1 /* Framework for configuring and reading PHY devices 2 * Based on code in sungem_phy.c and gianfar_phy.c 3 * 4 * Author: Andy Fleming 5 * 6 * Copyright (c) 2004 Freescale Semiconductor, Inc. 7 * Copyright (c) 2006, 2007 Maciej W. Rozycki 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 * 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/kernel.h> 19 #include <linux/string.h> 20 #include <linux/errno.h> 21 #include <linux/unistd.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/skbuff.h> 27 #include <linux/mm.h> 28 #include <linux/module.h> 29 #include <linux/mii.h> 30 #include <linux/ethtool.h> 31 #include <linux/phy.h> 32 #include <linux/timer.h> 33 #include <linux/workqueue.h> 34 #include <linux/mdio.h> 35 #include <linux/io.h> 36 #include <linux/uaccess.h> 37 #include <linux/atomic.h> 38 39 #include <asm/irq.h> 40 41 static const char *phy_speed_to_str(int speed) 42 { 43 switch (speed) { 44 case SPEED_10: 45 return "10Mbps"; 46 case SPEED_100: 47 return "100Mbps"; 48 case SPEED_1000: 49 return "1Gbps"; 50 case SPEED_2500: 51 return "2.5Gbps"; 52 case SPEED_10000: 53 return "10Gbps"; 54 case SPEED_UNKNOWN: 55 return "Unknown"; 56 default: 57 return "Unsupported (update phy.c)"; 58 } 59 } 60 61 #define PHY_STATE_STR(_state) \ 62 case PHY_##_state: \ 63 return __stringify(_state); \ 64 65 static const char *phy_state_to_str(enum phy_state st) 66 { 67 switch (st) { 68 PHY_STATE_STR(DOWN) 69 PHY_STATE_STR(STARTING) 70 PHY_STATE_STR(READY) 71 PHY_STATE_STR(PENDING) 72 PHY_STATE_STR(UP) 73 PHY_STATE_STR(AN) 74 PHY_STATE_STR(RUNNING) 75 PHY_STATE_STR(NOLINK) 76 PHY_STATE_STR(FORCING) 77 PHY_STATE_STR(CHANGELINK) 78 PHY_STATE_STR(HALTED) 79 PHY_STATE_STR(RESUMING) 80 } 81 82 return NULL; 83 } 84 85 86 /** 87 * phy_print_status - Convenience function to print out the current phy status 88 * @phydev: the phy_device struct 89 */ 90 void phy_print_status(struct phy_device *phydev) 91 { 92 if (phydev->link) { 93 netdev_info(phydev->attached_dev, 94 "Link is Up - %s/%s - flow control %s\n", 95 phy_speed_to_str(phydev->speed), 96 DUPLEX_FULL == phydev->duplex ? "Full" : "Half", 97 phydev->pause ? "rx/tx" : "off"); 98 } else { 99 netdev_info(phydev->attached_dev, "Link is Down\n"); 100 } 101 } 102 EXPORT_SYMBOL(phy_print_status); 103 104 /** 105 * phy_clear_interrupt - Ack the phy device's interrupt 106 * @phydev: the phy_device struct 107 * 108 * If the @phydev driver has an ack_interrupt function, call it to 109 * ack and clear the phy device's interrupt. 110 * 111 * Returns 0 on success or < 0 on error. 112 */ 113 static int phy_clear_interrupt(struct phy_device *phydev) 114 { 115 if (phydev->drv->ack_interrupt) 116 return phydev->drv->ack_interrupt(phydev); 117 118 return 0; 119 } 120 121 /** 122 * phy_config_interrupt - configure the PHY device for the requested interrupts 123 * @phydev: the phy_device struct 124 * @interrupts: interrupt flags to configure for this @phydev 125 * 126 * Returns 0 on success or < 0 on error. 127 */ 128 static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts) 129 { 130 phydev->interrupts = interrupts; 131 if (phydev->drv->config_intr) 132 return phydev->drv->config_intr(phydev); 133 134 return 0; 135 } 136 137 138 /** 139 * phy_aneg_done - return auto-negotiation status 140 * @phydev: target phy_device struct 141 * 142 * Description: Return the auto-negotiation status from this @phydev 143 * Returns > 0 on success or < 0 on error. 0 means that auto-negotiation 144 * is still pending. 145 */ 146 static inline int phy_aneg_done(struct phy_device *phydev) 147 { 148 if (phydev->drv->aneg_done) 149 return phydev->drv->aneg_done(phydev); 150 151 return genphy_aneg_done(phydev); 152 } 153 154 /* A structure for mapping a particular speed and duplex 155 * combination to a particular SUPPORTED and ADVERTISED value 156 */ 157 struct phy_setting { 158 int speed; 159 int duplex; 160 u32 setting; 161 }; 162 163 /* A mapping of all SUPPORTED settings to speed/duplex */ 164 static const struct phy_setting settings[] = { 165 { 166 .speed = SPEED_10000, 167 .duplex = DUPLEX_FULL, 168 .setting = SUPPORTED_10000baseKR_Full, 169 }, 170 { 171 .speed = SPEED_10000, 172 .duplex = DUPLEX_FULL, 173 .setting = SUPPORTED_10000baseKX4_Full, 174 }, 175 { 176 .speed = SPEED_10000, 177 .duplex = DUPLEX_FULL, 178 .setting = SUPPORTED_10000baseT_Full, 179 }, 180 { 181 .speed = SPEED_2500, 182 .duplex = DUPLEX_FULL, 183 .setting = SUPPORTED_2500baseX_Full, 184 }, 185 { 186 .speed = SPEED_1000, 187 .duplex = DUPLEX_FULL, 188 .setting = SUPPORTED_1000baseKX_Full, 189 }, 190 { 191 .speed = SPEED_1000, 192 .duplex = DUPLEX_FULL, 193 .setting = SUPPORTED_1000baseT_Full, 194 }, 195 { 196 .speed = SPEED_1000, 197 .duplex = DUPLEX_HALF, 198 .setting = SUPPORTED_1000baseT_Half, 199 }, 200 { 201 .speed = SPEED_100, 202 .duplex = DUPLEX_FULL, 203 .setting = SUPPORTED_100baseT_Full, 204 }, 205 { 206 .speed = SPEED_100, 207 .duplex = DUPLEX_HALF, 208 .setting = SUPPORTED_100baseT_Half, 209 }, 210 { 211 .speed = SPEED_10, 212 .duplex = DUPLEX_FULL, 213 .setting = SUPPORTED_10baseT_Full, 214 }, 215 { 216 .speed = SPEED_10, 217 .duplex = DUPLEX_HALF, 218 .setting = SUPPORTED_10baseT_Half, 219 }, 220 }; 221 222 #define MAX_NUM_SETTINGS ARRAY_SIZE(settings) 223 224 /** 225 * phy_find_setting - find a PHY settings array entry that matches speed & duplex 226 * @speed: speed to match 227 * @duplex: duplex to match 228 * 229 * Description: Searches the settings array for the setting which 230 * matches the desired speed and duplex, and returns the index 231 * of that setting. Returns the index of the last setting if 232 * none of the others match. 233 */ 234 static inline unsigned int phy_find_setting(int speed, int duplex) 235 { 236 unsigned int idx = 0; 237 238 while (idx < ARRAY_SIZE(settings) && 239 (settings[idx].speed != speed || settings[idx].duplex != duplex)) 240 idx++; 241 242 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 243 } 244 245 /** 246 * phy_find_valid - find a PHY setting that matches the requested features mask 247 * @idx: The first index in settings[] to search 248 * @features: A mask of the valid settings 249 * 250 * Description: Returns the index of the first valid setting less 251 * than or equal to the one pointed to by idx, as determined by 252 * the mask in features. Returns the index of the last setting 253 * if nothing else matches. 254 */ 255 static inline unsigned int phy_find_valid(unsigned int idx, u32 features) 256 { 257 while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features)) 258 idx++; 259 260 return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; 261 } 262 263 /** 264 * phy_check_valid - check if there is a valid PHY setting which matches 265 * speed, duplex, and feature mask 266 * @speed: speed to match 267 * @duplex: duplex to match 268 * @features: A mask of the valid settings 269 * 270 * Description: Returns true if there is a valid setting, false otherwise. 271 */ 272 static inline bool phy_check_valid(int speed, int duplex, u32 features) 273 { 274 unsigned int idx; 275 276 idx = phy_find_valid(phy_find_setting(speed, duplex), features); 277 278 return settings[idx].speed == speed && settings[idx].duplex == duplex && 279 (settings[idx].setting & features); 280 } 281 282 /** 283 * phy_sanitize_settings - make sure the PHY is set to supported speed and duplex 284 * @phydev: the target phy_device struct 285 * 286 * Description: Make sure the PHY is set to supported speeds and 287 * duplexes. Drop down by one in this order: 1000/FULL, 288 * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF. 289 */ 290 static void phy_sanitize_settings(struct phy_device *phydev) 291 { 292 u32 features = phydev->supported; 293 unsigned int idx; 294 295 /* Sanitize settings based on PHY capabilities */ 296 if ((features & SUPPORTED_Autoneg) == 0) 297 phydev->autoneg = AUTONEG_DISABLE; 298 299 idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex), 300 features); 301 302 phydev->speed = settings[idx].speed; 303 phydev->duplex = settings[idx].duplex; 304 } 305 306 /** 307 * phy_ethtool_sset - generic ethtool sset function, handles all the details 308 * @phydev: target phy_device struct 309 * @cmd: ethtool_cmd 310 * 311 * A few notes about parameter checking: 312 * - We don't set port or transceiver, so we don't care what they 313 * were set to. 314 * - phy_start_aneg() will make sure forced settings are sane, and 315 * choose the next best ones from the ones selected, so we don't 316 * care if ethtool tries to give us bad values. 317 */ 318 int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd) 319 { 320 u32 speed = ethtool_cmd_speed(cmd); 321 322 if (cmd->phy_address != phydev->mdio.addr) 323 return -EINVAL; 324 325 /* We make sure that we don't pass unsupported values in to the PHY */ 326 cmd->advertising &= phydev->supported; 327 328 /* Verify the settings we care about. */ 329 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) 330 return -EINVAL; 331 332 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) 333 return -EINVAL; 334 335 if (cmd->autoneg == AUTONEG_DISABLE && 336 ((speed != SPEED_1000 && 337 speed != SPEED_100 && 338 speed != SPEED_10) || 339 (cmd->duplex != DUPLEX_HALF && 340 cmd->duplex != DUPLEX_FULL))) 341 return -EINVAL; 342 343 phydev->autoneg = cmd->autoneg; 344 345 phydev->speed = speed; 346 347 phydev->advertising = cmd->advertising; 348 349 if (AUTONEG_ENABLE == cmd->autoneg) 350 phydev->advertising |= ADVERTISED_Autoneg; 351 else 352 phydev->advertising &= ~ADVERTISED_Autoneg; 353 354 phydev->duplex = cmd->duplex; 355 356 phydev->mdix = cmd->eth_tp_mdix_ctrl; 357 358 /* Restart the PHY */ 359 phy_start_aneg(phydev); 360 361 return 0; 362 } 363 EXPORT_SYMBOL(phy_ethtool_sset); 364 365 int phy_ethtool_ksettings_set(struct phy_device *phydev, 366 const struct ethtool_link_ksettings *cmd) 367 { 368 u8 autoneg = cmd->base.autoneg; 369 u8 duplex = cmd->base.duplex; 370 u32 speed = cmd->base.speed; 371 u32 advertising; 372 373 if (cmd->base.phy_address != phydev->mdio.addr) 374 return -EINVAL; 375 376 ethtool_convert_link_mode_to_legacy_u32(&advertising, 377 cmd->link_modes.advertising); 378 379 /* We make sure that we don't pass unsupported values in to the PHY */ 380 advertising &= phydev->supported; 381 382 /* Verify the settings we care about. */ 383 if (autoneg != AUTONEG_ENABLE && autoneg != AUTONEG_DISABLE) 384 return -EINVAL; 385 386 if (autoneg == AUTONEG_ENABLE && advertising == 0) 387 return -EINVAL; 388 389 if (autoneg == AUTONEG_DISABLE && 390 ((speed != SPEED_1000 && 391 speed != SPEED_100 && 392 speed != SPEED_10) || 393 (duplex != DUPLEX_HALF && 394 duplex != DUPLEX_FULL))) 395 return -EINVAL; 396 397 phydev->autoneg = autoneg; 398 399 phydev->speed = speed; 400 401 phydev->advertising = advertising; 402 403 if (autoneg == AUTONEG_ENABLE) 404 phydev->advertising |= ADVERTISED_Autoneg; 405 else 406 phydev->advertising &= ~ADVERTISED_Autoneg; 407 408 phydev->duplex = duplex; 409 410 phydev->mdix = cmd->base.eth_tp_mdix_ctrl; 411 412 /* Restart the PHY */ 413 phy_start_aneg(phydev); 414 415 return 0; 416 } 417 EXPORT_SYMBOL(phy_ethtool_ksettings_set); 418 419 int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd) 420 { 421 cmd->supported = phydev->supported; 422 423 cmd->advertising = phydev->advertising; 424 cmd->lp_advertising = phydev->lp_advertising; 425 426 ethtool_cmd_speed_set(cmd, phydev->speed); 427 cmd->duplex = phydev->duplex; 428 if (phydev->interface == PHY_INTERFACE_MODE_MOCA) 429 cmd->port = PORT_BNC; 430 else 431 cmd->port = PORT_MII; 432 cmd->phy_address = phydev->mdio.addr; 433 cmd->transceiver = phy_is_internal(phydev) ? 434 XCVR_INTERNAL : XCVR_EXTERNAL; 435 cmd->autoneg = phydev->autoneg; 436 cmd->eth_tp_mdix_ctrl = phydev->mdix; 437 438 return 0; 439 } 440 EXPORT_SYMBOL(phy_ethtool_gset); 441 442 int phy_ethtool_ksettings_get(struct phy_device *phydev, 443 struct ethtool_link_ksettings *cmd) 444 { 445 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 446 phydev->supported); 447 448 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 449 phydev->advertising); 450 451 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, 452 phydev->lp_advertising); 453 454 cmd->base.speed = phydev->speed; 455 cmd->base.duplex = phydev->duplex; 456 if (phydev->interface == PHY_INTERFACE_MODE_MOCA) 457 cmd->base.port = PORT_BNC; 458 else 459 cmd->base.port = PORT_MII; 460 461 cmd->base.phy_address = phydev->mdio.addr; 462 cmd->base.autoneg = phydev->autoneg; 463 cmd->base.eth_tp_mdix_ctrl = phydev->mdix; 464 465 return 0; 466 } 467 EXPORT_SYMBOL(phy_ethtool_ksettings_get); 468 469 /** 470 * phy_mii_ioctl - generic PHY MII ioctl interface 471 * @phydev: the phy_device struct 472 * @ifr: &struct ifreq for socket ioctl's 473 * @cmd: ioctl cmd to execute 474 * 475 * Note that this function is currently incompatible with the 476 * PHYCONTROL layer. It changes registers without regard to 477 * current state. Use at own risk. 478 */ 479 int phy_mii_ioctl(struct phy_device *phydev, struct ifreq *ifr, int cmd) 480 { 481 struct mii_ioctl_data *mii_data = if_mii(ifr); 482 u16 val = mii_data->val_in; 483 bool change_autoneg = false; 484 485 switch (cmd) { 486 case SIOCGMIIPHY: 487 mii_data->phy_id = phydev->mdio.addr; 488 /* fall through */ 489 490 case SIOCGMIIREG: 491 mii_data->val_out = mdiobus_read(phydev->mdio.bus, 492 mii_data->phy_id, 493 mii_data->reg_num); 494 return 0; 495 496 case SIOCSMIIREG: 497 if (mii_data->phy_id == phydev->mdio.addr) { 498 switch (mii_data->reg_num) { 499 case MII_BMCR: 500 if ((val & (BMCR_RESET | BMCR_ANENABLE)) == 0) { 501 if (phydev->autoneg == AUTONEG_ENABLE) 502 change_autoneg = true; 503 phydev->autoneg = AUTONEG_DISABLE; 504 if (val & BMCR_FULLDPLX) 505 phydev->duplex = DUPLEX_FULL; 506 else 507 phydev->duplex = DUPLEX_HALF; 508 if (val & BMCR_SPEED1000) 509 phydev->speed = SPEED_1000; 510 else if (val & BMCR_SPEED100) 511 phydev->speed = SPEED_100; 512 else phydev->speed = SPEED_10; 513 } 514 else { 515 if (phydev->autoneg == AUTONEG_DISABLE) 516 change_autoneg = true; 517 phydev->autoneg = AUTONEG_ENABLE; 518 } 519 break; 520 case MII_ADVERTISE: 521 phydev->advertising = mii_adv_to_ethtool_adv_t(val); 522 change_autoneg = true; 523 break; 524 default: 525 /* do nothing */ 526 break; 527 } 528 } 529 530 mdiobus_write(phydev->mdio.bus, mii_data->phy_id, 531 mii_data->reg_num, val); 532 533 if (mii_data->phy_id == phydev->mdio.addr && 534 mii_data->reg_num == MII_BMCR && 535 val & BMCR_RESET) 536 return phy_init_hw(phydev); 537 538 if (change_autoneg) 539 return phy_start_aneg(phydev); 540 541 return 0; 542 543 case SIOCSHWTSTAMP: 544 if (phydev->drv->hwtstamp) 545 return phydev->drv->hwtstamp(phydev, ifr); 546 /* fall through */ 547 548 default: 549 return -EOPNOTSUPP; 550 } 551 } 552 EXPORT_SYMBOL(phy_mii_ioctl); 553 554 /** 555 * phy_start_aneg - start auto-negotiation for this PHY device 556 * @phydev: the phy_device struct 557 * 558 * Description: Sanitizes the settings (if we're not autonegotiating 559 * them), and then calls the driver's config_aneg function. 560 * If the PHYCONTROL Layer is operating, we change the state to 561 * reflect the beginning of Auto-negotiation or forcing. 562 */ 563 int phy_start_aneg(struct phy_device *phydev) 564 { 565 int err; 566 567 mutex_lock(&phydev->lock); 568 569 if (AUTONEG_DISABLE == phydev->autoneg) 570 phy_sanitize_settings(phydev); 571 572 /* Invalidate LP advertising flags */ 573 phydev->lp_advertising = 0; 574 575 err = phydev->drv->config_aneg(phydev); 576 if (err < 0) 577 goto out_unlock; 578 579 if (phydev->state != PHY_HALTED) { 580 if (AUTONEG_ENABLE == phydev->autoneg) { 581 phydev->state = PHY_AN; 582 phydev->link_timeout = PHY_AN_TIMEOUT; 583 } else { 584 phydev->state = PHY_FORCING; 585 phydev->link_timeout = PHY_FORCE_TIMEOUT; 586 } 587 } 588 589 out_unlock: 590 mutex_unlock(&phydev->lock); 591 return err; 592 } 593 EXPORT_SYMBOL(phy_start_aneg); 594 595 /** 596 * phy_start_machine - start PHY state machine tracking 597 * @phydev: the phy_device struct 598 * 599 * Description: The PHY infrastructure can run a state machine 600 * which tracks whether the PHY is starting up, negotiating, 601 * etc. This function starts the timer which tracks the state 602 * of the PHY. If you want to maintain your own state machine, 603 * do not call this function. 604 */ 605 void phy_start_machine(struct phy_device *phydev) 606 { 607 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, HZ); 608 } 609 610 /** 611 * phy_stop_machine - stop the PHY state machine tracking 612 * @phydev: target phy_device struct 613 * 614 * Description: Stops the state machine timer, sets the state to UP 615 * (unless it wasn't up yet). This function must be called BEFORE 616 * phy_detach. 617 */ 618 void phy_stop_machine(struct phy_device *phydev) 619 { 620 cancel_delayed_work_sync(&phydev->state_queue); 621 622 mutex_lock(&phydev->lock); 623 if (phydev->state > PHY_UP) 624 phydev->state = PHY_UP; 625 mutex_unlock(&phydev->lock); 626 } 627 628 /** 629 * phy_error - enter HALTED state for this PHY device 630 * @phydev: target phy_device struct 631 * 632 * Moves the PHY to the HALTED state in response to a read 633 * or write error, and tells the controller the link is down. 634 * Must not be called from interrupt context, or while the 635 * phydev->lock is held. 636 */ 637 static void phy_error(struct phy_device *phydev) 638 { 639 mutex_lock(&phydev->lock); 640 phydev->state = PHY_HALTED; 641 mutex_unlock(&phydev->lock); 642 } 643 644 /** 645 * phy_interrupt - PHY interrupt handler 646 * @irq: interrupt line 647 * @phy_dat: phy_device pointer 648 * 649 * Description: When a PHY interrupt occurs, the handler disables 650 * interrupts, and schedules a work task to clear the interrupt. 651 */ 652 static irqreturn_t phy_interrupt(int irq, void *phy_dat) 653 { 654 struct phy_device *phydev = phy_dat; 655 656 if (PHY_HALTED == phydev->state) 657 return IRQ_NONE; /* It can't be ours. */ 658 659 /* The MDIO bus is not allowed to be written in interrupt 660 * context, so we need to disable the irq here. A work 661 * queue will write the PHY to disable and clear the 662 * interrupt, and then reenable the irq line. 663 */ 664 disable_irq_nosync(irq); 665 atomic_inc(&phydev->irq_disable); 666 667 queue_work(system_power_efficient_wq, &phydev->phy_queue); 668 669 return IRQ_HANDLED; 670 } 671 672 /** 673 * phy_enable_interrupts - Enable the interrupts from the PHY side 674 * @phydev: target phy_device struct 675 */ 676 static int phy_enable_interrupts(struct phy_device *phydev) 677 { 678 int err = phy_clear_interrupt(phydev); 679 680 if (err < 0) 681 return err; 682 683 return phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); 684 } 685 686 /** 687 * phy_disable_interrupts - Disable the PHY interrupts from the PHY side 688 * @phydev: target phy_device struct 689 */ 690 static int phy_disable_interrupts(struct phy_device *phydev) 691 { 692 int err; 693 694 /* Disable PHY interrupts */ 695 err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 696 if (err) 697 goto phy_err; 698 699 /* Clear the interrupt */ 700 err = phy_clear_interrupt(phydev); 701 if (err) 702 goto phy_err; 703 704 return 0; 705 706 phy_err: 707 phy_error(phydev); 708 709 return err; 710 } 711 712 /** 713 * phy_start_interrupts - request and enable interrupts for a PHY device 714 * @phydev: target phy_device struct 715 * 716 * Description: Request the interrupt for the given PHY. 717 * If this fails, then we set irq to PHY_POLL. 718 * Otherwise, we enable the interrupts in the PHY. 719 * This should only be called with a valid IRQ number. 720 * Returns 0 on success or < 0 on error. 721 */ 722 int phy_start_interrupts(struct phy_device *phydev) 723 { 724 atomic_set(&phydev->irq_disable, 0); 725 if (request_irq(phydev->irq, phy_interrupt, 0, "phy_interrupt", 726 phydev) < 0) { 727 pr_warn("%s: Can't get IRQ %d (PHY)\n", 728 phydev->mdio.bus->name, phydev->irq); 729 phydev->irq = PHY_POLL; 730 return 0; 731 } 732 733 return phy_enable_interrupts(phydev); 734 } 735 EXPORT_SYMBOL(phy_start_interrupts); 736 737 /** 738 * phy_stop_interrupts - disable interrupts from a PHY device 739 * @phydev: target phy_device struct 740 */ 741 int phy_stop_interrupts(struct phy_device *phydev) 742 { 743 int err = phy_disable_interrupts(phydev); 744 745 if (err) 746 phy_error(phydev); 747 748 free_irq(phydev->irq, phydev); 749 750 /* Cannot call flush_scheduled_work() here as desired because 751 * of rtnl_lock(), but we do not really care about what would 752 * be done, except from enable_irq(), so cancel any work 753 * possibly pending and take care of the matter below. 754 */ 755 cancel_work_sync(&phydev->phy_queue); 756 /* If work indeed has been cancelled, disable_irq() will have 757 * been left unbalanced from phy_interrupt() and enable_irq() 758 * has to be called so that other devices on the line work. 759 */ 760 while (atomic_dec_return(&phydev->irq_disable) >= 0) 761 enable_irq(phydev->irq); 762 763 return err; 764 } 765 EXPORT_SYMBOL(phy_stop_interrupts); 766 767 /** 768 * phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes 769 * @work: work_struct that describes the work to be done 770 */ 771 void phy_change(struct work_struct *work) 772 { 773 struct phy_device *phydev = 774 container_of(work, struct phy_device, phy_queue); 775 776 if (phy_interrupt_is_valid(phydev)) { 777 if (phydev->drv->did_interrupt && 778 !phydev->drv->did_interrupt(phydev)) 779 goto ignore; 780 781 if (phy_disable_interrupts(phydev)) 782 goto phy_err; 783 } 784 785 mutex_lock(&phydev->lock); 786 if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state)) 787 phydev->state = PHY_CHANGELINK; 788 mutex_unlock(&phydev->lock); 789 790 if (phy_interrupt_is_valid(phydev)) { 791 atomic_dec(&phydev->irq_disable); 792 enable_irq(phydev->irq); 793 794 /* Reenable interrupts */ 795 if (PHY_HALTED != phydev->state && 796 phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED)) 797 goto irq_enable_err; 798 } 799 800 /* reschedule state queue work to run as soon as possible */ 801 cancel_delayed_work_sync(&phydev->state_queue); 802 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 0); 803 return; 804 805 ignore: 806 atomic_dec(&phydev->irq_disable); 807 enable_irq(phydev->irq); 808 return; 809 810 irq_enable_err: 811 disable_irq(phydev->irq); 812 atomic_inc(&phydev->irq_disable); 813 phy_err: 814 phy_error(phydev); 815 } 816 817 /** 818 * phy_stop - Bring down the PHY link, and stop checking the status 819 * @phydev: target phy_device struct 820 */ 821 void phy_stop(struct phy_device *phydev) 822 { 823 mutex_lock(&phydev->lock); 824 825 if (PHY_HALTED == phydev->state) 826 goto out_unlock; 827 828 if (phy_interrupt_is_valid(phydev)) { 829 /* Disable PHY Interrupts */ 830 phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); 831 832 /* Clear any pending interrupts */ 833 phy_clear_interrupt(phydev); 834 } 835 836 phydev->state = PHY_HALTED; 837 838 out_unlock: 839 mutex_unlock(&phydev->lock); 840 841 /* Cannot call flush_scheduled_work() here as desired because 842 * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change() 843 * will not reenable interrupts. 844 */ 845 } 846 EXPORT_SYMBOL(phy_stop); 847 848 /** 849 * phy_start - start or restart a PHY device 850 * @phydev: target phy_device struct 851 * 852 * Description: Indicates the attached device's readiness to 853 * handle PHY-related work. Used during startup to start the 854 * PHY, and after a call to phy_stop() to resume operation. 855 * Also used to indicate the MDIO bus has cleared an error 856 * condition. 857 */ 858 void phy_start(struct phy_device *phydev) 859 { 860 bool do_resume = false; 861 int err = 0; 862 863 mutex_lock(&phydev->lock); 864 865 switch (phydev->state) { 866 case PHY_STARTING: 867 phydev->state = PHY_PENDING; 868 break; 869 case PHY_READY: 870 phydev->state = PHY_UP; 871 break; 872 case PHY_HALTED: 873 /* make sure interrupts are re-enabled for the PHY */ 874 if (phydev->irq != PHY_POLL) { 875 err = phy_enable_interrupts(phydev); 876 if (err < 0) 877 break; 878 } 879 880 phydev->state = PHY_RESUMING; 881 do_resume = true; 882 break; 883 default: 884 break; 885 } 886 mutex_unlock(&phydev->lock); 887 888 /* if phy was suspended, bring the physical link up again */ 889 if (do_resume) 890 phy_resume(phydev); 891 } 892 EXPORT_SYMBOL(phy_start); 893 894 /** 895 * phy_state_machine - Handle the state machine 896 * @work: work_struct that describes the work to be done 897 */ 898 void phy_state_machine(struct work_struct *work) 899 { 900 struct delayed_work *dwork = to_delayed_work(work); 901 struct phy_device *phydev = 902 container_of(dwork, struct phy_device, state_queue); 903 bool needs_aneg = false, do_suspend = false; 904 enum phy_state old_state; 905 int err = 0; 906 int old_link; 907 908 mutex_lock(&phydev->lock); 909 910 old_state = phydev->state; 911 912 if (phydev->drv->link_change_notify) 913 phydev->drv->link_change_notify(phydev); 914 915 switch (phydev->state) { 916 case PHY_DOWN: 917 case PHY_STARTING: 918 case PHY_READY: 919 case PHY_PENDING: 920 break; 921 case PHY_UP: 922 needs_aneg = true; 923 924 phydev->link_timeout = PHY_AN_TIMEOUT; 925 926 break; 927 case PHY_AN: 928 err = phy_read_status(phydev); 929 if (err < 0) 930 break; 931 932 /* If the link is down, give up on negotiation for now */ 933 if (!phydev->link) { 934 phydev->state = PHY_NOLINK; 935 netif_carrier_off(phydev->attached_dev); 936 phydev->adjust_link(phydev->attached_dev); 937 break; 938 } 939 940 /* Check if negotiation is done. Break if there's an error */ 941 err = phy_aneg_done(phydev); 942 if (err < 0) 943 break; 944 945 /* If AN is done, we're running */ 946 if (err > 0) { 947 phydev->state = PHY_RUNNING; 948 netif_carrier_on(phydev->attached_dev); 949 phydev->adjust_link(phydev->attached_dev); 950 951 } else if (0 == phydev->link_timeout--) 952 needs_aneg = true; 953 break; 954 case PHY_NOLINK: 955 if (phy_interrupt_is_valid(phydev)) 956 break; 957 958 err = phy_read_status(phydev); 959 if (err) 960 break; 961 962 if (phydev->link) { 963 if (AUTONEG_ENABLE == phydev->autoneg) { 964 err = phy_aneg_done(phydev); 965 if (err < 0) 966 break; 967 968 if (!err) { 969 phydev->state = PHY_AN; 970 phydev->link_timeout = PHY_AN_TIMEOUT; 971 break; 972 } 973 } 974 phydev->state = PHY_RUNNING; 975 netif_carrier_on(phydev->attached_dev); 976 phydev->adjust_link(phydev->attached_dev); 977 } 978 break; 979 case PHY_FORCING: 980 err = genphy_update_link(phydev); 981 if (err) 982 break; 983 984 if (phydev->link) { 985 phydev->state = PHY_RUNNING; 986 netif_carrier_on(phydev->attached_dev); 987 } else { 988 if (0 == phydev->link_timeout--) 989 needs_aneg = true; 990 } 991 992 phydev->adjust_link(phydev->attached_dev); 993 break; 994 case PHY_RUNNING: 995 /* Only register a CHANGE if we are polling and link changed 996 * since latest checking. 997 */ 998 if (phydev->irq == PHY_POLL) { 999 old_link = phydev->link; 1000 err = phy_read_status(phydev); 1001 if (err) 1002 break; 1003 1004 if (old_link != phydev->link) 1005 phydev->state = PHY_CHANGELINK; 1006 } 1007 break; 1008 case PHY_CHANGELINK: 1009 err = phy_read_status(phydev); 1010 if (err) 1011 break; 1012 1013 if (phydev->link) { 1014 phydev->state = PHY_RUNNING; 1015 netif_carrier_on(phydev->attached_dev); 1016 } else { 1017 phydev->state = PHY_NOLINK; 1018 netif_carrier_off(phydev->attached_dev); 1019 } 1020 1021 phydev->adjust_link(phydev->attached_dev); 1022 1023 if (phy_interrupt_is_valid(phydev)) 1024 err = phy_config_interrupt(phydev, 1025 PHY_INTERRUPT_ENABLED); 1026 break; 1027 case PHY_HALTED: 1028 if (phydev->link) { 1029 phydev->link = 0; 1030 netif_carrier_off(phydev->attached_dev); 1031 phydev->adjust_link(phydev->attached_dev); 1032 do_suspend = true; 1033 } 1034 break; 1035 case PHY_RESUMING: 1036 if (AUTONEG_ENABLE == phydev->autoneg) { 1037 err = phy_aneg_done(phydev); 1038 if (err < 0) 1039 break; 1040 1041 /* err > 0 if AN is done. 1042 * Otherwise, it's 0, and we're still waiting for AN 1043 */ 1044 if (err > 0) { 1045 err = phy_read_status(phydev); 1046 if (err) 1047 break; 1048 1049 if (phydev->link) { 1050 phydev->state = PHY_RUNNING; 1051 netif_carrier_on(phydev->attached_dev); 1052 } else { 1053 phydev->state = PHY_NOLINK; 1054 } 1055 phydev->adjust_link(phydev->attached_dev); 1056 } else { 1057 phydev->state = PHY_AN; 1058 phydev->link_timeout = PHY_AN_TIMEOUT; 1059 } 1060 } else { 1061 err = phy_read_status(phydev); 1062 if (err) 1063 break; 1064 1065 if (phydev->link) { 1066 phydev->state = PHY_RUNNING; 1067 netif_carrier_on(phydev->attached_dev); 1068 } else { 1069 phydev->state = PHY_NOLINK; 1070 } 1071 phydev->adjust_link(phydev->attached_dev); 1072 } 1073 break; 1074 } 1075 1076 mutex_unlock(&phydev->lock); 1077 1078 if (needs_aneg) 1079 err = phy_start_aneg(phydev); 1080 else if (do_suspend) 1081 phy_suspend(phydev); 1082 1083 if (err < 0) 1084 phy_error(phydev); 1085 1086 phydev_dbg(phydev, "PHY state change %s -> %s\n", 1087 phy_state_to_str(old_state), 1088 phy_state_to_str(phydev->state)); 1089 1090 /* Only re-schedule a PHY state machine change if we are polling the 1091 * PHY, if PHY_IGNORE_INTERRUPT is set, then we will be moving 1092 * between states from phy_mac_interrupt() 1093 */ 1094 if (phydev->irq == PHY_POLL) 1095 queue_delayed_work(system_power_efficient_wq, &phydev->state_queue, 1096 PHY_STATE_TIME * HZ); 1097 } 1098 1099 void phy_mac_interrupt(struct phy_device *phydev, int new_link) 1100 { 1101 phydev->link = new_link; 1102 1103 /* Trigger a state machine change */ 1104 queue_work(system_power_efficient_wq, &phydev->phy_queue); 1105 } 1106 EXPORT_SYMBOL(phy_mac_interrupt); 1107 1108 static inline void mmd_phy_indirect(struct mii_bus *bus, int prtad, int devad, 1109 int addr) 1110 { 1111 /* Write the desired MMD Devad */ 1112 bus->write(bus, addr, MII_MMD_CTRL, devad); 1113 1114 /* Write the desired MMD register address */ 1115 bus->write(bus, addr, MII_MMD_DATA, prtad); 1116 1117 /* Select the Function : DATA with no post increment */ 1118 bus->write(bus, addr, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 1119 } 1120 1121 /** 1122 * phy_read_mmd_indirect - reads data from the MMD registers 1123 * @phydev: The PHY device bus 1124 * @prtad: MMD Address 1125 * @devad: MMD DEVAD 1126 * 1127 * Description: it reads data from the MMD registers (clause 22 to access to 1128 * clause 45) of the specified phy address. 1129 * To read these register we have: 1130 * 1) Write reg 13 // DEVAD 1131 * 2) Write reg 14 // MMD Address 1132 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 1133 * 3) Read reg 14 // Read MMD data 1134 */ 1135 int phy_read_mmd_indirect(struct phy_device *phydev, int prtad, int devad) 1136 { 1137 struct phy_driver *phydrv = phydev->drv; 1138 int addr = phydev->mdio.addr; 1139 int value = -1; 1140 1141 if (!phydrv->read_mmd_indirect) { 1142 struct mii_bus *bus = phydev->mdio.bus; 1143 1144 mutex_lock(&bus->mdio_lock); 1145 mmd_phy_indirect(bus, prtad, devad, addr); 1146 1147 /* Read the content of the MMD's selected register */ 1148 value = bus->read(bus, addr, MII_MMD_DATA); 1149 mutex_unlock(&bus->mdio_lock); 1150 } else { 1151 value = phydrv->read_mmd_indirect(phydev, prtad, devad, addr); 1152 } 1153 return value; 1154 } 1155 EXPORT_SYMBOL(phy_read_mmd_indirect); 1156 1157 /** 1158 * phy_write_mmd_indirect - writes data to the MMD registers 1159 * @phydev: The PHY device 1160 * @prtad: MMD Address 1161 * @devad: MMD DEVAD 1162 * @data: data to write in the MMD register 1163 * 1164 * Description: Write data from the MMD registers of the specified 1165 * phy address. 1166 * To write these register we have: 1167 * 1) Write reg 13 // DEVAD 1168 * 2) Write reg 14 // MMD Address 1169 * 3) Write reg 13 // MMD Data Command for MMD DEVAD 1170 * 3) Write reg 14 // Write MMD data 1171 */ 1172 void phy_write_mmd_indirect(struct phy_device *phydev, int prtad, 1173 int devad, u32 data) 1174 { 1175 struct phy_driver *phydrv = phydev->drv; 1176 int addr = phydev->mdio.addr; 1177 1178 if (!phydrv->write_mmd_indirect) { 1179 struct mii_bus *bus = phydev->mdio.bus; 1180 1181 mutex_lock(&bus->mdio_lock); 1182 mmd_phy_indirect(bus, prtad, devad, addr); 1183 1184 /* Write the data into MMD's selected register */ 1185 bus->write(bus, addr, MII_MMD_DATA, data); 1186 mutex_unlock(&bus->mdio_lock); 1187 } else { 1188 phydrv->write_mmd_indirect(phydev, prtad, devad, addr, data); 1189 } 1190 } 1191 EXPORT_SYMBOL(phy_write_mmd_indirect); 1192 1193 /** 1194 * phy_init_eee - init and check the EEE feature 1195 * @phydev: target phy_device struct 1196 * @clk_stop_enable: PHY may stop the clock during LPI 1197 * 1198 * Description: it checks if the Energy-Efficient Ethernet (EEE) 1199 * is supported by looking at the MMD registers 3.20 and 7.60/61 1200 * and it programs the MMD register 3.0 setting the "Clock stop enable" 1201 * bit if required. 1202 */ 1203 int phy_init_eee(struct phy_device *phydev, bool clk_stop_enable) 1204 { 1205 /* According to 802.3az,the EEE is supported only in full duplex-mode. 1206 * Also EEE feature is active when core is operating with MII, GMII 1207 * or RGMII (all kinds). Internal PHYs are also allowed to proceed and 1208 * should return an error if they do not support EEE. 1209 */ 1210 if ((phydev->duplex == DUPLEX_FULL) && 1211 ((phydev->interface == PHY_INTERFACE_MODE_MII) || 1212 (phydev->interface == PHY_INTERFACE_MODE_GMII) || 1213 phy_interface_is_rgmii(phydev) || 1214 phy_is_internal(phydev))) { 1215 int eee_lp, eee_cap, eee_adv; 1216 u32 lp, cap, adv; 1217 int status; 1218 1219 /* Read phy status to properly get the right settings */ 1220 status = phy_read_status(phydev); 1221 if (status) 1222 return status; 1223 1224 /* First check if the EEE ability is supported */ 1225 eee_cap = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, 1226 MDIO_MMD_PCS); 1227 if (eee_cap <= 0) 1228 goto eee_exit_err; 1229 1230 cap = mmd_eee_cap_to_ethtool_sup_t(eee_cap); 1231 if (!cap) 1232 goto eee_exit_err; 1233 1234 /* Check which link settings negotiated and verify it in 1235 * the EEE advertising registers. 1236 */ 1237 eee_lp = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, 1238 MDIO_MMD_AN); 1239 if (eee_lp <= 0) 1240 goto eee_exit_err; 1241 1242 eee_adv = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, 1243 MDIO_MMD_AN); 1244 if (eee_adv <= 0) 1245 goto eee_exit_err; 1246 1247 adv = mmd_eee_adv_to_ethtool_adv_t(eee_adv); 1248 lp = mmd_eee_adv_to_ethtool_adv_t(eee_lp); 1249 if (!phy_check_valid(phydev->speed, phydev->duplex, lp & adv)) 1250 goto eee_exit_err; 1251 1252 if (clk_stop_enable) { 1253 /* Configure the PHY to stop receiving xMII 1254 * clock while it is signaling LPI. 1255 */ 1256 int val = phy_read_mmd_indirect(phydev, MDIO_CTRL1, 1257 MDIO_MMD_PCS); 1258 if (val < 0) 1259 return val; 1260 1261 val |= MDIO_PCS_CTRL1_CLKSTOP_EN; 1262 phy_write_mmd_indirect(phydev, MDIO_CTRL1, 1263 MDIO_MMD_PCS, val); 1264 } 1265 1266 return 0; /* EEE supported */ 1267 } 1268 eee_exit_err: 1269 return -EPROTONOSUPPORT; 1270 } 1271 EXPORT_SYMBOL(phy_init_eee); 1272 1273 /** 1274 * phy_get_eee_err - report the EEE wake error count 1275 * @phydev: target phy_device struct 1276 * 1277 * Description: it is to report the number of time where the PHY 1278 * failed to complete its normal wake sequence. 1279 */ 1280 int phy_get_eee_err(struct phy_device *phydev) 1281 { 1282 return phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_WK_ERR, MDIO_MMD_PCS); 1283 } 1284 EXPORT_SYMBOL(phy_get_eee_err); 1285 1286 /** 1287 * phy_ethtool_get_eee - get EEE supported and status 1288 * @phydev: target phy_device struct 1289 * @data: ethtool_eee data 1290 * 1291 * Description: it reportes the Supported/Advertisement/LP Advertisement 1292 * capabilities. 1293 */ 1294 int phy_ethtool_get_eee(struct phy_device *phydev, struct ethtool_eee *data) 1295 { 1296 int val; 1297 1298 /* Get Supported EEE */ 1299 val = phy_read_mmd_indirect(phydev, MDIO_PCS_EEE_ABLE, MDIO_MMD_PCS); 1300 if (val < 0) 1301 return val; 1302 data->supported = mmd_eee_cap_to_ethtool_sup_t(val); 1303 1304 /* Get advertisement EEE */ 1305 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN); 1306 if (val < 0) 1307 return val; 1308 data->advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1309 1310 /* Get LP advertisement EEE */ 1311 val = phy_read_mmd_indirect(phydev, MDIO_AN_EEE_LPABLE, MDIO_MMD_AN); 1312 if (val < 0) 1313 return val; 1314 data->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val); 1315 1316 return 0; 1317 } 1318 EXPORT_SYMBOL(phy_ethtool_get_eee); 1319 1320 /** 1321 * phy_ethtool_set_eee - set EEE supported and status 1322 * @phydev: target phy_device struct 1323 * @data: ethtool_eee data 1324 * 1325 * Description: it is to program the Advertisement EEE register. 1326 */ 1327 int phy_ethtool_set_eee(struct phy_device *phydev, struct ethtool_eee *data) 1328 { 1329 int val = ethtool_adv_to_mmd_eee_adv_t(data->advertised); 1330 1331 phy_write_mmd_indirect(phydev, MDIO_AN_EEE_ADV, MDIO_MMD_AN, val); 1332 1333 return 0; 1334 } 1335 EXPORT_SYMBOL(phy_ethtool_set_eee); 1336 1337 int phy_ethtool_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1338 { 1339 if (phydev->drv->set_wol) 1340 return phydev->drv->set_wol(phydev, wol); 1341 1342 return -EOPNOTSUPP; 1343 } 1344 EXPORT_SYMBOL(phy_ethtool_set_wol); 1345 1346 void phy_ethtool_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) 1347 { 1348 if (phydev->drv->get_wol) 1349 phydev->drv->get_wol(phydev, wol); 1350 } 1351 EXPORT_SYMBOL(phy_ethtool_get_wol); 1352 1353 int phy_ethtool_get_link_ksettings(struct net_device *ndev, 1354 struct ethtool_link_ksettings *cmd) 1355 { 1356 struct phy_device *phydev = ndev->phydev; 1357 1358 if (!phydev) 1359 return -ENODEV; 1360 1361 return phy_ethtool_ksettings_get(phydev, cmd); 1362 } 1363 EXPORT_SYMBOL(phy_ethtool_get_link_ksettings); 1364 1365 int phy_ethtool_set_link_ksettings(struct net_device *ndev, 1366 const struct ethtool_link_ksettings *cmd) 1367 { 1368 struct phy_device *phydev = ndev->phydev; 1369 1370 if (!phydev) 1371 return -ENODEV; 1372 1373 return phy_ethtool_ksettings_set(phydev, cmd); 1374 } 1375 EXPORT_SYMBOL(phy_ethtool_set_link_ksettings); 1376