1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Framework for finding and configuring PHYs. 3 * Also contains generic PHY driver 4 * 5 * Author: Andy Fleming 6 * 7 * Copyright (c) 2004 Freescale Semiconductor, Inc. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/acpi.h> 13 #include <linux/bitmap.h> 14 #include <linux/delay.h> 15 #include <linux/errno.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ethtool.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/list.h> 23 #include <linux/mdio.h> 24 #include <linux/mii.h> 25 #include <linux/mm.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/netdevice.h> 29 #include <linux/phy.h> 30 #include <linux/phylib_stubs.h> 31 #include <linux/phy_led_triggers.h> 32 #include <linux/pse-pd/pse.h> 33 #include <linux/property.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/sfp.h> 36 #include <linux/skbuff.h> 37 #include <linux/slab.h> 38 #include <linux/string.h> 39 #include <linux/uaccess.h> 40 #include <linux/unistd.h> 41 42 MODULE_DESCRIPTION("PHY library"); 43 MODULE_AUTHOR("Andy Fleming"); 44 MODULE_LICENSE("GPL"); 45 46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init; 47 EXPORT_SYMBOL_GPL(phy_basic_features); 48 49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init; 50 EXPORT_SYMBOL_GPL(phy_basic_t1_features); 51 52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init; 53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features); 54 55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init; 56 EXPORT_SYMBOL_GPL(phy_gbit_features); 57 58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init; 59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features); 60 61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init; 62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features); 63 64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init; 65 EXPORT_SYMBOL_GPL(phy_10gbit_features); 66 67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init; 68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features); 69 70 const int phy_basic_ports_array[3] = { 71 ETHTOOL_LINK_MODE_Autoneg_BIT, 72 ETHTOOL_LINK_MODE_TP_BIT, 73 ETHTOOL_LINK_MODE_MII_BIT, 74 }; 75 EXPORT_SYMBOL_GPL(phy_basic_ports_array); 76 77 const int phy_fibre_port_array[1] = { 78 ETHTOOL_LINK_MODE_FIBRE_BIT, 79 }; 80 EXPORT_SYMBOL_GPL(phy_fibre_port_array); 81 82 const int phy_all_ports_features_array[7] = { 83 ETHTOOL_LINK_MODE_Autoneg_BIT, 84 ETHTOOL_LINK_MODE_TP_BIT, 85 ETHTOOL_LINK_MODE_MII_BIT, 86 ETHTOOL_LINK_MODE_FIBRE_BIT, 87 ETHTOOL_LINK_MODE_AUI_BIT, 88 ETHTOOL_LINK_MODE_BNC_BIT, 89 ETHTOOL_LINK_MODE_Backplane_BIT, 90 }; 91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array); 92 93 const int phy_10_100_features_array[4] = { 94 ETHTOOL_LINK_MODE_10baseT_Half_BIT, 95 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 96 ETHTOOL_LINK_MODE_100baseT_Half_BIT, 97 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 98 }; 99 EXPORT_SYMBOL_GPL(phy_10_100_features_array); 100 101 const int phy_basic_t1_features_array[3] = { 102 ETHTOOL_LINK_MODE_TP_BIT, 103 ETHTOOL_LINK_MODE_10baseT1L_Full_BIT, 104 ETHTOOL_LINK_MODE_100baseT1_Full_BIT, 105 }; 106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array); 107 108 const int phy_basic_t1s_p2mp_features_array[2] = { 109 ETHTOOL_LINK_MODE_TP_BIT, 110 ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT, 111 }; 112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array); 113 114 const int phy_gbit_features_array[2] = { 115 ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 116 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 117 }; 118 EXPORT_SYMBOL_GPL(phy_gbit_features_array); 119 120 const int phy_10gbit_features_array[1] = { 121 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 122 }; 123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array); 124 125 static const int phy_10gbit_fec_features_array[1] = { 126 ETHTOOL_LINK_MODE_10000baseR_FEC_BIT, 127 }; 128 129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init; 130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features); 131 132 static const int phy_10gbit_full_features_array[] = { 133 ETHTOOL_LINK_MODE_10baseT_Full_BIT, 134 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 135 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 136 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 137 }; 138 139 static const int phy_eee_cap1_features_array[] = { 140 ETHTOOL_LINK_MODE_100baseT_Full_BIT, 141 ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 142 ETHTOOL_LINK_MODE_10000baseT_Full_BIT, 143 ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 144 ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT, 145 ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 146 }; 147 148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init; 149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features); 150 151 static void features_init(void) 152 { 153 /* 10/100 half/full*/ 154 linkmode_set_bit_array(phy_basic_ports_array, 155 ARRAY_SIZE(phy_basic_ports_array), 156 phy_basic_features); 157 linkmode_set_bit_array(phy_10_100_features_array, 158 ARRAY_SIZE(phy_10_100_features_array), 159 phy_basic_features); 160 161 /* 100 full, TP */ 162 linkmode_set_bit_array(phy_basic_t1_features_array, 163 ARRAY_SIZE(phy_basic_t1_features_array), 164 phy_basic_t1_features); 165 166 /* 10 half, P2MP, TP */ 167 linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array, 168 ARRAY_SIZE(phy_basic_t1s_p2mp_features_array), 169 phy_basic_t1s_p2mp_features); 170 171 /* 10/100 half/full + 1000 half/full */ 172 linkmode_set_bit_array(phy_basic_ports_array, 173 ARRAY_SIZE(phy_basic_ports_array), 174 phy_gbit_features); 175 linkmode_set_bit_array(phy_10_100_features_array, 176 ARRAY_SIZE(phy_10_100_features_array), 177 phy_gbit_features); 178 linkmode_set_bit_array(phy_gbit_features_array, 179 ARRAY_SIZE(phy_gbit_features_array), 180 phy_gbit_features); 181 182 /* 10/100 half/full + 1000 half/full + fibre*/ 183 linkmode_set_bit_array(phy_basic_ports_array, 184 ARRAY_SIZE(phy_basic_ports_array), 185 phy_gbit_fibre_features); 186 linkmode_set_bit_array(phy_10_100_features_array, 187 ARRAY_SIZE(phy_10_100_features_array), 188 phy_gbit_fibre_features); 189 linkmode_set_bit_array(phy_gbit_features_array, 190 ARRAY_SIZE(phy_gbit_features_array), 191 phy_gbit_fibre_features); 192 linkmode_set_bit_array(phy_fibre_port_array, 193 ARRAY_SIZE(phy_fibre_port_array), 194 phy_gbit_fibre_features); 195 196 /* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/ 197 linkmode_set_bit_array(phy_all_ports_features_array, 198 ARRAY_SIZE(phy_all_ports_features_array), 199 phy_gbit_all_ports_features); 200 linkmode_set_bit_array(phy_10_100_features_array, 201 ARRAY_SIZE(phy_10_100_features_array), 202 phy_gbit_all_ports_features); 203 linkmode_set_bit_array(phy_gbit_features_array, 204 ARRAY_SIZE(phy_gbit_features_array), 205 phy_gbit_all_ports_features); 206 207 /* 10/100 half/full + 1000 half/full + 10G full*/ 208 linkmode_set_bit_array(phy_all_ports_features_array, 209 ARRAY_SIZE(phy_all_ports_features_array), 210 phy_10gbit_features); 211 linkmode_set_bit_array(phy_10_100_features_array, 212 ARRAY_SIZE(phy_10_100_features_array), 213 phy_10gbit_features); 214 linkmode_set_bit_array(phy_gbit_features_array, 215 ARRAY_SIZE(phy_gbit_features_array), 216 phy_10gbit_features); 217 linkmode_set_bit_array(phy_10gbit_features_array, 218 ARRAY_SIZE(phy_10gbit_features_array), 219 phy_10gbit_features); 220 221 /* 10/100/1000/10G full */ 222 linkmode_set_bit_array(phy_all_ports_features_array, 223 ARRAY_SIZE(phy_all_ports_features_array), 224 phy_10gbit_full_features); 225 linkmode_set_bit_array(phy_10gbit_full_features_array, 226 ARRAY_SIZE(phy_10gbit_full_features_array), 227 phy_10gbit_full_features); 228 /* 10G FEC only */ 229 linkmode_set_bit_array(phy_10gbit_fec_features_array, 230 ARRAY_SIZE(phy_10gbit_fec_features_array), 231 phy_10gbit_fec_features); 232 linkmode_set_bit_array(phy_eee_cap1_features_array, 233 ARRAY_SIZE(phy_eee_cap1_features_array), 234 phy_eee_cap1_features); 235 236 } 237 238 void phy_device_free(struct phy_device *phydev) 239 { 240 put_device(&phydev->mdio.dev); 241 } 242 EXPORT_SYMBOL(phy_device_free); 243 244 static void phy_mdio_device_free(struct mdio_device *mdiodev) 245 { 246 struct phy_device *phydev; 247 248 phydev = container_of(mdiodev, struct phy_device, mdio); 249 phy_device_free(phydev); 250 } 251 252 static void phy_device_release(struct device *dev) 253 { 254 fwnode_handle_put(dev->fwnode); 255 kfree(to_phy_device(dev)); 256 } 257 258 static void phy_mdio_device_remove(struct mdio_device *mdiodev) 259 { 260 struct phy_device *phydev; 261 262 phydev = container_of(mdiodev, struct phy_device, mdio); 263 phy_device_remove(phydev); 264 } 265 266 static struct phy_driver genphy_driver; 267 268 static LIST_HEAD(phy_fixup_list); 269 static DEFINE_MUTEX(phy_fixup_lock); 270 271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev) 272 { 273 struct device_driver *drv = phydev->mdio.dev.driver; 274 struct phy_driver *phydrv = to_phy_driver(drv); 275 struct net_device *netdev = phydev->attached_dev; 276 277 if (!drv || !phydrv->suspend) 278 return false; 279 280 /* PHY not attached? May suspend if the PHY has not already been 281 * suspended as part of a prior call to phy_disconnect() -> 282 * phy_detach() -> phy_suspend() because the parent netdev might be the 283 * MDIO bus driver and clock gated at this point. 284 */ 285 if (!netdev) 286 goto out; 287 288 if (netdev->wol_enabled) 289 return false; 290 291 /* As long as not all affected network drivers support the 292 * wol_enabled flag, let's check for hints that WoL is enabled. 293 * Don't suspend PHY if the attached netdev parent may wake up. 294 * The parent may point to a PCI device, as in tg3 driver. 295 */ 296 if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent)) 297 return false; 298 299 /* Also don't suspend PHY if the netdev itself may wakeup. This 300 * is the case for devices w/o underlaying pwr. mgmt. aware bus, 301 * e.g. SoC devices. 302 */ 303 if (device_may_wakeup(&netdev->dev)) 304 return false; 305 306 out: 307 return !phydev->suspended; 308 } 309 310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev) 311 { 312 struct phy_device *phydev = to_phy_device(dev); 313 314 if (phydev->mac_managed_pm) 315 return 0; 316 317 /* Wakeup interrupts may occur during the system sleep transition when 318 * the PHY is inaccessible. Set flag to postpone handling until the PHY 319 * has resumed. Wait for concurrent interrupt handler to complete. 320 */ 321 if (phy_interrupt_is_valid(phydev)) { 322 phydev->irq_suspended = 1; 323 synchronize_irq(phydev->irq); 324 } 325 326 /* We must stop the state machine manually, otherwise it stops out of 327 * control, possibly with the phydev->lock held. Upon resume, netdev 328 * may call phy routines that try to grab the same lock, and that may 329 * lead to a deadlock. 330 */ 331 if (phydev->attached_dev && phydev->adjust_link) 332 phy_stop_machine(phydev); 333 334 if (!mdio_bus_phy_may_suspend(phydev)) 335 return 0; 336 337 phydev->suspended_by_mdio_bus = 1; 338 339 return phy_suspend(phydev); 340 } 341 342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev) 343 { 344 struct phy_device *phydev = to_phy_device(dev); 345 int ret; 346 347 if (phydev->mac_managed_pm) 348 return 0; 349 350 if (!phydev->suspended_by_mdio_bus) 351 goto no_resume; 352 353 phydev->suspended_by_mdio_bus = 0; 354 355 /* If we managed to get here with the PHY state machine in a state 356 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication 357 * that something went wrong and we should most likely be using 358 * MAC managed PM, but we are not. 359 */ 360 WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY && 361 phydev->state != PHY_UP); 362 363 ret = phy_init_hw(phydev); 364 if (ret < 0) 365 return ret; 366 367 ret = phy_resume(phydev); 368 if (ret < 0) 369 return ret; 370 no_resume: 371 if (phy_interrupt_is_valid(phydev)) { 372 phydev->irq_suspended = 0; 373 synchronize_irq(phydev->irq); 374 375 /* Rerun interrupts which were postponed by phy_interrupt() 376 * because they occurred during the system sleep transition. 377 */ 378 if (phydev->irq_rerun) { 379 phydev->irq_rerun = 0; 380 enable_irq(phydev->irq); 381 irq_wake_thread(phydev->irq, phydev); 382 } 383 } 384 385 if (phydev->attached_dev && phydev->adjust_link) 386 phy_start_machine(phydev); 387 388 return 0; 389 } 390 391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend, 392 mdio_bus_phy_resume); 393 394 /** 395 * phy_register_fixup - creates a new phy_fixup and adds it to the list 396 * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID) 397 * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY) 398 * It can also be PHY_ANY_UID 399 * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before 400 * comparison 401 * @run: The actual code to be run when a matching PHY is found 402 */ 403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask, 404 int (*run)(struct phy_device *)) 405 { 406 struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL); 407 408 if (!fixup) 409 return -ENOMEM; 410 411 strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id)); 412 fixup->phy_uid = phy_uid; 413 fixup->phy_uid_mask = phy_uid_mask; 414 fixup->run = run; 415 416 mutex_lock(&phy_fixup_lock); 417 list_add_tail(&fixup->list, &phy_fixup_list); 418 mutex_unlock(&phy_fixup_lock); 419 420 return 0; 421 } 422 EXPORT_SYMBOL(phy_register_fixup); 423 424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */ 425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask, 426 int (*run)(struct phy_device *)) 427 { 428 return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run); 429 } 430 EXPORT_SYMBOL(phy_register_fixup_for_uid); 431 432 /* Registers a fixup to be run on the PHY with id string bus_id */ 433 int phy_register_fixup_for_id(const char *bus_id, 434 int (*run)(struct phy_device *)) 435 { 436 return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run); 437 } 438 EXPORT_SYMBOL(phy_register_fixup_for_id); 439 440 /** 441 * phy_unregister_fixup - remove a phy_fixup from the list 442 * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list 443 * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list 444 * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison 445 */ 446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask) 447 { 448 struct list_head *pos, *n; 449 struct phy_fixup *fixup; 450 int ret; 451 452 ret = -ENODEV; 453 454 mutex_lock(&phy_fixup_lock); 455 list_for_each_safe(pos, n, &phy_fixup_list) { 456 fixup = list_entry(pos, struct phy_fixup, list); 457 458 if ((!strcmp(fixup->bus_id, bus_id)) && 459 phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) { 460 list_del(&fixup->list); 461 kfree(fixup); 462 ret = 0; 463 break; 464 } 465 } 466 mutex_unlock(&phy_fixup_lock); 467 468 return ret; 469 } 470 EXPORT_SYMBOL(phy_unregister_fixup); 471 472 /* Unregisters a fixup of any PHY with the UID in phy_uid */ 473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask) 474 { 475 return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask); 476 } 477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid); 478 479 /* Unregisters a fixup of the PHY with id string bus_id */ 480 int phy_unregister_fixup_for_id(const char *bus_id) 481 { 482 return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff); 483 } 484 EXPORT_SYMBOL(phy_unregister_fixup_for_id); 485 486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid. 487 * Fixups can be set to match any in one or more fields. 488 */ 489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup) 490 { 491 if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0) 492 if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0) 493 return 0; 494 495 if (!phy_id_compare(phydev->phy_id, fixup->phy_uid, 496 fixup->phy_uid_mask)) 497 if (fixup->phy_uid != PHY_ANY_UID) 498 return 0; 499 500 return 1; 501 } 502 503 /* Runs any matching fixups for this phydev */ 504 static int phy_scan_fixups(struct phy_device *phydev) 505 { 506 struct phy_fixup *fixup; 507 508 mutex_lock(&phy_fixup_lock); 509 list_for_each_entry(fixup, &phy_fixup_list, list) { 510 if (phy_needs_fixup(phydev, fixup)) { 511 int err = fixup->run(phydev); 512 513 if (err < 0) { 514 mutex_unlock(&phy_fixup_lock); 515 return err; 516 } 517 phydev->has_fixups = true; 518 } 519 } 520 mutex_unlock(&phy_fixup_lock); 521 522 return 0; 523 } 524 525 static int phy_bus_match(struct device *dev, struct device_driver *drv) 526 { 527 struct phy_device *phydev = to_phy_device(dev); 528 struct phy_driver *phydrv = to_phy_driver(drv); 529 const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids); 530 int i; 531 532 if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY)) 533 return 0; 534 535 if (phydrv->match_phy_device) 536 return phydrv->match_phy_device(phydev); 537 538 if (phydev->is_c45) { 539 for (i = 1; i < num_ids; i++) { 540 if (phydev->c45_ids.device_ids[i] == 0xffffffff) 541 continue; 542 543 if (phy_id_compare(phydev->c45_ids.device_ids[i], 544 phydrv->phy_id, phydrv->phy_id_mask)) 545 return 1; 546 } 547 return 0; 548 } else { 549 return phy_id_compare(phydev->phy_id, phydrv->phy_id, 550 phydrv->phy_id_mask); 551 } 552 } 553 554 static ssize_t 555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf) 556 { 557 struct phy_device *phydev = to_phy_device(dev); 558 559 return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id); 560 } 561 static DEVICE_ATTR_RO(phy_id); 562 563 static ssize_t 564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf) 565 { 566 struct phy_device *phydev = to_phy_device(dev); 567 const char *mode = NULL; 568 569 if (phy_is_internal(phydev)) 570 mode = "internal"; 571 else 572 mode = phy_modes(phydev->interface); 573 574 return sysfs_emit(buf, "%s\n", mode); 575 } 576 static DEVICE_ATTR_RO(phy_interface); 577 578 static ssize_t 579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr, 580 char *buf) 581 { 582 struct phy_device *phydev = to_phy_device(dev); 583 584 return sysfs_emit(buf, "%d\n", phydev->has_fixups); 585 } 586 static DEVICE_ATTR_RO(phy_has_fixups); 587 588 static ssize_t phy_dev_flags_show(struct device *dev, 589 struct device_attribute *attr, 590 char *buf) 591 { 592 struct phy_device *phydev = to_phy_device(dev); 593 594 return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags); 595 } 596 static DEVICE_ATTR_RO(phy_dev_flags); 597 598 static struct attribute *phy_dev_attrs[] = { 599 &dev_attr_phy_id.attr, 600 &dev_attr_phy_interface.attr, 601 &dev_attr_phy_has_fixups.attr, 602 &dev_attr_phy_dev_flags.attr, 603 NULL, 604 }; 605 ATTRIBUTE_GROUPS(phy_dev); 606 607 static const struct device_type mdio_bus_phy_type = { 608 .name = "PHY", 609 .groups = phy_dev_groups, 610 .release = phy_device_release, 611 .pm = pm_ptr(&mdio_bus_phy_pm_ops), 612 }; 613 614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id) 615 { 616 int ret; 617 618 ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT, 619 MDIO_ID_ARGS(phy_id)); 620 /* We only check for failures in executing the usermode binary, 621 * not whether a PHY driver module exists for the PHY ID. 622 * Accept -ENOENT because this may occur in case no initramfs exists, 623 * then modprobe isn't available. 624 */ 625 if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) { 626 phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n", 627 ret, (unsigned long)phy_id); 628 return ret; 629 } 630 631 return 0; 632 } 633 634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id, 635 bool is_c45, 636 struct phy_c45_device_ids *c45_ids) 637 { 638 struct phy_device *dev; 639 struct mdio_device *mdiodev; 640 int ret = 0; 641 642 /* We allocate the device, and initialize the default values */ 643 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 644 if (!dev) 645 return ERR_PTR(-ENOMEM); 646 647 mdiodev = &dev->mdio; 648 mdiodev->dev.parent = &bus->dev; 649 mdiodev->dev.bus = &mdio_bus_type; 650 mdiodev->dev.type = &mdio_bus_phy_type; 651 mdiodev->bus = bus; 652 mdiodev->bus_match = phy_bus_match; 653 mdiodev->addr = addr; 654 mdiodev->flags = MDIO_DEVICE_FLAG_PHY; 655 mdiodev->device_free = phy_mdio_device_free; 656 mdiodev->device_remove = phy_mdio_device_remove; 657 mdiodev->reset_state = -1; 658 659 dev->speed = SPEED_UNKNOWN; 660 dev->duplex = DUPLEX_UNKNOWN; 661 dev->pause = 0; 662 dev->asym_pause = 0; 663 dev->link = 0; 664 dev->port = PORT_TP; 665 dev->interface = PHY_INTERFACE_MODE_GMII; 666 667 dev->autoneg = AUTONEG_ENABLE; 668 669 dev->pma_extable = -ENODATA; 670 dev->is_c45 = is_c45; 671 dev->phy_id = phy_id; 672 if (c45_ids) 673 dev->c45_ids = *c45_ids; 674 dev->irq = bus->irq[addr]; 675 676 dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr); 677 device_initialize(&mdiodev->dev); 678 679 dev->state = PHY_DOWN; 680 INIT_LIST_HEAD(&dev->leds); 681 682 mutex_init(&dev->lock); 683 INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine); 684 685 /* Request the appropriate module unconditionally; don't 686 * bother trying to do so only if it isn't already loaded, 687 * because that gets complicated. A hotplug event would have 688 * done an unconditional modprobe anyway. 689 * We don't do normal hotplug because it won't work for MDIO 690 * -- because it relies on the device staying around for long 691 * enough for the driver to get loaded. With MDIO, the NIC 692 * driver will get bored and give up as soon as it finds that 693 * there's no driver _already_ loaded. 694 */ 695 if (is_c45 && c45_ids) { 696 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 697 int i; 698 699 for (i = 1; i < num_ids; i++) { 700 if (c45_ids->device_ids[i] == 0xffffffff) 701 continue; 702 703 ret = phy_request_driver_module(dev, 704 c45_ids->device_ids[i]); 705 if (ret) 706 break; 707 } 708 } else { 709 ret = phy_request_driver_module(dev, phy_id); 710 } 711 712 if (ret) { 713 put_device(&mdiodev->dev); 714 dev = ERR_PTR(ret); 715 } 716 717 return dev; 718 } 719 EXPORT_SYMBOL(phy_device_create); 720 721 /* phy_c45_probe_present - checks to see if a MMD is present in the package 722 * @bus: the target MII bus 723 * @prtad: PHY package address on the MII bus 724 * @devad: PHY device (MMD) address 725 * 726 * Read the MDIO_STAT2 register, and check whether a device is responding 727 * at this address. 728 * 729 * Returns: negative error number on bus access error, zero if no device 730 * is responding, or positive if a device is present. 731 */ 732 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad) 733 { 734 int stat2; 735 736 stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2); 737 if (stat2 < 0) 738 return stat2; 739 740 return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL; 741 } 742 743 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers. 744 * @bus: the target MII bus 745 * @addr: PHY address on the MII bus 746 * @dev_addr: MMD address in the PHY. 747 * @devices_in_package: where to store the devices in package information. 748 * 749 * Description: reads devices in package registers of a MMD at @dev_addr 750 * from PHY at @addr on @bus. 751 * 752 * Returns: 0 on success, -EIO on failure. 753 */ 754 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr, 755 u32 *devices_in_package) 756 { 757 int phy_reg; 758 759 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2); 760 if (phy_reg < 0) 761 return -EIO; 762 *devices_in_package = phy_reg << 16; 763 764 phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1); 765 if (phy_reg < 0) 766 return -EIO; 767 *devices_in_package |= phy_reg; 768 769 return 0; 770 } 771 772 /** 773 * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs. 774 * @bus: the target MII bus 775 * @addr: PHY address on the MII bus 776 * @c45_ids: where to store the c45 ID information. 777 * 778 * Read the PHY "devices in package". If this appears to be valid, read 779 * the PHY identifiers for each device. Return the "devices in package" 780 * and identifiers in @c45_ids. 781 * 782 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 783 * the "devices in package" is invalid. 784 */ 785 static int get_phy_c45_ids(struct mii_bus *bus, int addr, 786 struct phy_c45_device_ids *c45_ids) 787 { 788 const int num_ids = ARRAY_SIZE(c45_ids->device_ids); 789 u32 devs_in_pkg = 0; 790 int i, ret, phy_reg; 791 792 /* Find first non-zero Devices In package. Device zero is reserved 793 * for 802.3 c45 complied PHYs, so don't probe it at first. 794 */ 795 for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 || 796 (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) { 797 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 798 /* Check that there is a device present at this 799 * address before reading the devices-in-package 800 * register to avoid reading garbage from the PHY. 801 * Some PHYs (88x3310) vendor space is not IEEE802.3 802 * compliant. 803 */ 804 ret = phy_c45_probe_present(bus, addr, i); 805 if (ret < 0) 806 return -EIO; 807 808 if (!ret) 809 continue; 810 } 811 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg); 812 if (phy_reg < 0) 813 return -EIO; 814 } 815 816 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) { 817 /* If mostly Fs, there is no device there, then let's probe 818 * MMD 0, as some 10G PHYs have zero Devices In package, 819 * e.g. Cortina CS4315/CS4340 PHY. 820 */ 821 phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg); 822 if (phy_reg < 0) 823 return -EIO; 824 825 /* no device there, let's get out of here */ 826 if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) 827 return -ENODEV; 828 } 829 830 /* Now probe Device Identifiers for each device present. */ 831 for (i = 1; i < num_ids; i++) { 832 if (!(devs_in_pkg & (1 << i))) 833 continue; 834 835 if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) { 836 /* Probe the "Device Present" bits for the vendor MMDs 837 * to ignore these if they do not contain IEEE 802.3 838 * registers. 839 */ 840 ret = phy_c45_probe_present(bus, addr, i); 841 if (ret < 0) 842 return ret; 843 844 if (!ret) 845 continue; 846 } 847 848 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1); 849 if (phy_reg < 0) 850 return -EIO; 851 c45_ids->device_ids[i] = phy_reg << 16; 852 853 phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2); 854 if (phy_reg < 0) 855 return -EIO; 856 c45_ids->device_ids[i] |= phy_reg; 857 } 858 859 c45_ids->devices_in_package = devs_in_pkg; 860 /* Bit 0 doesn't represent a device, it indicates c22 regs presence */ 861 c45_ids->mmds_present = devs_in_pkg & ~BIT(0); 862 863 return 0; 864 } 865 866 /** 867 * get_phy_c22_id - reads the specified addr for its clause 22 ID. 868 * @bus: the target MII bus 869 * @addr: PHY address on the MII bus 870 * @phy_id: where to store the ID retrieved. 871 * 872 * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus, 873 * placing it in @phy_id. Return zero on successful read and the ID is 874 * valid, %-EIO on bus access error, or %-ENODEV if no device responds 875 * or invalid ID. 876 */ 877 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id) 878 { 879 int phy_reg; 880 881 /* Grab the bits from PHYIR1, and put them in the upper half */ 882 phy_reg = mdiobus_read(bus, addr, MII_PHYSID1); 883 if (phy_reg < 0) { 884 /* returning -ENODEV doesn't stop bus scanning */ 885 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 886 } 887 888 *phy_id = phy_reg << 16; 889 890 /* Grab the bits from PHYIR2, and put them in the lower half */ 891 phy_reg = mdiobus_read(bus, addr, MII_PHYSID2); 892 if (phy_reg < 0) { 893 /* returning -ENODEV doesn't stop bus scanning */ 894 return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO; 895 } 896 897 *phy_id |= phy_reg; 898 899 /* If the phy_id is mostly Fs, there is no device there */ 900 if ((*phy_id & 0x1fffffff) == 0x1fffffff) 901 return -ENODEV; 902 903 return 0; 904 } 905 906 /* Extract the phy ID from the compatible string of the form 907 * ethernet-phy-idAAAA.BBBB. 908 */ 909 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id) 910 { 911 unsigned int upper, lower; 912 const char *cp; 913 int ret; 914 915 ret = fwnode_property_read_string(fwnode, "compatible", &cp); 916 if (ret) 917 return ret; 918 919 if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2) 920 return -EINVAL; 921 922 *phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0)); 923 return 0; 924 } 925 EXPORT_SYMBOL(fwnode_get_phy_id); 926 927 /** 928 * get_phy_device - reads the specified PHY device and returns its @phy_device 929 * struct 930 * @bus: the target MII bus 931 * @addr: PHY address on the MII bus 932 * @is_c45: If true the PHY uses the 802.3 clause 45 protocol 933 * 934 * Probe for a PHY at @addr on @bus. 935 * 936 * When probing for a clause 22 PHY, then read the ID registers. If we find 937 * a valid ID, allocate and return a &struct phy_device. 938 * 939 * When probing for a clause 45 PHY, read the "devices in package" registers. 940 * If the "devices in package" appears valid, read the ID registers for each 941 * MMD, allocate and return a &struct phy_device. 942 * 943 * Returns an allocated &struct phy_device on success, %-ENODEV if there is 944 * no PHY present, or %-EIO on bus access error. 945 */ 946 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45) 947 { 948 struct phy_c45_device_ids c45_ids; 949 u32 phy_id = 0; 950 int r; 951 952 c45_ids.devices_in_package = 0; 953 c45_ids.mmds_present = 0; 954 memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids)); 955 956 if (is_c45) 957 r = get_phy_c45_ids(bus, addr, &c45_ids); 958 else 959 r = get_phy_c22_id(bus, addr, &phy_id); 960 961 if (r) 962 return ERR_PTR(r); 963 964 /* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID 965 * of 0 when probed using get_phy_c22_id() with no error. Proceed to 966 * probe with C45 to see if we're able to get a valid PHY ID in the C45 967 * space, if successful, create the C45 PHY device. 968 */ 969 if (!is_c45 && phy_id == 0 && bus->read_c45) { 970 r = get_phy_c45_ids(bus, addr, &c45_ids); 971 if (!r) 972 return phy_device_create(bus, addr, phy_id, 973 true, &c45_ids); 974 } 975 976 return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids); 977 } 978 EXPORT_SYMBOL(get_phy_device); 979 980 /** 981 * phy_device_register - Register the phy device on the MDIO bus 982 * @phydev: phy_device structure to be added to the MDIO bus 983 */ 984 int phy_device_register(struct phy_device *phydev) 985 { 986 int err; 987 988 err = mdiobus_register_device(&phydev->mdio); 989 if (err) 990 return err; 991 992 /* Deassert the reset signal */ 993 phy_device_reset(phydev, 0); 994 995 /* Run all of the fixups for this PHY */ 996 err = phy_scan_fixups(phydev); 997 if (err) { 998 phydev_err(phydev, "failed to initialize\n"); 999 goto out; 1000 } 1001 1002 err = device_add(&phydev->mdio.dev); 1003 if (err) { 1004 phydev_err(phydev, "failed to add\n"); 1005 goto out; 1006 } 1007 1008 return 0; 1009 1010 out: 1011 /* Assert the reset signal */ 1012 phy_device_reset(phydev, 1); 1013 1014 mdiobus_unregister_device(&phydev->mdio); 1015 return err; 1016 } 1017 EXPORT_SYMBOL(phy_device_register); 1018 1019 /** 1020 * phy_device_remove - Remove a previously registered phy device from the MDIO bus 1021 * @phydev: phy_device structure to remove 1022 * 1023 * This doesn't free the phy_device itself, it merely reverses the effects 1024 * of phy_device_register(). Use phy_device_free() to free the device 1025 * after calling this function. 1026 */ 1027 void phy_device_remove(struct phy_device *phydev) 1028 { 1029 unregister_mii_timestamper(phydev->mii_ts); 1030 pse_control_put(phydev->psec); 1031 1032 device_del(&phydev->mdio.dev); 1033 1034 /* Assert the reset signal */ 1035 phy_device_reset(phydev, 1); 1036 1037 mdiobus_unregister_device(&phydev->mdio); 1038 } 1039 EXPORT_SYMBOL(phy_device_remove); 1040 1041 /** 1042 * phy_get_c45_ids - Read 802.3-c45 IDs for phy device. 1043 * @phydev: phy_device structure to read 802.3-c45 IDs 1044 * 1045 * Returns zero on success, %-EIO on bus access error, or %-ENODEV if 1046 * the "devices in package" is invalid. 1047 */ 1048 int phy_get_c45_ids(struct phy_device *phydev) 1049 { 1050 return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr, 1051 &phydev->c45_ids); 1052 } 1053 EXPORT_SYMBOL(phy_get_c45_ids); 1054 1055 /** 1056 * phy_find_first - finds the first PHY device on the bus 1057 * @bus: the target MII bus 1058 */ 1059 struct phy_device *phy_find_first(struct mii_bus *bus) 1060 { 1061 struct phy_device *phydev; 1062 int addr; 1063 1064 for (addr = 0; addr < PHY_MAX_ADDR; addr++) { 1065 phydev = mdiobus_get_phy(bus, addr); 1066 if (phydev) 1067 return phydev; 1068 } 1069 return NULL; 1070 } 1071 EXPORT_SYMBOL(phy_find_first); 1072 1073 static void phy_link_change(struct phy_device *phydev, bool up) 1074 { 1075 struct net_device *netdev = phydev->attached_dev; 1076 1077 if (up) 1078 netif_carrier_on(netdev); 1079 else 1080 netif_carrier_off(netdev); 1081 phydev->adjust_link(netdev); 1082 if (phydev->mii_ts && phydev->mii_ts->link_state) 1083 phydev->mii_ts->link_state(phydev->mii_ts, phydev); 1084 } 1085 1086 /** 1087 * phy_prepare_link - prepares the PHY layer to monitor link status 1088 * @phydev: target phy_device struct 1089 * @handler: callback function for link status change notifications 1090 * 1091 * Description: Tells the PHY infrastructure to handle the 1092 * gory details on monitoring link status (whether through 1093 * polling or an interrupt), and to call back to the 1094 * connected device driver when the link status changes. 1095 * If you want to monitor your own link state, don't call 1096 * this function. 1097 */ 1098 static void phy_prepare_link(struct phy_device *phydev, 1099 void (*handler)(struct net_device *)) 1100 { 1101 phydev->adjust_link = handler; 1102 } 1103 1104 /** 1105 * phy_connect_direct - connect an ethernet device to a specific phy_device 1106 * @dev: the network device to connect 1107 * @phydev: the pointer to the phy device 1108 * @handler: callback function for state change notifications 1109 * @interface: PHY device's interface 1110 */ 1111 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev, 1112 void (*handler)(struct net_device *), 1113 phy_interface_t interface) 1114 { 1115 int rc; 1116 1117 if (!dev) 1118 return -EINVAL; 1119 1120 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1121 if (rc) 1122 return rc; 1123 1124 phy_prepare_link(phydev, handler); 1125 if (phy_interrupt_is_valid(phydev)) 1126 phy_request_interrupt(phydev); 1127 1128 return 0; 1129 } 1130 EXPORT_SYMBOL(phy_connect_direct); 1131 1132 /** 1133 * phy_connect - connect an ethernet device to a PHY device 1134 * @dev: the network device to connect 1135 * @bus_id: the id string of the PHY device to connect 1136 * @handler: callback function for state change notifications 1137 * @interface: PHY device's interface 1138 * 1139 * Description: Convenience function for connecting ethernet 1140 * devices to PHY devices. The default behavior is for 1141 * the PHY infrastructure to handle everything, and only notify 1142 * the connected driver when the link status changes. If you 1143 * don't want, or can't use the provided functionality, you may 1144 * choose to call only the subset of functions which provide 1145 * the desired functionality. 1146 */ 1147 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id, 1148 void (*handler)(struct net_device *), 1149 phy_interface_t interface) 1150 { 1151 struct phy_device *phydev; 1152 struct device *d; 1153 int rc; 1154 1155 /* Search the list of PHY devices on the mdio bus for the 1156 * PHY with the requested name 1157 */ 1158 d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id); 1159 if (!d) { 1160 pr_err("PHY %s not found\n", bus_id); 1161 return ERR_PTR(-ENODEV); 1162 } 1163 phydev = to_phy_device(d); 1164 1165 rc = phy_connect_direct(dev, phydev, handler, interface); 1166 put_device(d); 1167 if (rc) 1168 return ERR_PTR(rc); 1169 1170 return phydev; 1171 } 1172 EXPORT_SYMBOL(phy_connect); 1173 1174 /** 1175 * phy_disconnect - disable interrupts, stop state machine, and detach a PHY 1176 * device 1177 * @phydev: target phy_device struct 1178 */ 1179 void phy_disconnect(struct phy_device *phydev) 1180 { 1181 if (phy_is_started(phydev)) 1182 phy_stop(phydev); 1183 1184 if (phy_interrupt_is_valid(phydev)) 1185 phy_free_interrupt(phydev); 1186 1187 phydev->adjust_link = NULL; 1188 1189 phy_detach(phydev); 1190 } 1191 EXPORT_SYMBOL(phy_disconnect); 1192 1193 /** 1194 * phy_poll_reset - Safely wait until a PHY reset has properly completed 1195 * @phydev: The PHY device to poll 1196 * 1197 * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as 1198 * published in 2008, a PHY reset may take up to 0.5 seconds. The MII BMCR 1199 * register must be polled until the BMCR_RESET bit clears. 1200 * 1201 * Furthermore, any attempts to write to PHY registers may have no effect 1202 * or even generate MDIO bus errors until this is complete. 1203 * 1204 * Some PHYs (such as the Marvell 88E1111) don't entirely conform to the 1205 * standard and do not fully reset after the BMCR_RESET bit is set, and may 1206 * even *REQUIRE* a soft-reset to properly restart autonegotiation. In an 1207 * effort to support such broken PHYs, this function is separate from the 1208 * standard phy_init_hw() which will zero all the other bits in the BMCR 1209 * and reapply all driver-specific and board-specific fixups. 1210 */ 1211 static int phy_poll_reset(struct phy_device *phydev) 1212 { 1213 /* Poll until the reset bit clears (50ms per retry == 0.6 sec) */ 1214 int ret, val; 1215 1216 ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET), 1217 50000, 600000, true); 1218 if (ret) 1219 return ret; 1220 /* Some chips (smsc911x) may still need up to another 1ms after the 1221 * BMCR_RESET bit is cleared before they are usable. 1222 */ 1223 msleep(1); 1224 return 0; 1225 } 1226 1227 int phy_init_hw(struct phy_device *phydev) 1228 { 1229 int ret = 0; 1230 1231 /* Deassert the reset signal */ 1232 phy_device_reset(phydev, 0); 1233 1234 if (!phydev->drv) 1235 return 0; 1236 1237 if (phydev->drv->soft_reset) { 1238 ret = phydev->drv->soft_reset(phydev); 1239 if (ret < 0) 1240 return ret; 1241 1242 /* see comment in genphy_soft_reset for an explanation */ 1243 phydev->suspended = 0; 1244 } 1245 1246 ret = phy_scan_fixups(phydev); 1247 if (ret < 0) 1248 return ret; 1249 1250 phy_interface_zero(phydev->possible_interfaces); 1251 1252 if (phydev->drv->config_init) { 1253 ret = phydev->drv->config_init(phydev); 1254 if (ret < 0) 1255 return ret; 1256 } 1257 1258 if (phydev->drv->config_intr) { 1259 ret = phydev->drv->config_intr(phydev); 1260 if (ret < 0) 1261 return ret; 1262 } 1263 1264 return 0; 1265 } 1266 EXPORT_SYMBOL(phy_init_hw); 1267 1268 void phy_attached_info(struct phy_device *phydev) 1269 { 1270 phy_attached_print(phydev, NULL); 1271 } 1272 EXPORT_SYMBOL(phy_attached_info); 1273 1274 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)" 1275 char *phy_attached_info_irq(struct phy_device *phydev) 1276 { 1277 char *irq_str; 1278 char irq_num[8]; 1279 1280 switch(phydev->irq) { 1281 case PHY_POLL: 1282 irq_str = "POLL"; 1283 break; 1284 case PHY_MAC_INTERRUPT: 1285 irq_str = "MAC"; 1286 break; 1287 default: 1288 snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq); 1289 irq_str = irq_num; 1290 break; 1291 } 1292 1293 return kasprintf(GFP_KERNEL, "%s", irq_str); 1294 } 1295 EXPORT_SYMBOL(phy_attached_info_irq); 1296 1297 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...) 1298 { 1299 const char *unbound = phydev->drv ? "" : "[unbound] "; 1300 char *irq_str = phy_attached_info_irq(phydev); 1301 1302 if (!fmt) { 1303 phydev_info(phydev, ATTACHED_FMT "\n", unbound, 1304 phydev_name(phydev), irq_str); 1305 } else { 1306 va_list ap; 1307 1308 phydev_info(phydev, ATTACHED_FMT, unbound, 1309 phydev_name(phydev), irq_str); 1310 1311 va_start(ap, fmt); 1312 vprintk(fmt, ap); 1313 va_end(ap); 1314 } 1315 kfree(irq_str); 1316 } 1317 EXPORT_SYMBOL(phy_attached_print); 1318 1319 static void phy_sysfs_create_links(struct phy_device *phydev) 1320 { 1321 struct net_device *dev = phydev->attached_dev; 1322 int err; 1323 1324 if (!dev) 1325 return; 1326 1327 err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj, 1328 "attached_dev"); 1329 if (err) 1330 return; 1331 1332 err = sysfs_create_link_nowarn(&dev->dev.kobj, 1333 &phydev->mdio.dev.kobj, 1334 "phydev"); 1335 if (err) { 1336 dev_err(&dev->dev, "could not add device link to %s err %d\n", 1337 kobject_name(&phydev->mdio.dev.kobj), 1338 err); 1339 /* non-fatal - some net drivers can use one netdevice 1340 * with more then one phy 1341 */ 1342 } 1343 1344 phydev->sysfs_links = true; 1345 } 1346 1347 static ssize_t 1348 phy_standalone_show(struct device *dev, struct device_attribute *attr, 1349 char *buf) 1350 { 1351 struct phy_device *phydev = to_phy_device(dev); 1352 1353 return sysfs_emit(buf, "%d\n", !phydev->attached_dev); 1354 } 1355 static DEVICE_ATTR_RO(phy_standalone); 1356 1357 /** 1358 * phy_sfp_attach - attach the SFP bus to the PHY upstream network device 1359 * @upstream: pointer to the phy device 1360 * @bus: sfp bus representing cage being attached 1361 * 1362 * This is used to fill in the sfp_upstream_ops .attach member. 1363 */ 1364 void phy_sfp_attach(void *upstream, struct sfp_bus *bus) 1365 { 1366 struct phy_device *phydev = upstream; 1367 1368 if (phydev->attached_dev) 1369 phydev->attached_dev->sfp_bus = bus; 1370 phydev->sfp_bus_attached = true; 1371 } 1372 EXPORT_SYMBOL(phy_sfp_attach); 1373 1374 /** 1375 * phy_sfp_detach - detach the SFP bus from the PHY upstream network device 1376 * @upstream: pointer to the phy device 1377 * @bus: sfp bus representing cage being attached 1378 * 1379 * This is used to fill in the sfp_upstream_ops .detach member. 1380 */ 1381 void phy_sfp_detach(void *upstream, struct sfp_bus *bus) 1382 { 1383 struct phy_device *phydev = upstream; 1384 1385 if (phydev->attached_dev) 1386 phydev->attached_dev->sfp_bus = NULL; 1387 phydev->sfp_bus_attached = false; 1388 } 1389 EXPORT_SYMBOL(phy_sfp_detach); 1390 1391 /** 1392 * phy_sfp_probe - probe for a SFP cage attached to this PHY device 1393 * @phydev: Pointer to phy_device 1394 * @ops: SFP's upstream operations 1395 */ 1396 int phy_sfp_probe(struct phy_device *phydev, 1397 const struct sfp_upstream_ops *ops) 1398 { 1399 struct sfp_bus *bus; 1400 int ret = 0; 1401 1402 if (phydev->mdio.dev.fwnode) { 1403 bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode); 1404 if (IS_ERR(bus)) 1405 return PTR_ERR(bus); 1406 1407 phydev->sfp_bus = bus; 1408 1409 ret = sfp_bus_add_upstream(bus, phydev, ops); 1410 sfp_bus_put(bus); 1411 } 1412 return ret; 1413 } 1414 EXPORT_SYMBOL(phy_sfp_probe); 1415 1416 /** 1417 * phy_attach_direct - attach a network device to a given PHY device pointer 1418 * @dev: network device to attach 1419 * @phydev: Pointer to phy_device to attach 1420 * @flags: PHY device's dev_flags 1421 * @interface: PHY device's interface 1422 * 1423 * Description: Called by drivers to attach to a particular PHY 1424 * device. The phy_device is found, and properly hooked up 1425 * to the phy_driver. If no driver is attached, then a 1426 * generic driver is used. The phy_device is given a ptr to 1427 * the attaching device, and given a callback for link status 1428 * change. The phy_device is returned to the attaching driver. 1429 * This function takes a reference on the phy device. 1430 */ 1431 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev, 1432 u32 flags, phy_interface_t interface) 1433 { 1434 struct mii_bus *bus = phydev->mdio.bus; 1435 struct device *d = &phydev->mdio.dev; 1436 struct module *ndev_owner = NULL; 1437 bool using_genphy = false; 1438 int err; 1439 1440 /* For Ethernet device drivers that register their own MDIO bus, we 1441 * will have bus->owner match ndev_mod, so we do not want to increment 1442 * our own module->refcnt here, otherwise we would not be able to 1443 * unload later on. 1444 */ 1445 if (dev) 1446 ndev_owner = dev->dev.parent->driver->owner; 1447 if (ndev_owner != bus->owner && !try_module_get(bus->owner)) { 1448 phydev_err(phydev, "failed to get the bus module\n"); 1449 return -EIO; 1450 } 1451 1452 get_device(d); 1453 1454 /* Assume that if there is no driver, that it doesn't 1455 * exist, and we should use the genphy driver. 1456 */ 1457 if (!d->driver) { 1458 if (phydev->is_c45) 1459 d->driver = &genphy_c45_driver.mdiodrv.driver; 1460 else 1461 d->driver = &genphy_driver.mdiodrv.driver; 1462 1463 using_genphy = true; 1464 } 1465 1466 if (!try_module_get(d->driver->owner)) { 1467 phydev_err(phydev, "failed to get the device driver module\n"); 1468 err = -EIO; 1469 goto error_put_device; 1470 } 1471 1472 if (using_genphy) { 1473 err = d->driver->probe(d); 1474 if (err >= 0) 1475 err = device_bind_driver(d); 1476 1477 if (err) 1478 goto error_module_put; 1479 } 1480 1481 if (phydev->attached_dev) { 1482 dev_err(&dev->dev, "PHY already attached\n"); 1483 err = -EBUSY; 1484 goto error; 1485 } 1486 1487 phydev->phy_link_change = phy_link_change; 1488 if (dev) { 1489 phydev->attached_dev = dev; 1490 dev->phydev = phydev; 1491 1492 if (phydev->sfp_bus_attached) 1493 dev->sfp_bus = phydev->sfp_bus; 1494 } 1495 1496 /* Some Ethernet drivers try to connect to a PHY device before 1497 * calling register_netdevice() -> netdev_register_kobject() and 1498 * does the dev->dev.kobj initialization. Here we only check for 1499 * success which indicates that the network device kobject is 1500 * ready. Once we do that we still need to keep track of whether 1501 * links were successfully set up or not for phy_detach() to 1502 * remove them accordingly. 1503 */ 1504 phydev->sysfs_links = false; 1505 1506 phy_sysfs_create_links(phydev); 1507 1508 if (!phydev->attached_dev) { 1509 err = sysfs_create_file(&phydev->mdio.dev.kobj, 1510 &dev_attr_phy_standalone.attr); 1511 if (err) 1512 phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n"); 1513 } 1514 1515 phydev->dev_flags |= flags; 1516 1517 phydev->interface = interface; 1518 1519 phydev->state = PHY_READY; 1520 1521 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1522 1523 /* PHYs can request to use poll mode even though they have an 1524 * associated interrupt line. This could be the case if they 1525 * detect a broken interrupt handling. 1526 */ 1527 if (phydev->dev_flags & PHY_F_NO_IRQ) 1528 phydev->irq = PHY_POLL; 1529 1530 /* Port is set to PORT_TP by default and the actual PHY driver will set 1531 * it to different value depending on the PHY configuration. If we have 1532 * the generic PHY driver we can't figure it out, thus set the old 1533 * legacy PORT_MII value. 1534 */ 1535 if (using_genphy) 1536 phydev->port = PORT_MII; 1537 1538 /* Initial carrier state is off as the phy is about to be 1539 * (re)initialized. 1540 */ 1541 if (dev) 1542 netif_carrier_off(phydev->attached_dev); 1543 1544 /* Do initial configuration here, now that 1545 * we have certain key parameters 1546 * (dev_flags and interface) 1547 */ 1548 err = phy_init_hw(phydev); 1549 if (err) 1550 goto error; 1551 1552 phy_resume(phydev); 1553 phy_led_triggers_register(phydev); 1554 1555 /** 1556 * If the external phy used by current mac interface is managed by 1557 * another mac interface, so we should create a device link between 1558 * phy dev and mac dev. 1559 */ 1560 if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent) 1561 phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev, 1562 DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); 1563 1564 return err; 1565 1566 error: 1567 /* phy_detach() does all of the cleanup below */ 1568 phy_detach(phydev); 1569 return err; 1570 1571 error_module_put: 1572 module_put(d->driver->owner); 1573 d->driver = NULL; 1574 error_put_device: 1575 put_device(d); 1576 if (ndev_owner != bus->owner) 1577 module_put(bus->owner); 1578 return err; 1579 } 1580 EXPORT_SYMBOL(phy_attach_direct); 1581 1582 /** 1583 * phy_attach - attach a network device to a particular PHY device 1584 * @dev: network device to attach 1585 * @bus_id: Bus ID of PHY device to attach 1586 * @interface: PHY device's interface 1587 * 1588 * Description: Same as phy_attach_direct() except that a PHY bus_id 1589 * string is passed instead of a pointer to a struct phy_device. 1590 */ 1591 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id, 1592 phy_interface_t interface) 1593 { 1594 struct bus_type *bus = &mdio_bus_type; 1595 struct phy_device *phydev; 1596 struct device *d; 1597 int rc; 1598 1599 if (!dev) 1600 return ERR_PTR(-EINVAL); 1601 1602 /* Search the list of PHY devices on the mdio bus for the 1603 * PHY with the requested name 1604 */ 1605 d = bus_find_device_by_name(bus, NULL, bus_id); 1606 if (!d) { 1607 pr_err("PHY %s not found\n", bus_id); 1608 return ERR_PTR(-ENODEV); 1609 } 1610 phydev = to_phy_device(d); 1611 1612 rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface); 1613 put_device(d); 1614 if (rc) 1615 return ERR_PTR(rc); 1616 1617 return phydev; 1618 } 1619 EXPORT_SYMBOL(phy_attach); 1620 1621 static bool phy_driver_is_genphy_kind(struct phy_device *phydev, 1622 struct device_driver *driver) 1623 { 1624 struct device *d = &phydev->mdio.dev; 1625 bool ret = false; 1626 1627 if (!phydev->drv) 1628 return ret; 1629 1630 get_device(d); 1631 ret = d->driver == driver; 1632 put_device(d); 1633 1634 return ret; 1635 } 1636 1637 bool phy_driver_is_genphy(struct phy_device *phydev) 1638 { 1639 return phy_driver_is_genphy_kind(phydev, 1640 &genphy_driver.mdiodrv.driver); 1641 } 1642 EXPORT_SYMBOL_GPL(phy_driver_is_genphy); 1643 1644 bool phy_driver_is_genphy_10g(struct phy_device *phydev) 1645 { 1646 return phy_driver_is_genphy_kind(phydev, 1647 &genphy_c45_driver.mdiodrv.driver); 1648 } 1649 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g); 1650 1651 /** 1652 * phy_package_join - join a common PHY group 1653 * @phydev: target phy_device struct 1654 * @addr: cookie and PHY address for global register access 1655 * @priv_size: if non-zero allocate this amount of bytes for private data 1656 * 1657 * This joins a PHY group and provides a shared storage for all phydevs in 1658 * this group. This is intended to be used for packages which contain 1659 * more than one PHY, for example a quad PHY transceiver. 1660 * 1661 * The addr parameter serves as a cookie which has to have the same value 1662 * for all members of one group and as a PHY address to access generic 1663 * registers of a PHY package. Usually, one of the PHY addresses of the 1664 * different PHYs in the package provides access to these global registers. 1665 * The address which is given here, will be used in the phy_package_read() 1666 * and phy_package_write() convenience functions. If your PHY doesn't have 1667 * global registers you can just pick any of the PHY addresses. 1668 * 1669 * This will set the shared pointer of the phydev to the shared storage. 1670 * If this is the first call for a this cookie the shared storage will be 1671 * allocated. If priv_size is non-zero, the given amount of bytes are 1672 * allocated for the priv member. 1673 * 1674 * Returns < 1 on error, 0 on success. Esp. calling phy_package_join() 1675 * with the same cookie but a different priv_size is an error. 1676 */ 1677 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size) 1678 { 1679 struct mii_bus *bus = phydev->mdio.bus; 1680 struct phy_package_shared *shared; 1681 int ret; 1682 1683 if (addr < 0 || addr >= PHY_MAX_ADDR) 1684 return -EINVAL; 1685 1686 mutex_lock(&bus->shared_lock); 1687 shared = bus->shared[addr]; 1688 if (!shared) { 1689 ret = -ENOMEM; 1690 shared = kzalloc(sizeof(*shared), GFP_KERNEL); 1691 if (!shared) 1692 goto err_unlock; 1693 if (priv_size) { 1694 shared->priv = kzalloc(priv_size, GFP_KERNEL); 1695 if (!shared->priv) 1696 goto err_free; 1697 shared->priv_size = priv_size; 1698 } 1699 shared->addr = addr; 1700 refcount_set(&shared->refcnt, 1); 1701 bus->shared[addr] = shared; 1702 } else { 1703 ret = -EINVAL; 1704 if (priv_size && priv_size != shared->priv_size) 1705 goto err_unlock; 1706 refcount_inc(&shared->refcnt); 1707 } 1708 mutex_unlock(&bus->shared_lock); 1709 1710 phydev->shared = shared; 1711 1712 return 0; 1713 1714 err_free: 1715 kfree(shared); 1716 err_unlock: 1717 mutex_unlock(&bus->shared_lock); 1718 return ret; 1719 } 1720 EXPORT_SYMBOL_GPL(phy_package_join); 1721 1722 /** 1723 * phy_package_leave - leave a common PHY group 1724 * @phydev: target phy_device struct 1725 * 1726 * This leaves a PHY group created by phy_package_join(). If this phydev 1727 * was the last user of the shared data between the group, this data is 1728 * freed. Resets the phydev->shared pointer to NULL. 1729 */ 1730 void phy_package_leave(struct phy_device *phydev) 1731 { 1732 struct phy_package_shared *shared = phydev->shared; 1733 struct mii_bus *bus = phydev->mdio.bus; 1734 1735 if (!shared) 1736 return; 1737 1738 if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) { 1739 bus->shared[shared->addr] = NULL; 1740 mutex_unlock(&bus->shared_lock); 1741 kfree(shared->priv); 1742 kfree(shared); 1743 } 1744 1745 phydev->shared = NULL; 1746 } 1747 EXPORT_SYMBOL_GPL(phy_package_leave); 1748 1749 static void devm_phy_package_leave(struct device *dev, void *res) 1750 { 1751 phy_package_leave(*(struct phy_device **)res); 1752 } 1753 1754 /** 1755 * devm_phy_package_join - resource managed phy_package_join() 1756 * @dev: device that is registering this PHY package 1757 * @phydev: target phy_device struct 1758 * @addr: cookie and PHY address for global register access 1759 * @priv_size: if non-zero allocate this amount of bytes for private data 1760 * 1761 * Managed phy_package_join(). Shared storage fetched by this function, 1762 * phy_package_leave() is automatically called on driver detach. See 1763 * phy_package_join() for more information. 1764 */ 1765 int devm_phy_package_join(struct device *dev, struct phy_device *phydev, 1766 int addr, size_t priv_size) 1767 { 1768 struct phy_device **ptr; 1769 int ret; 1770 1771 ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr), 1772 GFP_KERNEL); 1773 if (!ptr) 1774 return -ENOMEM; 1775 1776 ret = phy_package_join(phydev, addr, priv_size); 1777 1778 if (!ret) { 1779 *ptr = phydev; 1780 devres_add(dev, ptr); 1781 } else { 1782 devres_free(ptr); 1783 } 1784 1785 return ret; 1786 } 1787 EXPORT_SYMBOL_GPL(devm_phy_package_join); 1788 1789 /** 1790 * phy_detach - detach a PHY device from its network device 1791 * @phydev: target phy_device struct 1792 * 1793 * This detaches the phy device from its network device and the phy 1794 * driver, and drops the reference count taken in phy_attach_direct(). 1795 */ 1796 void phy_detach(struct phy_device *phydev) 1797 { 1798 struct net_device *dev = phydev->attached_dev; 1799 struct module *ndev_owner = NULL; 1800 struct mii_bus *bus; 1801 1802 if (phydev->devlink) 1803 device_link_del(phydev->devlink); 1804 1805 if (phydev->sysfs_links) { 1806 if (dev) 1807 sysfs_remove_link(&dev->dev.kobj, "phydev"); 1808 sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev"); 1809 } 1810 1811 if (!phydev->attached_dev) 1812 sysfs_remove_file(&phydev->mdio.dev.kobj, 1813 &dev_attr_phy_standalone.attr); 1814 1815 phy_suspend(phydev); 1816 if (dev) { 1817 phydev->attached_dev->phydev = NULL; 1818 phydev->attached_dev = NULL; 1819 } 1820 phydev->phylink = NULL; 1821 1822 phy_led_triggers_unregister(phydev); 1823 1824 if (phydev->mdio.dev.driver) 1825 module_put(phydev->mdio.dev.driver->owner); 1826 1827 /* If the device had no specific driver before (i.e. - it 1828 * was using the generic driver), we unbind the device 1829 * from the generic driver so that there's a chance a 1830 * real driver could be loaded 1831 */ 1832 if (phy_driver_is_genphy(phydev) || 1833 phy_driver_is_genphy_10g(phydev)) 1834 device_release_driver(&phydev->mdio.dev); 1835 1836 /* Assert the reset signal */ 1837 phy_device_reset(phydev, 1); 1838 1839 /* 1840 * The phydev might go away on the put_device() below, so avoid 1841 * a use-after-free bug by reading the underlying bus first. 1842 */ 1843 bus = phydev->mdio.bus; 1844 1845 put_device(&phydev->mdio.dev); 1846 if (dev) 1847 ndev_owner = dev->dev.parent->driver->owner; 1848 if (ndev_owner != bus->owner) 1849 module_put(bus->owner); 1850 } 1851 EXPORT_SYMBOL(phy_detach); 1852 1853 int phy_suspend(struct phy_device *phydev) 1854 { 1855 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1856 struct net_device *netdev = phydev->attached_dev; 1857 struct phy_driver *phydrv = phydev->drv; 1858 int ret; 1859 1860 if (phydev->suspended) 1861 return 0; 1862 1863 phy_ethtool_get_wol(phydev, &wol); 1864 phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled); 1865 /* If the device has WOL enabled, we cannot suspend the PHY */ 1866 if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND)) 1867 return -EBUSY; 1868 1869 if (!phydrv || !phydrv->suspend) 1870 return 0; 1871 1872 ret = phydrv->suspend(phydev); 1873 if (!ret) 1874 phydev->suspended = true; 1875 1876 return ret; 1877 } 1878 EXPORT_SYMBOL(phy_suspend); 1879 1880 int __phy_resume(struct phy_device *phydev) 1881 { 1882 struct phy_driver *phydrv = phydev->drv; 1883 int ret; 1884 1885 lockdep_assert_held(&phydev->lock); 1886 1887 if (!phydrv || !phydrv->resume) 1888 return 0; 1889 1890 ret = phydrv->resume(phydev); 1891 if (!ret) 1892 phydev->suspended = false; 1893 1894 return ret; 1895 } 1896 EXPORT_SYMBOL(__phy_resume); 1897 1898 int phy_resume(struct phy_device *phydev) 1899 { 1900 int ret; 1901 1902 mutex_lock(&phydev->lock); 1903 ret = __phy_resume(phydev); 1904 mutex_unlock(&phydev->lock); 1905 1906 return ret; 1907 } 1908 EXPORT_SYMBOL(phy_resume); 1909 1910 int phy_loopback(struct phy_device *phydev, bool enable) 1911 { 1912 int ret = 0; 1913 1914 if (!phydev->drv) 1915 return -EIO; 1916 1917 mutex_lock(&phydev->lock); 1918 1919 if (enable && phydev->loopback_enabled) { 1920 ret = -EBUSY; 1921 goto out; 1922 } 1923 1924 if (!enable && !phydev->loopback_enabled) { 1925 ret = -EINVAL; 1926 goto out; 1927 } 1928 1929 if (phydev->drv->set_loopback) 1930 ret = phydev->drv->set_loopback(phydev, enable); 1931 else 1932 ret = genphy_loopback(phydev, enable); 1933 1934 if (ret) 1935 goto out; 1936 1937 phydev->loopback_enabled = enable; 1938 1939 out: 1940 mutex_unlock(&phydev->lock); 1941 return ret; 1942 } 1943 EXPORT_SYMBOL(phy_loopback); 1944 1945 /** 1946 * phy_reset_after_clk_enable - perform a PHY reset if needed 1947 * @phydev: target phy_device struct 1948 * 1949 * Description: Some PHYs are known to need a reset after their refclk was 1950 * enabled. This function evaluates the flags and perform the reset if it's 1951 * needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy 1952 * was reset. 1953 */ 1954 int phy_reset_after_clk_enable(struct phy_device *phydev) 1955 { 1956 if (!phydev || !phydev->drv) 1957 return -ENODEV; 1958 1959 if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) { 1960 phy_device_reset(phydev, 1); 1961 phy_device_reset(phydev, 0); 1962 return 1; 1963 } 1964 1965 return 0; 1966 } 1967 EXPORT_SYMBOL(phy_reset_after_clk_enable); 1968 1969 /* Generic PHY support and helper functions */ 1970 1971 /** 1972 * genphy_config_advert - sanitize and advertise auto-negotiation parameters 1973 * @phydev: target phy_device struct 1974 * 1975 * Description: Writes MII_ADVERTISE with the appropriate values, 1976 * after sanitizing the values to make sure we only advertise 1977 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 1978 * hasn't changed, and > 0 if it has changed. 1979 */ 1980 static int genphy_config_advert(struct phy_device *phydev) 1981 { 1982 int err, bmsr, changed = 0; 1983 u32 adv; 1984 1985 /* Only allow advertising what this PHY supports */ 1986 linkmode_and(phydev->advertising, phydev->advertising, 1987 phydev->supported); 1988 1989 adv = linkmode_adv_to_mii_adv_t(phydev->advertising); 1990 1991 /* Setup standard advertisement */ 1992 err = phy_modify_changed(phydev, MII_ADVERTISE, 1993 ADVERTISE_ALL | ADVERTISE_100BASE4 | 1994 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM, 1995 adv); 1996 if (err < 0) 1997 return err; 1998 if (err > 0) 1999 changed = 1; 2000 2001 bmsr = phy_read(phydev, MII_BMSR); 2002 if (bmsr < 0) 2003 return bmsr; 2004 2005 /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all 2006 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a 2007 * logical 1. 2008 */ 2009 if (!(bmsr & BMSR_ESTATEN)) 2010 return changed; 2011 2012 adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising); 2013 2014 err = phy_modify_changed(phydev, MII_CTRL1000, 2015 ADVERTISE_1000FULL | ADVERTISE_1000HALF, 2016 adv); 2017 if (err < 0) 2018 return err; 2019 if (err > 0) 2020 changed = 1; 2021 2022 return changed; 2023 } 2024 2025 /** 2026 * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters 2027 * @phydev: target phy_device struct 2028 * 2029 * Description: Writes MII_ADVERTISE with the appropriate values, 2030 * after sanitizing the values to make sure we only advertise 2031 * what is supported. Returns < 0 on error, 0 if the PHY's advertisement 2032 * hasn't changed, and > 0 if it has changed. This function is intended 2033 * for Clause 37 1000Base-X mode. 2034 */ 2035 static int genphy_c37_config_advert(struct phy_device *phydev) 2036 { 2037 u16 adv = 0; 2038 2039 /* Only allow advertising what this PHY supports */ 2040 linkmode_and(phydev->advertising, phydev->advertising, 2041 phydev->supported); 2042 2043 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2044 phydev->advertising)) 2045 adv |= ADVERTISE_1000XFULL; 2046 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2047 phydev->advertising)) 2048 adv |= ADVERTISE_1000XPAUSE; 2049 if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2050 phydev->advertising)) 2051 adv |= ADVERTISE_1000XPSE_ASYM; 2052 2053 return phy_modify_changed(phydev, MII_ADVERTISE, 2054 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 2055 ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM, 2056 adv); 2057 } 2058 2059 /** 2060 * genphy_config_eee_advert - disable unwanted eee mode advertisement 2061 * @phydev: target phy_device struct 2062 * 2063 * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy 2064 * efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't 2065 * changed, and 1 if it has changed. 2066 */ 2067 int genphy_config_eee_advert(struct phy_device *phydev) 2068 { 2069 int err; 2070 2071 /* Nothing to disable */ 2072 if (!phydev->eee_broken_modes) 2073 return 0; 2074 2075 err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 2076 phydev->eee_broken_modes, 0); 2077 /* If the call failed, we assume that EEE is not supported */ 2078 return err < 0 ? 0 : err; 2079 } 2080 EXPORT_SYMBOL(genphy_config_eee_advert); 2081 2082 /** 2083 * genphy_setup_forced - configures/forces speed/duplex from @phydev 2084 * @phydev: target phy_device struct 2085 * 2086 * Description: Configures MII_BMCR to force speed/duplex 2087 * to the values in phydev. Assumes that the values are valid. 2088 * Please see phy_sanitize_settings(). 2089 */ 2090 int genphy_setup_forced(struct phy_device *phydev) 2091 { 2092 u16 ctl; 2093 2094 phydev->pause = 0; 2095 phydev->asym_pause = 0; 2096 2097 ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2098 2099 return phy_modify(phydev, MII_BMCR, 2100 ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl); 2101 } 2102 EXPORT_SYMBOL(genphy_setup_forced); 2103 2104 static int genphy_setup_master_slave(struct phy_device *phydev) 2105 { 2106 u16 ctl = 0; 2107 2108 if (!phydev->is_gigabit_capable) 2109 return 0; 2110 2111 switch (phydev->master_slave_set) { 2112 case MASTER_SLAVE_CFG_MASTER_PREFERRED: 2113 ctl |= CTL1000_PREFER_MASTER; 2114 break; 2115 case MASTER_SLAVE_CFG_SLAVE_PREFERRED: 2116 break; 2117 case MASTER_SLAVE_CFG_MASTER_FORCE: 2118 ctl |= CTL1000_AS_MASTER; 2119 fallthrough; 2120 case MASTER_SLAVE_CFG_SLAVE_FORCE: 2121 ctl |= CTL1000_ENABLE_MASTER; 2122 break; 2123 case MASTER_SLAVE_CFG_UNKNOWN: 2124 case MASTER_SLAVE_CFG_UNSUPPORTED: 2125 return 0; 2126 default: 2127 phydev_warn(phydev, "Unsupported Master/Slave mode\n"); 2128 return -EOPNOTSUPP; 2129 } 2130 2131 return phy_modify_changed(phydev, MII_CTRL1000, 2132 (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER | 2133 CTL1000_PREFER_MASTER), ctl); 2134 } 2135 2136 int genphy_read_master_slave(struct phy_device *phydev) 2137 { 2138 int cfg, state; 2139 int val; 2140 2141 phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN; 2142 phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN; 2143 2144 val = phy_read(phydev, MII_CTRL1000); 2145 if (val < 0) 2146 return val; 2147 2148 if (val & CTL1000_ENABLE_MASTER) { 2149 if (val & CTL1000_AS_MASTER) 2150 cfg = MASTER_SLAVE_CFG_MASTER_FORCE; 2151 else 2152 cfg = MASTER_SLAVE_CFG_SLAVE_FORCE; 2153 } else { 2154 if (val & CTL1000_PREFER_MASTER) 2155 cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED; 2156 else 2157 cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED; 2158 } 2159 2160 val = phy_read(phydev, MII_STAT1000); 2161 if (val < 0) 2162 return val; 2163 2164 if (val & LPA_1000MSFAIL) { 2165 state = MASTER_SLAVE_STATE_ERR; 2166 } else if (phydev->link) { 2167 /* this bits are valid only for active link */ 2168 if (val & LPA_1000MSRES) 2169 state = MASTER_SLAVE_STATE_MASTER; 2170 else 2171 state = MASTER_SLAVE_STATE_SLAVE; 2172 } else { 2173 state = MASTER_SLAVE_STATE_UNKNOWN; 2174 } 2175 2176 phydev->master_slave_get = cfg; 2177 phydev->master_slave_state = state; 2178 2179 return 0; 2180 } 2181 EXPORT_SYMBOL(genphy_read_master_slave); 2182 2183 /** 2184 * genphy_restart_aneg - Enable and Restart Autonegotiation 2185 * @phydev: target phy_device struct 2186 */ 2187 int genphy_restart_aneg(struct phy_device *phydev) 2188 { 2189 /* Don't isolate the PHY if we're negotiating */ 2190 return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, 2191 BMCR_ANENABLE | BMCR_ANRESTART); 2192 } 2193 EXPORT_SYMBOL(genphy_restart_aneg); 2194 2195 /** 2196 * genphy_check_and_restart_aneg - Enable and restart auto-negotiation 2197 * @phydev: target phy_device struct 2198 * @restart: whether aneg restart is requested 2199 * 2200 * Check, and restart auto-negotiation if needed. 2201 */ 2202 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart) 2203 { 2204 int ret; 2205 2206 if (!restart) { 2207 /* Advertisement hasn't changed, but maybe aneg was never on to 2208 * begin with? Or maybe phy was isolated? 2209 */ 2210 ret = phy_read(phydev, MII_BMCR); 2211 if (ret < 0) 2212 return ret; 2213 2214 if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE)) 2215 restart = true; 2216 } 2217 2218 if (restart) 2219 return genphy_restart_aneg(phydev); 2220 2221 return 0; 2222 } 2223 EXPORT_SYMBOL(genphy_check_and_restart_aneg); 2224 2225 /** 2226 * __genphy_config_aneg - restart auto-negotiation or write BMCR 2227 * @phydev: target phy_device struct 2228 * @changed: whether autoneg is requested 2229 * 2230 * Description: If auto-negotiation is enabled, we configure the 2231 * advertising, and then restart auto-negotiation. If it is not 2232 * enabled, then we write the BMCR. 2233 */ 2234 int __genphy_config_aneg(struct phy_device *phydev, bool changed) 2235 { 2236 int err; 2237 2238 err = genphy_c45_an_config_eee_aneg(phydev); 2239 if (err < 0) 2240 return err; 2241 else if (err) 2242 changed = true; 2243 2244 err = genphy_setup_master_slave(phydev); 2245 if (err < 0) 2246 return err; 2247 else if (err) 2248 changed = true; 2249 2250 if (AUTONEG_ENABLE != phydev->autoneg) 2251 return genphy_setup_forced(phydev); 2252 2253 err = genphy_config_advert(phydev); 2254 if (err < 0) /* error */ 2255 return err; 2256 else if (err) 2257 changed = true; 2258 2259 return genphy_check_and_restart_aneg(phydev, changed); 2260 } 2261 EXPORT_SYMBOL(__genphy_config_aneg); 2262 2263 /** 2264 * genphy_c37_config_aneg - restart auto-negotiation or write BMCR 2265 * @phydev: target phy_device struct 2266 * 2267 * Description: If auto-negotiation is enabled, we configure the 2268 * advertising, and then restart auto-negotiation. If it is not 2269 * enabled, then we write the BMCR. This function is intended 2270 * for use with Clause 37 1000Base-X mode. 2271 */ 2272 int genphy_c37_config_aneg(struct phy_device *phydev) 2273 { 2274 int err, changed; 2275 2276 if (phydev->autoneg != AUTONEG_ENABLE) 2277 return genphy_setup_forced(phydev); 2278 2279 err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100, 2280 BMCR_SPEED1000); 2281 if (err) 2282 return err; 2283 2284 changed = genphy_c37_config_advert(phydev); 2285 if (changed < 0) /* error */ 2286 return changed; 2287 2288 if (!changed) { 2289 /* Advertisement hasn't changed, but maybe aneg was never on to 2290 * begin with? Or maybe phy was isolated? 2291 */ 2292 int ctl = phy_read(phydev, MII_BMCR); 2293 2294 if (ctl < 0) 2295 return ctl; 2296 2297 if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) 2298 changed = 1; /* do restart aneg */ 2299 } 2300 2301 /* Only restart aneg if we are advertising something different 2302 * than we were before. 2303 */ 2304 if (changed > 0) 2305 return genphy_restart_aneg(phydev); 2306 2307 return 0; 2308 } 2309 EXPORT_SYMBOL(genphy_c37_config_aneg); 2310 2311 /** 2312 * genphy_aneg_done - return auto-negotiation status 2313 * @phydev: target phy_device struct 2314 * 2315 * Description: Reads the status register and returns 0 either if 2316 * auto-negotiation is incomplete, or if there was an error. 2317 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 2318 */ 2319 int genphy_aneg_done(struct phy_device *phydev) 2320 { 2321 int retval = phy_read(phydev, MII_BMSR); 2322 2323 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 2324 } 2325 EXPORT_SYMBOL(genphy_aneg_done); 2326 2327 /** 2328 * genphy_update_link - update link status in @phydev 2329 * @phydev: target phy_device struct 2330 * 2331 * Description: Update the value in phydev->link to reflect the 2332 * current link value. In order to do this, we need to read 2333 * the status register twice, keeping the second value. 2334 */ 2335 int genphy_update_link(struct phy_device *phydev) 2336 { 2337 int status = 0, bmcr; 2338 2339 bmcr = phy_read(phydev, MII_BMCR); 2340 if (bmcr < 0) 2341 return bmcr; 2342 2343 /* Autoneg is being started, therefore disregard BMSR value and 2344 * report link as down. 2345 */ 2346 if (bmcr & BMCR_ANRESTART) 2347 goto done; 2348 2349 /* The link state is latched low so that momentary link 2350 * drops can be detected. Do not double-read the status 2351 * in polling mode to detect such short link drops except 2352 * the link was already down. 2353 */ 2354 if (!phy_polling_mode(phydev) || !phydev->link) { 2355 status = phy_read(phydev, MII_BMSR); 2356 if (status < 0) 2357 return status; 2358 else if (status & BMSR_LSTATUS) 2359 goto done; 2360 } 2361 2362 /* Read link and autonegotiation status */ 2363 status = phy_read(phydev, MII_BMSR); 2364 if (status < 0) 2365 return status; 2366 done: 2367 phydev->link = status & BMSR_LSTATUS ? 1 : 0; 2368 phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0; 2369 2370 /* Consider the case that autoneg was started and "aneg complete" 2371 * bit has been reset, but "link up" bit not yet. 2372 */ 2373 if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete) 2374 phydev->link = 0; 2375 2376 return 0; 2377 } 2378 EXPORT_SYMBOL(genphy_update_link); 2379 2380 int genphy_read_lpa(struct phy_device *phydev) 2381 { 2382 int lpa, lpagb; 2383 2384 if (phydev->autoneg == AUTONEG_ENABLE) { 2385 if (!phydev->autoneg_complete) { 2386 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2387 0); 2388 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0); 2389 return 0; 2390 } 2391 2392 if (phydev->is_gigabit_capable) { 2393 lpagb = phy_read(phydev, MII_STAT1000); 2394 if (lpagb < 0) 2395 return lpagb; 2396 2397 if (lpagb & LPA_1000MSFAIL) { 2398 int adv = phy_read(phydev, MII_CTRL1000); 2399 2400 if (adv < 0) 2401 return adv; 2402 2403 if (adv & CTL1000_ENABLE_MASTER) 2404 phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n"); 2405 else 2406 phydev_err(phydev, "Master/Slave resolution failed\n"); 2407 return -ENOLINK; 2408 } 2409 2410 mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising, 2411 lpagb); 2412 } 2413 2414 lpa = phy_read(phydev, MII_LPA); 2415 if (lpa < 0) 2416 return lpa; 2417 2418 mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa); 2419 } else { 2420 linkmode_zero(phydev->lp_advertising); 2421 } 2422 2423 return 0; 2424 } 2425 EXPORT_SYMBOL(genphy_read_lpa); 2426 2427 /** 2428 * genphy_read_status_fixed - read the link parameters for !aneg mode 2429 * @phydev: target phy_device struct 2430 * 2431 * Read the current duplex and speed state for a PHY operating with 2432 * autonegotiation disabled. 2433 */ 2434 int genphy_read_status_fixed(struct phy_device *phydev) 2435 { 2436 int bmcr = phy_read(phydev, MII_BMCR); 2437 2438 if (bmcr < 0) 2439 return bmcr; 2440 2441 if (bmcr & BMCR_FULLDPLX) 2442 phydev->duplex = DUPLEX_FULL; 2443 else 2444 phydev->duplex = DUPLEX_HALF; 2445 2446 if (bmcr & BMCR_SPEED1000) 2447 phydev->speed = SPEED_1000; 2448 else if (bmcr & BMCR_SPEED100) 2449 phydev->speed = SPEED_100; 2450 else 2451 phydev->speed = SPEED_10; 2452 2453 return 0; 2454 } 2455 EXPORT_SYMBOL(genphy_read_status_fixed); 2456 2457 /** 2458 * genphy_read_status - check the link status and update current link state 2459 * @phydev: target phy_device struct 2460 * 2461 * Description: Check the link, then figure out the current state 2462 * by comparing what we advertise with what the link partner 2463 * advertises. Start by checking the gigabit possibilities, 2464 * then move on to 10/100. 2465 */ 2466 int genphy_read_status(struct phy_device *phydev) 2467 { 2468 int err, old_link = phydev->link; 2469 2470 /* Update the link, but return if there was an error */ 2471 err = genphy_update_link(phydev); 2472 if (err) 2473 return err; 2474 2475 /* why bother the PHY if nothing can have changed */ 2476 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2477 return 0; 2478 2479 phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED; 2480 phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; 2481 phydev->speed = SPEED_UNKNOWN; 2482 phydev->duplex = DUPLEX_UNKNOWN; 2483 phydev->pause = 0; 2484 phydev->asym_pause = 0; 2485 2486 if (phydev->is_gigabit_capable) { 2487 err = genphy_read_master_slave(phydev); 2488 if (err < 0) 2489 return err; 2490 } 2491 2492 err = genphy_read_lpa(phydev); 2493 if (err < 0) 2494 return err; 2495 2496 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2497 phy_resolve_aneg_linkmode(phydev); 2498 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2499 err = genphy_read_status_fixed(phydev); 2500 if (err < 0) 2501 return err; 2502 } 2503 2504 return 0; 2505 } 2506 EXPORT_SYMBOL(genphy_read_status); 2507 2508 /** 2509 * genphy_c37_read_status - check the link status and update current link state 2510 * @phydev: target phy_device struct 2511 * 2512 * Description: Check the link, then figure out the current state 2513 * by comparing what we advertise with what the link partner 2514 * advertises. This function is for Clause 37 1000Base-X mode. 2515 */ 2516 int genphy_c37_read_status(struct phy_device *phydev) 2517 { 2518 int lpa, err, old_link = phydev->link; 2519 2520 /* Update the link, but return if there was an error */ 2521 err = genphy_update_link(phydev); 2522 if (err) 2523 return err; 2524 2525 /* why bother the PHY if nothing can have changed */ 2526 if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) 2527 return 0; 2528 2529 phydev->duplex = DUPLEX_UNKNOWN; 2530 phydev->pause = 0; 2531 phydev->asym_pause = 0; 2532 2533 if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { 2534 lpa = phy_read(phydev, MII_LPA); 2535 if (lpa < 0) 2536 return lpa; 2537 2538 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 2539 phydev->lp_advertising, lpa & LPA_LPACK); 2540 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2541 phydev->lp_advertising, lpa & LPA_1000XFULL); 2542 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2543 phydev->lp_advertising, lpa & LPA_1000XPAUSE); 2544 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2545 phydev->lp_advertising, 2546 lpa & LPA_1000XPAUSE_ASYM); 2547 2548 phy_resolve_aneg_linkmode(phydev); 2549 } else if (phydev->autoneg == AUTONEG_DISABLE) { 2550 int bmcr = phy_read(phydev, MII_BMCR); 2551 2552 if (bmcr < 0) 2553 return bmcr; 2554 2555 if (bmcr & BMCR_FULLDPLX) 2556 phydev->duplex = DUPLEX_FULL; 2557 else 2558 phydev->duplex = DUPLEX_HALF; 2559 } 2560 2561 return 0; 2562 } 2563 EXPORT_SYMBOL(genphy_c37_read_status); 2564 2565 /** 2566 * genphy_soft_reset - software reset the PHY via BMCR_RESET bit 2567 * @phydev: target phy_device struct 2568 * 2569 * Description: Perform a software PHY reset using the standard 2570 * BMCR_RESET bit and poll for the reset bit to be cleared. 2571 * 2572 * Returns: 0 on success, < 0 on failure 2573 */ 2574 int genphy_soft_reset(struct phy_device *phydev) 2575 { 2576 u16 res = BMCR_RESET; 2577 int ret; 2578 2579 if (phydev->autoneg == AUTONEG_ENABLE) 2580 res |= BMCR_ANRESTART; 2581 2582 ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res); 2583 if (ret < 0) 2584 return ret; 2585 2586 /* Clause 22 states that setting bit BMCR_RESET sets control registers 2587 * to their default value. Therefore the POWER DOWN bit is supposed to 2588 * be cleared after soft reset. 2589 */ 2590 phydev->suspended = 0; 2591 2592 ret = phy_poll_reset(phydev); 2593 if (ret) 2594 return ret; 2595 2596 /* BMCR may be reset to defaults */ 2597 if (phydev->autoneg == AUTONEG_DISABLE) 2598 ret = genphy_setup_forced(phydev); 2599 2600 return ret; 2601 } 2602 EXPORT_SYMBOL(genphy_soft_reset); 2603 2604 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev) 2605 { 2606 /* It seems there are cases where the interrupts are handled by another 2607 * entity (ie an IRQ controller embedded inside the PHY) and do not 2608 * need any other interraction from phylib. In this case, just trigger 2609 * the state machine directly. 2610 */ 2611 phy_trigger_machine(phydev); 2612 2613 return 0; 2614 } 2615 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack); 2616 2617 /** 2618 * genphy_read_abilities - read PHY abilities from Clause 22 registers 2619 * @phydev: target phy_device struct 2620 * 2621 * Description: Reads the PHY's abilities and populates 2622 * phydev->supported accordingly. 2623 * 2624 * Returns: 0 on success, < 0 on failure 2625 */ 2626 int genphy_read_abilities(struct phy_device *phydev) 2627 { 2628 int val; 2629 2630 linkmode_set_bit_array(phy_basic_ports_array, 2631 ARRAY_SIZE(phy_basic_ports_array), 2632 phydev->supported); 2633 2634 val = phy_read(phydev, MII_BMSR); 2635 if (val < 0) 2636 return val; 2637 2638 linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported, 2639 val & BMSR_ANEGCAPABLE); 2640 2641 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported, 2642 val & BMSR_100FULL); 2643 linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported, 2644 val & BMSR_100HALF); 2645 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported, 2646 val & BMSR_10FULL); 2647 linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported, 2648 val & BMSR_10HALF); 2649 2650 if (val & BMSR_ESTATEN) { 2651 val = phy_read(phydev, MII_ESTATUS); 2652 if (val < 0) 2653 return val; 2654 2655 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2656 phydev->supported, val & ESTATUS_1000_TFULL); 2657 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 2658 phydev->supported, val & ESTATUS_1000_THALF); 2659 linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 2660 phydev->supported, val & ESTATUS_1000_XFULL); 2661 } 2662 2663 /* This is optional functionality. If not supported, we may get an error 2664 * which should be ignored. 2665 */ 2666 genphy_c45_read_eee_abilities(phydev); 2667 2668 return 0; 2669 } 2670 EXPORT_SYMBOL(genphy_read_abilities); 2671 2672 /* This is used for the phy device which doesn't support the MMD extended 2673 * register access, but it does have side effect when we are trying to access 2674 * the MMD register via indirect method. 2675 */ 2676 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum) 2677 { 2678 return -EOPNOTSUPP; 2679 } 2680 EXPORT_SYMBOL(genphy_read_mmd_unsupported); 2681 2682 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum, 2683 u16 regnum, u16 val) 2684 { 2685 return -EOPNOTSUPP; 2686 } 2687 EXPORT_SYMBOL(genphy_write_mmd_unsupported); 2688 2689 int genphy_suspend(struct phy_device *phydev) 2690 { 2691 return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN); 2692 } 2693 EXPORT_SYMBOL(genphy_suspend); 2694 2695 int genphy_resume(struct phy_device *phydev) 2696 { 2697 return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN); 2698 } 2699 EXPORT_SYMBOL(genphy_resume); 2700 2701 int genphy_loopback(struct phy_device *phydev, bool enable) 2702 { 2703 if (enable) { 2704 u16 val, ctl = BMCR_LOOPBACK; 2705 int ret; 2706 2707 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 2708 2709 phy_modify(phydev, MII_BMCR, ~0, ctl); 2710 2711 ret = phy_read_poll_timeout(phydev, MII_BMSR, val, 2712 val & BMSR_LSTATUS, 2713 5000, 500000, true); 2714 if (ret) 2715 return ret; 2716 } else { 2717 phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0); 2718 2719 phy_config_aneg(phydev); 2720 } 2721 2722 return 0; 2723 } 2724 EXPORT_SYMBOL(genphy_loopback); 2725 2726 /** 2727 * phy_remove_link_mode - Remove a supported link mode 2728 * @phydev: phy_device structure to remove link mode from 2729 * @link_mode: Link mode to be removed 2730 * 2731 * Description: Some MACs don't support all link modes which the PHY 2732 * does. e.g. a 1G MAC often does not support 1000Half. Add a helper 2733 * to remove a link mode. 2734 */ 2735 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode) 2736 { 2737 linkmode_clear_bit(link_mode, phydev->supported); 2738 phy_advertise_supported(phydev); 2739 } 2740 EXPORT_SYMBOL(phy_remove_link_mode); 2741 2742 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src) 2743 { 2744 linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst, 2745 linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src)); 2746 linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst, 2747 linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src)); 2748 } 2749 2750 /** 2751 * phy_advertise_supported - Advertise all supported modes 2752 * @phydev: target phy_device struct 2753 * 2754 * Description: Called to advertise all supported modes, doesn't touch 2755 * pause mode advertising. 2756 */ 2757 void phy_advertise_supported(struct phy_device *phydev) 2758 { 2759 __ETHTOOL_DECLARE_LINK_MODE_MASK(new); 2760 2761 linkmode_copy(new, phydev->supported); 2762 phy_copy_pause_bits(new, phydev->advertising); 2763 linkmode_copy(phydev->advertising, new); 2764 } 2765 EXPORT_SYMBOL(phy_advertise_supported); 2766 2767 /** 2768 * phy_support_sym_pause - Enable support of symmetrical pause 2769 * @phydev: target phy_device struct 2770 * 2771 * Description: Called by the MAC to indicate is supports symmetrical 2772 * Pause, but not asym pause. 2773 */ 2774 void phy_support_sym_pause(struct phy_device *phydev) 2775 { 2776 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 2777 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2778 } 2779 EXPORT_SYMBOL(phy_support_sym_pause); 2780 2781 /** 2782 * phy_support_asym_pause - Enable support of asym pause 2783 * @phydev: target phy_device struct 2784 * 2785 * Description: Called by the MAC to indicate is supports Asym Pause. 2786 */ 2787 void phy_support_asym_pause(struct phy_device *phydev) 2788 { 2789 phy_copy_pause_bits(phydev->advertising, phydev->supported); 2790 } 2791 EXPORT_SYMBOL(phy_support_asym_pause); 2792 2793 /** 2794 * phy_set_sym_pause - Configure symmetric Pause 2795 * @phydev: target phy_device struct 2796 * @rx: Receiver Pause is supported 2797 * @tx: Transmit Pause is supported 2798 * @autoneg: Auto neg should be used 2799 * 2800 * Description: Configure advertised Pause support depending on if 2801 * receiver pause and pause auto neg is supported. Generally called 2802 * from the set_pauseparam .ndo. 2803 */ 2804 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx, 2805 bool autoneg) 2806 { 2807 linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 2808 2809 if (rx && tx && autoneg) 2810 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2811 phydev->supported); 2812 2813 linkmode_copy(phydev->advertising, phydev->supported); 2814 } 2815 EXPORT_SYMBOL(phy_set_sym_pause); 2816 2817 /** 2818 * phy_set_asym_pause - Configure Pause and Asym Pause 2819 * @phydev: target phy_device struct 2820 * @rx: Receiver Pause is supported 2821 * @tx: Transmit Pause is supported 2822 * 2823 * Description: Configure advertised Pause support depending on if 2824 * transmit and receiver pause is supported. If there has been a 2825 * change in adverting, trigger a new autoneg. Generally called from 2826 * the set_pauseparam .ndo. 2827 */ 2828 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx) 2829 { 2830 __ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv); 2831 2832 linkmode_copy(oldadv, phydev->advertising); 2833 linkmode_set_pause(phydev->advertising, tx, rx); 2834 2835 if (!linkmode_equal(oldadv, phydev->advertising) && 2836 phydev->autoneg) 2837 phy_start_aneg(phydev); 2838 } 2839 EXPORT_SYMBOL(phy_set_asym_pause); 2840 2841 /** 2842 * phy_validate_pause - Test if the PHY/MAC support the pause configuration 2843 * @phydev: phy_device struct 2844 * @pp: requested pause configuration 2845 * 2846 * Description: Test if the PHY/MAC combination supports the Pause 2847 * configuration the user is requesting. Returns True if it is 2848 * supported, false otherwise. 2849 */ 2850 bool phy_validate_pause(struct phy_device *phydev, 2851 struct ethtool_pauseparam *pp) 2852 { 2853 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, 2854 phydev->supported) && pp->rx_pause) 2855 return false; 2856 2857 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 2858 phydev->supported) && 2859 pp->rx_pause != pp->tx_pause) 2860 return false; 2861 2862 return true; 2863 } 2864 EXPORT_SYMBOL(phy_validate_pause); 2865 2866 /** 2867 * phy_get_pause - resolve negotiated pause modes 2868 * @phydev: phy_device struct 2869 * @tx_pause: pointer to bool to indicate whether transmit pause should be 2870 * enabled. 2871 * @rx_pause: pointer to bool to indicate whether receive pause should be 2872 * enabled. 2873 * 2874 * Resolve and return the flow control modes according to the negotiation 2875 * result. This includes checking that we are operating in full duplex mode. 2876 * See linkmode_resolve_pause() for further details. 2877 */ 2878 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause) 2879 { 2880 if (phydev->duplex != DUPLEX_FULL) { 2881 *tx_pause = false; 2882 *rx_pause = false; 2883 return; 2884 } 2885 2886 return linkmode_resolve_pause(phydev->advertising, 2887 phydev->lp_advertising, 2888 tx_pause, rx_pause); 2889 } 2890 EXPORT_SYMBOL(phy_get_pause); 2891 2892 #if IS_ENABLED(CONFIG_OF_MDIO) 2893 static int phy_get_int_delay_property(struct device *dev, const char *name) 2894 { 2895 s32 int_delay; 2896 int ret; 2897 2898 ret = device_property_read_u32(dev, name, &int_delay); 2899 if (ret) 2900 return ret; 2901 2902 return int_delay; 2903 } 2904 #else 2905 static int phy_get_int_delay_property(struct device *dev, const char *name) 2906 { 2907 return -EINVAL; 2908 } 2909 #endif 2910 2911 /** 2912 * phy_get_internal_delay - returns the index of the internal delay 2913 * @phydev: phy_device struct 2914 * @dev: pointer to the devices device struct 2915 * @delay_values: array of delays the PHY supports 2916 * @size: the size of the delay array 2917 * @is_rx: boolean to indicate to get the rx internal delay 2918 * 2919 * Returns the index within the array of internal delay passed in. 2920 * If the device property is not present then the interface type is checked 2921 * if the interface defines use of internal delay then a 1 is returned otherwise 2922 * a 0 is returned. 2923 * The array must be in ascending order. If PHY does not have an ascending order 2924 * array then size = 0 and the value of the delay property is returned. 2925 * Return -EINVAL if the delay is invalid or cannot be found. 2926 */ 2927 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev, 2928 const int *delay_values, int size, bool is_rx) 2929 { 2930 s32 delay; 2931 int i; 2932 2933 if (is_rx) { 2934 delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps"); 2935 if (delay < 0 && size == 0) { 2936 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2937 phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) 2938 return 1; 2939 else 2940 return 0; 2941 } 2942 2943 } else { 2944 delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps"); 2945 if (delay < 0 && size == 0) { 2946 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || 2947 phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) 2948 return 1; 2949 else 2950 return 0; 2951 } 2952 } 2953 2954 if (delay < 0) 2955 return delay; 2956 2957 if (delay && size == 0) 2958 return delay; 2959 2960 if (delay < delay_values[0] || delay > delay_values[size - 1]) { 2961 phydev_err(phydev, "Delay %d is out of range\n", delay); 2962 return -EINVAL; 2963 } 2964 2965 if (delay == delay_values[0]) 2966 return 0; 2967 2968 for (i = 1; i < size; i++) { 2969 if (delay == delay_values[i]) 2970 return i; 2971 2972 /* Find an approximate index by looking up the table */ 2973 if (delay > delay_values[i - 1] && 2974 delay < delay_values[i]) { 2975 if (delay - delay_values[i - 1] < 2976 delay_values[i] - delay) 2977 return i - 1; 2978 else 2979 return i; 2980 } 2981 } 2982 2983 phydev_err(phydev, "error finding internal delay index for %d\n", 2984 delay); 2985 2986 return -EINVAL; 2987 } 2988 EXPORT_SYMBOL(phy_get_internal_delay); 2989 2990 static bool phy_drv_supports_irq(struct phy_driver *phydrv) 2991 { 2992 return phydrv->config_intr && phydrv->handle_interrupt; 2993 } 2994 2995 static int phy_led_set_brightness(struct led_classdev *led_cdev, 2996 enum led_brightness value) 2997 { 2998 struct phy_led *phyled = to_phy_led(led_cdev); 2999 struct phy_device *phydev = phyled->phydev; 3000 int err; 3001 3002 mutex_lock(&phydev->lock); 3003 err = phydev->drv->led_brightness_set(phydev, phyled->index, value); 3004 mutex_unlock(&phydev->lock); 3005 3006 return err; 3007 } 3008 3009 static int phy_led_blink_set(struct led_classdev *led_cdev, 3010 unsigned long *delay_on, 3011 unsigned long *delay_off) 3012 { 3013 struct phy_led *phyled = to_phy_led(led_cdev); 3014 struct phy_device *phydev = phyled->phydev; 3015 int err; 3016 3017 mutex_lock(&phydev->lock); 3018 err = phydev->drv->led_blink_set(phydev, phyled->index, 3019 delay_on, delay_off); 3020 mutex_unlock(&phydev->lock); 3021 3022 return err; 3023 } 3024 3025 static __maybe_unused struct device * 3026 phy_led_hw_control_get_device(struct led_classdev *led_cdev) 3027 { 3028 struct phy_led *phyled = to_phy_led(led_cdev); 3029 struct phy_device *phydev = phyled->phydev; 3030 3031 if (phydev->attached_dev) 3032 return &phydev->attached_dev->dev; 3033 return NULL; 3034 } 3035 3036 static int __maybe_unused 3037 phy_led_hw_control_get(struct led_classdev *led_cdev, 3038 unsigned long *rules) 3039 { 3040 struct phy_led *phyled = to_phy_led(led_cdev); 3041 struct phy_device *phydev = phyled->phydev; 3042 int err; 3043 3044 mutex_lock(&phydev->lock); 3045 err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules); 3046 mutex_unlock(&phydev->lock); 3047 3048 return err; 3049 } 3050 3051 static int __maybe_unused 3052 phy_led_hw_control_set(struct led_classdev *led_cdev, 3053 unsigned long rules) 3054 { 3055 struct phy_led *phyled = to_phy_led(led_cdev); 3056 struct phy_device *phydev = phyled->phydev; 3057 int err; 3058 3059 mutex_lock(&phydev->lock); 3060 err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules); 3061 mutex_unlock(&phydev->lock); 3062 3063 return err; 3064 } 3065 3066 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev, 3067 unsigned long rules) 3068 { 3069 struct phy_led *phyled = to_phy_led(led_cdev); 3070 struct phy_device *phydev = phyled->phydev; 3071 int err; 3072 3073 mutex_lock(&phydev->lock); 3074 err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules); 3075 mutex_unlock(&phydev->lock); 3076 3077 return err; 3078 } 3079 3080 static void phy_leds_unregister(struct phy_device *phydev) 3081 { 3082 struct phy_led *phyled; 3083 3084 list_for_each_entry(phyled, &phydev->leds, list) { 3085 led_classdev_unregister(&phyled->led_cdev); 3086 } 3087 } 3088 3089 static int of_phy_led(struct phy_device *phydev, 3090 struct device_node *led) 3091 { 3092 struct device *dev = &phydev->mdio.dev; 3093 struct led_init_data init_data = {}; 3094 struct led_classdev *cdev; 3095 struct phy_led *phyled; 3096 u32 index; 3097 int err; 3098 3099 phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL); 3100 if (!phyled) 3101 return -ENOMEM; 3102 3103 cdev = &phyled->led_cdev; 3104 phyled->phydev = phydev; 3105 3106 err = of_property_read_u32(led, "reg", &index); 3107 if (err) 3108 return err; 3109 if (index > U8_MAX) 3110 return -EINVAL; 3111 3112 phyled->index = index; 3113 if (phydev->drv->led_brightness_set) 3114 cdev->brightness_set_blocking = phy_led_set_brightness; 3115 if (phydev->drv->led_blink_set) 3116 cdev->blink_set = phy_led_blink_set; 3117 3118 #ifdef CONFIG_LEDS_TRIGGERS 3119 if (phydev->drv->led_hw_is_supported && 3120 phydev->drv->led_hw_control_set && 3121 phydev->drv->led_hw_control_get) { 3122 cdev->hw_control_is_supported = phy_led_hw_is_supported; 3123 cdev->hw_control_set = phy_led_hw_control_set; 3124 cdev->hw_control_get = phy_led_hw_control_get; 3125 cdev->hw_control_trigger = "netdev"; 3126 } 3127 3128 cdev->hw_control_get_device = phy_led_hw_control_get_device; 3129 #endif 3130 cdev->max_brightness = 1; 3131 init_data.devicename = dev_name(&phydev->mdio.dev); 3132 init_data.fwnode = of_fwnode_handle(led); 3133 init_data.devname_mandatory = true; 3134 3135 err = led_classdev_register_ext(dev, cdev, &init_data); 3136 if (err) 3137 return err; 3138 3139 list_add(&phyled->list, &phydev->leds); 3140 3141 return 0; 3142 } 3143 3144 static int of_phy_leds(struct phy_device *phydev) 3145 { 3146 struct device_node *node = phydev->mdio.dev.of_node; 3147 struct device_node *leds, *led; 3148 int err; 3149 3150 if (!IS_ENABLED(CONFIG_OF_MDIO)) 3151 return 0; 3152 3153 if (!node) 3154 return 0; 3155 3156 leds = of_get_child_by_name(node, "leds"); 3157 if (!leds) 3158 return 0; 3159 3160 for_each_available_child_of_node(leds, led) { 3161 err = of_phy_led(phydev, led); 3162 if (err) { 3163 of_node_put(led); 3164 phy_leds_unregister(phydev); 3165 return err; 3166 } 3167 } 3168 3169 return 0; 3170 } 3171 3172 /** 3173 * fwnode_mdio_find_device - Given a fwnode, find the mdio_device 3174 * @fwnode: pointer to the mdio_device's fwnode 3175 * 3176 * If successful, returns a pointer to the mdio_device with the embedded 3177 * struct device refcount incremented by one, or NULL on failure. 3178 * The caller should call put_device() on the mdio_device after its use. 3179 */ 3180 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode) 3181 { 3182 struct device *d; 3183 3184 if (!fwnode) 3185 return NULL; 3186 3187 d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode); 3188 if (!d) 3189 return NULL; 3190 3191 return to_mdio_device(d); 3192 } 3193 EXPORT_SYMBOL(fwnode_mdio_find_device); 3194 3195 /** 3196 * fwnode_phy_find_device - For provided phy_fwnode, find phy_device. 3197 * 3198 * @phy_fwnode: Pointer to the phy's fwnode. 3199 * 3200 * If successful, returns a pointer to the phy_device with the embedded 3201 * struct device refcount incremented by one, or NULL on failure. 3202 */ 3203 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode) 3204 { 3205 struct mdio_device *mdiodev; 3206 3207 mdiodev = fwnode_mdio_find_device(phy_fwnode); 3208 if (!mdiodev) 3209 return NULL; 3210 3211 if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY) 3212 return to_phy_device(&mdiodev->dev); 3213 3214 put_device(&mdiodev->dev); 3215 3216 return NULL; 3217 } 3218 EXPORT_SYMBOL(fwnode_phy_find_device); 3219 3220 /** 3221 * device_phy_find_device - For the given device, get the phy_device 3222 * @dev: Pointer to the given device 3223 * 3224 * Refer return conditions of fwnode_phy_find_device(). 3225 */ 3226 struct phy_device *device_phy_find_device(struct device *dev) 3227 { 3228 return fwnode_phy_find_device(dev_fwnode(dev)); 3229 } 3230 EXPORT_SYMBOL_GPL(device_phy_find_device); 3231 3232 /** 3233 * fwnode_get_phy_node - Get the phy_node using the named reference. 3234 * @fwnode: Pointer to fwnode from which phy_node has to be obtained. 3235 * 3236 * Refer return conditions of fwnode_find_reference(). 3237 * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy" 3238 * and "phy-device" are not supported in ACPI. DT supports all the three 3239 * named references to the phy node. 3240 */ 3241 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode) 3242 { 3243 struct fwnode_handle *phy_node; 3244 3245 /* Only phy-handle is used for ACPI */ 3246 phy_node = fwnode_find_reference(fwnode, "phy-handle", 0); 3247 if (is_acpi_node(fwnode) || !IS_ERR(phy_node)) 3248 return phy_node; 3249 phy_node = fwnode_find_reference(fwnode, "phy", 0); 3250 if (IS_ERR(phy_node)) 3251 phy_node = fwnode_find_reference(fwnode, "phy-device", 0); 3252 return phy_node; 3253 } 3254 EXPORT_SYMBOL_GPL(fwnode_get_phy_node); 3255 3256 /** 3257 * phy_probe - probe and init a PHY device 3258 * @dev: device to probe and init 3259 * 3260 * Take care of setting up the phy_device structure, set the state to READY. 3261 */ 3262 static int phy_probe(struct device *dev) 3263 { 3264 struct phy_device *phydev = to_phy_device(dev); 3265 struct device_driver *drv = phydev->mdio.dev.driver; 3266 struct phy_driver *phydrv = to_phy_driver(drv); 3267 int err = 0; 3268 3269 phydev->drv = phydrv; 3270 3271 /* Disable the interrupt if the PHY doesn't support it 3272 * but the interrupt is still a valid one 3273 */ 3274 if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev)) 3275 phydev->irq = PHY_POLL; 3276 3277 if (phydrv->flags & PHY_IS_INTERNAL) 3278 phydev->is_internal = true; 3279 3280 /* Deassert the reset signal */ 3281 phy_device_reset(phydev, 0); 3282 3283 if (phydev->drv->probe) { 3284 err = phydev->drv->probe(phydev); 3285 if (err) 3286 goto out; 3287 } 3288 3289 phy_disable_interrupts(phydev); 3290 3291 /* Start out supporting everything. Eventually, 3292 * a controller will attach, and may modify one 3293 * or both of these values 3294 */ 3295 if (phydrv->features) { 3296 linkmode_copy(phydev->supported, phydrv->features); 3297 genphy_c45_read_eee_abilities(phydev); 3298 } 3299 else if (phydrv->get_features) 3300 err = phydrv->get_features(phydev); 3301 else if (phydev->is_c45) 3302 err = genphy_c45_pma_read_abilities(phydev); 3303 else 3304 err = genphy_read_abilities(phydev); 3305 3306 if (err) 3307 goto out; 3308 3309 if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3310 phydev->supported)) 3311 phydev->autoneg = 0; 3312 3313 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 3314 phydev->supported)) 3315 phydev->is_gigabit_capable = 1; 3316 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 3317 phydev->supported)) 3318 phydev->is_gigabit_capable = 1; 3319 3320 of_set_phy_supported(phydev); 3321 phy_advertise_supported(phydev); 3322 3323 /* Get PHY default EEE advertising modes and handle them as potentially 3324 * safe initial configuration. 3325 */ 3326 err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee); 3327 if (err) 3328 goto out; 3329 3330 /* There is no "enabled" flag. If PHY is advertising, assume it is 3331 * kind of enabled. 3332 */ 3333 phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee); 3334 3335 /* Some PHYs may advertise, by default, not support EEE modes. So, 3336 * we need to clean them. 3337 */ 3338 if (phydev->eee_enabled) 3339 linkmode_and(phydev->advertising_eee, phydev->supported_eee, 3340 phydev->advertising_eee); 3341 3342 /* Get the EEE modes we want to prohibit. We will ask 3343 * the PHY stop advertising these mode later on 3344 */ 3345 of_set_phy_eee_broken(phydev); 3346 3347 /* The Pause Frame bits indicate that the PHY can support passing 3348 * pause frames. During autonegotiation, the PHYs will determine if 3349 * they should allow pause frames to pass. The MAC driver should then 3350 * use that result to determine whether to enable flow control via 3351 * pause frames. 3352 * 3353 * Normally, PHY drivers should not set the Pause bits, and instead 3354 * allow phylib to do that. However, there may be some situations 3355 * (e.g. hardware erratum) where the driver wants to set only one 3356 * of these bits. 3357 */ 3358 if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) && 3359 !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) { 3360 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, 3361 phydev->supported); 3362 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, 3363 phydev->supported); 3364 } 3365 3366 /* Set the state to READY by default */ 3367 phydev->state = PHY_READY; 3368 3369 /* Get the LEDs from the device tree, and instantiate standard 3370 * LEDs for them. 3371 */ 3372 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3373 err = of_phy_leds(phydev); 3374 3375 out: 3376 /* Re-assert the reset signal on error */ 3377 if (err) 3378 phy_device_reset(phydev, 1); 3379 3380 return err; 3381 } 3382 3383 static int phy_remove(struct device *dev) 3384 { 3385 struct phy_device *phydev = to_phy_device(dev); 3386 3387 cancel_delayed_work_sync(&phydev->state_queue); 3388 3389 if (IS_ENABLED(CONFIG_PHYLIB_LEDS)) 3390 phy_leds_unregister(phydev); 3391 3392 phydev->state = PHY_DOWN; 3393 3394 sfp_bus_del_upstream(phydev->sfp_bus); 3395 phydev->sfp_bus = NULL; 3396 3397 if (phydev->drv && phydev->drv->remove) 3398 phydev->drv->remove(phydev); 3399 3400 /* Assert the reset signal */ 3401 phy_device_reset(phydev, 1); 3402 3403 phydev->drv = NULL; 3404 3405 return 0; 3406 } 3407 3408 /** 3409 * phy_driver_register - register a phy_driver with the PHY layer 3410 * @new_driver: new phy_driver to register 3411 * @owner: module owning this PHY 3412 */ 3413 int phy_driver_register(struct phy_driver *new_driver, struct module *owner) 3414 { 3415 int retval; 3416 3417 /* Either the features are hard coded, or dynamically 3418 * determined. It cannot be both. 3419 */ 3420 if (WARN_ON(new_driver->features && new_driver->get_features)) { 3421 pr_err("%s: features and get_features must not both be set\n", 3422 new_driver->name); 3423 return -EINVAL; 3424 } 3425 3426 /* PHYLIB device drivers must not match using a DT compatible table 3427 * as this bypasses our checks that the mdiodev that is being matched 3428 * is backed by a struct phy_device. If such a case happens, we will 3429 * make out-of-bounds accesses and lockup in phydev->lock. 3430 */ 3431 if (WARN(new_driver->mdiodrv.driver.of_match_table, 3432 "%s: driver must not provide a DT match table\n", 3433 new_driver->name)) 3434 return -EINVAL; 3435 3436 new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY; 3437 new_driver->mdiodrv.driver.name = new_driver->name; 3438 new_driver->mdiodrv.driver.bus = &mdio_bus_type; 3439 new_driver->mdiodrv.driver.probe = phy_probe; 3440 new_driver->mdiodrv.driver.remove = phy_remove; 3441 new_driver->mdiodrv.driver.owner = owner; 3442 new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 3443 3444 retval = driver_register(&new_driver->mdiodrv.driver); 3445 if (retval) { 3446 pr_err("%s: Error %d in registering driver\n", 3447 new_driver->name, retval); 3448 3449 return retval; 3450 } 3451 3452 pr_debug("%s: Registered new driver\n", new_driver->name); 3453 3454 return 0; 3455 } 3456 EXPORT_SYMBOL(phy_driver_register); 3457 3458 int phy_drivers_register(struct phy_driver *new_driver, int n, 3459 struct module *owner) 3460 { 3461 int i, ret = 0; 3462 3463 for (i = 0; i < n; i++) { 3464 ret = phy_driver_register(new_driver + i, owner); 3465 if (ret) { 3466 while (i-- > 0) 3467 phy_driver_unregister(new_driver + i); 3468 break; 3469 } 3470 } 3471 return ret; 3472 } 3473 EXPORT_SYMBOL(phy_drivers_register); 3474 3475 void phy_driver_unregister(struct phy_driver *drv) 3476 { 3477 driver_unregister(&drv->mdiodrv.driver); 3478 } 3479 EXPORT_SYMBOL(phy_driver_unregister); 3480 3481 void phy_drivers_unregister(struct phy_driver *drv, int n) 3482 { 3483 int i; 3484 3485 for (i = 0; i < n; i++) 3486 phy_driver_unregister(drv + i); 3487 } 3488 EXPORT_SYMBOL(phy_drivers_unregister); 3489 3490 static struct phy_driver genphy_driver = { 3491 .phy_id = 0xffffffff, 3492 .phy_id_mask = 0xffffffff, 3493 .name = "Generic PHY", 3494 .get_features = genphy_read_abilities, 3495 .suspend = genphy_suspend, 3496 .resume = genphy_resume, 3497 .set_loopback = genphy_loopback, 3498 }; 3499 3500 static const struct ethtool_phy_ops phy_ethtool_phy_ops = { 3501 .get_sset_count = phy_ethtool_get_sset_count, 3502 .get_strings = phy_ethtool_get_strings, 3503 .get_stats = phy_ethtool_get_stats, 3504 .get_plca_cfg = phy_ethtool_get_plca_cfg, 3505 .set_plca_cfg = phy_ethtool_set_plca_cfg, 3506 .get_plca_status = phy_ethtool_get_plca_status, 3507 .start_cable_test = phy_start_cable_test, 3508 .start_cable_test_tdr = phy_start_cable_test_tdr, 3509 }; 3510 3511 static const struct phylib_stubs __phylib_stubs = { 3512 .hwtstamp_get = __phy_hwtstamp_get, 3513 .hwtstamp_set = __phy_hwtstamp_set, 3514 }; 3515 3516 static void phylib_register_stubs(void) 3517 { 3518 phylib_stubs = &__phylib_stubs; 3519 } 3520 3521 static void phylib_unregister_stubs(void) 3522 { 3523 phylib_stubs = NULL; 3524 } 3525 3526 static int __init phy_init(void) 3527 { 3528 int rc; 3529 3530 rtnl_lock(); 3531 ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops); 3532 phylib_register_stubs(); 3533 rtnl_unlock(); 3534 3535 rc = mdio_bus_init(); 3536 if (rc) 3537 goto err_ethtool_phy_ops; 3538 3539 features_init(); 3540 3541 rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE); 3542 if (rc) 3543 goto err_mdio_bus; 3544 3545 rc = phy_driver_register(&genphy_driver, THIS_MODULE); 3546 if (rc) 3547 goto err_c45; 3548 3549 return 0; 3550 3551 err_c45: 3552 phy_driver_unregister(&genphy_c45_driver); 3553 err_mdio_bus: 3554 mdio_bus_exit(); 3555 err_ethtool_phy_ops: 3556 rtnl_lock(); 3557 phylib_unregister_stubs(); 3558 ethtool_set_ethtool_phy_ops(NULL); 3559 rtnl_unlock(); 3560 3561 return rc; 3562 } 3563 3564 static void __exit phy_exit(void) 3565 { 3566 phy_driver_unregister(&genphy_c45_driver); 3567 phy_driver_unregister(&genphy_driver); 3568 mdio_bus_exit(); 3569 rtnl_lock(); 3570 phylib_unregister_stubs(); 3571 ethtool_set_ethtool_phy_ops(NULL); 3572 rtnl_unlock(); 3573 } 3574 3575 subsys_initcall(phy_init); 3576 module_exit(phy_exit); 3577