xref: /linux/drivers/net/phy/phy.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* Framework for configuring and reading PHY devices
2  * Based on code in sungem_phy.c and gianfar_phy.c
3  *
4  * Author: Andy Fleming
5  *
6  * Copyright (c) 2004 Freescale Semiconductor, Inc.
7  * Copyright (c) 2006, 2007  Maciej W. Rozycki
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  *
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/unistd.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/phy.h>
32 #include <linux/timer.h>
33 #include <linux/workqueue.h>
34 #include <linux/mdio.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <linux/atomic.h>
38 
39 #include <asm/irq.h>
40 
41 static const char *phy_speed_to_str(int speed)
42 {
43 	switch (speed) {
44 	case SPEED_10:
45 		return "10Mbps";
46 	case SPEED_100:
47 		return "100Mbps";
48 	case SPEED_1000:
49 		return "1Gbps";
50 	case SPEED_2500:
51 		return "2.5Gbps";
52 	case SPEED_10000:
53 		return "10Gbps";
54 	case SPEED_UNKNOWN:
55 		return "Unknown";
56 	default:
57 		return "Unsupported (update phy.c)";
58 	}
59 }
60 
61 #define PHY_STATE_STR(_state)			\
62 	case PHY_##_state:			\
63 		return __stringify(_state);	\
64 
65 static const char *phy_state_to_str(enum phy_state st)
66 {
67 	switch (st) {
68 	PHY_STATE_STR(DOWN)
69 	PHY_STATE_STR(STARTING)
70 	PHY_STATE_STR(READY)
71 	PHY_STATE_STR(PENDING)
72 	PHY_STATE_STR(UP)
73 	PHY_STATE_STR(AN)
74 	PHY_STATE_STR(RUNNING)
75 	PHY_STATE_STR(NOLINK)
76 	PHY_STATE_STR(FORCING)
77 	PHY_STATE_STR(CHANGELINK)
78 	PHY_STATE_STR(HALTED)
79 	PHY_STATE_STR(RESUMING)
80 	}
81 
82 	return NULL;
83 }
84 
85 
86 /**
87  * phy_print_status - Convenience function to print out the current phy status
88  * @phydev: the phy_device struct
89  */
90 void phy_print_status(struct phy_device *phydev)
91 {
92 	if (phydev->link) {
93 		netdev_info(phydev->attached_dev,
94 			"Link is Up - %s/%s - flow control %s\n",
95 			phy_speed_to_str(phydev->speed),
96 			DUPLEX_FULL == phydev->duplex ? "Full" : "Half",
97 			phydev->pause ? "rx/tx" : "off");
98 	} else	{
99 		netdev_info(phydev->attached_dev, "Link is Down\n");
100 	}
101 }
102 EXPORT_SYMBOL(phy_print_status);
103 
104 /**
105  * phy_clear_interrupt - Ack the phy device's interrupt
106  * @phydev: the phy_device struct
107  *
108  * If the @phydev driver has an ack_interrupt function, call it to
109  * ack and clear the phy device's interrupt.
110  *
111  * Returns 0 on success or < 0 on error.
112  */
113 static int phy_clear_interrupt(struct phy_device *phydev)
114 {
115 	if (phydev->drv->ack_interrupt)
116 		return phydev->drv->ack_interrupt(phydev);
117 
118 	return 0;
119 }
120 
121 /**
122  * phy_config_interrupt - configure the PHY device for the requested interrupts
123  * @phydev: the phy_device struct
124  * @interrupts: interrupt flags to configure for this @phydev
125  *
126  * Returns 0 on success or < 0 on error.
127  */
128 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
129 {
130 	phydev->interrupts = interrupts;
131 	if (phydev->drv->config_intr)
132 		return phydev->drv->config_intr(phydev);
133 
134 	return 0;
135 }
136 
137 
138 /**
139  * phy_aneg_done - return auto-negotiation status
140  * @phydev: target phy_device struct
141  *
142  * Description: Return the auto-negotiation status from this @phydev
143  * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation
144  * is still pending.
145  */
146 static inline int phy_aneg_done(struct phy_device *phydev)
147 {
148 	if (phydev->drv->aneg_done)
149 		return phydev->drv->aneg_done(phydev);
150 
151 	return genphy_aneg_done(phydev);
152 }
153 
154 /* A structure for mapping a particular speed and duplex
155  * combination to a particular SUPPORTED and ADVERTISED value
156  */
157 struct phy_setting {
158 	int speed;
159 	int duplex;
160 	u32 setting;
161 };
162 
163 /* A mapping of all SUPPORTED settings to speed/duplex */
164 static const struct phy_setting settings[] = {
165 	{
166 		.speed = SPEED_10000,
167 		.duplex = DUPLEX_FULL,
168 		.setting = SUPPORTED_10000baseKR_Full,
169 	},
170 	{
171 		.speed = SPEED_10000,
172 		.duplex = DUPLEX_FULL,
173 		.setting = SUPPORTED_10000baseKX4_Full,
174 	},
175 	{
176 		.speed = SPEED_10000,
177 		.duplex = DUPLEX_FULL,
178 		.setting = SUPPORTED_10000baseT_Full,
179 	},
180 	{
181 		.speed = SPEED_2500,
182 		.duplex = DUPLEX_FULL,
183 		.setting = SUPPORTED_2500baseX_Full,
184 	},
185 	{
186 		.speed = SPEED_1000,
187 		.duplex = DUPLEX_FULL,
188 		.setting = SUPPORTED_1000baseKX_Full,
189 	},
190 	{
191 		.speed = SPEED_1000,
192 		.duplex = DUPLEX_FULL,
193 		.setting = SUPPORTED_1000baseT_Full,
194 	},
195 	{
196 		.speed = SPEED_1000,
197 		.duplex = DUPLEX_HALF,
198 		.setting = SUPPORTED_1000baseT_Half,
199 	},
200 	{
201 		.speed = SPEED_100,
202 		.duplex = DUPLEX_FULL,
203 		.setting = SUPPORTED_100baseT_Full,
204 	},
205 	{
206 		.speed = SPEED_100,
207 		.duplex = DUPLEX_HALF,
208 		.setting = SUPPORTED_100baseT_Half,
209 	},
210 	{
211 		.speed = SPEED_10,
212 		.duplex = DUPLEX_FULL,
213 		.setting = SUPPORTED_10baseT_Full,
214 	},
215 	{
216 		.speed = SPEED_10,
217 		.duplex = DUPLEX_HALF,
218 		.setting = SUPPORTED_10baseT_Half,
219 	},
220 };
221 
222 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
223 
224 /**
225  * phy_find_setting - find a PHY settings array entry that matches speed & duplex
226  * @speed: speed to match
227  * @duplex: duplex to match
228  *
229  * Description: Searches the settings array for the setting which
230  *   matches the desired speed and duplex, and returns the index
231  *   of that setting.  Returns the index of the last setting if
232  *   none of the others match.
233  */
234 static inline unsigned int phy_find_setting(int speed, int duplex)
235 {
236 	unsigned int idx = 0;
237 
238 	while (idx < ARRAY_SIZE(settings) &&
239 	       (settings[idx].speed != speed || settings[idx].duplex != duplex))
240 		idx++;
241 
242 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
243 }
244 
245 /**
246  * phy_find_valid - find a PHY setting that matches the requested features mask
247  * @idx: The first index in settings[] to search
248  * @features: A mask of the valid settings
249  *
250  * Description: Returns the index of the first valid setting less
251  *   than or equal to the one pointed to by idx, as determined by
252  *   the mask in features.  Returns the index of the last setting
253  *   if nothing else matches.
254  */
255 static inline unsigned int phy_find_valid(unsigned int idx, u32 features)
256 {
257 	while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
258 		idx++;
259 
260 	return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
261 }
262 
263 /**
264  * phy_check_valid - check if there is a valid PHY setting which matches
265  *		     speed, duplex, and feature mask
266  * @speed: speed to match
267  * @duplex: duplex to match
268  * @features: A mask of the valid settings
269  *
270  * Description: Returns true if there is a valid setting, false otherwise.
271  */
272 static inline bool phy_check_valid(int speed, int duplex, u32 features)
273 {
274 	unsigned int idx;
275 
276 	idx = phy_find_valid(phy_find_setting(speed, duplex), features);
277 
278 	return settings[idx].speed == speed && settings[idx].duplex == duplex &&
279 		(settings[idx].setting & features);
280 }
281 
282 /**
283  * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
284  * @phydev: the target phy_device struct
285  *
286  * Description: Make sure the PHY is set to supported speeds and
287  *   duplexes.  Drop down by one in this order:  1000/FULL,
288  *   1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
289  */
290 static void phy_sanitize_settings(struct phy_device *phydev)
291 {
292 	u32 features = phydev->supported;
293 	unsigned int idx;
294 
295 	/* Sanitize settings based on PHY capabilities */
296 	if ((features & SUPPORTED_Autoneg) == 0)
297 		phydev->autoneg = AUTONEG_DISABLE;
298 
299 	idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
300 			features);
301 
302 	phydev->speed = settings[idx].speed;
303 	phydev->duplex = settings[idx].duplex;
304 }
305 
306 /**
307  * phy_ethtool_sset - generic ethtool sset function, handles all the details
308  * @phydev: target phy_device struct
309  * @cmd: ethtool_cmd
310  *
311  * A few notes about parameter checking:
312  * - We don't set port or transceiver, so we don't care what they
313  *   were set to.
314  * - phy_start_aneg() will make sure forced settings are sane, and
315  *   choose the next best ones from the ones selected, so we don't
316  *   care if ethtool tries to give us bad values.
317  */
318 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
319 {
320 	u32 speed = ethtool_cmd_speed(cmd);
321 
322 	if (cmd->phy_address != phydev->mdio.addr)
323 		return -EINVAL;
324 
325 	/* We make sure that we don't pass unsupported values in to the PHY */
326 	cmd->advertising &= phydev->supported;
327 
328 	/* Verify the settings we care about. */
329 	if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
330 		return -EINVAL;
331 
332 	if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
333 		return -EINVAL;
334 
335 	if (cmd->autoneg == AUTONEG_DISABLE &&
336 	    ((speed != SPEED_1000 &&
337 	      speed != SPEED_100 &&
338 	      speed != SPEED_10) ||
339 	     (cmd->duplex != DUPLEX_HALF &&
340 	      cmd->duplex != DUPLEX_FULL)))
341 		return -EINVAL;
342 
343 	phydev->autoneg = cmd->autoneg;
344 
345 	phydev->speed = speed;
346 
347 	phydev->advertising = cmd->advertising;
348 
349 	if (AUTONEG_ENABLE == cmd->autoneg)
350 		phydev->advertising |= ADVERTISED_Autoneg;
351 	else
352 		phydev->advertising &= ~ADVERTISED_Autoneg;
353 
354 	phydev->duplex = cmd->duplex;
355 
356 	phydev->mdix = cmd->eth_tp_mdix_ctrl;
357 
358 	/* Restart the PHY */
359 	phy_start_aneg(phydev);
360 
361 	return 0;
362 }
363 EXPORT_SYMBOL(phy_ethtool_sset);
364 
365 int phy_ethtool_ksettings_set(struct phy_device *phydev,
366 			      const struct ethtool_link_ksettings *cmd)
367 {
368 	u8 autoneg = cmd->base.autoneg;
369 	u8 duplex = cmd->base.duplex;
370 	u32 speed = cmd->base.speed;
371 	u32 advertising;
372 
373 	if (cmd->base.phy_address != phydev->mdio.addr)
374 		return -EINVAL;
375 
376 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
377 						cmd->link_modes.advertising);
378 
379 	/* We make sure that we don't pass unsupported values in to the PHY */
380 	advertising &= phydev->supported;
381 
382 	/* Verify the settings we care about. */
383 	if (autoneg != AUTONEG_ENABLE && autoneg != AUTONEG_DISABLE)
384 		return -EINVAL;
385 
386 	if (autoneg == AUTONEG_ENABLE && advertising == 0)
387 		return -EINVAL;
388 
389 	if (autoneg == AUTONEG_DISABLE &&
390 	    ((speed != SPEED_1000 &&
391 	      speed != SPEED_100 &&
392 	      speed != SPEED_10) ||
393 	     (duplex != DUPLEX_HALF &&
394 	      duplex != DUPLEX_FULL)))
395 		return -EINVAL;
396 
397 	phydev->autoneg = autoneg;
398 
399 	phydev->speed = speed;
400 
401 	phydev->advertising = advertising;
402 
403 	if (autoneg == AUTONEG_ENABLE)
404 		phydev->advertising |= ADVERTISED_Autoneg;
405 	else
406 		phydev->advertising &= ~ADVERTISED_Autoneg;
407 
408 	phydev->duplex = duplex;
409 
410 	phydev->mdix = cmd->base.eth_tp_mdix_ctrl;
411 
412 	/* Restart the PHY */
413 	phy_start_aneg(phydev);
414 
415 	return 0;
416 }
417 EXPORT_SYMBOL(phy_ethtool_ksettings_set);
418 
419 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
420 {
421 	cmd->supported = phydev->supported;
422 
423 	cmd->advertising = phydev->advertising;
424 	cmd->lp_advertising = phydev->lp_advertising;
425 
426 	ethtool_cmd_speed_set(cmd, phydev->speed);
427 	cmd->duplex = phydev->duplex;
428 	if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
429 		cmd->port = PORT_BNC;
430 	else
431 		cmd->port = PORT_MII;
432 	cmd->phy_address = phydev->mdio.addr;
433 	cmd->transceiver = phy_is_internal(phydev) ?
434 		XCVR_INTERNAL : XCVR_EXTERNAL;
435 	cmd->autoneg = phydev->autoneg;
436 	cmd->eth_tp_mdix_ctrl = phydev->mdix;
437 
438 	return 0;
439 }
440 EXPORT_SYMBOL(phy_ethtool_gset);
441 
442 int phy_ethtool_ksettings_get(struct phy_device *phydev,
443 			      struct ethtool_link_ksettings *cmd)
444 {
445 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
446 						phydev->supported);
447 
448 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
449 						phydev->advertising);
450 
451 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
452 						phydev->lp_advertising);
453 
454 	cmd->base.speed = phydev->speed;
455 	cmd->base.duplex = phydev->duplex;
456 	if (phydev->interface == PHY_INTERFACE_MODE_MOCA)
457 		cmd->base.port = PORT_BNC;
458 	else
459 		cmd->base.port = PORT_MII;
460 
461 	cmd->base.phy_address = phydev->mdio.addr;
462 	cmd->base.autoneg = phydev->autoneg;
463 	cmd->base.eth_tp_mdix_ctrl = phydev->mdix;
464 
465 	return 0;
466 }
467 EXPORT_SYMBOL(phy_ethtool_ksettings_get);
468 
469 /**
470  * phy_mii_ioctl - generic PHY MII ioctl interface
471  * @phydev: the phy_device struct
472  * @ifr: &struct ifreq for socket ioctl's
473  * @cmd: ioctl cmd to execute
474  *
475  * Note that this function is currently incompatible with the
476  * PHYCONTROL layer.  It changes registers without regard to
477  * current state.  Use at own risk.
478  */
479 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd)
480 {
481 	struct mii_ioctl_data *mii_data = if_mii(ifr);
482 	u16 val = mii_data->val_in;
483 	bool change_autoneg = false;
484 
485 	switch (cmd) {
486 	case SIOCGMIIPHY:
487 		mii_data->phy_id = phydev->mdio.addr;
488 		/* fall through */
489 
490 	case SIOCGMIIREG:
491 		mii_data->val_out = mdiobus_read(phydev->mdio.bus,
492 						 mii_data->phy_id,
493 						 mii_data->reg_num);
494 		return 0;
495 
496 	case SIOCSMIIREG:
497 		if (mii_data->phy_id == phydev->mdio.addr) {
498 			switch (mii_data->reg_num) {
499 			case MII_BMCR:
500 				if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) {
501 					if (phydev->autoneg == AUTONEG_ENABLE)
502 						change_autoneg = true;
503 					phydev->autoneg = AUTONEG_DISABLE;
504 					if (val & BMCR_FULLDPLX)
505 						phydev->duplex = DUPLEX_FULL;
506 					else
507 						phydev->duplex = DUPLEX_HALF;
508 					if (val & BMCR_SPEED1000)
509 						phydev->speed = SPEED_1000;
510 					else if (val & BMCR_SPEED100)
511 						phydev->speed = SPEED_100;
512 					else phydev->speed = SPEED_10;
513 				}
514 				else {
515 					if (phydev->autoneg == AUTONEG_DISABLE)
516 						change_autoneg = true;
517 					phydev->autoneg = AUTONEG_ENABLE;
518 				}
519 				break;
520 			case MII_ADVERTISE:
521 				phydev->advertising = mii_adv_to_ethtool_adv_t(val);
522 				change_autoneg = true;
523 				break;
524 			default:
525 				/* do nothing */
526 				break;
527 			}
528 		}
529 
530 		mdiobus_write(phydev->mdio.bus, mii_data->phy_id,
531 			      mii_data->reg_num, val);
532 
533 		if (mii_data->phy_id == phydev->mdio.addr &&
534 		    mii_data->reg_num == MII_BMCR &&
535 		    val & BMCR_RESET)
536 			return phy_init_hw(phydev);
537 
538 		if (change_autoneg)
539 			return phy_start_aneg(phydev);
540 
541 		return 0;
542 
543 	case SIOCSHWTSTAMP:
544 		if (phydev->drv->hwtstamp)
545 			return phydev->drv->hwtstamp(phydev, ifr);
546 		/* fall through */
547 
548 	default:
549 		return -EOPNOTSUPP;
550 	}
551 }
552 EXPORT_SYMBOL(phy_mii_ioctl);
553 
554 /**
555  * phy_start_aneg - start auto-negotiation for this PHY device
556  * @phydev: the phy_device struct
557  *
558  * Description: Sanitizes the settings (if we're not autonegotiating
559  *   them), and then calls the driver's config_aneg function.
560  *   If the PHYCONTROL Layer is operating, we change the state to
561  *   reflect the beginning of Auto-negotiation or forcing.
562  */
563 int phy_start_aneg(struct phy_device *phydev)
564 {
565 	int err;
566 
567 	mutex_lock(&phydev->lock);
568 
569 	if (AUTONEG_DISABLE == phydev->autoneg)
570 		phy_sanitize_settings(phydev);
571 
572 	/* Invalidate LP advertising flags */
573 	phydev->lp_advertising = 0;
574 
575 	err = phydev->drv->config_aneg(phydev);
576 	if (err < 0)
577 		goto out_unlock;
578 
579 	if (phydev->state != PHY_HALTED) {
580 		if (AUTONEG_ENABLE == phydev->autoneg) {
581 			phydev->state = PHY_AN;
582 			phydev->link_timeout = PHY_AN_TIMEOUT;
583 		} else {
584 			phydev->state = PHY_FORCING;
585 			phydev->link_timeout = PHY_FORCE_TIMEOUT;
586 		}
587 	}
588 
589 out_unlock:
590 	mutex_unlock(&phydev->lock);
591 	return err;
592 }
593 EXPORT_SYMBOL(phy_start_aneg);
594 
595 /**
596  * phy_start_machine - start PHY state machine tracking
597  * @phydev: the phy_device struct
598  *
599  * Description: The PHY infrastructure can run a state machine
600  *   which tracks whether the PHY is starting up, negotiating,
601  *   etc.  This function starts the timer which tracks the state
602  *   of the PHY.  If you want to maintain your own state machine,
603  *   do not call this function.
604  */
605 void phy_start_machine(struct phy_device *phydev)
606 {
607 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ);
608 }
609 
610 /**
611  * phy_stop_machine - stop the PHY state machine tracking
612  * @phydev: target phy_device struct
613  *
614  * Description: Stops the state machine timer, sets the state to UP
615  *   (unless it wasn't up yet). This function must be called BEFORE
616  *   phy_detach.
617  */
618 void phy_stop_machine(struct phy_device *phydev)
619 {
620 	cancel_delayed_work_sync(&phydev->state_queue);
621 
622 	mutex_lock(&phydev->lock);
623 	if (phydev->state > PHY_UP)
624 		phydev->state = PHY_UP;
625 	mutex_unlock(&phydev->lock);
626 }
627 
628 /**
629  * phy_error - enter HALTED state for this PHY device
630  * @phydev: target phy_device struct
631  *
632  * Moves the PHY to the HALTED state in response to a read
633  * or write error, and tells the controller the link is down.
634  * Must not be called from interrupt context, or while the
635  * phydev->lock is held.
636  */
637 static void phy_error(struct phy_device *phydev)
638 {
639 	mutex_lock(&phydev->lock);
640 	phydev->state = PHY_HALTED;
641 	mutex_unlock(&phydev->lock);
642 }
643 
644 /**
645  * phy_interrupt - PHY interrupt handler
646  * @irq: interrupt line
647  * @phy_dat: phy_device pointer
648  *
649  * Description: When a PHY interrupt occurs, the handler disables
650  * interrupts, and schedules a work task to clear the interrupt.
651  */
652 static irqreturn_t phy_interrupt(int irq, void *phy_dat)
653 {
654 	struct phy_device *phydev = phy_dat;
655 
656 	if (PHY_HALTED == phydev->state)
657 		return IRQ_NONE;		/* It can't be ours.  */
658 
659 	/* The MDIO bus is not allowed to be written in interrupt
660 	 * context, so we need to disable the irq here.  A work
661 	 * queue will write the PHY to disable and clear the
662 	 * interrupt, and then reenable the irq line.
663 	 */
664 	disable_irq_nosync(irq);
665 	atomic_inc(&phydev->irq_disable);
666 
667 	queue_work(system_power_efficient_wq, &phydev->phy_queue);
668 
669 	return IRQ_HANDLED;
670 }
671 
672 /**
673  * phy_enable_interrupts - Enable the interrupts from the PHY side
674  * @phydev: target phy_device struct
675  */
676 static int phy_enable_interrupts(struct phy_device *phydev)
677 {
678 	int err = phy_clear_interrupt(phydev);
679 
680 	if (err < 0)
681 		return err;
682 
683 	return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
684 }
685 
686 /**
687  * phy_disable_interrupts - Disable the PHY interrupts from the PHY side
688  * @phydev: target phy_device struct
689  */
690 static int phy_disable_interrupts(struct phy_device *phydev)
691 {
692 	int err;
693 
694 	/* Disable PHY interrupts */
695 	err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
696 	if (err)
697 		goto phy_err;
698 
699 	/* Clear the interrupt */
700 	err = phy_clear_interrupt(phydev);
701 	if (err)
702 		goto phy_err;
703 
704 	return 0;
705 
706 phy_err:
707 	phy_error(phydev);
708 
709 	return err;
710 }
711 
712 /**
713  * phy_start_interrupts - request and enable interrupts for a PHY device
714  * @phydev: target phy_device struct
715  *
716  * Description: Request the interrupt for the given PHY.
717  *   If this fails, then we set irq to PHY_POLL.
718  *   Otherwise, we enable the interrupts in the PHY.
719  *   This should only be called with a valid IRQ number.
720  *   Returns 0 on success or < 0 on error.
721  */
722 int phy_start_interrupts(struct phy_device *phydev)
723 {
724 	atomic_set(&phydev->irq_disable, 0);
725 	if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt",
726 			phydev) < 0) {
727 		pr_warn("%s: Can't get IRQ %d (PHY)\n",
728 			phydev->mdio.bus->name, phydev->irq);
729 		phydev->irq = PHY_POLL;
730 		return 0;
731 	}
732 
733 	return phy_enable_interrupts(phydev);
734 }
735 EXPORT_SYMBOL(phy_start_interrupts);
736 
737 /**
738  * phy_stop_interrupts - disable interrupts from a PHY device
739  * @phydev: target phy_device struct
740  */
741 int phy_stop_interrupts(struct phy_device *phydev)
742 {
743 	int err = phy_disable_interrupts(phydev);
744 
745 	if (err)
746 		phy_error(phydev);
747 
748 	free_irq(phydev->irq, phydev);
749 
750 	/* Cannot call flush_scheduled_work() here as desired because
751 	 * of rtnl_lock(), but we do not really care about what would
752 	 * be done, except from enable_irq(), so cancel any work
753 	 * possibly pending and take care of the matter below.
754 	 */
755 	cancel_work_sync(&phydev->phy_queue);
756 	/* If work indeed has been cancelled, disable_irq() will have
757 	 * been left unbalanced from phy_interrupt() and enable_irq()
758 	 * has to be called so that other devices on the line work.
759 	 */
760 	while (atomic_dec_return(&phydev->irq_disable) >= 0)
761 		enable_irq(phydev->irq);
762 
763 	return err;
764 }
765 EXPORT_SYMBOL(phy_stop_interrupts);
766 
767 /**
768  * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
769  * @work: work_struct that describes the work to be done
770  */
771 void phy_change(struct work_struct *work)
772 {
773 	struct phy_device *phydev =
774 		container_of(work, struct phy_device, phy_queue);
775 
776 	if (phy_interrupt_is_valid(phydev)) {
777 		if (phydev->drv->did_interrupt &&
778 		    !phydev->drv->did_interrupt(phydev))
779 			goto ignore;
780 
781 		if (phy_disable_interrupts(phydev))
782 			goto phy_err;
783 	}
784 
785 	mutex_lock(&phydev->lock);
786 	if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
787 		phydev->state = PHY_CHANGELINK;
788 	mutex_unlock(&phydev->lock);
789 
790 	if (phy_interrupt_is_valid(phydev)) {
791 		atomic_dec(&phydev->irq_disable);
792 		enable_irq(phydev->irq);
793 
794 		/* Reenable interrupts */
795 		if (PHY_HALTED != phydev->state &&
796 		    phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED))
797 			goto irq_enable_err;
798 	}
799 
800 	/* reschedule state queue work to run as soon as possible */
801 	cancel_delayed_work_sync(&phydev->state_queue);
802 	queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0);
803 	return;
804 
805 ignore:
806 	atomic_dec(&phydev->irq_disable);
807 	enable_irq(phydev->irq);
808 	return;
809 
810 irq_enable_err:
811 	disable_irq(phydev->irq);
812 	atomic_inc(&phydev->irq_disable);
813 phy_err:
814 	phy_error(phydev);
815 }
816 
817 /**
818  * phy_stop - Bring down the PHY link, and stop checking the status
819  * @phydev: target phy_device struct
820  */
821 void phy_stop(struct phy_device *phydev)
822 {
823 	mutex_lock(&phydev->lock);
824 
825 	if (PHY_HALTED == phydev->state)
826 		goto out_unlock;
827 
828 	if (phy_interrupt_is_valid(phydev)) {
829 		/* Disable PHY Interrupts */
830 		phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
831 
832 		/* Clear any pending interrupts */
833 		phy_clear_interrupt(phydev);
834 	}
835 
836 	phydev->state = PHY_HALTED;
837 
838 out_unlock:
839 	mutex_unlock(&phydev->lock);
840 
841 	/* Cannot call flush_scheduled_work() here as desired because
842 	 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
843 	 * will not reenable interrupts.
844 	 */
845 }
846 EXPORT_SYMBOL(phy_stop);
847 
848 /**
849  * phy_start - start or restart a PHY device
850  * @phydev: target phy_device struct
851  *
852  * Description: Indicates the attached device's readiness to
853  *   handle PHY-related work.  Used during startup to start the
854  *   PHY, and after a call to phy_stop() to resume operation.
855  *   Also used to indicate the MDIO bus has cleared an error
856  *   condition.
857  */
858 void phy_start(struct phy_device *phydev)
859 {
860 	bool do_resume = false;
861 	int err = 0;
862 
863 	mutex_lock(&phydev->lock);
864 
865 	switch (phydev->state) {
866 	case PHY_STARTING:
867 		phydev->state = PHY_PENDING;
868 		break;
869 	case PHY_READY:
870 		phydev->state = PHY_UP;
871 		break;
872 	case PHY_HALTED:
873 		/* make sure interrupts are re-enabled for the PHY */
874 		if (phydev->irq != PHY_POLL) {
875 			err = phy_enable_interrupts(phydev);
876 			if (err < 0)
877 				break;
878 		}
879 
880 		phydev->state = PHY_RESUMING;
881 		do_resume = true;
882 		break;
883 	default:
884 		break;
885 	}
886 	mutex_unlock(&phydev->lock);
887 
888 	/* if phy was suspended, bring the physical link up again */
889 	if (do_resume)
890 		phy_resume(phydev);
891 }
892 EXPORT_SYMBOL(phy_start);
893 
894 /**
895  * phy_state_machine - Handle the state machine
896  * @work: work_struct that describes the work to be done
897  */
898 void phy_state_machine(struct work_struct *work)
899 {
900 	struct delayed_work *dwork = to_delayed_work(work);
901 	struct phy_device *phydev =
902 			container_of(dwork, struct phy_device, state_queue);
903 	bool needs_aneg = false, do_suspend = false;
904 	enum phy_state old_state;
905 	int err = 0;
906 	int old_link;
907 
908 	mutex_lock(&phydev->lock);
909 
910 	old_state = phydev->state;
911 
912 	if (phydev->drv->link_change_notify)
913 		phydev->drv->link_change_notify(phydev);
914 
915 	switch (phydev->state) {
916 	case PHY_DOWN:
917 	case PHY_STARTING:
918 	case PHY_READY:
919 	case PHY_PENDING:
920 		break;
921 	case PHY_UP:
922 		needs_aneg = true;
923 
924 		phydev->link_timeout = PHY_AN_TIMEOUT;
925 
926 		break;
927 	case PHY_AN:
928 		err = phy_read_status(phydev);
929 		if (err < 0)
930 			break;
931 
932 		/* If the link is down, give up on negotiation for now */
933 		if (!phydev->link) {
934 			phydev->state = PHY_NOLINK;
935 			netif_carrier_off(phydev->attached_dev);
936 			phydev->adjust_link(phydev->attached_dev);
937 			break;
938 		}
939 
940 		/* Check if negotiation is done.  Break if there's an error */
941 		err = phy_aneg_done(phydev);
942 		if (err < 0)
943 			break;
944 
945 		/* If AN is done, we're running */
946 		if (err > 0) {
947 			phydev->state = PHY_RUNNING;
948 			netif_carrier_on(phydev->attached_dev);
949 			phydev->adjust_link(phydev->attached_dev);
950 
951 		} else if (0 == phydev->link_timeout--)
952 			needs_aneg = true;
953 		break;
954 	case PHY_NOLINK:
955 		if (phy_interrupt_is_valid(phydev))
956 			break;
957 
958 		err = phy_read_status(phydev);
959 		if (err)
960 			break;
961 
962 		if (phydev->link) {
963 			if (AUTONEG_ENABLE == phydev->autoneg) {
964 				err = phy_aneg_done(phydev);
965 				if (err < 0)
966 					break;
967 
968 				if (!err) {
969 					phydev->state = PHY_AN;
970 					phydev->link_timeout = PHY_AN_TIMEOUT;
971 					break;
972 				}
973 			}
974 			phydev->state = PHY_RUNNING;
975 			netif_carrier_on(phydev->attached_dev);
976 			phydev->adjust_link(phydev->attached_dev);
977 		}
978 		break;
979 	case PHY_FORCING:
980 		err = genphy_update_link(phydev);
981 		if (err)
982 			break;
983 
984 		if (phydev->link) {
985 			phydev->state = PHY_RUNNING;
986 			netif_carrier_on(phydev->attached_dev);
987 		} else {
988 			if (0 == phydev->link_timeout--)
989 				needs_aneg = true;
990 		}
991 
992 		phydev->adjust_link(phydev->attached_dev);
993 		break;
994 	case PHY_RUNNING:
995 		/* Only register a CHANGE if we are polling and link changed
996 		 * since latest checking.
997 		 */
998 		if (phydev->irq == PHY_POLL) {
999 			old_link = phydev->link;
1000 			err = phy_read_status(phydev);
1001 			if (err)
1002 				break;
1003 
1004 			if (old_link != phydev->link)
1005 				phydev->state = PHY_CHANGELINK;
1006 		}
1007 		break;
1008 	case PHY_CHANGELINK:
1009 		err = phy_read_status(phydev);
1010 		if (err)
1011 			break;
1012 
1013 		if (phydev->link) {
1014 			phydev->state = PHY_RUNNING;
1015 			netif_carrier_on(phydev->attached_dev);
1016 		} else {
1017 			phydev->state = PHY_NOLINK;
1018 			netif_carrier_off(phydev->attached_dev);
1019 		}
1020 
1021 		phydev->adjust_link(phydev->attached_dev);
1022 
1023 		if (phy_interrupt_is_valid(phydev))
1024 			err = phy_config_interrupt(phydev,
1025 						   PHY_INTERRUPT_ENABLED);
1026 		break;
1027 	case PHY_HALTED:
1028 		if (phydev->link) {
1029 			phydev->link = 0;
1030 			netif_carrier_off(phydev->attached_dev);
1031 			phydev->adjust_link(phydev->attached_dev);
1032 			do_suspend = true;
1033 		}
1034 		break;
1035 	case PHY_RESUMING:
1036 		if (AUTONEG_ENABLE == phydev->autoneg) {
1037 			err = phy_aneg_done(phydev);
1038 			if (err < 0)
1039 				break;
1040 
1041 			/* err > 0 if AN is done.
1042 			 * Otherwise, it's 0, and we're  still waiting for AN
1043 			 */
1044 			if (err > 0) {
1045 				err = phy_read_status(phydev);
1046 				if (err)
1047 					break;
1048 
1049 				if (phydev->link) {
1050 					phydev->state = PHY_RUNNING;
1051 					netif_carrier_on(phydev->attached_dev);
1052 				} else	{
1053 					phydev->state = PHY_NOLINK;
1054 				}
1055 				phydev->adjust_link(phydev->attached_dev);
1056 			} else {
1057 				phydev->state = PHY_AN;
1058 				phydev->link_timeout = PHY_AN_TIMEOUT;
1059 			}
1060 		} else {
1061 			err = phy_read_status(phydev);
1062 			if (err)
1063 				break;
1064 
1065 			if (phydev->link) {
1066 				phydev->state = PHY_RUNNING;
1067 				netif_carrier_on(phydev->attached_dev);
1068 			} else	{
1069 				phydev->state = PHY_NOLINK;
1070 			}
1071 			phydev->adjust_link(phydev->attached_dev);
1072 		}
1073 		break;
1074 	}
1075 
1076 	mutex_unlock(&phydev->lock);
1077 
1078 	if (needs_aneg)
1079 		err = phy_start_aneg(phydev);
1080 	else if (do_suspend)
1081 		phy_suspend(phydev);
1082 
1083 	if (err < 0)
1084 		phy_error(phydev);
1085 
1086 	phydev_dbg(phydev, "PHY state change %s -> %s\n",
1087 		   phy_state_to_str(old_state),
1088 		   phy_state_to_str(phydev->state));
1089 
1090 	/* Only re-schedule a PHY state machine change if we are polling the
1091 	 * PHY, if PHY_IGNORE_INTERRUPT is set, then we will be moving
1092 	 * between states from phy_mac_interrupt()
1093 	 */
1094 	if (phydev->irq == PHY_POLL)
1095 		queue_delayed_work(system_power_efficient_wq, &phydev->state_queue,
1096 				   PHY_STATE_TIME * HZ);
1097 }
1098 
1099 void phy_mac_interrupt(struct phy_device *phydev, int new_link)
1100 {
1101 	phydev->link = new_link;
1102 
1103 	/* Trigger a state machine change */
1104 	queue_work(system_power_efficient_wq, &phydev->phy_queue);
1105 }
1106 EXPORT_SYMBOL(phy_mac_interrupt);
1107 
1108 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad,
1109 				    int addr)
1110 {
1111 	/* Write the desired MMD Devad */
1112 	bus->write(bus, addr, MII_MMD_CTRL, devad);
1113 
1114 	/* Write the desired MMD register address */
1115 	bus->write(bus, addr, MII_MMD_DATA, prtad);
1116 
1117 	/* Select the Function : DATA with no post increment */
1118 	bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
1119 }
1120 
1121 /**
1122  * phy_read_mmd_indirect - reads data from the MMD registers
1123  * @phydev: The PHY device bus
1124  * @prtad: MMD Address
1125  * @devad: MMD DEVAD
1126  *
1127  * Description: it reads data from the MMD registers (clause 22 to access to
1128  * clause 45) of the specified phy address.
1129  * To read these register we have:
1130  * 1) Write reg 13 // DEVAD
1131  * 2) Write reg 14 // MMD Address
1132  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1133  * 3) Read  reg 14 // Read MMD data
1134  */
1135 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, int devad)
1136 {
1137 	struct phy_driver *phydrv = phydev->drv;
1138 	int addr = phydev->mdio.addr;
1139 	int value = -1;
1140 
1141 	if (!phydrv->read_mmd_indirect) {
1142 		struct mii_bus *bus = phydev->mdio.bus;
1143 
1144 		mutex_lock(&bus->mdio_lock);
1145 		mmd_phy_indirect(bus, prtad, devad, addr);
1146 
1147 		/* Read the content of the MMD's selected register */
1148 		value = bus->read(bus, addr, MII_MMD_DATA);
1149 		mutex_unlock(&bus->mdio_lock);
1150 	} else {
1151 		value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr);
1152 	}
1153 	return value;
1154 }
1155 EXPORT_SYMBOL(phy_read_mmd_indirect);
1156 
1157 /**
1158  * phy_write_mmd_indirect - writes data to the MMD registers
1159  * @phydev: The PHY device
1160  * @prtad: MMD Address
1161  * @devad: MMD DEVAD
1162  * @data: data to write in the MMD register
1163  *
1164  * Description: Write data from the MMD registers of the specified
1165  * phy address.
1166  * To write these register we have:
1167  * 1) Write reg 13 // DEVAD
1168  * 2) Write reg 14 // MMD Address
1169  * 3) Write reg 13 // MMD Data Command for MMD DEVAD
1170  * 3) Write reg 14 // Write MMD data
1171  */
1172 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad,
1173 				   int devad, u32 data)
1174 {
1175 	struct phy_driver *phydrv = phydev->drv;
1176 	int addr = phydev->mdio.addr;
1177 
1178 	if (!phydrv->write_mmd_indirect) {
1179 		struct mii_bus *bus = phydev->mdio.bus;
1180 
1181 		mutex_lock(&bus->mdio_lock);
1182 		mmd_phy_indirect(bus, prtad, devad, addr);
1183 
1184 		/* Write the data into MMD's selected register */
1185 		bus->write(bus, addr, MII_MMD_DATA, data);
1186 		mutex_unlock(&bus->mdio_lock);
1187 	} else {
1188 		phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data);
1189 	}
1190 }
1191 EXPORT_SYMBOL(phy_write_mmd_indirect);
1192 
1193 /**
1194  * phy_init_eee - init and check the EEE feature
1195  * @phydev: target phy_device struct
1196  * @clk_stop_enable: PHY may stop the clock during LPI
1197  *
1198  * Description: it checks if the Energy-Efficient Ethernet (EEE)
1199  * is supported by looking at the MMD registers 3.20 and 7.60/61
1200  * and it programs the MMD register 3.0 setting the "Clock stop enable"
1201  * bit if required.
1202  */
1203 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable)
1204 {
1205 	/* According to 802.3az,the EEE is supported only in full duplex-mode.
1206 	 * Also EEE feature is active when core is operating with MII, GMII
1207 	 * or RGMII (all kinds). Internal PHYs are also allowed to proceed and
1208 	 * should return an error if they do not support EEE.
1209 	 */
1210 	if ((phydev->duplex == DUPLEX_FULL) &&
1211 	    ((phydev->interface == PHY_INTERFACE_MODE_MII) ||
1212 	    (phydev->interface == PHY_INTERFACE_MODE_GMII) ||
1213 	     phy_interface_is_rgmii(phydev) ||
1214 	     phy_is_internal(phydev))) {
1215 		int eee_lp, eee_cap, eee_adv;
1216 		u32 lp, cap, adv;
1217 		int status;
1218 
1219 		/* Read phy status to properly get the right settings */
1220 		status = phy_read_status(phydev);
1221 		if (status)
1222 			return status;
1223 
1224 		/* First check if the EEE ability is supported */
1225 		eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE,
1226 						MDIO_MMD_PCS);
1227 		if (eee_cap <= 0)
1228 			goto eee_exit_err;
1229 
1230 		cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap);
1231 		if (!cap)
1232 			goto eee_exit_err;
1233 
1234 		/* Check which link settings negotiated and verify it in
1235 		 * the EEE advertising registers.
1236 		 */
1237 		eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE,
1238 					       MDIO_MMD_AN);
1239 		if (eee_lp <= 0)
1240 			goto eee_exit_err;
1241 
1242 		eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV,
1243 						MDIO_MMD_AN);
1244 		if (eee_adv <= 0)
1245 			goto eee_exit_err;
1246 
1247 		adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv);
1248 		lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp);
1249 		if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv))
1250 			goto eee_exit_err;
1251 
1252 		if (clk_stop_enable) {
1253 			/* Configure the PHY to stop receiving xMII
1254 			 * clock while it is signaling LPI.
1255 			 */
1256 			int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1,
1257 							MDIO_MMD_PCS);
1258 			if (val < 0)
1259 				return val;
1260 
1261 			val |= MDIO_PCS_CTRL1_CLKSTOP_EN;
1262 			phy_write_mmd_indirect(phydev, MDIO_CTRL1,
1263 					       MDIO_MMD_PCS, val);
1264 		}
1265 
1266 		return 0; /* EEE supported */
1267 	}
1268 eee_exit_err:
1269 	return -EPROTONOSUPPORT;
1270 }
1271 EXPORT_SYMBOL(phy_init_eee);
1272 
1273 /**
1274  * phy_get_eee_err - report the EEE wake error count
1275  * @phydev: target phy_device struct
1276  *
1277  * Description: it is to report the number of time where the PHY
1278  * failed to complete its normal wake sequence.
1279  */
1280 int phy_get_eee_err(struct phy_device *phydev)
1281 {
1282 	return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, MDIO_MMD_PCS);
1283 }
1284 EXPORT_SYMBOL(phy_get_eee_err);
1285 
1286 /**
1287  * phy_ethtool_get_eee - get EEE supported and status
1288  * @phydev: target phy_device struct
1289  * @data: ethtool_eee data
1290  *
1291  * Description: it reportes the Supported/Advertisement/LP Advertisement
1292  * capabilities.
1293  */
1294 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data)
1295 {
1296 	int val;
1297 
1298 	/* Get Supported EEE */
1299 	val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS);
1300 	if (val < 0)
1301 		return val;
1302 	data->supported = mmd_eee_cap_to_ethtool_sup_t(val);
1303 
1304 	/* Get advertisement EEE */
1305 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN);
1306 	if (val < 0)
1307 		return val;
1308 	data->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1309 
1310 	/* Get LP advertisement EEE */
1311 	val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN);
1312 	if (val < 0)
1313 		return val;
1314 	data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
1315 
1316 	return 0;
1317 }
1318 EXPORT_SYMBOL(phy_ethtool_get_eee);
1319 
1320 /**
1321  * phy_ethtool_set_eee - set EEE supported and status
1322  * @phydev: target phy_device struct
1323  * @data: ethtool_eee data
1324  *
1325  * Description: it is to program the Advertisement EEE register.
1326  */
1327 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data)
1328 {
1329 	int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised);
1330 
1331 	phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, val);
1332 
1333 	return 0;
1334 }
1335 EXPORT_SYMBOL(phy_ethtool_set_eee);
1336 
1337 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1338 {
1339 	if (phydev->drv->set_wol)
1340 		return phydev->drv->set_wol(phydev, wol);
1341 
1342 	return -EOPNOTSUPP;
1343 }
1344 EXPORT_SYMBOL(phy_ethtool_set_wol);
1345 
1346 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
1347 {
1348 	if (phydev->drv->get_wol)
1349 		phydev->drv->get_wol(phydev, wol);
1350 }
1351 EXPORT_SYMBOL(phy_ethtool_get_wol);
1352 
1353 int phy_ethtool_get_link_ksettings(struct net_device *ndev,
1354 				   struct ethtool_link_ksettings *cmd)
1355 {
1356 	struct phy_device *phydev = ndev->phydev;
1357 
1358 	if (!phydev)
1359 		return -ENODEV;
1360 
1361 	return phy_ethtool_ksettings_get(phydev, cmd);
1362 }
1363 EXPORT_SYMBOL(phy_ethtool_get_link_ksettings);
1364 
1365 int phy_ethtool_set_link_ksettings(struct net_device *ndev,
1366 				   const struct ethtool_link_ksettings *cmd)
1367 {
1368 	struct phy_device *phydev = ndev->phydev;
1369 
1370 	if (!phydev)
1371 		return -ENODEV;
1372 
1373 	return phy_ethtool_ksettings_set(phydev, cmd);
1374 }
1375 EXPORT_SYMBOL(phy_ethtool_set_link_ksettings);
1376