are valid only for active link */
2079 		if (val & LPA_1000MSRES)
2080 			state = MASTER_SLAVE_STATE_MASTER;
2081 		else
2082 			state = MASTER_SLAVE_STATE_SLAVE;
2083 	} else {
2084 		state = MASTER_SLAVE_STATE_UNKNOWN;
2085 	}
2086 
2087 	phydev->master_slave_get = cfg;
2088 	phydev->master_slave_state = state;
2089 
2090 	return 0;
2091 }
2092 
2093 /**
2094  * genphy_restart_aneg - Enable and Restart Autonegotiation
2095  * @phydev: target phy_device struct
2096  */
2097 int genphy_restart_aneg(struct phy_device *phydev)
2098 {
2099 	/* Don't isolate the PHY if we're negotiating */
2100 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2101 			  BMCR_ANENABLE | BMCR_ANRESTART);
2102 }
2103 EXPORT_SYMBOL(genphy_restart_aneg);
2104 
2105 /**
2106  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2107  * @phydev: target phy_device struct
2108  * @restart: whether aneg restart is requested
2109  *
2110  * Check, and restart auto-negotiation if needed.
2111  */
2112 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2113 {
2114 	int ret;
2115 
2116 	if (!restart) {
2117 		/* Advertisement hasn't changed, but maybe aneg was never on to
2118 		 * begin with?  Or maybe phy was isolated?
2119 		 */
2120 		ret = phy_read(phydev, MII_BMCR);
2121 		if (ret < 0)
2122 			return ret;
2123 
2124 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2125 			restart = true;
2126 	}
2127 
2128 	if (restart)
2129 		return genphy_restart_aneg(phydev);
2130 
2131 	return 0;
2132 }
2133 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2134 
2135 /**
2136  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2137  * @phydev: target phy_device struct
2138  * @changed: whether autoneg is requested
2139  *
2140  * Description: If auto-negotiation is enabled, we configure the
2141  *   advertising, and then restart auto-negotiation.  If it is not
2142  *   enabled, then we write the BMCR.
2143  */
2144 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2145 {
2146 	int err;
2147 
2148 	if (genphy_config_eee_advert(phydev))
2149 		changed = true;
2150 
2151 	err = genphy_setup_master_slave(phydev);
2152 	if (err < 0)
2153 		return err;
2154 	else if (err)
2155 		changed = true;
2156 
2157 	if (AUTONEG_ENABLE != phydev->autoneg)
2158 		return genphy_setup_forced(phydev);
2159 
2160 	err = genphy_config_advert(phydev);
2161 	if (err < 0) /* error */
2162 		return err;
2163 	else if (err)
2164 		changed = true;
2165 
2166 	return genphy_check_and_restart_aneg(phydev, changed);
2167 }
2168 EXPORT_SYMBOL(__genphy_config_aneg);
2169 
2170 /**
2171  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2172  * @phydev: target phy_device struct
2173  *
2174  * Description: If auto-negotiation is enabled, we configure the
2175  *   advertising, and then restart auto-negotiation.  If it is not
2176  *   enabled, then we write the BMCR. This function is intended
2177  *   for use with Clause 37 1000Base-X mode.
2178  */
2179 int genphy_c37_config_aneg(struct phy_device *phydev)
2180 {
2181 	int err, changed;
2182 
2183 	if (phydev->autoneg != AUTONEG_ENABLE)
2184 		return genphy_setup_forced(phydev);
2185 
2186 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2187 			 BMCR_SPEED1000);
2188 	if (err)
2189 		return err;
2190 
2191 	changed = genphy_c37_config_advert(phydev);
2192 	if (changed < 0) /* error */
2193 		return changed;
2194 
2195 	if (!changed) {
2196 		/* Advertisement hasn't changed, but maybe aneg was never on to
2197 		 * begin with?  Or maybe phy was isolated?
2198 		 */
2199 		int ctl = phy_read(phydev, MII_BMCR);
2200 
2201 		if (ctl < 0)
2202 			return ctl;
2203 
2204 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2205 			changed = 1; /* do restart aneg */
2206 	}
2207 
2208 	/* Only restart aneg if we are advertising something different
2209 	 * than we were before.
2210 	 */
2211 	if (changed > 0)
2212 		return genphy_restart_aneg(phydev);
2213 
2214 	return 0;
2215 }
2216 EXPORT_SYMBOL(genphy_c37_config_aneg);
2217 
2218 /**
2219  * genphy_aneg_done - return auto-negotiation status
2220  * @phydev: target phy_device struct
2221  *
2222  * Description: Reads the status register and returns 0 either if
2223  *   auto-negotiation is incomplete, or if there was an error.
2224  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2225  */
2226 int genphy_aneg_done(struct phy_device *phydev)
2227 {
2228 	int retval = phy_read(phydev, MII_BMSR);
2229 
2230 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2231 }
2232 EXPORT_SYMBOL(genphy_aneg_done);
2233 
2234 /**
2235  * genphy_update_link - update link status in @phydev
2236  * @phydev: target phy_device struct
2237  *
2238  * Description: Update the value in phydev->link to reflect the
2239  *   current link value.  In order to do this, we need to read
2240  *   the status register twice, keeping the second value.
2241  */
2242 int genphy_update_link(struct phy_device *phydev)
2243 {
2244 	int status = 0, bmcr;
2245 
2246 	bmcr = phy_read(phydev, MII_BMCR);
2247 	if (bmcr < 0)
2248 		return bmcr;
2249 
2250 	/* Autoneg is being started, therefore disregard BMSR value and
2251 	 * report link as down.
2252 	 */
2253 	if (bmcr & BMCR_ANRESTART)
2254 		goto done;
2255 
2256 	/* The link state is latched low so that momentary link
2257 	 * drops can be detected. Do not double-read the status
2258 	 * in polling mode to detect such short link drops except
2259 	 * the link was already down.
2260 	 */
2261 	if (!phy_polling_mode(phydev) || !phydev->link) {
2262 		status = phy_read(phydev, MII_BMSR);
2263 		if (status < 0)
2264 			return status;
2265 		else if (status & BMSR_LSTATUS)
2266 			goto done;
2267 	}
2268 
2269 	/* Read link and autonegotiation status */
2270 	status = phy_read(phydev, MII_BMSR);
2271 	if (status < 0)
2272 		return status;
2273 done:
2274 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2275 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2276 
2277 	/* Consider the case that autoneg was started and "aneg complete"
2278 	 * bit has been reset, but "link up" bit not yet.
2279 	 */
2280 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2281 		phydev->link = 0;
2282 
2283 	return 0;
2284 }
2285 EXPORT_SYMBOL(genphy_update_link);
2286 
2287 int genphy_read_lpa(struct phy_device *phydev)
2288 {
2289 	int lpa, lpagb;
2290 
2291 	if (phydev->autoneg == AUTONEG_ENABLE) {
2292 		if (!phydev->autoneg_complete) {
2293 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2294 							0);
2295 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2296 			return 0;
2297 		}
2298 
2299 		if (phydev->is_gigabit_capable) {
2300 			lpagb = phy_read(phydev, MII_STAT1000);
2301 			if (lpagb < 0)
2302 				return lpagb;
2303 
2304 			if (lpagb & LPA_1000MSFAIL) {
2305 				int adv = phy_read(phydev, MII_CTRL1000);
2306 
2307 				if (adv < 0)
2308 					return adv;
2309 
2310 				if (adv & CTL1000_ENABLE_MASTER)
2311 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2312 				else
2313 					phydev_err(phydev, "Master/Slave resolution failed\n");
2314 				return -ENOLINK;
2315 			}
2316 
2317 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2318 							lpagb);
2319 		}
2320 
2321 		lpa = phy_read(phydev, MII_LPA);
2322 		if (lpa < 0)
2323 			return lpa;
2324 
2325 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2326 	} else {
2327 		linkmode_zero(phydev->lp_advertising);
2328 	}
2329 
2330 	return 0;
2331 }
2332 EXPORT_SYMBOL(genphy_read_lpa);
2333 
2334 /**
2335  * genphy_read_status_fixed - read the link parameters for !aneg mode
2336  * @phydev: target phy_device struct
2337  *
2338  * Read the current duplex and speed state for a PHY operating with
2339  * autonegotiation disabled.
2340  */
2341 int genphy_read_status_fixed(struct phy_device *phydev)
2342 {
2343 	int bmcr = phy_read(phydev, MII_BMCR);
2344 
2345 	if (bmcr < 0)
2346 		return bmcr;
2347 
2348 	if (bmcr & BMCR_FULLDPLX)
2349 		phydev->duplex = DUPLEX_FULL;
2350 	else
2351 		phydev->duplex = DUPLEX_HALF;
2352 
2353 	if (bmcr & BMCR_SPEED1000)
2354 		phydev->speed = SPEED_1000;
2355 	else if (bmcr & BMCR_SPEED100)
2356 		phydev->speed = SPEED_100;
2357 	else
2358 		phydev->speed = SPEED_10;
2359 
2360 	return 0;
2361 }
2362 EXPORT_SYMBOL(genphy_read_status_fixed);
2363 
2364 /**
2365  * genphy_read_status - check the link status and update current link state
2366  * @phydev: target phy_device struct
2367  *
2368  * Description: Check the link, then figure out the current state
2369  *   by comparing what we advertise with what the link partner
2370  *   advertises.  Start by checking the gigabit possibilities,
2371  *   then move on to 10/100.
2372  */
2373 int genphy_read_status(struct phy_device *phydev)
2374 {
2375 	int err, old_link = phydev->link;
2376 
2377 	/* Update the link, but return if there was an error */
2378 	err = genphy_update_link(phydev);
2379 	if (err)
2380 		return err;
2381 
2382 	/* why bother the PHY if nothing can have changed */
2383 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2384 		return 0;
2385 
2386 	phydev->speed = SPEED_UNKNOWN;
2387 	phydev->duplex = DUPLEX_UNKNOWN;
2388 	phydev->pause = 0;
2389 	phydev->asym_pause = 0;
2390 
2391 	err = genphy_read_master_slave(phydev);
2392 	if (err < 0)
2393 		return err;
2394 
2395 	err = genphy_read_lpa(phydev);
2396 	if (err < 0)
2397 		return err;
2398 
2399 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2400 		phy_resolve_aneg_linkmode(phydev);
2401 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2402 		err = genphy_read_status_fixed(phydev);
2403 		if (err < 0)
2404 			return err;
2405 	}
2406 
2407 	return 0;
2408 }
2409 EXPORT_SYMBOL(genphy_read_status);
2410 
2411 /**
2412  * genphy_c37_read_status - check the link status and update current link state
2413  * @phydev: target phy_device struct
2414  *
2415  * Description: Check the link, then figure out the current state
2416  *   by comparing what we advertise with what the link partner
2417  *   advertises. This function is for Clause 37 1000Base-X mode.
2418  */
2419 int genphy_c37_read_status(struct phy_device *phydev)
2420 {
2421 	int lpa, err, old_link = phydev->link;
2422 
2423 	/* Update the link, but return if there was an error */
2424 	err = genphy_update_link(phydev);
2425 	if (err)
2426 		return err;
2427 
2428 	/* why bother the PHY if nothing can have changed */
2429 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2430 		return 0;
2431 
2432 	phydev->duplex = DUPLEX_UNKNOWN;
2433 	phydev->pause = 0;
2434 	phydev->asym_pause = 0;
2435 
2436 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2437 		lpa = phy_read(phydev, MII_LPA);
2438 		if (lpa < 0)
2439 			return lpa;
2440 
2441 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2442 				 phydev->lp_advertising, lpa & LPA_LPACK);
2443 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2444 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2445 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2446 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2447 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2448 				 phydev->lp_advertising,
2449 				 lpa & LPA_1000XPAUSE_ASYM);
2450 
2451 		phy_resolve_aneg_linkmode(phydev);
2452 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2453 		int bmcr = phy_read(phydev, MII_BMCR);
2454 
2455 		if (bmcr < 0)
2456 			return bmcr;
2457 
2458 		if (bmcr & BMCR_FULLDPLX)
2459 			phydev->duplex = DUPLEX_FULL;
2460 		else
2461 			phydev->duplex = DUPLEX_HALF;
2462 	}
2463 
2464 	return 0;
2465 }
2466 EXPORT_SYMBOL(genphy_c37_read_status);
2467 
2468 /**
2469  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2470  * @phydev: target phy_device struct
2471  *
2472  * Description: Perform a software PHY reset using the standard
2473  * BMCR_RESET bit and poll for the reset bit to be cleared.
2474  *
2475  * Returns: 0 on success, < 0 on failure
2476  */
2477 int genphy_soft_reset(struct phy_device *phydev)
2478 {
2479 	u16 res = BMCR_RESET;
2480 	int ret;
2481 
2482 	if (phydev->autoneg == AUTONEG_ENABLE)
2483 		res |= BMCR_ANRESTART;
2484 
2485 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2486 	if (ret < 0)
2487 		return ret;
2488 
2489 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2490 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2491 	 * be cleared after soft reset.
2492 	 */
2493 	phydev->suspended = 0;
2494 
2495 	ret = phy_poll_reset(phydev);
2496 	if (ret)
2497 		return ret;
2498 
2499 	/* BMCR may be reset to defaults */
2500 	if (phydev->autoneg == AUTONEG_DISABLE)
2501 		ret = genphy_setup_forced(phydev);
2502 
2503 	return ret;
2504 }
2505 EXPORT_SYMBOL(genphy_soft_reset);
2506 
2507 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2508 {
2509 	/* It seems there are cases where the interrupts are handled by another
2510 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2511 	 * need any other interraction from phylib. In this case, just trigger
2512 	 * the state machine directly.
2513 	 */
2514 	phy_trigger_machine(phydev);
2515 
2516 	return 0;
2517 }
2518 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2519 
2520 /**
2521  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2522  * @phydev: target phy_device struct
2523  *
2524  * Description: Reads the PHY's abilities and populates
2525  * phydev->supported accordingly.
2526  *
2527  * Returns: 0 on success, < 0 on failure
2528  */
2529 int genphy_read_abilities(struct phy_device *phydev)
2530 {
2531 	int val;
2532 
2533 	linkmode_set_bit_array(phy_basic_ports_array,
2534 			       ARRAY_SIZE(phy_basic_ports_array),
2535 			       phydev->supported);
2536 
2537 	val = phy_read(phydev, MII_BMSR);
2538 	if (val < 0)
2539 		return val;
2540 
2541 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2542 			 val & BMSR_ANEGCAPABLE);
2543 
2544 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2545 			 val & BMSR_100FULL);
2546 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2547 			 val & BMSR_100HALF);
2548 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2549 			 val & BMSR_10FULL);
2550 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2551 			 val & BMSR_10HALF);
2552 
2553 	if (val & BMSR_ESTATEN) {
2554 		val = phy_read(phydev, MII_ESTATUS);
2555 		if (val < 0)
2556 			return val;
2557 
2558 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2559 				 phydev->supported, val & ESTATUS_1000_TFULL);
2560 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2561 				 phydev->supported, val & ESTATUS_1000_THALF);
2562 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2563 				 phydev->supported, val & ESTATUS_1000_XFULL);
2564 	}
2565 
2566 	return 0;
2567 }
2568 EXPORT_SYMBOL(genphy_read_abilities);
2569 
2570 /* This is used for the phy device which doesn't support the MMD extended
2571  * register access, but it does have side effect when we are trying to access
2572  * the MMD register via indirect method.
2573  */
2574 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2575 {
2576 	return -EOPNOTSUPP;
2577 }
2578 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2579 
2580 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2581 				 u16 regnum, u16 val)
2582 {
2583 	return -EOPNOTSUPP;
2584 }
2585 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2586 
2587 int genphy_suspend(struct phy_device *phydev)
2588 {
2589 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2590 }
2591 EXPORT_SYMBOL(genphy_suspend);
2592 
2593 int genphy_resume(struct phy_device *phydev)
2594 {
2595 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2596 }
2597 EXPORT_SYMBOL(genphy_resume);
2598 
2599 int genphy_loopback(struct phy_device *phydev, bool enable)
2600 {
2601 	if (enable) {
2602 		u16 val, ctl = BMCR_LOOPBACK;
2603 		int ret;
2604 
2605 		if (phydev->speed == SPEED_1000)
2606 			ctl |= BMCR_SPEED1000;
2607 		else if (phydev->speed == SPEED_100)
2608 			ctl |= BMCR_SPEED100;
2609 
2610 		if (phydev->duplex == DUPLEX_FULL)
2611 			ctl |= BMCR_FULLDPLX;
2612 
2613 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2614 
2615 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2616 					    val & BMSR_LSTATUS,
2617 				    5000, 500000, true);
2618 		if (ret)
2619 			return ret;
2620 	} else {
2621 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2622 
2623 		phy_config_aneg(phydev);
2624 	}
2625 
2626 	return 0;
2627 }
2628 EXPORT_SYMBOL(genphy_loopback);
2629 
2630 /**
2631  * phy_remove_link_mode - Remove a supported link mode
2632  * @phydev: phy_device structure to remove link mode from
2633  * @link_mode: Link mode to be removed
2634  *
2635  * Description: Some MACs don't support all link modes which the PHY
2636  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2637  * to remove a link mode.
2638  */
2639 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2640 {
2641 	linkmode_clear_bit(link_mode, phydev->supported);
2642 	phy_advertise_supported(phydev);
2643 }
2644 EXPORT_SYMBOL(phy_remove_link_mode);
2645 
2646 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2647 {
2648 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2649 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2650 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2651 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2652 }
2653 
2654 /**
2655  * phy_advertise_supported - Advertise all supported modes
2656  * @phydev: target phy_device struct
2657  *
2658  * Description: Called to advertise all supported modes, doesn't touch
2659  * pause mode advertising.
2660  */
2661 void phy_advertise_supported(struct phy_device *phydev)
2662 {
2663 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2664 
2665 	linkmode_copy(new, phydev->supported);
2666 	phy_copy_pause_bits(new, phydev->advertising);
2667 	linkmode_copy(phydev->advertising, new);
2668 }
2669 EXPORT_SYMBOL(phy_advertise_supported);
2670 
2671 /**
2672  * phy_support_sym_pause - Enable support of symmetrical pause
2673  * @phydev: target phy_device struct
2674  *
2675  * Description: Called by the MAC to indicate is supports symmetrical
2676  * Pause, but not asym pause.
2677  */
2678 void phy_support_sym_pause(struct phy_device *phydev)
2679 {
2680 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2681 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2682 }
2683 EXPORT_SYMBOL(phy_support_sym_pause);
2684 
2685 /**
2686  * phy_support_asym_pause - Enable support of asym pause
2687  * @phydev: target phy_device struct
2688  *
2689  * Description: Called by the MAC to indicate is supports Asym Pause.
2690  */
2691 void phy_support_asym_pause(struct phy_device *phydev)
2692 {
2693 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2694 }
2695 EXPORT_SYMBOL(phy_support_asym_pause);
2696 
2697 /**
2698  * phy_set_sym_pause - Configure symmetric Pause
2699  * @phydev: target phy_device struct
2700  * @rx: Receiver Pause is supported
2701  * @tx: Transmit Pause is supported
2702  * @autoneg: Auto neg should be used
2703  *
2704  * Description: Configure advertised Pause support depending on if
2705  * receiver pause and pause auto neg is supported. Generally called
2706  * from the set_pauseparam .ndo.
2707  */
2708 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2709 		       bool autoneg)
2710 {
2711 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2712 
2713 	if (rx && tx && autoneg)
2714 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2715 				 phydev->supported);
2716 
2717 	linkmode_copy(phydev->advertising, phydev->supported);
2718 }
2719 EXPORT_SYMBOL(phy_set_sym_pause);
2720 
2721 /**
2722  * phy_set_asym_pause - Configure Pause and Asym Pause
2723  * @phydev: target phy_device struct
2724  * @rx: Receiver Pause is supported
2725  * @tx: Transmit Pause is supported
2726  *
2727  * Description: Configure advertised Pause support depending on if
2728  * transmit and receiver pause is supported. If there has been a
2729  * change in adverting, trigger a new autoneg. Generally called from
2730  * the set_pauseparam .ndo.
2731  */
2732 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2733 {
2734 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2735 
2736 	linkmode_copy(oldadv, phydev->advertising);
2737 	linkmode_set_pause(phydev->advertising, tx, rx);
2738 
2739 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2740 	    phydev->autoneg)
2741 		phy_start_aneg(phydev);
2742 }
2743 EXPORT_SYMBOL(phy_set_asym_pause);
2744 
2745 /**
2746  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2747  * @phydev: phy_device struct
2748  * @pp: requested pause configuration
2749  *
2750  * Description: Test if the PHY/MAC combination supports the Pause
2751  * configuration the user is requesting. Returns True if it is
2752  * supported, false otherwise.
2753  */
2754 bool phy_validate_pause(struct phy_device *phydev,
2755 			struct ethtool_pauseparam *pp)
2756 {
2757 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2758 			       phydev->supported) && pp->rx_pause)
2759 		return false;
2760 
2761 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2762 			       phydev->supported) &&
2763 	    pp->rx_pause != pp->tx_pause)
2764 		return false;
2765 
2766 	return true;
2767 }
2768 EXPORT_SYMBOL(phy_validate_pause);
2769 
2770 /**
2771  * phy_get_pause - resolve negotiated pause modes
2772  * @phydev: phy_device struct
2773  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2774  * enabled.
2775  * @rx_pause: pointer to bool to indicate whether receive pause should be
2776  * enabled.
2777  *
2778  * Resolve and return the flow control modes according to the negotiation
2779  * result. This includes checking that we are operating in full duplex mode.
2780  * See linkmode_resolve_pause() for further details.
2781  */
2782 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2783 {
2784 	if (phydev->duplex != DUPLEX_FULL) {
2785 		*tx_pause = false;
2786 		*rx_pause = false;
2787 		return;
2788 	}
2789 
2790 	return linkmode_resolve_pause(phydev->advertising,
2791 				      phydev->lp_advertising,
2792 				      tx_pause, rx_pause);
2793 }
2794 EXPORT_SYMBOL(phy_get_pause);
2795 
2796 #if IS_ENABLED(CONFIG_OF_MDIO)
2797 static int phy_get_int_delay_property(struct device *dev, const char *name)
2798 {
2799 	s32 int_delay;
2800 	int ret;
2801 
2802 	ret = device_property_read_u32(dev, name, &int_delay);
2803 	if (ret)
2804 		return ret;
2805 
2806 	return int_delay;
2807 }
2808 #else
2809 static int phy_get_int_delay_property(struct device *dev, const char *name)
2810 {
2811 	return -EINVAL;
2812 }
2813 #endif
2814 
2815 /**
2816  * phy_get_internal_delay - returns the index of the internal delay
2817  * @phydev: phy_device struct
2818  * @dev: pointer to the devices device struct
2819  * @delay_values: array of delays the PHY supports
2820  * @size: the size of the delay array
2821  * @is_rx: boolean to indicate to get the rx internal delay
2822  *
2823  * Returns the index within the array of internal delay passed in.
2824  * If the device property is not present then the interface type is checked
2825  * if the interface defines use of internal delay then a 1 is returned otherwise
2826  * a 0 is returned.
2827  * The array must be in ascending order. If PHY does not have an ascending order
2828  * array then size = 0 and the value of the delay property is returned.
2829  * Return -EINVAL if the delay is invalid or cannot be found.
2830  */
2831 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2832 			   const int *delay_values, int size, bool is_rx)
2833 {
2834 	s32 delay;
2835 	int i;
2836 
2837 	if (is_rx) {
2838 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2839 		if (delay < 0 && size == 0) {
2840 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2841 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2842 				return 1;
2843 			else
2844 				return 0;
2845 		}
2846 
2847 	} else {
2848 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2849 		if (delay < 0 && size == 0) {
2850 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2851 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2852 				return 1;
2853 			else
2854 				return 0;
2855 		}
2856 	}
2857 
2858 	if (delay < 0)
2859 		return delay;
2860 
2861 	if (delay && size == 0)
2862 		return delay;
2863 
2864 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2865 		phydev_err(phydev, "Delay %d is out of range\n", delay);
2866 		return -EINVAL;
2867 	}
2868 
2869 	if (delay == delay_values[0])
2870 		return 0;
2871 
2872 	for (i = 1; i < size; i++) {
2873 		if (delay == delay_values[i])
2874 			return i;
2875 
2876 		/* Find an approximate index by looking up the table */
2877 		if (delay > delay_values[i - 1] &&
2878 		    delay < delay_values[i]) {
2879 			if (delay - delay_values[i - 1] <
2880 			    delay_values[i] - delay)
2881 				return i - 1;
2882 			else
2883 				return i;
2884 		}
2885 	}
2886 
2887 	phydev_err(phydev, "error finding internal delay index for %d\n",
2888 		   delay);
2889 
2890 	return -EINVAL;
2891 }
2892 EXPORT_SYMBOL(phy_get_internal_delay);
2893 
2894 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2895 {
2896 	return phydrv->config_intr && phydrv->handle_interrupt;
2897 }
2898 
2899 /**
2900  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
2901  * @fwnode: pointer to the mdio_device's fwnode
2902  *
2903  * If successful, returns a pointer to the mdio_device with the embedded
2904  * struct device refcount incremented by one, or NULL on failure.
2905  * The caller should call put_device() on the mdio_device after its use.
2906  */
2907 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
2908 {
2909 	struct device *d;
2910 
2911 	if (!fwnode)
2912 		return NULL;
2913 
2914 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
2915 	if (!d)
2916 		return NULL;
2917 
2918 	return to_mdio_device(d);
2919 }
2920 EXPORT_SYMBOL(fwnode_mdio_find_device);
2921 
2922 /**
2923  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
2924  *
2925  * @phy_fwnode: Pointer to the phy's fwnode.
2926  *
2927  * If successful, returns a pointer to the phy_device with the embedded
2928  * struct device refcount incremented by one, or NULL on failure.
2929  */
2930 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
2931 {
2932 	struct mdio_device *mdiodev;
2933 
2934 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
2935 	if (!mdiodev)
2936 		return NULL;
2937 
2938 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
2939 		return to_phy_device(&mdiodev->dev);
2940 
2941 	put_device(&mdiodev->dev);
2942 
2943 	return NULL;
2944 }
2945 EXPORT_SYMBOL(fwnode_phy_find_device);
2946 
2947 /**
2948  * device_phy_find_device - For the given device, get the phy_device
2949  * @dev: Pointer to the given device
2950  *
2951  * Refer return conditions of fwnode_phy_find_device().
2952  */
2953 struct phy_device *device_phy_find_device(struct device *dev)
2954 {
2955 	return fwnode_phy_find_device(dev_fwnode(dev));
2956 }
2957 EXPORT_SYMBOL_GPL(device_phy_find_device);
2958 
2959 /**
2960  * fwnode_get_phy_node - Get the phy_node using the named reference.
2961  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
2962  *
2963  * Refer return conditions of fwnode_find_reference().
2964  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
2965  * and "phy-device" are not supported in ACPI. DT supports all the three
2966  * named references to the phy node.
2967  */
2968 struct fwnode_handle *fwnode_get_phy_node(struct fwnode_handle *fwnode)
2969 {
2970 	struct fwnode_handle *phy_node;
2971 
2972 	/* Only phy-handle is used for ACPI */
2973 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
2974 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
2975 		return phy_node;
2976 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
2977 	if (IS_ERR(phy_node))
2978 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
2979 	return phy_node;
2980 }
2981 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
2982 
2983 /**
2984  * phy_probe - probe and init a PHY device
2985  * @dev: device to probe and init
2986  *
2987  * Description: Take care of setting up the phy_device structure,
2988  *   set the state to READY (the driver's init function should
2989  *   set it to STARTING if needed).
2990  */
2991 static int phy_probe(struct device *dev)
2992 {
2993 	struct phy_device *phydev = to_phy_device(dev);
2994 	struct device_driver *drv = phydev->mdio.dev.driver;
2995 	struct phy_driver *phydrv = to_phy_driver(drv);
2996 	int err = 0;
2997 
2998 	phydev->drv = phydrv;
2999 
3000 	/* Disable the interrupt if the PHY doesn't support it
3001 	 * but the interrupt is still a valid one
3002 	 */
3003 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3004 		phydev->irq = PHY_POLL;
3005 
3006 	if (phydrv->flags & PHY_IS_INTERNAL)
3007 		phydev->is_internal = true;
3008 
3009 	mutex_lock(&phydev->lock);
3010 
3011 	/* Deassert the reset signal */
3012 	phy_device_reset(phydev, 0);
3013 
3014 	if (phydev->drv->probe) {
3015 		err = phydev->drv->probe(phydev);
3016 		if (err)
3017 			goto out;
3018 	}
3019 
3020 	/* Start out supporting everything. Eventually,
3021 	 * a controller will attach, and may modify one
3022 	 * or both of these values
3023 	 */
3024 	if (phydrv->features)
3025 		linkmode_copy(phydev->supported, phydrv->features);
3026 	else if (phydrv->get_features)
3027 		err = phydrv->get_features(phydev);
3028 	else if (phydev->is_c45)
3029 		err = genphy_c45_pma_read_abilities(phydev);
3030 	else
3031 		err = genphy_read_abilities(phydev);
3032 
3033 	if (err)
3034 		goto out;
3035 
3036 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3037 			       phydev->supported))
3038 		phydev->autoneg = 0;
3039 
3040 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3041 			      phydev->supported))
3042 		phydev->is_gigabit_capable = 1;
3043 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3044 			      phydev->supported))
3045 		phydev->is_gigabit_capable = 1;
3046 
3047 	of_set_phy_supported(phydev);
3048 	phy_advertise_supported(phydev);
3049 
3050 	/* Get the EEE modes we want to prohibit. We will ask
3051 	 * the PHY stop advertising these mode later on
3052 	 */
3053 	of_set_phy_eee_broken(phydev);
3054 
3055 	/* The Pause Frame bits indicate that the PHY can support passing
3056 	 * pause frames. During autonegotiation, the PHYs will determine if
3057 	 * they should allow pause frames to pass.  The MAC driver should then
3058 	 * use that result to determine whether to enable flow control via
3059 	 * pause frames.
3060 	 *
3061 	 * Normally, PHY drivers should not set the Pause bits, and instead
3062 	 * allow phylib to do that.  However, there may be some situations
3063 	 * (e.g. hardware erratum) where the driver wants to set only one
3064 	 * of these bits.
3065 	 */
3066 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3067 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3068 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3069 				 phydev->supported);
3070 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3071 				 phydev->supported);
3072 	}
3073 
3074 	/* Set the state to READY by default */
3075 	phydev->state = PHY_READY;
3076 
3077 out:
3078 	/* Assert the reset signal */
3079 	if (err)
3080 		phy_device_reset(phydev, 1);
3081 
3082 	mutex_unlock(&phydev->lock);
3083 
3084 	return err;
3085 }
3086 
3087 static int phy_remove(struct device *dev)
3088 {
3089 	struct phy_device *phydev = to_phy_device(dev);
3090 
3091 	cancel_delayed_work_sync(&phydev->state_queue);
3092 
3093 	mutex_lock(&phydev->lock);
3094 	phydev->state = PHY_DOWN;
3095 	mutex_unlock(&phydev->lock);
3096 
3097 	sfp_bus_del_upstream(phydev->sfp_bus);
3098 	phydev->sfp_bus = NULL;
3099 
3100 	if (phydev->drv && phydev->drv->remove)
3101 		phydev->drv->remove(phydev);
3102 
3103 	/* Assert the reset signal */
3104 	phy_device_reset(phydev, 1);
3105 
3106 	phydev->drv = NULL;
3107 
3108 	return 0;
3109 }
3110 
3111 static void phy_shutdown(struct device *dev)
3112 {
3113 	struct phy_device *phydev = to_phy_device(dev);
3114 
3115 	phy_disable_interrupts(phydev);
3116 }
3117 
3118 /**
3119  * phy_driver_register - register a phy_driver with the PHY layer
3120  * @new_driver: new phy_driver to register
3121  * @owner: module owning this PHY
3122  */
3123 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3124 {
3125 	int retval;
3126 
3127 	/* Either the features are hard coded, or dynamically
3128 	 * determined. It cannot be both.
3129 	 */
3130 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3131 		pr_err("%s: features and get_features must not both be set\n",
3132 		       new_driver->name);
3133 		return -EINVAL;
3134 	}
3135 
3136 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3137 	new_driver->mdiodrv.driver.name = new_driver->name;
3138 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3139 	new_driver->mdiodrv.driver.probe = phy_probe;
3140 	new_driver->mdiodrv.driver.remove = phy_remove;
3141 	new_driver->mdiodrv.driver.shutdown = phy_shutdown;
3142 	new_driver->mdiodrv.driver.owner = owner;
3143 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3144 
3145 	retval = driver_register(&new_driver->mdiodrv.driver);
3146 	if (retval) {
3147 		pr_err("%s: Error %d in registering driver\n",
3148 		       new_driver->name, retval);
3149 
3150 		return retval;
3151 	}
3152 
3153 	pr_debug("%s: Registered new driver\n", new_driver->name);
3154 
3155 	return 0;
3156 }
3157 EXPORT_SYMBOL(phy_driver_register);
3158 
3159 int phy_drivers_register(struct phy_driver *new_driver, int n,
3160 			 struct module *owner)
3161 {
3162 	int i, ret = 0;
3163 
3164 	for (i = 0; i < n; i++) {
3165 		ret = phy_driver_register(new_driver + i, owner);
3166 		if (ret) {
3167 			while (i-- > 0)
3168 				phy_driver_unregister(new_driver + i);
3169 			break;
3170 		}
3171 	}
3172 	return ret;
3173 }
3174 EXPORT_SYMBOL(phy_drivers_register);
3175 
3176 void phy_driver_unregister(struct phy_driver *drv)
3177 {
3178 	driver_unregister(&drv->mdiodrv.driver);
3179 }
3180 EXPORT_SYMBOL(phy_driver_unregister);
3181 
3182 void phy_drivers_unregister(struct phy_driver *drv, int n)
3183 {
3184 	int i;
3185 
3186 	for (i = 0; i < n; i++)
3187 		phy_driver_unregister(drv + i);
3188 }
3189 EXPORT_SYMBOL(phy_drivers_unregister);
3190 
3191 static struct phy_driver genphy_driver = {
3192 	.phy_id		= 0xffffffff,
3193 	.phy_id_mask	= 0xffffffff,
3194 	.name		= "Generic PHY",
3195 	.get_features	= genphy_read_abilities,
3196 	.suspend	= genphy_suspend,
3197 	.resume		= genphy_resume,
3198 	.set_loopback   = genphy_loopback,
3199 };
3200 
3201 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3202 	.get_sset_count		= phy_ethtool_get_sset_count,
3203 	.get_strings		= phy_ethtool_get_strings,
3204 	.get_stats		= phy_ethtool_get_stats,
3205 	.start_cable_test	= phy_start_cable_test,
3206 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3207 };
3208 
3209 static int __init phy_init(void)
3210 {
3211 	int rc;
3212 
3213 	rc = mdio_bus_init();
3214 	if (rc)
3215 		return rc;
3216 
3217 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3218 	features_init();
3219 
3220 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3221 	if (rc)
3222 		goto err_c45;
3223 
3224 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3225 	if (rc) {
3226 		phy_driver_unregister(&genphy_c45_driver);
3227 err_c45:
3228 		mdio_bus_exit();
3229 	}
3230 
3231 	return rc;
3232 }
3233 
3234 static void __exit phy_exit(void)
3235 {
3236 	phy_driver_unregister(&genphy_c45_driver);
3237 	phy_driver_unregister(&genphy_driver);
3238 	mdio_bus_exit();
3239 	ethtool_set_ethtool_phy_ops(NULL);
3240 }
3241 
3242 subsys_initcall(phy_init);
3243 module_exit(phy_exit);
3244