xref: /linux/drivers/net/phy/phy.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /* Framework for configuring and reading PHY devices
2  * Based on code in sungem_phy.c and gianfar_phy.c
3  *
4  * Author: Andy Fleming
5  *
6  * Copyright (c) 2004 Freescale Semiconductor, Inc.
7  * Copyright (c) 2006, 2007  Maciej W. Rozycki
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/unistd.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/phy.h>
32 #include <linux/timer.h>
33 #include <linux/workqueue.h>
34 #include <linux/mdio.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <linux/atomic.h>
38 
39 #include <asm/irq.h>
40 
41 static const char *phy_speed_to_str(int speed)
42 {
43 	switch (speed) {
44 	case SPEED_10:
45 		return "10Mbps";
46 	case SPEED_100:
47 		return "100Mbps";
48 	case SPEED_1000:
49 		return "1Gbps";
50 	case SPEED_2500:
51 		return "2.5Gbps";
52 	case SPEED_10000:
53 		return "10Gbps";
54 	case SPEED_UNKNOWN:
55 		return "Unknown";
56 	default:
57 		return "Unsupported (update phy.c)";
58 	}
59 }
60 
61 #define PHY_STATE_STR(_state)			\
62 	case PHY_##_state:			\
63 		return __stringify(_state);	\
64 
65 static const char *phy_state_to_str(enum phy_state st)
66 {
67 	switch (st) {
68 	PHY_STATE_STR(DOWN)
69 	PHY_STATE_STR(STARTING)
70 	PHY_STATE_STR(READY)
71 	PHY_STATE_STR(PENDING)
72 	PHY_STATE_STR(UP)
73 	PHY_STATE_STR(AN)
74 	PHY_STATE_STR(RUNNING)
75 	PHY_STATE_STR(NOLINK)
76 	PHY_STATE_STR(FORCING)
77 	PHY_STATE_STR(CHANGELINK)
78 	PHY_STATE_STR(HALTED)
79 	PHY_STATE_STR(RESUMING)
80 	}
81 
82 	return NULL;
83 }
84 
85 
86 /**
87  * phy_print_status - Convenience function to print out the current phy status
88  * @phydev: the phy_device struct
89  */
90 void phy_print_status(struct phy_device *phydev)
91 {
92 	if (phydev->link) {
93 		netdev_info(phydev->attached_dev,
94 			"Link is Up - %s/%s - flow control %s\n",
95 			phy_speed_to_str(phydev->speed),
96 			DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
97 			phydev->pause ? "rx/tx" : "off");
98 	} else	{
99 		netdev_info(phydev->attached_dev, "Link is Down\n");
100 	}
101 }
102 EXPORT_SYMBOL(phy_print_status);
103 
104 /**
105  * phy_clear_interrupt - Ack the phy device's interrupt
106  * @phydev: the phy_device struct
107  *
108  * If the @phydev driver has an ack_interrupt function, call it to
109  * ack and clear the phy device's interrupt.
110  *
111  * Returns 0 on success or < 0 on error.
112  */
113 static int phy_clear_interrupt(struct phy_device *phydev)
114 {
115 	if (phydev->drv->ack_interrupt)
116 		return phydev->drv->ack_interrupt(phydev);
117 
118 	return 0;
119 }
120 
121 /**
122  * phy_config_interrupt - configure the PHY device for the requested interrupts
123  * @phydev: the phy_device struct
124  * @interrupts: interrupt flags to configure for this @phydev
125  *
126  * Returns 0 on success or < 0 on error.
127  */
128 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
129 {
130 	phydev->interrupts = interrupts;
131 	if (phydev->drv->config_intr)
132 		return phydev->drv->config_intr(phydev);
133 
134 	return 0;
135 }
136 
137 
138 /**
139  * phy_aneg_done - return auto-negotiation status
140  * @phydev: target phy_device struct
141  *
142  * Description: Return the auto-negotiation status from this @phydev
143  * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
144  * is still pending.
145  */
146 static inline int phy_aneg_done(struct phy_device *phydev)
147 {
148 	if (phydev->drv->aneg_done)
149 		return phydev->drv->aneg_done(phydev);
150 
151 	return genphy_aneg_done(phydev);
152 }
153 
154 /* A structure for mapping a particular speed and duplex
155  * combination to a particular SUPPORTED and ADVERTISED value
156  */
157 struct phy_setting {
158 	int speed;
159 	int duplex;
160 	u32 setting;
161 };
162 
163 /* A mapping of all SUPPORTED settings to speed/duplex */
164 static const struct phy_setting settings[] = {
165 	{
166 		.speed = SPEED_10000,
167 		.duplex = DUPLEX_FULL,
168 		.setting = SUPPORTED_10000baseKR_Full,
169 	},
170 	{
171 		.speed = SPEED_10000,
172 		.duplex = DUPLEX_FULL,
173 		.setting = SUPPORTED_10000baseKX4_Full,
174 	},
175 	{
176 		.speed = SPEED_10000,
177 		.duplex = DUPLEX_FULL,
178 		.setting = SUPPORTED_10000baseT_Full,
179 	},
180 	{
181 		.speed = SPEED_2500,
182 		.duplex = DUPLEX_FULL,
183 		.setting = SUPPORTED_2500baseX_Full,
184 	},
185 	{
186 		.speed = SPEED_1000,
187 		.duplex = DUPLEX_FULL,
188 		.setting = SUPPORTED_1000baseKX_Full,
189 	},
190 	{
191 		.speed = SPEED_1000,
192 		.duplex = DUPLEX_FULL,
193 		.setting = SUPPORTED_1000baseT_Full,
194 	},
195 	{
196 		.speed = SPEED_1000,
197 		.duplex = DUPLEX_HALF,
198 		.setting = SUPPORTED_1000baseT_Half,
199 	},
200 	{
201 		.speed = SPEED_100,
202 		.duplex = DUPLEX_FULL,
203 		.setting = SUPPORTED_100baseT_Full,
204 	},
205 	{
206 		.speed = SPEED_100,
207 		.duplex = DUPLEX_HALF,
208 		.setting = SUPPORTED_100baseT_Half,
209 	},
210 	{
211 		.speed = SPEED_10,
212 		.duplex = DUPLEX_FULL,
213 		.setting = SUPPORTED_10baseT_Full,
214 	},
215 	{
216 		.speed = SPEED_10,
217 		.duplex = DUPLEX_HALF,
218 		.setting = SUPPORTED_10baseT_Half,
219 	},
220 };
221 
222 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
223 
224 /**
225  * phy_find_setting - find a PHY settings array entry that matches speed & duplex
226  * @speed: speed to match
227  * @duplex: duplex to match
228  *
229  * Description: Searches the settings array for the setting which
230  *   matches the desired speed and duplex, and returns the index
231  *   of that setting.  Returns the index of the last setting if
232  *   none of the others match.
233  */
234 static inline unsigned int phy_find_setting(int speed, int duplex)
235 {
236 	unsigned int idx = 0;
237 
238 	while (idx < ARRAY_SIZE(settings) &&
239 	       (settings[idx].speed != speed || settings[idx].duplex != duplex))
240 		idx++;
241 
242 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
243 }
244 
245 /**
246  * phy_find_valid - find a PHY setting that matches the requested features mask
247  * @idx: The first index in settings[] to search
248  * @features: A mask of the valid settings
249  *
250  * Description: Returns the index of the first valid setting less
251  *   than or equal to the one pointed to by idx, as determined by
252  *   the mask in features.  Returns the index of the last setting
253  *   if nothing else matches.
254  */
255 static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
256 {
257 	while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
258 		idx++;
259 
260 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
261 }
262 
263 /**
264  * phy_check_valid - check if there is a valid PHY setting which matches
265  *		     speed, duplex, and feature mask
266  * @speed: speed to match
267  * @duplex: duplex to match
268  * @features: A mask of the valid settings
269  *
270  * Description: Returns true if there is a valid setting, false otherwise.
271  */
272 static inline bool phy_check_valid(int speed, int duplex, u32 features)
273 {
274 	unsigned int idx;
275 
276 	idx = phy_find_valid(phy_find_setting(speed, duplex), features);
277 
278 	return settings[idx].speed == speed && settings[idx].duplex == duplex &&
279 		(settings[idx].setting & features);
280 }
281 
282 /**
283  * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
284  * @phydev: the target phy_device struct
285  *
286  * Description: Make sure the PHY is set to supported speeds and
287  *   duplexes.  Drop down by one in this order:  1000/FULL,
288  *   1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
289  */
290 static void phy_sanitize_settings(struct phy_device *phydev)
291 {
292 	u32 features = phydev->supported;
293 	unsigned int idx;
294 
295 	/* Sanitize settings based on PHY capabilities */
296 	if ((features & SUPPORTED_Autoneg) == 0)
297 		phydev->autoneg = AUTONEG_DISABLE;
298 
299 	idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
300 			features);
301 
302 	phydev->speed = settings[idx].speed;
303 	phydev->duplex = settings[idx].duplex;
304 }
305 
306 /**
307  * phy_ethtool_sset - generic ethtool sset function, handles all the details
308  * @phydev: target phy_device struct
309  * @cmd: ethtool_cmd
310  *
311  * A few notes about parameter checking:
312  * - We don't set port or transceiver, so we don't care what they
313  *   were set to.
314  * - phy_start_aneg() will make sure forced settings are sane, and
315  *   choose the next best ones from the ones selected, so we don't
316  *   care if ethtool tries to give us bad values.
317  */
318 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
319 {
320 	u32 speed = ethtool_cmd_speed(cmd);
321 
322 	if (cmd->phy_address != phydev->addr)
323 		return -EINVAL;
324 
325 	/* We make sure that we don't pass unsupported values in to the PHY */
326 	cmd->advertising &= phydev->supported;
327 
328 	/* Verify the settings we care about. */
329 	if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
330 		return -EINVAL;
331 
332 	if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
333 		return -EINVAL;
334 
335 	if (cmd->autoneg == AUTONEG_DISABLE &&
336 	    ((speed != SPEED_1000 &&
337 	      speed != SPEED_100 &&
338 	      speed != SPEED_10) ||
339 	     (cmd->duplex != DUPLEX_HALF &&
340 	      cmd->duplex != DUPLEX_FULL)))
341 		return -EINVAL;
342 
343 	phydev->autoneg = cmd->autoneg;
344 
345 	phydev->speed = speed;
346 
347 	phydev->advertising = cmd->advertising;
348 
349 	if (AUTONEG_ENABLE == cmd->autoneg)
350 		phydev->advertising |= ADVERTISED_Autoneg;
351 	else
352 		phydev->advertising &= ~ADVERTISED_Autoneg;
353 
354 	phydev->duplex = cmd->duplex;
355 
356 	phydev->mdix = cmd->eth_tp_mdix_ctrl;
357 
358 	/* Restart the PHY */
359 	phy_start_aneg(phydev);
360 
361 	return 0;
362 }
363 EXPORT_SYMBOL(phy_ethtool_sset);
364 
365 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
366 {
367 	cmd->supported = phydev->supported;
368 
369 	cmd->advertising = phydev->advertising;
370 	cmd->lp_advertising = phydev->lp_advertising;
371 
372 	ethtool_cmd_speed_set(cmd, phydev->speed);
373 	cmd->duplex = phydev->duplex;
374 	if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
375 		cmd->port = PORT_BNC;
376 	else
377 		cmd->port = PORT_MII;
378 	cmd->phy_address = phydev->addr;
379 	cmd->transceiver = phy_is_internal(phydev) ?
380 		XCVR_INTERNAL : XCVR_EXTERNAL;
381 	cmd->autoneg = phydev->autoneg;
382 	cmd->eth_tp_mdix_ctrl = phydev->mdix;
383 
384 	return 0;
385 }
386 EXPORT_SYMBOL(phy_ethtool_gset);
387 
388 /**
389  * phy_mii_ioctl - generic PHY MII ioctl interface
390  * @phydev: the phy_device struct
391  * @ifr: &struct ifreq for socket ioctl's
392  * @cmd: ioctl cmd to execute
393  *
394  * Note that this function is currently incompatible with the
395  * PHYCONTROL layer.  It changes registers without regard to
396  * current state.  Use at own risk.
397  */
398 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
399 {
400 	struct mii_ioctl_data *mii_data = if_mii(ifr);
401 	u16 val = mii_data->val_in;
402 	bool change_autoneg = false;
403 
404 	switch (cmd) {
405 	case SIOCGMIIPHY:
406 		mii_data->phy_id = phydev->addr;
407 		/* fall through */
408 
409 	case SIOCGMIIREG:
410 		mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id,
411 						 mii_data->reg_num);
412 		return 0;
413 
414 	case SIOCSMIIREG:
415 		if (mii_data->phy_id == phydev->addr) {
416 			switch (mii_data->reg_num) {
417 			case MII_BMCR:
418 				if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) {
419 					if (phydev->autoneg == AUTONEG_ENABLE)
420 						change_autoneg = true;
421 					phydev->autoneg = AUTONEG_DISABLE;
422 					if (val & BMCR_FULLDPLX)
423 						phydev->duplex = DUPLEX_FULL;
424 					else
425 						phydev->duplex = DUPLEX_HALF;
426 					if (val & BMCR_SPEED1000)
427 						phydev->speed = SPEED_1000;
428 					else if (val & BMCR_SPEED100)
429 						phydev->speed = SPEED_100;
430 					else phydev->speed = SPEED_10;
431 				}
432 				else {
433 					if (phydev->autoneg == AUTONEG_DISABLE)
434 						change_autoneg = true;
435 					phydev->autoneg = AUTONEG_ENABLE;
436 				}
437 				break;
438 			case MII_ADVERTISE:
439 				phydev->advertising = mii_adv_to_ethtool_adv_t(val);
440 				change_autoneg = true;
441 				break;
442 			default:
443 				/* do nothing */
444 				break;
445 			}
446 		}
447 
448 		mdiobus_write(phydev->bus, mii_data->phy_id,
449 			      mii_data->reg_num, val);
450 
451 		if (mii_data->reg_num == MII_BMCR &&
452 		    val & BMCR_RESET)
453 			return phy_init_hw(phydev);
454 
455 		if (change_autoneg)
456 			return phy_start_aneg(phydev);
457 
458 		return 0;
459 
460 	case SIOCSHWTSTAMP:
461 		if (phydev->drv->hwtstamp)
462 			return phydev->drv->hwtstamp(phydev, ifr);
463 		/* fall through */
464 
465 	default:
466 		return -EOPNOTSUPP;
467 	}
468 }
469 EXPORT_SYMBOL(phy_mii_ioctl);
470 
471 /**
472  * phy_start_aneg - start auto-negotiation for this PHY device
473  * @phydev: the phy_device struct
474  *
475  * Description: Sanitizes the settings (if we're not autonegotiating
476  *   them), and then calls the driver's config_aneg function.
477  *   If the PHYCONTROL Layer is operating, we change the state to
478  *   reflect the beginning of Auto-negotiation or forcing.
479  */
480 int phy_start_aneg(struct phy_device *phydev)
481 {
482 	int err;
483 
484 	mutex_lock(&phydev->lock);
485 
486 	if (AUTONEG_DISABLE == phydev->autoneg)
487 		phy_sanitize_settings(phydev);
488 
489 	/* Invalidate LP advertising flags */
490 	phydev->lp_advertising = 0;
491 
492 	err = phydev->drv->config_aneg(phydev);
493 	if (err < 0)
494 		goto out_unlock;
495 
496 	if (phydev->state != PHY_HALTED) {
497 		if (AUTONEG_ENABLE == phydev->autoneg) {
498 			phydev->state = PHY_AN;
499 			phydev->link_timeout = PHY_AN_TIMEOUT;
500 		} else {
501 			phydev->state = PHY_FORCING;
502 			phydev->link_timeout = PHY_FORCE_TIMEOUT;
503 		}
504 	}
505 
506 out_unlock:
507 	mutex_unlock(&phydev->lock);
508 	return err;
509 }
510 EXPORT_SYMBOL(phy_start_aneg);
511 
512 /**
513  * phy_start_machine - start PHY state machine tracking
514  * @phydev: the phy_device struct
515  *
516  * Description: The PHY infrastructure can run a state machine
517  *   which tracks whether the PHY is starting up, negotiating,
518  *   etc.  This function starts the timer which tracks the state
519  *   of the PHY.  If you want to maintain your own state machine,
520  *   do not call this function.
521  */
522 void phy_start_machine(struct phy_device *phydev)
523 {
524 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
525 }
526 
527 /**
528  * phy_stop_machine - stop the PHY state machine tracking
529  * @phydev: target phy_device struct
530  *
531  * Description: Stops the state machine timer, sets the state to UP
532  *   (unless it wasn't up yet). This function must be called BEFORE
533  *   phy_detach.
534  */
535 void phy_stop_machine(struct phy_device *phydev)
536 {
537 	cancel_delayed_work_sync(&phydev->state_queue);
538 
539 	mutex_lock(&phydev->lock);
540 	if (phydev->state > PHY_UP)
541 		phydev->state = PHY_UP;
542 	mutex_unlock(&phydev->lock);
543 }
544 
545 /**
546  * phy_error - enter HALTED state for this PHY device
547  * @phydev: target phy_device struct
548  *
549  * Moves the PHY to the HALTED state in response to a read
550  * or write error, and tells the controller the link is down.
551  * Must not be called from interrupt context, or while the
552  * phydev->lock is held.
553  */
554 static void phy_error(struct phy_device *phydev)
555 {
556 	mutex_lock(&phydev->lock);
557 	phydev->state = PHY_HALTED;
558 	mutex_unlock(&phydev->lock);
559 }
560 
561 /**
562  * phy_interrupt - PHY interrupt handler
563  * @irq: interrupt line
564  * @phy_dat: phy_device pointer
565  *
566  * Description: When a PHY interrupt occurs, the handler disables
567  * interrupts, and schedules a work task to clear the interrupt.
568  */
569 static irqreturn_t phy_interrupt(int irq, void *phy_dat)
570 {
571 	struct phy_device *phydev = phy_dat;
572 
573 	if (PHY_HALTED == phydev->state)
574 		return IRQ_NONE;		/* It can't be ours.  */
575 
576 	/* The MDIO bus is not allowed to be written in interrupt
577 	 * context, so we need to disable the irq here.  A work
578 	 * queue will write the PHY to disable and clear the
579 	 * interrupt, and then reenable the irq line.
580 	 */
581 	disable_irq_nosync(irq);
582 	atomic_inc(&phydev->irq_disable);
583 
584 	queue_work(system_power_efficient_wq, &phydev->phy_queue);
585 
586 	return IRQ_HANDLED;
587 }
588 
589 /**
590  * phy_enable_interrupts - Enable the interrupts from the PHY side
591  * @phydev: target phy_device struct
592  */
593 static int phy_enable_interrupts(struct phy_device *phydev)
594 {
595 	int err = phy_clear_interrupt(phydev);
596 
597 	if (err < 0)
598 		return err;
599 
600 	return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
601 }
602 
603 /**
604  * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
605  * @phydev: target phy_device struct
606  */
607 static int phy_disable_interrupts(struct phy_device *phydev)
608 {
609 	int err;
610 
611 	/* Disable PHY interrupts */
612 	err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
613 	if (err)
614 		goto phy_err;
615 
616 	/* Clear the interrupt */
617 	err = phy_clear_interrupt(phydev);
618 	if (err)
619 		goto phy_err;
620 
621 	return 0;
622 
623 phy_err:
624 	phy_error(phydev);
625 
626 	return err;
627 }
628 
629 /**
630  * phy_start_interrupts - request and enable interrupts for a PHY device
631  * @phydev: target phy_device struct
632  *
633  * Description: Request the interrupt for the given PHY.
634  *   If this fails, then we set irq to PHY_POLL.
635  *   Otherwise, we enable the interrupts in the PHY.
636  *   This should only be called with a valid IRQ number.
637  *   Returns 0 on success or < 0 on error.
638  */
639 int phy_start_interrupts(struct phy_device *phydev)
640 {
641 	atomic_set(&phydev->irq_disable, 0);
642 	if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
643 			phydev) < 0) {
644 		pr_warn("%s: Can't get IRQ %d (PHY)\n",
645 			phydev->bus->name, phydev->irq);
646 		phydev->irq = PHY_POLL;
647 		return 0;
648 	}
649 
650 	return phy_enable_interrupts(phydev);
651 }
652 EXPORT_SYMBOL(phy_start_interrupts);
653 
654 /**
655  * phy_stop_interrupts - disable interrupts from a PHY device
656  * @phydev: target phy_device struct
657  */
658 int phy_stop_interrupts(struct phy_device *phydev)
659 {
660 	int err = phy_disable_interrupts(phydev);
661 
662 	if (err)
663 		phy_error(phydev);
664 
665 	free_irq(phydev->irq, phydev);
666 
667 	/* Cannot call flush_scheduled_work() here as desired because
668 	 * of rtnl_lock(), but we do not really care about what would
669 	 * be done, except from enable_irq(), so cancel any work
670 	 * possibly pending and take care of the matter below.
671 	 */
672 	cancel_work_sync(&phydev->phy_queue);
673 	/* If work indeed has been cancelled, disable_irq() will have
674 	 * been left unbalanced from phy_interrupt() and enable_irq()
675 	 * has to be called so that other devices on the line work.
676 	 */
677 	while (atomic_dec_return(&phydev->irq_disable) >= 0)
678 		enable_irq(phydev->irq);
679 
680 	return err;
681 }
682 EXPORT_SYMBOL(phy_stop_interrupts);
683 
684 /**
685  * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
686  * @work: work_struct that describes the work to be done
687  */
688 void phy_change(struct work_struct *work)
689 {
690 	struct phy_device *phydev =
691 		container_of(work, struct phy_device, phy_queue);
692 
693 	if (phydev->drv->did_interrupt &&
694 	    !phydev->drv->did_interrupt(phydev))
695 		goto ignore;
696 
697 	if (phy_disable_interrupts(phydev))
698 		goto phy_err;
699 
700 	mutex_lock(&phydev->lock);
701 	if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
702 		phydev->state = PHY_CHANGELINK;
703 	mutex_unlock(&phydev->lock);
704 
705 	atomic_dec(&phydev->irq_disable);
706 	enable_irq(phydev->irq);
707 
708 	/* Reenable interrupts */
709 	if (PHY_HALTED != phydev->state &&
710 	    phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
711 		goto irq_enable_err;
712 
713 	/* reschedule state queue work to run as soon as possible */
714 	cancel_delayed_work_sync(&phydev->state_queue);
715 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
716 	return;
717 
718 ignore:
719 	atomic_dec(&phydev->irq_disable);
720 	enable_irq(phydev->irq);
721 	return;
722 
723 irq_enable_err:
724 	disable_irq(phydev->irq);
725 	atomic_inc(&phydev->irq_disable);
726 phy_err:
727 	phy_error(phydev);
728 }
729 
730 /**
731  * phy_stop - Bring down the PHY link, and stop checking the status
732  * @phydev: target phy_device struct
733  */
734 void phy_stop(struct phy_device *phydev)
735 {
736 	mutex_lock(&phydev->lock);
737 
738 	if (PHY_HALTED == phydev->state)
739 		goto out_unlock;
740 
741 	if (phy_interrupt_is_valid(phydev)) {
742 		/* Disable PHY Interrupts */
743 		phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
744 
745 		/* Clear any pending interrupts */
746 		phy_clear_interrupt(phydev);
747 	}
748 
749 	phydev->state = PHY_HALTED;
750 
751 out_unlock:
752 	mutex_unlock(&phydev->lock);
753 
754 	/* Cannot call flush_scheduled_work() here as desired because
755 	 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
756 	 * will not reenable interrupts.
757 	 */
758 }
759 EXPORT_SYMBOL(phy_stop);
760 
761 /**
762  * phy_start - start or restart a PHY device
763  * @phydev: target phy_device struct
764  *
765  * Description: Indicates the attached device's readiness to
766  *   handle PHY-related work.  Used during startup to start the
767  *   PHY, and after a call to phy_stop() to resume operation.
768  *   Also used to indicate the MDIO bus has cleared an error
769  *   condition.
770  */
771 void phy_start(struct phy_device *phydev)
772 {
773 	bool do_resume = false;
774 	int err = 0;
775 
776 	mutex_lock(&phydev->lock);
777 
778 	switch (phydev->state) {
779 	case PHY_STARTING:
780 		phydev->state = PHY_PENDING;
781 		break;
782 	case PHY_READY:
783 		phydev->state = PHY_UP;
784 		break;
785 	case PHY_HALTED:
786 		/* make sure interrupts are re-enabled for the PHY */
787 		err = phy_enable_interrupts(phydev);
788 		if (err < 0)
789 			break;
790 
791 		phydev->state = PHY_RESUMING;
792 		do_resume = true;
793 		break;
794 	default:
795 		break;
796 	}
797 	mutex_unlock(&phydev->lock);
798 
799 	/* if phy was suspended, bring the physical link up again */
800 	if (do_resume)
801 		phy_resume(phydev);
802 }
803 EXPORT_SYMBOL(phy_start);
804 
805 /**
806  * phy_state_machine - Handle the state machine
807  * @work: work_struct that describes the work to be done
808  */
809 void phy_state_machine(struct work_struct *work)
810 {
811 	struct delayed_work *dwork = to_delayed_work(work);
812 	struct phy_device *phydev =
813 			container_of(dwork, struct phy_device, state_queue);
814 	bool needs_aneg = false, do_suspend = false;
815 	enum phy_state old_state;
816 	int err = 0;
817 	int old_link;
818 
819 	mutex_lock(&phydev->lock);
820 
821 	old_state = phydev->state;
822 
823 	if (phydev->drv->link_change_notify)
824 		phydev->drv->link_change_notify(phydev);
825 
826 	switch (phydev->state) {
827 	case PHY_DOWN:
828 	case PHY_STARTING:
829 	case PHY_READY:
830 	case PHY_PENDING:
831 		break;
832 	case PHY_UP:
833 		needs_aneg = true;
834 
835 		phydev->link_timeout = PHY_AN_TIMEOUT;
836 
837 		break;
838 	case PHY_AN:
839 		err = phy_read_status(phydev);
840 		if (err < 0)
841 			break;
842 
843 		/* If the link is down, give up on negotiation for now */
844 		if (!phydev->link) {
845 			phydev->state = PHY_NOLINK;
846 			netif_carrier_off(phydev->attached_dev);
847 			phydev->adjust_link(phydev->attached_dev);
848 			break;
849 		}
850 
851 		/* Check if negotiation is done.  Break if there's an error */
852 		err = phy_aneg_done(phydev);
853 		if (err < 0)
854 			break;
855 
856 		/* If AN is done, we're running */
857 		if (err > 0) {
858 			phydev->state = PHY_RUNNING;
859 			netif_carrier_on(phydev->attached_dev);
860 			phydev->adjust_link(phydev->attached_dev);
861 
862 		} else if (0 == phydev->link_timeout--)
863 			needs_aneg = true;
864 		break;
865 	case PHY_NOLINK:
866 		err = phy_read_status(phydev);
867 		if (err)
868 			break;
869 
870 		if (phydev->link) {
871 			if (AUTONEG_ENABLE == phydev->autoneg) {
872 				err = phy_aneg_done(phydev);
873 				if (err < 0)
874 					break;
875 
876 				if (!err) {
877 					phydev->state = PHY_AN;
878 					phydev->link_timeout = PHY_AN_TIMEOUT;
879 					break;
880 				}
881 			}
882 			phydev->state = PHY_RUNNING;
883 			netif_carrier_on(phydev->attached_dev);
884 			phydev->adjust_link(phydev->attached_dev);
885 		}
886 		break;
887 	case PHY_FORCING:
888 		err = genphy_update_link(phydev);
889 		if (err)
890 			break;
891 
892 		if (phydev->link) {
893 			phydev->state = PHY_RUNNING;
894 			netif_carrier_on(phydev->attached_dev);
895 		} else {
896 			if (0 == phydev->link_timeout--)
897 				needs_aneg = true;
898 		}
899 
900 		phydev->adjust_link(phydev->attached_dev);
901 		break;
902 	case PHY_RUNNING:
903 		/* Only register a CHANGE if we are polling or ignoring
904 		 * interrupts and link changed since latest checking.
905 		 */
906 		if (!phy_interrupt_is_valid(phydev)) {
907 			old_link = phydev->link;
908 			err = phy_read_status(phydev);
909 			if (err)
910 				break;
911 
912 			if (old_link != phydev->link)
913 				phydev->state = PHY_CHANGELINK;
914 		}
915 		break;
916 	case PHY_CHANGELINK:
917 		err = phy_read_status(phydev);
918 		if (err)
919 			break;
920 
921 		if (phydev->link) {
922 			phydev->state = PHY_RUNNING;
923 			netif_carrier_on(phydev->attached_dev);
924 		} else {
925 			phydev->state = PHY_NOLINK;
926 			netif_carrier_off(phydev->attached_dev);
927 		}
928 
929 		phydev->adjust_link(phydev->attached_dev);
930 
931 		if (phy_interrupt_is_valid(phydev))
932 			err = phy_config_interrupt(phydev,
933 						   PHY_INTERRUPT_ENABLED);
934 		break;
935 	case PHY_HALTED:
936 		if (phydev->link) {
937 			phydev->link = 0;
938 			netif_carrier_off(phydev->attached_dev);
939 			phydev->adjust_link(phydev->attached_dev);
940 			do_suspend = true;
941 		}
942 		break;
943 	case PHY_RESUMING:
944 		if (AUTONEG_ENABLE == phydev->autoneg) {
945 			err = phy_aneg_done(phydev);
946 			if (err < 0)
947 				break;
948 
949 			/* err > 0 if AN is done.
950 			 * Otherwise, it's 0, and we're  still waiting for AN
951 			 */
952 			if (err > 0) {
953 				err = phy_read_status(phydev);
954 				if (err)
955 					break;
956 
957 				if (phydev->link) {
958 					phydev->state = PHY_RUNNING;
959 					netif_carrier_on(phydev->attached_dev);
960 				} else	{
961 					phydev->state = PHY_NOLINK;
962 				}
963 				phydev->adjust_link(phydev->attached_dev);
964 			} else {
965 				phydev->state = PHY_AN;
966 				phydev->link_timeout = PHY_AN_TIMEOUT;
967 			}
968 		} else {
969 			err = phy_read_status(phydev);
970 			if (err)
971 				break;
972 
973 			if (phydev->link) {
974 				phydev->state = PHY_RUNNING;
975 				netif_carrier_on(phydev->attached_dev);
976 			} else	{
977 				phydev->state = PHY_NOLINK;
978 			}
979 			phydev->adjust_link(phydev->attached_dev);
980 		}
981 		break;
982 	}
983 
984 	mutex_unlock(&phydev->lock);
985 
986 	if (needs_aneg)
987 		err = phy_start_aneg(phydev);
988 	else if (do_suspend)
989 		phy_suspend(phydev);
990 
991 	if (err < 0)
992 		phy_error(phydev);
993 
994 	dev_dbg(&phydev->dev, "PHY state change %s -> %s\n",
995 		phy_state_to_str(old_state), phy_state_to_str(phydev->state));
996 
997 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
998 			   PHY_STATE_TIME * HZ);
999 }
1000 
1001 void phy_mac_interrupt(struct phy_device *phydev, int new_link)
1002 {
1003 	cancel_work_sync(&phydev->phy_queue);
1004 	phydev->link = new_link;
1005 	schedule_work(&phydev->phy_queue);
1006 }
1007 EXPORT_SYMBOL(phy_mac_interrupt);
1008 
1009 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
1010 				    int addr)
1011 {
1012 	/* Write the desired MMD Devad */
1013 	bus->write(bus, addr, MII_MMD_CTRL, devad);
1014 
1015 	/* Write the desired MMD register address */
1016 	bus->write(bus, addr, MII_MMD_DATA, prtad);
1017 
1018 	/* Select the Function : DATA with no post increment */
1019 	bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
1020 }
1021 
1022 /**
1023  * phy_read_mmd_indirect - reads data from the MMD registers
1024  * @phydev: The PHY device bus
1025  * @prtad: MMD Address
1026  * @devad: MMD DEVAD
1027  * @addr: PHY address on the MII bus
1028  *
1029  * Description: it reads data from the MMD registers (clause 22 to access to
1030  * clause 45) of the specified phy address.
1031  * To read these register we have:
1032  * 1) Write reg 13 // DEVAD
1033  * 2) Write reg 14 // MMD Address
1034  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1035  * 3) Read  reg 14 // Read MMD data
1036  */
1037 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad,
1038 				 int devad, int addr)
1039 {
1040 	struct phy_driver *phydrv = phydev->drv;
1041 	int value = -1;
1042 
1043 	if (!phydrv->read_mmd_indirect) {
1044 		struct mii_bus *bus = phydev->bus;
1045 
1046 		mutex_lock(&bus->mdio_lock);
1047 		mmd_phy_indirect(bus, prtad, devad, addr);
1048 
1049 		/* Read the content of the MMD's selected register */
1050 		value = bus->read(bus, addr, MII_MMD_DATA);
1051 		mutex_unlock(&bus->mdio_lock);
1052 	} else {
1053 		value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr);
1054 	}
1055 	return value;
1056 }
1057 EXPORT_SYMBOL(phy_read_mmd_indirect);
1058 
1059 /**
1060  * phy_write_mmd_indirect - writes data to the MMD registers
1061  * @phydev: The PHY device
1062  * @prtad: MMD Address
1063  * @devad: MMD DEVAD
1064  * @addr: PHY address on the MII bus
1065  * @data: data to write in the MMD register
1066  *
1067  * Description: Write data from the MMD registers of the specified
1068  * phy address.
1069  * To write these register we have:
1070  * 1) Write reg 13 // DEVAD
1071  * 2) Write reg 14 // MMD Address
1072  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1073  * 3) Write reg 14 // Write MMD data
1074  */
1075 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad,
1076 				   int devad, int addr, u32 data)
1077 {
1078 	struct phy_driver *phydrv = phydev->drv;
1079 
1080 	if (!phydrv->write_mmd_indirect) {
1081 		struct mii_bus *bus = phydev->bus;
1082 
1083 		mutex_lock(&bus->mdio_lock);
1084 		mmd_phy_indirect(bus, prtad, devad, addr);
1085 
1086 		/* Write the data into MMD's selected register */
1087 		bus->write(bus, addr, MII_MMD_DATA, data);
1088 		mutex_unlock(&bus->mdio_lock);
1089 	} else {
1090 		phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data);
1091 	}
1092 }
1093 EXPORT_SYMBOL(phy_write_mmd_indirect);
1094 
1095 /**
1096  * phy_init_eee - init and check the EEE feature
1097  * @phydev: target phy_device struct
1098  * @clk_stop_enable: PHY may stop the clock during LPI
1099  *
1100  * Description: it checks if the Energy-Efficient Ethernet (EEE)
1101  * is supported by looking at the MMD registers 3.20 and 7.60/61
1102  * and it programs the MMD register 3.0 setting the "Clock stop enable"
1103  * bit if required.
1104  */
1105 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
1106 {
1107 	/* According to 802.3az,the EEE is supported only in full duplex-mode.
1108 	 * Also EEE feature is active when core is operating with MII, GMII
1109 	 * or RGMII (all kinds). Internal PHYs are also allowed to proceed and
1110 	 * should return an error if they do not support EEE.
1111 	 */
1112 	if ((phydev->duplex == DUPLEX_FULL) &&
1113 	    ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
1114 	    (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
1115 	     phy_interface_is_rgmii(phydev) ||
1116 	     phy_is_internal(phydev))) {
1117 		int eee_lp, eee_cap, eee_adv;
1118 		u32 lp, cap, adv;
1119 		int status;
1120 
1121 		/* Read phy status to properly get the right settings */
1122 		status = phy_read_status(phydev);
1123 		if (status)
1124 			return status;
1125 
1126 		/* First check if the EEE ability is supported */
1127 		eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1128 						MDIO_MMD_PCS, phydev->addr);
1129 		if (eee_cap <= 0)
1130 			goto eee_exit_err;
1131 
1132 		cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1133 		if (!cap)
1134 			goto eee_exit_err;
1135 
1136 		/* Check which link settings negotiated and verify it in
1137 		 * the EEE advertising registers.
1138 		 */
1139 		eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1140 					       MDIO_MMD_AN, phydev->addr);
1141 		if (eee_lp <= 0)
1142 			goto eee_exit_err;
1143 
1144 		eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1145 						MDIO_MMD_AN, phydev->addr);
1146 		if (eee_adv <= 0)
1147 			goto eee_exit_err;
1148 
1149 		adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1150 		lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1151 		if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv))
1152 			goto eee_exit_err;
1153 
1154 		if (clk_stop_enable) {
1155 			/* Configure the PHY to stop receiving xMII
1156 			 * clock while it is signaling LPI.
1157 			 */
1158 			int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1,
1159 							MDIO_MMD_PCS,
1160 							phydev->addr);
1161 			if (val < 0)
1162 				return val;
1163 
1164 			val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1165 			phy_write_mmd_indirect(phydev, MDIO_CTRL1,
1166 					       MDIO_MMD_PCS, phydev->addr,
1167 					       val);
1168 		}
1169 
1170 		return 0; /* EEE supported */
1171 	}
1172 eee_exit_err:
1173 	return -EPROTONOSUPPORT;
1174 }
1175 EXPORT_SYMBOL(phy_init_eee);
1176 
1177 /**
1178  * phy_get_eee_err - report the EEE wake error count
1179  * @phydev: target phy_device struct
1180  *
1181  * Description: it is to report the number of time where the PHY
1182  * failed to complete its normal wake sequence.
1183  */
1184 int phy_get_eee_err(struct phy_device *phydev)
1185 {
1186 	return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR,
1187 				     MDIO_MMD_PCS, phydev->addr);
1188 }
1189 EXPORT_SYMBOL(phy_get_eee_err);
1190 
1191 /**
1192  * phy_ethtool_get_eee - get EEE supported and status
1193  * @phydev: target phy_device struct
1194  * @data: ethtool_eee data
1195  *
1196  * Description: it reportes the Supported/Advertisement/LP Advertisement
1197  * capabilities.
1198  */
1199 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1200 {
1201 	int val;
1202 
1203 	/* Get Supported EEE */
1204 	val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1205 				    MDIO_MMD_PCS, phydev->addr);
1206 	if (val < 0)
1207 		return val;
1208 	data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1209 
1210 	/* Get advertisement EEE */
1211 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1212 				    MDIO_MMD_AN, phydev->addr);
1213 	if (val < 0)
1214 		return val;
1215 	data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1216 
1217 	/* Get LP advertisement EEE */
1218 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1219 				    MDIO_MMD_AN, phydev->addr);
1220 	if (val < 0)
1221 		return val;
1222 	data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1223 
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL(phy_ethtool_get_eee);
1227 
1228 /**
1229  * phy_ethtool_set_eee - set EEE supported and status
1230  * @phydev: target phy_device struct
1231  * @data: ethtool_eee data
1232  *
1233  * Description: it is to program the Advertisement EEE register.
1234  */
1235 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1236 {
1237 	int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1238 
1239 	phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN,
1240 			       phydev->addr, val);
1241 
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL(phy_ethtool_set_eee);
1245 
1246 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1247 {
1248 	if (phydev->drv->set_wol)
1249 		return phydev->drv->set_wol(phydev, wol);
1250 
1251 	return -EOPNOTSUPP;
1252 }
1253 EXPORT_SYMBOL(phy_ethtool_set_wol);
1254 
1255 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1256 {
1257 	if (phydev->drv->get_wol)
1258 		phydev->drv->get_wol(phydev, wol);
1259 }
1260 EXPORT_SYMBOL(phy_ethtool_get_wol);
1261