xref: /linux/drivers/net/phy/phy.c (revision 52ffe0ff02fc053a025c381d5808e9ecd3206dfe)
1 /* Framework for configuring and reading PHY devices
2  * Based on code in sungem_phy.c and gianfar_phy.c
3  *
4  * Author: Andy Fleming
5  *
6  * Copyright (c) 2004 Freescale Semiconductor, Inc.
7  * Copyright (c) 2006, 2007  Maciej W. Rozycki
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/unistd.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/phy.h>
32 #include <linux/timer.h>
33 #include <linux/workqueue.h>
34 #include <linux/mdio.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <linux/atomic.h>
38 
39 #include <asm/irq.h>
40 
41 static const char *phy_speed_to_str(int speed)
42 {
43 	switch (speed) {
44 	case SPEED_10:
45 		return "10Mbps";
46 	case SPEED_100:
47 		return "100Mbps";
48 	case SPEED_1000:
49 		return "1Gbps";
50 	case SPEED_2500:
51 		return "2.5Gbps";
52 	case SPEED_10000:
53 		return "10Gbps";
54 	case SPEED_UNKNOWN:
55 		return "Unknown";
56 	default:
57 		return "Unsupported (update phy.c)";
58 	}
59 }
60 
61 #define PHY_STATE_STR(_state)			\
62 	case PHY_##_state:			\
63 		return __stringify(_state);	\
64 
65 static const char *phy_state_to_str(enum phy_state st)
66 {
67 	switch (st) {
68 	PHY_STATE_STR(DOWN)
69 	PHY_STATE_STR(STARTING)
70 	PHY_STATE_STR(READY)
71 	PHY_STATE_STR(PENDING)
72 	PHY_STATE_STR(UP)
73 	PHY_STATE_STR(AN)
74 	PHY_STATE_STR(RUNNING)
75 	PHY_STATE_STR(NOLINK)
76 	PHY_STATE_STR(FORCING)
77 	PHY_STATE_STR(CHANGELINK)
78 	PHY_STATE_STR(HALTED)
79 	PHY_STATE_STR(RESUMING)
80 	}
81 
82 	return NULL;
83 }
84 
85 
86 /**
87  * phy_print_status - Convenience function to print out the current phy status
88  * @phydev: the phy_device struct
89  */
90 void phy_print_status(struct phy_device *phydev)
91 {
92 	if (phydev->link) {
93 		netdev_info(phydev->attached_dev,
94 			"Link is Up - %s/%s - flow control %s\n",
95 			phy_speed_to_str(phydev->speed),
96 			DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
97 			phydev->pause ? "rx/tx" : "off");
98 	} else	{
99 		netdev_info(phydev->attached_dev, "Link is Down\n");
100 	}
101 }
102 EXPORT_SYMBOL(phy_print_status);
103 
104 /**
105  * phy_clear_interrupt - Ack the phy device's interrupt
106  * @phydev: the phy_device struct
107  *
108  * If the @phydev driver has an ack_interrupt function, call it to
109  * ack and clear the phy device's interrupt.
110  *
111  * Returns 0 on success or < 0 on error.
112  */
113 static int phy_clear_interrupt(struct phy_device *phydev)
114 {
115 	if (phydev->drv->ack_interrupt)
116 		return phydev->drv->ack_interrupt(phydev);
117 
118 	return 0;
119 }
120 
121 /**
122  * phy_config_interrupt - configure the PHY device for the requested interrupts
123  * @phydev: the phy_device struct
124  * @interrupts: interrupt flags to configure for this @phydev
125  *
126  * Returns 0 on success or < 0 on error.
127  */
128 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
129 {
130 	phydev->interrupts = interrupts;
131 	if (phydev->drv->config_intr)
132 		return phydev->drv->config_intr(phydev);
133 
134 	return 0;
135 }
136 
137 
138 /**
139  * phy_aneg_done - return auto-negotiation status
140  * @phydev: target phy_device struct
141  *
142  * Description: Return the auto-negotiation status from this @phydev
143  * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
144  * is still pending.
145  */
146 static inline int phy_aneg_done(struct phy_device *phydev)
147 {
148 	if (phydev->drv->aneg_done)
149 		return phydev->drv->aneg_done(phydev);
150 
151 	return genphy_aneg_done(phydev);
152 }
153 
154 /* A structure for mapping a particular speed and duplex
155  * combination to a particular SUPPORTED and ADVERTISED value
156  */
157 struct phy_setting {
158 	int speed;
159 	int duplex;
160 	u32 setting;
161 };
162 
163 /* A mapping of all SUPPORTED settings to speed/duplex */
164 static const struct phy_setting settings[] = {
165 	{
166 		.speed = SPEED_10000,
167 		.duplex = DUPLEX_FULL,
168 		.setting = SUPPORTED_10000baseKR_Full,
169 	},
170 	{
171 		.speed = SPEED_10000,
172 		.duplex = DUPLEX_FULL,
173 		.setting = SUPPORTED_10000baseKX4_Full,
174 	},
175 	{
176 		.speed = SPEED_10000,
177 		.duplex = DUPLEX_FULL,
178 		.setting = SUPPORTED_10000baseT_Full,
179 	},
180 	{
181 		.speed = SPEED_2500,
182 		.duplex = DUPLEX_FULL,
183 		.setting = SUPPORTED_2500baseX_Full,
184 	},
185 	{
186 		.speed = SPEED_1000,
187 		.duplex = DUPLEX_FULL,
188 		.setting = SUPPORTED_1000baseKX_Full,
189 	},
190 	{
191 		.speed = SPEED_1000,
192 		.duplex = DUPLEX_FULL,
193 		.setting = SUPPORTED_1000baseT_Full,
194 	},
195 	{
196 		.speed = SPEED_1000,
197 		.duplex = DUPLEX_HALF,
198 		.setting = SUPPORTED_1000baseT_Half,
199 	},
200 	{
201 		.speed = SPEED_100,
202 		.duplex = DUPLEX_FULL,
203 		.setting = SUPPORTED_100baseT_Full,
204 	},
205 	{
206 		.speed = SPEED_100,
207 		.duplex = DUPLEX_HALF,
208 		.setting = SUPPORTED_100baseT_Half,
209 	},
210 	{
211 		.speed = SPEED_10,
212 		.duplex = DUPLEX_FULL,
213 		.setting = SUPPORTED_10baseT_Full,
214 	},
215 	{
216 		.speed = SPEED_10,
217 		.duplex = DUPLEX_HALF,
218 		.setting = SUPPORTED_10baseT_Half,
219 	},
220 };
221 
222 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
223 
224 /**
225  * phy_find_setting - find a PHY settings array entry that matches speed & duplex
226  * @speed: speed to match
227  * @duplex: duplex to match
228  *
229  * Description: Searches the settings array for the setting which
230  *   matches the desired speed and duplex, and returns the index
231  *   of that setting.  Returns the index of the last setting if
232  *   none of the others match.
233  */
234 static inline unsigned int phy_find_setting(int speed, int duplex)
235 {
236 	unsigned int idx = 0;
237 
238 	while (idx < ARRAY_SIZE(settings) &&
239 	       (settings[idx].speed != speed || settings[idx].duplex != duplex))
240 		idx++;
241 
242 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
243 }
244 
245 /**
246  * phy_find_valid - find a PHY setting that matches the requested features mask
247  * @idx: The first index in settings[] to search
248  * @features: A mask of the valid settings
249  *
250  * Description: Returns the index of the first valid setting less
251  *   than or equal to the one pointed to by idx, as determined by
252  *   the mask in features.  Returns the index of the last setting
253  *   if nothing else matches.
254  */
255 static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
256 {
257 	while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
258 		idx++;
259 
260 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
261 }
262 
263 /**
264  * phy_check_valid - check if there is a valid PHY setting which matches
265  *		     speed, duplex, and feature mask
266  * @speed: speed to match
267  * @duplex: duplex to match
268  * @features: A mask of the valid settings
269  *
270  * Description: Returns true if there is a valid setting, false otherwise.
271  */
272 static inline bool phy_check_valid(int speed, int duplex, u32 features)
273 {
274 	unsigned int idx;
275 
276 	idx = phy_find_valid(phy_find_setting(speed, duplex), features);
277 
278 	return settings[idx].speed == speed && settings[idx].duplex == duplex &&
279 		(settings[idx].setting & features);
280 }
281 
282 /**
283  * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
284  * @phydev: the target phy_device struct
285  *
286  * Description: Make sure the PHY is set to supported speeds and
287  *   duplexes.  Drop down by one in this order:  1000/FULL,
288  *   1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
289  */
290 static void phy_sanitize_settings(struct phy_device *phydev)
291 {
292 	u32 features = phydev->supported;
293 	unsigned int idx;
294 
295 	/* Sanitize settings based on PHY capabilities */
296 	if ((features & SUPPORTED_Autoneg) == 0)
297 		phydev->autoneg = AUTONEG_DISABLE;
298 
299 	idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
300 			features);
301 
302 	phydev->speed = settings[idx].speed;
303 	phydev->duplex = settings[idx].duplex;
304 }
305 
306 /**
307  * phy_ethtool_sset - generic ethtool sset function, handles all the details
308  * @phydev: target phy_device struct
309  * @cmd: ethtool_cmd
310  *
311  * A few notes about parameter checking:
312  * - We don't set port or transceiver, so we don't care what they
313  *   were set to.
314  * - phy_start_aneg() will make sure forced settings are sane, and
315  *   choose the next best ones from the ones selected, so we don't
316  *   care if ethtool tries to give us bad values.
317  */
318 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
319 {
320 	u32 speed = ethtool_cmd_speed(cmd);
321 
322 	if (cmd->phy_address != phydev->mdio.addr)
323 		return -EINVAL;
324 
325 	/* We make sure that we don't pass unsupported values in to the PHY */
326 	cmd->advertising &= phydev->supported;
327 
328 	/* Verify the settings we care about. */
329 	if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
330 		return -EINVAL;
331 
332 	if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
333 		return -EINVAL;
334 
335 	if (cmd->autoneg == AUTONEG_DISABLE &&
336 	    ((speed != SPEED_1000 &&
337 	      speed != SPEED_100 &&
338 	      speed != SPEED_10) ||
339 	     (cmd->duplex != DUPLEX_HALF &&
340 	      cmd->duplex != DUPLEX_FULL)))
341 		return -EINVAL;
342 
343 	phydev->autoneg = cmd->autoneg;
344 
345 	phydev->speed = speed;
346 
347 	phydev->advertising = cmd->advertising;
348 
349 	if (AUTONEG_ENABLE == cmd->autoneg)
350 		phydev->advertising |= ADVERTISED_Autoneg;
351 	else
352 		phydev->advertising &= ~ADVERTISED_Autoneg;
353 
354 	phydev->duplex = cmd->duplex;
355 
356 	phydev->mdix = cmd->eth_tp_mdix_ctrl;
357 
358 	/* Restart the PHY */
359 	phy_start_aneg(phydev);
360 
361 	return 0;
362 }
363 EXPORT_SYMBOL(phy_ethtool_sset);
364 
365 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
366 {
367 	cmd->supported = phydev->supported;
368 
369 	cmd->advertising = phydev->advertising;
370 	cmd->lp_advertising = phydev->lp_advertising;
371 
372 	ethtool_cmd_speed_set(cmd, phydev->speed);
373 	cmd->duplex = phydev->duplex;
374 	if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
375 		cmd->port = PORT_BNC;
376 	else
377 		cmd->port = PORT_MII;
378 	cmd->phy_address = phydev->mdio.addr;
379 	cmd->transceiver = phy_is_internal(phydev) ?
380 		XCVR_INTERNAL : XCVR_EXTERNAL;
381 	cmd->autoneg = phydev->autoneg;
382 	cmd->eth_tp_mdix_ctrl = phydev->mdix;
383 
384 	return 0;
385 }
386 EXPORT_SYMBOL(phy_ethtool_gset);
387 
388 /**
389  * phy_mii_ioctl - generic PHY MII ioctl interface
390  * @phydev: the phy_device struct
391  * @ifr: &struct ifreq for socket ioctl's
392  * @cmd: ioctl cmd to execute
393  *
394  * Note that this function is currently incompatible with the
395  * PHYCONTROL layer.  It changes registers without regard to
396  * current state.  Use at own risk.
397  */
398 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
399 {
400 	struct mii_ioctl_data *mii_data = if_mii(ifr);
401 	u16 val = mii_data->val_in;
402 	bool change_autoneg = false;
403 
404 	switch (cmd) {
405 	case SIOCGMIIPHY:
406 		mii_data->phy_id = phydev->mdio.addr;
407 		/* fall through */
408 
409 	case SIOCGMIIREG:
410 		mii_data->val_out = mdiobus_read(phydev->mdio.bus,
411 						 mii_data->phy_id,
412 						 mii_data->reg_num);
413 		return 0;
414 
415 	case SIOCSMIIREG:
416 		if (mii_data->phy_id == phydev->mdio.addr) {
417 			switch (mii_data->reg_num) {
418 			case MII_BMCR:
419 				if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) {
420 					if (phydev->autoneg == AUTONEG_ENABLE)
421 						change_autoneg = true;
422 					phydev->autoneg = AUTONEG_DISABLE;
423 					if (val & BMCR_FULLDPLX)
424 						phydev->duplex = DUPLEX_FULL;
425 					else
426 						phydev->duplex = DUPLEX_HALF;
427 					if (val & BMCR_SPEED1000)
428 						phydev->speed = SPEED_1000;
429 					else if (val & BMCR_SPEED100)
430 						phydev->speed = SPEED_100;
431 					else phydev->speed = SPEED_10;
432 				}
433 				else {
434 					if (phydev->autoneg == AUTONEG_DISABLE)
435 						change_autoneg = true;
436 					phydev->autoneg = AUTONEG_ENABLE;
437 				}
438 				break;
439 			case MII_ADVERTISE:
440 				phydev->advertising = mii_adv_to_ethtool_adv_t(val);
441 				change_autoneg = true;
442 				break;
443 			default:
444 				/* do nothing */
445 				break;
446 			}
447 		}
448 
449 		mdiobus_write(phydev->mdio.bus, mii_data->phy_id,
450 			      mii_data->reg_num, val);
451 
452 		if (mii_data->phy_id == phydev->mdio.addr &&
453 		    mii_data->reg_num == MII_BMCR &&
454 		    val & BMCR_RESET)
455 			return phy_init_hw(phydev);
456 
457 		if (change_autoneg)
458 			return phy_start_aneg(phydev);
459 
460 		return 0;
461 
462 	case SIOCSHWTSTAMP:
463 		if (phydev->drv->hwtstamp)
464 			return phydev->drv->hwtstamp(phydev, ifr);
465 		/* fall through */
466 
467 	default:
468 		return -EOPNOTSUPP;
469 	}
470 }
471 EXPORT_SYMBOL(phy_mii_ioctl);
472 
473 /**
474  * phy_start_aneg - start auto-negotiation for this PHY device
475  * @phydev: the phy_device struct
476  *
477  * Description: Sanitizes the settings (if we're not autonegotiating
478  *   them), and then calls the driver's config_aneg function.
479  *   If the PHYCONTROL Layer is operating, we change the state to
480  *   reflect the beginning of Auto-negotiation or forcing.
481  */
482 int phy_start_aneg(struct phy_device *phydev)
483 {
484 	int err;
485 
486 	mutex_lock(&phydev->lock);
487 
488 	if (AUTONEG_DISABLE == phydev->autoneg)
489 		phy_sanitize_settings(phydev);
490 
491 	/* Invalidate LP advertising flags */
492 	phydev->lp_advertising = 0;
493 
494 	err = phydev->drv->config_aneg(phydev);
495 	if (err < 0)
496 		goto out_unlock;
497 
498 	if (phydev->state != PHY_HALTED) {
499 		if (AUTONEG_ENABLE == phydev->autoneg) {
500 			phydev->state = PHY_AN;
501 			phydev->link_timeout = PHY_AN_TIMEOUT;
502 		} else {
503 			phydev->state = PHY_FORCING;
504 			phydev->link_timeout = PHY_FORCE_TIMEOUT;
505 		}
506 	}
507 
508 out_unlock:
509 	mutex_unlock(&phydev->lock);
510 	return err;
511 }
512 EXPORT_SYMBOL(phy_start_aneg);
513 
514 /**
515  * phy_start_machine - start PHY state machine tracking
516  * @phydev: the phy_device struct
517  *
518  * Description: The PHY infrastructure can run a state machine
519  *   which tracks whether the PHY is starting up, negotiating,
520  *   etc.  This function starts the timer which tracks the state
521  *   of the PHY.  If you want to maintain your own state machine,
522  *   do not call this function.
523  */
524 void phy_start_machine(struct phy_device *phydev)
525 {
526 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
527 }
528 
529 /**
530  * phy_stop_machine - stop the PHY state machine tracking
531  * @phydev: target phy_device struct
532  *
533  * Description: Stops the state machine timer, sets the state to UP
534  *   (unless it wasn't up yet). This function must be called BEFORE
535  *   phy_detach.
536  */
537 void phy_stop_machine(struct phy_device *phydev)
538 {
539 	cancel_delayed_work_sync(&phydev->state_queue);
540 
541 	mutex_lock(&phydev->lock);
542 	if (phydev->state > PHY_UP)
543 		phydev->state = PHY_UP;
544 	mutex_unlock(&phydev->lock);
545 }
546 
547 /**
548  * phy_error - enter HALTED state for this PHY device
549  * @phydev: target phy_device struct
550  *
551  * Moves the PHY to the HALTED state in response to a read
552  * or write error, and tells the controller the link is down.
553  * Must not be called from interrupt context, or while the
554  * phydev->lock is held.
555  */
556 static void phy_error(struct phy_device *phydev)
557 {
558 	mutex_lock(&phydev->lock);
559 	phydev->state = PHY_HALTED;
560 	mutex_unlock(&phydev->lock);
561 }
562 
563 /**
564  * phy_interrupt - PHY interrupt handler
565  * @irq: interrupt line
566  * @phy_dat: phy_device pointer
567  *
568  * Description: When a PHY interrupt occurs, the handler disables
569  * interrupts, and schedules a work task to clear the interrupt.
570  */
571 static irqreturn_t phy_interrupt(int irq, void *phy_dat)
572 {
573 	struct phy_device *phydev = phy_dat;
574 
575 	if (PHY_HALTED == phydev->state)
576 		return IRQ_NONE;		/* It can't be ours.  */
577 
578 	/* The MDIO bus is not allowed to be written in interrupt
579 	 * context, so we need to disable the irq here.  A work
580 	 * queue will write the PHY to disable and clear the
581 	 * interrupt, and then reenable the irq line.
582 	 */
583 	disable_irq_nosync(irq);
584 	atomic_inc(&phydev->irq_disable);
585 
586 	queue_work(system_power_efficient_wq, &phydev->phy_queue);
587 
588 	return IRQ_HANDLED;
589 }
590 
591 /**
592  * phy_enable_interrupts - Enable the interrupts from the PHY side
593  * @phydev: target phy_device struct
594  */
595 static int phy_enable_interrupts(struct phy_device *phydev)
596 {
597 	int err = phy_clear_interrupt(phydev);
598 
599 	if (err < 0)
600 		return err;
601 
602 	return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
603 }
604 
605 /**
606  * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
607  * @phydev: target phy_device struct
608  */
609 static int phy_disable_interrupts(struct phy_device *phydev)
610 {
611 	int err;
612 
613 	/* Disable PHY interrupts */
614 	err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
615 	if (err)
616 		goto phy_err;
617 
618 	/* Clear the interrupt */
619 	err = phy_clear_interrupt(phydev);
620 	if (err)
621 		goto phy_err;
622 
623 	return 0;
624 
625 phy_err:
626 	phy_error(phydev);
627 
628 	return err;
629 }
630 
631 /**
632  * phy_start_interrupts - request and enable interrupts for a PHY device
633  * @phydev: target phy_device struct
634  *
635  * Description: Request the interrupt for the given PHY.
636  *   If this fails, then we set irq to PHY_POLL.
637  *   Otherwise, we enable the interrupts in the PHY.
638  *   This should only be called with a valid IRQ number.
639  *   Returns 0 on success or < 0 on error.
640  */
641 int phy_start_interrupts(struct phy_device *phydev)
642 {
643 	atomic_set(&phydev->irq_disable, 0);
644 	if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
645 			phydev) < 0) {
646 		pr_warn("%s: Can't get IRQ %d (PHY)\n",
647 			phydev->mdio.bus->name, phydev->irq);
648 		phydev->irq = PHY_POLL;
649 		return 0;
650 	}
651 
652 	return phy_enable_interrupts(phydev);
653 }
654 EXPORT_SYMBOL(phy_start_interrupts);
655 
656 /**
657  * phy_stop_interrupts - disable interrupts from a PHY device
658  * @phydev: target phy_device struct
659  */
660 int phy_stop_interrupts(struct phy_device *phydev)
661 {
662 	int err = phy_disable_interrupts(phydev);
663 
664 	if (err)
665 		phy_error(phydev);
666 
667 	free_irq(phydev->irq, phydev);
668 
669 	/* Cannot call flush_scheduled_work() here as desired because
670 	 * of rtnl_lock(), but we do not really care about what would
671 	 * be done, except from enable_irq(), so cancel any work
672 	 * possibly pending and take care of the matter below.
673 	 */
674 	cancel_work_sync(&phydev->phy_queue);
675 	/* If work indeed has been cancelled, disable_irq() will have
676 	 * been left unbalanced from phy_interrupt() and enable_irq()
677 	 * has to be called so that other devices on the line work.
678 	 */
679 	while (atomic_dec_return(&phydev->irq_disable) >= 0)
680 		enable_irq(phydev->irq);
681 
682 	return err;
683 }
684 EXPORT_SYMBOL(phy_stop_interrupts);
685 
686 /**
687  * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
688  * @work: work_struct that describes the work to be done
689  */
690 void phy_change(struct work_struct *work)
691 {
692 	struct phy_device *phydev =
693 		container_of(work, struct phy_device, phy_queue);
694 
695 	if (phy_interrupt_is_valid(phydev)) {
696 		if (phydev->drv->did_interrupt &&
697 		    !phydev->drv->did_interrupt(phydev))
698 			goto ignore;
699 
700 		if (phy_disable_interrupts(phydev))
701 			goto phy_err;
702 	}
703 
704 	mutex_lock(&phydev->lock);
705 	if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
706 		phydev->state = PHY_CHANGELINK;
707 	mutex_unlock(&phydev->lock);
708 
709 	if (phy_interrupt_is_valid(phydev)) {
710 		atomic_dec(&phydev->irq_disable);
711 		enable_irq(phydev->irq);
712 
713 		/* Reenable interrupts */
714 		if (PHY_HALTED != phydev->state &&
715 		    phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
716 			goto irq_enable_err;
717 	}
718 
719 	/* reschedule state queue work to run as soon as possible */
720 	cancel_delayed_work_sync(&phydev->state_queue);
721 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
722 	return;
723 
724 ignore:
725 	atomic_dec(&phydev->irq_disable);
726 	enable_irq(phydev->irq);
727 	return;
728 
729 irq_enable_err:
730 	disable_irq(phydev->irq);
731 	atomic_inc(&phydev->irq_disable);
732 phy_err:
733 	phy_error(phydev);
734 }
735 
736 /**
737  * phy_stop - Bring down the PHY link, and stop checking the status
738  * @phydev: target phy_device struct
739  */
740 void phy_stop(struct phy_device *phydev)
741 {
742 	mutex_lock(&phydev->lock);
743 
744 	if (PHY_HALTED == phydev->state)
745 		goto out_unlock;
746 
747 	if (phy_interrupt_is_valid(phydev)) {
748 		/* Disable PHY Interrupts */
749 		phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
750 
751 		/* Clear any pending interrupts */
752 		phy_clear_interrupt(phydev);
753 	}
754 
755 	phydev->state = PHY_HALTED;
756 
757 out_unlock:
758 	mutex_unlock(&phydev->lock);
759 
760 	/* Cannot call flush_scheduled_work() here as desired because
761 	 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
762 	 * will not reenable interrupts.
763 	 */
764 }
765 EXPORT_SYMBOL(phy_stop);
766 
767 /**
768  * phy_start - start or restart a PHY device
769  * @phydev: target phy_device struct
770  *
771  * Description: Indicates the attached device's readiness to
772  *   handle PHY-related work.  Used during startup to start the
773  *   PHY, and after a call to phy_stop() to resume operation.
774  *   Also used to indicate the MDIO bus has cleared an error
775  *   condition.
776  */
777 void phy_start(struct phy_device *phydev)
778 {
779 	bool do_resume = false;
780 	int err = 0;
781 
782 	mutex_lock(&phydev->lock);
783 
784 	switch (phydev->state) {
785 	case PHY_STARTING:
786 		phydev->state = PHY_PENDING;
787 		break;
788 	case PHY_READY:
789 		phydev->state = PHY_UP;
790 		break;
791 	case PHY_HALTED:
792 		/* make sure interrupts are re-enabled for the PHY */
793 		if (phydev->irq != PHY_POLL) {
794 			err = phy_enable_interrupts(phydev);
795 			if (err < 0)
796 				break;
797 		}
798 
799 		phydev->state = PHY_RESUMING;
800 		do_resume = true;
801 		break;
802 	default:
803 		break;
804 	}
805 	mutex_unlock(&phydev->lock);
806 
807 	/* if phy was suspended, bring the physical link up again */
808 	if (do_resume)
809 		phy_resume(phydev);
810 }
811 EXPORT_SYMBOL(phy_start);
812 
813 /**
814  * phy_state_machine - Handle the state machine
815  * @work: work_struct that describes the work to be done
816  */
817 void phy_state_machine(struct work_struct *work)
818 {
819 	struct delayed_work *dwork = to_delayed_work(work);
820 	struct phy_device *phydev =
821 			container_of(dwork, struct phy_device, state_queue);
822 	bool needs_aneg = false, do_suspend = false;
823 	enum phy_state old_state;
824 	int err = 0;
825 	int old_link;
826 
827 	mutex_lock(&phydev->lock);
828 
829 	old_state = phydev->state;
830 
831 	if (phydev->drv->link_change_notify)
832 		phydev->drv->link_change_notify(phydev);
833 
834 	switch (phydev->state) {
835 	case PHY_DOWN:
836 	case PHY_STARTING:
837 	case PHY_READY:
838 	case PHY_PENDING:
839 		break;
840 	case PHY_UP:
841 		needs_aneg = true;
842 
843 		phydev->link_timeout = PHY_AN_TIMEOUT;
844 
845 		break;
846 	case PHY_AN:
847 		err = phy_read_status(phydev);
848 		if (err < 0)
849 			break;
850 
851 		/* If the link is down, give up on negotiation for now */
852 		if (!phydev->link) {
853 			phydev->state = PHY_NOLINK;
854 			netif_carrier_off(phydev->attached_dev);
855 			phydev->adjust_link(phydev->attached_dev);
856 			break;
857 		}
858 
859 		/* Check if negotiation is done.  Break if there's an error */
860 		err = phy_aneg_done(phydev);
861 		if (err < 0)
862 			break;
863 
864 		/* If AN is done, we're running */
865 		if (err > 0) {
866 			phydev->state = PHY_RUNNING;
867 			netif_carrier_on(phydev->attached_dev);
868 			phydev->adjust_link(phydev->attached_dev);
869 
870 		} else if (0 == phydev->link_timeout--)
871 			needs_aneg = true;
872 		break;
873 	case PHY_NOLINK:
874 		if (phy_interrupt_is_valid(phydev))
875 			break;
876 
877 		err = phy_read_status(phydev);
878 		if (err)
879 			break;
880 
881 		if (phydev->link) {
882 			if (AUTONEG_ENABLE == phydev->autoneg) {
883 				err = phy_aneg_done(phydev);
884 				if (err < 0)
885 					break;
886 
887 				if (!err) {
888 					phydev->state = PHY_AN;
889 					phydev->link_timeout = PHY_AN_TIMEOUT;
890 					break;
891 				}
892 			}
893 			phydev->state = PHY_RUNNING;
894 			netif_carrier_on(phydev->attached_dev);
895 			phydev->adjust_link(phydev->attached_dev);
896 		}
897 		break;
898 	case PHY_FORCING:
899 		err = genphy_update_link(phydev);
900 		if (err)
901 			break;
902 
903 		if (phydev->link) {
904 			phydev->state = PHY_RUNNING;
905 			netif_carrier_on(phydev->attached_dev);
906 		} else {
907 			if (0 == phydev->link_timeout--)
908 				needs_aneg = true;
909 		}
910 
911 		phydev->adjust_link(phydev->attached_dev);
912 		break;
913 	case PHY_RUNNING:
914 		/* Only register a CHANGE if we are polling and link changed
915 		 * since latest checking.
916 		 */
917 		if (phydev->irq == PHY_POLL) {
918 			old_link = phydev->link;
919 			err = phy_read_status(phydev);
920 			if (err)
921 				break;
922 
923 			if (old_link != phydev->link)
924 				phydev->state = PHY_CHANGELINK;
925 		}
926 		break;
927 	case PHY_CHANGELINK:
928 		err = phy_read_status(phydev);
929 		if (err)
930 			break;
931 
932 		if (phydev->link) {
933 			phydev->state = PHY_RUNNING;
934 			netif_carrier_on(phydev->attached_dev);
935 		} else {
936 			phydev->state = PHY_NOLINK;
937 			netif_carrier_off(phydev->attached_dev);
938 		}
939 
940 		phydev->adjust_link(phydev->attached_dev);
941 
942 		if (phy_interrupt_is_valid(phydev))
943 			err = phy_config_interrupt(phydev,
944 						   PHY_INTERRUPT_ENABLED);
945 		break;
946 	case PHY_HALTED:
947 		if (phydev->link) {
948 			phydev->link = 0;
949 			netif_carrier_off(phydev->attached_dev);
950 			phydev->adjust_link(phydev->attached_dev);
951 			do_suspend = true;
952 		}
953 		break;
954 	case PHY_RESUMING:
955 		if (AUTONEG_ENABLE == phydev->autoneg) {
956 			err = phy_aneg_done(phydev);
957 			if (err < 0)
958 				break;
959 
960 			/* err > 0 if AN is done.
961 			 * Otherwise, it's 0, and we're  still waiting for AN
962 			 */
963 			if (err > 0) {
964 				err = phy_read_status(phydev);
965 				if (err)
966 					break;
967 
968 				if (phydev->link) {
969 					phydev->state = PHY_RUNNING;
970 					netif_carrier_on(phydev->attached_dev);
971 				} else	{
972 					phydev->state = PHY_NOLINK;
973 				}
974 				phydev->adjust_link(phydev->attached_dev);
975 			} else {
976 				phydev->state = PHY_AN;
977 				phydev->link_timeout = PHY_AN_TIMEOUT;
978 			}
979 		} else {
980 			err = phy_read_status(phydev);
981 			if (err)
982 				break;
983 
984 			if (phydev->link) {
985 				phydev->state = PHY_RUNNING;
986 				netif_carrier_on(phydev->attached_dev);
987 			} else	{
988 				phydev->state = PHY_NOLINK;
989 			}
990 			phydev->adjust_link(phydev->attached_dev);
991 		}
992 		break;
993 	}
994 
995 	mutex_unlock(&phydev->lock);
996 
997 	if (needs_aneg)
998 		err = phy_start_aneg(phydev);
999 	else if (do_suspend)
1000 		phy_suspend(phydev);
1001 
1002 	if (err < 0)
1003 		phy_error(phydev);
1004 
1005 	phydev_dbg(phydev, "PHY state change %s -> %s\n",
1006 		   phy_state_to_str(old_state),
1007 		   phy_state_to_str(phydev->state));
1008 
1009 	/* Only re-schedule a PHY state machine change if we are polling the
1010 	 * PHY, if PHY_IGNORE_INTERRUPT is set, then we will be moving
1011 	 * between states from phy_mac_interrupt()
1012 	 */
1013 	if (phydev->irq == PHY_POLL)
1014 		queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
1015 				   PHY_STATE_TIME * HZ);
1016 }
1017 
1018 void phy_mac_interrupt(struct phy_device *phydev, int new_link)
1019 {
1020 	phydev->link = new_link;
1021 
1022 	/* Trigger a state machine change */
1023 	queue_work(system_power_efficient_wq, &phydev->phy_queue);
1024 }
1025 EXPORT_SYMBOL(phy_mac_interrupt);
1026 
1027 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
1028 				    int addr)
1029 {
1030 	/* Write the desired MMD Devad */
1031 	bus->write(bus, addr, MII_MMD_CTRL, devad);
1032 
1033 	/* Write the desired MMD register address */
1034 	bus->write(bus, addr, MII_MMD_DATA, prtad);
1035 
1036 	/* Select the Function : DATA with no post increment */
1037 	bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
1038 }
1039 
1040 /**
1041  * phy_read_mmd_indirect - reads data from the MMD registers
1042  * @phydev: The PHY device bus
1043  * @prtad: MMD Address
1044  * @devad: MMD DEVAD
1045  *
1046  * Description: it reads data from the MMD registers (clause 22 to access to
1047  * clause 45) of the specified phy address.
1048  * To read these register we have:
1049  * 1) Write reg 13 // DEVAD
1050  * 2) Write reg 14 // MMD Address
1051  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1052  * 3) Read  reg 14 // Read MMD data
1053  */
1054 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, int devad)
1055 {
1056 	struct phy_driver *phydrv = phydev->drv;
1057 	int addr = phydev->mdio.addr;
1058 	int value = -1;
1059 
1060 	if (!phydrv->read_mmd_indirect) {
1061 		struct mii_bus *bus = phydev->mdio.bus;
1062 
1063 		mutex_lock(&bus->mdio_lock);
1064 		mmd_phy_indirect(bus, prtad, devad, addr);
1065 
1066 		/* Read the content of the MMD's selected register */
1067 		value = bus->read(bus, addr, MII_MMD_DATA);
1068 		mutex_unlock(&bus->mdio_lock);
1069 	} else {
1070 		value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr);
1071 	}
1072 	return value;
1073 }
1074 EXPORT_SYMBOL(phy_read_mmd_indirect);
1075 
1076 /**
1077  * phy_write_mmd_indirect - writes data to the MMD registers
1078  * @phydev: The PHY device
1079  * @prtad: MMD Address
1080  * @devad: MMD DEVAD
1081  * @data: data to write in the MMD register
1082  *
1083  * Description: Write data from the MMD registers of the specified
1084  * phy address.
1085  * To write these register we have:
1086  * 1) Write reg 13 // DEVAD
1087  * 2) Write reg 14 // MMD Address
1088  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1089  * 3) Write reg 14 // Write MMD data
1090  */
1091 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad,
1092 				   int devad, u32 data)
1093 {
1094 	struct phy_driver *phydrv = phydev->drv;
1095 	int addr = phydev->mdio.addr;
1096 
1097 	if (!phydrv->write_mmd_indirect) {
1098 		struct mii_bus *bus = phydev->mdio.bus;
1099 
1100 		mutex_lock(&bus->mdio_lock);
1101 		mmd_phy_indirect(bus, prtad, devad, addr);
1102 
1103 		/* Write the data into MMD's selected register */
1104 		bus->write(bus, addr, MII_MMD_DATA, data);
1105 		mutex_unlock(&bus->mdio_lock);
1106 	} else {
1107 		phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data);
1108 	}
1109 }
1110 EXPORT_SYMBOL(phy_write_mmd_indirect);
1111 
1112 /**
1113  * phy_init_eee - init and check the EEE feature
1114  * @phydev: target phy_device struct
1115  * @clk_stop_enable: PHY may stop the clock during LPI
1116  *
1117  * Description: it checks if the Energy-Efficient Ethernet (EEE)
1118  * is supported by looking at the MMD registers 3.20 and 7.60/61
1119  * and it programs the MMD register 3.0 setting the "Clock stop enable"
1120  * bit if required.
1121  */
1122 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
1123 {
1124 	/* According to 802.3az,the EEE is supported only in full duplex-mode.
1125 	 * Also EEE feature is active when core is operating with MII, GMII
1126 	 * or RGMII (all kinds). Internal PHYs are also allowed to proceed and
1127 	 * should return an error if they do not support EEE.
1128 	 */
1129 	if ((phydev->duplex == DUPLEX_FULL) &&
1130 	    ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
1131 	    (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
1132 	     phy_interface_is_rgmii(phydev) ||
1133 	     phy_is_internal(phydev))) {
1134 		int eee_lp, eee_cap, eee_adv;
1135 		u32 lp, cap, adv;
1136 		int status;
1137 
1138 		/* Read phy status to properly get the right settings */
1139 		status = phy_read_status(phydev);
1140 		if (status)
1141 			return status;
1142 
1143 		/* First check if the EEE ability is supported */
1144 		eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1145 						MDIO_MMD_PCS);
1146 		if (eee_cap <= 0)
1147 			goto eee_exit_err;
1148 
1149 		cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1150 		if (!cap)
1151 			goto eee_exit_err;
1152 
1153 		/* Check which link settings negotiated and verify it in
1154 		 * the EEE advertising registers.
1155 		 */
1156 		eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1157 					       MDIO_MMD_AN);
1158 		if (eee_lp <= 0)
1159 			goto eee_exit_err;
1160 
1161 		eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1162 						MDIO_MMD_AN);
1163 		if (eee_adv <= 0)
1164 			goto eee_exit_err;
1165 
1166 		adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1167 		lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1168 		if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv))
1169 			goto eee_exit_err;
1170 
1171 		if (clk_stop_enable) {
1172 			/* Configure the PHY to stop receiving xMII
1173 			 * clock while it is signaling LPI.
1174 			 */
1175 			int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1,
1176 							MDIO_MMD_PCS);
1177 			if (val < 0)
1178 				return val;
1179 
1180 			val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1181 			phy_write_mmd_indirect(phydev, MDIO_CTRL1,
1182 					       MDIO_MMD_PCS, val);
1183 		}
1184 
1185 		return 0; /* EEE supported */
1186 	}
1187 eee_exit_err:
1188 	return -EPROTONOSUPPORT;
1189 }
1190 EXPORT_SYMBOL(phy_init_eee);
1191 
1192 /**
1193  * phy_get_eee_err - report the EEE wake error count
1194  * @phydev: target phy_device struct
1195  *
1196  * Description: it is to report the number of time where the PHY
1197  * failed to complete its normal wake sequence.
1198  */
1199 int phy_get_eee_err(struct phy_device *phydev)
1200 {
1201 	return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, MDIO_MMD_PCS);
1202 }
1203 EXPORT_SYMBOL(phy_get_eee_err);
1204 
1205 /**
1206  * phy_ethtool_get_eee - get EEE supported and status
1207  * @phydev: target phy_device struct
1208  * @data: ethtool_eee data
1209  *
1210  * Description: it reportes the Supported/Advertisement/LP Advertisement
1211  * capabilities.
1212  */
1213 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1214 {
1215 	int val;
1216 
1217 	/* Get Supported EEE */
1218 	val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS);
1219 	if (val < 0)
1220 		return val;
1221 	data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1222 
1223 	/* Get advertisement EEE */
1224 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN);
1225 	if (val < 0)
1226 		return val;
1227 	data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1228 
1229 	/* Get LP advertisement EEE */
1230 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN);
1231 	if (val < 0)
1232 		return val;
1233 	data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1234 
1235 	return 0;
1236 }
1237 EXPORT_SYMBOL(phy_ethtool_get_eee);
1238 
1239 /**
1240  * phy_ethtool_set_eee - set EEE supported and status
1241  * @phydev: target phy_device struct
1242  * @data: ethtool_eee data
1243  *
1244  * Description: it is to program the Advertisement EEE register.
1245  */
1246 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1247 {
1248 	int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1249 
1250 	phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, val);
1251 
1252 	return 0;
1253 }
1254 EXPORT_SYMBOL(phy_ethtool_set_eee);
1255 
1256 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1257 {
1258 	if (phydev->drv->set_wol)
1259 		return phydev->drv->set_wol(phydev, wol);
1260 
1261 	return -EOPNOTSUPP;
1262 }
1263 EXPORT_SYMBOL(phy_ethtool_set_wol);
1264 
1265 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1266 {
1267 	if (phydev->drv->get_wol)
1268 		phydev->drv->get_wol(phydev, wol);
1269 }
1270 EXPORT_SYMBOL(phy_ethtool_get_wol);
1271