xref: /linux/drivers/net/phy/phy_device.c (revision 0bef512012b1cd8820f0c9ec80e5f8ceb43fdd59)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/mii.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/netdevice.h>
29 #include <linux/phy.h>
30 #include <linux/phylib_stubs.h>
31 #include <linux/phy_led_triggers.h>
32 #include <linux/pse-pd/pse.h>
33 #include <linux/property.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/sfp.h>
36 #include <linux/skbuff.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/uaccess.h>
40 #include <linux/unistd.h>
41 
42 MODULE_DESCRIPTION("PHY library");
43 MODULE_AUTHOR("Andy Fleming");
44 MODULE_LICENSE("GPL");
45 
46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
47 EXPORT_SYMBOL_GPL(phy_basic_features);
48 
49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
50 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
51 
52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init;
53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features);
54 
55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
56 EXPORT_SYMBOL_GPL(phy_gbit_features);
57 
58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
60 
61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
63 
64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
65 EXPORT_SYMBOL_GPL(phy_10gbit_features);
66 
67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
69 
70 const int phy_basic_ports_array[3] = {
71 	ETHTOOL_LINK_MODE_Autoneg_BIT,
72 	ETHTOOL_LINK_MODE_TP_BIT,
73 	ETHTOOL_LINK_MODE_MII_BIT,
74 };
75 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
76 
77 const int phy_fibre_port_array[1] = {
78 	ETHTOOL_LINK_MODE_FIBRE_BIT,
79 };
80 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
81 
82 const int phy_all_ports_features_array[7] = {
83 	ETHTOOL_LINK_MODE_Autoneg_BIT,
84 	ETHTOOL_LINK_MODE_TP_BIT,
85 	ETHTOOL_LINK_MODE_MII_BIT,
86 	ETHTOOL_LINK_MODE_FIBRE_BIT,
87 	ETHTOOL_LINK_MODE_AUI_BIT,
88 	ETHTOOL_LINK_MODE_BNC_BIT,
89 	ETHTOOL_LINK_MODE_Backplane_BIT,
90 };
91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
92 
93 const int phy_10_100_features_array[4] = {
94 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
95 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
96 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
97 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
98 };
99 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
100 
101 const int phy_basic_t1_features_array[3] = {
102 	ETHTOOL_LINK_MODE_TP_BIT,
103 	ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
104 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
105 };
106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
107 
108 const int phy_basic_t1s_p2mp_features_array[2] = {
109 	ETHTOOL_LINK_MODE_TP_BIT,
110 	ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT,
111 };
112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array);
113 
114 const int phy_gbit_features_array[2] = {
115 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
116 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
117 };
118 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
119 
120 const int phy_10gbit_features_array[1] = {
121 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
122 };
123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
124 
125 static const int phy_10gbit_fec_features_array[1] = {
126 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
127 };
128 
129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
131 
132 static const int phy_10gbit_full_features_array[] = {
133 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
134 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
135 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
136 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
137 };
138 
139 static const int phy_eee_cap1_features_array[] = {
140 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
141 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
142 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
143 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
144 	ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
145 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
146 };
147 
148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init;
149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features);
150 
151 static void features_init(void)
152 {
153 	/* 10/100 half/full*/
154 	linkmode_set_bit_array(phy_basic_ports_array,
155 			       ARRAY_SIZE(phy_basic_ports_array),
156 			       phy_basic_features);
157 	linkmode_set_bit_array(phy_10_100_features_array,
158 			       ARRAY_SIZE(phy_10_100_features_array),
159 			       phy_basic_features);
160 
161 	/* 100 full, TP */
162 	linkmode_set_bit_array(phy_basic_t1_features_array,
163 			       ARRAY_SIZE(phy_basic_t1_features_array),
164 			       phy_basic_t1_features);
165 
166 	/* 10 half, P2MP, TP */
167 	linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array,
168 			       ARRAY_SIZE(phy_basic_t1s_p2mp_features_array),
169 			       phy_basic_t1s_p2mp_features);
170 
171 	/* 10/100 half/full + 1000 half/full */
172 	linkmode_set_bit_array(phy_basic_ports_array,
173 			       ARRAY_SIZE(phy_basic_ports_array),
174 			       phy_gbit_features);
175 	linkmode_set_bit_array(phy_10_100_features_array,
176 			       ARRAY_SIZE(phy_10_100_features_array),
177 			       phy_gbit_features);
178 	linkmode_set_bit_array(phy_gbit_features_array,
179 			       ARRAY_SIZE(phy_gbit_features_array),
180 			       phy_gbit_features);
181 
182 	/* 10/100 half/full + 1000 half/full + fibre*/
183 	linkmode_set_bit_array(phy_basic_ports_array,
184 			       ARRAY_SIZE(phy_basic_ports_array),
185 			       phy_gbit_fibre_features);
186 	linkmode_set_bit_array(phy_10_100_features_array,
187 			       ARRAY_SIZE(phy_10_100_features_array),
188 			       phy_gbit_fibre_features);
189 	linkmode_set_bit_array(phy_gbit_features_array,
190 			       ARRAY_SIZE(phy_gbit_features_array),
191 			       phy_gbit_fibre_features);
192 	linkmode_set_bit_array(phy_fibre_port_array,
193 			       ARRAY_SIZE(phy_fibre_port_array),
194 			       phy_gbit_fibre_features);
195 
196 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
197 	linkmode_set_bit_array(phy_all_ports_features_array,
198 			       ARRAY_SIZE(phy_all_ports_features_array),
199 			       phy_gbit_all_ports_features);
200 	linkmode_set_bit_array(phy_10_100_features_array,
201 			       ARRAY_SIZE(phy_10_100_features_array),
202 			       phy_gbit_all_ports_features);
203 	linkmode_set_bit_array(phy_gbit_features_array,
204 			       ARRAY_SIZE(phy_gbit_features_array),
205 			       phy_gbit_all_ports_features);
206 
207 	/* 10/100 half/full + 1000 half/full + 10G full*/
208 	linkmode_set_bit_array(phy_all_ports_features_array,
209 			       ARRAY_SIZE(phy_all_ports_features_array),
210 			       phy_10gbit_features);
211 	linkmode_set_bit_array(phy_10_100_features_array,
212 			       ARRAY_SIZE(phy_10_100_features_array),
213 			       phy_10gbit_features);
214 	linkmode_set_bit_array(phy_gbit_features_array,
215 			       ARRAY_SIZE(phy_gbit_features_array),
216 			       phy_10gbit_features);
217 	linkmode_set_bit_array(phy_10gbit_features_array,
218 			       ARRAY_SIZE(phy_10gbit_features_array),
219 			       phy_10gbit_features);
220 
221 	/* 10/100/1000/10G full */
222 	linkmode_set_bit_array(phy_all_ports_features_array,
223 			       ARRAY_SIZE(phy_all_ports_features_array),
224 			       phy_10gbit_full_features);
225 	linkmode_set_bit_array(phy_10gbit_full_features_array,
226 			       ARRAY_SIZE(phy_10gbit_full_features_array),
227 			       phy_10gbit_full_features);
228 	/* 10G FEC only */
229 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
230 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
231 			       phy_10gbit_fec_features);
232 	linkmode_set_bit_array(phy_eee_cap1_features_array,
233 			       ARRAY_SIZE(phy_eee_cap1_features_array),
234 			       phy_eee_cap1_features);
235 
236 }
237 
238 void phy_device_free(struct phy_device *phydev)
239 {
240 	put_device(&phydev->mdio.dev);
241 }
242 EXPORT_SYMBOL(phy_device_free);
243 
244 static void phy_mdio_device_free(struct mdio_device *mdiodev)
245 {
246 	struct phy_device *phydev;
247 
248 	phydev = container_of(mdiodev, struct phy_device, mdio);
249 	phy_device_free(phydev);
250 }
251 
252 static void phy_device_release(struct device *dev)
253 {
254 	fwnode_handle_put(dev->fwnode);
255 	kfree(to_phy_device(dev));
256 }
257 
258 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
259 {
260 	struct phy_device *phydev;
261 
262 	phydev = container_of(mdiodev, struct phy_device, mdio);
263 	phy_device_remove(phydev);
264 }
265 
266 static struct phy_driver genphy_driver;
267 
268 static LIST_HEAD(phy_fixup_list);
269 static DEFINE_MUTEX(phy_fixup_lock);
270 
271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
272 {
273 	struct device_driver *drv = phydev->mdio.dev.driver;
274 	struct phy_driver *phydrv = to_phy_driver(drv);
275 	struct net_device *netdev = phydev->attached_dev;
276 
277 	if (!drv || !phydrv->suspend)
278 		return false;
279 
280 	/* PHY not attached? May suspend if the PHY has not already been
281 	 * suspended as part of a prior call to phy_disconnect() ->
282 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
283 	 * MDIO bus driver and clock gated at this point.
284 	 */
285 	if (!netdev)
286 		goto out;
287 
288 	if (netdev->wol_enabled)
289 		return false;
290 
291 	/* As long as not all affected network drivers support the
292 	 * wol_enabled flag, let's check for hints that WoL is enabled.
293 	 * Don't suspend PHY if the attached netdev parent may wake up.
294 	 * The parent may point to a PCI device, as in tg3 driver.
295 	 */
296 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
297 		return false;
298 
299 	/* Also don't suspend PHY if the netdev itself may wakeup. This
300 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
301 	 * e.g. SoC devices.
302 	 */
303 	if (device_may_wakeup(&netdev->dev))
304 		return false;
305 
306 out:
307 	return !phydev->suspended;
308 }
309 
310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
311 {
312 	struct phy_device *phydev = to_phy_device(dev);
313 
314 	if (phydev->mac_managed_pm)
315 		return 0;
316 
317 	/* Wakeup interrupts may occur during the system sleep transition when
318 	 * the PHY is inaccessible. Set flag to postpone handling until the PHY
319 	 * has resumed. Wait for concurrent interrupt handler to complete.
320 	 */
321 	if (phy_interrupt_is_valid(phydev)) {
322 		phydev->irq_suspended = 1;
323 		synchronize_irq(phydev->irq);
324 	}
325 
326 	/* We must stop the state machine manually, otherwise it stops out of
327 	 * control, possibly with the phydev->lock held. Upon resume, netdev
328 	 * may call phy routines that try to grab the same lock, and that may
329 	 * lead to a deadlock.
330 	 */
331 	if (phydev->attached_dev && phydev->adjust_link)
332 		phy_stop_machine(phydev);
333 
334 	if (!mdio_bus_phy_may_suspend(phydev))
335 		return 0;
336 
337 	phydev->suspended_by_mdio_bus = 1;
338 
339 	return phy_suspend(phydev);
340 }
341 
342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
343 {
344 	struct phy_device *phydev = to_phy_device(dev);
345 	int ret;
346 
347 	if (phydev->mac_managed_pm)
348 		return 0;
349 
350 	if (!phydev->suspended_by_mdio_bus)
351 		goto no_resume;
352 
353 	phydev->suspended_by_mdio_bus = 0;
354 
355 	/* If we managed to get here with the PHY state machine in a state
356 	 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
357 	 * that something went wrong and we should most likely be using
358 	 * MAC managed PM, but we are not.
359 	 */
360 	WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
361 		phydev->state != PHY_UP);
362 
363 	ret = phy_init_hw(phydev);
364 	if (ret < 0)
365 		return ret;
366 
367 	ret = phy_resume(phydev);
368 	if (ret < 0)
369 		return ret;
370 no_resume:
371 	if (phy_interrupt_is_valid(phydev)) {
372 		phydev->irq_suspended = 0;
373 		synchronize_irq(phydev->irq);
374 
375 		/* Rerun interrupts which were postponed by phy_interrupt()
376 		 * because they occurred during the system sleep transition.
377 		 */
378 		if (phydev->irq_rerun) {
379 			phydev->irq_rerun = 0;
380 			enable_irq(phydev->irq);
381 			irq_wake_thread(phydev->irq, phydev);
382 		}
383 	}
384 
385 	if (phydev->attached_dev && phydev->adjust_link)
386 		phy_start_machine(phydev);
387 
388 	return 0;
389 }
390 
391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
392 			 mdio_bus_phy_resume);
393 
394 /**
395  * phy_register_fixup - creates a new phy_fixup and adds it to the list
396  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
397  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
398  *	It can also be PHY_ANY_UID
399  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
400  *	comparison
401  * @run: The actual code to be run when a matching PHY is found
402  */
403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
404 		       int (*run)(struct phy_device *))
405 {
406 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
407 
408 	if (!fixup)
409 		return -ENOMEM;
410 
411 	strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
412 	fixup->phy_uid = phy_uid;
413 	fixup->phy_uid_mask = phy_uid_mask;
414 	fixup->run = run;
415 
416 	mutex_lock(&phy_fixup_lock);
417 	list_add_tail(&fixup->list, &phy_fixup_list);
418 	mutex_unlock(&phy_fixup_lock);
419 
420 	return 0;
421 }
422 EXPORT_SYMBOL(phy_register_fixup);
423 
424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
426 			       int (*run)(struct phy_device *))
427 {
428 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
429 }
430 EXPORT_SYMBOL(phy_register_fixup_for_uid);
431 
432 /* Registers a fixup to be run on the PHY with id string bus_id */
433 int phy_register_fixup_for_id(const char *bus_id,
434 			      int (*run)(struct phy_device *))
435 {
436 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
437 }
438 EXPORT_SYMBOL(phy_register_fixup_for_id);
439 
440 /**
441  * phy_unregister_fixup - remove a phy_fixup from the list
442  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
443  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
444  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
445  */
446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
447 {
448 	struct list_head *pos, *n;
449 	struct phy_fixup *fixup;
450 	int ret;
451 
452 	ret = -ENODEV;
453 
454 	mutex_lock(&phy_fixup_lock);
455 	list_for_each_safe(pos, n, &phy_fixup_list) {
456 		fixup = list_entry(pos, struct phy_fixup, list);
457 
458 		if ((!strcmp(fixup->bus_id, bus_id)) &&
459 		    phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) {
460 			list_del(&fixup->list);
461 			kfree(fixup);
462 			ret = 0;
463 			break;
464 		}
465 	}
466 	mutex_unlock(&phy_fixup_lock);
467 
468 	return ret;
469 }
470 EXPORT_SYMBOL(phy_unregister_fixup);
471 
472 /* Unregisters a fixup of any PHY with the UID in phy_uid */
473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
474 {
475 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
476 }
477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
478 
479 /* Unregisters a fixup of the PHY with id string bus_id */
480 int phy_unregister_fixup_for_id(const char *bus_id)
481 {
482 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
483 }
484 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
485 
486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
487  * Fixups can be set to match any in one or more fields.
488  */
489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
490 {
491 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
492 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
493 			return 0;
494 
495 	if (!phy_id_compare(phydev->phy_id, fixup->phy_uid,
496 			    fixup->phy_uid_mask))
497 		if (fixup->phy_uid != PHY_ANY_UID)
498 			return 0;
499 
500 	return 1;
501 }
502 
503 /* Runs any matching fixups for this phydev */
504 static int phy_scan_fixups(struct phy_device *phydev)
505 {
506 	struct phy_fixup *fixup;
507 
508 	mutex_lock(&phy_fixup_lock);
509 	list_for_each_entry(fixup, &phy_fixup_list, list) {
510 		if (phy_needs_fixup(phydev, fixup)) {
511 			int err = fixup->run(phydev);
512 
513 			if (err < 0) {
514 				mutex_unlock(&phy_fixup_lock);
515 				return err;
516 			}
517 			phydev->has_fixups = true;
518 		}
519 	}
520 	mutex_unlock(&phy_fixup_lock);
521 
522 	return 0;
523 }
524 
525 static int phy_bus_match(struct device *dev, struct device_driver *drv)
526 {
527 	struct phy_device *phydev = to_phy_device(dev);
528 	struct phy_driver *phydrv = to_phy_driver(drv);
529 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
530 	int i;
531 
532 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
533 		return 0;
534 
535 	if (phydrv->match_phy_device)
536 		return phydrv->match_phy_device(phydev);
537 
538 	if (phydev->is_c45) {
539 		for (i = 1; i < num_ids; i++) {
540 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
541 				continue;
542 
543 			if (phy_id_compare(phydev->c45_ids.device_ids[i],
544 					   phydrv->phy_id, phydrv->phy_id_mask))
545 				return 1;
546 		}
547 		return 0;
548 	} else {
549 		return phy_id_compare(phydev->phy_id, phydrv->phy_id,
550 				      phydrv->phy_id_mask);
551 	}
552 }
553 
554 static ssize_t
555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
556 {
557 	struct phy_device *phydev = to_phy_device(dev);
558 
559 	return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
560 }
561 static DEVICE_ATTR_RO(phy_id);
562 
563 static ssize_t
564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
565 {
566 	struct phy_device *phydev = to_phy_device(dev);
567 	const char *mode = NULL;
568 
569 	if (phy_is_internal(phydev))
570 		mode = "internal";
571 	else
572 		mode = phy_modes(phydev->interface);
573 
574 	return sysfs_emit(buf, "%s\n", mode);
575 }
576 static DEVICE_ATTR_RO(phy_interface);
577 
578 static ssize_t
579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
580 		    char *buf)
581 {
582 	struct phy_device *phydev = to_phy_device(dev);
583 
584 	return sysfs_emit(buf, "%d\n", phydev->has_fixups);
585 }
586 static DEVICE_ATTR_RO(phy_has_fixups);
587 
588 static ssize_t phy_dev_flags_show(struct device *dev,
589 				  struct device_attribute *attr,
590 				  char *buf)
591 {
592 	struct phy_device *phydev = to_phy_device(dev);
593 
594 	return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags);
595 }
596 static DEVICE_ATTR_RO(phy_dev_flags);
597 
598 static struct attribute *phy_dev_attrs[] = {
599 	&dev_attr_phy_id.attr,
600 	&dev_attr_phy_interface.attr,
601 	&dev_attr_phy_has_fixups.attr,
602 	&dev_attr_phy_dev_flags.attr,
603 	NULL,
604 };
605 ATTRIBUTE_GROUPS(phy_dev);
606 
607 static const struct device_type mdio_bus_phy_type = {
608 	.name = "PHY",
609 	.groups = phy_dev_groups,
610 	.release = phy_device_release,
611 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
612 };
613 
614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
615 {
616 	int ret;
617 
618 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
619 			     MDIO_ID_ARGS(phy_id));
620 	/* We only check for failures in executing the usermode binary,
621 	 * not whether a PHY driver module exists for the PHY ID.
622 	 * Accept -ENOENT because this may occur in case no initramfs exists,
623 	 * then modprobe isn't available.
624 	 */
625 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
626 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
627 			   ret, (unsigned long)phy_id);
628 		return ret;
629 	}
630 
631 	return 0;
632 }
633 
634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
635 				     bool is_c45,
636 				     struct phy_c45_device_ids *c45_ids)
637 {
638 	struct phy_device *dev;
639 	struct mdio_device *mdiodev;
640 	int ret = 0;
641 
642 	/* We allocate the device, and initialize the default values */
643 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
644 	if (!dev)
645 		return ERR_PTR(-ENOMEM);
646 
647 	mdiodev = &dev->mdio;
648 	mdiodev->dev.parent = &bus->dev;
649 	mdiodev->dev.bus = &mdio_bus_type;
650 	mdiodev->dev.type = &mdio_bus_phy_type;
651 	mdiodev->bus = bus;
652 	mdiodev->bus_match = phy_bus_match;
653 	mdiodev->addr = addr;
654 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
655 	mdiodev->device_free = phy_mdio_device_free;
656 	mdiodev->device_remove = phy_mdio_device_remove;
657 	mdiodev->reset_state = -1;
658 
659 	dev->speed = SPEED_UNKNOWN;
660 	dev->duplex = DUPLEX_UNKNOWN;
661 	dev->pause = 0;
662 	dev->asym_pause = 0;
663 	dev->link = 0;
664 	dev->port = PORT_TP;
665 	dev->interface = PHY_INTERFACE_MODE_GMII;
666 
667 	dev->autoneg = AUTONEG_ENABLE;
668 
669 	dev->pma_extable = -ENODATA;
670 	dev->is_c45 = is_c45;
671 	dev->phy_id = phy_id;
672 	if (c45_ids)
673 		dev->c45_ids = *c45_ids;
674 	dev->irq = bus->irq[addr];
675 
676 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
677 	device_initialize(&mdiodev->dev);
678 
679 	dev->state = PHY_DOWN;
680 	INIT_LIST_HEAD(&dev->leds);
681 
682 	mutex_init(&dev->lock);
683 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
684 
685 	/* Request the appropriate module unconditionally; don't
686 	 * bother trying to do so only if it isn't already loaded,
687 	 * because that gets complicated. A hotplug event would have
688 	 * done an unconditional modprobe anyway.
689 	 * We don't do normal hotplug because it won't work for MDIO
690 	 * -- because it relies on the device staying around for long
691 	 * enough for the driver to get loaded. With MDIO, the NIC
692 	 * driver will get bored and give up as soon as it finds that
693 	 * there's no driver _already_ loaded.
694 	 */
695 	if (is_c45 && c45_ids) {
696 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
697 		int i;
698 
699 		for (i = 1; i < num_ids; i++) {
700 			if (c45_ids->device_ids[i] == 0xffffffff)
701 				continue;
702 
703 			ret = phy_request_driver_module(dev,
704 						c45_ids->device_ids[i]);
705 			if (ret)
706 				break;
707 		}
708 	} else {
709 		ret = phy_request_driver_module(dev, phy_id);
710 	}
711 
712 	if (ret) {
713 		put_device(&mdiodev->dev);
714 		dev = ERR_PTR(ret);
715 	}
716 
717 	return dev;
718 }
719 EXPORT_SYMBOL(phy_device_create);
720 
721 /* phy_c45_probe_present - checks to see if a MMD is present in the package
722  * @bus: the target MII bus
723  * @prtad: PHY package address on the MII bus
724  * @devad: PHY device (MMD) address
725  *
726  * Read the MDIO_STAT2 register, and check whether a device is responding
727  * at this address.
728  *
729  * Returns: negative error number on bus access error, zero if no device
730  * is responding, or positive if a device is present.
731  */
732 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
733 {
734 	int stat2;
735 
736 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
737 	if (stat2 < 0)
738 		return stat2;
739 
740 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
741 }
742 
743 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
744  * @bus: the target MII bus
745  * @addr: PHY address on the MII bus
746  * @dev_addr: MMD address in the PHY.
747  * @devices_in_package: where to store the devices in package information.
748  *
749  * Description: reads devices in package registers of a MMD at @dev_addr
750  * from PHY at @addr on @bus.
751  *
752  * Returns: 0 on success, -EIO on failure.
753  */
754 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
755 				   u32 *devices_in_package)
756 {
757 	int phy_reg;
758 
759 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
760 	if (phy_reg < 0)
761 		return -EIO;
762 	*devices_in_package = phy_reg << 16;
763 
764 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
765 	if (phy_reg < 0)
766 		return -EIO;
767 	*devices_in_package |= phy_reg;
768 
769 	return 0;
770 }
771 
772 /**
773  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
774  * @bus: the target MII bus
775  * @addr: PHY address on the MII bus
776  * @c45_ids: where to store the c45 ID information.
777  *
778  * Read the PHY "devices in package". If this appears to be valid, read
779  * the PHY identifiers for each device. Return the "devices in package"
780  * and identifiers in @c45_ids.
781  *
782  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
783  * the "devices in package" is invalid or no device responds.
784  */
785 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
786 			   struct phy_c45_device_ids *c45_ids)
787 {
788 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
789 	u32 devs_in_pkg = 0;
790 	int i, ret, phy_reg;
791 
792 	/* Find first non-zero Devices In package. Device zero is reserved
793 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
794 	 */
795 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
796 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
797 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
798 			/* Check that there is a device present at this
799 			 * address before reading the devices-in-package
800 			 * register to avoid reading garbage from the PHY.
801 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
802 			 * compliant.
803 			 */
804 			ret = phy_c45_probe_present(bus, addr, i);
805 			if (ret < 0)
806 				/* returning -ENODEV doesn't stop bus
807 				 * scanning
808 				 */
809 				return (phy_reg == -EIO ||
810 					phy_reg == -ENODEV) ? -ENODEV : -EIO;
811 
812 			if (!ret)
813 				continue;
814 		}
815 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
816 		if (phy_reg < 0)
817 			return -EIO;
818 	}
819 
820 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
821 		/* If mostly Fs, there is no device there, then let's probe
822 		 * MMD 0, as some 10G PHYs have zero Devices In package,
823 		 * e.g. Cortina CS4315/CS4340 PHY.
824 		 */
825 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
826 		if (phy_reg < 0)
827 			return -EIO;
828 
829 		/* no device there, let's get out of here */
830 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
831 			return -ENODEV;
832 	}
833 
834 	/* Now probe Device Identifiers for each device present. */
835 	for (i = 1; i < num_ids; i++) {
836 		if (!(devs_in_pkg & (1 << i)))
837 			continue;
838 
839 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
840 			/* Probe the "Device Present" bits for the vendor MMDs
841 			 * to ignore these if they do not contain IEEE 802.3
842 			 * registers.
843 			 */
844 			ret = phy_c45_probe_present(bus, addr, i);
845 			if (ret < 0)
846 				return ret;
847 
848 			if (!ret)
849 				continue;
850 		}
851 
852 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
853 		if (phy_reg < 0)
854 			return -EIO;
855 		c45_ids->device_ids[i] = phy_reg << 16;
856 
857 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
858 		if (phy_reg < 0)
859 			return -EIO;
860 		c45_ids->device_ids[i] |= phy_reg;
861 	}
862 
863 	c45_ids->devices_in_package = devs_in_pkg;
864 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
865 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
866 
867 	return 0;
868 }
869 
870 /**
871  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
872  * @bus: the target MII bus
873  * @addr: PHY address on the MII bus
874  * @phy_id: where to store the ID retrieved.
875  *
876  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
877  * placing it in @phy_id. Return zero on successful read and the ID is
878  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
879  * or invalid ID.
880  */
881 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
882 {
883 	int phy_reg;
884 
885 	/* Grab the bits from PHYIR1, and put them in the upper half */
886 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
887 	if (phy_reg < 0) {
888 		/* returning -ENODEV doesn't stop bus scanning */
889 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
890 	}
891 
892 	*phy_id = phy_reg << 16;
893 
894 	/* Grab the bits from PHYIR2, and put them in the lower half */
895 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
896 	if (phy_reg < 0) {
897 		/* returning -ENODEV doesn't stop bus scanning */
898 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
899 	}
900 
901 	*phy_id |= phy_reg;
902 
903 	/* If the phy_id is mostly Fs, there is no device there */
904 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
905 		return -ENODEV;
906 
907 	return 0;
908 }
909 
910 /* Extract the phy ID from the compatible string of the form
911  * ethernet-phy-idAAAA.BBBB.
912  */
913 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
914 {
915 	unsigned int upper, lower;
916 	const char *cp;
917 	int ret;
918 
919 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
920 	if (ret)
921 		return ret;
922 
923 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
924 		return -EINVAL;
925 
926 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
927 	return 0;
928 }
929 EXPORT_SYMBOL(fwnode_get_phy_id);
930 
931 /**
932  * get_phy_device - reads the specified PHY device and returns its @phy_device
933  *		    struct
934  * @bus: the target MII bus
935  * @addr: PHY address on the MII bus
936  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
937  *
938  * Probe for a PHY at @addr on @bus.
939  *
940  * When probing for a clause 22 PHY, then read the ID registers. If we find
941  * a valid ID, allocate and return a &struct phy_device.
942  *
943  * When probing for a clause 45 PHY, read the "devices in package" registers.
944  * If the "devices in package" appears valid, read the ID registers for each
945  * MMD, allocate and return a &struct phy_device.
946  *
947  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
948  * no PHY present, or %-EIO on bus access error.
949  */
950 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
951 {
952 	struct phy_c45_device_ids c45_ids;
953 	u32 phy_id = 0;
954 	int r;
955 
956 	c45_ids.devices_in_package = 0;
957 	c45_ids.mmds_present = 0;
958 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
959 
960 	if (is_c45)
961 		r = get_phy_c45_ids(bus, addr, &c45_ids);
962 	else
963 		r = get_phy_c22_id(bus, addr, &phy_id);
964 
965 	if (r)
966 		return ERR_PTR(r);
967 
968 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
969 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
970 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
971 	 * space, if successful, create the C45 PHY device.
972 	 */
973 	if (!is_c45 && phy_id == 0 && bus->read_c45) {
974 		r = get_phy_c45_ids(bus, addr, &c45_ids);
975 		if (!r)
976 			return phy_device_create(bus, addr, phy_id,
977 						 true, &c45_ids);
978 	}
979 
980 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
981 }
982 EXPORT_SYMBOL(get_phy_device);
983 
984 /**
985  * phy_device_register - Register the phy device on the MDIO bus
986  * @phydev: phy_device structure to be added to the MDIO bus
987  */
988 int phy_device_register(struct phy_device *phydev)
989 {
990 	int err;
991 
992 	err = mdiobus_register_device(&phydev->mdio);
993 	if (err)
994 		return err;
995 
996 	/* Deassert the reset signal */
997 	phy_device_reset(phydev, 0);
998 
999 	/* Run all of the fixups for this PHY */
1000 	err = phy_scan_fixups(phydev);
1001 	if (err) {
1002 		phydev_err(phydev, "failed to initialize\n");
1003 		goto out;
1004 	}
1005 
1006 	err = device_add(&phydev->mdio.dev);
1007 	if (err) {
1008 		phydev_err(phydev, "failed to add\n");
1009 		goto out;
1010 	}
1011 
1012 	return 0;
1013 
1014  out:
1015 	/* Assert the reset signal */
1016 	phy_device_reset(phydev, 1);
1017 
1018 	mdiobus_unregister_device(&phydev->mdio);
1019 	return err;
1020 }
1021 EXPORT_SYMBOL(phy_device_register);
1022 
1023 /**
1024  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
1025  * @phydev: phy_device structure to remove
1026  *
1027  * This doesn't free the phy_device itself, it merely reverses the effects
1028  * of phy_device_register(). Use phy_device_free() to free the device
1029  * after calling this function.
1030  */
1031 void phy_device_remove(struct phy_device *phydev)
1032 {
1033 	unregister_mii_timestamper(phydev->mii_ts);
1034 	pse_control_put(phydev->psec);
1035 
1036 	device_del(&phydev->mdio.dev);
1037 
1038 	/* Assert the reset signal */
1039 	phy_device_reset(phydev, 1);
1040 
1041 	mdiobus_unregister_device(&phydev->mdio);
1042 }
1043 EXPORT_SYMBOL(phy_device_remove);
1044 
1045 /**
1046  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1047  * @phydev: phy_device structure to read 802.3-c45 IDs
1048  *
1049  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1050  * the "devices in package" is invalid.
1051  */
1052 int phy_get_c45_ids(struct phy_device *phydev)
1053 {
1054 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1055 			       &phydev->c45_ids);
1056 }
1057 EXPORT_SYMBOL(phy_get_c45_ids);
1058 
1059 /**
1060  * phy_find_first - finds the first PHY device on the bus
1061  * @bus: the target MII bus
1062  */
1063 struct phy_device *phy_find_first(struct mii_bus *bus)
1064 {
1065 	struct phy_device *phydev;
1066 	int addr;
1067 
1068 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1069 		phydev = mdiobus_get_phy(bus, addr);
1070 		if (phydev)
1071 			return phydev;
1072 	}
1073 	return NULL;
1074 }
1075 EXPORT_SYMBOL(phy_find_first);
1076 
1077 static void phy_link_change(struct phy_device *phydev, bool up)
1078 {
1079 	struct net_device *netdev = phydev->attached_dev;
1080 
1081 	if (up)
1082 		netif_carrier_on(netdev);
1083 	else
1084 		netif_carrier_off(netdev);
1085 	phydev->adjust_link(netdev);
1086 	if (phydev->mii_ts && phydev->mii_ts->link_state)
1087 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1088 }
1089 
1090 /**
1091  * phy_prepare_link - prepares the PHY layer to monitor link status
1092  * @phydev: target phy_device struct
1093  * @handler: callback function for link status change notifications
1094  *
1095  * Description: Tells the PHY infrastructure to handle the
1096  *   gory details on monitoring link status (whether through
1097  *   polling or an interrupt), and to call back to the
1098  *   connected device driver when the link status changes.
1099  *   If you want to monitor your own link state, don't call
1100  *   this function.
1101  */
1102 static void phy_prepare_link(struct phy_device *phydev,
1103 			     void (*handler)(struct net_device *))
1104 {
1105 	phydev->adjust_link = handler;
1106 }
1107 
1108 /**
1109  * phy_connect_direct - connect an ethernet device to a specific phy_device
1110  * @dev: the network device to connect
1111  * @phydev: the pointer to the phy device
1112  * @handler: callback function for state change notifications
1113  * @interface: PHY device's interface
1114  */
1115 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1116 		       void (*handler)(struct net_device *),
1117 		       phy_interface_t interface)
1118 {
1119 	int rc;
1120 
1121 	if (!dev)
1122 		return -EINVAL;
1123 
1124 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1125 	if (rc)
1126 		return rc;
1127 
1128 	phy_prepare_link(phydev, handler);
1129 	if (phy_interrupt_is_valid(phydev))
1130 		phy_request_interrupt(phydev);
1131 
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL(phy_connect_direct);
1135 
1136 /**
1137  * phy_connect - connect an ethernet device to a PHY device
1138  * @dev: the network device to connect
1139  * @bus_id: the id string of the PHY device to connect
1140  * @handler: callback function for state change notifications
1141  * @interface: PHY device's interface
1142  *
1143  * Description: Convenience function for connecting ethernet
1144  *   devices to PHY devices.  The default behavior is for
1145  *   the PHY infrastructure to handle everything, and only notify
1146  *   the connected driver when the link status changes.  If you
1147  *   don't want, or can't use the provided functionality, you may
1148  *   choose to call only the subset of functions which provide
1149  *   the desired functionality.
1150  */
1151 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1152 			       void (*handler)(struct net_device *),
1153 			       phy_interface_t interface)
1154 {
1155 	struct phy_device *phydev;
1156 	struct device *d;
1157 	int rc;
1158 
1159 	/* Search the list of PHY devices on the mdio bus for the
1160 	 * PHY with the requested name
1161 	 */
1162 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1163 	if (!d) {
1164 		pr_err("PHY %s not found\n", bus_id);
1165 		return ERR_PTR(-ENODEV);
1166 	}
1167 	phydev = to_phy_device(d);
1168 
1169 	rc = phy_connect_direct(dev, phydev, handler, interface);
1170 	put_device(d);
1171 	if (rc)
1172 		return ERR_PTR(rc);
1173 
1174 	return phydev;
1175 }
1176 EXPORT_SYMBOL(phy_connect);
1177 
1178 /**
1179  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1180  *		    device
1181  * @phydev: target phy_device struct
1182  */
1183 void phy_disconnect(struct phy_device *phydev)
1184 {
1185 	if (phy_is_started(phydev))
1186 		phy_stop(phydev);
1187 
1188 	if (phy_interrupt_is_valid(phydev))
1189 		phy_free_interrupt(phydev);
1190 
1191 	phydev->adjust_link = NULL;
1192 
1193 	phy_detach(phydev);
1194 }
1195 EXPORT_SYMBOL(phy_disconnect);
1196 
1197 /**
1198  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1199  * @phydev: The PHY device to poll
1200  *
1201  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1202  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1203  *   register must be polled until the BMCR_RESET bit clears.
1204  *
1205  *   Furthermore, any attempts to write to PHY registers may have no effect
1206  *   or even generate MDIO bus errors until this is complete.
1207  *
1208  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1209  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1210  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1211  *   effort to support such broken PHYs, this function is separate from the
1212  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1213  *   and reapply all driver-specific and board-specific fixups.
1214  */
1215 static int phy_poll_reset(struct phy_device *phydev)
1216 {
1217 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1218 	int ret, val;
1219 
1220 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1221 				    50000, 600000, true);
1222 	if (ret)
1223 		return ret;
1224 	/* Some chips (smsc911x) may still need up to another 1ms after the
1225 	 * BMCR_RESET bit is cleared before they are usable.
1226 	 */
1227 	msleep(1);
1228 	return 0;
1229 }
1230 
1231 int phy_init_hw(struct phy_device *phydev)
1232 {
1233 	int ret = 0;
1234 
1235 	/* Deassert the reset signal */
1236 	phy_device_reset(phydev, 0);
1237 
1238 	if (!phydev->drv)
1239 		return 0;
1240 
1241 	if (phydev->drv->soft_reset) {
1242 		ret = phydev->drv->soft_reset(phydev);
1243 		if (ret < 0)
1244 			return ret;
1245 
1246 		/* see comment in genphy_soft_reset for an explanation */
1247 		phydev->suspended = 0;
1248 	}
1249 
1250 	ret = phy_scan_fixups(phydev);
1251 	if (ret < 0)
1252 		return ret;
1253 
1254 	phy_interface_zero(phydev->possible_interfaces);
1255 
1256 	if (phydev->drv->config_init) {
1257 		ret = phydev->drv->config_init(phydev);
1258 		if (ret < 0)
1259 			return ret;
1260 	}
1261 
1262 	if (phydev->drv->config_intr) {
1263 		ret = phydev->drv->config_intr(phydev);
1264 		if (ret < 0)
1265 			return ret;
1266 	}
1267 
1268 	return 0;
1269 }
1270 EXPORT_SYMBOL(phy_init_hw);
1271 
1272 void phy_attached_info(struct phy_device *phydev)
1273 {
1274 	phy_attached_print(phydev, NULL);
1275 }
1276 EXPORT_SYMBOL(phy_attached_info);
1277 
1278 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1279 char *phy_attached_info_irq(struct phy_device *phydev)
1280 {
1281 	char *irq_str;
1282 	char irq_num[8];
1283 
1284 	switch(phydev->irq) {
1285 	case PHY_POLL:
1286 		irq_str = "POLL";
1287 		break;
1288 	case PHY_MAC_INTERRUPT:
1289 		irq_str = "MAC";
1290 		break;
1291 	default:
1292 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1293 		irq_str = irq_num;
1294 		break;
1295 	}
1296 
1297 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1298 }
1299 EXPORT_SYMBOL(phy_attached_info_irq);
1300 
1301 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1302 {
1303 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1304 	char *irq_str = phy_attached_info_irq(phydev);
1305 
1306 	if (!fmt) {
1307 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1308 			    phydev_name(phydev), irq_str);
1309 	} else {
1310 		va_list ap;
1311 
1312 		phydev_info(phydev, ATTACHED_FMT, unbound,
1313 			    phydev_name(phydev), irq_str);
1314 
1315 		va_start(ap, fmt);
1316 		vprintk(fmt, ap);
1317 		va_end(ap);
1318 	}
1319 	kfree(irq_str);
1320 }
1321 EXPORT_SYMBOL(phy_attached_print);
1322 
1323 static void phy_sysfs_create_links(struct phy_device *phydev)
1324 {
1325 	struct net_device *dev = phydev->attached_dev;
1326 	int err;
1327 
1328 	if (!dev)
1329 		return;
1330 
1331 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1332 				"attached_dev");
1333 	if (err)
1334 		return;
1335 
1336 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1337 				       &phydev->mdio.dev.kobj,
1338 				       "phydev");
1339 	if (err) {
1340 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1341 			kobject_name(&phydev->mdio.dev.kobj),
1342 			err);
1343 		/* non-fatal - some net drivers can use one netdevice
1344 		 * with more then one phy
1345 		 */
1346 	}
1347 
1348 	phydev->sysfs_links = true;
1349 }
1350 
1351 static ssize_t
1352 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1353 		    char *buf)
1354 {
1355 	struct phy_device *phydev = to_phy_device(dev);
1356 
1357 	return sysfs_emit(buf, "%d\n", !phydev->attached_dev);
1358 }
1359 static DEVICE_ATTR_RO(phy_standalone);
1360 
1361 /**
1362  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1363  * @upstream: pointer to the phy device
1364  * @bus: sfp bus representing cage being attached
1365  *
1366  * This is used to fill in the sfp_upstream_ops .attach member.
1367  */
1368 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1369 {
1370 	struct phy_device *phydev = upstream;
1371 
1372 	if (phydev->attached_dev)
1373 		phydev->attached_dev->sfp_bus = bus;
1374 	phydev->sfp_bus_attached = true;
1375 }
1376 EXPORT_SYMBOL(phy_sfp_attach);
1377 
1378 /**
1379  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1380  * @upstream: pointer to the phy device
1381  * @bus: sfp bus representing cage being attached
1382  *
1383  * This is used to fill in the sfp_upstream_ops .detach member.
1384  */
1385 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1386 {
1387 	struct phy_device *phydev = upstream;
1388 
1389 	if (phydev->attached_dev)
1390 		phydev->attached_dev->sfp_bus = NULL;
1391 	phydev->sfp_bus_attached = false;
1392 }
1393 EXPORT_SYMBOL(phy_sfp_detach);
1394 
1395 /**
1396  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1397  * @phydev: Pointer to phy_device
1398  * @ops: SFP's upstream operations
1399  */
1400 int phy_sfp_probe(struct phy_device *phydev,
1401 		  const struct sfp_upstream_ops *ops)
1402 {
1403 	struct sfp_bus *bus;
1404 	int ret = 0;
1405 
1406 	if (phydev->mdio.dev.fwnode) {
1407 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1408 		if (IS_ERR(bus))
1409 			return PTR_ERR(bus);
1410 
1411 		phydev->sfp_bus = bus;
1412 
1413 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1414 		sfp_bus_put(bus);
1415 	}
1416 	return ret;
1417 }
1418 EXPORT_SYMBOL(phy_sfp_probe);
1419 
1420 static bool phy_drv_supports_irq(const struct phy_driver *phydrv)
1421 {
1422 	return phydrv->config_intr && phydrv->handle_interrupt;
1423 }
1424 
1425 /**
1426  * phy_attach_direct - attach a network device to a given PHY device pointer
1427  * @dev: network device to attach
1428  * @phydev: Pointer to phy_device to attach
1429  * @flags: PHY device's dev_flags
1430  * @interface: PHY device's interface
1431  *
1432  * Description: Called by drivers to attach to a particular PHY
1433  *     device. The phy_device is found, and properly hooked up
1434  *     to the phy_driver.  If no driver is attached, then a
1435  *     generic driver is used.  The phy_device is given a ptr to
1436  *     the attaching device, and given a callback for link status
1437  *     change.  The phy_device is returned to the attaching driver.
1438  *     This function takes a reference on the phy device.
1439  */
1440 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1441 		      u32 flags, phy_interface_t interface)
1442 {
1443 	struct mii_bus *bus = phydev->mdio.bus;
1444 	struct device *d = &phydev->mdio.dev;
1445 	struct module *ndev_owner = NULL;
1446 	bool using_genphy = false;
1447 	int err;
1448 
1449 	/* For Ethernet device drivers that register their own MDIO bus, we
1450 	 * will have bus->owner match ndev_mod, so we do not want to increment
1451 	 * our own module->refcnt here, otherwise we would not be able to
1452 	 * unload later on.
1453 	 */
1454 	if (dev)
1455 		ndev_owner = dev->dev.parent->driver->owner;
1456 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1457 		phydev_err(phydev, "failed to get the bus module\n");
1458 		return -EIO;
1459 	}
1460 
1461 	get_device(d);
1462 
1463 	/* Assume that if there is no driver, that it doesn't
1464 	 * exist, and we should use the genphy driver.
1465 	 */
1466 	if (!d->driver) {
1467 		if (phydev->is_c45)
1468 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1469 		else
1470 			d->driver = &genphy_driver.mdiodrv.driver;
1471 
1472 		using_genphy = true;
1473 	}
1474 
1475 	if (!try_module_get(d->driver->owner)) {
1476 		phydev_err(phydev, "failed to get the device driver module\n");
1477 		err = -EIO;
1478 		goto error_put_device;
1479 	}
1480 
1481 	if (using_genphy) {
1482 		err = d->driver->probe(d);
1483 		if (err >= 0)
1484 			err = device_bind_driver(d);
1485 
1486 		if (err)
1487 			goto error_module_put;
1488 	}
1489 
1490 	if (phydev->attached_dev) {
1491 		dev_err(&dev->dev, "PHY already attached\n");
1492 		err = -EBUSY;
1493 		goto error;
1494 	}
1495 
1496 	phydev->phy_link_change = phy_link_change;
1497 	if (dev) {
1498 		phydev->attached_dev = dev;
1499 		dev->phydev = phydev;
1500 
1501 		if (phydev->sfp_bus_attached)
1502 			dev->sfp_bus = phydev->sfp_bus;
1503 	}
1504 
1505 	/* Some Ethernet drivers try to connect to a PHY device before
1506 	 * calling register_netdevice() -> netdev_register_kobject() and
1507 	 * does the dev->dev.kobj initialization. Here we only check for
1508 	 * success which indicates that the network device kobject is
1509 	 * ready. Once we do that we still need to keep track of whether
1510 	 * links were successfully set up or not for phy_detach() to
1511 	 * remove them accordingly.
1512 	 */
1513 	phydev->sysfs_links = false;
1514 
1515 	phy_sysfs_create_links(phydev);
1516 
1517 	if (!phydev->attached_dev) {
1518 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1519 					&dev_attr_phy_standalone.attr);
1520 		if (err)
1521 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1522 	}
1523 
1524 	phydev->dev_flags |= flags;
1525 
1526 	phydev->interface = interface;
1527 
1528 	phydev->state = PHY_READY;
1529 
1530 	phydev->interrupts = PHY_INTERRUPT_DISABLED;
1531 
1532 	/* PHYs can request to use poll mode even though they have an
1533 	 * associated interrupt line. This could be the case if they
1534 	 * detect a broken interrupt handling.
1535 	 */
1536 	if (phydev->dev_flags & PHY_F_NO_IRQ)
1537 		phydev->irq = PHY_POLL;
1538 
1539 	if (!phy_drv_supports_irq(phydev->drv) && phy_interrupt_is_valid(phydev))
1540 		phydev->irq = PHY_POLL;
1541 
1542 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1543 	 * it to different value depending on the PHY configuration. If we have
1544 	 * the generic PHY driver we can't figure it out, thus set the old
1545 	 * legacy PORT_MII value.
1546 	 */
1547 	if (using_genphy)
1548 		phydev->port = PORT_MII;
1549 
1550 	/* Initial carrier state is off as the phy is about to be
1551 	 * (re)initialized.
1552 	 */
1553 	if (dev)
1554 		netif_carrier_off(phydev->attached_dev);
1555 
1556 	/* Do initial configuration here, now that
1557 	 * we have certain key parameters
1558 	 * (dev_flags and interface)
1559 	 */
1560 	err = phy_init_hw(phydev);
1561 	if (err)
1562 		goto error;
1563 
1564 	phy_resume(phydev);
1565 	if (!phydev->is_on_sfp_module)
1566 		phy_led_triggers_register(phydev);
1567 
1568 	/**
1569 	 * If the external phy used by current mac interface is managed by
1570 	 * another mac interface, so we should create a device link between
1571 	 * phy dev and mac dev.
1572 	 */
1573 	if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
1574 		phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
1575 						  DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
1576 
1577 	return err;
1578 
1579 error:
1580 	/* phy_detach() does all of the cleanup below */
1581 	phy_detach(phydev);
1582 	return err;
1583 
1584 error_module_put:
1585 	module_put(d->driver->owner);
1586 	d->driver = NULL;
1587 error_put_device:
1588 	put_device(d);
1589 	if (ndev_owner != bus->owner)
1590 		module_put(bus->owner);
1591 	return err;
1592 }
1593 EXPORT_SYMBOL(phy_attach_direct);
1594 
1595 /**
1596  * phy_attach - attach a network device to a particular PHY device
1597  * @dev: network device to attach
1598  * @bus_id: Bus ID of PHY device to attach
1599  * @interface: PHY device's interface
1600  *
1601  * Description: Same as phy_attach_direct() except that a PHY bus_id
1602  *     string is passed instead of a pointer to a struct phy_device.
1603  */
1604 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1605 			      phy_interface_t interface)
1606 {
1607 	struct bus_type *bus = &mdio_bus_type;
1608 	struct phy_device *phydev;
1609 	struct device *d;
1610 	int rc;
1611 
1612 	if (!dev)
1613 		return ERR_PTR(-EINVAL);
1614 
1615 	/* Search the list of PHY devices on the mdio bus for the
1616 	 * PHY with the requested name
1617 	 */
1618 	d = bus_find_device_by_name(bus, NULL, bus_id);
1619 	if (!d) {
1620 		pr_err("PHY %s not found\n", bus_id);
1621 		return ERR_PTR(-ENODEV);
1622 	}
1623 	phydev = to_phy_device(d);
1624 
1625 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1626 	put_device(d);
1627 	if (rc)
1628 		return ERR_PTR(rc);
1629 
1630 	return phydev;
1631 }
1632 EXPORT_SYMBOL(phy_attach);
1633 
1634 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1635 				      struct device_driver *driver)
1636 {
1637 	struct device *d = &phydev->mdio.dev;
1638 	bool ret = false;
1639 
1640 	if (!phydev->drv)
1641 		return ret;
1642 
1643 	get_device(d);
1644 	ret = d->driver == driver;
1645 	put_device(d);
1646 
1647 	return ret;
1648 }
1649 
1650 bool phy_driver_is_genphy(struct phy_device *phydev)
1651 {
1652 	return phy_driver_is_genphy_kind(phydev,
1653 					 &genphy_driver.mdiodrv.driver);
1654 }
1655 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1656 
1657 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1658 {
1659 	return phy_driver_is_genphy_kind(phydev,
1660 					 &genphy_c45_driver.mdiodrv.driver);
1661 }
1662 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1663 
1664 /**
1665  * phy_package_join - join a common PHY group
1666  * @phydev: target phy_device struct
1667  * @base_addr: cookie and base PHY address of PHY package for offset
1668  *   calculation of global register access
1669  * @priv_size: if non-zero allocate this amount of bytes for private data
1670  *
1671  * This joins a PHY group and provides a shared storage for all phydevs in
1672  * this group. This is intended to be used for packages which contain
1673  * more than one PHY, for example a quad PHY transceiver.
1674  *
1675  * The base_addr parameter serves as cookie which has to have the same values
1676  * for all members of one group and as the base PHY address of the PHY package
1677  * for offset calculation to access generic registers of a PHY package.
1678  * Usually, one of the PHY addresses of the different PHYs in the package
1679  * provides access to these global registers.
1680  * The address which is given here, will be used in the phy_package_read()
1681  * and phy_package_write() convenience functions as base and added to the
1682  * passed offset in those functions.
1683  *
1684  * This will set the shared pointer of the phydev to the shared storage.
1685  * If this is the first call for a this cookie the shared storage will be
1686  * allocated. If priv_size is non-zero, the given amount of bytes are
1687  * allocated for the priv member.
1688  *
1689  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1690  * with the same cookie but a different priv_size is an error.
1691  */
1692 int phy_package_join(struct phy_device *phydev, int base_addr, size_t priv_size)
1693 {
1694 	struct mii_bus *bus = phydev->mdio.bus;
1695 	struct phy_package_shared *shared;
1696 	int ret;
1697 
1698 	if (base_addr < 0 || base_addr >= PHY_MAX_ADDR)
1699 		return -EINVAL;
1700 
1701 	mutex_lock(&bus->shared_lock);
1702 	shared = bus->shared[base_addr];
1703 	if (!shared) {
1704 		ret = -ENOMEM;
1705 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1706 		if (!shared)
1707 			goto err_unlock;
1708 		if (priv_size) {
1709 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1710 			if (!shared->priv)
1711 				goto err_free;
1712 			shared->priv_size = priv_size;
1713 		}
1714 		shared->base_addr = base_addr;
1715 		shared->np = NULL;
1716 		refcount_set(&shared->refcnt, 1);
1717 		bus->shared[base_addr] = shared;
1718 	} else {
1719 		ret = -EINVAL;
1720 		if (priv_size && priv_size != shared->priv_size)
1721 			goto err_unlock;
1722 		refcount_inc(&shared->refcnt);
1723 	}
1724 	mutex_unlock(&bus->shared_lock);
1725 
1726 	phydev->shared = shared;
1727 
1728 	return 0;
1729 
1730 err_free:
1731 	kfree(shared);
1732 err_unlock:
1733 	mutex_unlock(&bus->shared_lock);
1734 	return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(phy_package_join);
1737 
1738 /**
1739  * of_phy_package_join - join a common PHY group in PHY package
1740  * @phydev: target phy_device struct
1741  * @priv_size: if non-zero allocate this amount of bytes for private data
1742  *
1743  * This is a variant of phy_package_join for PHY package defined in DT.
1744  *
1745  * The parent node of the @phydev is checked as a valid PHY package node
1746  * structure (by matching the node name "ethernet-phy-package") and the
1747  * base_addr for the PHY package is passed to phy_package_join.
1748  *
1749  * With this configuration the shared struct will also have the np value
1750  * filled to use additional DT defined properties in PHY specific
1751  * probe_once and config_init_once PHY package OPs.
1752  *
1753  * Returns < 0 on error, 0 on success. Esp. calling phy_package_join()
1754  * with the same cookie but a different priv_size is an error. Or a parent
1755  * node is not detected or is not valid or doesn't match the expected node
1756  * name for PHY package.
1757  */
1758 int of_phy_package_join(struct phy_device *phydev, size_t priv_size)
1759 {
1760 	struct device_node *node = phydev->mdio.dev.of_node;
1761 	struct device_node *package_node;
1762 	u32 base_addr;
1763 	int ret;
1764 
1765 	if (!node)
1766 		return -EINVAL;
1767 
1768 	package_node = of_get_parent(node);
1769 	if (!package_node)
1770 		return -EINVAL;
1771 
1772 	if (!of_node_name_eq(package_node, "ethernet-phy-package")) {
1773 		ret = -EINVAL;
1774 		goto exit;
1775 	}
1776 
1777 	if (of_property_read_u32(package_node, "reg", &base_addr)) {
1778 		ret = -EINVAL;
1779 		goto exit;
1780 	}
1781 
1782 	ret = phy_package_join(phydev, base_addr, priv_size);
1783 	if (ret)
1784 		goto exit;
1785 
1786 	phydev->shared->np = package_node;
1787 
1788 	return 0;
1789 exit:
1790 	of_node_put(package_node);
1791 	return ret;
1792 }
1793 EXPORT_SYMBOL_GPL(of_phy_package_join);
1794 
1795 /**
1796  * phy_package_leave - leave a common PHY group
1797  * @phydev: target phy_device struct
1798  *
1799  * This leaves a PHY group created by phy_package_join(). If this phydev
1800  * was the last user of the shared data between the group, this data is
1801  * freed. Resets the phydev->shared pointer to NULL.
1802  */
1803 void phy_package_leave(struct phy_device *phydev)
1804 {
1805 	struct phy_package_shared *shared = phydev->shared;
1806 	struct mii_bus *bus = phydev->mdio.bus;
1807 
1808 	if (!shared)
1809 		return;
1810 
1811 	/* Decrease the node refcount on leave if present */
1812 	if (shared->np)
1813 		of_node_put(shared->np);
1814 
1815 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1816 		bus->shared[shared->base_addr] = NULL;
1817 		mutex_unlock(&bus->shared_lock);
1818 		kfree(shared->priv);
1819 		kfree(shared);
1820 	}
1821 
1822 	phydev->shared = NULL;
1823 }
1824 EXPORT_SYMBOL_GPL(phy_package_leave);
1825 
1826 static void devm_phy_package_leave(struct device *dev, void *res)
1827 {
1828 	phy_package_leave(*(struct phy_device **)res);
1829 }
1830 
1831 /**
1832  * devm_phy_package_join - resource managed phy_package_join()
1833  * @dev: device that is registering this PHY package
1834  * @phydev: target phy_device struct
1835  * @base_addr: cookie and base PHY address of PHY package for offset
1836  *   calculation of global register access
1837  * @priv_size: if non-zero allocate this amount of bytes for private data
1838  *
1839  * Managed phy_package_join(). Shared storage fetched by this function,
1840  * phy_package_leave() is automatically called on driver detach. See
1841  * phy_package_join() for more information.
1842  */
1843 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1844 			  int base_addr, size_t priv_size)
1845 {
1846 	struct phy_device **ptr;
1847 	int ret;
1848 
1849 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1850 			   GFP_KERNEL);
1851 	if (!ptr)
1852 		return -ENOMEM;
1853 
1854 	ret = phy_package_join(phydev, base_addr, priv_size);
1855 
1856 	if (!ret) {
1857 		*ptr = phydev;
1858 		devres_add(dev, ptr);
1859 	} else {
1860 		devres_free(ptr);
1861 	}
1862 
1863 	return ret;
1864 }
1865 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1866 
1867 /**
1868  * devm_of_phy_package_join - resource managed of_phy_package_join()
1869  * @dev: device that is registering this PHY package
1870  * @phydev: target phy_device struct
1871  * @priv_size: if non-zero allocate this amount of bytes for private data
1872  *
1873  * Managed of_phy_package_join(). Shared storage fetched by this function,
1874  * phy_package_leave() is automatically called on driver detach. See
1875  * of_phy_package_join() for more information.
1876  */
1877 int devm_of_phy_package_join(struct device *dev, struct phy_device *phydev,
1878 			     size_t priv_size)
1879 {
1880 	struct phy_device **ptr;
1881 	int ret;
1882 
1883 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1884 			   GFP_KERNEL);
1885 	if (!ptr)
1886 		return -ENOMEM;
1887 
1888 	ret = of_phy_package_join(phydev, priv_size);
1889 
1890 	if (!ret) {
1891 		*ptr = phydev;
1892 		devres_add(dev, ptr);
1893 	} else {
1894 		devres_free(ptr);
1895 	}
1896 
1897 	return ret;
1898 }
1899 EXPORT_SYMBOL_GPL(devm_of_phy_package_join);
1900 
1901 /**
1902  * phy_detach - detach a PHY device from its network device
1903  * @phydev: target phy_device struct
1904  *
1905  * This detaches the phy device from its network device and the phy
1906  * driver, and drops the reference count taken in phy_attach_direct().
1907  */
1908 void phy_detach(struct phy_device *phydev)
1909 {
1910 	struct net_device *dev = phydev->attached_dev;
1911 	struct module *ndev_owner = NULL;
1912 	struct mii_bus *bus;
1913 
1914 	if (phydev->devlink)
1915 		device_link_del(phydev->devlink);
1916 
1917 	if (phydev->sysfs_links) {
1918 		if (dev)
1919 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1920 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1921 	}
1922 
1923 	if (!phydev->attached_dev)
1924 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1925 				  &dev_attr_phy_standalone.attr);
1926 
1927 	phy_suspend(phydev);
1928 	if (dev) {
1929 		phydev->attached_dev->phydev = NULL;
1930 		phydev->attached_dev = NULL;
1931 	}
1932 	phydev->phylink = NULL;
1933 
1934 	if (!phydev->is_on_sfp_module)
1935 		phy_led_triggers_unregister(phydev);
1936 
1937 	if (phydev->mdio.dev.driver)
1938 		module_put(phydev->mdio.dev.driver->owner);
1939 
1940 	/* If the device had no specific driver before (i.e. - it
1941 	 * was using the generic driver), we unbind the device
1942 	 * from the generic driver so that there's a chance a
1943 	 * real driver could be loaded
1944 	 */
1945 	if (phy_driver_is_genphy(phydev) ||
1946 	    phy_driver_is_genphy_10g(phydev))
1947 		device_release_driver(&phydev->mdio.dev);
1948 
1949 	/* Assert the reset signal */
1950 	phy_device_reset(phydev, 1);
1951 
1952 	/*
1953 	 * The phydev might go away on the put_device() below, so avoid
1954 	 * a use-after-free bug by reading the underlying bus first.
1955 	 */
1956 	bus = phydev->mdio.bus;
1957 
1958 	put_device(&phydev->mdio.dev);
1959 	if (dev)
1960 		ndev_owner = dev->dev.parent->driver->owner;
1961 	if (ndev_owner != bus->owner)
1962 		module_put(bus->owner);
1963 }
1964 EXPORT_SYMBOL(phy_detach);
1965 
1966 int phy_suspend(struct phy_device *phydev)
1967 {
1968 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1969 	struct net_device *netdev = phydev->attached_dev;
1970 	const struct phy_driver *phydrv = phydev->drv;
1971 	int ret;
1972 
1973 	if (phydev->suspended)
1974 		return 0;
1975 
1976 	phy_ethtool_get_wol(phydev, &wol);
1977 	phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled);
1978 	/* If the device has WOL enabled, we cannot suspend the PHY */
1979 	if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND))
1980 		return -EBUSY;
1981 
1982 	if (!phydrv || !phydrv->suspend)
1983 		return 0;
1984 
1985 	ret = phydrv->suspend(phydev);
1986 	if (!ret)
1987 		phydev->suspended = true;
1988 
1989 	return ret;
1990 }
1991 EXPORT_SYMBOL(phy_suspend);
1992 
1993 int __phy_resume(struct phy_device *phydev)
1994 {
1995 	const struct phy_driver *phydrv = phydev->drv;
1996 	int ret;
1997 
1998 	lockdep_assert_held(&phydev->lock);
1999 
2000 	if (!phydrv || !phydrv->resume)
2001 		return 0;
2002 
2003 	ret = phydrv->resume(phydev);
2004 	if (!ret)
2005 		phydev->suspended = false;
2006 
2007 	return ret;
2008 }
2009 EXPORT_SYMBOL(__phy_resume);
2010 
2011 int phy_resume(struct phy_device *phydev)
2012 {
2013 	int ret;
2014 
2015 	mutex_lock(&phydev->lock);
2016 	ret = __phy_resume(phydev);
2017 	mutex_unlock(&phydev->lock);
2018 
2019 	return ret;
2020 }
2021 EXPORT_SYMBOL(phy_resume);
2022 
2023 int phy_loopback(struct phy_device *phydev, bool enable)
2024 {
2025 	int ret = 0;
2026 
2027 	if (!phydev->drv)
2028 		return -EIO;
2029 
2030 	mutex_lock(&phydev->lock);
2031 
2032 	if (enable && phydev->loopback_enabled) {
2033 		ret = -EBUSY;
2034 		goto out;
2035 	}
2036 
2037 	if (!enable && !phydev->loopback_enabled) {
2038 		ret = -EINVAL;
2039 		goto out;
2040 	}
2041 
2042 	if (phydev->drv->set_loopback)
2043 		ret = phydev->drv->set_loopback(phydev, enable);
2044 	else
2045 		ret = genphy_loopback(phydev, enable);
2046 
2047 	if (ret)
2048 		goto out;
2049 
2050 	phydev->loopback_enabled = enable;
2051 
2052 out:
2053 	mutex_unlock(&phydev->lock);
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL(phy_loopback);
2057 
2058 /**
2059  * phy_reset_after_clk_enable - perform a PHY reset if needed
2060  * @phydev: target phy_device struct
2061  *
2062  * Description: Some PHYs are known to need a reset after their refclk was
2063  *   enabled. This function evaluates the flags and perform the reset if it's
2064  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
2065  *   was reset.
2066  */
2067 int phy_reset_after_clk_enable(struct phy_device *phydev)
2068 {
2069 	if (!phydev || !phydev->drv)
2070 		return -ENODEV;
2071 
2072 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
2073 		phy_device_reset(phydev, 1);
2074 		phy_device_reset(phydev, 0);
2075 		return 1;
2076 	}
2077 
2078 	return 0;
2079 }
2080 EXPORT_SYMBOL(phy_reset_after_clk_enable);
2081 
2082 /* Generic PHY support and helper functions */
2083 
2084 /**
2085  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
2086  * @phydev: target phy_device struct
2087  *
2088  * Description: Writes MII_ADVERTISE with the appropriate values,
2089  *   after sanitizing the values to make sure we only advertise
2090  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2091  *   hasn't changed, and > 0 if it has changed.
2092  */
2093 static int genphy_config_advert(struct phy_device *phydev)
2094 {
2095 	int err, bmsr, changed = 0;
2096 	u32 adv;
2097 
2098 	/* Only allow advertising what this PHY supports */
2099 	linkmode_and(phydev->advertising, phydev->advertising,
2100 		     phydev->supported);
2101 
2102 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
2103 
2104 	/* Setup standard advertisement */
2105 	err = phy_modify_changed(phydev, MII_ADVERTISE,
2106 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
2107 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
2108 				 adv);
2109 	if (err < 0)
2110 		return err;
2111 	if (err > 0)
2112 		changed = 1;
2113 
2114 	bmsr = phy_read(phydev, MII_BMSR);
2115 	if (bmsr < 0)
2116 		return bmsr;
2117 
2118 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
2119 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
2120 	 * logical 1.
2121 	 */
2122 	if (!(bmsr & BMSR_ESTATEN))
2123 		return changed;
2124 
2125 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
2126 
2127 	err = phy_modify_changed(phydev, MII_CTRL1000,
2128 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
2129 				 adv);
2130 	if (err < 0)
2131 		return err;
2132 	if (err > 0)
2133 		changed = 1;
2134 
2135 	return changed;
2136 }
2137 
2138 /**
2139  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
2140  * @phydev: target phy_device struct
2141  *
2142  * Description: Writes MII_ADVERTISE with the appropriate values,
2143  *   after sanitizing the values to make sure we only advertise
2144  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2145  *   hasn't changed, and > 0 if it has changed. This function is intended
2146  *   for Clause 37 1000Base-X mode.
2147  */
2148 static int genphy_c37_config_advert(struct phy_device *phydev)
2149 {
2150 	u16 adv = 0;
2151 
2152 	/* Only allow advertising what this PHY supports */
2153 	linkmode_and(phydev->advertising, phydev->advertising,
2154 		     phydev->supported);
2155 
2156 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2157 			      phydev->advertising))
2158 		adv |= ADVERTISE_1000XFULL;
2159 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2160 			      phydev->advertising))
2161 		adv |= ADVERTISE_1000XPAUSE;
2162 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2163 			      phydev->advertising))
2164 		adv |= ADVERTISE_1000XPSE_ASYM;
2165 
2166 	return phy_modify_changed(phydev, MII_ADVERTISE,
2167 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
2168 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
2169 				  adv);
2170 }
2171 
2172 /**
2173  * genphy_config_eee_advert - disable unwanted eee mode advertisement
2174  * @phydev: target phy_device struct
2175  *
2176  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2177  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2178  *   changed, and 1 if it has changed.
2179  */
2180 int genphy_config_eee_advert(struct phy_device *phydev)
2181 {
2182 	int err;
2183 
2184 	/* Nothing to disable */
2185 	if (!phydev->eee_broken_modes)
2186 		return 0;
2187 
2188 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2189 				     phydev->eee_broken_modes, 0);
2190 	/* If the call failed, we assume that EEE is not supported */
2191 	return err < 0 ? 0 : err;
2192 }
2193 EXPORT_SYMBOL(genphy_config_eee_advert);
2194 
2195 /**
2196  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2197  * @phydev: target phy_device struct
2198  *
2199  * Description: Configures MII_BMCR to force speed/duplex
2200  *   to the values in phydev. Assumes that the values are valid.
2201  *   Please see phy_sanitize_settings().
2202  */
2203 int genphy_setup_forced(struct phy_device *phydev)
2204 {
2205 	u16 ctl;
2206 
2207 	phydev->pause = 0;
2208 	phydev->asym_pause = 0;
2209 
2210 	ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2211 
2212 	return phy_modify(phydev, MII_BMCR,
2213 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2214 }
2215 EXPORT_SYMBOL(genphy_setup_forced);
2216 
2217 static int genphy_setup_master_slave(struct phy_device *phydev)
2218 {
2219 	u16 ctl = 0;
2220 
2221 	if (!phydev->is_gigabit_capable)
2222 		return 0;
2223 
2224 	switch (phydev->master_slave_set) {
2225 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2226 		ctl |= CTL1000_PREFER_MASTER;
2227 		break;
2228 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2229 		break;
2230 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2231 		ctl |= CTL1000_AS_MASTER;
2232 		fallthrough;
2233 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2234 		ctl |= CTL1000_ENABLE_MASTER;
2235 		break;
2236 	case MASTER_SLAVE_CFG_UNKNOWN:
2237 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2238 		return 0;
2239 	default:
2240 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2241 		return -EOPNOTSUPP;
2242 	}
2243 
2244 	return phy_modify_changed(phydev, MII_CTRL1000,
2245 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2246 				   CTL1000_PREFER_MASTER), ctl);
2247 }
2248 
2249 int genphy_read_master_slave(struct phy_device *phydev)
2250 {
2251 	int cfg, state;
2252 	int val;
2253 
2254 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2255 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2256 
2257 	val = phy_read(phydev, MII_CTRL1000);
2258 	if (val < 0)
2259 		return val;
2260 
2261 	if (val & CTL1000_ENABLE_MASTER) {
2262 		if (val & CTL1000_AS_MASTER)
2263 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2264 		else
2265 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2266 	} else {
2267 		if (val & CTL1000_PREFER_MASTER)
2268 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2269 		else
2270 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2271 	}
2272 
2273 	val = phy_read(phydev, MII_STAT1000);
2274 	if (val < 0)
2275 		return val;
2276 
2277 	if (val & LPA_1000MSFAIL) {
2278 		state = MASTER_SLAVE_STATE_ERR;
2279 	} else if (phydev->link) {
2280 		/* this bits are valid only for active link */
2281 		if (val & LPA_1000MSRES)
2282 			state = MASTER_SLAVE_STATE_MASTER;
2283 		else
2284 			state = MASTER_SLAVE_STATE_SLAVE;
2285 	} else {
2286 		state = MASTER_SLAVE_STATE_UNKNOWN;
2287 	}
2288 
2289 	phydev->master_slave_get = cfg;
2290 	phydev->master_slave_state = state;
2291 
2292 	return 0;
2293 }
2294 EXPORT_SYMBOL(genphy_read_master_slave);
2295 
2296 /**
2297  * genphy_restart_aneg - Enable and Restart Autonegotiation
2298  * @phydev: target phy_device struct
2299  */
2300 int genphy_restart_aneg(struct phy_device *phydev)
2301 {
2302 	/* Don't isolate the PHY if we're negotiating */
2303 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2304 			  BMCR_ANENABLE | BMCR_ANRESTART);
2305 }
2306 EXPORT_SYMBOL(genphy_restart_aneg);
2307 
2308 /**
2309  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2310  * @phydev: target phy_device struct
2311  * @restart: whether aneg restart is requested
2312  *
2313  * Check, and restart auto-negotiation if needed.
2314  */
2315 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2316 {
2317 	int ret;
2318 
2319 	if (!restart) {
2320 		/* Advertisement hasn't changed, but maybe aneg was never on to
2321 		 * begin with?  Or maybe phy was isolated?
2322 		 */
2323 		ret = phy_read(phydev, MII_BMCR);
2324 		if (ret < 0)
2325 			return ret;
2326 
2327 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2328 			restart = true;
2329 	}
2330 
2331 	if (restart)
2332 		return genphy_restart_aneg(phydev);
2333 
2334 	return 0;
2335 }
2336 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2337 
2338 /**
2339  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2340  * @phydev: target phy_device struct
2341  * @changed: whether autoneg is requested
2342  *
2343  * Description: If auto-negotiation is enabled, we configure the
2344  *   advertising, and then restart auto-negotiation.  If it is not
2345  *   enabled, then we write the BMCR.
2346  */
2347 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2348 {
2349 	int err;
2350 
2351 	err = genphy_c45_an_config_eee_aneg(phydev);
2352 	if (err < 0)
2353 		return err;
2354 	else if (err)
2355 		changed = true;
2356 
2357 	err = genphy_setup_master_slave(phydev);
2358 	if (err < 0)
2359 		return err;
2360 	else if (err)
2361 		changed = true;
2362 
2363 	if (AUTONEG_ENABLE != phydev->autoneg)
2364 		return genphy_setup_forced(phydev);
2365 
2366 	err = genphy_config_advert(phydev);
2367 	if (err < 0) /* error */
2368 		return err;
2369 	else if (err)
2370 		changed = true;
2371 
2372 	return genphy_check_and_restart_aneg(phydev, changed);
2373 }
2374 EXPORT_SYMBOL(__genphy_config_aneg);
2375 
2376 /**
2377  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2378  * @phydev: target phy_device struct
2379  *
2380  * Description: If auto-negotiation is enabled, we configure the
2381  *   advertising, and then restart auto-negotiation.  If it is not
2382  *   enabled, then we write the BMCR. This function is intended
2383  *   for use with Clause 37 1000Base-X mode.
2384  */
2385 int genphy_c37_config_aneg(struct phy_device *phydev)
2386 {
2387 	int err, changed;
2388 
2389 	if (phydev->autoneg != AUTONEG_ENABLE)
2390 		return genphy_setup_forced(phydev);
2391 
2392 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2393 			 BMCR_SPEED1000);
2394 	if (err)
2395 		return err;
2396 
2397 	changed = genphy_c37_config_advert(phydev);
2398 	if (changed < 0) /* error */
2399 		return changed;
2400 
2401 	if (!changed) {
2402 		/* Advertisement hasn't changed, but maybe aneg was never on to
2403 		 * begin with?  Or maybe phy was isolated?
2404 		 */
2405 		int ctl = phy_read(phydev, MII_BMCR);
2406 
2407 		if (ctl < 0)
2408 			return ctl;
2409 
2410 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2411 			changed = 1; /* do restart aneg */
2412 	}
2413 
2414 	/* Only restart aneg if we are advertising something different
2415 	 * than we were before.
2416 	 */
2417 	if (changed > 0)
2418 		return genphy_restart_aneg(phydev);
2419 
2420 	return 0;
2421 }
2422 EXPORT_SYMBOL(genphy_c37_config_aneg);
2423 
2424 /**
2425  * genphy_aneg_done - return auto-negotiation status
2426  * @phydev: target phy_device struct
2427  *
2428  * Description: Reads the status register and returns 0 either if
2429  *   auto-negotiation is incomplete, or if there was an error.
2430  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2431  */
2432 int genphy_aneg_done(struct phy_device *phydev)
2433 {
2434 	int retval = phy_read(phydev, MII_BMSR);
2435 
2436 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2437 }
2438 EXPORT_SYMBOL(genphy_aneg_done);
2439 
2440 /**
2441  * genphy_update_link - update link status in @phydev
2442  * @phydev: target phy_device struct
2443  *
2444  * Description: Update the value in phydev->link to reflect the
2445  *   current link value.  In order to do this, we need to read
2446  *   the status register twice, keeping the second value.
2447  */
2448 int genphy_update_link(struct phy_device *phydev)
2449 {
2450 	int status = 0, bmcr;
2451 
2452 	bmcr = phy_read(phydev, MII_BMCR);
2453 	if (bmcr < 0)
2454 		return bmcr;
2455 
2456 	/* Autoneg is being started, therefore disregard BMSR value and
2457 	 * report link as down.
2458 	 */
2459 	if (bmcr & BMCR_ANRESTART)
2460 		goto done;
2461 
2462 	/* The link state is latched low so that momentary link
2463 	 * drops can be detected. Do not double-read the status
2464 	 * in polling mode to detect such short link drops except
2465 	 * the link was already down.
2466 	 */
2467 	if (!phy_polling_mode(phydev) || !phydev->link) {
2468 		status = phy_read(phydev, MII_BMSR);
2469 		if (status < 0)
2470 			return status;
2471 		else if (status & BMSR_LSTATUS)
2472 			goto done;
2473 	}
2474 
2475 	/* Read link and autonegotiation status */
2476 	status = phy_read(phydev, MII_BMSR);
2477 	if (status < 0)
2478 		return status;
2479 done:
2480 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2481 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2482 
2483 	/* Consider the case that autoneg was started and "aneg complete"
2484 	 * bit has been reset, but "link up" bit not yet.
2485 	 */
2486 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2487 		phydev->link = 0;
2488 
2489 	return 0;
2490 }
2491 EXPORT_SYMBOL(genphy_update_link);
2492 
2493 int genphy_read_lpa(struct phy_device *phydev)
2494 {
2495 	int lpa, lpagb;
2496 
2497 	if (phydev->autoneg == AUTONEG_ENABLE) {
2498 		if (!phydev->autoneg_complete) {
2499 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2500 							0);
2501 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2502 			return 0;
2503 		}
2504 
2505 		if (phydev->is_gigabit_capable) {
2506 			lpagb = phy_read(phydev, MII_STAT1000);
2507 			if (lpagb < 0)
2508 				return lpagb;
2509 
2510 			if (lpagb & LPA_1000MSFAIL) {
2511 				int adv = phy_read(phydev, MII_CTRL1000);
2512 
2513 				if (adv < 0)
2514 					return adv;
2515 
2516 				if (adv & CTL1000_ENABLE_MASTER)
2517 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2518 				else
2519 					phydev_err(phydev, "Master/Slave resolution failed\n");
2520 				return -ENOLINK;
2521 			}
2522 
2523 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2524 							lpagb);
2525 		}
2526 
2527 		lpa = phy_read(phydev, MII_LPA);
2528 		if (lpa < 0)
2529 			return lpa;
2530 
2531 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2532 	} else {
2533 		linkmode_zero(phydev->lp_advertising);
2534 	}
2535 
2536 	return 0;
2537 }
2538 EXPORT_SYMBOL(genphy_read_lpa);
2539 
2540 /**
2541  * genphy_read_status_fixed - read the link parameters for !aneg mode
2542  * @phydev: target phy_device struct
2543  *
2544  * Read the current duplex and speed state for a PHY operating with
2545  * autonegotiation disabled.
2546  */
2547 int genphy_read_status_fixed(struct phy_device *phydev)
2548 {
2549 	int bmcr = phy_read(phydev, MII_BMCR);
2550 
2551 	if (bmcr < 0)
2552 		return bmcr;
2553 
2554 	if (bmcr & BMCR_FULLDPLX)
2555 		phydev->duplex = DUPLEX_FULL;
2556 	else
2557 		phydev->duplex = DUPLEX_HALF;
2558 
2559 	if (bmcr & BMCR_SPEED1000)
2560 		phydev->speed = SPEED_1000;
2561 	else if (bmcr & BMCR_SPEED100)
2562 		phydev->speed = SPEED_100;
2563 	else
2564 		phydev->speed = SPEED_10;
2565 
2566 	return 0;
2567 }
2568 EXPORT_SYMBOL(genphy_read_status_fixed);
2569 
2570 /**
2571  * genphy_read_status - check the link status and update current link state
2572  * @phydev: target phy_device struct
2573  *
2574  * Description: Check the link, then figure out the current state
2575  *   by comparing what we advertise with what the link partner
2576  *   advertises.  Start by checking the gigabit possibilities,
2577  *   then move on to 10/100.
2578  */
2579 int genphy_read_status(struct phy_device *phydev)
2580 {
2581 	int err, old_link = phydev->link;
2582 
2583 	/* Update the link, but return if there was an error */
2584 	err = genphy_update_link(phydev);
2585 	if (err)
2586 		return err;
2587 
2588 	/* why bother the PHY if nothing can have changed */
2589 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2590 		return 0;
2591 
2592 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2593 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2594 	phydev->speed = SPEED_UNKNOWN;
2595 	phydev->duplex = DUPLEX_UNKNOWN;
2596 	phydev->pause = 0;
2597 	phydev->asym_pause = 0;
2598 
2599 	if (phydev->is_gigabit_capable) {
2600 		err = genphy_read_master_slave(phydev);
2601 		if (err < 0)
2602 			return err;
2603 	}
2604 
2605 	err = genphy_read_lpa(phydev);
2606 	if (err < 0)
2607 		return err;
2608 
2609 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2610 		phy_resolve_aneg_linkmode(phydev);
2611 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2612 		err = genphy_read_status_fixed(phydev);
2613 		if (err < 0)
2614 			return err;
2615 	}
2616 
2617 	return 0;
2618 }
2619 EXPORT_SYMBOL(genphy_read_status);
2620 
2621 /**
2622  * genphy_c37_read_status - check the link status and update current link state
2623  * @phydev: target phy_device struct
2624  * @changed: pointer where to store if link changed
2625  *
2626  * Description: Check the link, then figure out the current state
2627  *   by comparing what we advertise with what the link partner
2628  *   advertises. This function is for Clause 37 1000Base-X mode.
2629  *
2630  *   If link has changed, @changed is set to true, false otherwise.
2631  */
2632 int genphy_c37_read_status(struct phy_device *phydev, bool *changed)
2633 {
2634 	int lpa, err, old_link = phydev->link;
2635 
2636 	/* Update the link, but return if there was an error */
2637 	err = genphy_update_link(phydev);
2638 	if (err)
2639 		return err;
2640 
2641 	/* why bother the PHY if nothing can have changed */
2642 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) {
2643 		*changed = false;
2644 		return 0;
2645 	}
2646 
2647 	/* Signal link has changed */
2648 	*changed = true;
2649 	phydev->duplex = DUPLEX_UNKNOWN;
2650 	phydev->pause = 0;
2651 	phydev->asym_pause = 0;
2652 
2653 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2654 		lpa = phy_read(phydev, MII_LPA);
2655 		if (lpa < 0)
2656 			return lpa;
2657 
2658 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2659 				 phydev->lp_advertising, lpa & LPA_LPACK);
2660 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2661 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2662 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2663 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2664 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2665 				 phydev->lp_advertising,
2666 				 lpa & LPA_1000XPAUSE_ASYM);
2667 
2668 		phy_resolve_aneg_linkmode(phydev);
2669 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2670 		int bmcr = phy_read(phydev, MII_BMCR);
2671 
2672 		if (bmcr < 0)
2673 			return bmcr;
2674 
2675 		if (bmcr & BMCR_FULLDPLX)
2676 			phydev->duplex = DUPLEX_FULL;
2677 		else
2678 			phydev->duplex = DUPLEX_HALF;
2679 	}
2680 
2681 	return 0;
2682 }
2683 EXPORT_SYMBOL(genphy_c37_read_status);
2684 
2685 /**
2686  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2687  * @phydev: target phy_device struct
2688  *
2689  * Description: Perform a software PHY reset using the standard
2690  * BMCR_RESET bit and poll for the reset bit to be cleared.
2691  *
2692  * Returns: 0 on success, < 0 on failure
2693  */
2694 int genphy_soft_reset(struct phy_device *phydev)
2695 {
2696 	u16 res = BMCR_RESET;
2697 	int ret;
2698 
2699 	if (phydev->autoneg == AUTONEG_ENABLE)
2700 		res |= BMCR_ANRESTART;
2701 
2702 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2703 	if (ret < 0)
2704 		return ret;
2705 
2706 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2707 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2708 	 * be cleared after soft reset.
2709 	 */
2710 	phydev->suspended = 0;
2711 
2712 	ret = phy_poll_reset(phydev);
2713 	if (ret)
2714 		return ret;
2715 
2716 	/* BMCR may be reset to defaults */
2717 	if (phydev->autoneg == AUTONEG_DISABLE)
2718 		ret = genphy_setup_forced(phydev);
2719 
2720 	return ret;
2721 }
2722 EXPORT_SYMBOL(genphy_soft_reset);
2723 
2724 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2725 {
2726 	/* It seems there are cases where the interrupts are handled by another
2727 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2728 	 * need any other interraction from phylib. In this case, just trigger
2729 	 * the state machine directly.
2730 	 */
2731 	phy_trigger_machine(phydev);
2732 
2733 	return 0;
2734 }
2735 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2736 
2737 /**
2738  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2739  * @phydev: target phy_device struct
2740  *
2741  * Description: Reads the PHY's abilities and populates
2742  * phydev->supported accordingly.
2743  *
2744  * Returns: 0 on success, < 0 on failure
2745  */
2746 int genphy_read_abilities(struct phy_device *phydev)
2747 {
2748 	int val;
2749 
2750 	linkmode_set_bit_array(phy_basic_ports_array,
2751 			       ARRAY_SIZE(phy_basic_ports_array),
2752 			       phydev->supported);
2753 
2754 	val = phy_read(phydev, MII_BMSR);
2755 	if (val < 0)
2756 		return val;
2757 
2758 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2759 			 val & BMSR_ANEGCAPABLE);
2760 
2761 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2762 			 val & BMSR_100FULL);
2763 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2764 			 val & BMSR_100HALF);
2765 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2766 			 val & BMSR_10FULL);
2767 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2768 			 val & BMSR_10HALF);
2769 
2770 	if (val & BMSR_ESTATEN) {
2771 		val = phy_read(phydev, MII_ESTATUS);
2772 		if (val < 0)
2773 			return val;
2774 
2775 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2776 				 phydev->supported, val & ESTATUS_1000_TFULL);
2777 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2778 				 phydev->supported, val & ESTATUS_1000_THALF);
2779 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2780 				 phydev->supported, val & ESTATUS_1000_XFULL);
2781 	}
2782 
2783 	/* This is optional functionality. If not supported, we may get an error
2784 	 * which should be ignored.
2785 	 */
2786 	genphy_c45_read_eee_abilities(phydev);
2787 
2788 	return 0;
2789 }
2790 EXPORT_SYMBOL(genphy_read_abilities);
2791 
2792 /* This is used for the phy device which doesn't support the MMD extended
2793  * register access, but it does have side effect when we are trying to access
2794  * the MMD register via indirect method.
2795  */
2796 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2797 {
2798 	return -EOPNOTSUPP;
2799 }
2800 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2801 
2802 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2803 				 u16 regnum, u16 val)
2804 {
2805 	return -EOPNOTSUPP;
2806 }
2807 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2808 
2809 int genphy_suspend(struct phy_device *phydev)
2810 {
2811 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2812 }
2813 EXPORT_SYMBOL(genphy_suspend);
2814 
2815 int genphy_resume(struct phy_device *phydev)
2816 {
2817 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2818 }
2819 EXPORT_SYMBOL(genphy_resume);
2820 
2821 int genphy_loopback(struct phy_device *phydev, bool enable)
2822 {
2823 	if (enable) {
2824 		u16 val, ctl = BMCR_LOOPBACK;
2825 		int ret;
2826 
2827 		ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2828 
2829 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2830 
2831 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2832 					    val & BMSR_LSTATUS,
2833 				    5000, 500000, true);
2834 		if (ret)
2835 			return ret;
2836 	} else {
2837 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2838 
2839 		phy_config_aneg(phydev);
2840 	}
2841 
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL(genphy_loopback);
2845 
2846 /**
2847  * phy_remove_link_mode - Remove a supported link mode
2848  * @phydev: phy_device structure to remove link mode from
2849  * @link_mode: Link mode to be removed
2850  *
2851  * Description: Some MACs don't support all link modes which the PHY
2852  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2853  * to remove a link mode.
2854  */
2855 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2856 {
2857 	linkmode_clear_bit(link_mode, phydev->supported);
2858 	phy_advertise_supported(phydev);
2859 }
2860 EXPORT_SYMBOL(phy_remove_link_mode);
2861 
2862 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2863 {
2864 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2865 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2866 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2867 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2868 }
2869 
2870 /**
2871  * phy_advertise_supported - Advertise all supported modes
2872  * @phydev: target phy_device struct
2873  *
2874  * Description: Called to advertise all supported modes, doesn't touch
2875  * pause mode advertising.
2876  */
2877 void phy_advertise_supported(struct phy_device *phydev)
2878 {
2879 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2880 
2881 	linkmode_copy(new, phydev->supported);
2882 	phy_copy_pause_bits(new, phydev->advertising);
2883 	linkmode_copy(phydev->advertising, new);
2884 }
2885 EXPORT_SYMBOL(phy_advertise_supported);
2886 
2887 /**
2888  * phy_advertise_eee_all - Advertise all supported EEE modes
2889  * @phydev: target phy_device struct
2890  *
2891  * Description: Per default phylib preserves the EEE advertising at the time of
2892  * phy probing, which might be a subset of the supported EEE modes. Use this
2893  * function when all supported EEE modes should be advertised. This does not
2894  * trigger auto-negotiation, so must be called before phy_start()/
2895  * phylink_start() which will start auto-negotiation.
2896  */
2897 void phy_advertise_eee_all(struct phy_device *phydev)
2898 {
2899 	linkmode_copy(phydev->advertising_eee, phydev->supported_eee);
2900 }
2901 EXPORT_SYMBOL_GPL(phy_advertise_eee_all);
2902 
2903 /**
2904  * phy_support_sym_pause - Enable support of symmetrical pause
2905  * @phydev: target phy_device struct
2906  *
2907  * Description: Called by the MAC to indicate is supports symmetrical
2908  * Pause, but not asym pause.
2909  */
2910 void phy_support_sym_pause(struct phy_device *phydev)
2911 {
2912 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2913 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2914 }
2915 EXPORT_SYMBOL(phy_support_sym_pause);
2916 
2917 /**
2918  * phy_support_asym_pause - Enable support of asym pause
2919  * @phydev: target phy_device struct
2920  *
2921  * Description: Called by the MAC to indicate is supports Asym Pause.
2922  */
2923 void phy_support_asym_pause(struct phy_device *phydev)
2924 {
2925 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2926 }
2927 EXPORT_SYMBOL(phy_support_asym_pause);
2928 
2929 /**
2930  * phy_set_sym_pause - Configure symmetric Pause
2931  * @phydev: target phy_device struct
2932  * @rx: Receiver Pause is supported
2933  * @tx: Transmit Pause is supported
2934  * @autoneg: Auto neg should be used
2935  *
2936  * Description: Configure advertised Pause support depending on if
2937  * receiver pause and pause auto neg is supported. Generally called
2938  * from the set_pauseparam .ndo.
2939  */
2940 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2941 		       bool autoneg)
2942 {
2943 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2944 
2945 	if (rx && tx && autoneg)
2946 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2947 				 phydev->supported);
2948 
2949 	linkmode_copy(phydev->advertising, phydev->supported);
2950 }
2951 EXPORT_SYMBOL(phy_set_sym_pause);
2952 
2953 /**
2954  * phy_set_asym_pause - Configure Pause and Asym Pause
2955  * @phydev: target phy_device struct
2956  * @rx: Receiver Pause is supported
2957  * @tx: Transmit Pause is supported
2958  *
2959  * Description: Configure advertised Pause support depending on if
2960  * transmit and receiver pause is supported. If there has been a
2961  * change in adverting, trigger a new autoneg. Generally called from
2962  * the set_pauseparam .ndo.
2963  */
2964 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2965 {
2966 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2967 
2968 	linkmode_copy(oldadv, phydev->advertising);
2969 	linkmode_set_pause(phydev->advertising, tx, rx);
2970 
2971 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2972 	    phydev->autoneg)
2973 		phy_start_aneg(phydev);
2974 }
2975 EXPORT_SYMBOL(phy_set_asym_pause);
2976 
2977 /**
2978  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2979  * @phydev: phy_device struct
2980  * @pp: requested pause configuration
2981  *
2982  * Description: Test if the PHY/MAC combination supports the Pause
2983  * configuration the user is requesting. Returns True if it is
2984  * supported, false otherwise.
2985  */
2986 bool phy_validate_pause(struct phy_device *phydev,
2987 			struct ethtool_pauseparam *pp)
2988 {
2989 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2990 			       phydev->supported) && pp->rx_pause)
2991 		return false;
2992 
2993 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2994 			       phydev->supported) &&
2995 	    pp->rx_pause != pp->tx_pause)
2996 		return false;
2997 
2998 	return true;
2999 }
3000 EXPORT_SYMBOL(phy_validate_pause);
3001 
3002 /**
3003  * phy_get_pause - resolve negotiated pause modes
3004  * @phydev: phy_device struct
3005  * @tx_pause: pointer to bool to indicate whether transmit pause should be
3006  * enabled.
3007  * @rx_pause: pointer to bool to indicate whether receive pause should be
3008  * enabled.
3009  *
3010  * Resolve and return the flow control modes according to the negotiation
3011  * result. This includes checking that we are operating in full duplex mode.
3012  * See linkmode_resolve_pause() for further details.
3013  */
3014 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
3015 {
3016 	if (phydev->duplex != DUPLEX_FULL) {
3017 		*tx_pause = false;
3018 		*rx_pause = false;
3019 		return;
3020 	}
3021 
3022 	return linkmode_resolve_pause(phydev->advertising,
3023 				      phydev->lp_advertising,
3024 				      tx_pause, rx_pause);
3025 }
3026 EXPORT_SYMBOL(phy_get_pause);
3027 
3028 #if IS_ENABLED(CONFIG_OF_MDIO)
3029 static int phy_get_int_delay_property(struct device *dev, const char *name)
3030 {
3031 	s32 int_delay;
3032 	int ret;
3033 
3034 	ret = device_property_read_u32(dev, name, &int_delay);
3035 	if (ret)
3036 		return ret;
3037 
3038 	return int_delay;
3039 }
3040 #else
3041 static int phy_get_int_delay_property(struct device *dev, const char *name)
3042 {
3043 	return -EINVAL;
3044 }
3045 #endif
3046 
3047 /**
3048  * phy_get_internal_delay - returns the index of the internal delay
3049  * @phydev: phy_device struct
3050  * @dev: pointer to the devices device struct
3051  * @delay_values: array of delays the PHY supports
3052  * @size: the size of the delay array
3053  * @is_rx: boolean to indicate to get the rx internal delay
3054  *
3055  * Returns the index within the array of internal delay passed in.
3056  * If the device property is not present then the interface type is checked
3057  * if the interface defines use of internal delay then a 1 is returned otherwise
3058  * a 0 is returned.
3059  * The array must be in ascending order. If PHY does not have an ascending order
3060  * array then size = 0 and the value of the delay property is returned.
3061  * Return -EINVAL if the delay is invalid or cannot be found.
3062  */
3063 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
3064 			   const int *delay_values, int size, bool is_rx)
3065 {
3066 	s32 delay;
3067 	int i;
3068 
3069 	if (is_rx) {
3070 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
3071 		if (delay < 0 && size == 0) {
3072 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
3073 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
3074 				return 1;
3075 			else
3076 				return 0;
3077 		}
3078 
3079 	} else {
3080 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
3081 		if (delay < 0 && size == 0) {
3082 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
3083 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
3084 				return 1;
3085 			else
3086 				return 0;
3087 		}
3088 	}
3089 
3090 	if (delay < 0)
3091 		return delay;
3092 
3093 	if (delay && size == 0)
3094 		return delay;
3095 
3096 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
3097 		phydev_err(phydev, "Delay %d is out of range\n", delay);
3098 		return -EINVAL;
3099 	}
3100 
3101 	if (delay == delay_values[0])
3102 		return 0;
3103 
3104 	for (i = 1; i < size; i++) {
3105 		if (delay == delay_values[i])
3106 			return i;
3107 
3108 		/* Find an approximate index by looking up the table */
3109 		if (delay > delay_values[i - 1] &&
3110 		    delay < delay_values[i]) {
3111 			if (delay - delay_values[i - 1] <
3112 			    delay_values[i] - delay)
3113 				return i - 1;
3114 			else
3115 				return i;
3116 		}
3117 	}
3118 
3119 	phydev_err(phydev, "error finding internal delay index for %d\n",
3120 		   delay);
3121 
3122 	return -EINVAL;
3123 }
3124 EXPORT_SYMBOL(phy_get_internal_delay);
3125 
3126 static int phy_led_set_brightness(struct led_classdev *led_cdev,
3127 				  enum led_brightness value)
3128 {
3129 	struct phy_led *phyled = to_phy_led(led_cdev);
3130 	struct phy_device *phydev = phyled->phydev;
3131 	int err;
3132 
3133 	mutex_lock(&phydev->lock);
3134 	err = phydev->drv->led_brightness_set(phydev, phyled->index, value);
3135 	mutex_unlock(&phydev->lock);
3136 
3137 	return err;
3138 }
3139 
3140 static int phy_led_blink_set(struct led_classdev *led_cdev,
3141 			     unsigned long *delay_on,
3142 			     unsigned long *delay_off)
3143 {
3144 	struct phy_led *phyled = to_phy_led(led_cdev);
3145 	struct phy_device *phydev = phyled->phydev;
3146 	int err;
3147 
3148 	mutex_lock(&phydev->lock);
3149 	err = phydev->drv->led_blink_set(phydev, phyled->index,
3150 					 delay_on, delay_off);
3151 	mutex_unlock(&phydev->lock);
3152 
3153 	return err;
3154 }
3155 
3156 static __maybe_unused struct device *
3157 phy_led_hw_control_get_device(struct led_classdev *led_cdev)
3158 {
3159 	struct phy_led *phyled = to_phy_led(led_cdev);
3160 	struct phy_device *phydev = phyled->phydev;
3161 
3162 	if (phydev->attached_dev)
3163 		return &phydev->attached_dev->dev;
3164 	return NULL;
3165 }
3166 
3167 static int __maybe_unused
3168 phy_led_hw_control_get(struct led_classdev *led_cdev,
3169 		       unsigned long *rules)
3170 {
3171 	struct phy_led *phyled = to_phy_led(led_cdev);
3172 	struct phy_device *phydev = phyled->phydev;
3173 	int err;
3174 
3175 	mutex_lock(&phydev->lock);
3176 	err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules);
3177 	mutex_unlock(&phydev->lock);
3178 
3179 	return err;
3180 }
3181 
3182 static int __maybe_unused
3183 phy_led_hw_control_set(struct led_classdev *led_cdev,
3184 		       unsigned long rules)
3185 {
3186 	struct phy_led *phyled = to_phy_led(led_cdev);
3187 	struct phy_device *phydev = phyled->phydev;
3188 	int err;
3189 
3190 	mutex_lock(&phydev->lock);
3191 	err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules);
3192 	mutex_unlock(&phydev->lock);
3193 
3194 	return err;
3195 }
3196 
3197 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev,
3198 						  unsigned long rules)
3199 {
3200 	struct phy_led *phyled = to_phy_led(led_cdev);
3201 	struct phy_device *phydev = phyled->phydev;
3202 	int err;
3203 
3204 	mutex_lock(&phydev->lock);
3205 	err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules);
3206 	mutex_unlock(&phydev->lock);
3207 
3208 	return err;
3209 }
3210 
3211 static void phy_leds_unregister(struct phy_device *phydev)
3212 {
3213 	struct phy_led *phyled;
3214 
3215 	list_for_each_entry(phyled, &phydev->leds, list) {
3216 		led_classdev_unregister(&phyled->led_cdev);
3217 	}
3218 }
3219 
3220 static int of_phy_led(struct phy_device *phydev,
3221 		      struct device_node *led)
3222 {
3223 	struct device *dev = &phydev->mdio.dev;
3224 	struct led_init_data init_data = {};
3225 	struct led_classdev *cdev;
3226 	unsigned long modes = 0;
3227 	struct phy_led *phyled;
3228 	u32 index;
3229 	int err;
3230 
3231 	phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL);
3232 	if (!phyled)
3233 		return -ENOMEM;
3234 
3235 	cdev = &phyled->led_cdev;
3236 	phyled->phydev = phydev;
3237 
3238 	err = of_property_read_u32(led, "reg", &index);
3239 	if (err)
3240 		return err;
3241 	if (index > U8_MAX)
3242 		return -EINVAL;
3243 
3244 	if (of_property_read_bool(led, "active-low"))
3245 		set_bit(PHY_LED_ACTIVE_LOW, &modes);
3246 	if (of_property_read_bool(led, "inactive-high-impedance"))
3247 		set_bit(PHY_LED_INACTIVE_HIGH_IMPEDANCE, &modes);
3248 
3249 	if (modes) {
3250 		/* Return error if asked to set polarity modes but not supported */
3251 		if (!phydev->drv->led_polarity_set)
3252 			return -EINVAL;
3253 
3254 		err = phydev->drv->led_polarity_set(phydev, index, modes);
3255 		if (err)
3256 			return err;
3257 	}
3258 
3259 	phyled->index = index;
3260 	if (phydev->drv->led_brightness_set)
3261 		cdev->brightness_set_blocking = phy_led_set_brightness;
3262 	if (phydev->drv->led_blink_set)
3263 		cdev->blink_set = phy_led_blink_set;
3264 
3265 #ifdef CONFIG_LEDS_TRIGGERS
3266 	if (phydev->drv->led_hw_is_supported &&
3267 	    phydev->drv->led_hw_control_set &&
3268 	    phydev->drv->led_hw_control_get) {
3269 		cdev->hw_control_is_supported = phy_led_hw_is_supported;
3270 		cdev->hw_control_set = phy_led_hw_control_set;
3271 		cdev->hw_control_get = phy_led_hw_control_get;
3272 		cdev->hw_control_trigger = "netdev";
3273 	}
3274 
3275 	cdev->hw_control_get_device = phy_led_hw_control_get_device;
3276 #endif
3277 	cdev->max_brightness = 1;
3278 	init_data.devicename = dev_name(&phydev->mdio.dev);
3279 	init_data.fwnode = of_fwnode_handle(led);
3280 	init_data.devname_mandatory = true;
3281 
3282 	err = led_classdev_register_ext(dev, cdev, &init_data);
3283 	if (err)
3284 		return err;
3285 
3286 	list_add(&phyled->list, &phydev->leds);
3287 
3288 	return 0;
3289 }
3290 
3291 static int of_phy_leds(struct phy_device *phydev)
3292 {
3293 	struct device_node *node = phydev->mdio.dev.of_node;
3294 	struct device_node *leds, *led;
3295 	int err;
3296 
3297 	if (!IS_ENABLED(CONFIG_OF_MDIO))
3298 		return 0;
3299 
3300 	if (!node)
3301 		return 0;
3302 
3303 	leds = of_get_child_by_name(node, "leds");
3304 	if (!leds)
3305 		return 0;
3306 
3307 	for_each_available_child_of_node(leds, led) {
3308 		err = of_phy_led(phydev, led);
3309 		if (err) {
3310 			of_node_put(led);
3311 			phy_leds_unregister(phydev);
3312 			return err;
3313 		}
3314 	}
3315 
3316 	return 0;
3317 }
3318 
3319 /**
3320  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
3321  * @fwnode: pointer to the mdio_device's fwnode
3322  *
3323  * If successful, returns a pointer to the mdio_device with the embedded
3324  * struct device refcount incremented by one, or NULL on failure.
3325  * The caller should call put_device() on the mdio_device after its use.
3326  */
3327 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
3328 {
3329 	struct device *d;
3330 
3331 	if (!fwnode)
3332 		return NULL;
3333 
3334 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
3335 	if (!d)
3336 		return NULL;
3337 
3338 	return to_mdio_device(d);
3339 }
3340 EXPORT_SYMBOL(fwnode_mdio_find_device);
3341 
3342 /**
3343  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
3344  *
3345  * @phy_fwnode: Pointer to the phy's fwnode.
3346  *
3347  * If successful, returns a pointer to the phy_device with the embedded
3348  * struct device refcount incremented by one, or NULL on failure.
3349  */
3350 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
3351 {
3352 	struct mdio_device *mdiodev;
3353 
3354 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
3355 	if (!mdiodev)
3356 		return NULL;
3357 
3358 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
3359 		return to_phy_device(&mdiodev->dev);
3360 
3361 	put_device(&mdiodev->dev);
3362 
3363 	return NULL;
3364 }
3365 EXPORT_SYMBOL(fwnode_phy_find_device);
3366 
3367 /**
3368  * device_phy_find_device - For the given device, get the phy_device
3369  * @dev: Pointer to the given device
3370  *
3371  * Refer return conditions of fwnode_phy_find_device().
3372  */
3373 struct phy_device *device_phy_find_device(struct device *dev)
3374 {
3375 	return fwnode_phy_find_device(dev_fwnode(dev));
3376 }
3377 EXPORT_SYMBOL_GPL(device_phy_find_device);
3378 
3379 /**
3380  * fwnode_get_phy_node - Get the phy_node using the named reference.
3381  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
3382  *
3383  * Refer return conditions of fwnode_find_reference().
3384  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
3385  * and "phy-device" are not supported in ACPI. DT supports all the three
3386  * named references to the phy node.
3387  */
3388 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode)
3389 {
3390 	struct fwnode_handle *phy_node;
3391 
3392 	/* Only phy-handle is used for ACPI */
3393 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3394 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3395 		return phy_node;
3396 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
3397 	if (IS_ERR(phy_node))
3398 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3399 	return phy_node;
3400 }
3401 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3402 
3403 /**
3404  * phy_probe - probe and init a PHY device
3405  * @dev: device to probe and init
3406  *
3407  * Take care of setting up the phy_device structure, set the state to READY.
3408  */
3409 static int phy_probe(struct device *dev)
3410 {
3411 	struct phy_device *phydev = to_phy_device(dev);
3412 	struct device_driver *drv = phydev->mdio.dev.driver;
3413 	struct phy_driver *phydrv = to_phy_driver(drv);
3414 	int err = 0;
3415 
3416 	phydev->drv = phydrv;
3417 
3418 	/* Disable the interrupt if the PHY doesn't support it
3419 	 * but the interrupt is still a valid one
3420 	 */
3421 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3422 		phydev->irq = PHY_POLL;
3423 
3424 	if (phydrv->flags & PHY_IS_INTERNAL)
3425 		phydev->is_internal = true;
3426 
3427 	/* Deassert the reset signal */
3428 	phy_device_reset(phydev, 0);
3429 
3430 	if (phydev->drv->probe) {
3431 		err = phydev->drv->probe(phydev);
3432 		if (err)
3433 			goto out;
3434 	}
3435 
3436 	phy_disable_interrupts(phydev);
3437 
3438 	/* Start out supporting everything. Eventually,
3439 	 * a controller will attach, and may modify one
3440 	 * or both of these values
3441 	 */
3442 	if (phydrv->features) {
3443 		linkmode_copy(phydev->supported, phydrv->features);
3444 		genphy_c45_read_eee_abilities(phydev);
3445 	}
3446 	else if (phydrv->get_features)
3447 		err = phydrv->get_features(phydev);
3448 	else if (phydev->is_c45)
3449 		err = genphy_c45_pma_read_abilities(phydev);
3450 	else
3451 		err = genphy_read_abilities(phydev);
3452 
3453 	if (err)
3454 		goto out;
3455 
3456 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3457 			       phydev->supported))
3458 		phydev->autoneg = 0;
3459 
3460 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3461 			      phydev->supported))
3462 		phydev->is_gigabit_capable = 1;
3463 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3464 			      phydev->supported))
3465 		phydev->is_gigabit_capable = 1;
3466 
3467 	of_set_phy_supported(phydev);
3468 	phy_advertise_supported(phydev);
3469 
3470 	/* Get PHY default EEE advertising modes and handle them as potentially
3471 	 * safe initial configuration.
3472 	 */
3473 	err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee);
3474 	if (err)
3475 		goto out;
3476 
3477 	/* There is no "enabled" flag. If PHY is advertising, assume it is
3478 	 * kind of enabled.
3479 	 */
3480 	phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee);
3481 
3482 	/* Some PHYs may advertise, by default, not support EEE modes. So,
3483 	 * we need to clean them.
3484 	 */
3485 	if (phydev->eee_enabled)
3486 		linkmode_and(phydev->advertising_eee, phydev->supported_eee,
3487 			     phydev->advertising_eee);
3488 
3489 	/* Get the EEE modes we want to prohibit. We will ask
3490 	 * the PHY stop advertising these mode later on
3491 	 */
3492 	of_set_phy_eee_broken(phydev);
3493 
3494 	/* The Pause Frame bits indicate that the PHY can support passing
3495 	 * pause frames. During autonegotiation, the PHYs will determine if
3496 	 * they should allow pause frames to pass.  The MAC driver should then
3497 	 * use that result to determine whether to enable flow control via
3498 	 * pause frames.
3499 	 *
3500 	 * Normally, PHY drivers should not set the Pause bits, and instead
3501 	 * allow phylib to do that.  However, there may be some situations
3502 	 * (e.g. hardware erratum) where the driver wants to set only one
3503 	 * of these bits.
3504 	 */
3505 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3506 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3507 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3508 				 phydev->supported);
3509 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3510 				 phydev->supported);
3511 	}
3512 
3513 	/* Set the state to READY by default */
3514 	phydev->state = PHY_READY;
3515 
3516 	/* Get the LEDs from the device tree, and instantiate standard
3517 	 * LEDs for them.
3518 	 */
3519 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3520 		err = of_phy_leds(phydev);
3521 
3522 out:
3523 	/* Re-assert the reset signal on error */
3524 	if (err)
3525 		phy_device_reset(phydev, 1);
3526 
3527 	return err;
3528 }
3529 
3530 static int phy_remove(struct device *dev)
3531 {
3532 	struct phy_device *phydev = to_phy_device(dev);
3533 
3534 	cancel_delayed_work_sync(&phydev->state_queue);
3535 
3536 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3537 		phy_leds_unregister(phydev);
3538 
3539 	phydev->state = PHY_DOWN;
3540 
3541 	sfp_bus_del_upstream(phydev->sfp_bus);
3542 	phydev->sfp_bus = NULL;
3543 
3544 	if (phydev->drv && phydev->drv->remove)
3545 		phydev->drv->remove(phydev);
3546 
3547 	/* Assert the reset signal */
3548 	phy_device_reset(phydev, 1);
3549 
3550 	phydev->drv = NULL;
3551 
3552 	return 0;
3553 }
3554 
3555 /**
3556  * phy_driver_register - register a phy_driver with the PHY layer
3557  * @new_driver: new phy_driver to register
3558  * @owner: module owning this PHY
3559  */
3560 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3561 {
3562 	int retval;
3563 
3564 	/* Either the features are hard coded, or dynamically
3565 	 * determined. It cannot be both.
3566 	 */
3567 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3568 		pr_err("%s: features and get_features must not both be set\n",
3569 		       new_driver->name);
3570 		return -EINVAL;
3571 	}
3572 
3573 	/* PHYLIB device drivers must not match using a DT compatible table
3574 	 * as this bypasses our checks that the mdiodev that is being matched
3575 	 * is backed by a struct phy_device. If such a case happens, we will
3576 	 * make out-of-bounds accesses and lockup in phydev->lock.
3577 	 */
3578 	if (WARN(new_driver->mdiodrv.driver.of_match_table,
3579 		 "%s: driver must not provide a DT match table\n",
3580 		 new_driver->name))
3581 		return -EINVAL;
3582 
3583 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3584 	new_driver->mdiodrv.driver.name = new_driver->name;
3585 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3586 	new_driver->mdiodrv.driver.probe = phy_probe;
3587 	new_driver->mdiodrv.driver.remove = phy_remove;
3588 	new_driver->mdiodrv.driver.owner = owner;
3589 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3590 
3591 	retval = driver_register(&new_driver->mdiodrv.driver);
3592 	if (retval) {
3593 		pr_err("%s: Error %d in registering driver\n",
3594 		       new_driver->name, retval);
3595 
3596 		return retval;
3597 	}
3598 
3599 	pr_debug("%s: Registered new driver\n", new_driver->name);
3600 
3601 	return 0;
3602 }
3603 EXPORT_SYMBOL(phy_driver_register);
3604 
3605 int phy_drivers_register(struct phy_driver *new_driver, int n,
3606 			 struct module *owner)
3607 {
3608 	int i, ret = 0;
3609 
3610 	for (i = 0; i < n; i++) {
3611 		ret = phy_driver_register(new_driver + i, owner);
3612 		if (ret) {
3613 			while (i-- > 0)
3614 				phy_driver_unregister(new_driver + i);
3615 			break;
3616 		}
3617 	}
3618 	return ret;
3619 }
3620 EXPORT_SYMBOL(phy_drivers_register);
3621 
3622 void phy_driver_unregister(struct phy_driver *drv)
3623 {
3624 	driver_unregister(&drv->mdiodrv.driver);
3625 }
3626 EXPORT_SYMBOL(phy_driver_unregister);
3627 
3628 void phy_drivers_unregister(struct phy_driver *drv, int n)
3629 {
3630 	int i;
3631 
3632 	for (i = 0; i < n; i++)
3633 		phy_driver_unregister(drv + i);
3634 }
3635 EXPORT_SYMBOL(phy_drivers_unregister);
3636 
3637 static struct phy_driver genphy_driver = {
3638 	.phy_id		= 0xffffffff,
3639 	.phy_id_mask	= 0xffffffff,
3640 	.name		= "Generic PHY",
3641 	.get_features	= genphy_read_abilities,
3642 	.suspend	= genphy_suspend,
3643 	.resume		= genphy_resume,
3644 	.set_loopback   = genphy_loopback,
3645 };
3646 
3647 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3648 	.get_sset_count		= phy_ethtool_get_sset_count,
3649 	.get_strings		= phy_ethtool_get_strings,
3650 	.get_stats		= phy_ethtool_get_stats,
3651 	.get_plca_cfg		= phy_ethtool_get_plca_cfg,
3652 	.set_plca_cfg		= phy_ethtool_set_plca_cfg,
3653 	.get_plca_status	= phy_ethtool_get_plca_status,
3654 	.start_cable_test	= phy_start_cable_test,
3655 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3656 };
3657 
3658 static const struct phylib_stubs __phylib_stubs = {
3659 	.hwtstamp_get = __phy_hwtstamp_get,
3660 	.hwtstamp_set = __phy_hwtstamp_set,
3661 };
3662 
3663 static void phylib_register_stubs(void)
3664 {
3665 	phylib_stubs = &__phylib_stubs;
3666 }
3667 
3668 static void phylib_unregister_stubs(void)
3669 {
3670 	phylib_stubs = NULL;
3671 }
3672 
3673 static int __init phy_init(void)
3674 {
3675 	int rc;
3676 
3677 	rtnl_lock();
3678 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3679 	phylib_register_stubs();
3680 	rtnl_unlock();
3681 
3682 	rc = mdio_bus_init();
3683 	if (rc)
3684 		goto err_ethtool_phy_ops;
3685 
3686 	features_init();
3687 
3688 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3689 	if (rc)
3690 		goto err_mdio_bus;
3691 
3692 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3693 	if (rc)
3694 		goto err_c45;
3695 
3696 	return 0;
3697 
3698 err_c45:
3699 	phy_driver_unregister(&genphy_c45_driver);
3700 err_mdio_bus:
3701 	mdio_bus_exit();
3702 err_ethtool_phy_ops:
3703 	rtnl_lock();
3704 	phylib_unregister_stubs();
3705 	ethtool_set_ethtool_phy_ops(NULL);
3706 	rtnl_unlock();
3707 
3708 	return rc;
3709 }
3710 
3711 static void __exit phy_exit(void)
3712 {
3713 	phy_driver_unregister(&genphy_c45_driver);
3714 	phy_driver_unregister(&genphy_driver);
3715 	mdio_bus_exit();
3716 	rtnl_lock();
3717 	phylib_unregister_stubs();
3718 	ethtool_set_ethtool_phy_ops(NULL);
3719 	rtnl_unlock();
3720 }
3721 
3722 subsys_initcall(phy_init);
3723 module_exit(phy_exit);
3724