xref: /linux/drivers/net/phy/phy_device.c (revision 0a149ab78ee220c75eef797abea7a29f4490e226)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Framework for finding and configuring PHYs.
3  * Also contains generic PHY driver
4  *
5  * Author: Andy Fleming
6  *
7  * Copyright (c) 2004 Freescale Semiconductor, Inc.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/acpi.h>
13 #include <linux/bitmap.h>
14 #include <linux/delay.h>
15 #include <linux/errno.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/mii.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/netdevice.h>
29 #include <linux/phy.h>
30 #include <linux/phylib_stubs.h>
31 #include <linux/phy_led_triggers.h>
32 #include <linux/pse-pd/pse.h>
33 #include <linux/property.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/sfp.h>
36 #include <linux/skbuff.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/uaccess.h>
40 #include <linux/unistd.h>
41 
42 MODULE_DESCRIPTION("PHY library");
43 MODULE_AUTHOR("Andy Fleming");
44 MODULE_LICENSE("GPL");
45 
46 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_features) __ro_after_init;
47 EXPORT_SYMBOL_GPL(phy_basic_features);
48 
49 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1_features) __ro_after_init;
50 EXPORT_SYMBOL_GPL(phy_basic_t1_features);
51 
52 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_basic_t1s_p2mp_features) __ro_after_init;
53 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features);
54 
55 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_features) __ro_after_init;
56 EXPORT_SYMBOL_GPL(phy_gbit_features);
57 
58 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_fibre_features) __ro_after_init;
59 EXPORT_SYMBOL_GPL(phy_gbit_fibre_features);
60 
61 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_gbit_all_ports_features) __ro_after_init;
62 EXPORT_SYMBOL_GPL(phy_gbit_all_ports_features);
63 
64 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_features) __ro_after_init;
65 EXPORT_SYMBOL_GPL(phy_10gbit_features);
66 
67 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_fec_features) __ro_after_init;
68 EXPORT_SYMBOL_GPL(phy_10gbit_fec_features);
69 
70 const int phy_basic_ports_array[3] = {
71 	ETHTOOL_LINK_MODE_Autoneg_BIT,
72 	ETHTOOL_LINK_MODE_TP_BIT,
73 	ETHTOOL_LINK_MODE_MII_BIT,
74 };
75 EXPORT_SYMBOL_GPL(phy_basic_ports_array);
76 
77 const int phy_fibre_port_array[1] = {
78 	ETHTOOL_LINK_MODE_FIBRE_BIT,
79 };
80 EXPORT_SYMBOL_GPL(phy_fibre_port_array);
81 
82 const int phy_all_ports_features_array[7] = {
83 	ETHTOOL_LINK_MODE_Autoneg_BIT,
84 	ETHTOOL_LINK_MODE_TP_BIT,
85 	ETHTOOL_LINK_MODE_MII_BIT,
86 	ETHTOOL_LINK_MODE_FIBRE_BIT,
87 	ETHTOOL_LINK_MODE_AUI_BIT,
88 	ETHTOOL_LINK_MODE_BNC_BIT,
89 	ETHTOOL_LINK_MODE_Backplane_BIT,
90 };
91 EXPORT_SYMBOL_GPL(phy_all_ports_features_array);
92 
93 const int phy_10_100_features_array[4] = {
94 	ETHTOOL_LINK_MODE_10baseT_Half_BIT,
95 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
96 	ETHTOOL_LINK_MODE_100baseT_Half_BIT,
97 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
98 };
99 EXPORT_SYMBOL_GPL(phy_10_100_features_array);
100 
101 const int phy_basic_t1_features_array[3] = {
102 	ETHTOOL_LINK_MODE_TP_BIT,
103 	ETHTOOL_LINK_MODE_10baseT1L_Full_BIT,
104 	ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
105 };
106 EXPORT_SYMBOL_GPL(phy_basic_t1_features_array);
107 
108 const int phy_basic_t1s_p2mp_features_array[2] = {
109 	ETHTOOL_LINK_MODE_TP_BIT,
110 	ETHTOOL_LINK_MODE_10baseT1S_P2MP_Half_BIT,
111 };
112 EXPORT_SYMBOL_GPL(phy_basic_t1s_p2mp_features_array);
113 
114 const int phy_gbit_features_array[2] = {
115 	ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
116 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
117 };
118 EXPORT_SYMBOL_GPL(phy_gbit_features_array);
119 
120 const int phy_10gbit_features_array[1] = {
121 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
122 };
123 EXPORT_SYMBOL_GPL(phy_10gbit_features_array);
124 
125 static const int phy_10gbit_fec_features_array[1] = {
126 	ETHTOOL_LINK_MODE_10000baseR_FEC_BIT,
127 };
128 
129 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_10gbit_full_features) __ro_after_init;
130 EXPORT_SYMBOL_GPL(phy_10gbit_full_features);
131 
132 static const int phy_10gbit_full_features_array[] = {
133 	ETHTOOL_LINK_MODE_10baseT_Full_BIT,
134 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
135 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
136 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
137 };
138 
139 static const int phy_eee_cap1_features_array[] = {
140 	ETHTOOL_LINK_MODE_100baseT_Full_BIT,
141 	ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
142 	ETHTOOL_LINK_MODE_10000baseT_Full_BIT,
143 	ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
144 	ETHTOOL_LINK_MODE_10000baseKX4_Full_BIT,
145 	ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
146 };
147 
148 __ETHTOOL_DECLARE_LINK_MODE_MASK(phy_eee_cap1_features) __ro_after_init;
149 EXPORT_SYMBOL_GPL(phy_eee_cap1_features);
150 
151 static void features_init(void)
152 {
153 	/* 10/100 half/full*/
154 	linkmode_set_bit_array(phy_basic_ports_array,
155 			       ARRAY_SIZE(phy_basic_ports_array),
156 			       phy_basic_features);
157 	linkmode_set_bit_array(phy_10_100_features_array,
158 			       ARRAY_SIZE(phy_10_100_features_array),
159 			       phy_basic_features);
160 
161 	/* 100 full, TP */
162 	linkmode_set_bit_array(phy_basic_t1_features_array,
163 			       ARRAY_SIZE(phy_basic_t1_features_array),
164 			       phy_basic_t1_features);
165 
166 	/* 10 half, P2MP, TP */
167 	linkmode_set_bit_array(phy_basic_t1s_p2mp_features_array,
168 			       ARRAY_SIZE(phy_basic_t1s_p2mp_features_array),
169 			       phy_basic_t1s_p2mp_features);
170 
171 	/* 10/100 half/full + 1000 half/full */
172 	linkmode_set_bit_array(phy_basic_ports_array,
173 			       ARRAY_SIZE(phy_basic_ports_array),
174 			       phy_gbit_features);
175 	linkmode_set_bit_array(phy_10_100_features_array,
176 			       ARRAY_SIZE(phy_10_100_features_array),
177 			       phy_gbit_features);
178 	linkmode_set_bit_array(phy_gbit_features_array,
179 			       ARRAY_SIZE(phy_gbit_features_array),
180 			       phy_gbit_features);
181 
182 	/* 10/100 half/full + 1000 half/full + fibre*/
183 	linkmode_set_bit_array(phy_basic_ports_array,
184 			       ARRAY_SIZE(phy_basic_ports_array),
185 			       phy_gbit_fibre_features);
186 	linkmode_set_bit_array(phy_10_100_features_array,
187 			       ARRAY_SIZE(phy_10_100_features_array),
188 			       phy_gbit_fibre_features);
189 	linkmode_set_bit_array(phy_gbit_features_array,
190 			       ARRAY_SIZE(phy_gbit_features_array),
191 			       phy_gbit_fibre_features);
192 	linkmode_set_bit_array(phy_fibre_port_array,
193 			       ARRAY_SIZE(phy_fibre_port_array),
194 			       phy_gbit_fibre_features);
195 
196 	/* 10/100 half/full + 1000 half/full + TP/MII/FIBRE/AUI/BNC/Backplane*/
197 	linkmode_set_bit_array(phy_all_ports_features_array,
198 			       ARRAY_SIZE(phy_all_ports_features_array),
199 			       phy_gbit_all_ports_features);
200 	linkmode_set_bit_array(phy_10_100_features_array,
201 			       ARRAY_SIZE(phy_10_100_features_array),
202 			       phy_gbit_all_ports_features);
203 	linkmode_set_bit_array(phy_gbit_features_array,
204 			       ARRAY_SIZE(phy_gbit_features_array),
205 			       phy_gbit_all_ports_features);
206 
207 	/* 10/100 half/full + 1000 half/full + 10G full*/
208 	linkmode_set_bit_array(phy_all_ports_features_array,
209 			       ARRAY_SIZE(phy_all_ports_features_array),
210 			       phy_10gbit_features);
211 	linkmode_set_bit_array(phy_10_100_features_array,
212 			       ARRAY_SIZE(phy_10_100_features_array),
213 			       phy_10gbit_features);
214 	linkmode_set_bit_array(phy_gbit_features_array,
215 			       ARRAY_SIZE(phy_gbit_features_array),
216 			       phy_10gbit_features);
217 	linkmode_set_bit_array(phy_10gbit_features_array,
218 			       ARRAY_SIZE(phy_10gbit_features_array),
219 			       phy_10gbit_features);
220 
221 	/* 10/100/1000/10G full */
222 	linkmode_set_bit_array(phy_all_ports_features_array,
223 			       ARRAY_SIZE(phy_all_ports_features_array),
224 			       phy_10gbit_full_features);
225 	linkmode_set_bit_array(phy_10gbit_full_features_array,
226 			       ARRAY_SIZE(phy_10gbit_full_features_array),
227 			       phy_10gbit_full_features);
228 	/* 10G FEC only */
229 	linkmode_set_bit_array(phy_10gbit_fec_features_array,
230 			       ARRAY_SIZE(phy_10gbit_fec_features_array),
231 			       phy_10gbit_fec_features);
232 	linkmode_set_bit_array(phy_eee_cap1_features_array,
233 			       ARRAY_SIZE(phy_eee_cap1_features_array),
234 			       phy_eee_cap1_features);
235 
236 }
237 
238 void phy_device_free(struct phy_device *phydev)
239 {
240 	put_device(&phydev->mdio.dev);
241 }
242 EXPORT_SYMBOL(phy_device_free);
243 
244 static void phy_mdio_device_free(struct mdio_device *mdiodev)
245 {
246 	struct phy_device *phydev;
247 
248 	phydev = container_of(mdiodev, struct phy_device, mdio);
249 	phy_device_free(phydev);
250 }
251 
252 static void phy_device_release(struct device *dev)
253 {
254 	fwnode_handle_put(dev->fwnode);
255 	kfree(to_phy_device(dev));
256 }
257 
258 static void phy_mdio_device_remove(struct mdio_device *mdiodev)
259 {
260 	struct phy_device *phydev;
261 
262 	phydev = container_of(mdiodev, struct phy_device, mdio);
263 	phy_device_remove(phydev);
264 }
265 
266 static struct phy_driver genphy_driver;
267 
268 static LIST_HEAD(phy_fixup_list);
269 static DEFINE_MUTEX(phy_fixup_lock);
270 
271 static bool mdio_bus_phy_may_suspend(struct phy_device *phydev)
272 {
273 	struct device_driver *drv = phydev->mdio.dev.driver;
274 	struct phy_driver *phydrv = to_phy_driver(drv);
275 	struct net_device *netdev = phydev->attached_dev;
276 
277 	if (!drv || !phydrv->suspend)
278 		return false;
279 
280 	/* PHY not attached? May suspend if the PHY has not already been
281 	 * suspended as part of a prior call to phy_disconnect() ->
282 	 * phy_detach() -> phy_suspend() because the parent netdev might be the
283 	 * MDIO bus driver and clock gated at this point.
284 	 */
285 	if (!netdev)
286 		goto out;
287 
288 	if (netdev->wol_enabled)
289 		return false;
290 
291 	/* As long as not all affected network drivers support the
292 	 * wol_enabled flag, let's check for hints that WoL is enabled.
293 	 * Don't suspend PHY if the attached netdev parent may wake up.
294 	 * The parent may point to a PCI device, as in tg3 driver.
295 	 */
296 	if (netdev->dev.parent && device_may_wakeup(netdev->dev.parent))
297 		return false;
298 
299 	/* Also don't suspend PHY if the netdev itself may wakeup. This
300 	 * is the case for devices w/o underlaying pwr. mgmt. aware bus,
301 	 * e.g. SoC devices.
302 	 */
303 	if (device_may_wakeup(&netdev->dev))
304 		return false;
305 
306 out:
307 	return !phydev->suspended;
308 }
309 
310 static __maybe_unused int mdio_bus_phy_suspend(struct device *dev)
311 {
312 	struct phy_device *phydev = to_phy_device(dev);
313 
314 	if (phydev->mac_managed_pm)
315 		return 0;
316 
317 	/* Wakeup interrupts may occur during the system sleep transition when
318 	 * the PHY is inaccessible. Set flag to postpone handling until the PHY
319 	 * has resumed. Wait for concurrent interrupt handler to complete.
320 	 */
321 	if (phy_interrupt_is_valid(phydev)) {
322 		phydev->irq_suspended = 1;
323 		synchronize_irq(phydev->irq);
324 	}
325 
326 	/* We must stop the state machine manually, otherwise it stops out of
327 	 * control, possibly with the phydev->lock held. Upon resume, netdev
328 	 * may call phy routines that try to grab the same lock, and that may
329 	 * lead to a deadlock.
330 	 */
331 	if (phydev->attached_dev && phydev->adjust_link)
332 		phy_stop_machine(phydev);
333 
334 	if (!mdio_bus_phy_may_suspend(phydev))
335 		return 0;
336 
337 	phydev->suspended_by_mdio_bus = 1;
338 
339 	return phy_suspend(phydev);
340 }
341 
342 static __maybe_unused int mdio_bus_phy_resume(struct device *dev)
343 {
344 	struct phy_device *phydev = to_phy_device(dev);
345 	int ret;
346 
347 	if (phydev->mac_managed_pm)
348 		return 0;
349 
350 	if (!phydev->suspended_by_mdio_bus)
351 		goto no_resume;
352 
353 	phydev->suspended_by_mdio_bus = 0;
354 
355 	/* If we managed to get here with the PHY state machine in a state
356 	 * neither PHY_HALTED, PHY_READY nor PHY_UP, this is an indication
357 	 * that something went wrong and we should most likely be using
358 	 * MAC managed PM, but we are not.
359 	 */
360 	WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
361 		phydev->state != PHY_UP);
362 
363 	ret = phy_init_hw(phydev);
364 	if (ret < 0)
365 		return ret;
366 
367 	ret = phy_resume(phydev);
368 	if (ret < 0)
369 		return ret;
370 no_resume:
371 	if (phy_interrupt_is_valid(phydev)) {
372 		phydev->irq_suspended = 0;
373 		synchronize_irq(phydev->irq);
374 
375 		/* Rerun interrupts which were postponed by phy_interrupt()
376 		 * because they occurred during the system sleep transition.
377 		 */
378 		if (phydev->irq_rerun) {
379 			phydev->irq_rerun = 0;
380 			enable_irq(phydev->irq);
381 			irq_wake_thread(phydev->irq, phydev);
382 		}
383 	}
384 
385 	if (phydev->attached_dev && phydev->adjust_link)
386 		phy_start_machine(phydev);
387 
388 	return 0;
389 }
390 
391 static SIMPLE_DEV_PM_OPS(mdio_bus_phy_pm_ops, mdio_bus_phy_suspend,
392 			 mdio_bus_phy_resume);
393 
394 /**
395  * phy_register_fixup - creates a new phy_fixup and adds it to the list
396  * @bus_id: A string which matches phydev->mdio.dev.bus_id (or PHY_ANY_ID)
397  * @phy_uid: Used to match against phydev->phy_id (the UID of the PHY)
398  *	It can also be PHY_ANY_UID
399  * @phy_uid_mask: Applied to phydev->phy_id and fixup->phy_uid before
400  *	comparison
401  * @run: The actual code to be run when a matching PHY is found
402  */
403 int phy_register_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask,
404 		       int (*run)(struct phy_device *))
405 {
406 	struct phy_fixup *fixup = kzalloc(sizeof(*fixup), GFP_KERNEL);
407 
408 	if (!fixup)
409 		return -ENOMEM;
410 
411 	strscpy(fixup->bus_id, bus_id, sizeof(fixup->bus_id));
412 	fixup->phy_uid = phy_uid;
413 	fixup->phy_uid_mask = phy_uid_mask;
414 	fixup->run = run;
415 
416 	mutex_lock(&phy_fixup_lock);
417 	list_add_tail(&fixup->list, &phy_fixup_list);
418 	mutex_unlock(&phy_fixup_lock);
419 
420 	return 0;
421 }
422 EXPORT_SYMBOL(phy_register_fixup);
423 
424 /* Registers a fixup to be run on any PHY with the UID in phy_uid */
425 int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
426 			       int (*run)(struct phy_device *))
427 {
428 	return phy_register_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask, run);
429 }
430 EXPORT_SYMBOL(phy_register_fixup_for_uid);
431 
432 /* Registers a fixup to be run on the PHY with id string bus_id */
433 int phy_register_fixup_for_id(const char *bus_id,
434 			      int (*run)(struct phy_device *))
435 {
436 	return phy_register_fixup(bus_id, PHY_ANY_UID, 0xffffffff, run);
437 }
438 EXPORT_SYMBOL(phy_register_fixup_for_id);
439 
440 /**
441  * phy_unregister_fixup - remove a phy_fixup from the list
442  * @bus_id: A string matches fixup->bus_id (or PHY_ANY_ID) in phy_fixup_list
443  * @phy_uid: A phy id matches fixup->phy_id (or PHY_ANY_UID) in phy_fixup_list
444  * @phy_uid_mask: Applied to phy_uid and fixup->phy_uid before comparison
445  */
446 int phy_unregister_fixup(const char *bus_id, u32 phy_uid, u32 phy_uid_mask)
447 {
448 	struct list_head *pos, *n;
449 	struct phy_fixup *fixup;
450 	int ret;
451 
452 	ret = -ENODEV;
453 
454 	mutex_lock(&phy_fixup_lock);
455 	list_for_each_safe(pos, n, &phy_fixup_list) {
456 		fixup = list_entry(pos, struct phy_fixup, list);
457 
458 		if ((!strcmp(fixup->bus_id, bus_id)) &&
459 		    phy_id_compare(fixup->phy_uid, phy_uid, phy_uid_mask)) {
460 			list_del(&fixup->list);
461 			kfree(fixup);
462 			ret = 0;
463 			break;
464 		}
465 	}
466 	mutex_unlock(&phy_fixup_lock);
467 
468 	return ret;
469 }
470 EXPORT_SYMBOL(phy_unregister_fixup);
471 
472 /* Unregisters a fixup of any PHY with the UID in phy_uid */
473 int phy_unregister_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask)
474 {
475 	return phy_unregister_fixup(PHY_ANY_ID, phy_uid, phy_uid_mask);
476 }
477 EXPORT_SYMBOL(phy_unregister_fixup_for_uid);
478 
479 /* Unregisters a fixup of the PHY with id string bus_id */
480 int phy_unregister_fixup_for_id(const char *bus_id)
481 {
482 	return phy_unregister_fixup(bus_id, PHY_ANY_UID, 0xffffffff);
483 }
484 EXPORT_SYMBOL(phy_unregister_fixup_for_id);
485 
486 /* Returns 1 if fixup matches phydev in bus_id and phy_uid.
487  * Fixups can be set to match any in one or more fields.
488  */
489 static int phy_needs_fixup(struct phy_device *phydev, struct phy_fixup *fixup)
490 {
491 	if (strcmp(fixup->bus_id, phydev_name(phydev)) != 0)
492 		if (strcmp(fixup->bus_id, PHY_ANY_ID) != 0)
493 			return 0;
494 
495 	if (!phy_id_compare(phydev->phy_id, fixup->phy_uid,
496 			    fixup->phy_uid_mask))
497 		if (fixup->phy_uid != PHY_ANY_UID)
498 			return 0;
499 
500 	return 1;
501 }
502 
503 /* Runs any matching fixups for this phydev */
504 static int phy_scan_fixups(struct phy_device *phydev)
505 {
506 	struct phy_fixup *fixup;
507 
508 	mutex_lock(&phy_fixup_lock);
509 	list_for_each_entry(fixup, &phy_fixup_list, list) {
510 		if (phy_needs_fixup(phydev, fixup)) {
511 			int err = fixup->run(phydev);
512 
513 			if (err < 0) {
514 				mutex_unlock(&phy_fixup_lock);
515 				return err;
516 			}
517 			phydev->has_fixups = true;
518 		}
519 	}
520 	mutex_unlock(&phy_fixup_lock);
521 
522 	return 0;
523 }
524 
525 static int phy_bus_match(struct device *dev, struct device_driver *drv)
526 {
527 	struct phy_device *phydev = to_phy_device(dev);
528 	struct phy_driver *phydrv = to_phy_driver(drv);
529 	const int num_ids = ARRAY_SIZE(phydev->c45_ids.device_ids);
530 	int i;
531 
532 	if (!(phydrv->mdiodrv.flags & MDIO_DEVICE_IS_PHY))
533 		return 0;
534 
535 	if (phydrv->match_phy_device)
536 		return phydrv->match_phy_device(phydev);
537 
538 	if (phydev->is_c45) {
539 		for (i = 1; i < num_ids; i++) {
540 			if (phydev->c45_ids.device_ids[i] == 0xffffffff)
541 				continue;
542 
543 			if (phy_id_compare(phydev->c45_ids.device_ids[i],
544 					   phydrv->phy_id, phydrv->phy_id_mask))
545 				return 1;
546 		}
547 		return 0;
548 	} else {
549 		return phy_id_compare(phydev->phy_id, phydrv->phy_id,
550 				      phydrv->phy_id_mask);
551 	}
552 }
553 
554 static ssize_t
555 phy_id_show(struct device *dev, struct device_attribute *attr, char *buf)
556 {
557 	struct phy_device *phydev = to_phy_device(dev);
558 
559 	return sysfs_emit(buf, "0x%.8lx\n", (unsigned long)phydev->phy_id);
560 }
561 static DEVICE_ATTR_RO(phy_id);
562 
563 static ssize_t
564 phy_interface_show(struct device *dev, struct device_attribute *attr, char *buf)
565 {
566 	struct phy_device *phydev = to_phy_device(dev);
567 	const char *mode = NULL;
568 
569 	if (phy_is_internal(phydev))
570 		mode = "internal";
571 	else
572 		mode = phy_modes(phydev->interface);
573 
574 	return sysfs_emit(buf, "%s\n", mode);
575 }
576 static DEVICE_ATTR_RO(phy_interface);
577 
578 static ssize_t
579 phy_has_fixups_show(struct device *dev, struct device_attribute *attr,
580 		    char *buf)
581 {
582 	struct phy_device *phydev = to_phy_device(dev);
583 
584 	return sysfs_emit(buf, "%d\n", phydev->has_fixups);
585 }
586 static DEVICE_ATTR_RO(phy_has_fixups);
587 
588 static ssize_t phy_dev_flags_show(struct device *dev,
589 				  struct device_attribute *attr,
590 				  char *buf)
591 {
592 	struct phy_device *phydev = to_phy_device(dev);
593 
594 	return sysfs_emit(buf, "0x%08x\n", phydev->dev_flags);
595 }
596 static DEVICE_ATTR_RO(phy_dev_flags);
597 
598 static struct attribute *phy_dev_attrs[] = {
599 	&dev_attr_phy_id.attr,
600 	&dev_attr_phy_interface.attr,
601 	&dev_attr_phy_has_fixups.attr,
602 	&dev_attr_phy_dev_flags.attr,
603 	NULL,
604 };
605 ATTRIBUTE_GROUPS(phy_dev);
606 
607 static const struct device_type mdio_bus_phy_type = {
608 	.name = "PHY",
609 	.groups = phy_dev_groups,
610 	.release = phy_device_release,
611 	.pm = pm_ptr(&mdio_bus_phy_pm_ops),
612 };
613 
614 static int phy_request_driver_module(struct phy_device *dev, u32 phy_id)
615 {
616 	int ret;
617 
618 	ret = request_module(MDIO_MODULE_PREFIX MDIO_ID_FMT,
619 			     MDIO_ID_ARGS(phy_id));
620 	/* We only check for failures in executing the usermode binary,
621 	 * not whether a PHY driver module exists for the PHY ID.
622 	 * Accept -ENOENT because this may occur in case no initramfs exists,
623 	 * then modprobe isn't available.
624 	 */
625 	if (IS_ENABLED(CONFIG_MODULES) && ret < 0 && ret != -ENOENT) {
626 		phydev_err(dev, "error %d loading PHY driver module for ID 0x%08lx\n",
627 			   ret, (unsigned long)phy_id);
628 		return ret;
629 	}
630 
631 	return 0;
632 }
633 
634 struct phy_device *phy_device_create(struct mii_bus *bus, int addr, u32 phy_id,
635 				     bool is_c45,
636 				     struct phy_c45_device_ids *c45_ids)
637 {
638 	struct phy_device *dev;
639 	struct mdio_device *mdiodev;
640 	int ret = 0;
641 
642 	/* We allocate the device, and initialize the default values */
643 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
644 	if (!dev)
645 		return ERR_PTR(-ENOMEM);
646 
647 	mdiodev = &dev->mdio;
648 	mdiodev->dev.parent = &bus->dev;
649 	mdiodev->dev.bus = &mdio_bus_type;
650 	mdiodev->dev.type = &mdio_bus_phy_type;
651 	mdiodev->bus = bus;
652 	mdiodev->bus_match = phy_bus_match;
653 	mdiodev->addr = addr;
654 	mdiodev->flags = MDIO_DEVICE_FLAG_PHY;
655 	mdiodev->device_free = phy_mdio_device_free;
656 	mdiodev->device_remove = phy_mdio_device_remove;
657 	mdiodev->reset_state = -1;
658 
659 	dev->speed = SPEED_UNKNOWN;
660 	dev->duplex = DUPLEX_UNKNOWN;
661 	dev->pause = 0;
662 	dev->asym_pause = 0;
663 	dev->link = 0;
664 	dev->port = PORT_TP;
665 	dev->interface = PHY_INTERFACE_MODE_GMII;
666 
667 	dev->autoneg = AUTONEG_ENABLE;
668 
669 	dev->pma_extable = -ENODATA;
670 	dev->is_c45 = is_c45;
671 	dev->phy_id = phy_id;
672 	if (c45_ids)
673 		dev->c45_ids = *c45_ids;
674 	dev->irq = bus->irq[addr];
675 
676 	dev_set_name(&mdiodev->dev, PHY_ID_FMT, bus->id, addr);
677 	device_initialize(&mdiodev->dev);
678 
679 	dev->state = PHY_DOWN;
680 	INIT_LIST_HEAD(&dev->leds);
681 
682 	mutex_init(&dev->lock);
683 	INIT_DELAYED_WORK(&dev->state_queue, phy_state_machine);
684 
685 	/* Request the appropriate module unconditionally; don't
686 	 * bother trying to do so only if it isn't already loaded,
687 	 * because that gets complicated. A hotplug event would have
688 	 * done an unconditional modprobe anyway.
689 	 * We don't do normal hotplug because it won't work for MDIO
690 	 * -- because it relies on the device staying around for long
691 	 * enough for the driver to get loaded. With MDIO, the NIC
692 	 * driver will get bored and give up as soon as it finds that
693 	 * there's no driver _already_ loaded.
694 	 */
695 	if (is_c45 && c45_ids) {
696 		const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
697 		int i;
698 
699 		for (i = 1; i < num_ids; i++) {
700 			if (c45_ids->device_ids[i] == 0xffffffff)
701 				continue;
702 
703 			ret = phy_request_driver_module(dev,
704 						c45_ids->device_ids[i]);
705 			if (ret)
706 				break;
707 		}
708 	} else {
709 		ret = phy_request_driver_module(dev, phy_id);
710 	}
711 
712 	if (ret) {
713 		put_device(&mdiodev->dev);
714 		dev = ERR_PTR(ret);
715 	}
716 
717 	return dev;
718 }
719 EXPORT_SYMBOL(phy_device_create);
720 
721 /* phy_c45_probe_present - checks to see if a MMD is present in the package
722  * @bus: the target MII bus
723  * @prtad: PHY package address on the MII bus
724  * @devad: PHY device (MMD) address
725  *
726  * Read the MDIO_STAT2 register, and check whether a device is responding
727  * at this address.
728  *
729  * Returns: negative error number on bus access error, zero if no device
730  * is responding, or positive if a device is present.
731  */
732 static int phy_c45_probe_present(struct mii_bus *bus, int prtad, int devad)
733 {
734 	int stat2;
735 
736 	stat2 = mdiobus_c45_read(bus, prtad, devad, MDIO_STAT2);
737 	if (stat2 < 0)
738 		return stat2;
739 
740 	return (stat2 & MDIO_STAT2_DEVPRST) == MDIO_STAT2_DEVPRST_VAL;
741 }
742 
743 /* get_phy_c45_devs_in_pkg - reads a MMD's devices in package registers.
744  * @bus: the target MII bus
745  * @addr: PHY address on the MII bus
746  * @dev_addr: MMD address in the PHY.
747  * @devices_in_package: where to store the devices in package information.
748  *
749  * Description: reads devices in package registers of a MMD at @dev_addr
750  * from PHY at @addr on @bus.
751  *
752  * Returns: 0 on success, -EIO on failure.
753  */
754 static int get_phy_c45_devs_in_pkg(struct mii_bus *bus, int addr, int dev_addr,
755 				   u32 *devices_in_package)
756 {
757 	int phy_reg;
758 
759 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS2);
760 	if (phy_reg < 0)
761 		return -EIO;
762 	*devices_in_package = phy_reg << 16;
763 
764 	phy_reg = mdiobus_c45_read(bus, addr, dev_addr, MDIO_DEVS1);
765 	if (phy_reg < 0)
766 		return -EIO;
767 	*devices_in_package |= phy_reg;
768 
769 	return 0;
770 }
771 
772 /**
773  * get_phy_c45_ids - reads the specified addr for its 802.3-c45 IDs.
774  * @bus: the target MII bus
775  * @addr: PHY address on the MII bus
776  * @c45_ids: where to store the c45 ID information.
777  *
778  * Read the PHY "devices in package". If this appears to be valid, read
779  * the PHY identifiers for each device. Return the "devices in package"
780  * and identifiers in @c45_ids.
781  *
782  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
783  * the "devices in package" is invalid.
784  */
785 static int get_phy_c45_ids(struct mii_bus *bus, int addr,
786 			   struct phy_c45_device_ids *c45_ids)
787 {
788 	const int num_ids = ARRAY_SIZE(c45_ids->device_ids);
789 	u32 devs_in_pkg = 0;
790 	int i, ret, phy_reg;
791 
792 	/* Find first non-zero Devices In package. Device zero is reserved
793 	 * for 802.3 c45 complied PHYs, so don't probe it at first.
794 	 */
795 	for (i = 1; i < MDIO_MMD_NUM && (devs_in_pkg == 0 ||
796 	     (devs_in_pkg & 0x1fffffff) == 0x1fffffff); i++) {
797 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
798 			/* Check that there is a device present at this
799 			 * address before reading the devices-in-package
800 			 * register to avoid reading garbage from the PHY.
801 			 * Some PHYs (88x3310) vendor space is not IEEE802.3
802 			 * compliant.
803 			 */
804 			ret = phy_c45_probe_present(bus, addr, i);
805 			if (ret < 0)
806 				return -EIO;
807 
808 			if (!ret)
809 				continue;
810 		}
811 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, i, &devs_in_pkg);
812 		if (phy_reg < 0)
813 			return -EIO;
814 	}
815 
816 	if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff) {
817 		/* If mostly Fs, there is no device there, then let's probe
818 		 * MMD 0, as some 10G PHYs have zero Devices In package,
819 		 * e.g. Cortina CS4315/CS4340 PHY.
820 		 */
821 		phy_reg = get_phy_c45_devs_in_pkg(bus, addr, 0, &devs_in_pkg);
822 		if (phy_reg < 0)
823 			return -EIO;
824 
825 		/* no device there, let's get out of here */
826 		if ((devs_in_pkg & 0x1fffffff) == 0x1fffffff)
827 			return -ENODEV;
828 	}
829 
830 	/* Now probe Device Identifiers for each device present. */
831 	for (i = 1; i < num_ids; i++) {
832 		if (!(devs_in_pkg & (1 << i)))
833 			continue;
834 
835 		if (i == MDIO_MMD_VEND1 || i == MDIO_MMD_VEND2) {
836 			/* Probe the "Device Present" bits for the vendor MMDs
837 			 * to ignore these if they do not contain IEEE 802.3
838 			 * registers.
839 			 */
840 			ret = phy_c45_probe_present(bus, addr, i);
841 			if (ret < 0)
842 				return ret;
843 
844 			if (!ret)
845 				continue;
846 		}
847 
848 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID1);
849 		if (phy_reg < 0)
850 			return -EIO;
851 		c45_ids->device_ids[i] = phy_reg << 16;
852 
853 		phy_reg = mdiobus_c45_read(bus, addr, i, MII_PHYSID2);
854 		if (phy_reg < 0)
855 			return -EIO;
856 		c45_ids->device_ids[i] |= phy_reg;
857 	}
858 
859 	c45_ids->devices_in_package = devs_in_pkg;
860 	/* Bit 0 doesn't represent a device, it indicates c22 regs presence */
861 	c45_ids->mmds_present = devs_in_pkg & ~BIT(0);
862 
863 	return 0;
864 }
865 
866 /**
867  * get_phy_c22_id - reads the specified addr for its clause 22 ID.
868  * @bus: the target MII bus
869  * @addr: PHY address on the MII bus
870  * @phy_id: where to store the ID retrieved.
871  *
872  * Read the 802.3 clause 22 PHY ID from the PHY at @addr on the @bus,
873  * placing it in @phy_id. Return zero on successful read and the ID is
874  * valid, %-EIO on bus access error, or %-ENODEV if no device responds
875  * or invalid ID.
876  */
877 static int get_phy_c22_id(struct mii_bus *bus, int addr, u32 *phy_id)
878 {
879 	int phy_reg;
880 
881 	/* Grab the bits from PHYIR1, and put them in the upper half */
882 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID1);
883 	if (phy_reg < 0) {
884 		/* returning -ENODEV doesn't stop bus scanning */
885 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
886 	}
887 
888 	*phy_id = phy_reg << 16;
889 
890 	/* Grab the bits from PHYIR2, and put them in the lower half */
891 	phy_reg = mdiobus_read(bus, addr, MII_PHYSID2);
892 	if (phy_reg < 0) {
893 		/* returning -ENODEV doesn't stop bus scanning */
894 		return (phy_reg == -EIO || phy_reg == -ENODEV) ? -ENODEV : -EIO;
895 	}
896 
897 	*phy_id |= phy_reg;
898 
899 	/* If the phy_id is mostly Fs, there is no device there */
900 	if ((*phy_id & 0x1fffffff) == 0x1fffffff)
901 		return -ENODEV;
902 
903 	return 0;
904 }
905 
906 /* Extract the phy ID from the compatible string of the form
907  * ethernet-phy-idAAAA.BBBB.
908  */
909 int fwnode_get_phy_id(struct fwnode_handle *fwnode, u32 *phy_id)
910 {
911 	unsigned int upper, lower;
912 	const char *cp;
913 	int ret;
914 
915 	ret = fwnode_property_read_string(fwnode, "compatible", &cp);
916 	if (ret)
917 		return ret;
918 
919 	if (sscanf(cp, "ethernet-phy-id%4x.%4x", &upper, &lower) != 2)
920 		return -EINVAL;
921 
922 	*phy_id = ((upper & GENMASK(15, 0)) << 16) | (lower & GENMASK(15, 0));
923 	return 0;
924 }
925 EXPORT_SYMBOL(fwnode_get_phy_id);
926 
927 /**
928  * get_phy_device - reads the specified PHY device and returns its @phy_device
929  *		    struct
930  * @bus: the target MII bus
931  * @addr: PHY address on the MII bus
932  * @is_c45: If true the PHY uses the 802.3 clause 45 protocol
933  *
934  * Probe for a PHY at @addr on @bus.
935  *
936  * When probing for a clause 22 PHY, then read the ID registers. If we find
937  * a valid ID, allocate and return a &struct phy_device.
938  *
939  * When probing for a clause 45 PHY, read the "devices in package" registers.
940  * If the "devices in package" appears valid, read the ID registers for each
941  * MMD, allocate and return a &struct phy_device.
942  *
943  * Returns an allocated &struct phy_device on success, %-ENODEV if there is
944  * no PHY present, or %-EIO on bus access error.
945  */
946 struct phy_device *get_phy_device(struct mii_bus *bus, int addr, bool is_c45)
947 {
948 	struct phy_c45_device_ids c45_ids;
949 	u32 phy_id = 0;
950 	int r;
951 
952 	c45_ids.devices_in_package = 0;
953 	c45_ids.mmds_present = 0;
954 	memset(c45_ids.device_ids, 0xff, sizeof(c45_ids.device_ids));
955 
956 	if (is_c45)
957 		r = get_phy_c45_ids(bus, addr, &c45_ids);
958 	else
959 		r = get_phy_c22_id(bus, addr, &phy_id);
960 
961 	if (r)
962 		return ERR_PTR(r);
963 
964 	/* PHY device such as the Marvell Alaska 88E2110 will return a PHY ID
965 	 * of 0 when probed using get_phy_c22_id() with no error. Proceed to
966 	 * probe with C45 to see if we're able to get a valid PHY ID in the C45
967 	 * space, if successful, create the C45 PHY device.
968 	 */
969 	if (!is_c45 && phy_id == 0 && bus->read_c45) {
970 		r = get_phy_c45_ids(bus, addr, &c45_ids);
971 		if (!r)
972 			return phy_device_create(bus, addr, phy_id,
973 						 true, &c45_ids);
974 	}
975 
976 	return phy_device_create(bus, addr, phy_id, is_c45, &c45_ids);
977 }
978 EXPORT_SYMBOL(get_phy_device);
979 
980 /**
981  * phy_device_register - Register the phy device on the MDIO bus
982  * @phydev: phy_device structure to be added to the MDIO bus
983  */
984 int phy_device_register(struct phy_device *phydev)
985 {
986 	int err;
987 
988 	err = mdiobus_register_device(&phydev->mdio);
989 	if (err)
990 		return err;
991 
992 	/* Deassert the reset signal */
993 	phy_device_reset(phydev, 0);
994 
995 	/* Run all of the fixups for this PHY */
996 	err = phy_scan_fixups(phydev);
997 	if (err) {
998 		phydev_err(phydev, "failed to initialize\n");
999 		goto out;
1000 	}
1001 
1002 	err = device_add(&phydev->mdio.dev);
1003 	if (err) {
1004 		phydev_err(phydev, "failed to add\n");
1005 		goto out;
1006 	}
1007 
1008 	return 0;
1009 
1010  out:
1011 	/* Assert the reset signal */
1012 	phy_device_reset(phydev, 1);
1013 
1014 	mdiobus_unregister_device(&phydev->mdio);
1015 	return err;
1016 }
1017 EXPORT_SYMBOL(phy_device_register);
1018 
1019 /**
1020  * phy_device_remove - Remove a previously registered phy device from the MDIO bus
1021  * @phydev: phy_device structure to remove
1022  *
1023  * This doesn't free the phy_device itself, it merely reverses the effects
1024  * of phy_device_register(). Use phy_device_free() to free the device
1025  * after calling this function.
1026  */
1027 void phy_device_remove(struct phy_device *phydev)
1028 {
1029 	unregister_mii_timestamper(phydev->mii_ts);
1030 	pse_control_put(phydev->psec);
1031 
1032 	device_del(&phydev->mdio.dev);
1033 
1034 	/* Assert the reset signal */
1035 	phy_device_reset(phydev, 1);
1036 
1037 	mdiobus_unregister_device(&phydev->mdio);
1038 }
1039 EXPORT_SYMBOL(phy_device_remove);
1040 
1041 /**
1042  * phy_get_c45_ids - Read 802.3-c45 IDs for phy device.
1043  * @phydev: phy_device structure to read 802.3-c45 IDs
1044  *
1045  * Returns zero on success, %-EIO on bus access error, or %-ENODEV if
1046  * the "devices in package" is invalid.
1047  */
1048 int phy_get_c45_ids(struct phy_device *phydev)
1049 {
1050 	return get_phy_c45_ids(phydev->mdio.bus, phydev->mdio.addr,
1051 			       &phydev->c45_ids);
1052 }
1053 EXPORT_SYMBOL(phy_get_c45_ids);
1054 
1055 /**
1056  * phy_find_first - finds the first PHY device on the bus
1057  * @bus: the target MII bus
1058  */
1059 struct phy_device *phy_find_first(struct mii_bus *bus)
1060 {
1061 	struct phy_device *phydev;
1062 	int addr;
1063 
1064 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
1065 		phydev = mdiobus_get_phy(bus, addr);
1066 		if (phydev)
1067 			return phydev;
1068 	}
1069 	return NULL;
1070 }
1071 EXPORT_SYMBOL(phy_find_first);
1072 
1073 static void phy_link_change(struct phy_device *phydev, bool up)
1074 {
1075 	struct net_device *netdev = phydev->attached_dev;
1076 
1077 	if (up)
1078 		netif_carrier_on(netdev);
1079 	else
1080 		netif_carrier_off(netdev);
1081 	phydev->adjust_link(netdev);
1082 	if (phydev->mii_ts && phydev->mii_ts->link_state)
1083 		phydev->mii_ts->link_state(phydev->mii_ts, phydev);
1084 }
1085 
1086 /**
1087  * phy_prepare_link - prepares the PHY layer to monitor link status
1088  * @phydev: target phy_device struct
1089  * @handler: callback function for link status change notifications
1090  *
1091  * Description: Tells the PHY infrastructure to handle the
1092  *   gory details on monitoring link status (whether through
1093  *   polling or an interrupt), and to call back to the
1094  *   connected device driver when the link status changes.
1095  *   If you want to monitor your own link state, don't call
1096  *   this function.
1097  */
1098 static void phy_prepare_link(struct phy_device *phydev,
1099 			     void (*handler)(struct net_device *))
1100 {
1101 	phydev->adjust_link = handler;
1102 }
1103 
1104 /**
1105  * phy_connect_direct - connect an ethernet device to a specific phy_device
1106  * @dev: the network device to connect
1107  * @phydev: the pointer to the phy device
1108  * @handler: callback function for state change notifications
1109  * @interface: PHY device's interface
1110  */
1111 int phy_connect_direct(struct net_device *dev, struct phy_device *phydev,
1112 		       void (*handler)(struct net_device *),
1113 		       phy_interface_t interface)
1114 {
1115 	int rc;
1116 
1117 	if (!dev)
1118 		return -EINVAL;
1119 
1120 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1121 	if (rc)
1122 		return rc;
1123 
1124 	phy_prepare_link(phydev, handler);
1125 	if (phy_interrupt_is_valid(phydev))
1126 		phy_request_interrupt(phydev);
1127 
1128 	return 0;
1129 }
1130 EXPORT_SYMBOL(phy_connect_direct);
1131 
1132 /**
1133  * phy_connect - connect an ethernet device to a PHY device
1134  * @dev: the network device to connect
1135  * @bus_id: the id string of the PHY device to connect
1136  * @handler: callback function for state change notifications
1137  * @interface: PHY device's interface
1138  *
1139  * Description: Convenience function for connecting ethernet
1140  *   devices to PHY devices.  The default behavior is for
1141  *   the PHY infrastructure to handle everything, and only notify
1142  *   the connected driver when the link status changes.  If you
1143  *   don't want, or can't use the provided functionality, you may
1144  *   choose to call only the subset of functions which provide
1145  *   the desired functionality.
1146  */
1147 struct phy_device *phy_connect(struct net_device *dev, const char *bus_id,
1148 			       void (*handler)(struct net_device *),
1149 			       phy_interface_t interface)
1150 {
1151 	struct phy_device *phydev;
1152 	struct device *d;
1153 	int rc;
1154 
1155 	/* Search the list of PHY devices on the mdio bus for the
1156 	 * PHY with the requested name
1157 	 */
1158 	d = bus_find_device_by_name(&mdio_bus_type, NULL, bus_id);
1159 	if (!d) {
1160 		pr_err("PHY %s not found\n", bus_id);
1161 		return ERR_PTR(-ENODEV);
1162 	}
1163 	phydev = to_phy_device(d);
1164 
1165 	rc = phy_connect_direct(dev, phydev, handler, interface);
1166 	put_device(d);
1167 	if (rc)
1168 		return ERR_PTR(rc);
1169 
1170 	return phydev;
1171 }
1172 EXPORT_SYMBOL(phy_connect);
1173 
1174 /**
1175  * phy_disconnect - disable interrupts, stop state machine, and detach a PHY
1176  *		    device
1177  * @phydev: target phy_device struct
1178  */
1179 void phy_disconnect(struct phy_device *phydev)
1180 {
1181 	if (phy_is_started(phydev))
1182 		phy_stop(phydev);
1183 
1184 	if (phy_interrupt_is_valid(phydev))
1185 		phy_free_interrupt(phydev);
1186 
1187 	phydev->adjust_link = NULL;
1188 
1189 	phy_detach(phydev);
1190 }
1191 EXPORT_SYMBOL(phy_disconnect);
1192 
1193 /**
1194  * phy_poll_reset - Safely wait until a PHY reset has properly completed
1195  * @phydev: The PHY device to poll
1196  *
1197  * Description: According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as
1198  *   published in 2008, a PHY reset may take up to 0.5 seconds.  The MII BMCR
1199  *   register must be polled until the BMCR_RESET bit clears.
1200  *
1201  *   Furthermore, any attempts to write to PHY registers may have no effect
1202  *   or even generate MDIO bus errors until this is complete.
1203  *
1204  *   Some PHYs (such as the Marvell 88E1111) don't entirely conform to the
1205  *   standard and do not fully reset after the BMCR_RESET bit is set, and may
1206  *   even *REQUIRE* a soft-reset to properly restart autonegotiation.  In an
1207  *   effort to support such broken PHYs, this function is separate from the
1208  *   standard phy_init_hw() which will zero all the other bits in the BMCR
1209  *   and reapply all driver-specific and board-specific fixups.
1210  */
1211 static int phy_poll_reset(struct phy_device *phydev)
1212 {
1213 	/* Poll until the reset bit clears (50ms per retry == 0.6 sec) */
1214 	int ret, val;
1215 
1216 	ret = phy_read_poll_timeout(phydev, MII_BMCR, val, !(val & BMCR_RESET),
1217 				    50000, 600000, true);
1218 	if (ret)
1219 		return ret;
1220 	/* Some chips (smsc911x) may still need up to another 1ms after the
1221 	 * BMCR_RESET bit is cleared before they are usable.
1222 	 */
1223 	msleep(1);
1224 	return 0;
1225 }
1226 
1227 int phy_init_hw(struct phy_device *phydev)
1228 {
1229 	int ret = 0;
1230 
1231 	/* Deassert the reset signal */
1232 	phy_device_reset(phydev, 0);
1233 
1234 	if (!phydev->drv)
1235 		return 0;
1236 
1237 	if (phydev->drv->soft_reset) {
1238 		ret = phydev->drv->soft_reset(phydev);
1239 		if (ret < 0)
1240 			return ret;
1241 
1242 		/* see comment in genphy_soft_reset for an explanation */
1243 		phydev->suspended = 0;
1244 	}
1245 
1246 	ret = phy_scan_fixups(phydev);
1247 	if (ret < 0)
1248 		return ret;
1249 
1250 	phy_interface_zero(phydev->possible_interfaces);
1251 
1252 	if (phydev->drv->config_init) {
1253 		ret = phydev->drv->config_init(phydev);
1254 		if (ret < 0)
1255 			return ret;
1256 	}
1257 
1258 	if (phydev->drv->config_intr) {
1259 		ret = phydev->drv->config_intr(phydev);
1260 		if (ret < 0)
1261 			return ret;
1262 	}
1263 
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL(phy_init_hw);
1267 
1268 void phy_attached_info(struct phy_device *phydev)
1269 {
1270 	phy_attached_print(phydev, NULL);
1271 }
1272 EXPORT_SYMBOL(phy_attached_info);
1273 
1274 #define ATTACHED_FMT "attached PHY driver %s(mii_bus:phy_addr=%s, irq=%s)"
1275 char *phy_attached_info_irq(struct phy_device *phydev)
1276 {
1277 	char *irq_str;
1278 	char irq_num[8];
1279 
1280 	switch(phydev->irq) {
1281 	case PHY_POLL:
1282 		irq_str = "POLL";
1283 		break;
1284 	case PHY_MAC_INTERRUPT:
1285 		irq_str = "MAC";
1286 		break;
1287 	default:
1288 		snprintf(irq_num, sizeof(irq_num), "%d", phydev->irq);
1289 		irq_str = irq_num;
1290 		break;
1291 	}
1292 
1293 	return kasprintf(GFP_KERNEL, "%s", irq_str);
1294 }
1295 EXPORT_SYMBOL(phy_attached_info_irq);
1296 
1297 void phy_attached_print(struct phy_device *phydev, const char *fmt, ...)
1298 {
1299 	const char *unbound = phydev->drv ? "" : "[unbound] ";
1300 	char *irq_str = phy_attached_info_irq(phydev);
1301 
1302 	if (!fmt) {
1303 		phydev_info(phydev, ATTACHED_FMT "\n", unbound,
1304 			    phydev_name(phydev), irq_str);
1305 	} else {
1306 		va_list ap;
1307 
1308 		phydev_info(phydev, ATTACHED_FMT, unbound,
1309 			    phydev_name(phydev), irq_str);
1310 
1311 		va_start(ap, fmt);
1312 		vprintk(fmt, ap);
1313 		va_end(ap);
1314 	}
1315 	kfree(irq_str);
1316 }
1317 EXPORT_SYMBOL(phy_attached_print);
1318 
1319 static void phy_sysfs_create_links(struct phy_device *phydev)
1320 {
1321 	struct net_device *dev = phydev->attached_dev;
1322 	int err;
1323 
1324 	if (!dev)
1325 		return;
1326 
1327 	err = sysfs_create_link(&phydev->mdio.dev.kobj, &dev->dev.kobj,
1328 				"attached_dev");
1329 	if (err)
1330 		return;
1331 
1332 	err = sysfs_create_link_nowarn(&dev->dev.kobj,
1333 				       &phydev->mdio.dev.kobj,
1334 				       "phydev");
1335 	if (err) {
1336 		dev_err(&dev->dev, "could not add device link to %s err %d\n",
1337 			kobject_name(&phydev->mdio.dev.kobj),
1338 			err);
1339 		/* non-fatal - some net drivers can use one netdevice
1340 		 * with more then one phy
1341 		 */
1342 	}
1343 
1344 	phydev->sysfs_links = true;
1345 }
1346 
1347 static ssize_t
1348 phy_standalone_show(struct device *dev, struct device_attribute *attr,
1349 		    char *buf)
1350 {
1351 	struct phy_device *phydev = to_phy_device(dev);
1352 
1353 	return sysfs_emit(buf, "%d\n", !phydev->attached_dev);
1354 }
1355 static DEVICE_ATTR_RO(phy_standalone);
1356 
1357 /**
1358  * phy_sfp_attach - attach the SFP bus to the PHY upstream network device
1359  * @upstream: pointer to the phy device
1360  * @bus: sfp bus representing cage being attached
1361  *
1362  * This is used to fill in the sfp_upstream_ops .attach member.
1363  */
1364 void phy_sfp_attach(void *upstream, struct sfp_bus *bus)
1365 {
1366 	struct phy_device *phydev = upstream;
1367 
1368 	if (phydev->attached_dev)
1369 		phydev->attached_dev->sfp_bus = bus;
1370 	phydev->sfp_bus_attached = true;
1371 }
1372 EXPORT_SYMBOL(phy_sfp_attach);
1373 
1374 /**
1375  * phy_sfp_detach - detach the SFP bus from the PHY upstream network device
1376  * @upstream: pointer to the phy device
1377  * @bus: sfp bus representing cage being attached
1378  *
1379  * This is used to fill in the sfp_upstream_ops .detach member.
1380  */
1381 void phy_sfp_detach(void *upstream, struct sfp_bus *bus)
1382 {
1383 	struct phy_device *phydev = upstream;
1384 
1385 	if (phydev->attached_dev)
1386 		phydev->attached_dev->sfp_bus = NULL;
1387 	phydev->sfp_bus_attached = false;
1388 }
1389 EXPORT_SYMBOL(phy_sfp_detach);
1390 
1391 /**
1392  * phy_sfp_probe - probe for a SFP cage attached to this PHY device
1393  * @phydev: Pointer to phy_device
1394  * @ops: SFP's upstream operations
1395  */
1396 int phy_sfp_probe(struct phy_device *phydev,
1397 		  const struct sfp_upstream_ops *ops)
1398 {
1399 	struct sfp_bus *bus;
1400 	int ret = 0;
1401 
1402 	if (phydev->mdio.dev.fwnode) {
1403 		bus = sfp_bus_find_fwnode(phydev->mdio.dev.fwnode);
1404 		if (IS_ERR(bus))
1405 			return PTR_ERR(bus);
1406 
1407 		phydev->sfp_bus = bus;
1408 
1409 		ret = sfp_bus_add_upstream(bus, phydev, ops);
1410 		sfp_bus_put(bus);
1411 	}
1412 	return ret;
1413 }
1414 EXPORT_SYMBOL(phy_sfp_probe);
1415 
1416 /**
1417  * phy_attach_direct - attach a network device to a given PHY device pointer
1418  * @dev: network device to attach
1419  * @phydev: Pointer to phy_device to attach
1420  * @flags: PHY device's dev_flags
1421  * @interface: PHY device's interface
1422  *
1423  * Description: Called by drivers to attach to a particular PHY
1424  *     device. The phy_device is found, and properly hooked up
1425  *     to the phy_driver.  If no driver is attached, then a
1426  *     generic driver is used.  The phy_device is given a ptr to
1427  *     the attaching device, and given a callback for link status
1428  *     change.  The phy_device is returned to the attaching driver.
1429  *     This function takes a reference on the phy device.
1430  */
1431 int phy_attach_direct(struct net_device *dev, struct phy_device *phydev,
1432 		      u32 flags, phy_interface_t interface)
1433 {
1434 	struct mii_bus *bus = phydev->mdio.bus;
1435 	struct device *d = &phydev->mdio.dev;
1436 	struct module *ndev_owner = NULL;
1437 	bool using_genphy = false;
1438 	int err;
1439 
1440 	/* For Ethernet device drivers that register their own MDIO bus, we
1441 	 * will have bus->owner match ndev_mod, so we do not want to increment
1442 	 * our own module->refcnt here, otherwise we would not be able to
1443 	 * unload later on.
1444 	 */
1445 	if (dev)
1446 		ndev_owner = dev->dev.parent->driver->owner;
1447 	if (ndev_owner != bus->owner && !try_module_get(bus->owner)) {
1448 		phydev_err(phydev, "failed to get the bus module\n");
1449 		return -EIO;
1450 	}
1451 
1452 	get_device(d);
1453 
1454 	/* Assume that if there is no driver, that it doesn't
1455 	 * exist, and we should use the genphy driver.
1456 	 */
1457 	if (!d->driver) {
1458 		if (phydev->is_c45)
1459 			d->driver = &genphy_c45_driver.mdiodrv.driver;
1460 		else
1461 			d->driver = &genphy_driver.mdiodrv.driver;
1462 
1463 		using_genphy = true;
1464 	}
1465 
1466 	if (!try_module_get(d->driver->owner)) {
1467 		phydev_err(phydev, "failed to get the device driver module\n");
1468 		err = -EIO;
1469 		goto error_put_device;
1470 	}
1471 
1472 	if (using_genphy) {
1473 		err = d->driver->probe(d);
1474 		if (err >= 0)
1475 			err = device_bind_driver(d);
1476 
1477 		if (err)
1478 			goto error_module_put;
1479 	}
1480 
1481 	if (phydev->attached_dev) {
1482 		dev_err(&dev->dev, "PHY already attached\n");
1483 		err = -EBUSY;
1484 		goto error;
1485 	}
1486 
1487 	phydev->phy_link_change = phy_link_change;
1488 	if (dev) {
1489 		phydev->attached_dev = dev;
1490 		dev->phydev = phydev;
1491 
1492 		if (phydev->sfp_bus_attached)
1493 			dev->sfp_bus = phydev->sfp_bus;
1494 	}
1495 
1496 	/* Some Ethernet drivers try to connect to a PHY device before
1497 	 * calling register_netdevice() -> netdev_register_kobject() and
1498 	 * does the dev->dev.kobj initialization. Here we only check for
1499 	 * success which indicates that the network device kobject is
1500 	 * ready. Once we do that we still need to keep track of whether
1501 	 * links were successfully set up or not for phy_detach() to
1502 	 * remove them accordingly.
1503 	 */
1504 	phydev->sysfs_links = false;
1505 
1506 	phy_sysfs_create_links(phydev);
1507 
1508 	if (!phydev->attached_dev) {
1509 		err = sysfs_create_file(&phydev->mdio.dev.kobj,
1510 					&dev_attr_phy_standalone.attr);
1511 		if (err)
1512 			phydev_err(phydev, "error creating 'phy_standalone' sysfs entry\n");
1513 	}
1514 
1515 	phydev->dev_flags |= flags;
1516 
1517 	phydev->interface = interface;
1518 
1519 	phydev->state = PHY_READY;
1520 
1521 	phydev->interrupts = PHY_INTERRUPT_DISABLED;
1522 
1523 	/* PHYs can request to use poll mode even though they have an
1524 	 * associated interrupt line. This could be the case if they
1525 	 * detect a broken interrupt handling.
1526 	 */
1527 	if (phydev->dev_flags & PHY_F_NO_IRQ)
1528 		phydev->irq = PHY_POLL;
1529 
1530 	/* Port is set to PORT_TP by default and the actual PHY driver will set
1531 	 * it to different value depending on the PHY configuration. If we have
1532 	 * the generic PHY driver we can't figure it out, thus set the old
1533 	 * legacy PORT_MII value.
1534 	 */
1535 	if (using_genphy)
1536 		phydev->port = PORT_MII;
1537 
1538 	/* Initial carrier state is off as the phy is about to be
1539 	 * (re)initialized.
1540 	 */
1541 	if (dev)
1542 		netif_carrier_off(phydev->attached_dev);
1543 
1544 	/* Do initial configuration here, now that
1545 	 * we have certain key parameters
1546 	 * (dev_flags and interface)
1547 	 */
1548 	err = phy_init_hw(phydev);
1549 	if (err)
1550 		goto error;
1551 
1552 	phy_resume(phydev);
1553 	phy_led_triggers_register(phydev);
1554 
1555 	/**
1556 	 * If the external phy used by current mac interface is managed by
1557 	 * another mac interface, so we should create a device link between
1558 	 * phy dev and mac dev.
1559 	 */
1560 	if (dev && phydev->mdio.bus->parent && dev->dev.parent != phydev->mdio.bus->parent)
1561 		phydev->devlink = device_link_add(dev->dev.parent, &phydev->mdio.dev,
1562 						  DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS);
1563 
1564 	return err;
1565 
1566 error:
1567 	/* phy_detach() does all of the cleanup below */
1568 	phy_detach(phydev);
1569 	return err;
1570 
1571 error_module_put:
1572 	module_put(d->driver->owner);
1573 	d->driver = NULL;
1574 error_put_device:
1575 	put_device(d);
1576 	if (ndev_owner != bus->owner)
1577 		module_put(bus->owner);
1578 	return err;
1579 }
1580 EXPORT_SYMBOL(phy_attach_direct);
1581 
1582 /**
1583  * phy_attach - attach a network device to a particular PHY device
1584  * @dev: network device to attach
1585  * @bus_id: Bus ID of PHY device to attach
1586  * @interface: PHY device's interface
1587  *
1588  * Description: Same as phy_attach_direct() except that a PHY bus_id
1589  *     string is passed instead of a pointer to a struct phy_device.
1590  */
1591 struct phy_device *phy_attach(struct net_device *dev, const char *bus_id,
1592 			      phy_interface_t interface)
1593 {
1594 	struct bus_type *bus = &mdio_bus_type;
1595 	struct phy_device *phydev;
1596 	struct device *d;
1597 	int rc;
1598 
1599 	if (!dev)
1600 		return ERR_PTR(-EINVAL);
1601 
1602 	/* Search the list of PHY devices on the mdio bus for the
1603 	 * PHY with the requested name
1604 	 */
1605 	d = bus_find_device_by_name(bus, NULL, bus_id);
1606 	if (!d) {
1607 		pr_err("PHY %s not found\n", bus_id);
1608 		return ERR_PTR(-ENODEV);
1609 	}
1610 	phydev = to_phy_device(d);
1611 
1612 	rc = phy_attach_direct(dev, phydev, phydev->dev_flags, interface);
1613 	put_device(d);
1614 	if (rc)
1615 		return ERR_PTR(rc);
1616 
1617 	return phydev;
1618 }
1619 EXPORT_SYMBOL(phy_attach);
1620 
1621 static bool phy_driver_is_genphy_kind(struct phy_device *phydev,
1622 				      struct device_driver *driver)
1623 {
1624 	struct device *d = &phydev->mdio.dev;
1625 	bool ret = false;
1626 
1627 	if (!phydev->drv)
1628 		return ret;
1629 
1630 	get_device(d);
1631 	ret = d->driver == driver;
1632 	put_device(d);
1633 
1634 	return ret;
1635 }
1636 
1637 bool phy_driver_is_genphy(struct phy_device *phydev)
1638 {
1639 	return phy_driver_is_genphy_kind(phydev,
1640 					 &genphy_driver.mdiodrv.driver);
1641 }
1642 EXPORT_SYMBOL_GPL(phy_driver_is_genphy);
1643 
1644 bool phy_driver_is_genphy_10g(struct phy_device *phydev)
1645 {
1646 	return phy_driver_is_genphy_kind(phydev,
1647 					 &genphy_c45_driver.mdiodrv.driver);
1648 }
1649 EXPORT_SYMBOL_GPL(phy_driver_is_genphy_10g);
1650 
1651 /**
1652  * phy_package_join - join a common PHY group
1653  * @phydev: target phy_device struct
1654  * @addr: cookie and PHY address for global register access
1655  * @priv_size: if non-zero allocate this amount of bytes for private data
1656  *
1657  * This joins a PHY group and provides a shared storage for all phydevs in
1658  * this group. This is intended to be used for packages which contain
1659  * more than one PHY, for example a quad PHY transceiver.
1660  *
1661  * The addr parameter serves as a cookie which has to have the same value
1662  * for all members of one group and as a PHY address to access generic
1663  * registers of a PHY package. Usually, one of the PHY addresses of the
1664  * different PHYs in the package provides access to these global registers.
1665  * The address which is given here, will be used in the phy_package_read()
1666  * and phy_package_write() convenience functions. If your PHY doesn't have
1667  * global registers you can just pick any of the PHY addresses.
1668  *
1669  * This will set the shared pointer of the phydev to the shared storage.
1670  * If this is the first call for a this cookie the shared storage will be
1671  * allocated. If priv_size is non-zero, the given amount of bytes are
1672  * allocated for the priv member.
1673  *
1674  * Returns < 1 on error, 0 on success. Esp. calling phy_package_join()
1675  * with the same cookie but a different priv_size is an error.
1676  */
1677 int phy_package_join(struct phy_device *phydev, int addr, size_t priv_size)
1678 {
1679 	struct mii_bus *bus = phydev->mdio.bus;
1680 	struct phy_package_shared *shared;
1681 	int ret;
1682 
1683 	if (addr < 0 || addr >= PHY_MAX_ADDR)
1684 		return -EINVAL;
1685 
1686 	mutex_lock(&bus->shared_lock);
1687 	shared = bus->shared[addr];
1688 	if (!shared) {
1689 		ret = -ENOMEM;
1690 		shared = kzalloc(sizeof(*shared), GFP_KERNEL);
1691 		if (!shared)
1692 			goto err_unlock;
1693 		if (priv_size) {
1694 			shared->priv = kzalloc(priv_size, GFP_KERNEL);
1695 			if (!shared->priv)
1696 				goto err_free;
1697 			shared->priv_size = priv_size;
1698 		}
1699 		shared->addr = addr;
1700 		refcount_set(&shared->refcnt, 1);
1701 		bus->shared[addr] = shared;
1702 	} else {
1703 		ret = -EINVAL;
1704 		if (priv_size && priv_size != shared->priv_size)
1705 			goto err_unlock;
1706 		refcount_inc(&shared->refcnt);
1707 	}
1708 	mutex_unlock(&bus->shared_lock);
1709 
1710 	phydev->shared = shared;
1711 
1712 	return 0;
1713 
1714 err_free:
1715 	kfree(shared);
1716 err_unlock:
1717 	mutex_unlock(&bus->shared_lock);
1718 	return ret;
1719 }
1720 EXPORT_SYMBOL_GPL(phy_package_join);
1721 
1722 /**
1723  * phy_package_leave - leave a common PHY group
1724  * @phydev: target phy_device struct
1725  *
1726  * This leaves a PHY group created by phy_package_join(). If this phydev
1727  * was the last user of the shared data between the group, this data is
1728  * freed. Resets the phydev->shared pointer to NULL.
1729  */
1730 void phy_package_leave(struct phy_device *phydev)
1731 {
1732 	struct phy_package_shared *shared = phydev->shared;
1733 	struct mii_bus *bus = phydev->mdio.bus;
1734 
1735 	if (!shared)
1736 		return;
1737 
1738 	if (refcount_dec_and_mutex_lock(&shared->refcnt, &bus->shared_lock)) {
1739 		bus->shared[shared->addr] = NULL;
1740 		mutex_unlock(&bus->shared_lock);
1741 		kfree(shared->priv);
1742 		kfree(shared);
1743 	}
1744 
1745 	phydev->shared = NULL;
1746 }
1747 EXPORT_SYMBOL_GPL(phy_package_leave);
1748 
1749 static void devm_phy_package_leave(struct device *dev, void *res)
1750 {
1751 	phy_package_leave(*(struct phy_device **)res);
1752 }
1753 
1754 /**
1755  * devm_phy_package_join - resource managed phy_package_join()
1756  * @dev: device that is registering this PHY package
1757  * @phydev: target phy_device struct
1758  * @addr: cookie and PHY address for global register access
1759  * @priv_size: if non-zero allocate this amount of bytes for private data
1760  *
1761  * Managed phy_package_join(). Shared storage fetched by this function,
1762  * phy_package_leave() is automatically called on driver detach. See
1763  * phy_package_join() for more information.
1764  */
1765 int devm_phy_package_join(struct device *dev, struct phy_device *phydev,
1766 			  int addr, size_t priv_size)
1767 {
1768 	struct phy_device **ptr;
1769 	int ret;
1770 
1771 	ptr = devres_alloc(devm_phy_package_leave, sizeof(*ptr),
1772 			   GFP_KERNEL);
1773 	if (!ptr)
1774 		return -ENOMEM;
1775 
1776 	ret = phy_package_join(phydev, addr, priv_size);
1777 
1778 	if (!ret) {
1779 		*ptr = phydev;
1780 		devres_add(dev, ptr);
1781 	} else {
1782 		devres_free(ptr);
1783 	}
1784 
1785 	return ret;
1786 }
1787 EXPORT_SYMBOL_GPL(devm_phy_package_join);
1788 
1789 /**
1790  * phy_detach - detach a PHY device from its network device
1791  * @phydev: target phy_device struct
1792  *
1793  * This detaches the phy device from its network device and the phy
1794  * driver, and drops the reference count taken in phy_attach_direct().
1795  */
1796 void phy_detach(struct phy_device *phydev)
1797 {
1798 	struct net_device *dev = phydev->attached_dev;
1799 	struct module *ndev_owner = NULL;
1800 	struct mii_bus *bus;
1801 
1802 	if (phydev->devlink)
1803 		device_link_del(phydev->devlink);
1804 
1805 	if (phydev->sysfs_links) {
1806 		if (dev)
1807 			sysfs_remove_link(&dev->dev.kobj, "phydev");
1808 		sysfs_remove_link(&phydev->mdio.dev.kobj, "attached_dev");
1809 	}
1810 
1811 	if (!phydev->attached_dev)
1812 		sysfs_remove_file(&phydev->mdio.dev.kobj,
1813 				  &dev_attr_phy_standalone.attr);
1814 
1815 	phy_suspend(phydev);
1816 	if (dev) {
1817 		phydev->attached_dev->phydev = NULL;
1818 		phydev->attached_dev = NULL;
1819 	}
1820 	phydev->phylink = NULL;
1821 
1822 	phy_led_triggers_unregister(phydev);
1823 
1824 	if (phydev->mdio.dev.driver)
1825 		module_put(phydev->mdio.dev.driver->owner);
1826 
1827 	/* If the device had no specific driver before (i.e. - it
1828 	 * was using the generic driver), we unbind the device
1829 	 * from the generic driver so that there's a chance a
1830 	 * real driver could be loaded
1831 	 */
1832 	if (phy_driver_is_genphy(phydev) ||
1833 	    phy_driver_is_genphy_10g(phydev))
1834 		device_release_driver(&phydev->mdio.dev);
1835 
1836 	/* Assert the reset signal */
1837 	phy_device_reset(phydev, 1);
1838 
1839 	/*
1840 	 * The phydev might go away on the put_device() below, so avoid
1841 	 * a use-after-free bug by reading the underlying bus first.
1842 	 */
1843 	bus = phydev->mdio.bus;
1844 
1845 	put_device(&phydev->mdio.dev);
1846 	if (dev)
1847 		ndev_owner = dev->dev.parent->driver->owner;
1848 	if (ndev_owner != bus->owner)
1849 		module_put(bus->owner);
1850 }
1851 EXPORT_SYMBOL(phy_detach);
1852 
1853 int phy_suspend(struct phy_device *phydev)
1854 {
1855 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1856 	struct net_device *netdev = phydev->attached_dev;
1857 	struct phy_driver *phydrv = phydev->drv;
1858 	int ret;
1859 
1860 	if (phydev->suspended)
1861 		return 0;
1862 
1863 	phy_ethtool_get_wol(phydev, &wol);
1864 	phydev->wol_enabled = wol.wolopts || (netdev && netdev->wol_enabled);
1865 	/* If the device has WOL enabled, we cannot suspend the PHY */
1866 	if (phydev->wol_enabled && !(phydrv->flags & PHY_ALWAYS_CALL_SUSPEND))
1867 		return -EBUSY;
1868 
1869 	if (!phydrv || !phydrv->suspend)
1870 		return 0;
1871 
1872 	ret = phydrv->suspend(phydev);
1873 	if (!ret)
1874 		phydev->suspended = true;
1875 
1876 	return ret;
1877 }
1878 EXPORT_SYMBOL(phy_suspend);
1879 
1880 int __phy_resume(struct phy_device *phydev)
1881 {
1882 	struct phy_driver *phydrv = phydev->drv;
1883 	int ret;
1884 
1885 	lockdep_assert_held(&phydev->lock);
1886 
1887 	if (!phydrv || !phydrv->resume)
1888 		return 0;
1889 
1890 	ret = phydrv->resume(phydev);
1891 	if (!ret)
1892 		phydev->suspended = false;
1893 
1894 	return ret;
1895 }
1896 EXPORT_SYMBOL(__phy_resume);
1897 
1898 int phy_resume(struct phy_device *phydev)
1899 {
1900 	int ret;
1901 
1902 	mutex_lock(&phydev->lock);
1903 	ret = __phy_resume(phydev);
1904 	mutex_unlock(&phydev->lock);
1905 
1906 	return ret;
1907 }
1908 EXPORT_SYMBOL(phy_resume);
1909 
1910 int phy_loopback(struct phy_device *phydev, bool enable)
1911 {
1912 	int ret = 0;
1913 
1914 	if (!phydev->drv)
1915 		return -EIO;
1916 
1917 	mutex_lock(&phydev->lock);
1918 
1919 	if (enable && phydev->loopback_enabled) {
1920 		ret = -EBUSY;
1921 		goto out;
1922 	}
1923 
1924 	if (!enable && !phydev->loopback_enabled) {
1925 		ret = -EINVAL;
1926 		goto out;
1927 	}
1928 
1929 	if (phydev->drv->set_loopback)
1930 		ret = phydev->drv->set_loopback(phydev, enable);
1931 	else
1932 		ret = genphy_loopback(phydev, enable);
1933 
1934 	if (ret)
1935 		goto out;
1936 
1937 	phydev->loopback_enabled = enable;
1938 
1939 out:
1940 	mutex_unlock(&phydev->lock);
1941 	return ret;
1942 }
1943 EXPORT_SYMBOL(phy_loopback);
1944 
1945 /**
1946  * phy_reset_after_clk_enable - perform a PHY reset if needed
1947  * @phydev: target phy_device struct
1948  *
1949  * Description: Some PHYs are known to need a reset after their refclk was
1950  *   enabled. This function evaluates the flags and perform the reset if it's
1951  *   needed. Returns < 0 on error, 0 if the phy wasn't reset and 1 if the phy
1952  *   was reset.
1953  */
1954 int phy_reset_after_clk_enable(struct phy_device *phydev)
1955 {
1956 	if (!phydev || !phydev->drv)
1957 		return -ENODEV;
1958 
1959 	if (phydev->drv->flags & PHY_RST_AFTER_CLK_EN) {
1960 		phy_device_reset(phydev, 1);
1961 		phy_device_reset(phydev, 0);
1962 		return 1;
1963 	}
1964 
1965 	return 0;
1966 }
1967 EXPORT_SYMBOL(phy_reset_after_clk_enable);
1968 
1969 /* Generic PHY support and helper functions */
1970 
1971 /**
1972  * genphy_config_advert - sanitize and advertise auto-negotiation parameters
1973  * @phydev: target phy_device struct
1974  *
1975  * Description: Writes MII_ADVERTISE with the appropriate values,
1976  *   after sanitizing the values to make sure we only advertise
1977  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
1978  *   hasn't changed, and > 0 if it has changed.
1979  */
1980 static int genphy_config_advert(struct phy_device *phydev)
1981 {
1982 	int err, bmsr, changed = 0;
1983 	u32 adv;
1984 
1985 	/* Only allow advertising what this PHY supports */
1986 	linkmode_and(phydev->advertising, phydev->advertising,
1987 		     phydev->supported);
1988 
1989 	adv = linkmode_adv_to_mii_adv_t(phydev->advertising);
1990 
1991 	/* Setup standard advertisement */
1992 	err = phy_modify_changed(phydev, MII_ADVERTISE,
1993 				 ADVERTISE_ALL | ADVERTISE_100BASE4 |
1994 				 ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM,
1995 				 adv);
1996 	if (err < 0)
1997 		return err;
1998 	if (err > 0)
1999 		changed = 1;
2000 
2001 	bmsr = phy_read(phydev, MII_BMSR);
2002 	if (bmsr < 0)
2003 		return bmsr;
2004 
2005 	/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
2006 	 * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a
2007 	 * logical 1.
2008 	 */
2009 	if (!(bmsr & BMSR_ESTATEN))
2010 		return changed;
2011 
2012 	adv = linkmode_adv_to_mii_ctrl1000_t(phydev->advertising);
2013 
2014 	err = phy_modify_changed(phydev, MII_CTRL1000,
2015 				 ADVERTISE_1000FULL | ADVERTISE_1000HALF,
2016 				 adv);
2017 	if (err < 0)
2018 		return err;
2019 	if (err > 0)
2020 		changed = 1;
2021 
2022 	return changed;
2023 }
2024 
2025 /**
2026  * genphy_c37_config_advert - sanitize and advertise auto-negotiation parameters
2027  * @phydev: target phy_device struct
2028  *
2029  * Description: Writes MII_ADVERTISE with the appropriate values,
2030  *   after sanitizing the values to make sure we only advertise
2031  *   what is supported.  Returns < 0 on error, 0 if the PHY's advertisement
2032  *   hasn't changed, and > 0 if it has changed. This function is intended
2033  *   for Clause 37 1000Base-X mode.
2034  */
2035 static int genphy_c37_config_advert(struct phy_device *phydev)
2036 {
2037 	u16 adv = 0;
2038 
2039 	/* Only allow advertising what this PHY supports */
2040 	linkmode_and(phydev->advertising, phydev->advertising,
2041 		     phydev->supported);
2042 
2043 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2044 			      phydev->advertising))
2045 		adv |= ADVERTISE_1000XFULL;
2046 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2047 			      phydev->advertising))
2048 		adv |= ADVERTISE_1000XPAUSE;
2049 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2050 			      phydev->advertising))
2051 		adv |= ADVERTISE_1000XPSE_ASYM;
2052 
2053 	return phy_modify_changed(phydev, MII_ADVERTISE,
2054 				  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
2055 				  ADVERTISE_1000XHALF | ADVERTISE_1000XPSE_ASYM,
2056 				  adv);
2057 }
2058 
2059 /**
2060  * genphy_config_eee_advert - disable unwanted eee mode advertisement
2061  * @phydev: target phy_device struct
2062  *
2063  * Description: Writes MDIO_AN_EEE_ADV after disabling unsupported energy
2064  *   efficent ethernet modes. Returns 0 if the PHY's advertisement hasn't
2065  *   changed, and 1 if it has changed.
2066  */
2067 int genphy_config_eee_advert(struct phy_device *phydev)
2068 {
2069 	int err;
2070 
2071 	/* Nothing to disable */
2072 	if (!phydev->eee_broken_modes)
2073 		return 0;
2074 
2075 	err = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2076 				     phydev->eee_broken_modes, 0);
2077 	/* If the call failed, we assume that EEE is not supported */
2078 	return err < 0 ? 0 : err;
2079 }
2080 EXPORT_SYMBOL(genphy_config_eee_advert);
2081 
2082 /**
2083  * genphy_setup_forced - configures/forces speed/duplex from @phydev
2084  * @phydev: target phy_device struct
2085  *
2086  * Description: Configures MII_BMCR to force speed/duplex
2087  *   to the values in phydev. Assumes that the values are valid.
2088  *   Please see phy_sanitize_settings().
2089  */
2090 int genphy_setup_forced(struct phy_device *phydev)
2091 {
2092 	u16 ctl;
2093 
2094 	phydev->pause = 0;
2095 	phydev->asym_pause = 0;
2096 
2097 	ctl = mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2098 
2099 	return phy_modify(phydev, MII_BMCR,
2100 			  ~(BMCR_LOOPBACK | BMCR_ISOLATE | BMCR_PDOWN), ctl);
2101 }
2102 EXPORT_SYMBOL(genphy_setup_forced);
2103 
2104 static int genphy_setup_master_slave(struct phy_device *phydev)
2105 {
2106 	u16 ctl = 0;
2107 
2108 	if (!phydev->is_gigabit_capable)
2109 		return 0;
2110 
2111 	switch (phydev->master_slave_set) {
2112 	case MASTER_SLAVE_CFG_MASTER_PREFERRED:
2113 		ctl |= CTL1000_PREFER_MASTER;
2114 		break;
2115 	case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
2116 		break;
2117 	case MASTER_SLAVE_CFG_MASTER_FORCE:
2118 		ctl |= CTL1000_AS_MASTER;
2119 		fallthrough;
2120 	case MASTER_SLAVE_CFG_SLAVE_FORCE:
2121 		ctl |= CTL1000_ENABLE_MASTER;
2122 		break;
2123 	case MASTER_SLAVE_CFG_UNKNOWN:
2124 	case MASTER_SLAVE_CFG_UNSUPPORTED:
2125 		return 0;
2126 	default:
2127 		phydev_warn(phydev, "Unsupported Master/Slave mode\n");
2128 		return -EOPNOTSUPP;
2129 	}
2130 
2131 	return phy_modify_changed(phydev, MII_CTRL1000,
2132 				  (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER |
2133 				   CTL1000_PREFER_MASTER), ctl);
2134 }
2135 
2136 int genphy_read_master_slave(struct phy_device *phydev)
2137 {
2138 	int cfg, state;
2139 	int val;
2140 
2141 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
2142 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
2143 
2144 	val = phy_read(phydev, MII_CTRL1000);
2145 	if (val < 0)
2146 		return val;
2147 
2148 	if (val & CTL1000_ENABLE_MASTER) {
2149 		if (val & CTL1000_AS_MASTER)
2150 			cfg = MASTER_SLAVE_CFG_MASTER_FORCE;
2151 		else
2152 			cfg = MASTER_SLAVE_CFG_SLAVE_FORCE;
2153 	} else {
2154 		if (val & CTL1000_PREFER_MASTER)
2155 			cfg = MASTER_SLAVE_CFG_MASTER_PREFERRED;
2156 		else
2157 			cfg = MASTER_SLAVE_CFG_SLAVE_PREFERRED;
2158 	}
2159 
2160 	val = phy_read(phydev, MII_STAT1000);
2161 	if (val < 0)
2162 		return val;
2163 
2164 	if (val & LPA_1000MSFAIL) {
2165 		state = MASTER_SLAVE_STATE_ERR;
2166 	} else if (phydev->link) {
2167 		/* this bits are valid only for active link */
2168 		if (val & LPA_1000MSRES)
2169 			state = MASTER_SLAVE_STATE_MASTER;
2170 		else
2171 			state = MASTER_SLAVE_STATE_SLAVE;
2172 	} else {
2173 		state = MASTER_SLAVE_STATE_UNKNOWN;
2174 	}
2175 
2176 	phydev->master_slave_get = cfg;
2177 	phydev->master_slave_state = state;
2178 
2179 	return 0;
2180 }
2181 EXPORT_SYMBOL(genphy_read_master_slave);
2182 
2183 /**
2184  * genphy_restart_aneg - Enable and Restart Autonegotiation
2185  * @phydev: target phy_device struct
2186  */
2187 int genphy_restart_aneg(struct phy_device *phydev)
2188 {
2189 	/* Don't isolate the PHY if we're negotiating */
2190 	return phy_modify(phydev, MII_BMCR, BMCR_ISOLATE,
2191 			  BMCR_ANENABLE | BMCR_ANRESTART);
2192 }
2193 EXPORT_SYMBOL(genphy_restart_aneg);
2194 
2195 /**
2196  * genphy_check_and_restart_aneg - Enable and restart auto-negotiation
2197  * @phydev: target phy_device struct
2198  * @restart: whether aneg restart is requested
2199  *
2200  * Check, and restart auto-negotiation if needed.
2201  */
2202 int genphy_check_and_restart_aneg(struct phy_device *phydev, bool restart)
2203 {
2204 	int ret;
2205 
2206 	if (!restart) {
2207 		/* Advertisement hasn't changed, but maybe aneg was never on to
2208 		 * begin with?  Or maybe phy was isolated?
2209 		 */
2210 		ret = phy_read(phydev, MII_BMCR);
2211 		if (ret < 0)
2212 			return ret;
2213 
2214 		if (!(ret & BMCR_ANENABLE) || (ret & BMCR_ISOLATE))
2215 			restart = true;
2216 	}
2217 
2218 	if (restart)
2219 		return genphy_restart_aneg(phydev);
2220 
2221 	return 0;
2222 }
2223 EXPORT_SYMBOL(genphy_check_and_restart_aneg);
2224 
2225 /**
2226  * __genphy_config_aneg - restart auto-negotiation or write BMCR
2227  * @phydev: target phy_device struct
2228  * @changed: whether autoneg is requested
2229  *
2230  * Description: If auto-negotiation is enabled, we configure the
2231  *   advertising, and then restart auto-negotiation.  If it is not
2232  *   enabled, then we write the BMCR.
2233  */
2234 int __genphy_config_aneg(struct phy_device *phydev, bool changed)
2235 {
2236 	int err;
2237 
2238 	err = genphy_c45_an_config_eee_aneg(phydev);
2239 	if (err < 0)
2240 		return err;
2241 	else if (err)
2242 		changed = true;
2243 
2244 	err = genphy_setup_master_slave(phydev);
2245 	if (err < 0)
2246 		return err;
2247 	else if (err)
2248 		changed = true;
2249 
2250 	if (AUTONEG_ENABLE != phydev->autoneg)
2251 		return genphy_setup_forced(phydev);
2252 
2253 	err = genphy_config_advert(phydev);
2254 	if (err < 0) /* error */
2255 		return err;
2256 	else if (err)
2257 		changed = true;
2258 
2259 	return genphy_check_and_restart_aneg(phydev, changed);
2260 }
2261 EXPORT_SYMBOL(__genphy_config_aneg);
2262 
2263 /**
2264  * genphy_c37_config_aneg - restart auto-negotiation or write BMCR
2265  * @phydev: target phy_device struct
2266  *
2267  * Description: If auto-negotiation is enabled, we configure the
2268  *   advertising, and then restart auto-negotiation.  If it is not
2269  *   enabled, then we write the BMCR. This function is intended
2270  *   for use with Clause 37 1000Base-X mode.
2271  */
2272 int genphy_c37_config_aneg(struct phy_device *phydev)
2273 {
2274 	int err, changed;
2275 
2276 	if (phydev->autoneg != AUTONEG_ENABLE)
2277 		return genphy_setup_forced(phydev);
2278 
2279 	err = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_SPEED100,
2280 			 BMCR_SPEED1000);
2281 	if (err)
2282 		return err;
2283 
2284 	changed = genphy_c37_config_advert(phydev);
2285 	if (changed < 0) /* error */
2286 		return changed;
2287 
2288 	if (!changed) {
2289 		/* Advertisement hasn't changed, but maybe aneg was never on to
2290 		 * begin with?  Or maybe phy was isolated?
2291 		 */
2292 		int ctl = phy_read(phydev, MII_BMCR);
2293 
2294 		if (ctl < 0)
2295 			return ctl;
2296 
2297 		if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE))
2298 			changed = 1; /* do restart aneg */
2299 	}
2300 
2301 	/* Only restart aneg if we are advertising something different
2302 	 * than we were before.
2303 	 */
2304 	if (changed > 0)
2305 		return genphy_restart_aneg(phydev);
2306 
2307 	return 0;
2308 }
2309 EXPORT_SYMBOL(genphy_c37_config_aneg);
2310 
2311 /**
2312  * genphy_aneg_done - return auto-negotiation status
2313  * @phydev: target phy_device struct
2314  *
2315  * Description: Reads the status register and returns 0 either if
2316  *   auto-negotiation is incomplete, or if there was an error.
2317  *   Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
2318  */
2319 int genphy_aneg_done(struct phy_device *phydev)
2320 {
2321 	int retval = phy_read(phydev, MII_BMSR);
2322 
2323 	return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
2324 }
2325 EXPORT_SYMBOL(genphy_aneg_done);
2326 
2327 /**
2328  * genphy_update_link - update link status in @phydev
2329  * @phydev: target phy_device struct
2330  *
2331  * Description: Update the value in phydev->link to reflect the
2332  *   current link value.  In order to do this, we need to read
2333  *   the status register twice, keeping the second value.
2334  */
2335 int genphy_update_link(struct phy_device *phydev)
2336 {
2337 	int status = 0, bmcr;
2338 
2339 	bmcr = phy_read(phydev, MII_BMCR);
2340 	if (bmcr < 0)
2341 		return bmcr;
2342 
2343 	/* Autoneg is being started, therefore disregard BMSR value and
2344 	 * report link as down.
2345 	 */
2346 	if (bmcr & BMCR_ANRESTART)
2347 		goto done;
2348 
2349 	/* The link state is latched low so that momentary link
2350 	 * drops can be detected. Do not double-read the status
2351 	 * in polling mode to detect such short link drops except
2352 	 * the link was already down.
2353 	 */
2354 	if (!phy_polling_mode(phydev) || !phydev->link) {
2355 		status = phy_read(phydev, MII_BMSR);
2356 		if (status < 0)
2357 			return status;
2358 		else if (status & BMSR_LSTATUS)
2359 			goto done;
2360 	}
2361 
2362 	/* Read link and autonegotiation status */
2363 	status = phy_read(phydev, MII_BMSR);
2364 	if (status < 0)
2365 		return status;
2366 done:
2367 	phydev->link = status & BMSR_LSTATUS ? 1 : 0;
2368 	phydev->autoneg_complete = status & BMSR_ANEGCOMPLETE ? 1 : 0;
2369 
2370 	/* Consider the case that autoneg was started and "aneg complete"
2371 	 * bit has been reset, but "link up" bit not yet.
2372 	 */
2373 	if (phydev->autoneg == AUTONEG_ENABLE && !phydev->autoneg_complete)
2374 		phydev->link = 0;
2375 
2376 	return 0;
2377 }
2378 EXPORT_SYMBOL(genphy_update_link);
2379 
2380 int genphy_read_lpa(struct phy_device *phydev)
2381 {
2382 	int lpa, lpagb;
2383 
2384 	if (phydev->autoneg == AUTONEG_ENABLE) {
2385 		if (!phydev->autoneg_complete) {
2386 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2387 							0);
2388 			mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, 0);
2389 			return 0;
2390 		}
2391 
2392 		if (phydev->is_gigabit_capable) {
2393 			lpagb = phy_read(phydev, MII_STAT1000);
2394 			if (lpagb < 0)
2395 				return lpagb;
2396 
2397 			if (lpagb & LPA_1000MSFAIL) {
2398 				int adv = phy_read(phydev, MII_CTRL1000);
2399 
2400 				if (adv < 0)
2401 					return adv;
2402 
2403 				if (adv & CTL1000_ENABLE_MASTER)
2404 					phydev_err(phydev, "Master/Slave resolution failed, maybe conflicting manual settings?\n");
2405 				else
2406 					phydev_err(phydev, "Master/Slave resolution failed\n");
2407 				return -ENOLINK;
2408 			}
2409 
2410 			mii_stat1000_mod_linkmode_lpa_t(phydev->lp_advertising,
2411 							lpagb);
2412 		}
2413 
2414 		lpa = phy_read(phydev, MII_LPA);
2415 		if (lpa < 0)
2416 			return lpa;
2417 
2418 		mii_lpa_mod_linkmode_lpa_t(phydev->lp_advertising, lpa);
2419 	} else {
2420 		linkmode_zero(phydev->lp_advertising);
2421 	}
2422 
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL(genphy_read_lpa);
2426 
2427 /**
2428  * genphy_read_status_fixed - read the link parameters for !aneg mode
2429  * @phydev: target phy_device struct
2430  *
2431  * Read the current duplex and speed state for a PHY operating with
2432  * autonegotiation disabled.
2433  */
2434 int genphy_read_status_fixed(struct phy_device *phydev)
2435 {
2436 	int bmcr = phy_read(phydev, MII_BMCR);
2437 
2438 	if (bmcr < 0)
2439 		return bmcr;
2440 
2441 	if (bmcr & BMCR_FULLDPLX)
2442 		phydev->duplex = DUPLEX_FULL;
2443 	else
2444 		phydev->duplex = DUPLEX_HALF;
2445 
2446 	if (bmcr & BMCR_SPEED1000)
2447 		phydev->speed = SPEED_1000;
2448 	else if (bmcr & BMCR_SPEED100)
2449 		phydev->speed = SPEED_100;
2450 	else
2451 		phydev->speed = SPEED_10;
2452 
2453 	return 0;
2454 }
2455 EXPORT_SYMBOL(genphy_read_status_fixed);
2456 
2457 /**
2458  * genphy_read_status - check the link status and update current link state
2459  * @phydev: target phy_device struct
2460  *
2461  * Description: Check the link, then figure out the current state
2462  *   by comparing what we advertise with what the link partner
2463  *   advertises.  Start by checking the gigabit possibilities,
2464  *   then move on to 10/100.
2465  */
2466 int genphy_read_status(struct phy_device *phydev)
2467 {
2468 	int err, old_link = phydev->link;
2469 
2470 	/* Update the link, but return if there was an error */
2471 	err = genphy_update_link(phydev);
2472 	if (err)
2473 		return err;
2474 
2475 	/* why bother the PHY if nothing can have changed */
2476 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2477 		return 0;
2478 
2479 	phydev->master_slave_get = MASTER_SLAVE_CFG_UNSUPPORTED;
2480 	phydev->master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED;
2481 	phydev->speed = SPEED_UNKNOWN;
2482 	phydev->duplex = DUPLEX_UNKNOWN;
2483 	phydev->pause = 0;
2484 	phydev->asym_pause = 0;
2485 
2486 	if (phydev->is_gigabit_capable) {
2487 		err = genphy_read_master_slave(phydev);
2488 		if (err < 0)
2489 			return err;
2490 	}
2491 
2492 	err = genphy_read_lpa(phydev);
2493 	if (err < 0)
2494 		return err;
2495 
2496 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2497 		phy_resolve_aneg_linkmode(phydev);
2498 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2499 		err = genphy_read_status_fixed(phydev);
2500 		if (err < 0)
2501 			return err;
2502 	}
2503 
2504 	return 0;
2505 }
2506 EXPORT_SYMBOL(genphy_read_status);
2507 
2508 /**
2509  * genphy_c37_read_status - check the link status and update current link state
2510  * @phydev: target phy_device struct
2511  *
2512  * Description: Check the link, then figure out the current state
2513  *   by comparing what we advertise with what the link partner
2514  *   advertises. This function is for Clause 37 1000Base-X mode.
2515  */
2516 int genphy_c37_read_status(struct phy_device *phydev)
2517 {
2518 	int lpa, err, old_link = phydev->link;
2519 
2520 	/* Update the link, but return if there was an error */
2521 	err = genphy_update_link(phydev);
2522 	if (err)
2523 		return err;
2524 
2525 	/* why bother the PHY if nothing can have changed */
2526 	if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
2527 		return 0;
2528 
2529 	phydev->duplex = DUPLEX_UNKNOWN;
2530 	phydev->pause = 0;
2531 	phydev->asym_pause = 0;
2532 
2533 	if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) {
2534 		lpa = phy_read(phydev, MII_LPA);
2535 		if (lpa < 0)
2536 			return lpa;
2537 
2538 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
2539 				 phydev->lp_advertising, lpa & LPA_LPACK);
2540 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2541 				 phydev->lp_advertising, lpa & LPA_1000XFULL);
2542 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2543 				 phydev->lp_advertising, lpa & LPA_1000XPAUSE);
2544 		linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2545 				 phydev->lp_advertising,
2546 				 lpa & LPA_1000XPAUSE_ASYM);
2547 
2548 		phy_resolve_aneg_linkmode(phydev);
2549 	} else if (phydev->autoneg == AUTONEG_DISABLE) {
2550 		int bmcr = phy_read(phydev, MII_BMCR);
2551 
2552 		if (bmcr < 0)
2553 			return bmcr;
2554 
2555 		if (bmcr & BMCR_FULLDPLX)
2556 			phydev->duplex = DUPLEX_FULL;
2557 		else
2558 			phydev->duplex = DUPLEX_HALF;
2559 	}
2560 
2561 	return 0;
2562 }
2563 EXPORT_SYMBOL(genphy_c37_read_status);
2564 
2565 /**
2566  * genphy_soft_reset - software reset the PHY via BMCR_RESET bit
2567  * @phydev: target phy_device struct
2568  *
2569  * Description: Perform a software PHY reset using the standard
2570  * BMCR_RESET bit and poll for the reset bit to be cleared.
2571  *
2572  * Returns: 0 on success, < 0 on failure
2573  */
2574 int genphy_soft_reset(struct phy_device *phydev)
2575 {
2576 	u16 res = BMCR_RESET;
2577 	int ret;
2578 
2579 	if (phydev->autoneg == AUTONEG_ENABLE)
2580 		res |= BMCR_ANRESTART;
2581 
2582 	ret = phy_modify(phydev, MII_BMCR, BMCR_ISOLATE, res);
2583 	if (ret < 0)
2584 		return ret;
2585 
2586 	/* Clause 22 states that setting bit BMCR_RESET sets control registers
2587 	 * to their default value. Therefore the POWER DOWN bit is supposed to
2588 	 * be cleared after soft reset.
2589 	 */
2590 	phydev->suspended = 0;
2591 
2592 	ret = phy_poll_reset(phydev);
2593 	if (ret)
2594 		return ret;
2595 
2596 	/* BMCR may be reset to defaults */
2597 	if (phydev->autoneg == AUTONEG_DISABLE)
2598 		ret = genphy_setup_forced(phydev);
2599 
2600 	return ret;
2601 }
2602 EXPORT_SYMBOL(genphy_soft_reset);
2603 
2604 irqreturn_t genphy_handle_interrupt_no_ack(struct phy_device *phydev)
2605 {
2606 	/* It seems there are cases where the interrupts are handled by another
2607 	 * entity (ie an IRQ controller embedded inside the PHY) and do not
2608 	 * need any other interraction from phylib. In this case, just trigger
2609 	 * the state machine directly.
2610 	 */
2611 	phy_trigger_machine(phydev);
2612 
2613 	return 0;
2614 }
2615 EXPORT_SYMBOL(genphy_handle_interrupt_no_ack);
2616 
2617 /**
2618  * genphy_read_abilities - read PHY abilities from Clause 22 registers
2619  * @phydev: target phy_device struct
2620  *
2621  * Description: Reads the PHY's abilities and populates
2622  * phydev->supported accordingly.
2623  *
2624  * Returns: 0 on success, < 0 on failure
2625  */
2626 int genphy_read_abilities(struct phy_device *phydev)
2627 {
2628 	int val;
2629 
2630 	linkmode_set_bit_array(phy_basic_ports_array,
2631 			       ARRAY_SIZE(phy_basic_ports_array),
2632 			       phydev->supported);
2633 
2634 	val = phy_read(phydev, MII_BMSR);
2635 	if (val < 0)
2636 		return val;
2637 
2638 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported,
2639 			 val & BMSR_ANEGCAPABLE);
2640 
2641 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, phydev->supported,
2642 			 val & BMSR_100FULL);
2643 	linkmode_mod_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, phydev->supported,
2644 			 val & BMSR_100HALF);
2645 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, phydev->supported,
2646 			 val & BMSR_10FULL);
2647 	linkmode_mod_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, phydev->supported,
2648 			 val & BMSR_10HALF);
2649 
2650 	if (val & BMSR_ESTATEN) {
2651 		val = phy_read(phydev, MII_ESTATUS);
2652 		if (val < 0)
2653 			return val;
2654 
2655 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2656 				 phydev->supported, val & ESTATUS_1000_TFULL);
2657 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
2658 				 phydev->supported, val & ESTATUS_1000_THALF);
2659 		linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
2660 				 phydev->supported, val & ESTATUS_1000_XFULL);
2661 	}
2662 
2663 	/* This is optional functionality. If not supported, we may get an error
2664 	 * which should be ignored.
2665 	 */
2666 	genphy_c45_read_eee_abilities(phydev);
2667 
2668 	return 0;
2669 }
2670 EXPORT_SYMBOL(genphy_read_abilities);
2671 
2672 /* This is used for the phy device which doesn't support the MMD extended
2673  * register access, but it does have side effect when we are trying to access
2674  * the MMD register via indirect method.
2675  */
2676 int genphy_read_mmd_unsupported(struct phy_device *phdev, int devad, u16 regnum)
2677 {
2678 	return -EOPNOTSUPP;
2679 }
2680 EXPORT_SYMBOL(genphy_read_mmd_unsupported);
2681 
2682 int genphy_write_mmd_unsupported(struct phy_device *phdev, int devnum,
2683 				 u16 regnum, u16 val)
2684 {
2685 	return -EOPNOTSUPP;
2686 }
2687 EXPORT_SYMBOL(genphy_write_mmd_unsupported);
2688 
2689 int genphy_suspend(struct phy_device *phydev)
2690 {
2691 	return phy_set_bits(phydev, MII_BMCR, BMCR_PDOWN);
2692 }
2693 EXPORT_SYMBOL(genphy_suspend);
2694 
2695 int genphy_resume(struct phy_device *phydev)
2696 {
2697 	return phy_clear_bits(phydev, MII_BMCR, BMCR_PDOWN);
2698 }
2699 EXPORT_SYMBOL(genphy_resume);
2700 
2701 int genphy_loopback(struct phy_device *phydev, bool enable)
2702 {
2703 	if (enable) {
2704 		u16 val, ctl = BMCR_LOOPBACK;
2705 		int ret;
2706 
2707 		ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
2708 
2709 		phy_modify(phydev, MII_BMCR, ~0, ctl);
2710 
2711 		ret = phy_read_poll_timeout(phydev, MII_BMSR, val,
2712 					    val & BMSR_LSTATUS,
2713 				    5000, 500000, true);
2714 		if (ret)
2715 			return ret;
2716 	} else {
2717 		phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, 0);
2718 
2719 		phy_config_aneg(phydev);
2720 	}
2721 
2722 	return 0;
2723 }
2724 EXPORT_SYMBOL(genphy_loopback);
2725 
2726 /**
2727  * phy_remove_link_mode - Remove a supported link mode
2728  * @phydev: phy_device structure to remove link mode from
2729  * @link_mode: Link mode to be removed
2730  *
2731  * Description: Some MACs don't support all link modes which the PHY
2732  * does.  e.g. a 1G MAC often does not support 1000Half. Add a helper
2733  * to remove a link mode.
2734  */
2735 void phy_remove_link_mode(struct phy_device *phydev, u32 link_mode)
2736 {
2737 	linkmode_clear_bit(link_mode, phydev->supported);
2738 	phy_advertise_supported(phydev);
2739 }
2740 EXPORT_SYMBOL(phy_remove_link_mode);
2741 
2742 static void phy_copy_pause_bits(unsigned long *dst, unsigned long *src)
2743 {
2744 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, dst,
2745 		linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, src));
2746 	linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, dst,
2747 		linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, src));
2748 }
2749 
2750 /**
2751  * phy_advertise_supported - Advertise all supported modes
2752  * @phydev: target phy_device struct
2753  *
2754  * Description: Called to advertise all supported modes, doesn't touch
2755  * pause mode advertising.
2756  */
2757 void phy_advertise_supported(struct phy_device *phydev)
2758 {
2759 	__ETHTOOL_DECLARE_LINK_MODE_MASK(new);
2760 
2761 	linkmode_copy(new, phydev->supported);
2762 	phy_copy_pause_bits(new, phydev->advertising);
2763 	linkmode_copy(phydev->advertising, new);
2764 }
2765 EXPORT_SYMBOL(phy_advertise_supported);
2766 
2767 /**
2768  * phy_support_sym_pause - Enable support of symmetrical pause
2769  * @phydev: target phy_device struct
2770  *
2771  * Description: Called by the MAC to indicate is supports symmetrical
2772  * Pause, but not asym pause.
2773  */
2774 void phy_support_sym_pause(struct phy_device *phydev)
2775 {
2776 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
2777 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2778 }
2779 EXPORT_SYMBOL(phy_support_sym_pause);
2780 
2781 /**
2782  * phy_support_asym_pause - Enable support of asym pause
2783  * @phydev: target phy_device struct
2784  *
2785  * Description: Called by the MAC to indicate is supports Asym Pause.
2786  */
2787 void phy_support_asym_pause(struct phy_device *phydev)
2788 {
2789 	phy_copy_pause_bits(phydev->advertising, phydev->supported);
2790 }
2791 EXPORT_SYMBOL(phy_support_asym_pause);
2792 
2793 /**
2794  * phy_set_sym_pause - Configure symmetric Pause
2795  * @phydev: target phy_device struct
2796  * @rx: Receiver Pause is supported
2797  * @tx: Transmit Pause is supported
2798  * @autoneg: Auto neg should be used
2799  *
2800  * Description: Configure advertised Pause support depending on if
2801  * receiver pause and pause auto neg is supported. Generally called
2802  * from the set_pauseparam .ndo.
2803  */
2804 void phy_set_sym_pause(struct phy_device *phydev, bool rx, bool tx,
2805 		       bool autoneg)
2806 {
2807 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
2808 
2809 	if (rx && tx && autoneg)
2810 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2811 				 phydev->supported);
2812 
2813 	linkmode_copy(phydev->advertising, phydev->supported);
2814 }
2815 EXPORT_SYMBOL(phy_set_sym_pause);
2816 
2817 /**
2818  * phy_set_asym_pause - Configure Pause and Asym Pause
2819  * @phydev: target phy_device struct
2820  * @rx: Receiver Pause is supported
2821  * @tx: Transmit Pause is supported
2822  *
2823  * Description: Configure advertised Pause support depending on if
2824  * transmit and receiver pause is supported. If there has been a
2825  * change in adverting, trigger a new autoneg. Generally called from
2826  * the set_pauseparam .ndo.
2827  */
2828 void phy_set_asym_pause(struct phy_device *phydev, bool rx, bool tx)
2829 {
2830 	__ETHTOOL_DECLARE_LINK_MODE_MASK(oldadv);
2831 
2832 	linkmode_copy(oldadv, phydev->advertising);
2833 	linkmode_set_pause(phydev->advertising, tx, rx);
2834 
2835 	if (!linkmode_equal(oldadv, phydev->advertising) &&
2836 	    phydev->autoneg)
2837 		phy_start_aneg(phydev);
2838 }
2839 EXPORT_SYMBOL(phy_set_asym_pause);
2840 
2841 /**
2842  * phy_validate_pause - Test if the PHY/MAC support the pause configuration
2843  * @phydev: phy_device struct
2844  * @pp: requested pause configuration
2845  *
2846  * Description: Test if the PHY/MAC combination supports the Pause
2847  * configuration the user is requesting. Returns True if it is
2848  * supported, false otherwise.
2849  */
2850 bool phy_validate_pause(struct phy_device *phydev,
2851 			struct ethtool_pauseparam *pp)
2852 {
2853 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT,
2854 			       phydev->supported) && pp->rx_pause)
2855 		return false;
2856 
2857 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
2858 			       phydev->supported) &&
2859 	    pp->rx_pause != pp->tx_pause)
2860 		return false;
2861 
2862 	return true;
2863 }
2864 EXPORT_SYMBOL(phy_validate_pause);
2865 
2866 /**
2867  * phy_get_pause - resolve negotiated pause modes
2868  * @phydev: phy_device struct
2869  * @tx_pause: pointer to bool to indicate whether transmit pause should be
2870  * enabled.
2871  * @rx_pause: pointer to bool to indicate whether receive pause should be
2872  * enabled.
2873  *
2874  * Resolve and return the flow control modes according to the negotiation
2875  * result. This includes checking that we are operating in full duplex mode.
2876  * See linkmode_resolve_pause() for further details.
2877  */
2878 void phy_get_pause(struct phy_device *phydev, bool *tx_pause, bool *rx_pause)
2879 {
2880 	if (phydev->duplex != DUPLEX_FULL) {
2881 		*tx_pause = false;
2882 		*rx_pause = false;
2883 		return;
2884 	}
2885 
2886 	return linkmode_resolve_pause(phydev->advertising,
2887 				      phydev->lp_advertising,
2888 				      tx_pause, rx_pause);
2889 }
2890 EXPORT_SYMBOL(phy_get_pause);
2891 
2892 #if IS_ENABLED(CONFIG_OF_MDIO)
2893 static int phy_get_int_delay_property(struct device *dev, const char *name)
2894 {
2895 	s32 int_delay;
2896 	int ret;
2897 
2898 	ret = device_property_read_u32(dev, name, &int_delay);
2899 	if (ret)
2900 		return ret;
2901 
2902 	return int_delay;
2903 }
2904 #else
2905 static int phy_get_int_delay_property(struct device *dev, const char *name)
2906 {
2907 	return -EINVAL;
2908 }
2909 #endif
2910 
2911 /**
2912  * phy_get_internal_delay - returns the index of the internal delay
2913  * @phydev: phy_device struct
2914  * @dev: pointer to the devices device struct
2915  * @delay_values: array of delays the PHY supports
2916  * @size: the size of the delay array
2917  * @is_rx: boolean to indicate to get the rx internal delay
2918  *
2919  * Returns the index within the array of internal delay passed in.
2920  * If the device property is not present then the interface type is checked
2921  * if the interface defines use of internal delay then a 1 is returned otherwise
2922  * a 0 is returned.
2923  * The array must be in ascending order. If PHY does not have an ascending order
2924  * array then size = 0 and the value of the delay property is returned.
2925  * Return -EINVAL if the delay is invalid or cannot be found.
2926  */
2927 s32 phy_get_internal_delay(struct phy_device *phydev, struct device *dev,
2928 			   const int *delay_values, int size, bool is_rx)
2929 {
2930 	s32 delay;
2931 	int i;
2932 
2933 	if (is_rx) {
2934 		delay = phy_get_int_delay_property(dev, "rx-internal-delay-ps");
2935 		if (delay < 0 && size == 0) {
2936 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2937 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
2938 				return 1;
2939 			else
2940 				return 0;
2941 		}
2942 
2943 	} else {
2944 		delay = phy_get_int_delay_property(dev, "tx-internal-delay-ps");
2945 		if (delay < 0 && size == 0) {
2946 			if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
2947 			    phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
2948 				return 1;
2949 			else
2950 				return 0;
2951 		}
2952 	}
2953 
2954 	if (delay < 0)
2955 		return delay;
2956 
2957 	if (delay && size == 0)
2958 		return delay;
2959 
2960 	if (delay < delay_values[0] || delay > delay_values[size - 1]) {
2961 		phydev_err(phydev, "Delay %d is out of range\n", delay);
2962 		return -EINVAL;
2963 	}
2964 
2965 	if (delay == delay_values[0])
2966 		return 0;
2967 
2968 	for (i = 1; i < size; i++) {
2969 		if (delay == delay_values[i])
2970 			return i;
2971 
2972 		/* Find an approximate index by looking up the table */
2973 		if (delay > delay_values[i - 1] &&
2974 		    delay < delay_values[i]) {
2975 			if (delay - delay_values[i - 1] <
2976 			    delay_values[i] - delay)
2977 				return i - 1;
2978 			else
2979 				return i;
2980 		}
2981 	}
2982 
2983 	phydev_err(phydev, "error finding internal delay index for %d\n",
2984 		   delay);
2985 
2986 	return -EINVAL;
2987 }
2988 EXPORT_SYMBOL(phy_get_internal_delay);
2989 
2990 static bool phy_drv_supports_irq(struct phy_driver *phydrv)
2991 {
2992 	return phydrv->config_intr && phydrv->handle_interrupt;
2993 }
2994 
2995 static int phy_led_set_brightness(struct led_classdev *led_cdev,
2996 				  enum led_brightness value)
2997 {
2998 	struct phy_led *phyled = to_phy_led(led_cdev);
2999 	struct phy_device *phydev = phyled->phydev;
3000 	int err;
3001 
3002 	mutex_lock(&phydev->lock);
3003 	err = phydev->drv->led_brightness_set(phydev, phyled->index, value);
3004 	mutex_unlock(&phydev->lock);
3005 
3006 	return err;
3007 }
3008 
3009 static int phy_led_blink_set(struct led_classdev *led_cdev,
3010 			     unsigned long *delay_on,
3011 			     unsigned long *delay_off)
3012 {
3013 	struct phy_led *phyled = to_phy_led(led_cdev);
3014 	struct phy_device *phydev = phyled->phydev;
3015 	int err;
3016 
3017 	mutex_lock(&phydev->lock);
3018 	err = phydev->drv->led_blink_set(phydev, phyled->index,
3019 					 delay_on, delay_off);
3020 	mutex_unlock(&phydev->lock);
3021 
3022 	return err;
3023 }
3024 
3025 static __maybe_unused struct device *
3026 phy_led_hw_control_get_device(struct led_classdev *led_cdev)
3027 {
3028 	struct phy_led *phyled = to_phy_led(led_cdev);
3029 	struct phy_device *phydev = phyled->phydev;
3030 
3031 	if (phydev->attached_dev)
3032 		return &phydev->attached_dev->dev;
3033 	return NULL;
3034 }
3035 
3036 static int __maybe_unused
3037 phy_led_hw_control_get(struct led_classdev *led_cdev,
3038 		       unsigned long *rules)
3039 {
3040 	struct phy_led *phyled = to_phy_led(led_cdev);
3041 	struct phy_device *phydev = phyled->phydev;
3042 	int err;
3043 
3044 	mutex_lock(&phydev->lock);
3045 	err = phydev->drv->led_hw_control_get(phydev, phyled->index, rules);
3046 	mutex_unlock(&phydev->lock);
3047 
3048 	return err;
3049 }
3050 
3051 static int __maybe_unused
3052 phy_led_hw_control_set(struct led_classdev *led_cdev,
3053 		       unsigned long rules)
3054 {
3055 	struct phy_led *phyled = to_phy_led(led_cdev);
3056 	struct phy_device *phydev = phyled->phydev;
3057 	int err;
3058 
3059 	mutex_lock(&phydev->lock);
3060 	err = phydev->drv->led_hw_control_set(phydev, phyled->index, rules);
3061 	mutex_unlock(&phydev->lock);
3062 
3063 	return err;
3064 }
3065 
3066 static __maybe_unused int phy_led_hw_is_supported(struct led_classdev *led_cdev,
3067 						  unsigned long rules)
3068 {
3069 	struct phy_led *phyled = to_phy_led(led_cdev);
3070 	struct phy_device *phydev = phyled->phydev;
3071 	int err;
3072 
3073 	mutex_lock(&phydev->lock);
3074 	err = phydev->drv->led_hw_is_supported(phydev, phyled->index, rules);
3075 	mutex_unlock(&phydev->lock);
3076 
3077 	return err;
3078 }
3079 
3080 static void phy_leds_unregister(struct phy_device *phydev)
3081 {
3082 	struct phy_led *phyled;
3083 
3084 	list_for_each_entry(phyled, &phydev->leds, list) {
3085 		led_classdev_unregister(&phyled->led_cdev);
3086 	}
3087 }
3088 
3089 static int of_phy_led(struct phy_device *phydev,
3090 		      struct device_node *led)
3091 {
3092 	struct device *dev = &phydev->mdio.dev;
3093 	struct led_init_data init_data = {};
3094 	struct led_classdev *cdev;
3095 	struct phy_led *phyled;
3096 	u32 index;
3097 	int err;
3098 
3099 	phyled = devm_kzalloc(dev, sizeof(*phyled), GFP_KERNEL);
3100 	if (!phyled)
3101 		return -ENOMEM;
3102 
3103 	cdev = &phyled->led_cdev;
3104 	phyled->phydev = phydev;
3105 
3106 	err = of_property_read_u32(led, "reg", &index);
3107 	if (err)
3108 		return err;
3109 	if (index > U8_MAX)
3110 		return -EINVAL;
3111 
3112 	phyled->index = index;
3113 	if (phydev->drv->led_brightness_set)
3114 		cdev->brightness_set_blocking = phy_led_set_brightness;
3115 	if (phydev->drv->led_blink_set)
3116 		cdev->blink_set = phy_led_blink_set;
3117 
3118 #ifdef CONFIG_LEDS_TRIGGERS
3119 	if (phydev->drv->led_hw_is_supported &&
3120 	    phydev->drv->led_hw_control_set &&
3121 	    phydev->drv->led_hw_control_get) {
3122 		cdev->hw_control_is_supported = phy_led_hw_is_supported;
3123 		cdev->hw_control_set = phy_led_hw_control_set;
3124 		cdev->hw_control_get = phy_led_hw_control_get;
3125 		cdev->hw_control_trigger = "netdev";
3126 	}
3127 
3128 	cdev->hw_control_get_device = phy_led_hw_control_get_device;
3129 #endif
3130 	cdev->max_brightness = 1;
3131 	init_data.devicename = dev_name(&phydev->mdio.dev);
3132 	init_data.fwnode = of_fwnode_handle(led);
3133 	init_data.devname_mandatory = true;
3134 
3135 	err = led_classdev_register_ext(dev, cdev, &init_data);
3136 	if (err)
3137 		return err;
3138 
3139 	list_add(&phyled->list, &phydev->leds);
3140 
3141 	return 0;
3142 }
3143 
3144 static int of_phy_leds(struct phy_device *phydev)
3145 {
3146 	struct device_node *node = phydev->mdio.dev.of_node;
3147 	struct device_node *leds, *led;
3148 	int err;
3149 
3150 	if (!IS_ENABLED(CONFIG_OF_MDIO))
3151 		return 0;
3152 
3153 	if (!node)
3154 		return 0;
3155 
3156 	leds = of_get_child_by_name(node, "leds");
3157 	if (!leds)
3158 		return 0;
3159 
3160 	for_each_available_child_of_node(leds, led) {
3161 		err = of_phy_led(phydev, led);
3162 		if (err) {
3163 			of_node_put(led);
3164 			phy_leds_unregister(phydev);
3165 			return err;
3166 		}
3167 	}
3168 
3169 	return 0;
3170 }
3171 
3172 /**
3173  * fwnode_mdio_find_device - Given a fwnode, find the mdio_device
3174  * @fwnode: pointer to the mdio_device's fwnode
3175  *
3176  * If successful, returns a pointer to the mdio_device with the embedded
3177  * struct device refcount incremented by one, or NULL on failure.
3178  * The caller should call put_device() on the mdio_device after its use.
3179  */
3180 struct mdio_device *fwnode_mdio_find_device(struct fwnode_handle *fwnode)
3181 {
3182 	struct device *d;
3183 
3184 	if (!fwnode)
3185 		return NULL;
3186 
3187 	d = bus_find_device_by_fwnode(&mdio_bus_type, fwnode);
3188 	if (!d)
3189 		return NULL;
3190 
3191 	return to_mdio_device(d);
3192 }
3193 EXPORT_SYMBOL(fwnode_mdio_find_device);
3194 
3195 /**
3196  * fwnode_phy_find_device - For provided phy_fwnode, find phy_device.
3197  *
3198  * @phy_fwnode: Pointer to the phy's fwnode.
3199  *
3200  * If successful, returns a pointer to the phy_device with the embedded
3201  * struct device refcount incremented by one, or NULL on failure.
3202  */
3203 struct phy_device *fwnode_phy_find_device(struct fwnode_handle *phy_fwnode)
3204 {
3205 	struct mdio_device *mdiodev;
3206 
3207 	mdiodev = fwnode_mdio_find_device(phy_fwnode);
3208 	if (!mdiodev)
3209 		return NULL;
3210 
3211 	if (mdiodev->flags & MDIO_DEVICE_FLAG_PHY)
3212 		return to_phy_device(&mdiodev->dev);
3213 
3214 	put_device(&mdiodev->dev);
3215 
3216 	return NULL;
3217 }
3218 EXPORT_SYMBOL(fwnode_phy_find_device);
3219 
3220 /**
3221  * device_phy_find_device - For the given device, get the phy_device
3222  * @dev: Pointer to the given device
3223  *
3224  * Refer return conditions of fwnode_phy_find_device().
3225  */
3226 struct phy_device *device_phy_find_device(struct device *dev)
3227 {
3228 	return fwnode_phy_find_device(dev_fwnode(dev));
3229 }
3230 EXPORT_SYMBOL_GPL(device_phy_find_device);
3231 
3232 /**
3233  * fwnode_get_phy_node - Get the phy_node using the named reference.
3234  * @fwnode: Pointer to fwnode from which phy_node has to be obtained.
3235  *
3236  * Refer return conditions of fwnode_find_reference().
3237  * For ACPI, only "phy-handle" is supported. Legacy DT properties "phy"
3238  * and "phy-device" are not supported in ACPI. DT supports all the three
3239  * named references to the phy node.
3240  */
3241 struct fwnode_handle *fwnode_get_phy_node(const struct fwnode_handle *fwnode)
3242 {
3243 	struct fwnode_handle *phy_node;
3244 
3245 	/* Only phy-handle is used for ACPI */
3246 	phy_node = fwnode_find_reference(fwnode, "phy-handle", 0);
3247 	if (is_acpi_node(fwnode) || !IS_ERR(phy_node))
3248 		return phy_node;
3249 	phy_node = fwnode_find_reference(fwnode, "phy", 0);
3250 	if (IS_ERR(phy_node))
3251 		phy_node = fwnode_find_reference(fwnode, "phy-device", 0);
3252 	return phy_node;
3253 }
3254 EXPORT_SYMBOL_GPL(fwnode_get_phy_node);
3255 
3256 /**
3257  * phy_probe - probe and init a PHY device
3258  * @dev: device to probe and init
3259  *
3260  * Take care of setting up the phy_device structure, set the state to READY.
3261  */
3262 static int phy_probe(struct device *dev)
3263 {
3264 	struct phy_device *phydev = to_phy_device(dev);
3265 	struct device_driver *drv = phydev->mdio.dev.driver;
3266 	struct phy_driver *phydrv = to_phy_driver(drv);
3267 	int err = 0;
3268 
3269 	phydev->drv = phydrv;
3270 
3271 	/* Disable the interrupt if the PHY doesn't support it
3272 	 * but the interrupt is still a valid one
3273 	 */
3274 	if (!phy_drv_supports_irq(phydrv) && phy_interrupt_is_valid(phydev))
3275 		phydev->irq = PHY_POLL;
3276 
3277 	if (phydrv->flags & PHY_IS_INTERNAL)
3278 		phydev->is_internal = true;
3279 
3280 	/* Deassert the reset signal */
3281 	phy_device_reset(phydev, 0);
3282 
3283 	if (phydev->drv->probe) {
3284 		err = phydev->drv->probe(phydev);
3285 		if (err)
3286 			goto out;
3287 	}
3288 
3289 	phy_disable_interrupts(phydev);
3290 
3291 	/* Start out supporting everything. Eventually,
3292 	 * a controller will attach, and may modify one
3293 	 * or both of these values
3294 	 */
3295 	if (phydrv->features) {
3296 		linkmode_copy(phydev->supported, phydrv->features);
3297 		genphy_c45_read_eee_abilities(phydev);
3298 	}
3299 	else if (phydrv->get_features)
3300 		err = phydrv->get_features(phydev);
3301 	else if (phydev->is_c45)
3302 		err = genphy_c45_pma_read_abilities(phydev);
3303 	else
3304 		err = genphy_read_abilities(phydev);
3305 
3306 	if (err)
3307 		goto out;
3308 
3309 	if (!linkmode_test_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3310 			       phydev->supported))
3311 		phydev->autoneg = 0;
3312 
3313 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
3314 			      phydev->supported))
3315 		phydev->is_gigabit_capable = 1;
3316 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
3317 			      phydev->supported))
3318 		phydev->is_gigabit_capable = 1;
3319 
3320 	of_set_phy_supported(phydev);
3321 	phy_advertise_supported(phydev);
3322 
3323 	/* Get PHY default EEE advertising modes and handle them as potentially
3324 	 * safe initial configuration.
3325 	 */
3326 	err = genphy_c45_read_eee_adv(phydev, phydev->advertising_eee);
3327 	if (err)
3328 		goto out;
3329 
3330 	/* There is no "enabled" flag. If PHY is advertising, assume it is
3331 	 * kind of enabled.
3332 	 */
3333 	phydev->eee_enabled = !linkmode_empty(phydev->advertising_eee);
3334 
3335 	/* Some PHYs may advertise, by default, not support EEE modes. So,
3336 	 * we need to clean them.
3337 	 */
3338 	if (phydev->eee_enabled)
3339 		linkmode_and(phydev->advertising_eee, phydev->supported_eee,
3340 			     phydev->advertising_eee);
3341 
3342 	/* Get the EEE modes we want to prohibit. We will ask
3343 	 * the PHY stop advertising these mode later on
3344 	 */
3345 	of_set_phy_eee_broken(phydev);
3346 
3347 	/* The Pause Frame bits indicate that the PHY can support passing
3348 	 * pause frames. During autonegotiation, the PHYs will determine if
3349 	 * they should allow pause frames to pass.  The MAC driver should then
3350 	 * use that result to determine whether to enable flow control via
3351 	 * pause frames.
3352 	 *
3353 	 * Normally, PHY drivers should not set the Pause bits, and instead
3354 	 * allow phylib to do that.  However, there may be some situations
3355 	 * (e.g. hardware erratum) where the driver wants to set only one
3356 	 * of these bits.
3357 	 */
3358 	if (!test_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported) &&
3359 	    !test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported)) {
3360 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
3361 				 phydev->supported);
3362 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT,
3363 				 phydev->supported);
3364 	}
3365 
3366 	/* Set the state to READY by default */
3367 	phydev->state = PHY_READY;
3368 
3369 	/* Get the LEDs from the device tree, and instantiate standard
3370 	 * LEDs for them.
3371 	 */
3372 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3373 		err = of_phy_leds(phydev);
3374 
3375 out:
3376 	/* Re-assert the reset signal on error */
3377 	if (err)
3378 		phy_device_reset(phydev, 1);
3379 
3380 	return err;
3381 }
3382 
3383 static int phy_remove(struct device *dev)
3384 {
3385 	struct phy_device *phydev = to_phy_device(dev);
3386 
3387 	cancel_delayed_work_sync(&phydev->state_queue);
3388 
3389 	if (IS_ENABLED(CONFIG_PHYLIB_LEDS))
3390 		phy_leds_unregister(phydev);
3391 
3392 	phydev->state = PHY_DOWN;
3393 
3394 	sfp_bus_del_upstream(phydev->sfp_bus);
3395 	phydev->sfp_bus = NULL;
3396 
3397 	if (phydev->drv && phydev->drv->remove)
3398 		phydev->drv->remove(phydev);
3399 
3400 	/* Assert the reset signal */
3401 	phy_device_reset(phydev, 1);
3402 
3403 	phydev->drv = NULL;
3404 
3405 	return 0;
3406 }
3407 
3408 /**
3409  * phy_driver_register - register a phy_driver with the PHY layer
3410  * @new_driver: new phy_driver to register
3411  * @owner: module owning this PHY
3412  */
3413 int phy_driver_register(struct phy_driver *new_driver, struct module *owner)
3414 {
3415 	int retval;
3416 
3417 	/* Either the features are hard coded, or dynamically
3418 	 * determined. It cannot be both.
3419 	 */
3420 	if (WARN_ON(new_driver->features && new_driver->get_features)) {
3421 		pr_err("%s: features and get_features must not both be set\n",
3422 		       new_driver->name);
3423 		return -EINVAL;
3424 	}
3425 
3426 	/* PHYLIB device drivers must not match using a DT compatible table
3427 	 * as this bypasses our checks that the mdiodev that is being matched
3428 	 * is backed by a struct phy_device. If such a case happens, we will
3429 	 * make out-of-bounds accesses and lockup in phydev->lock.
3430 	 */
3431 	if (WARN(new_driver->mdiodrv.driver.of_match_table,
3432 		 "%s: driver must not provide a DT match table\n",
3433 		 new_driver->name))
3434 		return -EINVAL;
3435 
3436 	new_driver->mdiodrv.flags |= MDIO_DEVICE_IS_PHY;
3437 	new_driver->mdiodrv.driver.name = new_driver->name;
3438 	new_driver->mdiodrv.driver.bus = &mdio_bus_type;
3439 	new_driver->mdiodrv.driver.probe = phy_probe;
3440 	new_driver->mdiodrv.driver.remove = phy_remove;
3441 	new_driver->mdiodrv.driver.owner = owner;
3442 	new_driver->mdiodrv.driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
3443 
3444 	retval = driver_register(&new_driver->mdiodrv.driver);
3445 	if (retval) {
3446 		pr_err("%s: Error %d in registering driver\n",
3447 		       new_driver->name, retval);
3448 
3449 		return retval;
3450 	}
3451 
3452 	pr_debug("%s: Registered new driver\n", new_driver->name);
3453 
3454 	return 0;
3455 }
3456 EXPORT_SYMBOL(phy_driver_register);
3457 
3458 int phy_drivers_register(struct phy_driver *new_driver, int n,
3459 			 struct module *owner)
3460 {
3461 	int i, ret = 0;
3462 
3463 	for (i = 0; i < n; i++) {
3464 		ret = phy_driver_register(new_driver + i, owner);
3465 		if (ret) {
3466 			while (i-- > 0)
3467 				phy_driver_unregister(new_driver + i);
3468 			break;
3469 		}
3470 	}
3471 	return ret;
3472 }
3473 EXPORT_SYMBOL(phy_drivers_register);
3474 
3475 void phy_driver_unregister(struct phy_driver *drv)
3476 {
3477 	driver_unregister(&drv->mdiodrv.driver);
3478 }
3479 EXPORT_SYMBOL(phy_driver_unregister);
3480 
3481 void phy_drivers_unregister(struct phy_driver *drv, int n)
3482 {
3483 	int i;
3484 
3485 	for (i = 0; i < n; i++)
3486 		phy_driver_unregister(drv + i);
3487 }
3488 EXPORT_SYMBOL(phy_drivers_unregister);
3489 
3490 static struct phy_driver genphy_driver = {
3491 	.phy_id		= 0xffffffff,
3492 	.phy_id_mask	= 0xffffffff,
3493 	.name		= "Generic PHY",
3494 	.get_features	= genphy_read_abilities,
3495 	.suspend	= genphy_suspend,
3496 	.resume		= genphy_resume,
3497 	.set_loopback   = genphy_loopback,
3498 };
3499 
3500 static const struct ethtool_phy_ops phy_ethtool_phy_ops = {
3501 	.get_sset_count		= phy_ethtool_get_sset_count,
3502 	.get_strings		= phy_ethtool_get_strings,
3503 	.get_stats		= phy_ethtool_get_stats,
3504 	.get_plca_cfg		= phy_ethtool_get_plca_cfg,
3505 	.set_plca_cfg		= phy_ethtool_set_plca_cfg,
3506 	.get_plca_status	= phy_ethtool_get_plca_status,
3507 	.start_cable_test	= phy_start_cable_test,
3508 	.start_cable_test_tdr	= phy_start_cable_test_tdr,
3509 };
3510 
3511 static const struct phylib_stubs __phylib_stubs = {
3512 	.hwtstamp_get = __phy_hwtstamp_get,
3513 	.hwtstamp_set = __phy_hwtstamp_set,
3514 };
3515 
3516 static void phylib_register_stubs(void)
3517 {
3518 	phylib_stubs = &__phylib_stubs;
3519 }
3520 
3521 static void phylib_unregister_stubs(void)
3522 {
3523 	phylib_stubs = NULL;
3524 }
3525 
3526 static int __init phy_init(void)
3527 {
3528 	int rc;
3529 
3530 	rtnl_lock();
3531 	ethtool_set_ethtool_phy_ops(&phy_ethtool_phy_ops);
3532 	phylib_register_stubs();
3533 	rtnl_unlock();
3534 
3535 	rc = mdio_bus_init();
3536 	if (rc)
3537 		goto err_ethtool_phy_ops;
3538 
3539 	features_init();
3540 
3541 	rc = phy_driver_register(&genphy_c45_driver, THIS_MODULE);
3542 	if (rc)
3543 		goto err_mdio_bus;
3544 
3545 	rc = phy_driver_register(&genphy_driver, THIS_MODULE);
3546 	if (rc)
3547 		goto err_c45;
3548 
3549 	return 0;
3550 
3551 err_c45:
3552 	phy_driver_unregister(&genphy_c45_driver);
3553 err_mdio_bus:
3554 	mdio_bus_exit();
3555 err_ethtool_phy_ops:
3556 	rtnl_lock();
3557 	phylib_unregister_stubs();
3558 	ethtool_set_ethtool_phy_ops(NULL);
3559 	rtnl_unlock();
3560 
3561 	return rc;
3562 }
3563 
3564 static void __exit phy_exit(void)
3565 {
3566 	phy_driver_unregister(&genphy_c45_driver);
3567 	phy_driver_unregister(&genphy_driver);
3568 	mdio_bus_exit();
3569 	rtnl_lock();
3570 	phylib_unregister_stubs();
3571 	ethtool_set_ethtool_phy_ops(NULL);
3572 	rtnl_unlock();
3573 }
3574 
3575 subsys_initcall(phy_init);
3576 module_exit(phy_exit);
3577