1 /* 2 * drivers/net/phy/phy.c 3 * 4 * Framework for configuring and reading PHY devices 5 * Based on code in sungem_phy.c and gianfar_phy.c 6 * 7 * Author: Andy Fleming 8 * 9 * Copyright (c) 2004 Freescale Semiconductor, Inc. 10 * Copyright (c) 2006, 2007 Maciej W. Rozycki 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/string.h> 23 #include <linux/errno.h> 24 #include <linux/unistd.h> 25 #include <linux/interrupt.h> 26 #include <linux/init.h> 27 #include <linux/delay.h> 28 #include <linux/netdevice.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/mm.h> 32 #include <linux/module.h> 33 #include <linux/mii.h> 34 #include <linux/ethtool.h> 35 #include <linux/phy.h> 36 #include <linux/timer.h> 37 #include <linux/workqueue.h> 38 #include <linux/mdio.h> 39 40 #include <linux/atomic.h> 41 #include <asm/io.h> 42 #include <asm/irq.h> 43 #include <asm/uaccess.h> 44 45 /** 46 * phy_print_status - Convenience function to print out the current phy status 47 * @phydev: the phy_device struct 48 */ 49 void phy_print_status(struct phy_device *phydev) 50 { 51 if (phydev->link) 52 pr_info("%s - Link is Up - %d/%s\n", 53 dev_name(&phydev->dev), 54 phydev->speed, 55 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 56 else 57 pr_info("%s - Link is Down\n", dev_name(&phydev->dev)); 58 } 59 EXPORT_SYMBOL(phy_print_status); 60 61 /** 62 * phy_clear_interrupt - Ack the phy device's interrupt 63 * @phydev: the phy_device struct 64 * 65 * If the @phydev driver has an ack_interrupt function, call it to 66 * ack and clear the phy device's interrupt. 67 * 68 * Returns 0 on success on < 0 on error. 69 */ 70 static int phy_clear_interrupt(struct phy_device *phydev) 71 { 72 int err = 0; 73 74 if (phydev->drv->ack_interrupt) 75 err = phydev->drv->ack_interrupt(phydev); 76 77 return err; 78 } 79 80 /** 81 * phy_config_interrupt - configure the PHY device for the requested interrupts 82 * @phydev: the phy_device struct 83 * @interrupts: interrupt flags to configure for this @phydev 84 * 85 * Returns 0 on success on < 0 on error. 86 */ 87 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts) 88 { 89 int err = 0; 90 91 phydev->interrupts = interrupts; 92 if (phydev->drv->config_intr) 93 err = phydev->drv->config_intr(phydev); 94 95 return err; 96 } 97 98 99 /** 100 * phy_aneg_done - return auto-negotiation status 101 * @phydev: target phy_device struct 102 * 103 * Description: Reads the status register and returns 0 either if 104 * auto-negotiation is incomplete, or if there was an error. 105 * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. 106 */ 107 static inline int phy_aneg_done(struct phy_device *phydev) 108 { 109 int retval; 110 111 retval = phy_read(phydev, MII_BMSR); 112 113 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 114 } 115 116 /* A structure for mapping a particular speed and duplex 117 * combination to a particular SUPPORTED and ADVERTISED value */ 118 struct phy_setting { 119 int speed; 120 int duplex; 121 u32 setting; 122 }; 123 124 /* A mapping of all SUPPORTED settings to speed/duplex */ 125 static const struct phy_setting settings[] = { 126 { 127 .speed = 10000, 128 .duplex = DUPLEX_FULL, 129 .setting = SUPPORTED_10000baseT_Full, 130 }, 131 { 132 .speed = SPEED_1000, 133 .duplex = DUPLEX_FULL, 134 .setting = SUPPORTED_1000baseT_Full, 135 }, 136 { 137 .speed = SPEED_1000, 138 .duplex = DUPLEX_HALF, 139 .setting = SUPPORTED_1000baseT_Half, 140 }, 141 { 142 .speed = SPEED_100, 143 .duplex = DUPLEX_FULL, 144 .setting = SUPPORTED_100baseT_Full, 145 }, 146 { 147 .speed = SPEED_100, 148 .duplex = DUPLEX_HALF, 149 .setting = SUPPORTED_100baseT_Half, 150 }, 151 { 152 .speed = SPEED_10, 153 .duplex = DUPLEX_FULL, 154 .setting = SUPPORTED_10baseT_Full, 155 }, 156 { 157 .speed = SPEED_10, 158 .duplex = DUPLEX_HALF, 159 .setting = SUPPORTED_10baseT_Half, 160 }, 161 }; 162 163 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings) 164 165 /** 166 * phy_find_setting - find a PHY settings array entry that matches speed & duplex 167 * @speed: speed to match 168 * @duplex: duplex to match 169 * 170 * Description: Searches the settings array for the setting which 171 * matches the desired speed and duplex, and returns the index 172 * of that setting. Returns the index of the last setting if 173 * none of the others match. 174 */ 175 static inline int phy_find_setting(int speed, int duplex) 176 { 177 int idx = 0; 178 179 while (idx < ARRAY_SIZE(settings) && 180 (settings[idx].speed != speed || 181 settings[idx].duplex != duplex)) 182 idx++; 183 184 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 185 } 186 187 /** 188 * phy_find_valid - find a PHY setting that matches the requested features mask 189 * @idx: The first index in settings[] to search 190 * @features: A mask of the valid settings 191 * 192 * Description: Returns the index of the first valid setting less 193 * than or equal to the one pointed to by idx, as determined by 194 * the mask in features. Returns the index of the last setting 195 * if nothing else matches. 196 */ 197 static inline int phy_find_valid(int idx, u32 features) 198 { 199 while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features)) 200 idx++; 201 202 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 203 } 204 205 /** 206 * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex 207 * @phydev: the target phy_device struct 208 * 209 * Description: Make sure the PHY is set to supported speeds and 210 * duplexes. Drop down by one in this order: 1000/FULL, 211 * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF. 212 */ 213 static void phy_sanitize_settings(struct phy_device *phydev) 214 { 215 u32 features = phydev->supported; 216 int idx; 217 218 /* Sanitize settings based on PHY capabilities */ 219 if ((features & SUPPORTED_Autoneg) == 0) 220 phydev->autoneg = AUTONEG_DISABLE; 221 222 idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex), 223 features); 224 225 phydev->speed = settings[idx].speed; 226 phydev->duplex = settings[idx].duplex; 227 } 228 229 /** 230 * phy_ethtool_sset - generic ethtool sset function, handles all the details 231 * @phydev: target phy_device struct 232 * @cmd: ethtool_cmd 233 * 234 * A few notes about parameter checking: 235 * - We don't set port or transceiver, so we don't care what they 236 * were set to. 237 * - phy_start_aneg() will make sure forced settings are sane, and 238 * choose the next best ones from the ones selected, so we don't 239 * care if ethtool tries to give us bad values. 240 */ 241 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd) 242 { 243 u32 speed = ethtool_cmd_speed(cmd); 244 245 if (cmd->phy_address != phydev->addr) 246 return -EINVAL; 247 248 /* We make sure that we don't pass unsupported 249 * values in to the PHY */ 250 cmd->advertising &= phydev->supported; 251 252 /* Verify the settings we care about. */ 253 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) 254 return -EINVAL; 255 256 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) 257 return -EINVAL; 258 259 if (cmd->autoneg == AUTONEG_DISABLE && 260 ((speed != SPEED_1000 && 261 speed != SPEED_100 && 262 speed != SPEED_10) || 263 (cmd->duplex != DUPLEX_HALF && 264 cmd->duplex != DUPLEX_FULL))) 265 return -EINVAL; 266 267 phydev->autoneg = cmd->autoneg; 268 269 phydev->speed = speed; 270 271 phydev->advertising = cmd->advertising; 272 273 if (AUTONEG_ENABLE == cmd->autoneg) 274 phydev->advertising |= ADVERTISED_Autoneg; 275 else 276 phydev->advertising &= ~ADVERTISED_Autoneg; 277 278 phydev->duplex = cmd->duplex; 279 280 /* Restart the PHY */ 281 phy_start_aneg(phydev); 282 283 return 0; 284 } 285 EXPORT_SYMBOL(phy_ethtool_sset); 286 287 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd) 288 { 289 cmd->supported = phydev->supported; 290 291 cmd->advertising = phydev->advertising; 292 293 ethtool_cmd_speed_set(cmd, phydev->speed); 294 cmd->duplex = phydev->duplex; 295 cmd->port = PORT_MII; 296 cmd->phy_address = phydev->addr; 297 cmd->transceiver = phy_is_internal(phydev) ? 298 XCVR_INTERNAL : XCVR_EXTERNAL; 299 cmd->autoneg = phydev->autoneg; 300 301 return 0; 302 } 303 EXPORT_SYMBOL(phy_ethtool_gset); 304 305 /** 306 * phy_mii_ioctl - generic PHY MII ioctl interface 307 * @phydev: the phy_device struct 308 * @ifr: &struct ifreq for socket ioctl's 309 * @cmd: ioctl cmd to execute 310 * 311 * Note that this function is currently incompatible with the 312 * PHYCONTROL layer. It changes registers without regard to 313 * current state. Use at own risk. 314 */ 315 int phy_mii_ioctl(struct phy_device *phydev, 316 struct ifreq *ifr, int cmd) 317 { 318 struct mii_ioctl_data *mii_data = if_mii(ifr); 319 u16 val = mii_data->val_in; 320 321 switch (cmd) { 322 case SIOCGMIIPHY: 323 mii_data->phy_id = phydev->addr; 324 /* fall through */ 325 326 case SIOCGMIIREG: 327 mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id, 328 mii_data->reg_num); 329 break; 330 331 case SIOCSMIIREG: 332 if (mii_data->phy_id == phydev->addr) { 333 switch(mii_data->reg_num) { 334 case MII_BMCR: 335 if ((val & (BMCR_RESET|BMCR_ANENABLE)) == 0) 336 phydev->autoneg = AUTONEG_DISABLE; 337 else 338 phydev->autoneg = AUTONEG_ENABLE; 339 if ((!phydev->autoneg) && (val & BMCR_FULLDPLX)) 340 phydev->duplex = DUPLEX_FULL; 341 else 342 phydev->duplex = DUPLEX_HALF; 343 if ((!phydev->autoneg) && 344 (val & BMCR_SPEED1000)) 345 phydev->speed = SPEED_1000; 346 else if ((!phydev->autoneg) && 347 (val & BMCR_SPEED100)) 348 phydev->speed = SPEED_100; 349 break; 350 case MII_ADVERTISE: 351 phydev->advertising = val; 352 break; 353 default: 354 /* do nothing */ 355 break; 356 } 357 } 358 359 mdiobus_write(phydev->bus, mii_data->phy_id, 360 mii_data->reg_num, val); 361 362 if (mii_data->reg_num == MII_BMCR && 363 val & BMCR_RESET && 364 phydev->drv->config_init) { 365 phy_scan_fixups(phydev); 366 phydev->drv->config_init(phydev); 367 } 368 break; 369 370 case SIOCSHWTSTAMP: 371 if (phydev->drv->hwtstamp) 372 return phydev->drv->hwtstamp(phydev, ifr); 373 /* fall through */ 374 375 default: 376 return -EOPNOTSUPP; 377 } 378 379 return 0; 380 } 381 EXPORT_SYMBOL(phy_mii_ioctl); 382 383 /** 384 * phy_start_aneg - start auto-negotiation for this PHY device 385 * @phydev: the phy_device struct 386 * 387 * Description: Sanitizes the settings (if we're not autonegotiating 388 * them), and then calls the driver's config_aneg function. 389 * If the PHYCONTROL Layer is operating, we change the state to 390 * reflect the beginning of Auto-negotiation or forcing. 391 */ 392 int phy_start_aneg(struct phy_device *phydev) 393 { 394 int err; 395 396 mutex_lock(&phydev->lock); 397 398 if (AUTONEG_DISABLE == phydev->autoneg) 399 phy_sanitize_settings(phydev); 400 401 err = phydev->drv->config_aneg(phydev); 402 403 if (err < 0) 404 goto out_unlock; 405 406 if (phydev->state != PHY_HALTED) { 407 if (AUTONEG_ENABLE == phydev->autoneg) { 408 phydev->state = PHY_AN; 409 phydev->link_timeout = PHY_AN_TIMEOUT; 410 } else { 411 phydev->state = PHY_FORCING; 412 phydev->link_timeout = PHY_FORCE_TIMEOUT; 413 } 414 } 415 416 out_unlock: 417 mutex_unlock(&phydev->lock); 418 return err; 419 } 420 EXPORT_SYMBOL(phy_start_aneg); 421 422 423 /** 424 * phy_start_machine - start PHY state machine tracking 425 * @phydev: the phy_device struct 426 * @handler: callback function for state change notifications 427 * 428 * Description: The PHY infrastructure can run a state machine 429 * which tracks whether the PHY is starting up, negotiating, 430 * etc. This function starts the timer which tracks the state 431 * of the PHY. If you want to be notified when the state changes, 432 * pass in the callback @handler, otherwise, pass NULL. If you 433 * want to maintain your own state machine, do not call this 434 * function. 435 */ 436 void phy_start_machine(struct phy_device *phydev, 437 void (*handler)(struct net_device *)) 438 { 439 phydev->adjust_state = handler; 440 441 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ); 442 } 443 444 /** 445 * phy_stop_machine - stop the PHY state machine tracking 446 * @phydev: target phy_device struct 447 * 448 * Description: Stops the state machine timer, sets the state to UP 449 * (unless it wasn't up yet). This function must be called BEFORE 450 * phy_detach. 451 */ 452 void phy_stop_machine(struct phy_device *phydev) 453 { 454 cancel_delayed_work_sync(&phydev->state_queue); 455 456 mutex_lock(&phydev->lock); 457 if (phydev->state > PHY_UP) 458 phydev->state = PHY_UP; 459 mutex_unlock(&phydev->lock); 460 461 phydev->adjust_state = NULL; 462 } 463 464 /** 465 * phy_error - enter HALTED state for this PHY device 466 * @phydev: target phy_device struct 467 * 468 * Moves the PHY to the HALTED state in response to a read 469 * or write error, and tells the controller the link is down. 470 * Must not be called from interrupt context, or while the 471 * phydev->lock is held. 472 */ 473 static void phy_error(struct phy_device *phydev) 474 { 475 mutex_lock(&phydev->lock); 476 phydev->state = PHY_HALTED; 477 mutex_unlock(&phydev->lock); 478 } 479 480 /** 481 * phy_interrupt - PHY interrupt handler 482 * @irq: interrupt line 483 * @phy_dat: phy_device pointer 484 * 485 * Description: When a PHY interrupt occurs, the handler disables 486 * interrupts, and schedules a work task to clear the interrupt. 487 */ 488 static irqreturn_t phy_interrupt(int irq, void *phy_dat) 489 { 490 struct phy_device *phydev = phy_dat; 491 492 if (PHY_HALTED == phydev->state) 493 return IRQ_NONE; /* It can't be ours. */ 494 495 /* The MDIO bus is not allowed to be written in interrupt 496 * context, so we need to disable the irq here. A work 497 * queue will write the PHY to disable and clear the 498 * interrupt, and then reenable the irq line. */ 499 disable_irq_nosync(irq); 500 atomic_inc(&phydev->irq_disable); 501 502 queue_work(system_power_efficient_wq, &phydev->phy_queue); 503 504 return IRQ_HANDLED; 505 } 506 507 /** 508 * phy_enable_interrupts - Enable the interrupts from the PHY side 509 * @phydev: target phy_device struct 510 */ 511 static int phy_enable_interrupts(struct phy_device *phydev) 512 { 513 int err; 514 515 err = phy_clear_interrupt(phydev); 516 517 if (err < 0) 518 return err; 519 520 err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); 521 522 return err; 523 } 524 525 /** 526 * phy_disable_interrupts - Disable the PHY interrupts from the PHY side 527 * @phydev: target phy_device struct 528 */ 529 static int phy_disable_interrupts(struct phy_device *phydev) 530 { 531 int err; 532 533 /* Disable PHY interrupts */ 534 err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 535 536 if (err) 537 goto phy_err; 538 539 /* Clear the interrupt */ 540 err = phy_clear_interrupt(phydev); 541 542 if (err) 543 goto phy_err; 544 545 return 0; 546 547 phy_err: 548 phy_error(phydev); 549 550 return err; 551 } 552 553 /** 554 * phy_start_interrupts - request and enable interrupts for a PHY device 555 * @phydev: target phy_device struct 556 * 557 * Description: Request the interrupt for the given PHY. 558 * If this fails, then we set irq to PHY_POLL. 559 * Otherwise, we enable the interrupts in the PHY. 560 * This should only be called with a valid IRQ number. 561 * Returns 0 on success or < 0 on error. 562 */ 563 int phy_start_interrupts(struct phy_device *phydev) 564 { 565 int err = 0; 566 567 atomic_set(&phydev->irq_disable, 0); 568 if (request_irq(phydev->irq, phy_interrupt, 569 IRQF_SHARED, 570 "phy_interrupt", 571 phydev) < 0) { 572 pr_warn("%s: Can't get IRQ %d (PHY)\n", 573 phydev->bus->name, phydev->irq); 574 phydev->irq = PHY_POLL; 575 return 0; 576 } 577 578 err = phy_enable_interrupts(phydev); 579 580 return err; 581 } 582 EXPORT_SYMBOL(phy_start_interrupts); 583 584 /** 585 * phy_stop_interrupts - disable interrupts from a PHY device 586 * @phydev: target phy_device struct 587 */ 588 int phy_stop_interrupts(struct phy_device *phydev) 589 { 590 int err; 591 592 err = phy_disable_interrupts(phydev); 593 594 if (err) 595 phy_error(phydev); 596 597 free_irq(phydev->irq, phydev); 598 599 /* 600 * Cannot call flush_scheduled_work() here as desired because 601 * of rtnl_lock(), but we do not really care about what would 602 * be done, except from enable_irq(), so cancel any work 603 * possibly pending and take care of the matter below. 604 */ 605 cancel_work_sync(&phydev->phy_queue); 606 /* 607 * If work indeed has been cancelled, disable_irq() will have 608 * been left unbalanced from phy_interrupt() and enable_irq() 609 * has to be called so that other devices on the line work. 610 */ 611 while (atomic_dec_return(&phydev->irq_disable) >= 0) 612 enable_irq(phydev->irq); 613 614 return err; 615 } 616 EXPORT_SYMBOL(phy_stop_interrupts); 617 618 619 /** 620 * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes 621 * @work: work_struct that describes the work to be done 622 */ 623 void phy_change(struct work_struct *work) 624 { 625 int err; 626 struct phy_device *phydev = 627 container_of(work, struct phy_device, phy_queue); 628 629 if (phydev->drv->did_interrupt && 630 !phydev->drv->did_interrupt(phydev)) 631 goto ignore; 632 633 err = phy_disable_interrupts(phydev); 634 635 if (err) 636 goto phy_err; 637 638 mutex_lock(&phydev->lock); 639 if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state)) 640 phydev->state = PHY_CHANGELINK; 641 mutex_unlock(&phydev->lock); 642 643 atomic_dec(&phydev->irq_disable); 644 enable_irq(phydev->irq); 645 646 /* Reenable interrupts */ 647 if (PHY_HALTED != phydev->state) 648 err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); 649 650 if (err) 651 goto irq_enable_err; 652 653 /* reschedule state queue work to run as soon as possible */ 654 cancel_delayed_work_sync(&phydev->state_queue); 655 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0); 656 657 return; 658 659 ignore: 660 atomic_dec(&phydev->irq_disable); 661 enable_irq(phydev->irq); 662 return; 663 664 irq_enable_err: 665 disable_irq(phydev->irq); 666 atomic_inc(&phydev->irq_disable); 667 phy_err: 668 phy_error(phydev); 669 } 670 671 /** 672 * phy_stop - Bring down the PHY link, and stop checking the status 673 * @phydev: target phy_device struct 674 */ 675 void phy_stop(struct phy_device *phydev) 676 { 677 mutex_lock(&phydev->lock); 678 679 if (PHY_HALTED == phydev->state) 680 goto out_unlock; 681 682 if (phy_interrupt_is_valid(phydev)) { 683 /* Disable PHY Interrupts */ 684 phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 685 686 /* Clear any pending interrupts */ 687 phy_clear_interrupt(phydev); 688 } 689 690 phydev->state = PHY_HALTED; 691 692 out_unlock: 693 mutex_unlock(&phydev->lock); 694 695 /* 696 * Cannot call flush_scheduled_work() here as desired because 697 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change() 698 * will not reenable interrupts. 699 */ 700 } 701 702 703 /** 704 * phy_start - start or restart a PHY device 705 * @phydev: target phy_device struct 706 * 707 * Description: Indicates the attached device's readiness to 708 * handle PHY-related work. Used during startup to start the 709 * PHY, and after a call to phy_stop() to resume operation. 710 * Also used to indicate the MDIO bus has cleared an error 711 * condition. 712 */ 713 void phy_start(struct phy_device *phydev) 714 { 715 mutex_lock(&phydev->lock); 716 717 switch (phydev->state) { 718 case PHY_STARTING: 719 phydev->state = PHY_PENDING; 720 break; 721 case PHY_READY: 722 phydev->state = PHY_UP; 723 break; 724 case PHY_HALTED: 725 phydev->state = PHY_RESUMING; 726 default: 727 break; 728 } 729 mutex_unlock(&phydev->lock); 730 } 731 EXPORT_SYMBOL(phy_stop); 732 EXPORT_SYMBOL(phy_start); 733 734 /** 735 * phy_state_machine - Handle the state machine 736 * @work: work_struct that describes the work to be done 737 */ 738 void phy_state_machine(struct work_struct *work) 739 { 740 struct delayed_work *dwork = to_delayed_work(work); 741 struct phy_device *phydev = 742 container_of(dwork, struct phy_device, state_queue); 743 int needs_aneg = 0; 744 int err = 0; 745 746 mutex_lock(&phydev->lock); 747 748 if (phydev->adjust_state) 749 phydev->adjust_state(phydev->attached_dev); 750 751 switch(phydev->state) { 752 case PHY_DOWN: 753 case PHY_STARTING: 754 case PHY_READY: 755 case PHY_PENDING: 756 break; 757 case PHY_UP: 758 needs_aneg = 1; 759 760 phydev->link_timeout = PHY_AN_TIMEOUT; 761 762 break; 763 case PHY_AN: 764 err = phy_read_status(phydev); 765 766 if (err < 0) 767 break; 768 769 /* If the link is down, give up on 770 * negotiation for now */ 771 if (!phydev->link) { 772 phydev->state = PHY_NOLINK; 773 netif_carrier_off(phydev->attached_dev); 774 phydev->adjust_link(phydev->attached_dev); 775 break; 776 } 777 778 /* Check if negotiation is done. Break 779 * if there's an error */ 780 err = phy_aneg_done(phydev); 781 if (err < 0) 782 break; 783 784 /* If AN is done, we're running */ 785 if (err > 0) { 786 phydev->state = PHY_RUNNING; 787 netif_carrier_on(phydev->attached_dev); 788 phydev->adjust_link(phydev->attached_dev); 789 790 } else if (0 == phydev->link_timeout--) { 791 needs_aneg = 1; 792 /* If we have the magic_aneg bit, 793 * we try again */ 794 if (phydev->drv->flags & PHY_HAS_MAGICANEG) 795 break; 796 } 797 break; 798 case PHY_NOLINK: 799 err = phy_read_status(phydev); 800 801 if (err) 802 break; 803 804 if (phydev->link) { 805 phydev->state = PHY_RUNNING; 806 netif_carrier_on(phydev->attached_dev); 807 phydev->adjust_link(phydev->attached_dev); 808 } 809 break; 810 case PHY_FORCING: 811 err = genphy_update_link(phydev); 812 813 if (err) 814 break; 815 816 if (phydev->link) { 817 phydev->state = PHY_RUNNING; 818 netif_carrier_on(phydev->attached_dev); 819 } else { 820 if (0 == phydev->link_timeout--) 821 needs_aneg = 1; 822 } 823 824 phydev->adjust_link(phydev->attached_dev); 825 break; 826 case PHY_RUNNING: 827 /* Only register a CHANGE if we are 828 * polling or ignoring interrupts 829 */ 830 if (!phy_interrupt_is_valid(phydev)) 831 phydev->state = PHY_CHANGELINK; 832 break; 833 case PHY_CHANGELINK: 834 err = phy_read_status(phydev); 835 836 if (err) 837 break; 838 839 if (phydev->link) { 840 phydev->state = PHY_RUNNING; 841 netif_carrier_on(phydev->attached_dev); 842 } else { 843 phydev->state = PHY_NOLINK; 844 netif_carrier_off(phydev->attached_dev); 845 } 846 847 phydev->adjust_link(phydev->attached_dev); 848 849 if (phy_interrupt_is_valid(phydev)) 850 err = phy_config_interrupt(phydev, 851 PHY_INTERRUPT_ENABLED); 852 break; 853 case PHY_HALTED: 854 if (phydev->link) { 855 phydev->link = 0; 856 netif_carrier_off(phydev->attached_dev); 857 phydev->adjust_link(phydev->attached_dev); 858 } 859 break; 860 case PHY_RESUMING: 861 862 err = phy_clear_interrupt(phydev); 863 864 if (err) 865 break; 866 867 err = phy_config_interrupt(phydev, 868 PHY_INTERRUPT_ENABLED); 869 870 if (err) 871 break; 872 873 if (AUTONEG_ENABLE == phydev->autoneg) { 874 err = phy_aneg_done(phydev); 875 if (err < 0) 876 break; 877 878 /* err > 0 if AN is done. 879 * Otherwise, it's 0, and we're 880 * still waiting for AN */ 881 if (err > 0) { 882 err = phy_read_status(phydev); 883 if (err) 884 break; 885 886 if (phydev->link) { 887 phydev->state = PHY_RUNNING; 888 netif_carrier_on(phydev->attached_dev); 889 } else 890 phydev->state = PHY_NOLINK; 891 phydev->adjust_link(phydev->attached_dev); 892 } else { 893 phydev->state = PHY_AN; 894 phydev->link_timeout = PHY_AN_TIMEOUT; 895 } 896 } else { 897 err = phy_read_status(phydev); 898 if (err) 899 break; 900 901 if (phydev->link) { 902 phydev->state = PHY_RUNNING; 903 netif_carrier_on(phydev->attached_dev); 904 } else 905 phydev->state = PHY_NOLINK; 906 phydev->adjust_link(phydev->attached_dev); 907 } 908 break; 909 } 910 911 mutex_unlock(&phydev->lock); 912 913 if (needs_aneg) 914 err = phy_start_aneg(phydev); 915 916 if (err < 0) 917 phy_error(phydev); 918 919 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 920 PHY_STATE_TIME * HZ); 921 } 922 923 void phy_mac_interrupt(struct phy_device *phydev, int new_link) 924 { 925 cancel_work_sync(&phydev->phy_queue); 926 phydev->link = new_link; 927 schedule_work(&phydev->phy_queue); 928 } 929 EXPORT_SYMBOL(phy_mac_interrupt); 930 931 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad, 932 int addr) 933 { 934 /* Write the desired MMD Devad */ 935 bus->write(bus, addr, MII_MMD_CTRL, devad); 936 937 /* Write the desired MMD register address */ 938 bus->write(bus, addr, MII_MMD_DATA, prtad); 939 940 /* Select the Function : DATA with no post increment */ 941 bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 942 } 943 944 /** 945 * phy_read_mmd_indirect - reads data from the MMD registers 946 * @bus: the target MII bus 947 * @prtad: MMD Address 948 * @devad: MMD DEVAD 949 * @addr: PHY address on the MII bus 950 * 951 * Description: it reads data from the MMD registers (clause 22 to access to 952 * clause 45) of the specified phy address. 953 * To read these register we have: 954 * 1) Write reg 13 // DEVAD 955 * 2) Write reg 14 // MMD Address 956 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 957 * 3) Read reg 14 // Read MMD data 958 */ 959 static int phy_read_mmd_indirect(struct mii_bus *bus, int prtad, int devad, 960 int addr) 961 { 962 u32 ret; 963 964 mmd_phy_indirect(bus, prtad, devad, addr); 965 966 /* Read the content of the MMD's selected register */ 967 ret = bus->read(bus, addr, MII_MMD_DATA); 968 969 return ret; 970 } 971 972 /** 973 * phy_write_mmd_indirect - writes data to the MMD registers 974 * @bus: the target MII bus 975 * @prtad: MMD Address 976 * @devad: MMD DEVAD 977 * @addr: PHY address on the MII bus 978 * @data: data to write in the MMD register 979 * 980 * Description: Write data from the MMD registers of the specified 981 * phy address. 982 * To write these register we have: 983 * 1) Write reg 13 // DEVAD 984 * 2) Write reg 14 // MMD Address 985 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 986 * 3) Write reg 14 // Write MMD data 987 */ 988 static void phy_write_mmd_indirect(struct mii_bus *bus, int prtad, int devad, 989 int addr, u32 data) 990 { 991 mmd_phy_indirect(bus, prtad, devad, addr); 992 993 /* Write the data into MMD's selected register */ 994 bus->write(bus, addr, MII_MMD_DATA, data); 995 } 996 997 /** 998 * phy_init_eee - init and check the EEE feature 999 * @phydev: target phy_device struct 1000 * @clk_stop_enable: PHY may stop the clock during LPI 1001 * 1002 * Description: it checks if the Energy-Efficient Ethernet (EEE) 1003 * is supported by looking at the MMD registers 3.20 and 7.60/61 1004 * and it programs the MMD register 3.0 setting the "Clock stop enable" 1005 * bit if required. 1006 */ 1007 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable) 1008 { 1009 int ret = -EPROTONOSUPPORT; 1010 1011 /* According to 802.3az,the EEE is supported only in full duplex-mode. 1012 * Also EEE feature is active when core is operating with MII, GMII 1013 * or RGMII. 1014 */ 1015 if ((phydev->duplex == DUPLEX_FULL) && 1016 ((phydev->interface == PHY_INTERFACE_MODE_MII) || 1017 (phydev->interface == PHY_INTERFACE_MODE_GMII) || 1018 (phydev->interface == PHY_INTERFACE_MODE_RGMII))) { 1019 int eee_lp, eee_cap, eee_adv; 1020 u32 lp, cap, adv; 1021 int idx, status; 1022 1023 /* Read phy status to properly get the right settings */ 1024 status = phy_read_status(phydev); 1025 if (status) 1026 return status; 1027 1028 /* First check if the EEE ability is supported */ 1029 eee_cap = phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_ABLE, 1030 MDIO_MMD_PCS, phydev->addr); 1031 if (eee_cap < 0) 1032 return eee_cap; 1033 1034 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap); 1035 if (!cap) 1036 goto eee_exit; 1037 1038 /* Check which link settings negotiated and verify it in 1039 * the EEE advertising registers. 1040 */ 1041 eee_lp = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_LPABLE, 1042 MDIO_MMD_AN, phydev->addr); 1043 if (eee_lp < 0) 1044 return eee_lp; 1045 1046 eee_adv = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV, 1047 MDIO_MMD_AN, phydev->addr); 1048 if (eee_adv < 0) 1049 return eee_adv; 1050 1051 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv); 1052 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp); 1053 idx = phy_find_setting(phydev->speed, phydev->duplex); 1054 if (!(lp & adv & settings[idx].setting)) 1055 goto eee_exit; 1056 1057 if (clk_stop_enable) { 1058 /* Configure the PHY to stop receiving xMII 1059 * clock while it is signaling LPI. 1060 */ 1061 int val = phy_read_mmd_indirect(phydev->bus, MDIO_CTRL1, 1062 MDIO_MMD_PCS, 1063 phydev->addr); 1064 if (val < 0) 1065 return val; 1066 1067 val |= MDIO_PCS_CTRL1_CLKSTOP_EN; 1068 phy_write_mmd_indirect(phydev->bus, MDIO_CTRL1, 1069 MDIO_MMD_PCS, phydev->addr, val); 1070 } 1071 1072 ret = 0; /* EEE supported */ 1073 } 1074 1075 eee_exit: 1076 return ret; 1077 } 1078 EXPORT_SYMBOL(phy_init_eee); 1079 1080 /** 1081 * phy_get_eee_err - report the EEE wake error count 1082 * @phydev: target phy_device struct 1083 * 1084 * Description: it is to report the number of time where the PHY 1085 * failed to complete its normal wake sequence. 1086 */ 1087 int phy_get_eee_err(struct phy_device *phydev) 1088 { 1089 return phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_WK_ERR, 1090 MDIO_MMD_PCS, phydev->addr); 1091 1092 } 1093 EXPORT_SYMBOL(phy_get_eee_err); 1094 1095 /** 1096 * phy_ethtool_get_eee - get EEE supported and status 1097 * @phydev: target phy_device struct 1098 * @data: ethtool_eee data 1099 * 1100 * Description: it reportes the Supported/Advertisement/LP Advertisement 1101 * capabilities. 1102 */ 1103 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data) 1104 { 1105 int val; 1106 1107 /* Get Supported EEE */ 1108 val = phy_read_mmd_indirect(phydev->bus, MDIO_PCS_EEE_ABLE, 1109 MDIO_MMD_PCS, phydev->addr); 1110 if (val < 0) 1111 return val; 1112 data->supported = mmd_eee_cap_to_ethtool_sup_t(val); 1113 1114 /* Get advertisement EEE */ 1115 val = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV, 1116 MDIO_MMD_AN, phydev->addr); 1117 if (val < 0) 1118 return val; 1119 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1120 1121 /* Get LP advertisement EEE */ 1122 val = phy_read_mmd_indirect(phydev->bus, MDIO_AN_EEE_LPABLE, 1123 MDIO_MMD_AN, phydev->addr); 1124 if (val < 0) 1125 return val; 1126 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1127 1128 return 0; 1129 } 1130 EXPORT_SYMBOL(phy_ethtool_get_eee); 1131 1132 /** 1133 * phy_ethtool_set_eee - set EEE supported and status 1134 * @phydev: target phy_device struct 1135 * @data: ethtool_eee data 1136 * 1137 * Description: it is to program the Advertisement EEE register. 1138 */ 1139 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data) 1140 { 1141 int val; 1142 1143 val = ethtool_adv_to_mmd_eee_adv_t(data->advertised); 1144 phy_write_mmd_indirect(phydev->bus, MDIO_AN_EEE_ADV, MDIO_MMD_AN, 1145 phydev->addr, val); 1146 1147 return 0; 1148 } 1149 EXPORT_SYMBOL(phy_ethtool_set_eee); 1150 1151 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1152 { 1153 if (phydev->drv->set_wol) 1154 return phydev->drv->set_wol(phydev, wol); 1155 1156 return -EOPNOTSUPP; 1157 } 1158 EXPORT_SYMBOL(phy_ethtool_set_wol); 1159 1160 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1161 { 1162 if (phydev->drv->get_wol) 1163 phydev->drv->get_wol(phydev, wol); 1164 } 1165 EXPORT_SYMBOL(phy_ethtool_get_wol); 1166