xref: /linux/drivers/net/phy/phy.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /* Framework for configuring and reading PHY devices
2  * Based on code in sungem_phy.c and gianfar_phy.c
3  *
4  * Author: Andy Fleming
5  *
6  * Copyright (c) 2004 Freescale Semiconductor, Inc.
7  * Copyright (c) 2006, 2007  Maciej W. Rozycki
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/unistd.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/phy.h>
32 #include <linux/timer.h>
33 #include <linux/workqueue.h>
34 #include <linux/mdio.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <linux/atomic.h>
38 
39 #include <asm/irq.h>
40 
41 static const char *phy_speed_to_str(int speed)
42 {
43 	switch (speed) {
44 	case SPEED_10:
45 		return "10Mbps";
46 	case SPEED_100:
47 		return "100Mbps";
48 	case SPEED_1000:
49 		return "1Gbps";
50 	case SPEED_2500:
51 		return "2.5Gbps";
52 	case SPEED_10000:
53 		return "10Gbps";
54 	case SPEED_UNKNOWN:
55 		return "Unknown";
56 	default:
57 		return "Unsupported (update phy.c)";
58 	}
59 }
60 
61 /**
62  * phy_print_status - Convenience function to print out the current phy status
63  * @phydev: the phy_device struct
64  */
65 void phy_print_status(struct phy_device *phydev)
66 {
67 	if (phydev->link) {
68 		netdev_info(phydev->attached_dev,
69 			"Link is Up - %s/%s - flow control %s\n",
70 			phy_speed_to_str(phydev->speed),
71 			DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
72 			phydev->pause ? "rx/tx" : "off");
73 	} else	{
74 		netdev_info(phydev->attached_dev, "Link is Down\n");
75 	}
76 }
77 EXPORT_SYMBOL(phy_print_status);
78 
79 /**
80  * phy_clear_interrupt - Ack the phy device's interrupt
81  * @phydev: the phy_device struct
82  *
83  * If the @phydev driver has an ack_interrupt function, call it to
84  * ack and clear the phy device's interrupt.
85  *
86  * Returns 0 on success or < 0 on error.
87  */
88 static int phy_clear_interrupt(struct phy_device *phydev)
89 {
90 	if (phydev->drv->ack_interrupt)
91 		return phydev->drv->ack_interrupt(phydev);
92 
93 	return 0;
94 }
95 
96 /**
97  * phy_config_interrupt - configure the PHY device for the requested interrupts
98  * @phydev: the phy_device struct
99  * @interrupts: interrupt flags to configure for this @phydev
100  *
101  * Returns 0 on success or < 0 on error.
102  */
103 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
104 {
105 	phydev->interrupts = interrupts;
106 	if (phydev->drv->config_intr)
107 		return phydev->drv->config_intr(phydev);
108 
109 	return 0;
110 }
111 
112 
113 /**
114  * phy_aneg_done - return auto-negotiation status
115  * @phydev: target phy_device struct
116  *
117  * Description: Return the auto-negotiation status from this @phydev
118  * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
119  * is still pending.
120  */
121 static inline int phy_aneg_done(struct phy_device *phydev)
122 {
123 	if (phydev->drv->aneg_done)
124 		return phydev->drv->aneg_done(phydev);
125 
126 	return genphy_aneg_done(phydev);
127 }
128 
129 /* A structure for mapping a particular speed and duplex
130  * combination to a particular SUPPORTED and ADVERTISED value
131  */
132 struct phy_setting {
133 	int speed;
134 	int duplex;
135 	u32 setting;
136 };
137 
138 /* A mapping of all SUPPORTED settings to speed/duplex */
139 static const struct phy_setting settings[] = {
140 	{
141 		.speed = SPEED_10000,
142 		.duplex = DUPLEX_FULL,
143 		.setting = SUPPORTED_10000baseKR_Full,
144 	},
145 	{
146 		.speed = SPEED_10000,
147 		.duplex = DUPLEX_FULL,
148 		.setting = SUPPORTED_10000baseKX4_Full,
149 	},
150 	{
151 		.speed = SPEED_10000,
152 		.duplex = DUPLEX_FULL,
153 		.setting = SUPPORTED_10000baseT_Full,
154 	},
155 	{
156 		.speed = SPEED_2500,
157 		.duplex = DUPLEX_FULL,
158 		.setting = SUPPORTED_2500baseX_Full,
159 	},
160 	{
161 		.speed = SPEED_1000,
162 		.duplex = DUPLEX_FULL,
163 		.setting = SUPPORTED_1000baseKX_Full,
164 	},
165 	{
166 		.speed = SPEED_1000,
167 		.duplex = DUPLEX_FULL,
168 		.setting = SUPPORTED_1000baseT_Full,
169 	},
170 	{
171 		.speed = SPEED_1000,
172 		.duplex = DUPLEX_HALF,
173 		.setting = SUPPORTED_1000baseT_Half,
174 	},
175 	{
176 		.speed = SPEED_100,
177 		.duplex = DUPLEX_FULL,
178 		.setting = SUPPORTED_100baseT_Full,
179 	},
180 	{
181 		.speed = SPEED_100,
182 		.duplex = DUPLEX_HALF,
183 		.setting = SUPPORTED_100baseT_Half,
184 	},
185 	{
186 		.speed = SPEED_10,
187 		.duplex = DUPLEX_FULL,
188 		.setting = SUPPORTED_10baseT_Full,
189 	},
190 	{
191 		.speed = SPEED_10,
192 		.duplex = DUPLEX_HALF,
193 		.setting = SUPPORTED_10baseT_Half,
194 	},
195 };
196 
197 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
198 
199 /**
200  * phy_find_setting - find a PHY settings array entry that matches speed & duplex
201  * @speed: speed to match
202  * @duplex: duplex to match
203  *
204  * Description: Searches the settings array for the setting which
205  *   matches the desired speed and duplex, and returns the index
206  *   of that setting.  Returns the index of the last setting if
207  *   none of the others match.
208  */
209 static inline unsigned int phy_find_setting(int speed, int duplex)
210 {
211 	unsigned int idx = 0;
212 
213 	while (idx < ARRAY_SIZE(settings) &&
214 	       (settings[idx].speed != speed || settings[idx].duplex != duplex))
215 		idx++;
216 
217 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
218 }
219 
220 /**
221  * phy_find_valid - find a PHY setting that matches the requested features mask
222  * @idx: The first index in settings[] to search
223  * @features: A mask of the valid settings
224  *
225  * Description: Returns the index of the first valid setting less
226  *   than or equal to the one pointed to by idx, as determined by
227  *   the mask in features.  Returns the index of the last setting
228  *   if nothing else matches.
229  */
230 static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
231 {
232 	while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
233 		idx++;
234 
235 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
236 }
237 
238 /**
239  * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
240  * @phydev: the target phy_device struct
241  *
242  * Description: Make sure the PHY is set to supported speeds and
243  *   duplexes.  Drop down by one in this order:  1000/FULL,
244  *   1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
245  */
246 static void phy_sanitize_settings(struct phy_device *phydev)
247 {
248 	u32 features = phydev->supported;
249 	unsigned int idx;
250 
251 	/* Sanitize settings based on PHY capabilities */
252 	if ((features & SUPPORTED_Autoneg) == 0)
253 		phydev->autoneg = AUTONEG_DISABLE;
254 
255 	idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
256 			features);
257 
258 	phydev->speed = settings[idx].speed;
259 	phydev->duplex = settings[idx].duplex;
260 }
261 
262 /**
263  * phy_ethtool_sset - generic ethtool sset function, handles all the details
264  * @phydev: target phy_device struct
265  * @cmd: ethtool_cmd
266  *
267  * A few notes about parameter checking:
268  * - We don't set port or transceiver, so we don't care what they
269  *   were set to.
270  * - phy_start_aneg() will make sure forced settings are sane, and
271  *   choose the next best ones from the ones selected, so we don't
272  *   care if ethtool tries to give us bad values.
273  */
274 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
275 {
276 	u32 speed = ethtool_cmd_speed(cmd);
277 
278 	if (cmd->phy_address != phydev->addr)
279 		return -EINVAL;
280 
281 	/* We make sure that we don't pass unsupported values in to the PHY */
282 	cmd->advertising &= phydev->supported;
283 
284 	/* Verify the settings we care about. */
285 	if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
286 		return -EINVAL;
287 
288 	if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
289 		return -EINVAL;
290 
291 	if (cmd->autoneg == AUTONEG_DISABLE &&
292 	    ((speed != SPEED_1000 &&
293 	      speed != SPEED_100 &&
294 	      speed != SPEED_10) ||
295 	     (cmd->duplex != DUPLEX_HALF &&
296 	      cmd->duplex != DUPLEX_FULL)))
297 		return -EINVAL;
298 
299 	phydev->autoneg = cmd->autoneg;
300 
301 	phydev->speed = speed;
302 
303 	phydev->advertising = cmd->advertising;
304 
305 	if (AUTONEG_ENABLE == cmd->autoneg)
306 		phydev->advertising |= ADVERTISED_Autoneg;
307 	else
308 		phydev->advertising &= ~ADVERTISED_Autoneg;
309 
310 	phydev->duplex = cmd->duplex;
311 
312 	/* Restart the PHY */
313 	phy_start_aneg(phydev);
314 
315 	return 0;
316 }
317 EXPORT_SYMBOL(phy_ethtool_sset);
318 
319 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
320 {
321 	cmd->supported = phydev->supported;
322 
323 	cmd->advertising = phydev->advertising;
324 	cmd->lp_advertising = phydev->lp_advertising;
325 
326 	ethtool_cmd_speed_set(cmd, phydev->speed);
327 	cmd->duplex = phydev->duplex;
328 	if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
329 		cmd->port = PORT_BNC;
330 	else
331 		cmd->port = PORT_MII;
332 	cmd->phy_address = phydev->addr;
333 	cmd->transceiver = phy_is_internal(phydev) ?
334 		XCVR_INTERNAL : XCVR_EXTERNAL;
335 	cmd->autoneg = phydev->autoneg;
336 
337 	return 0;
338 }
339 EXPORT_SYMBOL(phy_ethtool_gset);
340 
341 /**
342  * phy_mii_ioctl - generic PHY MII ioctl interface
343  * @phydev: the phy_device struct
344  * @ifr: &struct ifreq for socket ioctl's
345  * @cmd: ioctl cmd to execute
346  *
347  * Note that this function is currently incompatible with the
348  * PHYCONTROL layer.  It changes registers without regard to
349  * current state.  Use at own risk.
350  */
351 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
352 {
353 	struct mii_ioctl_data *mii_data = if_mii(ifr);
354 	u16 val = mii_data->val_in;
355 	bool change_autoneg = false;
356 
357 	switch (cmd) {
358 	case SIOCGMIIPHY:
359 		mii_data->phy_id = phydev->addr;
360 		/* fall through */
361 
362 	case SIOCGMIIREG:
363 		mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id,
364 						 mii_data->reg_num);
365 		return 0;
366 
367 	case SIOCSMIIREG:
368 		if (mii_data->phy_id == phydev->addr) {
369 			switch (mii_data->reg_num) {
370 			case MII_BMCR:
371 				if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) {
372 					if (phydev->autoneg == AUTONEG_ENABLE)
373 						change_autoneg = true;
374 					phydev->autoneg = AUTONEG_DISABLE;
375 					if (val & BMCR_FULLDPLX)
376 						phydev->duplex = DUPLEX_FULL;
377 					else
378 						phydev->duplex = DUPLEX_HALF;
379 					if (val & BMCR_SPEED1000)
380 						phydev->speed = SPEED_1000;
381 					else if (val & BMCR_SPEED100)
382 						phydev->speed = SPEED_100;
383 					else phydev->speed = SPEED_10;
384 				}
385 				else {
386 					if (phydev->autoneg == AUTONEG_DISABLE)
387 						change_autoneg = true;
388 					phydev->autoneg = AUTONEG_ENABLE;
389 				}
390 				break;
391 			case MII_ADVERTISE:
392 				phydev->advertising = mii_adv_to_ethtool_adv_t(val);
393 				change_autoneg = true;
394 				break;
395 			default:
396 				/* do nothing */
397 				break;
398 			}
399 		}
400 
401 		mdiobus_write(phydev->bus, mii_data->phy_id,
402 			      mii_data->reg_num, val);
403 
404 		if (mii_data->reg_num == MII_BMCR &&
405 		    val & BMCR_RESET)
406 			return phy_init_hw(phydev);
407 
408 		if (change_autoneg)
409 			return phy_start_aneg(phydev);
410 
411 		return 0;
412 
413 	case SIOCSHWTSTAMP:
414 		if (phydev->drv->hwtstamp)
415 			return phydev->drv->hwtstamp(phydev, ifr);
416 		/* fall through */
417 
418 	default:
419 		return -EOPNOTSUPP;
420 	}
421 }
422 EXPORT_SYMBOL(phy_mii_ioctl);
423 
424 /**
425  * phy_start_aneg - start auto-negotiation for this PHY device
426  * @phydev: the phy_device struct
427  *
428  * Description: Sanitizes the settings (if we're not autonegotiating
429  *   them), and then calls the driver's config_aneg function.
430  *   If the PHYCONTROL Layer is operating, we change the state to
431  *   reflect the beginning of Auto-negotiation or forcing.
432  */
433 int phy_start_aneg(struct phy_device *phydev)
434 {
435 	int err;
436 
437 	mutex_lock(&phydev->lock);
438 
439 	if (AUTONEG_DISABLE == phydev->autoneg)
440 		phy_sanitize_settings(phydev);
441 
442 	err = phydev->drv->config_aneg(phydev);
443 	if (err < 0)
444 		goto out_unlock;
445 
446 	if (phydev->state != PHY_HALTED) {
447 		if (AUTONEG_ENABLE == phydev->autoneg) {
448 			phydev->state = PHY_AN;
449 			phydev->link_timeout = PHY_AN_TIMEOUT;
450 		} else {
451 			phydev->state = PHY_FORCING;
452 			phydev->link_timeout = PHY_FORCE_TIMEOUT;
453 		}
454 	}
455 
456 out_unlock:
457 	mutex_unlock(&phydev->lock);
458 	return err;
459 }
460 EXPORT_SYMBOL(phy_start_aneg);
461 
462 /**
463  * phy_start_machine - start PHY state machine tracking
464  * @phydev: the phy_device struct
465  *
466  * Description: The PHY infrastructure can run a state machine
467  *   which tracks whether the PHY is starting up, negotiating,
468  *   etc.  This function starts the timer which tracks the state
469  *   of the PHY.  If you want to maintain your own state machine,
470  *   do not call this function.
471  */
472 void phy_start_machine(struct phy_device *phydev)
473 {
474 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
475 }
476 
477 /**
478  * phy_stop_machine - stop the PHY state machine tracking
479  * @phydev: target phy_device struct
480  *
481  * Description: Stops the state machine timer, sets the state to UP
482  *   (unless it wasn't up yet). This function must be called BEFORE
483  *   phy_detach.
484  */
485 void phy_stop_machine(struct phy_device *phydev)
486 {
487 	cancel_delayed_work_sync(&phydev->state_queue);
488 
489 	mutex_lock(&phydev->lock);
490 	if (phydev->state > PHY_UP)
491 		phydev->state = PHY_UP;
492 	mutex_unlock(&phydev->lock);
493 }
494 
495 /**
496  * phy_error - enter HALTED state for this PHY device
497  * @phydev: target phy_device struct
498  *
499  * Moves the PHY to the HALTED state in response to a read
500  * or write error, and tells the controller the link is down.
501  * Must not be called from interrupt context, or while the
502  * phydev->lock is held.
503  */
504 static void phy_error(struct phy_device *phydev)
505 {
506 	mutex_lock(&phydev->lock);
507 	phydev->state = PHY_HALTED;
508 	mutex_unlock(&phydev->lock);
509 }
510 
511 /**
512  * phy_interrupt - PHY interrupt handler
513  * @irq: interrupt line
514  * @phy_dat: phy_device pointer
515  *
516  * Description: When a PHY interrupt occurs, the handler disables
517  * interrupts, and schedules a work task to clear the interrupt.
518  */
519 static irqreturn_t phy_interrupt(int irq, void *phy_dat)
520 {
521 	struct phy_device *phydev = phy_dat;
522 
523 	if (PHY_HALTED == phydev->state)
524 		return IRQ_NONE;		/* It can't be ours.  */
525 
526 	/* The MDIO bus is not allowed to be written in interrupt
527 	 * context, so we need to disable the irq here.  A work
528 	 * queue will write the PHY to disable and clear the
529 	 * interrupt, and then reenable the irq line.
530 	 */
531 	disable_irq_nosync(irq);
532 	atomic_inc(&phydev->irq_disable);
533 
534 	queue_work(system_power_efficient_wq, &phydev->phy_queue);
535 
536 	return IRQ_HANDLED;
537 }
538 
539 /**
540  * phy_enable_interrupts - Enable the interrupts from the PHY side
541  * @phydev: target phy_device struct
542  */
543 static int phy_enable_interrupts(struct phy_device *phydev)
544 {
545 	int err = phy_clear_interrupt(phydev);
546 
547 	if (err < 0)
548 		return err;
549 
550 	return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
551 }
552 
553 /**
554  * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
555  * @phydev: target phy_device struct
556  */
557 static int phy_disable_interrupts(struct phy_device *phydev)
558 {
559 	int err;
560 
561 	/* Disable PHY interrupts */
562 	err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
563 	if (err)
564 		goto phy_err;
565 
566 	/* Clear the interrupt */
567 	err = phy_clear_interrupt(phydev);
568 	if (err)
569 		goto phy_err;
570 
571 	return 0;
572 
573 phy_err:
574 	phy_error(phydev);
575 
576 	return err;
577 }
578 
579 /**
580  * phy_start_interrupts - request and enable interrupts for a PHY device
581  * @phydev: target phy_device struct
582  *
583  * Description: Request the interrupt for the given PHY.
584  *   If this fails, then we set irq to PHY_POLL.
585  *   Otherwise, we enable the interrupts in the PHY.
586  *   This should only be called with a valid IRQ number.
587  *   Returns 0 on success or < 0 on error.
588  */
589 int phy_start_interrupts(struct phy_device *phydev)
590 {
591 	atomic_set(&phydev->irq_disable, 0);
592 	if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
593 			phydev) < 0) {
594 		pr_warn("%s: Can't get IRQ %d (PHY)\n",
595 			phydev->bus->name, phydev->irq);
596 		phydev->irq = PHY_POLL;
597 		return 0;
598 	}
599 
600 	return phy_enable_interrupts(phydev);
601 }
602 EXPORT_SYMBOL(phy_start_interrupts);
603 
604 /**
605  * phy_stop_interrupts - disable interrupts from a PHY device
606  * @phydev: target phy_device struct
607  */
608 int phy_stop_interrupts(struct phy_device *phydev)
609 {
610 	int err = phy_disable_interrupts(phydev);
611 
612 	if (err)
613 		phy_error(phydev);
614 
615 	free_irq(phydev->irq, phydev);
616 
617 	/* Cannot call flush_scheduled_work() here as desired because
618 	 * of rtnl_lock(), but we do not really care about what would
619 	 * be done, except from enable_irq(), so cancel any work
620 	 * possibly pending and take care of the matter below.
621 	 */
622 	cancel_work_sync(&phydev->phy_queue);
623 	/* If work indeed has been cancelled, disable_irq() will have
624 	 * been left unbalanced from phy_interrupt() and enable_irq()
625 	 * has to be called so that other devices on the line work.
626 	 */
627 	while (atomic_dec_return(&phydev->irq_disable) >= 0)
628 		enable_irq(phydev->irq);
629 
630 	return err;
631 }
632 EXPORT_SYMBOL(phy_stop_interrupts);
633 
634 /**
635  * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
636  * @work: work_struct that describes the work to be done
637  */
638 void phy_change(struct work_struct *work)
639 {
640 	struct phy_device *phydev =
641 		container_of(work, struct phy_device, phy_queue);
642 
643 	if (phydev->drv->did_interrupt &&
644 	    !phydev->drv->did_interrupt(phydev))
645 		goto ignore;
646 
647 	if (phy_disable_interrupts(phydev))
648 		goto phy_err;
649 
650 	mutex_lock(&phydev->lock);
651 	if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
652 		phydev->state = PHY_CHANGELINK;
653 	mutex_unlock(&phydev->lock);
654 
655 	atomic_dec(&phydev->irq_disable);
656 	enable_irq(phydev->irq);
657 
658 	/* Reenable interrupts */
659 	if (PHY_HALTED != phydev->state &&
660 	    phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
661 		goto irq_enable_err;
662 
663 	/* reschedule state queue work to run as soon as possible */
664 	cancel_delayed_work_sync(&phydev->state_queue);
665 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
666 	return;
667 
668 ignore:
669 	atomic_dec(&phydev->irq_disable);
670 	enable_irq(phydev->irq);
671 	return;
672 
673 irq_enable_err:
674 	disable_irq(phydev->irq);
675 	atomic_inc(&phydev->irq_disable);
676 phy_err:
677 	phy_error(phydev);
678 }
679 
680 /**
681  * phy_stop - Bring down the PHY link, and stop checking the status
682  * @phydev: target phy_device struct
683  */
684 void phy_stop(struct phy_device *phydev)
685 {
686 	mutex_lock(&phydev->lock);
687 
688 	if (PHY_HALTED == phydev->state)
689 		goto out_unlock;
690 
691 	if (phy_interrupt_is_valid(phydev)) {
692 		/* Disable PHY Interrupts */
693 		phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
694 
695 		/* Clear any pending interrupts */
696 		phy_clear_interrupt(phydev);
697 	}
698 
699 	phydev->state = PHY_HALTED;
700 
701 out_unlock:
702 	mutex_unlock(&phydev->lock);
703 
704 	/* Cannot call flush_scheduled_work() here as desired because
705 	 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
706 	 * will not reenable interrupts.
707 	 */
708 }
709 EXPORT_SYMBOL(phy_stop);
710 
711 /**
712  * phy_start - start or restart a PHY device
713  * @phydev: target phy_device struct
714  *
715  * Description: Indicates the attached device's readiness to
716  *   handle PHY-related work.  Used during startup to start the
717  *   PHY, and after a call to phy_stop() to resume operation.
718  *   Also used to indicate the MDIO bus has cleared an error
719  *   condition.
720  */
721 void phy_start(struct phy_device *phydev)
722 {
723 	mutex_lock(&phydev->lock);
724 
725 	switch (phydev->state) {
726 	case PHY_STARTING:
727 		phydev->state = PHY_PENDING;
728 		break;
729 	case PHY_READY:
730 		phydev->state = PHY_UP;
731 		break;
732 	case PHY_HALTED:
733 		phydev->state = PHY_RESUMING;
734 	default:
735 		break;
736 	}
737 	mutex_unlock(&phydev->lock);
738 }
739 EXPORT_SYMBOL(phy_start);
740 
741 /**
742  * phy_state_machine - Handle the state machine
743  * @work: work_struct that describes the work to be done
744  */
745 void phy_state_machine(struct work_struct *work)
746 {
747 	struct delayed_work *dwork = to_delayed_work(work);
748 	struct phy_device *phydev =
749 			container_of(dwork, struct phy_device, state_queue);
750 	bool needs_aneg = false, do_suspend = false, do_resume = false;
751 	int err = 0;
752 
753 	mutex_lock(&phydev->lock);
754 
755 	if (phydev->drv->link_change_notify)
756 		phydev->drv->link_change_notify(phydev);
757 
758 	switch (phydev->state) {
759 	case PHY_DOWN:
760 	case PHY_STARTING:
761 	case PHY_READY:
762 	case PHY_PENDING:
763 		break;
764 	case PHY_UP:
765 		needs_aneg = true;
766 
767 		phydev->link_timeout = PHY_AN_TIMEOUT;
768 
769 		break;
770 	case PHY_AN:
771 		err = phy_read_status(phydev);
772 		if (err < 0)
773 			break;
774 
775 		/* If the link is down, give up on negotiation for now */
776 		if (!phydev->link) {
777 			phydev->state = PHY_NOLINK;
778 			netif_carrier_off(phydev->attached_dev);
779 			phydev->adjust_link(phydev->attached_dev);
780 			break;
781 		}
782 
783 		/* Check if negotiation is done.  Break if there's an error */
784 		err = phy_aneg_done(phydev);
785 		if (err < 0)
786 			break;
787 
788 		/* If AN is done, we're running */
789 		if (err > 0) {
790 			phydev->state = PHY_RUNNING;
791 			netif_carrier_on(phydev->attached_dev);
792 			phydev->adjust_link(phydev->attached_dev);
793 
794 		} else if (0 == phydev->link_timeout--)
795 			needs_aneg = true;
796 		break;
797 	case PHY_NOLINK:
798 		err = phy_read_status(phydev);
799 		if (err)
800 			break;
801 
802 		if (phydev->link) {
803 			if (AUTONEG_ENABLE == phydev->autoneg) {
804 				err = phy_aneg_done(phydev);
805 				if (err < 0)
806 					break;
807 
808 				if (!err) {
809 					phydev->state = PHY_AN;
810 					phydev->link_timeout = PHY_AN_TIMEOUT;
811 					break;
812 				}
813 			}
814 			phydev->state = PHY_RUNNING;
815 			netif_carrier_on(phydev->attached_dev);
816 			phydev->adjust_link(phydev->attached_dev);
817 		}
818 		break;
819 	case PHY_FORCING:
820 		err = genphy_update_link(phydev);
821 		if (err)
822 			break;
823 
824 		if (phydev->link) {
825 			phydev->state = PHY_RUNNING;
826 			netif_carrier_on(phydev->attached_dev);
827 		} else {
828 			if (0 == phydev->link_timeout--)
829 				needs_aneg = true;
830 		}
831 
832 		phydev->adjust_link(phydev->attached_dev);
833 		break;
834 	case PHY_RUNNING:
835 		/* Only register a CHANGE if we are
836 		 * polling or ignoring interrupts
837 		 */
838 		if (!phy_interrupt_is_valid(phydev))
839 			phydev->state = PHY_CHANGELINK;
840 		break;
841 	case PHY_CHANGELINK:
842 		err = phy_read_status(phydev);
843 		if (err)
844 			break;
845 
846 		if (phydev->link) {
847 			phydev->state = PHY_RUNNING;
848 			netif_carrier_on(phydev->attached_dev);
849 		} else {
850 			phydev->state = PHY_NOLINK;
851 			netif_carrier_off(phydev->attached_dev);
852 		}
853 
854 		phydev->adjust_link(phydev->attached_dev);
855 
856 		if (phy_interrupt_is_valid(phydev))
857 			err = phy_config_interrupt(phydev,
858 						   PHY_INTERRUPT_ENABLED);
859 		break;
860 	case PHY_HALTED:
861 		if (phydev->link) {
862 			phydev->link = 0;
863 			netif_carrier_off(phydev->attached_dev);
864 			phydev->adjust_link(phydev->attached_dev);
865 			do_suspend = true;
866 		}
867 		break;
868 	case PHY_RESUMING:
869 		err = phy_clear_interrupt(phydev);
870 		if (err)
871 			break;
872 
873 		err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
874 		if (err)
875 			break;
876 
877 		if (AUTONEG_ENABLE == phydev->autoneg) {
878 			err = phy_aneg_done(phydev);
879 			if (err < 0)
880 				break;
881 
882 			/* err > 0 if AN is done.
883 			 * Otherwise, it's 0, and we're  still waiting for AN
884 			 */
885 			if (err > 0) {
886 				err = phy_read_status(phydev);
887 				if (err)
888 					break;
889 
890 				if (phydev->link) {
891 					phydev->state = PHY_RUNNING;
892 					netif_carrier_on(phydev->attached_dev);
893 				} else	{
894 					phydev->state = PHY_NOLINK;
895 				}
896 				phydev->adjust_link(phydev->attached_dev);
897 			} else {
898 				phydev->state = PHY_AN;
899 				phydev->link_timeout = PHY_AN_TIMEOUT;
900 			}
901 		} else {
902 			err = phy_read_status(phydev);
903 			if (err)
904 				break;
905 
906 			if (phydev->link) {
907 				phydev->state = PHY_RUNNING;
908 				netif_carrier_on(phydev->attached_dev);
909 			} else	{
910 				phydev->state = PHY_NOLINK;
911 			}
912 			phydev->adjust_link(phydev->attached_dev);
913 		}
914 		do_resume = true;
915 		break;
916 	}
917 
918 	mutex_unlock(&phydev->lock);
919 
920 	if (needs_aneg)
921 		err = phy_start_aneg(phydev);
922 	else if (do_suspend)
923 		phy_suspend(phydev);
924 	else if (do_resume)
925 		phy_resume(phydev);
926 
927 	if (err < 0)
928 		phy_error(phydev);
929 
930 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
931 			   PHY_STATE_TIME * HZ);
932 }
933 
934 void phy_mac_interrupt(struct phy_device *phydev, int new_link)
935 {
936 	cancel_work_sync(&phydev->phy_queue);
937 	phydev->link = new_link;
938 	schedule_work(&phydev->phy_queue);
939 }
940 EXPORT_SYMBOL(phy_mac_interrupt);
941 
942 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
943 				    int addr)
944 {
945 	/* Write the desired MMD Devad */
946 	bus->write(bus, addr, MII_MMD_CTRL, devad);
947 
948 	/* Write the desired MMD register address */
949 	bus->write(bus, addr, MII_MMD_DATA, prtad);
950 
951 	/* Select the Function : DATA with no post increment */
952 	bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
953 }
954 
955 /**
956  * phy_read_mmd_indirect - reads data from the MMD registers
957  * @phydev: The PHY device bus
958  * @prtad: MMD Address
959  * @devad: MMD DEVAD
960  * @addr: PHY address on the MII bus
961  *
962  * Description: it reads data from the MMD registers (clause 22 to access to
963  * clause 45) of the specified phy address.
964  * To read these register we have:
965  * 1) Write reg 13 // DEVAD
966  * 2) Write reg 14 // MMD Address
967  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
968  * 3) Read  reg 14 // Read MMD data
969  */
970 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad,
971 				 int devad, int addr)
972 {
973 	struct phy_driver *phydrv = phydev->drv;
974 	int value = -1;
975 
976 	if (phydrv->read_mmd_indirect == NULL) {
977 		mmd_phy_indirect(phydev->bus, prtad, devad, addr);
978 
979 		/* Read the content of the MMD's selected register */
980 		value = phydev->bus->read(phydev->bus, addr, MII_MMD_DATA);
981 	} else {
982 		value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr);
983 	}
984 	return value;
985 }
986 EXPORT_SYMBOL(phy_read_mmd_indirect);
987 
988 /**
989  * phy_write_mmd_indirect - writes data to the MMD registers
990  * @phydev: The PHY device
991  * @prtad: MMD Address
992  * @devad: MMD DEVAD
993  * @addr: PHY address on the MII bus
994  * @data: data to write in the MMD register
995  *
996  * Description: Write data from the MMD registers of the specified
997  * phy address.
998  * To write these register we have:
999  * 1) Write reg 13 // DEVAD
1000  * 2) Write reg 14 // MMD Address
1001  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1002  * 3) Write reg 14 // Write MMD data
1003  */
1004 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad,
1005 				   int devad, int addr, u32 data)
1006 {
1007 	struct phy_driver *phydrv = phydev->drv;
1008 
1009 	if (phydrv->write_mmd_indirect == NULL) {
1010 		mmd_phy_indirect(phydev->bus, prtad, devad, addr);
1011 
1012 		/* Write the data into MMD's selected register */
1013 		phydev->bus->write(phydev->bus, addr, MII_MMD_DATA, data);
1014 	} else {
1015 		phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data);
1016 	}
1017 }
1018 EXPORT_SYMBOL(phy_write_mmd_indirect);
1019 
1020 /**
1021  * phy_init_eee - init and check the EEE feature
1022  * @phydev: target phy_device struct
1023  * @clk_stop_enable: PHY may stop the clock during LPI
1024  *
1025  * Description: it checks if the Energy-Efficient Ethernet (EEE)
1026  * is supported by looking at the MMD registers 3.20 and 7.60/61
1027  * and it programs the MMD register 3.0 setting the "Clock stop enable"
1028  * bit if required.
1029  */
1030 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
1031 {
1032 	/* According to 802.3az,the EEE is supported only in full duplex-mode.
1033 	 * Also EEE feature is active when core is operating with MII, GMII
1034 	 * or RGMII. Internal PHYs are also allowed to proceed and should
1035 	 * return an error if they do not support EEE.
1036 	 */
1037 	if ((phydev->duplex == DUPLEX_FULL) &&
1038 	    ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
1039 	    (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
1040 	    (phydev->interface == PHY_INTERFACE_MODE_RGMII) ||
1041 	     phy_is_internal(phydev))) {
1042 		int eee_lp, eee_cap, eee_adv;
1043 		u32 lp, cap, adv;
1044 		int status;
1045 		unsigned int idx;
1046 
1047 		/* Read phy status to properly get the right settings */
1048 		status = phy_read_status(phydev);
1049 		if (status)
1050 			return status;
1051 
1052 		/* First check if the EEE ability is supported */
1053 		eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1054 						MDIO_MMD_PCS, phydev->addr);
1055 		if (eee_cap <= 0)
1056 			goto eee_exit_err;
1057 
1058 		cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1059 		if (!cap)
1060 			goto eee_exit_err;
1061 
1062 		/* Check which link settings negotiated and verify it in
1063 		 * the EEE advertising registers.
1064 		 */
1065 		eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1066 					       MDIO_MMD_AN, phydev->addr);
1067 		if (eee_lp <= 0)
1068 			goto eee_exit_err;
1069 
1070 		eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1071 						MDIO_MMD_AN, phydev->addr);
1072 		if (eee_adv <= 0)
1073 			goto eee_exit_err;
1074 
1075 		adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1076 		lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1077 		idx = phy_find_setting(phydev->speed, phydev->duplex);
1078 		if (!(lp & adv & settings[idx].setting))
1079 			goto eee_exit_err;
1080 
1081 		if (clk_stop_enable) {
1082 			/* Configure the PHY to stop receiving xMII
1083 			 * clock while it is signaling LPI.
1084 			 */
1085 			int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1,
1086 							MDIO_MMD_PCS,
1087 							phydev->addr);
1088 			if (val < 0)
1089 				return val;
1090 
1091 			val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1092 			phy_write_mmd_indirect(phydev, MDIO_CTRL1,
1093 					       MDIO_MMD_PCS, phydev->addr,
1094 					       val);
1095 		}
1096 
1097 		return 0; /* EEE supported */
1098 	}
1099 eee_exit_err:
1100 	return -EPROTONOSUPPORT;
1101 }
1102 EXPORT_SYMBOL(phy_init_eee);
1103 
1104 /**
1105  * phy_get_eee_err - report the EEE wake error count
1106  * @phydev: target phy_device struct
1107  *
1108  * Description: it is to report the number of time where the PHY
1109  * failed to complete its normal wake sequence.
1110  */
1111 int phy_get_eee_err(struct phy_device *phydev)
1112 {
1113 	return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR,
1114 				     MDIO_MMD_PCS, phydev->addr);
1115 }
1116 EXPORT_SYMBOL(phy_get_eee_err);
1117 
1118 /**
1119  * phy_ethtool_get_eee - get EEE supported and status
1120  * @phydev: target phy_device struct
1121  * @data: ethtool_eee data
1122  *
1123  * Description: it reportes the Supported/Advertisement/LP Advertisement
1124  * capabilities.
1125  */
1126 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1127 {
1128 	int val;
1129 
1130 	/* Get Supported EEE */
1131 	val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1132 				    MDIO_MMD_PCS, phydev->addr);
1133 	if (val < 0)
1134 		return val;
1135 	data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1136 
1137 	/* Get advertisement EEE */
1138 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1139 				    MDIO_MMD_AN, phydev->addr);
1140 	if (val < 0)
1141 		return val;
1142 	data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1143 
1144 	/* Get LP advertisement EEE */
1145 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1146 				    MDIO_MMD_AN, phydev->addr);
1147 	if (val < 0)
1148 		return val;
1149 	data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1150 
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL(phy_ethtool_get_eee);
1154 
1155 /**
1156  * phy_ethtool_set_eee - set EEE supported and status
1157  * @phydev: target phy_device struct
1158  * @data: ethtool_eee data
1159  *
1160  * Description: it is to program the Advertisement EEE register.
1161  */
1162 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1163 {
1164 	int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1165 
1166 	phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN,
1167 			       phydev->addr, val);
1168 
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL(phy_ethtool_set_eee);
1172 
1173 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1174 {
1175 	if (phydev->drv->set_wol)
1176 		return phydev->drv->set_wol(phydev, wol);
1177 
1178 	return -EOPNOTSUPP;
1179 }
1180 EXPORT_SYMBOL(phy_ethtool_set_wol);
1181 
1182 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1183 {
1184 	if (phydev->drv->get_wol)
1185 		phydev->drv->get_wol(phydev, wol);
1186 }
1187 EXPORT_SYMBOL(phy_ethtool_get_wol);
1188