xref: /linux/drivers/net/phy/micrel.c (revision fe259a1bb26ec78842c975d992331705b0c2c2e8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 #include "phylib.h"
38 
39 /* Operation Mode Strap Override */
40 #define MII_KSZPHY_OMSO				0x16
41 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
42 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
43 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
44 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
45 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
46 
47 /* general Interrupt control/status reg in vendor specific block. */
48 #define MII_KSZPHY_INTCS			0x1B
49 #define KSZPHY_INTCS_JABBER			BIT(15)
50 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
51 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
52 #define KSZPHY_INTCS_PARELLEL			BIT(12)
53 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
54 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
55 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
56 #define KSZPHY_INTCS_LINK_UP			BIT(8)
57 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
58 						KSZPHY_INTCS_LINK_DOWN)
59 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
60 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
61 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
62 						 KSZPHY_INTCS_LINK_UP_STATUS)
63 
64 /* LinkMD Control/Status */
65 #define KSZ8081_LMD				0x1d
66 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
67 #define KSZ8081_LMD_STAT_NORMAL			0
68 #define KSZ8081_LMD_STAT_OPEN			1
69 #define KSZ8081_LMD_STAT_SHORT			2
70 #define KSZ8081_LMD_STAT_FAIL			3
71 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
72 /* Short cable (<10 meter) has been detected by LinkMD */
73 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
74 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
75 
76 #define KSZ9x31_LMD				0x12
77 #define KSZ9x31_LMD_VCT_EN			BIT(15)
78 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
79 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
80 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
83 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
84 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
85 #define KSZ9x31_LMD_VCT_ST_OPEN			1
86 #define KSZ9x31_LMD_VCT_ST_SHORT		2
87 #define KSZ9x31_LMD_VCT_ST_FAIL			3
88 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
91 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
95 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
96 
97 #define KSZPHY_WIRE_PAIR_MASK			0x3
98 
99 #define LAN8814_CABLE_DIAG			0x12
100 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
102 #define LAN8814_PAIR_BIT_SHIFT			12
103 
104 #define LAN8814_WIRE_PAIR_MASK			0xF
105 
106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
107 #define LAN8814_INTC				0x18
108 #define LAN8814_INTS				0x1B
109 
110 #define LAN8814_INT_LINK_DOWN			BIT(2)
111 #define LAN8814_INT_LINK_UP			BIT(0)
112 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
113 						 LAN8814_INT_LINK_DOWN)
114 
115 #define LAN8814_INTR_CTRL_REG			0x34
116 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
117 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
118 
119 #define LAN8814_EEE_STATE			0x38
120 #define LAN8814_EEE_STATE_MASK2P5P		BIT(10)
121 
122 #define LAN8814_PD_CONTROLS			0x9d
123 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK	GENMASK(3, 0)
124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL	0xb
125 
126 /* Represents 1ppm adjustment in 2^32 format with
127  * each nsec contains 4 clock cycles.
128  * The value is calculated as following: (1/1000000)/((2^-32)/4)
129  */
130 #define LAN8814_1PPM_FORMAT			17179
131 
132 /* Represents 1ppm adjustment in 2^32 format with
133  * each nsec contains 8 clock cycles.
134  * The value is calculated as following: (1/1000000)/((2^-32)/8)
135  */
136 #define LAN8841_1PPM_FORMAT			34360
137 
138 #define PTP_RX_VERSION				0x0248
139 #define PTP_TX_VERSION				0x0288
140 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
141 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
142 
143 #define PTP_RX_MOD				0x024F
144 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
145 #define PTP_RX_TIMESTAMP_EN			0x024D
146 #define PTP_TX_TIMESTAMP_EN			0x028D
147 
148 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
149 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
150 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
151 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
152 
153 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
154 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
155 
156 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
157 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
158 #define LTC_HARD_RESET				0x023F
159 #define LTC_HARD_RESET_				BIT(0)
160 
161 #define TSU_HARD_RESET				0x02C1
162 #define TSU_HARD_RESET_				BIT(0)
163 
164 #define PTP_CMD_CTL				0x0200
165 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
166 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
167 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
168 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
169 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
170 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
171 
172 #define PTP_COMMON_INT_ENA			0x0204
173 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN		BIT(2)
174 
175 #define PTP_CLOCK_SET_SEC_HI			0x0205
176 #define PTP_CLOCK_SET_SEC_MID			0x0206
177 #define PTP_CLOCK_SET_SEC_LO			0x0207
178 #define PTP_CLOCK_SET_NS_HI			0x0208
179 #define PTP_CLOCK_SET_NS_LO			0x0209
180 
181 #define PTP_CLOCK_READ_SEC_HI			0x0229
182 #define PTP_CLOCK_READ_SEC_MID			0x022A
183 #define PTP_CLOCK_READ_SEC_LO			0x022B
184 #define PTP_CLOCK_READ_NS_HI			0x022C
185 #define PTP_CLOCK_READ_NS_LO			0x022D
186 
187 #define PTP_GPIO_SEL				0x0230
188 #define PTP_GPIO_SEL_GPIO_SEL(pin)		((pin) << 8)
189 #define PTP_GPIO_CAP_MAP_LO			0x0232
190 
191 #define PTP_GPIO_CAP_EN				0x0233
192 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	BIT(gpio)
193 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
194 
195 #define PTP_GPIO_RE_LTC_SEC_HI_CAP		0x0235
196 #define PTP_GPIO_RE_LTC_SEC_LO_CAP		0x0236
197 #define PTP_GPIO_RE_LTC_NS_HI_CAP		0x0237
198 #define PTP_GPIO_RE_LTC_NS_LO_CAP		0x0238
199 #define PTP_GPIO_FE_LTC_SEC_HI_CAP		0x0239
200 #define PTP_GPIO_FE_LTC_SEC_LO_CAP		0x023A
201 #define PTP_GPIO_FE_LTC_NS_HI_CAP		0x023B
202 #define PTP_GPIO_FE_LTC_NS_LO_CAP		0x023C
203 
204 #define PTP_GPIO_CAP_STS			0x023D
205 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio)	BIT(gpio)
206 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio)	(BIT(gpio) << 8)
207 
208 #define PTP_OPERATING_MODE			0x0241
209 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
210 
211 #define PTP_TX_MOD				0x028F
212 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
213 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
214 
215 #define PTP_RX_PARSE_CONFIG			0x0242
216 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
217 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
218 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
219 
220 #define PTP_TX_PARSE_CONFIG			0x0282
221 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
222 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
223 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
224 
225 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
226 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
227 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
228 
229 #define PTP_LTC_STEP_ADJ_HI			0x0212
230 #define PTP_LTC_STEP_ADJ_LO			0x0213
231 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
232 
233 #define LAN8814_INTR_STS_REG			0x0033
234 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
235 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
236 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
237 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
238 
239 #define PTP_CAP_INFO				0x022A
240 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
241 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
242 
243 #define PTP_TX_EGRESS_SEC_HI			0x0296
244 #define PTP_TX_EGRESS_SEC_LO			0x0297
245 #define PTP_TX_EGRESS_NS_HI			0x0294
246 #define PTP_TX_EGRESS_NS_LO			0x0295
247 #define PTP_TX_MSG_HEADER2			0x0299
248 
249 #define PTP_RX_INGRESS_SEC_HI			0x0256
250 #define PTP_RX_INGRESS_SEC_LO			0x0257
251 #define PTP_RX_INGRESS_NS_HI			0x0254
252 #define PTP_RX_INGRESS_NS_LO			0x0255
253 #define PTP_RX_MSG_HEADER2			0x0259
254 
255 #define PTP_TSU_INT_EN				0x0200
256 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
257 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
258 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
259 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
260 
261 #define PTP_TSU_INT_STS				0x0201
262 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
263 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
264 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
265 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
266 
267 #define LAN8814_LED_CTRL_1			0x0
268 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
269 
270 /* PHY Control 1 */
271 #define MII_KSZPHY_CTRL_1			0x1e
272 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
273 
274 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
275 #define MII_KSZPHY_CTRL_2			0x1f
276 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
277 /* bitmap of PHY register to set interrupt mode */
278 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
279 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
280 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
281 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
282 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
283 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
284 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
285 
286 /* Write/read to/from extended registers */
287 #define MII_KSZPHY_EXTREG			0x0b
288 #define KSZPHY_EXTREG_WRITE			0x8000
289 
290 #define MII_KSZPHY_EXTREG_WRITE			0x0c
291 #define MII_KSZPHY_EXTREG_READ			0x0d
292 
293 /* Extended registers */
294 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
295 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
296 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
297 
298 #define PS_TO_REG				200
299 #define FIFO_SIZE				8
300 
301 #define LAN8814_PTP_GPIO_NUM			24
302 #define LAN8814_PTP_PEROUT_NUM			2
303 #define LAN8814_PTP_EXTTS_NUM			3
304 
305 #define LAN8814_BUFFER_TIME			2
306 
307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
321 
322 #define LAN8814_GPIO_EN1			0x20
323 #define LAN8814_GPIO_EN2			0x21
324 #define LAN8814_GPIO_DIR1			0x22
325 #define LAN8814_GPIO_DIR2			0x23
326 #define LAN8814_GPIO_BUF1			0x24
327 #define LAN8814_GPIO_BUF2			0x25
328 
329 #define LAN8814_GPIO_EN_ADDR(pin) \
330 	((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
331 #define LAN8814_GPIO_EN_BIT(pin)		BIT(pin)
332 #define LAN8814_GPIO_DIR_ADDR(pin) \
333 	((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
334 #define LAN8814_GPIO_DIR_BIT(pin)		BIT(pin)
335 #define LAN8814_GPIO_BUF_ADDR(pin) \
336 	((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
337 #define LAN8814_GPIO_BUF_BIT(pin)		BIT(pin)
338 
339 #define LAN8814_EVENT_A				0
340 #define LAN8814_EVENT_B				1
341 
342 #define LAN8814_PTP_GENERAL_CONFIG		0x0201
343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
344 	((event) ? GENMASK(11, 8) : GENMASK(7, 4))
345 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
346 	(((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
347 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
348 	((event) ? BIT(2) : BIT(0))
349 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
350 	((event) ? BIT(3) : BIT(1))
351 
352 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event)	((event) ? 0x21F : 0x215)
353 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event)	((event) ? 0x220 : 0x216)
354 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event)	((event) ? 0x221 : 0x217)
355 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event)	((event) ? 0x222 : 0x218)
356 
357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event)	((event) ? 0x223 : 0x219)
358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event)	((event) ? 0x224 : 0x21A)
359 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event)	((event) ? 0x225 : 0x21B)
360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event)	((event) ? 0x226 : 0x21C)
361 
362 /* Delay used to get the second part from the LTC */
363 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
364 
365 struct kszphy_hw_stat {
366 	const char *string;
367 	u8 reg;
368 	u8 bits;
369 };
370 
371 static struct kszphy_hw_stat kszphy_hw_stats[] = {
372 	{ "phy_receive_errors", 21, 16},
373 	{ "phy_idle_errors", 10, 8 },
374 };
375 
376 struct kszphy_type {
377 	u32 led_mode_reg;
378 	u16 interrupt_level_mask;
379 	u16 cable_diag_reg;
380 	unsigned long pair_mask;
381 	u16 disable_dll_tx_bit;
382 	u16 disable_dll_rx_bit;
383 	u16 disable_dll_mask;
384 	bool has_broadcast_disable;
385 	bool has_nand_tree_disable;
386 	bool has_rmii_ref_clk_sel;
387 };
388 
389 /* Shared structure between the PHYs of the same package. */
390 struct lan8814_shared_priv {
391 	struct phy_device *phydev;
392 	struct ptp_clock *ptp_clock;
393 	struct ptp_clock_info ptp_clock_info;
394 	struct ptp_pin_desc *pin_config;
395 
396 	/* Lock for ptp_clock */
397 	struct mutex shared_lock;
398 };
399 
400 struct lan8814_ptp_rx_ts {
401 	struct list_head list;
402 	u32 seconds;
403 	u32 nsec;
404 	u16 seq_id;
405 };
406 
407 struct kszphy_ptp_priv {
408 	struct mii_timestamper mii_ts;
409 	struct phy_device *phydev;
410 
411 	struct sk_buff_head tx_queue;
412 	struct sk_buff_head rx_queue;
413 
414 	struct list_head rx_ts_list;
415 	/* Lock for Rx ts fifo */
416 	spinlock_t rx_ts_lock;
417 
418 	int hwts_tx_type;
419 	enum hwtstamp_rx_filters rx_filter;
420 	int layer;
421 	int version;
422 
423 	struct ptp_clock *ptp_clock;
424 	struct ptp_clock_info ptp_clock_info;
425 	/* Lock for ptp_clock */
426 	struct mutex ptp_lock;
427 	struct ptp_pin_desc *pin_config;
428 
429 	s64 seconds;
430 	/* Lock for accessing seconds */
431 	spinlock_t seconds_lock;
432 };
433 
434 struct kszphy_priv {
435 	struct kszphy_ptp_priv ptp_priv;
436 	const struct kszphy_type *type;
437 	struct clk *clk;
438 	int led_mode;
439 	u16 vct_ctrl1000;
440 	bool rmii_ref_clk_sel;
441 	bool rmii_ref_clk_sel_val;
442 	bool clk_enable;
443 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
444 };
445 
446 static const struct kszphy_type lan8814_type = {
447 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
448 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
449 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
450 };
451 
452 static const struct kszphy_type ksz886x_type = {
453 	.cable_diag_reg		= KSZ8081_LMD,
454 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
455 };
456 
457 static const struct kszphy_type ksz8021_type = {
458 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
459 	.has_broadcast_disable	= true,
460 	.has_nand_tree_disable	= true,
461 	.has_rmii_ref_clk_sel	= true,
462 };
463 
464 static const struct kszphy_type ksz8041_type = {
465 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
466 };
467 
468 static const struct kszphy_type ksz8051_type = {
469 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
470 	.has_nand_tree_disable	= true,
471 };
472 
473 static const struct kszphy_type ksz8081_type = {
474 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
475 	.has_broadcast_disable	= true,
476 	.has_nand_tree_disable	= true,
477 	.has_rmii_ref_clk_sel	= true,
478 };
479 
480 static const struct kszphy_type ks8737_type = {
481 	.interrupt_level_mask	= BIT(14),
482 };
483 
484 static const struct kszphy_type ksz9021_type = {
485 	.interrupt_level_mask	= BIT(14),
486 };
487 
488 static const struct kszphy_type ksz9131_type = {
489 	.interrupt_level_mask	= BIT(14),
490 	.disable_dll_tx_bit	= BIT(12),
491 	.disable_dll_rx_bit	= BIT(12),
492 	.disable_dll_mask	= BIT_MASK(12),
493 };
494 
495 static const struct kszphy_type lan8841_type = {
496 	.disable_dll_tx_bit	= BIT(14),
497 	.disable_dll_rx_bit	= BIT(14),
498 	.disable_dll_mask	= BIT_MASK(14),
499 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
500 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
501 };
502 
503 static int kszphy_extended_write(struct phy_device *phydev,
504 				u32 regnum, u16 val)
505 {
506 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
507 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
508 }
509 
510 static int kszphy_extended_read(struct phy_device *phydev,
511 				u32 regnum)
512 {
513 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
514 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
515 }
516 
517 static int kszphy_ack_interrupt(struct phy_device *phydev)
518 {
519 	/* bit[7..0] int status, which is a read and clear register. */
520 	int rc;
521 
522 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
523 
524 	return (rc < 0) ? rc : 0;
525 }
526 
527 static int kszphy_config_intr(struct phy_device *phydev)
528 {
529 	const struct kszphy_type *type = phydev->drv->driver_data;
530 	int temp, err;
531 	u16 mask;
532 
533 	if (type && type->interrupt_level_mask)
534 		mask = type->interrupt_level_mask;
535 	else
536 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
537 
538 	/* set the interrupt pin active low */
539 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
540 	if (temp < 0)
541 		return temp;
542 	temp &= ~mask;
543 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
544 
545 	/* enable / disable interrupts */
546 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
547 		err = kszphy_ack_interrupt(phydev);
548 		if (err)
549 			return err;
550 
551 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
552 	} else {
553 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
554 		if (err)
555 			return err;
556 
557 		err = kszphy_ack_interrupt(phydev);
558 	}
559 
560 	return err;
561 }
562 
563 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
564 {
565 	int irq_status;
566 
567 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
568 	if (irq_status < 0) {
569 		phy_error(phydev);
570 		return IRQ_NONE;
571 	}
572 
573 	if (!(irq_status & KSZPHY_INTCS_STATUS))
574 		return IRQ_NONE;
575 
576 	phy_trigger_machine(phydev);
577 
578 	return IRQ_HANDLED;
579 }
580 
581 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
582 {
583 	int ctrl;
584 
585 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
586 	if (ctrl < 0)
587 		return ctrl;
588 
589 	if (val)
590 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
591 	else
592 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
593 
594 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
595 }
596 
597 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
598 {
599 	int rc, temp, shift;
600 
601 	switch (reg) {
602 	case MII_KSZPHY_CTRL_1:
603 		shift = 14;
604 		break;
605 	case MII_KSZPHY_CTRL_2:
606 		shift = 4;
607 		break;
608 	default:
609 		return -EINVAL;
610 	}
611 
612 	temp = phy_read(phydev, reg);
613 	if (temp < 0) {
614 		rc = temp;
615 		goto out;
616 	}
617 
618 	temp &= ~(3 << shift);
619 	temp |= val << shift;
620 	rc = phy_write(phydev, reg, temp);
621 out:
622 	if (rc < 0)
623 		phydev_err(phydev, "failed to set led mode\n");
624 
625 	return rc;
626 }
627 
628 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
629  * unique (non-broadcast) address on a shared bus.
630  */
631 static int kszphy_broadcast_disable(struct phy_device *phydev)
632 {
633 	int ret;
634 
635 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
636 	if (ret < 0)
637 		goto out;
638 
639 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
640 out:
641 	if (ret)
642 		phydev_err(phydev, "failed to disable broadcast address\n");
643 
644 	return ret;
645 }
646 
647 static int kszphy_nand_tree_disable(struct phy_device *phydev)
648 {
649 	int ret;
650 
651 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
652 	if (ret < 0)
653 		goto out;
654 
655 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
656 		return 0;
657 
658 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
659 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
660 out:
661 	if (ret)
662 		phydev_err(phydev, "failed to disable NAND tree mode\n");
663 
664 	return ret;
665 }
666 
667 /* Some config bits need to be set again on resume, handle them here. */
668 static int kszphy_config_reset(struct phy_device *phydev)
669 {
670 	struct kszphy_priv *priv = phydev->priv;
671 	int ret;
672 
673 	if (priv->rmii_ref_clk_sel) {
674 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
675 		if (ret) {
676 			phydev_err(phydev,
677 				   "failed to set rmii reference clock\n");
678 			return ret;
679 		}
680 	}
681 
682 	if (priv->type && priv->led_mode >= 0)
683 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
684 
685 	return 0;
686 }
687 
688 static int kszphy_config_init(struct phy_device *phydev)
689 {
690 	struct kszphy_priv *priv = phydev->priv;
691 	const struct kszphy_type *type;
692 
693 	if (!priv)
694 		return 0;
695 
696 	type = priv->type;
697 
698 	if (type && type->has_broadcast_disable)
699 		kszphy_broadcast_disable(phydev);
700 
701 	if (type && type->has_nand_tree_disable)
702 		kszphy_nand_tree_disable(phydev);
703 
704 	return kszphy_config_reset(phydev);
705 }
706 
707 static int ksz8041_fiber_mode(struct phy_device *phydev)
708 {
709 	struct device_node *of_node = phydev->mdio.dev.of_node;
710 
711 	return of_property_read_bool(of_node, "micrel,fiber-mode");
712 }
713 
714 static int ksz8041_config_init(struct phy_device *phydev)
715 {
716 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
717 
718 	/* Limit supported and advertised modes in fiber mode */
719 	if (ksz8041_fiber_mode(phydev)) {
720 		phydev->dev_flags |= MICREL_PHY_FXEN;
721 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
722 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
723 
724 		linkmode_and(phydev->supported, phydev->supported, mask);
725 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
726 				 phydev->supported);
727 		linkmode_and(phydev->advertising, phydev->advertising, mask);
728 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
729 				 phydev->advertising);
730 		phydev->autoneg = AUTONEG_DISABLE;
731 	}
732 
733 	return kszphy_config_init(phydev);
734 }
735 
736 static int ksz8041_config_aneg(struct phy_device *phydev)
737 {
738 	/* Skip auto-negotiation in fiber mode */
739 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
740 		phydev->speed = SPEED_100;
741 		return 0;
742 	}
743 
744 	return genphy_config_aneg(phydev);
745 }
746 
747 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
748 					    const bool ksz_8051)
749 {
750 	int ret;
751 
752 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
753 		return 0;
754 
755 	ret = phy_read(phydev, MII_BMSR);
756 	if (ret < 0)
757 		return ret;
758 
759 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
760 	 * exact PHY ID. However, they can be told apart by the extended
761 	 * capability registers presence. The KSZ8051 PHY has them while
762 	 * the switch does not.
763 	 */
764 	ret &= BMSR_ERCAP;
765 	if (ksz_8051)
766 		return ret;
767 	else
768 		return !ret;
769 }
770 
771 static int ksz8051_match_phy_device(struct phy_device *phydev)
772 {
773 	return ksz8051_ksz8795_match_phy_device(phydev, true);
774 }
775 
776 static int ksz8081_config_init(struct phy_device *phydev)
777 {
778 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
779 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
780 	 * pull-down is missing, the factory test mode should be cleared by
781 	 * manually writing a 0.
782 	 */
783 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
784 
785 	return kszphy_config_init(phydev);
786 }
787 
788 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
789 {
790 	u16 val;
791 
792 	switch (ctrl) {
793 	case ETH_TP_MDI:
794 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
795 		break;
796 	case ETH_TP_MDI_X:
797 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
798 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
799 		break;
800 	case ETH_TP_MDI_AUTO:
801 		val = 0;
802 		break;
803 	default:
804 		return 0;
805 	}
806 
807 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
808 			  KSZ8081_CTRL2_HP_MDIX |
809 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
810 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
811 			  KSZ8081_CTRL2_HP_MDIX | val);
812 }
813 
814 static int ksz8081_config_aneg(struct phy_device *phydev)
815 {
816 	int ret;
817 
818 	ret = genphy_config_aneg(phydev);
819 	if (ret)
820 		return ret;
821 
822 	/* The MDI-X configuration is automatically changed by the PHY after
823 	 * switching from autoneg off to on. So, take MDI-X configuration under
824 	 * own control and set it after autoneg configuration was done.
825 	 */
826 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
827 }
828 
829 static int ksz8081_mdix_update(struct phy_device *phydev)
830 {
831 	int ret;
832 
833 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
834 	if (ret < 0)
835 		return ret;
836 
837 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
838 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
839 			phydev->mdix_ctrl = ETH_TP_MDI_X;
840 		else
841 			phydev->mdix_ctrl = ETH_TP_MDI;
842 	} else {
843 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
844 	}
845 
846 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
847 	if (ret < 0)
848 		return ret;
849 
850 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
851 		phydev->mdix = ETH_TP_MDI;
852 	else
853 		phydev->mdix = ETH_TP_MDI_X;
854 
855 	return 0;
856 }
857 
858 static int ksz8081_read_status(struct phy_device *phydev)
859 {
860 	int ret;
861 
862 	ret = ksz8081_mdix_update(phydev);
863 	if (ret < 0)
864 		return ret;
865 
866 	return genphy_read_status(phydev);
867 }
868 
869 static int ksz8061_config_init(struct phy_device *phydev)
870 {
871 	int ret;
872 
873 	/* Chip can be powered down by the bootstrap code. */
874 	ret = phy_read(phydev, MII_BMCR);
875 	if (ret < 0)
876 		return ret;
877 	if (ret & BMCR_PDOWN) {
878 		ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
879 		if (ret < 0)
880 			return ret;
881 		usleep_range(1000, 2000);
882 	}
883 
884 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
885 	if (ret)
886 		return ret;
887 
888 	return kszphy_config_init(phydev);
889 }
890 
891 static int ksz8795_match_phy_device(struct phy_device *phydev)
892 {
893 	return ksz8051_ksz8795_match_phy_device(phydev, false);
894 }
895 
896 static int ksz9021_load_values_from_of(struct phy_device *phydev,
897 				       const struct device_node *of_node,
898 				       u16 reg,
899 				       const char *field1, const char *field2,
900 				       const char *field3, const char *field4)
901 {
902 	int val1 = -1;
903 	int val2 = -2;
904 	int val3 = -3;
905 	int val4 = -4;
906 	int newval;
907 	int matches = 0;
908 
909 	if (!of_property_read_u32(of_node, field1, &val1))
910 		matches++;
911 
912 	if (!of_property_read_u32(of_node, field2, &val2))
913 		matches++;
914 
915 	if (!of_property_read_u32(of_node, field3, &val3))
916 		matches++;
917 
918 	if (!of_property_read_u32(of_node, field4, &val4))
919 		matches++;
920 
921 	if (!matches)
922 		return 0;
923 
924 	if (matches < 4)
925 		newval = kszphy_extended_read(phydev, reg);
926 	else
927 		newval = 0;
928 
929 	if (val1 != -1)
930 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
931 
932 	if (val2 != -2)
933 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
934 
935 	if (val3 != -3)
936 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
937 
938 	if (val4 != -4)
939 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
940 
941 	return kszphy_extended_write(phydev, reg, newval);
942 }
943 
944 static int ksz9021_config_init(struct phy_device *phydev)
945 {
946 	const struct device_node *of_node;
947 	const struct device *dev_walker;
948 
949 	/* The Micrel driver has a deprecated option to place phy OF
950 	 * properties in the MAC node. Walk up the tree of devices to
951 	 * find a device with an OF node.
952 	 */
953 	dev_walker = &phydev->mdio.dev;
954 	do {
955 		of_node = dev_walker->of_node;
956 		dev_walker = dev_walker->parent;
957 
958 	} while (!of_node && dev_walker);
959 
960 	if (of_node) {
961 		ksz9021_load_values_from_of(phydev, of_node,
962 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
963 				    "txen-skew-ps", "txc-skew-ps",
964 				    "rxdv-skew-ps", "rxc-skew-ps");
965 		ksz9021_load_values_from_of(phydev, of_node,
966 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
967 				    "rxd0-skew-ps", "rxd1-skew-ps",
968 				    "rxd2-skew-ps", "rxd3-skew-ps");
969 		ksz9021_load_values_from_of(phydev, of_node,
970 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
971 				    "txd0-skew-ps", "txd1-skew-ps",
972 				    "txd2-skew-ps", "txd3-skew-ps");
973 	}
974 	return 0;
975 }
976 
977 #define KSZ9031_PS_TO_REG		60
978 
979 /* Extended registers */
980 /* MMD Address 0x0 */
981 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
982 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
983 
984 /* MMD Address 0x2 */
985 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
986 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
987 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
988 
989 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
990 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
991 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
992 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
993 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
994 
995 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
996 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
997 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
998 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
999 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
1000 
1001 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
1002 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
1003 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
1004 
1005 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
1006  * provide different RGMII options we need to configure delay offset
1007  * for each pad relative to build in delay.
1008  */
1009 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
1010  * 1.80ns
1011  */
1012 #define RX_ID				0x7
1013 #define RX_CLK_ID			0x19
1014 
1015 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1016  * internal 1.2ns delay.
1017  */
1018 #define RX_ND				0xc
1019 #define RX_CLK_ND			0x0
1020 
1021 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1022 #define TX_ID				0x0
1023 #define TX_CLK_ID			0x1f
1024 
1025 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1026  * dealy
1027  */
1028 #define TX_ND				0x7
1029 #define TX_CLK_ND			0xf
1030 
1031 /* MMD Address 0x1C */
1032 #define MII_KSZ9031RN_EDPD		0x23
1033 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
1034 
1035 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable,
1036 				int speed)
1037 {
1038 	u16 ctl = BMCR_LOOPBACK;
1039 	int val;
1040 
1041 	if (!enable)
1042 		return genphy_loopback(phydev, enable, 0);
1043 
1044 	if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000)
1045 		phydev->speed = speed;
1046 	else if (speed)
1047 		return -EINVAL;
1048 	phydev->duplex = DUPLEX_FULL;
1049 
1050 	ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
1051 
1052 	phy_write(phydev, MII_BMCR, ctl);
1053 
1054 	return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS,
1055 				     5000, 500000, true);
1056 }
1057 
1058 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1059 				       const struct device_node *of_node,
1060 				       u16 reg, size_t field_sz,
1061 				       const char *field[], u8 numfields,
1062 				       bool *update)
1063 {
1064 	int val[4] = {-1, -2, -3, -4};
1065 	int matches = 0;
1066 	u16 mask;
1067 	u16 maxval;
1068 	u16 newval;
1069 	int i;
1070 
1071 	for (i = 0; i < numfields; i++)
1072 		if (!of_property_read_u32(of_node, field[i], val + i))
1073 			matches++;
1074 
1075 	if (!matches)
1076 		return 0;
1077 
1078 	*update |= true;
1079 
1080 	if (matches < numfields)
1081 		newval = phy_read_mmd(phydev, 2, reg);
1082 	else
1083 		newval = 0;
1084 
1085 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1086 	for (i = 0; i < numfields; i++)
1087 		if (val[i] != -(i + 1)) {
1088 			mask = 0xffff;
1089 			mask ^= maxval << (field_sz * i);
1090 			newval = (newval & mask) |
1091 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
1092 					<< (field_sz * i));
1093 		}
1094 
1095 	return phy_write_mmd(phydev, 2, reg, newval);
1096 }
1097 
1098 /* Center KSZ9031RNX FLP timing at 16ms. */
1099 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1100 {
1101 	int result;
1102 
1103 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1104 			       0x0006);
1105 	if (result)
1106 		return result;
1107 
1108 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1109 			       0x1A80);
1110 	if (result)
1111 		return result;
1112 
1113 	return genphy_restart_aneg(phydev);
1114 }
1115 
1116 /* Enable energy-detect power-down mode */
1117 static int ksz9031_enable_edpd(struct phy_device *phydev)
1118 {
1119 	int reg;
1120 
1121 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1122 	if (reg < 0)
1123 		return reg;
1124 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1125 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
1126 }
1127 
1128 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1129 {
1130 	u16 rx, tx, rx_clk, tx_clk;
1131 	int ret;
1132 
1133 	switch (phydev->interface) {
1134 	case PHY_INTERFACE_MODE_RGMII:
1135 		tx = TX_ND;
1136 		tx_clk = TX_CLK_ND;
1137 		rx = RX_ND;
1138 		rx_clk = RX_CLK_ND;
1139 		break;
1140 	case PHY_INTERFACE_MODE_RGMII_ID:
1141 		tx = TX_ID;
1142 		tx_clk = TX_CLK_ID;
1143 		rx = RX_ID;
1144 		rx_clk = RX_CLK_ID;
1145 		break;
1146 	case PHY_INTERFACE_MODE_RGMII_RXID:
1147 		tx = TX_ND;
1148 		tx_clk = TX_CLK_ND;
1149 		rx = RX_ID;
1150 		rx_clk = RX_CLK_ID;
1151 		break;
1152 	case PHY_INTERFACE_MODE_RGMII_TXID:
1153 		tx = TX_ID;
1154 		tx_clk = TX_CLK_ID;
1155 		rx = RX_ND;
1156 		rx_clk = RX_CLK_ND;
1157 		break;
1158 	default:
1159 		return 0;
1160 	}
1161 
1162 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1163 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1164 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1165 	if (ret < 0)
1166 		return ret;
1167 
1168 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1169 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1170 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1171 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1172 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1173 	if (ret < 0)
1174 		return ret;
1175 
1176 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1177 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1178 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1179 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1180 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1181 	if (ret < 0)
1182 		return ret;
1183 
1184 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1185 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1186 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1187 }
1188 
1189 static int ksz9031_config_init(struct phy_device *phydev)
1190 {
1191 	const struct device_node *of_node;
1192 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1193 	static const char *rx_data_skews[4] = {
1194 		"rxd0-skew-ps", "rxd1-skew-ps",
1195 		"rxd2-skew-ps", "rxd3-skew-ps"
1196 	};
1197 	static const char *tx_data_skews[4] = {
1198 		"txd0-skew-ps", "txd1-skew-ps",
1199 		"txd2-skew-ps", "txd3-skew-ps"
1200 	};
1201 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1202 	const struct device *dev_walker;
1203 	int result;
1204 
1205 	result = ksz9031_enable_edpd(phydev);
1206 	if (result < 0)
1207 		return result;
1208 
1209 	/* The Micrel driver has a deprecated option to place phy OF
1210 	 * properties in the MAC node. Walk up the tree of devices to
1211 	 * find a device with an OF node.
1212 	 */
1213 	dev_walker = &phydev->mdio.dev;
1214 	do {
1215 		of_node = dev_walker->of_node;
1216 		dev_walker = dev_walker->parent;
1217 	} while (!of_node && dev_walker);
1218 
1219 	if (of_node) {
1220 		bool update = false;
1221 
1222 		if (phy_interface_is_rgmii(phydev)) {
1223 			result = ksz9031_config_rgmii_delay(phydev);
1224 			if (result < 0)
1225 				return result;
1226 		}
1227 
1228 		ksz9031_of_load_skew_values(phydev, of_node,
1229 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1230 				clk_skews, 2, &update);
1231 
1232 		ksz9031_of_load_skew_values(phydev, of_node,
1233 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1234 				control_skews, 2, &update);
1235 
1236 		ksz9031_of_load_skew_values(phydev, of_node,
1237 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1238 				rx_data_skews, 4, &update);
1239 
1240 		ksz9031_of_load_skew_values(phydev, of_node,
1241 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1242 				tx_data_skews, 4, &update);
1243 
1244 		if (update && !phy_interface_is_rgmii(phydev))
1245 			phydev_warn(phydev,
1246 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1247 
1248 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1249 		 * When the device links in the 1000BASE-T slave mode only,
1250 		 * the optional 125MHz reference output clock (CLK125_NDO)
1251 		 * has wide duty cycle variation.
1252 		 *
1253 		 * The optional CLK125_NDO clock does not meet the RGMII
1254 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1255 		 * cannot be used directly by the MAC side for clocking
1256 		 * applications that have setup/hold time requirements on
1257 		 * rising and falling clock edges.
1258 		 *
1259 		 * Workaround:
1260 		 * Force the phy to be the master to receive a stable clock
1261 		 * which meets the duty cycle requirement.
1262 		 */
1263 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1264 			result = phy_read(phydev, MII_CTRL1000);
1265 			if (result < 0)
1266 				goto err_force_master;
1267 
1268 			/* enable master mode, config & prefer master */
1269 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1270 			result = phy_write(phydev, MII_CTRL1000, result);
1271 			if (result < 0)
1272 				goto err_force_master;
1273 		}
1274 	}
1275 
1276 	return ksz9031_center_flp_timing(phydev);
1277 
1278 err_force_master:
1279 	phydev_err(phydev, "failed to force the phy to master mode\n");
1280 	return result;
1281 }
1282 
1283 #define KSZ9131_SKEW_5BIT_MAX	2400
1284 #define KSZ9131_SKEW_4BIT_MAX	800
1285 #define KSZ9131_OFFSET		700
1286 #define KSZ9131_STEP		100
1287 
1288 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1289 				       struct device_node *of_node,
1290 				       u16 reg, size_t field_sz,
1291 				       char *field[], u8 numfields)
1292 {
1293 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1294 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1295 	int skewval, skewmax = 0;
1296 	int matches = 0;
1297 	u16 maxval;
1298 	u16 newval;
1299 	u16 mask;
1300 	int i;
1301 
1302 	/* psec properties in dts should mean x pico seconds */
1303 	if (field_sz == 5)
1304 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1305 	else
1306 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1307 
1308 	for (i = 0; i < numfields; i++)
1309 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1310 			if (skewval < -KSZ9131_OFFSET)
1311 				skewval = -KSZ9131_OFFSET;
1312 			else if (skewval > skewmax)
1313 				skewval = skewmax;
1314 
1315 			val[i] = skewval + KSZ9131_OFFSET;
1316 			matches++;
1317 		}
1318 
1319 	if (!matches)
1320 		return 0;
1321 
1322 	if (matches < numfields)
1323 		newval = phy_read_mmd(phydev, 2, reg);
1324 	else
1325 		newval = 0;
1326 
1327 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1328 	for (i = 0; i < numfields; i++)
1329 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1330 			mask = 0xffff;
1331 			mask ^= maxval << (field_sz * i);
1332 			newval = (newval & mask) |
1333 				(((val[i] / KSZ9131_STEP) & maxval)
1334 					<< (field_sz * i));
1335 		}
1336 
1337 	return phy_write_mmd(phydev, 2, reg, newval);
1338 }
1339 
1340 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1341 #define KSZ9131RN_RXC_DLL_CTRL		76
1342 #define KSZ9131RN_TXC_DLL_CTRL		77
1343 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1344 
1345 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1346 {
1347 	const struct kszphy_type *type = phydev->drv->driver_data;
1348 	u16 rxcdll_val, txcdll_val;
1349 	int ret;
1350 
1351 	switch (phydev->interface) {
1352 	case PHY_INTERFACE_MODE_RGMII:
1353 		rxcdll_val = type->disable_dll_rx_bit;
1354 		txcdll_val = type->disable_dll_tx_bit;
1355 		break;
1356 	case PHY_INTERFACE_MODE_RGMII_ID:
1357 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1358 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1359 		break;
1360 	case PHY_INTERFACE_MODE_RGMII_RXID:
1361 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1362 		txcdll_val = type->disable_dll_tx_bit;
1363 		break;
1364 	case PHY_INTERFACE_MODE_RGMII_TXID:
1365 		rxcdll_val = type->disable_dll_rx_bit;
1366 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1367 		break;
1368 	default:
1369 		return 0;
1370 	}
1371 
1372 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1373 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1374 			     rxcdll_val);
1375 	if (ret < 0)
1376 		return ret;
1377 
1378 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1379 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1380 			      txcdll_val);
1381 }
1382 
1383 /* Silicon Errata DS80000693B
1384  *
1385  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1386  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1387  * according to the datasheet (off if there is no link).
1388  */
1389 static int ksz9131_led_errata(struct phy_device *phydev)
1390 {
1391 	int reg;
1392 
1393 	reg = phy_read_mmd(phydev, 2, 0);
1394 	if (reg < 0)
1395 		return reg;
1396 
1397 	if (!(reg & BIT(4)))
1398 		return 0;
1399 
1400 	return phy_set_bits(phydev, 0x1e, BIT(9));
1401 }
1402 
1403 static int ksz9131_config_init(struct phy_device *phydev)
1404 {
1405 	struct device_node *of_node;
1406 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1407 	char *rx_data_skews[4] = {
1408 		"rxd0-skew-psec", "rxd1-skew-psec",
1409 		"rxd2-skew-psec", "rxd3-skew-psec"
1410 	};
1411 	char *tx_data_skews[4] = {
1412 		"txd0-skew-psec", "txd1-skew-psec",
1413 		"txd2-skew-psec", "txd3-skew-psec"
1414 	};
1415 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1416 	const struct device *dev_walker;
1417 	int ret;
1418 
1419 	phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1420 
1421 	dev_walker = &phydev->mdio.dev;
1422 	do {
1423 		of_node = dev_walker->of_node;
1424 		dev_walker = dev_walker->parent;
1425 	} while (!of_node && dev_walker);
1426 
1427 	if (!of_node)
1428 		return 0;
1429 
1430 	if (phy_interface_is_rgmii(phydev)) {
1431 		ret = ksz9131_config_rgmii_delay(phydev);
1432 		if (ret < 0)
1433 			return ret;
1434 	}
1435 
1436 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1437 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1438 					  clk_skews, 2);
1439 	if (ret < 0)
1440 		return ret;
1441 
1442 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1443 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1444 					  control_skews, 2);
1445 	if (ret < 0)
1446 		return ret;
1447 
1448 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1449 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1450 					  rx_data_skews, 4);
1451 	if (ret < 0)
1452 		return ret;
1453 
1454 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1455 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1456 					  tx_data_skews, 4);
1457 	if (ret < 0)
1458 		return ret;
1459 
1460 	ret = ksz9131_led_errata(phydev);
1461 	if (ret < 0)
1462 		return ret;
1463 
1464 	return 0;
1465 }
1466 
1467 #define MII_KSZ9131_AUTO_MDIX		0x1C
1468 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1469 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1470 #define MII_KSZ9131_DIG_AXAN_STS	0x14
1471 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET	BIT(14)
1472 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT	BIT(12)
1473 
1474 static int ksz9131_mdix_update(struct phy_device *phydev)
1475 {
1476 	int ret;
1477 
1478 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1479 		phydev->mdix = phydev->mdix_ctrl;
1480 	} else {
1481 		ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1482 		if (ret < 0)
1483 			return ret;
1484 
1485 		if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1486 			if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1487 				phydev->mdix = ETH_TP_MDI;
1488 			else
1489 				phydev->mdix = ETH_TP_MDI_X;
1490 		} else {
1491 			phydev->mdix = ETH_TP_MDI_INVALID;
1492 		}
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1499 {
1500 	u16 val;
1501 
1502 	switch (ctrl) {
1503 	case ETH_TP_MDI:
1504 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1505 		      MII_KSZ9131_AUTO_MDI_SET;
1506 		break;
1507 	case ETH_TP_MDI_X:
1508 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1509 		break;
1510 	case ETH_TP_MDI_AUTO:
1511 		val = 0;
1512 		break;
1513 	default:
1514 		return 0;
1515 	}
1516 
1517 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1518 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1519 			  MII_KSZ9131_AUTO_MDI_SET, val);
1520 }
1521 
1522 static int ksz9131_read_status(struct phy_device *phydev)
1523 {
1524 	int ret;
1525 
1526 	ret = ksz9131_mdix_update(phydev);
1527 	if (ret < 0)
1528 		return ret;
1529 
1530 	return genphy_read_status(phydev);
1531 }
1532 
1533 static int ksz9131_config_aneg(struct phy_device *phydev)
1534 {
1535 	int ret;
1536 
1537 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1538 	if (ret)
1539 		return ret;
1540 
1541 	return genphy_config_aneg(phydev);
1542 }
1543 
1544 static int ksz9477_get_features(struct phy_device *phydev)
1545 {
1546 	int ret;
1547 
1548 	ret = genphy_read_abilities(phydev);
1549 	if (ret)
1550 		return ret;
1551 
1552 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1553 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1554 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1555 	 * of caps.
1556 	 * KSZ8563R should have 100BaseTX/Full only.
1557 	 */
1558 	linkmode_and(phydev->supported_eee, phydev->supported,
1559 		     PHY_EEE_CAP1_FEATURES);
1560 
1561 	return 0;
1562 }
1563 
1564 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1565 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1566 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1567 static int ksz8873mll_read_status(struct phy_device *phydev)
1568 {
1569 	int regval;
1570 
1571 	/* dummy read */
1572 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1573 
1574 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1575 
1576 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1577 		phydev->duplex = DUPLEX_HALF;
1578 	else
1579 		phydev->duplex = DUPLEX_FULL;
1580 
1581 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1582 		phydev->speed = SPEED_10;
1583 	else
1584 		phydev->speed = SPEED_100;
1585 
1586 	phydev->link = 1;
1587 	phydev->pause = phydev->asym_pause = 0;
1588 
1589 	return 0;
1590 }
1591 
1592 static int ksz9031_get_features(struct phy_device *phydev)
1593 {
1594 	int ret;
1595 
1596 	ret = genphy_read_abilities(phydev);
1597 	if (ret < 0)
1598 		return ret;
1599 
1600 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1601 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1602 	 * link-up may fail after a link-up to link-down transition.
1603 	 *
1604 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1605 	 *
1606 	 * Workaround:
1607 	 * Do not enable the Asymmetric Pause capability bit.
1608 	 */
1609 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1610 
1611 	/* We force setting the Pause capability as the core will force the
1612 	 * Asymmetric Pause capability to 1 otherwise.
1613 	 */
1614 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1615 
1616 	return 0;
1617 }
1618 
1619 static int ksz9031_read_status(struct phy_device *phydev)
1620 {
1621 	int err;
1622 	int regval;
1623 
1624 	err = genphy_read_status(phydev);
1625 	if (err)
1626 		return err;
1627 
1628 	/* Make sure the PHY is not broken. Read idle error count,
1629 	 * and reset the PHY if it is maxed out.
1630 	 */
1631 	regval = phy_read(phydev, MII_STAT1000);
1632 	if ((regval & 0xFF) == 0xFF) {
1633 		phy_init_hw(phydev);
1634 		phydev->link = 0;
1635 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1636 			phydev->drv->config_intr(phydev);
1637 		return genphy_config_aneg(phydev);
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1644 {
1645 	struct kszphy_priv *priv = phydev->priv;
1646 	int ret;
1647 
1648 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1649 	 * Prior to running the cable diagnostics, Auto-negotiation should
1650 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1651 	 * via the Basic Control Register.
1652 	 */
1653 	ret = phy_modify(phydev, MII_BMCR,
1654 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1655 			 BMCR_ANENABLE | BMCR_SPEED100,
1656 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1657 	if (ret)
1658 		return ret;
1659 
1660 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1661 	 * The Master-Slave configuration should be set to Slave by writing
1662 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1663 	 * Register.
1664 	 */
1665 	ret = phy_read(phydev, MII_CTRL1000);
1666 	if (ret < 0)
1667 		return ret;
1668 
1669 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1670 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1671 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1672 	ret |= CTL1000_ENABLE_MASTER;
1673 
1674 	return phy_write(phydev, MII_CTRL1000, ret);
1675 }
1676 
1677 static int ksz9x31_cable_test_result_trans(u16 status)
1678 {
1679 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1680 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1681 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1682 	case KSZ9x31_LMD_VCT_ST_OPEN:
1683 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1684 	case KSZ9x31_LMD_VCT_ST_SHORT:
1685 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1686 	case KSZ9x31_LMD_VCT_ST_FAIL:
1687 		fallthrough;
1688 	default:
1689 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1690 	}
1691 }
1692 
1693 static bool ksz9x31_cable_test_failed(u16 status)
1694 {
1695 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1696 
1697 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1698 }
1699 
1700 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1701 {
1702 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1703 	case KSZ9x31_LMD_VCT_ST_OPEN:
1704 		fallthrough;
1705 	case KSZ9x31_LMD_VCT_ST_SHORT:
1706 		return true;
1707 	}
1708 	return false;
1709 }
1710 
1711 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1712 {
1713 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1714 
1715 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1716 	 *
1717 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1718 	 */
1719 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1720 		dt = clamp(dt - 22, 0, 255);
1721 
1722 	return (dt * 400) / 10;
1723 }
1724 
1725 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1726 {
1727 	int val, ret;
1728 
1729 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1730 				    !(val & KSZ9x31_LMD_VCT_EN),
1731 				    30000, 100000, true);
1732 
1733 	return ret < 0 ? ret : 0;
1734 }
1735 
1736 static int ksz9x31_cable_test_get_pair(int pair)
1737 {
1738 	static const int ethtool_pair[] = {
1739 		ETHTOOL_A_CABLE_PAIR_A,
1740 		ETHTOOL_A_CABLE_PAIR_B,
1741 		ETHTOOL_A_CABLE_PAIR_C,
1742 		ETHTOOL_A_CABLE_PAIR_D,
1743 	};
1744 
1745 	return ethtool_pair[pair];
1746 }
1747 
1748 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1749 {
1750 	int ret, val;
1751 
1752 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1753 	 * To test each individual cable pair, set the cable pair in the Cable
1754 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1755 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1756 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1757 	 * will self clear when the test is concluded.
1758 	 */
1759 	ret = phy_write(phydev, KSZ9x31_LMD,
1760 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1761 	if (ret)
1762 		return ret;
1763 
1764 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1765 	if (ret)
1766 		return ret;
1767 
1768 	val = phy_read(phydev, KSZ9x31_LMD);
1769 	if (val < 0)
1770 		return val;
1771 
1772 	if (ksz9x31_cable_test_failed(val))
1773 		return -EAGAIN;
1774 
1775 	ret = ethnl_cable_test_result(phydev,
1776 				      ksz9x31_cable_test_get_pair(pair),
1777 				      ksz9x31_cable_test_result_trans(val));
1778 	if (ret)
1779 		return ret;
1780 
1781 	if (!ksz9x31_cable_test_fault_length_valid(val))
1782 		return 0;
1783 
1784 	return ethnl_cable_test_fault_length(phydev,
1785 					     ksz9x31_cable_test_get_pair(pair),
1786 					     ksz9x31_cable_test_fault_length(phydev, val));
1787 }
1788 
1789 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1790 					 bool *finished)
1791 {
1792 	struct kszphy_priv *priv = phydev->priv;
1793 	unsigned long pair_mask = 0xf;
1794 	int retries = 20;
1795 	int pair, ret, rv;
1796 
1797 	*finished = false;
1798 
1799 	/* Try harder if link partner is active */
1800 	while (pair_mask && retries--) {
1801 		for_each_set_bit(pair, &pair_mask, 4) {
1802 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1803 			if (ret == -EAGAIN)
1804 				continue;
1805 			if (ret < 0)
1806 				return ret;
1807 			clear_bit(pair, &pair_mask);
1808 		}
1809 		/* If link partner is in autonegotiation mode it will send 2ms
1810 		 * of FLPs with at least 6ms of silence.
1811 		 * Add 2ms sleep to have better chances to hit this silence.
1812 		 */
1813 		if (pair_mask)
1814 			usleep_range(2000, 3000);
1815 	}
1816 
1817 	/* Report remaining unfinished pair result as unknown. */
1818 	for_each_set_bit(pair, &pair_mask, 4) {
1819 		ret = ethnl_cable_test_result(phydev,
1820 					      ksz9x31_cable_test_get_pair(pair),
1821 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1822 	}
1823 
1824 	*finished = true;
1825 
1826 	/* Restore cached bits from before LinkMD got started. */
1827 	rv = phy_modify(phydev, MII_CTRL1000,
1828 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1829 			priv->vct_ctrl1000);
1830 	if (rv)
1831 		return rv;
1832 
1833 	return ret;
1834 }
1835 
1836 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1837 {
1838 	return 0;
1839 }
1840 
1841 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1842 {
1843 	u16 val;
1844 
1845 	switch (ctrl) {
1846 	case ETH_TP_MDI:
1847 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1848 		break;
1849 	case ETH_TP_MDI_X:
1850 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1851 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1852 		 * sheet seems to be missing:
1853 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1854 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1855 		 */
1856 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1857 		break;
1858 	case ETH_TP_MDI_AUTO:
1859 		val = 0;
1860 		break;
1861 	default:
1862 		return 0;
1863 	}
1864 
1865 	return phy_modify(phydev, MII_BMCR,
1866 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1867 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1868 			  KSZ886X_BMCR_HP_MDIX | val);
1869 }
1870 
1871 static int ksz886x_config_aneg(struct phy_device *phydev)
1872 {
1873 	int ret;
1874 
1875 	ret = genphy_config_aneg(phydev);
1876 	if (ret)
1877 		return ret;
1878 
1879 	if (phydev->autoneg != AUTONEG_ENABLE) {
1880 		/* When autonegotation is disabled, we need to manually force
1881 		 * the link state. If we don't do this, the PHY will keep
1882 		 * sending Fast Link Pulses (FLPs) which are part of the
1883 		 * autonegotiation process. This is not desired when
1884 		 * autonegotiation is off.
1885 		 */
1886 		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1887 				   KSZ886X_CTRL_FORCE_LINK);
1888 		if (ret)
1889 			return ret;
1890 	} else {
1891 		/* If we had previously forced the link state, we need to
1892 		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1893 		 * will not perform autonegotiation.
1894 		 */
1895 		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1896 				     KSZ886X_CTRL_FORCE_LINK);
1897 		if (ret)
1898 			return ret;
1899 	}
1900 
1901 	/* The MDI-X configuration is automatically changed by the PHY after
1902 	 * switching from autoneg off to on. So, take MDI-X configuration under
1903 	 * own control and set it after autoneg configuration was done.
1904 	 */
1905 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1906 }
1907 
1908 static int ksz886x_mdix_update(struct phy_device *phydev)
1909 {
1910 	int ret;
1911 
1912 	ret = phy_read(phydev, MII_BMCR);
1913 	if (ret < 0)
1914 		return ret;
1915 
1916 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1917 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1918 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1919 		else
1920 			phydev->mdix_ctrl = ETH_TP_MDI;
1921 	} else {
1922 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1923 	}
1924 
1925 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1926 	if (ret < 0)
1927 		return ret;
1928 
1929 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1930 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1931 		phydev->mdix = ETH_TP_MDI_X;
1932 	else
1933 		phydev->mdix = ETH_TP_MDI;
1934 
1935 	return 0;
1936 }
1937 
1938 static int ksz886x_read_status(struct phy_device *phydev)
1939 {
1940 	int ret;
1941 
1942 	ret = ksz886x_mdix_update(phydev);
1943 	if (ret < 0)
1944 		return ret;
1945 
1946 	return genphy_read_status(phydev);
1947 }
1948 
1949 struct ksz9477_errata_write {
1950 	u8 dev_addr;
1951 	u8 reg_addr;
1952 	u16 val;
1953 };
1954 
1955 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1956 	 /* Register settings are needed to improve PHY receive performance */
1957 	{0x01, 0x6f, 0xdd0b},
1958 	{0x01, 0x8f, 0x6032},
1959 	{0x01, 0x9d, 0x248c},
1960 	{0x01, 0x75, 0x0060},
1961 	{0x01, 0xd3, 0x7777},
1962 	{0x1c, 0x06, 0x3008},
1963 	{0x1c, 0x08, 0x2000},
1964 
1965 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1966 	{0x1c, 0x04, 0x00d0},
1967 
1968 	/* Register settings are required to meet data sheet supply current specifications */
1969 	{0x1c, 0x13, 0x6eff},
1970 	{0x1c, 0x14, 0xe6ff},
1971 	{0x1c, 0x15, 0x6eff},
1972 	{0x1c, 0x16, 0xe6ff},
1973 	{0x1c, 0x17, 0x00ff},
1974 	{0x1c, 0x18, 0x43ff},
1975 	{0x1c, 0x19, 0xc3ff},
1976 	{0x1c, 0x1a, 0x6fff},
1977 	{0x1c, 0x1b, 0x07ff},
1978 	{0x1c, 0x1c, 0x0fff},
1979 	{0x1c, 0x1d, 0xe7ff},
1980 	{0x1c, 0x1e, 0xefff},
1981 	{0x1c, 0x20, 0xeeee},
1982 };
1983 
1984 static int ksz9477_phy_errata(struct phy_device *phydev)
1985 {
1986 	int err;
1987 	int i;
1988 
1989 	/* Apply PHY settings to address errata listed in
1990 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1991 	 * Silicon Errata and Data Sheet Clarification documents.
1992 	 *
1993 	 * Document notes: Before configuring the PHY MMD registers, it is
1994 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1995 	 * disabled by writing to register 0xN100-0xN101. After writing the
1996 	 * MMD registers, and after all errata workarounds that involve PHY
1997 	 * register settings, write register 0xN100-0xN101 again to enable
1998 	 * and restart auto-negotiation.
1999 	 */
2000 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
2001 	if (err)
2002 		return err;
2003 
2004 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
2005 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
2006 
2007 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
2008 		if (err)
2009 			return err;
2010 	}
2011 
2012 	err = genphy_restart_aneg(phydev);
2013 	if (err)
2014 		return err;
2015 
2016 	return err;
2017 }
2018 
2019 static int ksz9477_config_init(struct phy_device *phydev)
2020 {
2021 	int err;
2022 
2023 	/* Only KSZ9897 family of switches needs this fix. */
2024 	if ((phydev->phy_id & 0xf) == 1) {
2025 		err = ksz9477_phy_errata(phydev);
2026 		if (err)
2027 			return err;
2028 	}
2029 
2030 	/* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
2031 	 * in this switch shall be regarded as broken.
2032 	 */
2033 	if (phydev->dev_flags & MICREL_NO_EEE)
2034 		phy_disable_eee(phydev);
2035 
2036 	return kszphy_config_init(phydev);
2037 }
2038 
2039 static int kszphy_get_sset_count(struct phy_device *phydev)
2040 {
2041 	return ARRAY_SIZE(kszphy_hw_stats);
2042 }
2043 
2044 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
2045 {
2046 	int i;
2047 
2048 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2049 		ethtool_puts(&data, kszphy_hw_stats[i].string);
2050 }
2051 
2052 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
2053 {
2054 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2055 	struct kszphy_priv *priv = phydev->priv;
2056 	int val;
2057 	u64 ret;
2058 
2059 	val = phy_read(phydev, stat.reg);
2060 	if (val < 0) {
2061 		ret = U64_MAX;
2062 	} else {
2063 		val = val & ((1 << stat.bits) - 1);
2064 		priv->stats[i] += val;
2065 		ret = priv->stats[i];
2066 	}
2067 
2068 	return ret;
2069 }
2070 
2071 static void kszphy_get_stats(struct phy_device *phydev,
2072 			     struct ethtool_stats *stats, u64 *data)
2073 {
2074 	int i;
2075 
2076 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2077 		data[i] = kszphy_get_stat(phydev, i);
2078 }
2079 
2080 static void kszphy_enable_clk(struct phy_device *phydev)
2081 {
2082 	struct kszphy_priv *priv = phydev->priv;
2083 
2084 	if (!priv->clk_enable && priv->clk) {
2085 		clk_prepare_enable(priv->clk);
2086 		priv->clk_enable = true;
2087 	}
2088 }
2089 
2090 static void kszphy_disable_clk(struct phy_device *phydev)
2091 {
2092 	struct kszphy_priv *priv = phydev->priv;
2093 
2094 	if (priv->clk_enable && priv->clk) {
2095 		clk_disable_unprepare(priv->clk);
2096 		priv->clk_enable = false;
2097 	}
2098 }
2099 
2100 static int kszphy_generic_resume(struct phy_device *phydev)
2101 {
2102 	kszphy_enable_clk(phydev);
2103 
2104 	return genphy_resume(phydev);
2105 }
2106 
2107 static int kszphy_generic_suspend(struct phy_device *phydev)
2108 {
2109 	int ret;
2110 
2111 	ret = genphy_suspend(phydev);
2112 	if (ret)
2113 		return ret;
2114 
2115 	kszphy_disable_clk(phydev);
2116 
2117 	return 0;
2118 }
2119 
2120 static int kszphy_suspend(struct phy_device *phydev)
2121 {
2122 	/* Disable PHY Interrupts */
2123 	if (phy_interrupt_is_valid(phydev)) {
2124 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
2125 		if (phydev->drv->config_intr)
2126 			phydev->drv->config_intr(phydev);
2127 	}
2128 
2129 	return kszphy_generic_suspend(phydev);
2130 }
2131 
2132 static void kszphy_parse_led_mode(struct phy_device *phydev)
2133 {
2134 	const struct kszphy_type *type = phydev->drv->driver_data;
2135 	const struct device_node *np = phydev->mdio.dev.of_node;
2136 	struct kszphy_priv *priv = phydev->priv;
2137 	int ret;
2138 
2139 	if (type && type->led_mode_reg) {
2140 		ret = of_property_read_u32(np, "micrel,led-mode",
2141 					   &priv->led_mode);
2142 
2143 		if (ret)
2144 			priv->led_mode = -1;
2145 
2146 		if (priv->led_mode > 3) {
2147 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
2148 				   priv->led_mode);
2149 			priv->led_mode = -1;
2150 		}
2151 	} else {
2152 		priv->led_mode = -1;
2153 	}
2154 }
2155 
2156 static int kszphy_resume(struct phy_device *phydev)
2157 {
2158 	int ret;
2159 
2160 	ret = kszphy_generic_resume(phydev);
2161 	if (ret)
2162 		return ret;
2163 
2164 	/* After switching from power-down to normal mode, an internal global
2165 	 * reset is automatically generated. Wait a minimum of 1 ms before
2166 	 * read/write access to the PHY registers.
2167 	 */
2168 	usleep_range(1000, 2000);
2169 
2170 	ret = kszphy_config_reset(phydev);
2171 	if (ret)
2172 		return ret;
2173 
2174 	/* Enable PHY Interrupts */
2175 	if (phy_interrupt_is_valid(phydev)) {
2176 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2177 		if (phydev->drv->config_intr)
2178 			phydev->drv->config_intr(phydev);
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 /* Because of errata DS80000700A, receiver error following software
2185  * power down. Suspend and resume callbacks only disable and enable
2186  * external rmii reference clock.
2187  */
2188 static int ksz8041_resume(struct phy_device *phydev)
2189 {
2190 	kszphy_enable_clk(phydev);
2191 
2192 	return 0;
2193 }
2194 
2195 static int ksz8041_suspend(struct phy_device *phydev)
2196 {
2197 	kszphy_disable_clk(phydev);
2198 
2199 	return 0;
2200 }
2201 
2202 static int ksz9477_resume(struct phy_device *phydev)
2203 {
2204 	int ret;
2205 
2206 	/* No need to initialize registers if not powered down. */
2207 	ret = phy_read(phydev, MII_BMCR);
2208 	if (ret < 0)
2209 		return ret;
2210 	if (!(ret & BMCR_PDOWN))
2211 		return 0;
2212 
2213 	genphy_resume(phydev);
2214 
2215 	/* After switching from power-down to normal mode, an internal global
2216 	 * reset is automatically generated. Wait a minimum of 1 ms before
2217 	 * read/write access to the PHY registers.
2218 	 */
2219 	usleep_range(1000, 2000);
2220 
2221 	/* Only KSZ9897 family of switches needs this fix. */
2222 	if ((phydev->phy_id & 0xf) == 1) {
2223 		ret = ksz9477_phy_errata(phydev);
2224 		if (ret)
2225 			return ret;
2226 	}
2227 
2228 	/* Enable PHY Interrupts */
2229 	if (phy_interrupt_is_valid(phydev)) {
2230 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2231 		if (phydev->drv->config_intr)
2232 			phydev->drv->config_intr(phydev);
2233 	}
2234 
2235 	return 0;
2236 }
2237 
2238 static int ksz8061_resume(struct phy_device *phydev)
2239 {
2240 	int ret;
2241 
2242 	/* This function can be called twice when the Ethernet device is on. */
2243 	ret = phy_read(phydev, MII_BMCR);
2244 	if (ret < 0)
2245 		return ret;
2246 	if (!(ret & BMCR_PDOWN))
2247 		return 0;
2248 
2249 	ret = kszphy_generic_resume(phydev);
2250 	if (ret)
2251 		return ret;
2252 
2253 	usleep_range(1000, 2000);
2254 
2255 	/* Re-program the value after chip is reset. */
2256 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2257 	if (ret)
2258 		return ret;
2259 
2260 	/* Enable PHY Interrupts */
2261 	if (phy_interrupt_is_valid(phydev)) {
2262 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2263 		if (phydev->drv->config_intr)
2264 			phydev->drv->config_intr(phydev);
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 static int ksz8061_suspend(struct phy_device *phydev)
2271 {
2272 	return kszphy_suspend(phydev);
2273 }
2274 
2275 static int kszphy_probe(struct phy_device *phydev)
2276 {
2277 	const struct kszphy_type *type = phydev->drv->driver_data;
2278 	const struct device_node *np = phydev->mdio.dev.of_node;
2279 	struct kszphy_priv *priv;
2280 	struct clk *clk;
2281 
2282 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2283 	if (!priv)
2284 		return -ENOMEM;
2285 
2286 	phydev->priv = priv;
2287 
2288 	priv->type = type;
2289 
2290 	kszphy_parse_led_mode(phydev);
2291 
2292 	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2293 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2294 	if (!IS_ERR_OR_NULL(clk)) {
2295 		unsigned long rate = clk_get_rate(clk);
2296 		bool rmii_ref_clk_sel_25_mhz;
2297 
2298 		if (type)
2299 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2300 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2301 				"micrel,rmii-reference-clock-select-25-mhz");
2302 
2303 		if (rate > 24500000 && rate < 25500000) {
2304 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2305 		} else if (rate > 49500000 && rate < 50500000) {
2306 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2307 		} else {
2308 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2309 				   rate);
2310 			return -EINVAL;
2311 		}
2312 	} else if (!clk) {
2313 		/* unnamed clock from the generic ethernet-phy binding */
2314 		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2315 	}
2316 
2317 	if (IS_ERR(clk))
2318 		return PTR_ERR(clk);
2319 
2320 	clk_disable_unprepare(clk);
2321 	priv->clk = clk;
2322 
2323 	if (ksz8041_fiber_mode(phydev))
2324 		phydev->port = PORT_FIBRE;
2325 
2326 	/* Support legacy board-file configuration */
2327 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2328 		priv->rmii_ref_clk_sel = true;
2329 		priv->rmii_ref_clk_sel_val = true;
2330 	}
2331 
2332 	return 0;
2333 }
2334 
2335 static int lan8814_cable_test_start(struct phy_device *phydev)
2336 {
2337 	/* If autoneg is enabled, we won't be able to test cross pair
2338 	 * short. In this case, the PHY will "detect" a link and
2339 	 * confuse the internal state machine - disable auto neg here.
2340 	 * Set the speed to 1000mbit and full duplex.
2341 	 */
2342 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2343 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2344 }
2345 
2346 static int ksz886x_cable_test_start(struct phy_device *phydev)
2347 {
2348 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2349 		return -EOPNOTSUPP;
2350 
2351 	/* If autoneg is enabled, we won't be able to test cross pair
2352 	 * short. In this case, the PHY will "detect" a link and
2353 	 * confuse the internal state machine - disable auto neg here.
2354 	 * If autoneg is disabled, we should set the speed to 10mbit.
2355 	 */
2356 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2357 }
2358 
2359 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2360 {
2361 	switch (FIELD_GET(mask, status)) {
2362 	case KSZ8081_LMD_STAT_NORMAL:
2363 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2364 	case KSZ8081_LMD_STAT_SHORT:
2365 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2366 	case KSZ8081_LMD_STAT_OPEN:
2367 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2368 	case KSZ8081_LMD_STAT_FAIL:
2369 		fallthrough;
2370 	default:
2371 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2372 	}
2373 }
2374 
2375 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2376 {
2377 	return FIELD_GET(mask, status) ==
2378 		KSZ8081_LMD_STAT_FAIL;
2379 }
2380 
2381 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2382 {
2383 	switch (FIELD_GET(mask, status)) {
2384 	case KSZ8081_LMD_STAT_OPEN:
2385 		fallthrough;
2386 	case KSZ8081_LMD_STAT_SHORT:
2387 		return true;
2388 	}
2389 	return false;
2390 }
2391 
2392 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2393 							   u16 status, u16 data_mask)
2394 {
2395 	int dt;
2396 
2397 	/* According to the data sheet the distance to the fault is
2398 	 * DELTA_TIME * 0.4 meters for ksz phys.
2399 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2400 	 */
2401 	dt = FIELD_GET(data_mask, status);
2402 
2403 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2404 		return ((dt - 22) * 800) / 10;
2405 	else
2406 		return (dt * 400) / 10;
2407 }
2408 
2409 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2410 {
2411 	const struct kszphy_type *type = phydev->drv->driver_data;
2412 	int val, ret;
2413 
2414 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2415 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2416 				    30000, 100000, true);
2417 
2418 	return ret < 0 ? ret : 0;
2419 }
2420 
2421 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2422 {
2423 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2424 					    ETHTOOL_A_CABLE_PAIR_B,
2425 					    ETHTOOL_A_CABLE_PAIR_C,
2426 					    ETHTOOL_A_CABLE_PAIR_D,
2427 					  };
2428 	u32 fault_length;
2429 	int ret;
2430 	int val;
2431 
2432 	val = KSZ8081_LMD_ENABLE_TEST;
2433 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2434 
2435 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2436 	if (ret < 0)
2437 		return ret;
2438 
2439 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2440 	if (ret)
2441 		return ret;
2442 
2443 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2444 	if (val < 0)
2445 		return val;
2446 
2447 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2448 		return -EAGAIN;
2449 
2450 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2451 				      ksz886x_cable_test_result_trans(val,
2452 								      LAN8814_CABLE_DIAG_STAT_MASK
2453 								      ));
2454 	if (ret)
2455 		return ret;
2456 
2457 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2458 		return 0;
2459 
2460 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2461 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2462 
2463 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2464 }
2465 
2466 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2467 {
2468 	static const int ethtool_pair[] = {
2469 		ETHTOOL_A_CABLE_PAIR_A,
2470 		ETHTOOL_A_CABLE_PAIR_B,
2471 	};
2472 	int ret, val, mdix;
2473 	u32 fault_length;
2474 
2475 	/* There is no way to choice the pair, like we do one ksz9031.
2476 	 * We can workaround this limitation by using the MDI-X functionality.
2477 	 */
2478 	if (pair == 0)
2479 		mdix = ETH_TP_MDI;
2480 	else
2481 		mdix = ETH_TP_MDI_X;
2482 
2483 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2484 	case PHY_ID_KSZ8081:
2485 		ret = ksz8081_config_mdix(phydev, mdix);
2486 		break;
2487 	case PHY_ID_KSZ886X:
2488 		ret = ksz886x_config_mdix(phydev, mdix);
2489 		break;
2490 	default:
2491 		ret = -ENODEV;
2492 	}
2493 
2494 	if (ret)
2495 		return ret;
2496 
2497 	/* Now we are ready to fire. This command will send a 100ns pulse
2498 	 * to the pair.
2499 	 */
2500 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2501 	if (ret)
2502 		return ret;
2503 
2504 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2505 	if (ret)
2506 		return ret;
2507 
2508 	val = phy_read(phydev, KSZ8081_LMD);
2509 	if (val < 0)
2510 		return val;
2511 
2512 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2513 		return -EAGAIN;
2514 
2515 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2516 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2517 	if (ret)
2518 		return ret;
2519 
2520 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2521 		return 0;
2522 
2523 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2524 
2525 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2526 }
2527 
2528 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2529 					 bool *finished)
2530 {
2531 	const struct kszphy_type *type = phydev->drv->driver_data;
2532 	unsigned long pair_mask = type->pair_mask;
2533 	int retries = 20;
2534 	int ret = 0;
2535 	int pair;
2536 
2537 	*finished = false;
2538 
2539 	/* Try harder if link partner is active */
2540 	while (pair_mask && retries--) {
2541 		for_each_set_bit(pair, &pair_mask, 4) {
2542 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2543 				ret = lan8814_cable_test_one_pair(phydev, pair);
2544 			else
2545 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2546 			if (ret == -EAGAIN)
2547 				continue;
2548 			if (ret < 0)
2549 				return ret;
2550 			clear_bit(pair, &pair_mask);
2551 		}
2552 		/* If link partner is in autonegotiation mode it will send 2ms
2553 		 * of FLPs with at least 6ms of silence.
2554 		 * Add 2ms sleep to have better chances to hit this silence.
2555 		 */
2556 		if (pair_mask)
2557 			msleep(2);
2558 	}
2559 
2560 	*finished = true;
2561 
2562 	return ret;
2563 }
2564 
2565 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2566 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2567 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2568 
2569 #define LAN8814_QSGMII_SOFT_RESET			0x43
2570 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2571 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2572 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2573 #define LAN8814_ALIGN_SWAP				0x4a
2574 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2575 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2576 
2577 #define LAN8804_ALIGN_SWAP				0x4a
2578 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2579 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2580 #define LAN8814_CLOCK_MANAGEMENT			0xd
2581 #define LAN8814_LINK_QUALITY				0x8e
2582 
2583 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2584 {
2585 	int data;
2586 
2587 	phy_lock_mdio_bus(phydev);
2588 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2589 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2590 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2591 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2592 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2593 	phy_unlock_mdio_bus(phydev);
2594 
2595 	return data;
2596 }
2597 
2598 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2599 				 u16 val)
2600 {
2601 	phy_lock_mdio_bus(phydev);
2602 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2603 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2604 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2605 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2606 
2607 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2608 	if (val != 0)
2609 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2610 			   val);
2611 	phy_unlock_mdio_bus(phydev);
2612 	return val;
2613 }
2614 
2615 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2616 {
2617 	u16 val = 0;
2618 
2619 	if (enable)
2620 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2621 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2622 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2623 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2624 
2625 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2626 }
2627 
2628 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2629 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2630 {
2631 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2632 	*seconds = (*seconds << 16) |
2633 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2634 
2635 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2636 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2637 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2638 
2639 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2640 }
2641 
2642 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2643 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2644 {
2645 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2646 	*seconds = *seconds << 16 |
2647 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2648 
2649 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2650 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2651 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2652 
2653 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2654 }
2655 
2656 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
2657 {
2658 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2659 	struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev);
2660 
2661 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2662 				SOF_TIMESTAMPING_RX_HARDWARE |
2663 				SOF_TIMESTAMPING_RAW_HARDWARE;
2664 
2665 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2666 
2667 	info->tx_types =
2668 		(1 << HWTSTAMP_TX_OFF) |
2669 		(1 << HWTSTAMP_TX_ON) |
2670 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2671 
2672 	info->rx_filters =
2673 		(1 << HWTSTAMP_FILTER_NONE) |
2674 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2675 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2676 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2677 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2678 
2679 	return 0;
2680 }
2681 
2682 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2683 {
2684 	int i;
2685 
2686 	for (i = 0; i < FIFO_SIZE; ++i)
2687 		lanphy_read_page_reg(phydev, 5,
2688 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2689 
2690 	/* Read to clear overflow status bit */
2691 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2692 }
2693 
2694 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2695 			    struct kernel_hwtstamp_config *config,
2696 			    struct netlink_ext_ack *extack)
2697 {
2698 	struct kszphy_ptp_priv *ptp_priv =
2699 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2700 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2701 	int txcfg = 0, rxcfg = 0;
2702 	int pkt_ts_enable;
2703 	int tx_mod;
2704 
2705 	ptp_priv->hwts_tx_type = config->tx_type;
2706 	ptp_priv->rx_filter = config->rx_filter;
2707 
2708 	switch (config->rx_filter) {
2709 	case HWTSTAMP_FILTER_NONE:
2710 		ptp_priv->layer = 0;
2711 		ptp_priv->version = 0;
2712 		break;
2713 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2714 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2715 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2716 		ptp_priv->layer = PTP_CLASS_L4;
2717 		ptp_priv->version = PTP_CLASS_V2;
2718 		break;
2719 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2720 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2721 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2722 		ptp_priv->layer = PTP_CLASS_L2;
2723 		ptp_priv->version = PTP_CLASS_V2;
2724 		break;
2725 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2726 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2727 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2728 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2729 		ptp_priv->version = PTP_CLASS_V2;
2730 		break;
2731 	default:
2732 		return -ERANGE;
2733 	}
2734 
2735 	if (ptp_priv->layer & PTP_CLASS_L2) {
2736 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2737 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2738 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2739 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2740 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2741 	}
2742 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2743 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2744 
2745 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2746 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2747 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2748 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2749 
2750 	tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
2751 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
2752 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2753 				      tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2754 	} else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
2755 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2756 				      tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2757 	}
2758 
2759 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2760 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2761 	else
2762 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2763 
2764 	/* In case of multiple starts and stops, these needs to be cleared */
2765 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2766 		list_del(&rx_ts->list);
2767 		kfree(rx_ts);
2768 	}
2769 	skb_queue_purge(&ptp_priv->rx_queue);
2770 	skb_queue_purge(&ptp_priv->tx_queue);
2771 
2772 	lan8814_flush_fifo(ptp_priv->phydev, false);
2773 	lan8814_flush_fifo(ptp_priv->phydev, true);
2774 
2775 	return 0;
2776 }
2777 
2778 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2779 			     struct sk_buff *skb, int type)
2780 {
2781 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2782 
2783 	switch (ptp_priv->hwts_tx_type) {
2784 	case HWTSTAMP_TX_ONESTEP_SYNC:
2785 		if (ptp_msg_is_sync(skb, type)) {
2786 			kfree_skb(skb);
2787 			return;
2788 		}
2789 		fallthrough;
2790 	case HWTSTAMP_TX_ON:
2791 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2792 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2793 		break;
2794 	case HWTSTAMP_TX_OFF:
2795 	default:
2796 		kfree_skb(skb);
2797 		break;
2798 	}
2799 }
2800 
2801 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2802 {
2803 	struct ptp_header *ptp_header;
2804 	u32 type;
2805 
2806 	skb_push(skb, ETH_HLEN);
2807 	type = ptp_classify_raw(skb);
2808 	ptp_header = ptp_parse_header(skb, type);
2809 	skb_pull_inline(skb, ETH_HLEN);
2810 
2811 	if (!ptp_header)
2812 		return false;
2813 
2814 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2815 	return true;
2816 }
2817 
2818 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2819 				 struct sk_buff *skb)
2820 {
2821 	struct skb_shared_hwtstamps *shhwtstamps;
2822 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2823 	unsigned long flags;
2824 	bool ret = false;
2825 	u16 skb_sig;
2826 
2827 	if (!lan8814_get_sig_rx(skb, &skb_sig))
2828 		return ret;
2829 
2830 	/* Iterate over all RX timestamps and match it with the received skbs */
2831 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2832 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2833 		/* Check if we found the signature we were looking for. */
2834 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2835 			continue;
2836 
2837 		shhwtstamps = skb_hwtstamps(skb);
2838 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2839 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2840 						  rx_ts->nsec);
2841 		list_del(&rx_ts->list);
2842 		kfree(rx_ts);
2843 
2844 		ret = true;
2845 		break;
2846 	}
2847 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2848 
2849 	if (ret)
2850 		netif_rx(skb);
2851 	return ret;
2852 }
2853 
2854 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2855 {
2856 	struct kszphy_ptp_priv *ptp_priv =
2857 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2858 
2859 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2860 	    type == PTP_CLASS_NONE)
2861 		return false;
2862 
2863 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2864 		return false;
2865 
2866 	/* If we failed to match then add it to the queue for when the timestamp
2867 	 * will come
2868 	 */
2869 	if (!lan8814_match_rx_skb(ptp_priv, skb))
2870 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2871 
2872 	return true;
2873 }
2874 
2875 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2876 				  time64_t sec, u32 nsec)
2877 {
2878 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
2879 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
2880 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
2881 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
2882 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
2883 
2884 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2885 }
2886 
2887 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2888 				  time64_t *sec, u32 *nsec)
2889 {
2890 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2891 
2892 	*sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
2893 	*sec <<= 16;
2894 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2895 	*sec <<= 16;
2896 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2897 
2898 	*nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2899 	*nsec <<= 16;
2900 	*nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2901 }
2902 
2903 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2904 				   struct timespec64 *ts)
2905 {
2906 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2907 							  ptp_clock_info);
2908 	struct phy_device *phydev = shared->phydev;
2909 	u32 nano_seconds;
2910 	time64_t seconds;
2911 
2912 	mutex_lock(&shared->shared_lock);
2913 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2914 	mutex_unlock(&shared->shared_lock);
2915 	ts->tv_sec = seconds;
2916 	ts->tv_nsec = nano_seconds;
2917 
2918 	return 0;
2919 }
2920 
2921 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2922 				   const struct timespec64 *ts)
2923 {
2924 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2925 							  ptp_clock_info);
2926 	struct phy_device *phydev = shared->phydev;
2927 
2928 	mutex_lock(&shared->shared_lock);
2929 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2930 	mutex_unlock(&shared->shared_lock);
2931 
2932 	return 0;
2933 }
2934 
2935 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
2936 				   s64 start_sec, u32 start_nsec)
2937 {
2938 	/* Set the start time */
2939 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
2940 			      lower_16_bits(start_sec));
2941 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
2942 			      upper_16_bits(start_sec));
2943 
2944 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
2945 			      lower_16_bits(start_nsec));
2946 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
2947 			      upper_16_bits(start_nsec) & 0x3fff);
2948 }
2949 
2950 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
2951 {
2952 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
2953 			       sec + LAN8814_BUFFER_TIME, 0);
2954 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
2955 			       sec + LAN8814_BUFFER_TIME, 0);
2956 }
2957 
2958 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2959 				   s64 time_step_ns)
2960 {
2961 	u32 nano_seconds_step;
2962 	u64 abs_time_step_ns;
2963 	time64_t set_seconds;
2964 	u32 nano_seconds;
2965 	u32 remainder;
2966 	s32 seconds;
2967 
2968 	if (time_step_ns >  15000000000LL) {
2969 		/* convert to clock set */
2970 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2971 		set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2972 					   &remainder);
2973 		nano_seconds += remainder;
2974 		if (nano_seconds >= 1000000000) {
2975 			set_seconds++;
2976 			nano_seconds -= 1000000000;
2977 		}
2978 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2979 		lan8814_ptp_update_target(phydev, set_seconds);
2980 		return;
2981 	} else if (time_step_ns < -15000000000LL) {
2982 		/* convert to clock set */
2983 		time_step_ns = -time_step_ns;
2984 
2985 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2986 		set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2987 					   &remainder);
2988 		nano_seconds_step = remainder;
2989 		if (nano_seconds < nano_seconds_step) {
2990 			set_seconds--;
2991 			nano_seconds += 1000000000;
2992 		}
2993 		nano_seconds -= nano_seconds_step;
2994 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2995 		lan8814_ptp_update_target(phydev, set_seconds);
2996 		return;
2997 	}
2998 
2999 	/* do clock step */
3000 	if (time_step_ns >= 0) {
3001 		abs_time_step_ns = (u64)time_step_ns;
3002 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
3003 					   &remainder);
3004 		nano_seconds = remainder;
3005 	} else {
3006 		abs_time_step_ns = (u64)(-time_step_ns);
3007 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
3008 			    &remainder));
3009 		nano_seconds = remainder;
3010 		if (nano_seconds > 0) {
3011 			/* subtracting nano seconds is not allowed
3012 			 * convert to subtracting from seconds,
3013 			 * and adding to nanoseconds
3014 			 */
3015 			seconds--;
3016 			nano_seconds = (1000000000 - nano_seconds);
3017 		}
3018 	}
3019 
3020 	if (nano_seconds > 0) {
3021 		/* add 8 ns to cover the likely normal increment */
3022 		nano_seconds += 8;
3023 	}
3024 
3025 	if (nano_seconds >= 1000000000) {
3026 		/* carry into seconds */
3027 		seconds++;
3028 		nano_seconds -= 1000000000;
3029 	}
3030 
3031 	while (seconds) {
3032 		u32 nsec;
3033 
3034 		if (seconds > 0) {
3035 			u32 adjustment_value = (u32)seconds;
3036 			u16 adjustment_value_lo, adjustment_value_hi;
3037 
3038 			if (adjustment_value > 0xF)
3039 				adjustment_value = 0xF;
3040 
3041 			adjustment_value_lo = adjustment_value & 0xffff;
3042 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3043 
3044 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3045 					      adjustment_value_lo);
3046 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3047 					      PTP_LTC_STEP_ADJ_DIR_ |
3048 					      adjustment_value_hi);
3049 			seconds -= ((s32)adjustment_value);
3050 
3051 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3052 			set_seconds -= adjustment_value;
3053 			lan8814_ptp_update_target(phydev, set_seconds);
3054 		} else {
3055 			u32 adjustment_value = (u32)(-seconds);
3056 			u16 adjustment_value_lo, adjustment_value_hi;
3057 
3058 			if (adjustment_value > 0xF)
3059 				adjustment_value = 0xF;
3060 
3061 			adjustment_value_lo = adjustment_value & 0xffff;
3062 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3063 
3064 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3065 					      adjustment_value_lo);
3066 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3067 					      adjustment_value_hi);
3068 			seconds += ((s32)adjustment_value);
3069 
3070 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3071 			set_seconds += adjustment_value;
3072 			lan8814_ptp_update_target(phydev, set_seconds);
3073 		}
3074 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
3075 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
3076 	}
3077 	if (nano_seconds) {
3078 		u16 nano_seconds_lo;
3079 		u16 nano_seconds_hi;
3080 
3081 		nano_seconds_lo = nano_seconds & 0xffff;
3082 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
3083 
3084 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3085 				      nano_seconds_lo);
3086 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3087 				      PTP_LTC_STEP_ADJ_DIR_ |
3088 				      nano_seconds_hi);
3089 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
3090 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
3091 	}
3092 }
3093 
3094 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
3095 {
3096 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3097 							  ptp_clock_info);
3098 	struct phy_device *phydev = shared->phydev;
3099 
3100 	mutex_lock(&shared->shared_lock);
3101 	lan8814_ptp_clock_step(phydev, delta);
3102 	mutex_unlock(&shared->shared_lock);
3103 
3104 	return 0;
3105 }
3106 
3107 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
3108 {
3109 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3110 							  ptp_clock_info);
3111 	struct phy_device *phydev = shared->phydev;
3112 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
3113 	bool positive = true;
3114 	u32 kszphy_rate_adj;
3115 
3116 	if (scaled_ppm < 0) {
3117 		scaled_ppm = -scaled_ppm;
3118 		positive = false;
3119 	}
3120 
3121 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
3122 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
3123 
3124 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
3125 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
3126 
3127 	if (positive)
3128 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
3129 
3130 	mutex_lock(&shared->shared_lock);
3131 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
3132 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
3133 	mutex_unlock(&shared->shared_lock);
3134 
3135 	return 0;
3136 }
3137 
3138 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
3139 				   s64 period_sec, u32 period_nsec)
3140 {
3141 	lanphy_write_page_reg(phydev, 4,
3142 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
3143 			      lower_16_bits(period_sec));
3144 	lanphy_write_page_reg(phydev, 4,
3145 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
3146 			      upper_16_bits(period_sec));
3147 
3148 	lanphy_write_page_reg(phydev, 4,
3149 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
3150 			      lower_16_bits(period_nsec));
3151 	lanphy_write_page_reg(phydev, 4,
3152 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
3153 			      upper_16_bits(period_nsec) & 0x3fff);
3154 }
3155 
3156 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
3157 				     int pulse_width)
3158 {
3159 	u16 val;
3160 
3161 	val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3162 	/* Set the pulse width of the event */
3163 	val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event));
3164 	/* Make sure that the target clock will be incremented each time when
3165 	 * local time reaches or pass it
3166 	 */
3167 	val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width);
3168 	val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
3169 	/* Set the polarity high */
3170 	val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event);
3171 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3172 }
3173 
3174 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
3175 {
3176 	u16 val;
3177 
3178 	/* Set target to too far in the future, effectively disabling it */
3179 	lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
3180 
3181 	/* And then reload once it recheas the target */
3182 	val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3183 	val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event);
3184 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3185 }
3186 
3187 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
3188 {
3189 	u16 val;
3190 
3191 	/* Disable gpio alternate function,
3192 	 * 1: select as gpio,
3193 	 * 0: select alt func
3194 	 */
3195 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3196 	val |= LAN8814_GPIO_EN_BIT(pin);
3197 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3198 
3199 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3200 	val &= ~LAN8814_GPIO_DIR_BIT(pin);
3201 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3202 
3203 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3204 	val &= ~LAN8814_GPIO_BUF_BIT(pin);
3205 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3206 }
3207 
3208 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3209 {
3210 	int val;
3211 
3212 	/* Set as gpio output */
3213 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3214 	val |= LAN8814_GPIO_DIR_BIT(pin);
3215 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3216 
3217 	/* Enable gpio 0:for alternate function, 1:gpio */
3218 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3219 	val &= ~LAN8814_GPIO_EN_BIT(pin);
3220 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3221 
3222 	/* Set buffer type to push pull */
3223 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3224 	val |= LAN8814_GPIO_BUF_BIT(pin);
3225 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3226 }
3227 
3228 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3229 			      struct ptp_clock_request *rq, int on)
3230 {
3231 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3232 							  ptp_clock_info);
3233 	struct phy_device *phydev = shared->phydev;
3234 	struct timespec64 ts_on, ts_period;
3235 	s64 on_nsec, period_nsec;
3236 	int pulse_width;
3237 	int pin, event;
3238 
3239 	mutex_lock(&shared->shared_lock);
3240 	event = rq->perout.index;
3241 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3242 	if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3243 		mutex_unlock(&shared->shared_lock);
3244 		return -EBUSY;
3245 	}
3246 
3247 	if (!on) {
3248 		lan8814_ptp_perout_off(phydev, pin);
3249 		lan8814_ptp_disable_event(phydev, event);
3250 		mutex_unlock(&shared->shared_lock);
3251 		return 0;
3252 	}
3253 
3254 	ts_on.tv_sec = rq->perout.on.sec;
3255 	ts_on.tv_nsec = rq->perout.on.nsec;
3256 	on_nsec = timespec64_to_ns(&ts_on);
3257 
3258 	ts_period.tv_sec = rq->perout.period.sec;
3259 	ts_period.tv_nsec = rq->perout.period.nsec;
3260 	period_nsec = timespec64_to_ns(&ts_period);
3261 
3262 	if (period_nsec < 200) {
3263 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3264 				    phydev_name(phydev));
3265 		mutex_unlock(&shared->shared_lock);
3266 		return -EOPNOTSUPP;
3267 	}
3268 
3269 	if (on_nsec >= period_nsec) {
3270 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3271 				    phydev_name(phydev));
3272 		mutex_unlock(&shared->shared_lock);
3273 		return -EINVAL;
3274 	}
3275 
3276 	switch (on_nsec) {
3277 	case 200000000:
3278 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3279 		break;
3280 	case 100000000:
3281 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3282 		break;
3283 	case 50000000:
3284 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3285 		break;
3286 	case 10000000:
3287 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3288 		break;
3289 	case 5000000:
3290 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3291 		break;
3292 	case 1000000:
3293 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3294 		break;
3295 	case 500000:
3296 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3297 		break;
3298 	case 100000:
3299 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3300 		break;
3301 	case 50000:
3302 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3303 		break;
3304 	case 10000:
3305 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3306 		break;
3307 	case 5000:
3308 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3309 		break;
3310 	case 1000:
3311 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3312 		break;
3313 	case 500:
3314 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3315 		break;
3316 	case 100:
3317 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3318 		break;
3319 	default:
3320 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3321 				    phydev_name(phydev));
3322 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3323 		break;
3324 	}
3325 
3326 	/* Configure to pulse every period */
3327 	lan8814_ptp_enable_event(phydev, event, pulse_width);
3328 	lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3329 			       rq->perout.start.nsec);
3330 	lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3331 			       rq->perout.period.nsec);
3332 	lan8814_ptp_perout_on(phydev, pin);
3333 	mutex_unlock(&shared->shared_lock);
3334 
3335 	return 0;
3336 }
3337 
3338 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3339 {
3340 	u16 tmp;
3341 
3342 	/* Set as gpio input */
3343 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3344 	tmp &= ~LAN8814_GPIO_DIR_BIT(pin);
3345 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3346 
3347 	/* Map the pin to ltc pin 0 of the capture map registers */
3348 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3349 	tmp |= pin;
3350 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3351 
3352 	/* Enable capture on the edges of the ltc pin */
3353 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3354 	if (flags & PTP_RISING_EDGE)
3355 		tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0);
3356 	if (flags & PTP_FALLING_EDGE)
3357 		tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0);
3358 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3359 
3360 	/* Enable interrupt top interrupt */
3361 	tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3362 	tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3363 	lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3364 }
3365 
3366 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3367 {
3368 	u16 tmp;
3369 
3370 	/* Set as gpio out */
3371 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3372 	tmp |= LAN8814_GPIO_DIR_BIT(pin);
3373 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3374 
3375 	/* Enable alternate, 0:for alternate function, 1:gpio */
3376 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3377 	tmp &= ~LAN8814_GPIO_EN_BIT(pin);
3378 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp);
3379 
3380 	/* Clear the mapping of pin to registers 0 of the capture registers */
3381 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3382 	tmp &= ~GENMASK(3, 0);
3383 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3384 
3385 	/* Disable capture on both of the edges */
3386 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3387 	tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
3388 	tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
3389 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3390 
3391 	/* Disable interrupt top interrupt */
3392 	tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3393 	tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3394 	lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3395 }
3396 
3397 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3398 			     struct ptp_clock_request *rq, int on)
3399 {
3400 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3401 							  ptp_clock_info);
3402 	struct phy_device *phydev = shared->phydev;
3403 	int pin;
3404 
3405 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3406 			   rq->extts.index);
3407 	if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3408 		return -EINVAL;
3409 
3410 	mutex_lock(&shared->shared_lock);
3411 	if (on)
3412 		lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3413 	else
3414 		lan8814_ptp_extts_off(phydev, pin);
3415 
3416 	mutex_unlock(&shared->shared_lock);
3417 
3418 	return 0;
3419 }
3420 
3421 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3422 				struct ptp_clock_request *rq, int on)
3423 {
3424 	switch (rq->type) {
3425 	case PTP_CLK_REQ_PEROUT:
3426 		return lan8814_ptp_perout(ptpci, rq, on);
3427 	case PTP_CLK_REQ_EXTTS:
3428 		return lan8814_ptp_extts(ptpci, rq, on);
3429 	default:
3430 		return -EINVAL;
3431 	}
3432 }
3433 
3434 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3435 				enum ptp_pin_function func, unsigned int chan)
3436 {
3437 	switch (func) {
3438 	case PTP_PF_NONE:
3439 	case PTP_PF_PEROUT:
3440 		/* Only pins 0 and 1 can generate perout signals. And for pin 0
3441 		 * there is only chan 0 (event A) and for pin 1 there is only
3442 		 * chan 1 (event B)
3443 		 */
3444 		if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3445 			return -1;
3446 		break;
3447 	case PTP_PF_EXTTS:
3448 		if (pin != LAN8814_PTP_EXTTS_NUM)
3449 			return -1;
3450 		break;
3451 	default:
3452 		return -1;
3453 	}
3454 
3455 	return 0;
3456 }
3457 
3458 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3459 {
3460 	struct ptp_header *ptp_header;
3461 	u32 type;
3462 
3463 	type = ptp_classify_raw(skb);
3464 	ptp_header = ptp_parse_header(skb, type);
3465 
3466 	if (!ptp_header)
3467 		return false;
3468 
3469 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3470 	return true;
3471 }
3472 
3473 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3474 				 u32 seconds, u32 nsec, u16 seq_id)
3475 {
3476 	struct skb_shared_hwtstamps shhwtstamps;
3477 	struct sk_buff *skb, *skb_tmp;
3478 	unsigned long flags;
3479 	bool ret = false;
3480 	u16 skb_sig;
3481 
3482 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3483 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3484 		if (!lan8814_get_sig_tx(skb, &skb_sig))
3485 			continue;
3486 
3487 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3488 			continue;
3489 
3490 		__skb_unlink(skb, &ptp_priv->tx_queue);
3491 		ret = true;
3492 		break;
3493 	}
3494 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3495 
3496 	if (ret) {
3497 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3498 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3499 		skb_complete_tx_timestamp(skb, &shhwtstamps);
3500 	}
3501 }
3502 
3503 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3504 {
3505 	struct phy_device *phydev = ptp_priv->phydev;
3506 	u32 seconds, nsec;
3507 	u16 seq_id;
3508 
3509 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3510 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3511 }
3512 
3513 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3514 {
3515 	struct phy_device *phydev = ptp_priv->phydev;
3516 	u32 reg;
3517 
3518 	do {
3519 		lan8814_dequeue_tx_skb(ptp_priv);
3520 
3521 		/* If other timestamps are available in the FIFO,
3522 		 * process them.
3523 		 */
3524 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3525 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
3526 }
3527 
3528 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
3529 			      struct lan8814_ptp_rx_ts *rx_ts)
3530 {
3531 	struct skb_shared_hwtstamps *shhwtstamps;
3532 	struct sk_buff *skb, *skb_tmp;
3533 	unsigned long flags;
3534 	bool ret = false;
3535 	u16 skb_sig;
3536 
3537 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
3538 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
3539 		if (!lan8814_get_sig_rx(skb, &skb_sig))
3540 			continue;
3541 
3542 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3543 			continue;
3544 
3545 		__skb_unlink(skb, &ptp_priv->rx_queue);
3546 
3547 		ret = true;
3548 		break;
3549 	}
3550 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
3551 
3552 	if (ret) {
3553 		shhwtstamps = skb_hwtstamps(skb);
3554 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3555 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3556 		netif_rx(skb);
3557 	}
3558 
3559 	return ret;
3560 }
3561 
3562 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3563 				struct lan8814_ptp_rx_ts *rx_ts)
3564 {
3565 	unsigned long flags;
3566 
3567 	/* If we failed to match the skb add it to the queue for when
3568 	 * the frame will come
3569 	 */
3570 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3571 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3572 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3573 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3574 	} else {
3575 		kfree(rx_ts);
3576 	}
3577 }
3578 
3579 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3580 {
3581 	struct phy_device *phydev = ptp_priv->phydev;
3582 	struct lan8814_ptp_rx_ts *rx_ts;
3583 	u32 reg;
3584 
3585 	do {
3586 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3587 		if (!rx_ts)
3588 			return;
3589 
3590 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3591 				      &rx_ts->seq_id);
3592 		lan8814_match_rx_ts(ptp_priv, rx_ts);
3593 
3594 		/* If other timestamps are available in the FIFO,
3595 		 * process them.
3596 		 */
3597 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3598 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3599 }
3600 
3601 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3602 {
3603 	struct kszphy_priv *priv = phydev->priv;
3604 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3605 
3606 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3607 		lan8814_get_tx_ts(ptp_priv);
3608 
3609 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3610 		lan8814_get_rx_ts(ptp_priv);
3611 
3612 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3613 		lan8814_flush_fifo(phydev, true);
3614 		skb_queue_purge(&ptp_priv->tx_queue);
3615 	}
3616 
3617 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3618 		lan8814_flush_fifo(phydev, false);
3619 		skb_queue_purge(&ptp_priv->rx_queue);
3620 	}
3621 }
3622 
3623 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
3624 {
3625 	struct phy_device *phydev = shared->phydev;
3626 	struct ptp_clock_event ptp_event = {0};
3627 	unsigned long nsec;
3628 	s64 sec;
3629 	u16 tmp;
3630 
3631 	/* This is 0 because whatever was the input pin it was mapped it to
3632 	 * ltc gpio pin 0
3633 	 */
3634 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL);
3635 	tmp |= PTP_GPIO_SEL_GPIO_SEL(0);
3636 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp);
3637 
3638 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS);
3639 	if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
3640 	    !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
3641 		return -1;
3642 
3643 	if (tmp & BIT(0)) {
3644 		sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP);
3645 		sec <<= 16;
3646 		sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP);
3647 
3648 		nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3649 		nsec <<= 16;
3650 		nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3651 	} else {
3652 		sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP);
3653 		sec <<= 16;
3654 		sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP);
3655 
3656 		nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3657 		nsec <<= 16;
3658 		nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3659 	}
3660 
3661 	ptp_event.index = 0;
3662 	ptp_event.timestamp = ktime_set(sec, nsec);
3663 	ptp_event.type = PTP_CLOCK_EXTTS;
3664 	ptp_clock_event(shared->ptp_clock, &ptp_event);
3665 
3666 	return 0;
3667 }
3668 
3669 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
3670 {
3671 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
3672 	int ret;
3673 
3674 	mutex_lock(&shared->shared_lock);
3675 	ret = lan8814_gpio_process_cap(shared);
3676 	mutex_unlock(&shared->shared_lock);
3677 
3678 	return ret;
3679 }
3680 
3681 static int lan8804_config_init(struct phy_device *phydev)
3682 {
3683 	int val;
3684 
3685 	/* MDI-X setting for swap A,B transmit */
3686 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
3687 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
3688 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
3689 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
3690 
3691 	/* Make sure that the PHY will not stop generating the clock when the
3692 	 * link partner goes down
3693 	 */
3694 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3695 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3696 
3697 	return 0;
3698 }
3699 
3700 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3701 {
3702 	int status;
3703 
3704 	status = phy_read(phydev, LAN8814_INTS);
3705 	if (status < 0) {
3706 		phy_error(phydev);
3707 		return IRQ_NONE;
3708 	}
3709 
3710 	if (status > 0)
3711 		phy_trigger_machine(phydev);
3712 
3713 	return IRQ_HANDLED;
3714 }
3715 
3716 #define LAN8804_OUTPUT_CONTROL			25
3717 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
3718 #define LAN8804_CONTROL				31
3719 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
3720 
3721 static int lan8804_config_intr(struct phy_device *phydev)
3722 {
3723 	int err;
3724 
3725 	/* This is an internal PHY of lan966x and is not possible to change the
3726 	 * polarity on the GIC found in lan966x, therefore change the polarity
3727 	 * of the interrupt in the PHY from being active low instead of active
3728 	 * high.
3729 	 */
3730 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3731 
3732 	/* By default interrupt buffer is open-drain in which case the interrupt
3733 	 * can be active only low. Therefore change the interrupt buffer to be
3734 	 * push-pull to be able to change interrupt polarity
3735 	 */
3736 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3737 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3738 
3739 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3740 		err = phy_read(phydev, LAN8814_INTS);
3741 		if (err < 0)
3742 			return err;
3743 
3744 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3745 		if (err)
3746 			return err;
3747 	} else {
3748 		err = phy_write(phydev, LAN8814_INTC, 0);
3749 		if (err)
3750 			return err;
3751 
3752 		err = phy_read(phydev, LAN8814_INTS);
3753 		if (err < 0)
3754 			return err;
3755 	}
3756 
3757 	return 0;
3758 }
3759 
3760 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3761 {
3762 	int ret = IRQ_NONE;
3763 	int irq_status;
3764 
3765 	irq_status = phy_read(phydev, LAN8814_INTS);
3766 	if (irq_status < 0) {
3767 		phy_error(phydev);
3768 		return IRQ_NONE;
3769 	}
3770 
3771 	if (irq_status & LAN8814_INT_LINK) {
3772 		phy_trigger_machine(phydev);
3773 		ret = IRQ_HANDLED;
3774 	}
3775 
3776 	while (true) {
3777 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3778 		if (!irq_status)
3779 			break;
3780 
3781 		lan8814_handle_ptp_interrupt(phydev, irq_status);
3782 		ret = IRQ_HANDLED;
3783 	}
3784 
3785 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
3786 		ret = IRQ_HANDLED;
3787 
3788 	return ret;
3789 }
3790 
3791 static int lan8814_ack_interrupt(struct phy_device *phydev)
3792 {
3793 	/* bit[12..0] int status, which is a read and clear register. */
3794 	int rc;
3795 
3796 	rc = phy_read(phydev, LAN8814_INTS);
3797 
3798 	return (rc < 0) ? rc : 0;
3799 }
3800 
3801 static int lan8814_config_intr(struct phy_device *phydev)
3802 {
3803 	int err;
3804 
3805 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3806 			      LAN8814_INTR_CTRL_REG_POLARITY |
3807 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3808 
3809 	/* enable / disable interrupts */
3810 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3811 		err = lan8814_ack_interrupt(phydev);
3812 		if (err)
3813 			return err;
3814 
3815 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3816 	} else {
3817 		err = phy_write(phydev, LAN8814_INTC, 0);
3818 		if (err)
3819 			return err;
3820 
3821 		err = lan8814_ack_interrupt(phydev);
3822 	}
3823 
3824 	return err;
3825 }
3826 
3827 static void lan8814_ptp_init(struct phy_device *phydev)
3828 {
3829 	struct kszphy_priv *priv = phydev->priv;
3830 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3831 	u32 temp;
3832 
3833 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3834 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3835 		return;
3836 
3837 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3838 
3839 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3840 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3841 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3842 
3843 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3844 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3845 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3846 
3847 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3848 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3849 
3850 	/* Removing default registers configs related to L2 and IP */
3851 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3852 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3853 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3854 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3855 
3856 	/* Disable checking for minorVersionPTP field */
3857 	lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3858 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3859 	lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3860 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3861 
3862 	skb_queue_head_init(&ptp_priv->tx_queue);
3863 	skb_queue_head_init(&ptp_priv->rx_queue);
3864 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3865 	spin_lock_init(&ptp_priv->rx_ts_lock);
3866 
3867 	ptp_priv->phydev = phydev;
3868 
3869 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3870 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3871 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3872 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3873 
3874 	phydev->mii_ts = &ptp_priv->mii_ts;
3875 
3876 	/* Timestamp selected by default to keep legacy API */
3877 	phydev->default_timestamp = true;
3878 }
3879 
3880 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3881 {
3882 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
3883 
3884 	/* Initialise shared lock for clock*/
3885 	mutex_init(&shared->shared_lock);
3886 
3887 	shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
3888 						LAN8814_PTP_GPIO_NUM,
3889 						sizeof(*shared->pin_config),
3890 						GFP_KERNEL);
3891 	if (!shared->pin_config)
3892 		return -ENOMEM;
3893 
3894 	for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) {
3895 		struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
3896 
3897 		memset(ptp_pin, 0, sizeof(*ptp_pin));
3898 		snprintf(ptp_pin->name,
3899 			 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i);
3900 		ptp_pin->index = i;
3901 		ptp_pin->func =  PTP_PF_NONE;
3902 	}
3903 
3904 	shared->ptp_clock_info.owner = THIS_MODULE;
3905 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3906 	shared->ptp_clock_info.max_adj = 31249999;
3907 	shared->ptp_clock_info.n_alarm = 0;
3908 	shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
3909 	shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM;
3910 	shared->ptp_clock_info.pps = 0;
3911 	shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE |
3912 						       PTP_FALLING_EDGE |
3913 						       PTP_STRICT_FLAGS;
3914 	shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE;
3915 	shared->ptp_clock_info.pin_config = shared->pin_config;
3916 	shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
3917 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3918 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3919 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3920 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3921 	shared->ptp_clock_info.getcrosststamp = NULL;
3922 	shared->ptp_clock_info.enable = lan8814_ptpci_enable;
3923 	shared->ptp_clock_info.verify = lan8814_ptpci_verify;
3924 
3925 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3926 					       &phydev->mdio.dev);
3927 	if (IS_ERR(shared->ptp_clock)) {
3928 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3929 			   PTR_ERR(shared->ptp_clock));
3930 		return -EINVAL;
3931 	}
3932 
3933 	/* Check if PHC support is missing at the configuration level */
3934 	if (!shared->ptp_clock)
3935 		return 0;
3936 
3937 	phydev_dbg(phydev, "successfully registered ptp clock\n");
3938 
3939 	shared->phydev = phydev;
3940 
3941 	/* The EP.4 is shared between all the PHYs in the package and also it
3942 	 * can be accessed by any of the PHYs
3943 	 */
3944 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3945 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3946 			      PTP_OPERATING_MODE_STANDALONE_);
3947 
3948 	/* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
3949 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_);
3950 
3951 	return 0;
3952 }
3953 
3954 static void lan8814_setup_led(struct phy_device *phydev, int val)
3955 {
3956 	int temp;
3957 
3958 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3959 
3960 	if (val)
3961 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3962 	else
3963 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3964 
3965 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3966 }
3967 
3968 static int lan8814_config_init(struct phy_device *phydev)
3969 {
3970 	struct kszphy_priv *lan8814 = phydev->priv;
3971 	int val;
3972 
3973 	/* Reset the PHY */
3974 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3975 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3976 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3977 
3978 	/* Disable ANEG with QSGMII PCS Host side */
3979 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3980 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3981 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3982 
3983 	/* MDI-X setting for swap A,B transmit */
3984 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3985 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3986 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3987 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3988 
3989 	if (lan8814->led_mode >= 0)
3990 		lan8814_setup_led(phydev, lan8814->led_mode);
3991 
3992 	return 0;
3993 }
3994 
3995 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3996  * function called in suspend. Because the GPIO line can be shared, so if one of
3997  * the phys goes back in coma mode, then all the other PHYs will go, which is
3998  * wrong.
3999  */
4000 static int lan8814_release_coma_mode(struct phy_device *phydev)
4001 {
4002 	struct gpio_desc *gpiod;
4003 
4004 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
4005 					GPIOD_OUT_HIGH_OPEN_DRAIN |
4006 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
4007 	if (IS_ERR(gpiod))
4008 		return PTR_ERR(gpiod);
4009 
4010 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
4011 	gpiod_set_value_cansleep(gpiod, 0);
4012 
4013 	return 0;
4014 }
4015 
4016 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
4017 {
4018 	u16 val;
4019 
4020 	/* It was noticed that when traffic is passing through the PHY and the
4021 	 * cable is removed then the LED was still one even though there is no
4022 	 * link
4023 	 */
4024 	val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE);
4025 	val &= ~LAN8814_EEE_STATE_MASK2P5P;
4026 	lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val);
4027 }
4028 
4029 static void lan8814_update_meas_time(struct phy_device *phydev)
4030 {
4031 	u16 val;
4032 
4033 	/* By setting the measure time to a value of 0xb this will allow cables
4034 	 * longer than 100m to be used. This configuration can be used
4035 	 * regardless of the mode of operation of the PHY
4036 	 */
4037 	val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS);
4038 	val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK;
4039 	val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL;
4040 	lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val);
4041 }
4042 
4043 static int lan8814_probe(struct phy_device *phydev)
4044 {
4045 	const struct kszphy_type *type = phydev->drv->driver_data;
4046 	struct kszphy_priv *priv;
4047 	u16 addr;
4048 	int err;
4049 
4050 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
4051 	if (!priv)
4052 		return -ENOMEM;
4053 
4054 	phydev->priv = priv;
4055 
4056 	priv->type = type;
4057 
4058 	kszphy_parse_led_mode(phydev);
4059 
4060 	/* Strap-in value for PHY address, below register read gives starting
4061 	 * phy address value
4062 	 */
4063 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
4064 	devm_phy_package_join(&phydev->mdio.dev, phydev,
4065 			      addr, sizeof(struct lan8814_shared_priv));
4066 
4067 	if (phy_package_init_once(phydev)) {
4068 		err = lan8814_release_coma_mode(phydev);
4069 		if (err)
4070 			return err;
4071 
4072 		err = lan8814_ptp_probe_once(phydev);
4073 		if (err)
4074 			return err;
4075 	}
4076 
4077 	lan8814_ptp_init(phydev);
4078 
4079 	/* Errata workarounds */
4080 	lan8814_clear_2psp_bit(phydev);
4081 	lan8814_update_meas_time(phydev);
4082 
4083 	return 0;
4084 }
4085 
4086 #define LAN8841_MMD_TIMER_REG			0
4087 #define LAN8841_MMD0_REGISTER_17		17
4088 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
4089 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
4090 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
4091 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
4092 #define LAN8841_MMD_ANALOG_REG			28
4093 #define LAN8841_ANALOG_CONTROL_1		1
4094 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
4095 #define LAN8841_ANALOG_CONTROL_10		13
4096 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
4097 #define LAN8841_ANALOG_CONTROL_11		14
4098 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
4099 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
4100 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
4101 #define LAN8841_BTRX_POWER_DOWN			70
4102 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
4103 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
4104 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
4105 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
4106 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
4107 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
4108 #define LAN8841_ADC_CHANNEL_MASK		198
4109 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
4110 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
4111 #define LAN8841_PTP_RX_VERSION			374
4112 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
4113 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
4114 #define LAN8841_PTP_TX_VERSION			438
4115 #define LAN8841_PTP_CMD_CTL			256
4116 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
4117 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
4118 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
4119 #define LAN8841_PTP_RX_PARSE_CONFIG		368
4120 #define LAN8841_PTP_TX_PARSE_CONFIG		432
4121 #define LAN8841_PTP_RX_MODE			381
4122 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
4123 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
4124 
4125 static int lan8841_config_init(struct phy_device *phydev)
4126 {
4127 	int ret;
4128 
4129 	ret = ksz9131_config_init(phydev);
4130 	if (ret)
4131 		return ret;
4132 
4133 	/* Initialize the HW by resetting everything */
4134 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4135 		       LAN8841_PTP_CMD_CTL,
4136 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
4137 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
4138 
4139 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4140 		       LAN8841_PTP_CMD_CTL,
4141 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
4142 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
4143 
4144 	/* Don't process any frames */
4145 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4146 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
4147 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4148 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
4149 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4150 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
4151 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4152 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
4153 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4154 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
4155 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4156 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
4157 
4158 	/* Disable checking for minorVersionPTP field */
4159 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4160 		      LAN8841_PTP_RX_VERSION, 0xff00);
4161 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4162 		      LAN8841_PTP_TX_VERSION, 0xff00);
4163 
4164 	/* 100BT Clause 40 improvenent errata */
4165 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4166 		      LAN8841_ANALOG_CONTROL_1,
4167 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
4168 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4169 		      LAN8841_ANALOG_CONTROL_10,
4170 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
4171 
4172 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
4173 	 * Magnetics
4174 	 */
4175 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4176 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
4177 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
4178 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4179 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
4180 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
4181 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4182 			      LAN8841_BTRX_POWER_DOWN,
4183 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
4184 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
4185 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
4186 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
4187 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4188 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4189 	}
4190 
4191 	/* LDO Adjustment errata */
4192 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4193 		      LAN8841_ANALOG_CONTROL_11,
4194 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4195 
4196 	/* 100BT RGMII latency tuning errata */
4197 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4198 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
4199 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4200 		      LAN8841_MMD0_REGISTER_17,
4201 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4202 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4203 
4204 	return 0;
4205 }
4206 
4207 #define LAN8841_OUTPUT_CTRL			25
4208 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
4209 #define LAN8841_INT_PTP				BIT(9)
4210 
4211 static int lan8841_config_intr(struct phy_device *phydev)
4212 {
4213 	int err;
4214 
4215 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4216 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4217 
4218 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4219 		err = phy_read(phydev, LAN8814_INTS);
4220 		if (err < 0)
4221 			return err;
4222 
4223 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
4224 		 * even if it PTP is not enabled. Because the underneath blocks
4225 		 * will not enable the PTP so we will never get the PTP
4226 		 * interrupt.
4227 		 */
4228 		err = phy_write(phydev, LAN8814_INTC,
4229 				LAN8814_INT_LINK | LAN8841_INT_PTP);
4230 	} else {
4231 		err = phy_write(phydev, LAN8814_INTC, 0);
4232 		if (err)
4233 			return err;
4234 
4235 		err = phy_read(phydev, LAN8814_INTS);
4236 		if (err < 0)
4237 			return err;
4238 
4239 		/* Getting a positive value doesn't mean that is an error, it
4240 		 * just indicates what was the status. Therefore make sure to
4241 		 * clear the value and say that there is no error.
4242 		 */
4243 		err = 0;
4244 	}
4245 
4246 	return err;
4247 }
4248 
4249 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
4250 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
4251 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
4252 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
4253 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
4254 #define LAN8841_PTP_TX_MSG_HEADER2			455
4255 
4256 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4257 				  u32 *sec, u32 *nsec, u16 *seq)
4258 {
4259 	struct phy_device *phydev = ptp_priv->phydev;
4260 
4261 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4262 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4263 		return false;
4264 
4265 	*nsec = ((*nsec & 0x3fff) << 16);
4266 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4267 
4268 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4269 	*sec = *sec << 16;
4270 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4271 
4272 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4273 
4274 	return true;
4275 }
4276 
4277 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4278 {
4279 	u32 sec, nsec;
4280 	u16 seq;
4281 
4282 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4283 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4284 }
4285 
4286 #define LAN8841_PTP_INT_STS			259
4287 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
4288 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
4289 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
4290 
4291 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4292 {
4293 	struct phy_device *phydev = ptp_priv->phydev;
4294 	int i;
4295 
4296 	for (i = 0; i < FIFO_SIZE; ++i)
4297 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4298 
4299 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4300 }
4301 
4302 #define LAN8841_PTP_GPIO_CAP_STS			506
4303 #define LAN8841_PTP_GPIO_SEL				327
4304 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
4305 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
4306 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
4307 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
4308 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
4309 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
4310 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
4311 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
4312 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
4313 
4314 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4315 {
4316 	struct phy_device *phydev = ptp_priv->phydev;
4317 	struct ptp_clock_event ptp_event = {0};
4318 	int pin, ret, tmp;
4319 	s32 sec, nsec;
4320 
4321 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4322 	if (pin == -1)
4323 		return;
4324 
4325 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4326 	if (tmp < 0)
4327 		return;
4328 
4329 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4330 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4331 	if (ret)
4332 		return;
4333 
4334 	mutex_lock(&ptp_priv->ptp_lock);
4335 	if (tmp & BIT(pin)) {
4336 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4337 		sec <<= 16;
4338 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4339 
4340 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4341 		nsec <<= 16;
4342 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4343 	} else {
4344 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4345 		sec <<= 16;
4346 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4347 
4348 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4349 		nsec <<= 16;
4350 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4351 	}
4352 	mutex_unlock(&ptp_priv->ptp_lock);
4353 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4354 	if (ret)
4355 		return;
4356 
4357 	ptp_event.index = 0;
4358 	ptp_event.timestamp = ktime_set(sec, nsec);
4359 	ptp_event.type = PTP_CLOCK_EXTTS;
4360 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4361 }
4362 
4363 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4364 {
4365 	struct kszphy_priv *priv = phydev->priv;
4366 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4367 	u16 status;
4368 
4369 	do {
4370 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4371 
4372 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4373 			lan8841_ptp_process_tx_ts(ptp_priv);
4374 
4375 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4376 			lan8841_gpio_process_cap(ptp_priv);
4377 
4378 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4379 			lan8841_ptp_flush_fifo(ptp_priv);
4380 			skb_queue_purge(&ptp_priv->tx_queue);
4381 		}
4382 
4383 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4384 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4385 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4386 }
4387 
4388 #define LAN8841_INTS_PTP		BIT(9)
4389 
4390 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4391 {
4392 	irqreturn_t ret = IRQ_NONE;
4393 	int irq_status;
4394 
4395 	irq_status = phy_read(phydev, LAN8814_INTS);
4396 	if (irq_status < 0) {
4397 		phy_error(phydev);
4398 		return IRQ_NONE;
4399 	}
4400 
4401 	if (irq_status & LAN8814_INT_LINK) {
4402 		phy_trigger_machine(phydev);
4403 		ret = IRQ_HANDLED;
4404 	}
4405 
4406 	if (irq_status & LAN8841_INTS_PTP) {
4407 		lan8841_handle_ptp_interrupt(phydev);
4408 		ret = IRQ_HANDLED;
4409 	}
4410 
4411 	return ret;
4412 }
4413 
4414 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4415 			   struct kernel_ethtool_ts_info *info)
4416 {
4417 	struct kszphy_ptp_priv *ptp_priv;
4418 
4419 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4420 
4421 	info->phc_index = ptp_priv->ptp_clock ?
4422 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
4423 	if (info->phc_index == -1)
4424 		return 0;
4425 
4426 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4427 				SOF_TIMESTAMPING_RX_HARDWARE |
4428 				SOF_TIMESTAMPING_RAW_HARDWARE;
4429 
4430 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4431 			 (1 << HWTSTAMP_TX_ON) |
4432 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4433 
4434 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4435 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4436 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4437 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4438 
4439 	return 0;
4440 }
4441 
4442 #define LAN8841_PTP_INT_EN			260
4443 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
4444 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
4445 
4446 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4447 					  bool enable)
4448 {
4449 	struct phy_device *phydev = ptp_priv->phydev;
4450 
4451 	if (enable) {
4452 		/* Enable interrupts on the TX side */
4453 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4454 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4455 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4456 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4457 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4458 
4459 		/* Enable the modification of the frame on RX side,
4460 		 * this will add the ns and 2 bits of sec in the reserved field
4461 		 * of the PTP header
4462 		 */
4463 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4464 			       LAN8841_PTP_RX_MODE,
4465 			       LAN8841_PTP_INSERT_TS_EN |
4466 			       LAN8841_PTP_INSERT_TS_32BIT,
4467 			       LAN8841_PTP_INSERT_TS_EN |
4468 			       LAN8841_PTP_INSERT_TS_32BIT);
4469 
4470 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
4471 	} else {
4472 		/* Disable interrupts on the TX side */
4473 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4474 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4475 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
4476 
4477 		/* Disable modification of the RX frames */
4478 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4479 			       LAN8841_PTP_RX_MODE,
4480 			       LAN8841_PTP_INSERT_TS_EN |
4481 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
4482 
4483 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4484 	}
4485 }
4486 
4487 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
4488 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
4489 #define LAN8841_PTP_TX_MOD			445
4490 
4491 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
4492 			    struct kernel_hwtstamp_config *config,
4493 			    struct netlink_ext_ack *extack)
4494 {
4495 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4496 	struct phy_device *phydev = ptp_priv->phydev;
4497 	int txcfg = 0, rxcfg = 0;
4498 	int pkt_ts_enable;
4499 
4500 	ptp_priv->hwts_tx_type = config->tx_type;
4501 	ptp_priv->rx_filter = config->rx_filter;
4502 
4503 	switch (config->rx_filter) {
4504 	case HWTSTAMP_FILTER_NONE:
4505 		ptp_priv->layer = 0;
4506 		ptp_priv->version = 0;
4507 		break;
4508 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4509 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4510 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4511 		ptp_priv->layer = PTP_CLASS_L4;
4512 		ptp_priv->version = PTP_CLASS_V2;
4513 		break;
4514 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4515 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4516 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4517 		ptp_priv->layer = PTP_CLASS_L2;
4518 		ptp_priv->version = PTP_CLASS_V2;
4519 		break;
4520 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
4521 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
4522 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4523 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
4524 		ptp_priv->version = PTP_CLASS_V2;
4525 		break;
4526 	default:
4527 		return -ERANGE;
4528 	}
4529 
4530 	/* Setup parsing of the frames and enable the timestamping for ptp
4531 	 * frames
4532 	 */
4533 	if (ptp_priv->layer & PTP_CLASS_L2) {
4534 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
4535 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
4536 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
4537 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
4538 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
4539 	}
4540 
4541 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
4542 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
4543 
4544 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
4545 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
4546 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
4547 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
4548 
4549 	/* Enable / disable of the TX timestamp in the SYNC frames */
4550 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
4551 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
4552 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
4553 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
4554 
4555 	/* Now enable/disable the timestamping */
4556 	lan8841_ptp_enable_processing(ptp_priv,
4557 				      config->rx_filter != HWTSTAMP_FILTER_NONE);
4558 
4559 	skb_queue_purge(&ptp_priv->tx_queue);
4560 
4561 	lan8841_ptp_flush_fifo(ptp_priv);
4562 
4563 	return 0;
4564 }
4565 
4566 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
4567 			     struct sk_buff *skb, int type)
4568 {
4569 	struct kszphy_ptp_priv *ptp_priv =
4570 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4571 	struct ptp_header *header = ptp_parse_header(skb, type);
4572 	struct skb_shared_hwtstamps *shhwtstamps;
4573 	struct timespec64 ts;
4574 	unsigned long flags;
4575 	u32 ts_header;
4576 
4577 	if (!header)
4578 		return false;
4579 
4580 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
4581 	    type == PTP_CLASS_NONE)
4582 		return false;
4583 
4584 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
4585 		return false;
4586 
4587 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4588 	ts.tv_sec = ptp_priv->seconds;
4589 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4590 	ts_header = __be32_to_cpu(header->reserved2);
4591 
4592 	shhwtstamps = skb_hwtstamps(skb);
4593 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4594 
4595 	/* Check for any wrap arounds for the second part */
4596 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
4597 		ts.tv_sec -= GENMASK(1, 0) + 1;
4598 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
4599 		ts.tv_sec += 1;
4600 
4601 	shhwtstamps->hwtstamp =
4602 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
4603 			  ts_header & GENMASK(29, 0));
4604 	header->reserved2 = 0;
4605 
4606 	netif_rx(skb);
4607 
4608 	return true;
4609 }
4610 
4611 #define LAN8841_EVENT_A		0
4612 #define LAN8841_EVENT_B		1
4613 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
4614 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
4615 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
4616 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
4617 
4618 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
4619 				  s64 sec, u32 nsec)
4620 {
4621 	struct phy_device *phydev = ptp_priv->phydev;
4622 	int ret;
4623 
4624 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
4625 			    upper_16_bits(sec));
4626 	if (ret)
4627 		return ret;
4628 
4629 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
4630 			    lower_16_bits(sec));
4631 	if (ret)
4632 		return ret;
4633 
4634 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
4635 			    upper_16_bits(nsec));
4636 	if (ret)
4637 		return ret;
4638 
4639 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
4640 			    lower_16_bits(nsec));
4641 }
4642 
4643 #define LAN8841_BUFFER_TIME	2
4644 
4645 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
4646 				     const struct timespec64 *ts)
4647 {
4648 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
4649 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
4650 }
4651 
4652 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
4653 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
4654 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
4655 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
4656 
4657 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
4658 				  s64 sec, u32 nsec)
4659 {
4660 	struct phy_device *phydev = ptp_priv->phydev;
4661 	int ret;
4662 
4663 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
4664 			    upper_16_bits(sec));
4665 	if (ret)
4666 		return ret;
4667 
4668 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
4669 			    lower_16_bits(sec));
4670 	if (ret)
4671 		return ret;
4672 
4673 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
4674 			    upper_16_bits(nsec));
4675 	if (ret)
4676 		return ret;
4677 
4678 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
4679 			     lower_16_bits(nsec));
4680 }
4681 
4682 #define LAN8841_PTP_LTC_SET_SEC_HI	262
4683 #define LAN8841_PTP_LTC_SET_SEC_MID	263
4684 #define LAN8841_PTP_LTC_SET_SEC_LO	264
4685 #define LAN8841_PTP_LTC_SET_NS_HI	265
4686 #define LAN8841_PTP_LTC_SET_NS_LO	266
4687 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
4688 
4689 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
4690 				 const struct timespec64 *ts)
4691 {
4692 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4693 							ptp_clock_info);
4694 	struct phy_device *phydev = ptp_priv->phydev;
4695 	unsigned long flags;
4696 	int ret;
4697 
4698 	/* Set the value to be stored */
4699 	mutex_lock(&ptp_priv->ptp_lock);
4700 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
4701 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
4702 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
4703 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
4704 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
4705 
4706 	/* Set the command to load the LTC */
4707 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4708 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
4709 	ret = lan8841_ptp_update_target(ptp_priv, ts);
4710 	mutex_unlock(&ptp_priv->ptp_lock);
4711 
4712 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4713 	ptp_priv->seconds = ts->tv_sec;
4714 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4715 
4716 	return ret;
4717 }
4718 
4719 #define LAN8841_PTP_LTC_RD_SEC_HI	358
4720 #define LAN8841_PTP_LTC_RD_SEC_MID	359
4721 #define LAN8841_PTP_LTC_RD_SEC_LO	360
4722 #define LAN8841_PTP_LTC_RD_NS_HI	361
4723 #define LAN8841_PTP_LTC_RD_NS_LO	362
4724 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
4725 
4726 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
4727 				 struct timespec64 *ts)
4728 {
4729 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4730 							ptp_clock_info);
4731 	struct phy_device *phydev = ptp_priv->phydev;
4732 	time64_t s;
4733 	s64 ns;
4734 
4735 	mutex_lock(&ptp_priv->ptp_lock);
4736 	/* Issue the command to read the LTC */
4737 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4738 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4739 
4740 	/* Read the LTC */
4741 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4742 	s <<= 16;
4743 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4744 	s <<= 16;
4745 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4746 
4747 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
4748 	ns <<= 16;
4749 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
4750 	mutex_unlock(&ptp_priv->ptp_lock);
4751 
4752 	set_normalized_timespec64(ts, s, ns);
4753 	return 0;
4754 }
4755 
4756 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
4757 				   struct timespec64 *ts)
4758 {
4759 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4760 							ptp_clock_info);
4761 	struct phy_device *phydev = ptp_priv->phydev;
4762 	time64_t s;
4763 
4764 	mutex_lock(&ptp_priv->ptp_lock);
4765 	/* Issue the command to read the LTC */
4766 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4767 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4768 
4769 	/* Read the LTC */
4770 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4771 	s <<= 16;
4772 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4773 	s <<= 16;
4774 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4775 	mutex_unlock(&ptp_priv->ptp_lock);
4776 
4777 	set_normalized_timespec64(ts, s, 0);
4778 }
4779 
4780 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
4781 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
4782 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
4783 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
4784 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
4785 
4786 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4787 {
4788 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4789 							ptp_clock_info);
4790 	struct phy_device *phydev = ptp_priv->phydev;
4791 	struct timespec64 ts;
4792 	bool add = true;
4793 	u32 nsec;
4794 	s32 sec;
4795 	int ret;
4796 
4797 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
4798 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4799 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4800 	 * increment so the value can be bigger than 15 sec. Therefore limit the
4801 	 * possible adjustments so we will not have these corner cases
4802 	 */
4803 	if (delta > 10000000000LL || delta < -10000000000LL) {
4804 		/* The timeadjustment is too big, so fall back using set time */
4805 		u64 now;
4806 
4807 		ptp->gettime64(ptp, &ts);
4808 
4809 		now = ktime_to_ns(timespec64_to_ktime(ts));
4810 		ts = ns_to_timespec64(now + delta);
4811 
4812 		ptp->settime64(ptp, &ts);
4813 		return 0;
4814 	}
4815 
4816 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4817 	if (delta < 0 && nsec != 0) {
4818 		/* It is not allowed to adjust low the nsec part, therefore
4819 		 * subtract more from second part and add to nanosecond such
4820 		 * that would roll over, so the second part will increase
4821 		 */
4822 		sec--;
4823 		nsec = NSEC_PER_SEC - nsec;
4824 	}
4825 
4826 	/* Calculate the adjustments and the direction */
4827 	if (delta < 0)
4828 		add = false;
4829 
4830 	if (nsec > 0)
4831 		/* add 8 ns to cover the likely normal increment */
4832 		nsec += 8;
4833 
4834 	if (nsec >= NSEC_PER_SEC) {
4835 		/* carry into seconds */
4836 		sec++;
4837 		nsec -= NSEC_PER_SEC;
4838 	}
4839 
4840 	mutex_lock(&ptp_priv->ptp_lock);
4841 	if (sec) {
4842 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4843 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4844 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4845 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4846 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4847 	}
4848 
4849 	if (nsec) {
4850 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4851 			      nsec & 0xffff);
4852 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4853 			      (nsec >> 16) & 0x3fff);
4854 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4855 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4856 	}
4857 	mutex_unlock(&ptp_priv->ptp_lock);
4858 
4859 	/* Update the target clock */
4860 	ptp->gettime64(ptp, &ts);
4861 	mutex_lock(&ptp_priv->ptp_lock);
4862 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
4863 	mutex_unlock(&ptp_priv->ptp_lock);
4864 
4865 	return ret;
4866 }
4867 
4868 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
4869 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
4870 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
4871 
4872 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4873 {
4874 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4875 							ptp_clock_info);
4876 	struct phy_device *phydev = ptp_priv->phydev;
4877 	bool faster = true;
4878 	u32 rate;
4879 
4880 	if (!scaled_ppm)
4881 		return 0;
4882 
4883 	if (scaled_ppm < 0) {
4884 		scaled_ppm = -scaled_ppm;
4885 		faster = false;
4886 	}
4887 
4888 	rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4889 	rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4890 
4891 	mutex_lock(&ptp_priv->ptp_lock);
4892 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4893 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4894 			     : upper_16_bits(rate) & 0x3fff);
4895 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4896 	mutex_unlock(&ptp_priv->ptp_lock);
4897 
4898 	return 0;
4899 }
4900 
4901 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4902 			      enum ptp_pin_function func, unsigned int chan)
4903 {
4904 	switch (func) {
4905 	case PTP_PF_NONE:
4906 	case PTP_PF_PEROUT:
4907 	case PTP_PF_EXTTS:
4908 		break;
4909 	default:
4910 		return -1;
4911 	}
4912 
4913 	return 0;
4914 }
4915 
4916 #define LAN8841_PTP_GPIO_NUM	10
4917 #define LAN8841_GPIO_EN		128
4918 #define LAN8841_GPIO_DIR	129
4919 #define LAN8841_GPIO_BUF	130
4920 
4921 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4922 {
4923 	struct phy_device *phydev = ptp_priv->phydev;
4924 	int ret;
4925 
4926 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4927 	if (ret)
4928 		return ret;
4929 
4930 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4931 	if (ret)
4932 		return ret;
4933 
4934 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4935 }
4936 
4937 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4938 {
4939 	struct phy_device *phydev = ptp_priv->phydev;
4940 	int ret;
4941 
4942 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4943 	if (ret)
4944 		return ret;
4945 
4946 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4947 	if (ret)
4948 		return ret;
4949 
4950 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4951 }
4952 
4953 #define LAN8841_GPIO_DATA_SEL1				131
4954 #define LAN8841_GPIO_DATA_SEL2				132
4955 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
4956 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
4957 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
4958 #define LAN8841_PTP_GENERAL_CONFIG			257
4959 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
4960 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
4961 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
4962 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
4963 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
4964 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
4965 
4966 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4967 				    u8 event)
4968 {
4969 	struct phy_device *phydev = ptp_priv->phydev;
4970 	u16 tmp;
4971 	int ret;
4972 
4973 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4974 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4975 	 * depending on the pin, it requires to read a different register
4976 	 */
4977 	if (pin < 5) {
4978 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4979 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4980 	} else {
4981 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4982 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4983 	}
4984 	if (ret)
4985 		return ret;
4986 
4987 	/* Disable the event */
4988 	if (event == LAN8841_EVENT_A)
4989 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4990 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4991 	else
4992 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4993 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4994 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4995 }
4996 
4997 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4998 				    u8 event, int pulse_width)
4999 {
5000 	struct phy_device *phydev = ptp_priv->phydev;
5001 	u16 tmp;
5002 	int ret;
5003 
5004 	/* Enable the event */
5005 	if (event == LAN8841_EVENT_A)
5006 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5007 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5008 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
5009 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5010 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
5011 	else
5012 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5013 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5014 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
5015 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5016 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
5017 	if (ret)
5018 		return ret;
5019 
5020 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
5021 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5022 	 * depending on the pin, it requires to read a different register
5023 	 */
5024 	if (event == LAN8841_EVENT_A)
5025 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
5026 	else
5027 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
5028 
5029 	if (pin < 5)
5030 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
5031 				       tmp << (3 * pin));
5032 	else
5033 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
5034 				       tmp << (3 * (pin - 5)));
5035 
5036 	return ret;
5037 }
5038 
5039 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
5040 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
5041 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
5042 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
5043 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
5044 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
5045 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
5046 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
5047 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
5048 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
5049 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
5050 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
5051 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
5052 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
5053 
5054 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
5055 			      struct ptp_clock_request *rq, int on)
5056 {
5057 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5058 							ptp_clock_info);
5059 	struct phy_device *phydev = ptp_priv->phydev;
5060 	struct timespec64 ts_on, ts_period;
5061 	s64 on_nsec, period_nsec;
5062 	int pulse_width;
5063 	int pin;
5064 	int ret;
5065 
5066 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
5067 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5068 		return -EINVAL;
5069 
5070 	if (!on) {
5071 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
5072 		if (ret)
5073 			return ret;
5074 
5075 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
5076 	}
5077 
5078 	ts_on.tv_sec = rq->perout.on.sec;
5079 	ts_on.tv_nsec = rq->perout.on.nsec;
5080 	on_nsec = timespec64_to_ns(&ts_on);
5081 
5082 	ts_period.tv_sec = rq->perout.period.sec;
5083 	ts_period.tv_nsec = rq->perout.period.nsec;
5084 	period_nsec = timespec64_to_ns(&ts_period);
5085 
5086 	if (period_nsec < 200) {
5087 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
5088 				    phydev_name(phydev));
5089 		return -EOPNOTSUPP;
5090 	}
5091 
5092 	if (on_nsec >= period_nsec) {
5093 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
5094 				    phydev_name(phydev));
5095 		return -EINVAL;
5096 	}
5097 
5098 	switch (on_nsec) {
5099 	case 200000000:
5100 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
5101 		break;
5102 	case 100000000:
5103 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
5104 		break;
5105 	case 50000000:
5106 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
5107 		break;
5108 	case 10000000:
5109 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
5110 		break;
5111 	case 5000000:
5112 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
5113 		break;
5114 	case 1000000:
5115 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
5116 		break;
5117 	case 500000:
5118 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
5119 		break;
5120 	case 100000:
5121 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
5122 		break;
5123 	case 50000:
5124 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
5125 		break;
5126 	case 10000:
5127 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
5128 		break;
5129 	case 5000:
5130 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
5131 		break;
5132 	case 1000:
5133 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
5134 		break;
5135 	case 500:
5136 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
5137 		break;
5138 	case 100:
5139 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5140 		break;
5141 	default:
5142 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
5143 				    phydev_name(phydev));
5144 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5145 		break;
5146 	}
5147 
5148 	mutex_lock(&ptp_priv->ptp_lock);
5149 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
5150 				     rq->perout.start.nsec);
5151 	mutex_unlock(&ptp_priv->ptp_lock);
5152 	if (ret)
5153 		return ret;
5154 
5155 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
5156 				     rq->perout.period.nsec);
5157 	if (ret)
5158 		return ret;
5159 
5160 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
5161 				       pulse_width);
5162 	if (ret)
5163 		return ret;
5164 
5165 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
5166 	if (ret)
5167 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
5168 
5169 	return ret;
5170 }
5171 
5172 #define LAN8841_PTP_GPIO_CAP_EN			496
5173 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
5174 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
5175 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
5176 
5177 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
5178 				u32 flags)
5179 {
5180 	struct phy_device *phydev = ptp_priv->phydev;
5181 	u16 tmp = 0;
5182 	int ret;
5183 
5184 	/* Set GPIO to be intput */
5185 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5186 	if (ret)
5187 		return ret;
5188 
5189 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5190 	if (ret)
5191 		return ret;
5192 
5193 	/* Enable capture on the edges of the pin */
5194 	if (flags & PTP_RISING_EDGE)
5195 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5196 	if (flags & PTP_FALLING_EDGE)
5197 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5198 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5199 	if (ret)
5200 		return ret;
5201 
5202 	/* Enable interrupt */
5203 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5204 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5205 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5206 }
5207 
5208 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5209 {
5210 	struct phy_device *phydev = ptp_priv->phydev;
5211 	int ret;
5212 
5213 	/* Set GPIO to be output */
5214 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5215 	if (ret)
5216 		return ret;
5217 
5218 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5219 	if (ret)
5220 		return ret;
5221 
5222 	/* Disable capture on both of the edges */
5223 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5224 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5225 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5226 			     0);
5227 	if (ret)
5228 		return ret;
5229 
5230 	/* Disable interrupt */
5231 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5232 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5233 			      0);
5234 }
5235 
5236 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5237 			     struct ptp_clock_request *rq, int on)
5238 {
5239 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5240 							ptp_clock_info);
5241 	int pin;
5242 	int ret;
5243 
5244 	/* Reject requests with unsupported flags */
5245 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5246 				PTP_EXTTS_EDGES |
5247 				PTP_STRICT_FLAGS))
5248 		return -EOPNOTSUPP;
5249 
5250 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5251 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5252 		return -EINVAL;
5253 
5254 	mutex_lock(&ptp_priv->ptp_lock);
5255 	if (on)
5256 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5257 	else
5258 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
5259 	mutex_unlock(&ptp_priv->ptp_lock);
5260 
5261 	return ret;
5262 }
5263 
5264 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5265 			      struct ptp_clock_request *rq, int on)
5266 {
5267 	switch (rq->type) {
5268 	case PTP_CLK_REQ_EXTTS:
5269 		return lan8841_ptp_extts(ptp, rq, on);
5270 	case PTP_CLK_REQ_PEROUT:
5271 		return lan8841_ptp_perout(ptp, rq, on);
5272 	default:
5273 		return -EOPNOTSUPP;
5274 	}
5275 
5276 	return 0;
5277 }
5278 
5279 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5280 {
5281 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5282 							ptp_clock_info);
5283 	struct timespec64 ts;
5284 	unsigned long flags;
5285 
5286 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5287 
5288 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5289 	ptp_priv->seconds = ts.tv_sec;
5290 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5291 
5292 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5293 }
5294 
5295 static struct ptp_clock_info lan8841_ptp_clock_info = {
5296 	.owner		= THIS_MODULE,
5297 	.name		= "lan8841 ptp",
5298 	.max_adj	= 31249999,
5299 	.gettime64	= lan8841_ptp_gettime64,
5300 	.settime64	= lan8841_ptp_settime64,
5301 	.adjtime	= lan8841_ptp_adjtime,
5302 	.adjfine	= lan8841_ptp_adjfine,
5303 	.verify         = lan8841_ptp_verify,
5304 	.enable         = lan8841_ptp_enable,
5305 	.do_aux_work	= lan8841_ptp_do_aux_work,
5306 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
5307 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
5308 	.n_pins         = LAN8841_PTP_GPIO_NUM,
5309 	.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE,
5310 };
5311 
5312 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5313 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5314 
5315 static int lan8841_probe(struct phy_device *phydev)
5316 {
5317 	struct kszphy_ptp_priv *ptp_priv;
5318 	struct kszphy_priv *priv;
5319 	int err;
5320 
5321 	err = kszphy_probe(phydev);
5322 	if (err)
5323 		return err;
5324 
5325 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5326 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5327 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5328 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5329 
5330 	/* Register the clock */
5331 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5332 		return 0;
5333 
5334 	priv = phydev->priv;
5335 	ptp_priv = &priv->ptp_priv;
5336 
5337 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5338 					    LAN8841_PTP_GPIO_NUM,
5339 					    sizeof(*ptp_priv->pin_config),
5340 					    GFP_KERNEL);
5341 	if (!ptp_priv->pin_config)
5342 		return -ENOMEM;
5343 
5344 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5345 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5346 
5347 		snprintf(p->name, sizeof(p->name), "pin%d", i);
5348 		p->index = i;
5349 		p->func = PTP_PF_NONE;
5350 	}
5351 
5352 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5353 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5354 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5355 						 &phydev->mdio.dev);
5356 	if (IS_ERR(ptp_priv->ptp_clock)) {
5357 		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
5358 			   PTR_ERR(ptp_priv->ptp_clock));
5359 		return -EINVAL;
5360 	}
5361 
5362 	if (!ptp_priv->ptp_clock)
5363 		return 0;
5364 
5365 	/* Initialize the SW */
5366 	skb_queue_head_init(&ptp_priv->tx_queue);
5367 	ptp_priv->phydev = phydev;
5368 	mutex_init(&ptp_priv->ptp_lock);
5369 	spin_lock_init(&ptp_priv->seconds_lock);
5370 
5371 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5372 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5373 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5374 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5375 
5376 	phydev->mii_ts = &ptp_priv->mii_ts;
5377 
5378 	/* Timestamp selected by default to keep legacy API */
5379 	phydev->default_timestamp = true;
5380 
5381 	return 0;
5382 }
5383 
5384 static int lan8804_resume(struct phy_device *phydev)
5385 {
5386 	return kszphy_resume(phydev);
5387 }
5388 
5389 static int lan8804_suspend(struct phy_device *phydev)
5390 {
5391 	return kszphy_generic_suspend(phydev);
5392 }
5393 
5394 static int lan8841_resume(struct phy_device *phydev)
5395 {
5396 	return kszphy_generic_resume(phydev);
5397 }
5398 
5399 static int lan8841_suspend(struct phy_device *phydev)
5400 {
5401 	struct kszphy_priv *priv = phydev->priv;
5402 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5403 
5404 	if (ptp_priv->ptp_clock)
5405 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5406 
5407 	return kszphy_generic_suspend(phydev);
5408 }
5409 
5410 static struct phy_driver ksphy_driver[] = {
5411 {
5412 	.phy_id		= PHY_ID_KS8737,
5413 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5414 	.name		= "Micrel KS8737",
5415 	/* PHY_BASIC_FEATURES */
5416 	.driver_data	= &ks8737_type,
5417 	.probe		= kszphy_probe,
5418 	.config_init	= kszphy_config_init,
5419 	.config_intr	= kszphy_config_intr,
5420 	.handle_interrupt = kszphy_handle_interrupt,
5421 	.suspend	= kszphy_suspend,
5422 	.resume		= kszphy_resume,
5423 }, {
5424 	.phy_id		= PHY_ID_KSZ8021,
5425 	.phy_id_mask	= 0x00ffffff,
5426 	.name		= "Micrel KSZ8021 or KSZ8031",
5427 	/* PHY_BASIC_FEATURES */
5428 	.driver_data	= &ksz8021_type,
5429 	.probe		= kszphy_probe,
5430 	.config_init	= kszphy_config_init,
5431 	.config_intr	= kszphy_config_intr,
5432 	.handle_interrupt = kszphy_handle_interrupt,
5433 	.get_sset_count = kszphy_get_sset_count,
5434 	.get_strings	= kszphy_get_strings,
5435 	.get_stats	= kszphy_get_stats,
5436 	.suspend	= kszphy_suspend,
5437 	.resume		= kszphy_resume,
5438 }, {
5439 	.phy_id		= PHY_ID_KSZ8031,
5440 	.phy_id_mask	= 0x00ffffff,
5441 	.name		= "Micrel KSZ8031",
5442 	/* PHY_BASIC_FEATURES */
5443 	.driver_data	= &ksz8021_type,
5444 	.probe		= kszphy_probe,
5445 	.config_init	= kszphy_config_init,
5446 	.config_intr	= kszphy_config_intr,
5447 	.handle_interrupt = kszphy_handle_interrupt,
5448 	.get_sset_count = kszphy_get_sset_count,
5449 	.get_strings	= kszphy_get_strings,
5450 	.get_stats	= kszphy_get_stats,
5451 	.suspend	= kszphy_suspend,
5452 	.resume		= kszphy_resume,
5453 }, {
5454 	.phy_id		= PHY_ID_KSZ8041,
5455 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5456 	.name		= "Micrel KSZ8041",
5457 	/* PHY_BASIC_FEATURES */
5458 	.driver_data	= &ksz8041_type,
5459 	.probe		= kszphy_probe,
5460 	.config_init	= ksz8041_config_init,
5461 	.config_aneg	= ksz8041_config_aneg,
5462 	.config_intr	= kszphy_config_intr,
5463 	.handle_interrupt = kszphy_handle_interrupt,
5464 	.get_sset_count = kszphy_get_sset_count,
5465 	.get_strings	= kszphy_get_strings,
5466 	.get_stats	= kszphy_get_stats,
5467 	.suspend	= ksz8041_suspend,
5468 	.resume		= ksz8041_resume,
5469 }, {
5470 	.phy_id		= PHY_ID_KSZ8041RNLI,
5471 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5472 	.name		= "Micrel KSZ8041RNLI",
5473 	/* PHY_BASIC_FEATURES */
5474 	.driver_data	= &ksz8041_type,
5475 	.probe		= kszphy_probe,
5476 	.config_init	= kszphy_config_init,
5477 	.config_intr	= kszphy_config_intr,
5478 	.handle_interrupt = kszphy_handle_interrupt,
5479 	.get_sset_count = kszphy_get_sset_count,
5480 	.get_strings	= kszphy_get_strings,
5481 	.get_stats	= kszphy_get_stats,
5482 	.suspend	= kszphy_suspend,
5483 	.resume		= kszphy_resume,
5484 }, {
5485 	.name		= "Micrel KSZ8051",
5486 	/* PHY_BASIC_FEATURES */
5487 	.driver_data	= &ksz8051_type,
5488 	.probe		= kszphy_probe,
5489 	.config_init	= kszphy_config_init,
5490 	.config_intr	= kszphy_config_intr,
5491 	.handle_interrupt = kszphy_handle_interrupt,
5492 	.get_sset_count = kszphy_get_sset_count,
5493 	.get_strings	= kszphy_get_strings,
5494 	.get_stats	= kszphy_get_stats,
5495 	.match_phy_device = ksz8051_match_phy_device,
5496 	.suspend	= kszphy_suspend,
5497 	.resume		= kszphy_resume,
5498 }, {
5499 	.phy_id		= PHY_ID_KSZ8001,
5500 	.name		= "Micrel KSZ8001 or KS8721",
5501 	.phy_id_mask	= 0x00fffffc,
5502 	/* PHY_BASIC_FEATURES */
5503 	.driver_data	= &ksz8041_type,
5504 	.probe		= kszphy_probe,
5505 	.config_init	= kszphy_config_init,
5506 	.config_intr	= kszphy_config_intr,
5507 	.handle_interrupt = kszphy_handle_interrupt,
5508 	.get_sset_count = kszphy_get_sset_count,
5509 	.get_strings	= kszphy_get_strings,
5510 	.get_stats	= kszphy_get_stats,
5511 	.suspend	= kszphy_suspend,
5512 	.resume		= kszphy_resume,
5513 }, {
5514 	.phy_id		= PHY_ID_KSZ8081,
5515 	.name		= "Micrel KSZ8081 or KSZ8091",
5516 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5517 	.flags		= PHY_POLL_CABLE_TEST,
5518 	/* PHY_BASIC_FEATURES */
5519 	.driver_data	= &ksz8081_type,
5520 	.probe		= kszphy_probe,
5521 	.config_init	= ksz8081_config_init,
5522 	.soft_reset	= genphy_soft_reset,
5523 	.config_aneg	= ksz8081_config_aneg,
5524 	.read_status	= ksz8081_read_status,
5525 	.config_intr	= kszphy_config_intr,
5526 	.handle_interrupt = kszphy_handle_interrupt,
5527 	.get_sset_count = kszphy_get_sset_count,
5528 	.get_strings	= kszphy_get_strings,
5529 	.get_stats	= kszphy_get_stats,
5530 	.suspend	= kszphy_suspend,
5531 	.resume		= kszphy_resume,
5532 	.cable_test_start	= ksz886x_cable_test_start,
5533 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5534 }, {
5535 	.phy_id		= PHY_ID_KSZ8061,
5536 	.name		= "Micrel KSZ8061",
5537 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5538 	/* PHY_BASIC_FEATURES */
5539 	.probe		= kszphy_probe,
5540 	.config_init	= ksz8061_config_init,
5541 	.soft_reset	= genphy_soft_reset,
5542 	.config_intr	= kszphy_config_intr,
5543 	.handle_interrupt = kszphy_handle_interrupt,
5544 	.suspend	= ksz8061_suspend,
5545 	.resume		= ksz8061_resume,
5546 }, {
5547 	.phy_id		= PHY_ID_KSZ9021,
5548 	.phy_id_mask	= 0x000ffffe,
5549 	.name		= "Micrel KSZ9021 Gigabit PHY",
5550 	/* PHY_GBIT_FEATURES */
5551 	.driver_data	= &ksz9021_type,
5552 	.probe		= kszphy_probe,
5553 	.get_features	= ksz9031_get_features,
5554 	.config_init	= ksz9021_config_init,
5555 	.config_intr	= kszphy_config_intr,
5556 	.handle_interrupt = kszphy_handle_interrupt,
5557 	.get_sset_count = kszphy_get_sset_count,
5558 	.get_strings	= kszphy_get_strings,
5559 	.get_stats	= kszphy_get_stats,
5560 	.suspend	= kszphy_suspend,
5561 	.resume		= kszphy_resume,
5562 	.read_mmd	= genphy_read_mmd_unsupported,
5563 	.write_mmd	= genphy_write_mmd_unsupported,
5564 }, {
5565 	.phy_id		= PHY_ID_KSZ9031,
5566 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5567 	.name		= "Micrel KSZ9031 Gigabit PHY",
5568 	.flags		= PHY_POLL_CABLE_TEST,
5569 	.driver_data	= &ksz9021_type,
5570 	.probe		= kszphy_probe,
5571 	.get_features	= ksz9031_get_features,
5572 	.config_init	= ksz9031_config_init,
5573 	.soft_reset	= genphy_soft_reset,
5574 	.read_status	= ksz9031_read_status,
5575 	.config_intr	= kszphy_config_intr,
5576 	.handle_interrupt = kszphy_handle_interrupt,
5577 	.get_sset_count = kszphy_get_sset_count,
5578 	.get_strings	= kszphy_get_strings,
5579 	.get_stats	= kszphy_get_stats,
5580 	.suspend	= kszphy_suspend,
5581 	.resume		= kszphy_resume,
5582 	.cable_test_start	= ksz9x31_cable_test_start,
5583 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
5584 	.set_loopback	= ksz9031_set_loopback,
5585 }, {
5586 	.phy_id		= PHY_ID_LAN8814,
5587 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5588 	.name		= "Microchip INDY Gigabit Quad PHY",
5589 	.flags          = PHY_POLL_CABLE_TEST,
5590 	.config_init	= lan8814_config_init,
5591 	.driver_data	= &lan8814_type,
5592 	.probe		= lan8814_probe,
5593 	.soft_reset	= genphy_soft_reset,
5594 	.read_status	= ksz9031_read_status,
5595 	.get_sset_count	= kszphy_get_sset_count,
5596 	.get_strings	= kszphy_get_strings,
5597 	.get_stats	= kszphy_get_stats,
5598 	.suspend	= genphy_suspend,
5599 	.resume		= kszphy_resume,
5600 	.config_intr	= lan8814_config_intr,
5601 	.handle_interrupt = lan8814_handle_interrupt,
5602 	.cable_test_start	= lan8814_cable_test_start,
5603 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5604 }, {
5605 	.phy_id		= PHY_ID_LAN8804,
5606 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5607 	.name		= "Microchip LAN966X Gigabit PHY",
5608 	.config_init	= lan8804_config_init,
5609 	.driver_data	= &ksz9021_type,
5610 	.probe		= kszphy_probe,
5611 	.soft_reset	= genphy_soft_reset,
5612 	.read_status	= ksz9031_read_status,
5613 	.get_sset_count	= kszphy_get_sset_count,
5614 	.get_strings	= kszphy_get_strings,
5615 	.get_stats	= kszphy_get_stats,
5616 	.suspend	= lan8804_suspend,
5617 	.resume		= lan8804_resume,
5618 	.config_intr	= lan8804_config_intr,
5619 	.handle_interrupt = lan8804_handle_interrupt,
5620 }, {
5621 	.phy_id		= PHY_ID_LAN8841,
5622 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5623 	.name		= "Microchip LAN8841 Gigabit PHY",
5624 	.flags		= PHY_POLL_CABLE_TEST,
5625 	.driver_data	= &lan8841_type,
5626 	.config_init	= lan8841_config_init,
5627 	.probe		= lan8841_probe,
5628 	.soft_reset	= genphy_soft_reset,
5629 	.config_intr	= lan8841_config_intr,
5630 	.handle_interrupt = lan8841_handle_interrupt,
5631 	.get_sset_count = kszphy_get_sset_count,
5632 	.get_strings	= kszphy_get_strings,
5633 	.get_stats	= kszphy_get_stats,
5634 	.suspend	= lan8841_suspend,
5635 	.resume		= lan8841_resume,
5636 	.cable_test_start	= lan8814_cable_test_start,
5637 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5638 }, {
5639 	.phy_id		= PHY_ID_KSZ9131,
5640 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5641 	.name		= "Microchip KSZ9131 Gigabit PHY",
5642 	/* PHY_GBIT_FEATURES */
5643 	.flags		= PHY_POLL_CABLE_TEST,
5644 	.driver_data	= &ksz9131_type,
5645 	.probe		= kszphy_probe,
5646 	.soft_reset	= genphy_soft_reset,
5647 	.config_init	= ksz9131_config_init,
5648 	.config_intr	= kszphy_config_intr,
5649 	.config_aneg	= ksz9131_config_aneg,
5650 	.read_status	= ksz9131_read_status,
5651 	.handle_interrupt = kszphy_handle_interrupt,
5652 	.get_sset_count = kszphy_get_sset_count,
5653 	.get_strings	= kszphy_get_strings,
5654 	.get_stats	= kszphy_get_stats,
5655 	.suspend	= kszphy_suspend,
5656 	.resume		= kszphy_resume,
5657 	.cable_test_start	= ksz9x31_cable_test_start,
5658 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
5659 	.get_features	= ksz9477_get_features,
5660 }, {
5661 	.phy_id		= PHY_ID_KSZ8873MLL,
5662 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5663 	.name		= "Micrel KSZ8873MLL Switch",
5664 	/* PHY_BASIC_FEATURES */
5665 	.config_init	= kszphy_config_init,
5666 	.config_aneg	= ksz8873mll_config_aneg,
5667 	.read_status	= ksz8873mll_read_status,
5668 	.suspend	= genphy_suspend,
5669 	.resume		= genphy_resume,
5670 }, {
5671 	.phy_id		= PHY_ID_KSZ886X,
5672 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5673 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
5674 	.driver_data	= &ksz886x_type,
5675 	/* PHY_BASIC_FEATURES */
5676 	.flags		= PHY_POLL_CABLE_TEST,
5677 	.config_init	= kszphy_config_init,
5678 	.config_aneg	= ksz886x_config_aneg,
5679 	.read_status	= ksz886x_read_status,
5680 	.suspend	= genphy_suspend,
5681 	.resume		= genphy_resume,
5682 	.cable_test_start	= ksz886x_cable_test_start,
5683 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5684 }, {
5685 	.name		= "Micrel KSZ87XX Switch",
5686 	/* PHY_BASIC_FEATURES */
5687 	.config_init	= kszphy_config_init,
5688 	.match_phy_device = ksz8795_match_phy_device,
5689 	.suspend	= genphy_suspend,
5690 	.resume		= genphy_resume,
5691 }, {
5692 	.phy_id		= PHY_ID_KSZ9477,
5693 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5694 	.name		= "Microchip KSZ9477",
5695 	/* PHY_GBIT_FEATURES */
5696 	.config_init	= ksz9477_config_init,
5697 	.config_intr	= kszphy_config_intr,
5698 	.handle_interrupt = kszphy_handle_interrupt,
5699 	.suspend	= genphy_suspend,
5700 	.resume		= ksz9477_resume,
5701 	.get_features	= ksz9477_get_features,
5702 } };
5703 
5704 module_phy_driver(ksphy_driver);
5705 
5706 MODULE_DESCRIPTION("Micrel PHY driver");
5707 MODULE_AUTHOR("David J. Choi");
5708 MODULE_LICENSE("GPL");
5709 
5710 static const struct mdio_device_id __maybe_unused micrel_tbl[] = {
5711 	{ PHY_ID_KSZ9021, 0x000ffffe },
5712 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
5713 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
5714 	{ PHY_ID_KSZ8001, 0x00fffffc },
5715 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
5716 	{ PHY_ID_KSZ8021, 0x00ffffff },
5717 	{ PHY_ID_KSZ8031, 0x00ffffff },
5718 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
5719 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
5720 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
5721 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
5722 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
5723 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
5724 	{ PHY_ID_KSZ9477, MICREL_PHY_ID_MASK },
5725 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
5726 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
5727 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
5728 	{ }
5729 };
5730 
5731 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
5732