1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 /* Operation Mode Strap Override */ 38 #define MII_KSZPHY_OMSO 0x16 39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 44 45 /* general Interrupt control/status reg in vendor specific block. */ 46 #define MII_KSZPHY_INTCS 0x1B 47 #define KSZPHY_INTCS_JABBER BIT(15) 48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 50 #define KSZPHY_INTCS_PARELLEL BIT(12) 51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 52 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 54 #define KSZPHY_INTCS_LINK_UP BIT(8) 55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 56 KSZPHY_INTCS_LINK_DOWN) 57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 60 KSZPHY_INTCS_LINK_UP_STATUS) 61 62 /* LinkMD Control/Status */ 63 #define KSZ8081_LMD 0x1d 64 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 65 #define KSZ8081_LMD_STAT_NORMAL 0 66 #define KSZ8081_LMD_STAT_OPEN 1 67 #define KSZ8081_LMD_STAT_SHORT 2 68 #define KSZ8081_LMD_STAT_FAIL 3 69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 70 /* Short cable (<10 meter) has been detected by LinkMD */ 71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 73 74 #define KSZ9x31_LMD 0x12 75 #define KSZ9x31_LMD_VCT_EN BIT(15) 76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 83 #define KSZ9x31_LMD_VCT_ST_OPEN 1 84 #define KSZ9x31_LMD_VCT_ST_SHORT 2 85 #define KSZ9x31_LMD_VCT_ST_FAIL 3 86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 94 95 #define KSZPHY_WIRE_PAIR_MASK 0x3 96 97 #define LAN8814_CABLE_DIAG 0x12 98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 100 #define LAN8814_PAIR_BIT_SHIFT 12 101 102 #define LAN8814_WIRE_PAIR_MASK 0xF 103 104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 105 #define LAN8814_INTC 0x18 106 #define LAN8814_INTS 0x1B 107 108 #define LAN8814_INT_LINK_DOWN BIT(2) 109 #define LAN8814_INT_LINK_UP BIT(0) 110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 111 LAN8814_INT_LINK_DOWN) 112 113 #define LAN8814_INTR_CTRL_REG 0x34 114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 116 117 /* Represents 1ppm adjustment in 2^32 format with 118 * each nsec contains 4 clock cycles. 119 * The value is calculated as following: (1/1000000)/((2^-32)/4) 120 */ 121 #define LAN8814_1PPM_FORMAT 17179 122 123 #define PTP_RX_MOD 0x024F 124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 125 #define PTP_RX_TIMESTAMP_EN 0x024D 126 #define PTP_TX_TIMESTAMP_EN 0x028D 127 128 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 129 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 130 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 131 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 132 133 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 134 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 135 136 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 137 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 138 #define LTC_HARD_RESET 0x023F 139 #define LTC_HARD_RESET_ BIT(0) 140 141 #define TSU_HARD_RESET 0x02C1 142 #define TSU_HARD_RESET_ BIT(0) 143 144 #define PTP_CMD_CTL 0x0200 145 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 146 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 147 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 151 152 #define PTP_CLOCK_SET_SEC_MID 0x0206 153 #define PTP_CLOCK_SET_SEC_LO 0x0207 154 #define PTP_CLOCK_SET_NS_HI 0x0208 155 #define PTP_CLOCK_SET_NS_LO 0x0209 156 157 #define PTP_CLOCK_READ_SEC_MID 0x022A 158 #define PTP_CLOCK_READ_SEC_LO 0x022B 159 #define PTP_CLOCK_READ_NS_HI 0x022C 160 #define PTP_CLOCK_READ_NS_LO 0x022D 161 162 #define PTP_OPERATING_MODE 0x0241 163 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 164 165 #define PTP_TX_MOD 0x028F 166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 168 169 #define PTP_RX_PARSE_CONFIG 0x0242 170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 173 174 #define PTP_TX_PARSE_CONFIG 0x0282 175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 178 179 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 180 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 181 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 182 183 #define PTP_LTC_STEP_ADJ_HI 0x0212 184 #define PTP_LTC_STEP_ADJ_LO 0x0213 185 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 186 187 #define LAN8814_INTR_STS_REG 0x0033 188 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 189 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 190 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 191 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 192 193 #define PTP_CAP_INFO 0x022A 194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 196 197 #define PTP_TX_EGRESS_SEC_HI 0x0296 198 #define PTP_TX_EGRESS_SEC_LO 0x0297 199 #define PTP_TX_EGRESS_NS_HI 0x0294 200 #define PTP_TX_EGRESS_NS_LO 0x0295 201 #define PTP_TX_MSG_HEADER2 0x0299 202 203 #define PTP_RX_INGRESS_SEC_HI 0x0256 204 #define PTP_RX_INGRESS_SEC_LO 0x0257 205 #define PTP_RX_INGRESS_NS_HI 0x0254 206 #define PTP_RX_INGRESS_NS_LO 0x0255 207 #define PTP_RX_MSG_HEADER2 0x0259 208 209 #define PTP_TSU_INT_EN 0x0200 210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 214 215 #define PTP_TSU_INT_STS 0x0201 216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 220 221 #define LAN8814_LED_CTRL_1 0x0 222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 223 224 /* PHY Control 1 */ 225 #define MII_KSZPHY_CTRL_1 0x1e 226 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 227 228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 229 #define MII_KSZPHY_CTRL_2 0x1f 230 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 231 /* bitmap of PHY register to set interrupt mode */ 232 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 235 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 236 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 238 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 239 240 /* Write/read to/from extended registers */ 241 #define MII_KSZPHY_EXTREG 0x0b 242 #define KSZPHY_EXTREG_WRITE 0x8000 243 244 #define MII_KSZPHY_EXTREG_WRITE 0x0c 245 #define MII_KSZPHY_EXTREG_READ 0x0d 246 247 /* Extended registers */ 248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 249 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 250 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 251 252 #define PS_TO_REG 200 253 #define FIFO_SIZE 8 254 255 /* Delay used to get the second part from the LTC */ 256 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 257 258 struct kszphy_hw_stat { 259 const char *string; 260 u8 reg; 261 u8 bits; 262 }; 263 264 static struct kszphy_hw_stat kszphy_hw_stats[] = { 265 { "phy_receive_errors", 21, 16}, 266 { "phy_idle_errors", 10, 8 }, 267 }; 268 269 struct kszphy_type { 270 u32 led_mode_reg; 271 u16 interrupt_level_mask; 272 u16 cable_diag_reg; 273 unsigned long pair_mask; 274 u16 disable_dll_tx_bit; 275 u16 disable_dll_rx_bit; 276 u16 disable_dll_mask; 277 bool has_broadcast_disable; 278 bool has_nand_tree_disable; 279 bool has_rmii_ref_clk_sel; 280 }; 281 282 /* Shared structure between the PHYs of the same package. */ 283 struct lan8814_shared_priv { 284 struct phy_device *phydev; 285 struct ptp_clock *ptp_clock; 286 struct ptp_clock_info ptp_clock_info; 287 288 /* Reference counter to how many ports in the package are enabling the 289 * timestamping 290 */ 291 u8 ref; 292 293 /* Lock for ptp_clock and ref */ 294 struct mutex shared_lock; 295 }; 296 297 struct lan8814_ptp_rx_ts { 298 struct list_head list; 299 u32 seconds; 300 u32 nsec; 301 u16 seq_id; 302 }; 303 304 struct kszphy_ptp_priv { 305 struct mii_timestamper mii_ts; 306 struct phy_device *phydev; 307 308 struct sk_buff_head tx_queue; 309 struct sk_buff_head rx_queue; 310 311 struct list_head rx_ts_list; 312 /* Lock for Rx ts fifo */ 313 spinlock_t rx_ts_lock; 314 315 int hwts_tx_type; 316 enum hwtstamp_rx_filters rx_filter; 317 int layer; 318 int version; 319 320 struct ptp_clock *ptp_clock; 321 struct ptp_clock_info ptp_clock_info; 322 /* Lock for ptp_clock */ 323 struct mutex ptp_lock; 324 struct ptp_pin_desc *pin_config; 325 326 s64 seconds; 327 /* Lock for accessing seconds */ 328 spinlock_t seconds_lock; 329 }; 330 331 struct kszphy_priv { 332 struct kszphy_ptp_priv ptp_priv; 333 const struct kszphy_type *type; 334 int led_mode; 335 u16 vct_ctrl1000; 336 bool rmii_ref_clk_sel; 337 bool rmii_ref_clk_sel_val; 338 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 339 }; 340 341 static const struct kszphy_type lan8814_type = { 342 .led_mode_reg = ~LAN8814_LED_CTRL_1, 343 .cable_diag_reg = LAN8814_CABLE_DIAG, 344 .pair_mask = LAN8814_WIRE_PAIR_MASK, 345 }; 346 347 static const struct kszphy_type ksz886x_type = { 348 .cable_diag_reg = KSZ8081_LMD, 349 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 350 }; 351 352 static const struct kszphy_type ksz8021_type = { 353 .led_mode_reg = MII_KSZPHY_CTRL_2, 354 .has_broadcast_disable = true, 355 .has_nand_tree_disable = true, 356 .has_rmii_ref_clk_sel = true, 357 }; 358 359 static const struct kszphy_type ksz8041_type = { 360 .led_mode_reg = MII_KSZPHY_CTRL_1, 361 }; 362 363 static const struct kszphy_type ksz8051_type = { 364 .led_mode_reg = MII_KSZPHY_CTRL_2, 365 .has_nand_tree_disable = true, 366 }; 367 368 static const struct kszphy_type ksz8081_type = { 369 .led_mode_reg = MII_KSZPHY_CTRL_2, 370 .has_broadcast_disable = true, 371 .has_nand_tree_disable = true, 372 .has_rmii_ref_clk_sel = true, 373 }; 374 375 static const struct kszphy_type ks8737_type = { 376 .interrupt_level_mask = BIT(14), 377 }; 378 379 static const struct kszphy_type ksz9021_type = { 380 .interrupt_level_mask = BIT(14), 381 }; 382 383 static const struct kszphy_type ksz9131_type = { 384 .interrupt_level_mask = BIT(14), 385 .disable_dll_tx_bit = BIT(12), 386 .disable_dll_rx_bit = BIT(12), 387 .disable_dll_mask = BIT_MASK(12), 388 }; 389 390 static const struct kszphy_type lan8841_type = { 391 .disable_dll_tx_bit = BIT(14), 392 .disable_dll_rx_bit = BIT(14), 393 .disable_dll_mask = BIT_MASK(14), 394 .cable_diag_reg = LAN8814_CABLE_DIAG, 395 .pair_mask = LAN8814_WIRE_PAIR_MASK, 396 }; 397 398 static int kszphy_extended_write(struct phy_device *phydev, 399 u32 regnum, u16 val) 400 { 401 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 402 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 403 } 404 405 static int kszphy_extended_read(struct phy_device *phydev, 406 u32 regnum) 407 { 408 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 409 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 410 } 411 412 static int kszphy_ack_interrupt(struct phy_device *phydev) 413 { 414 /* bit[7..0] int status, which is a read and clear register. */ 415 int rc; 416 417 rc = phy_read(phydev, MII_KSZPHY_INTCS); 418 419 return (rc < 0) ? rc : 0; 420 } 421 422 static int kszphy_config_intr(struct phy_device *phydev) 423 { 424 const struct kszphy_type *type = phydev->drv->driver_data; 425 int temp, err; 426 u16 mask; 427 428 if (type && type->interrupt_level_mask) 429 mask = type->interrupt_level_mask; 430 else 431 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 432 433 /* set the interrupt pin active low */ 434 temp = phy_read(phydev, MII_KSZPHY_CTRL); 435 if (temp < 0) 436 return temp; 437 temp &= ~mask; 438 phy_write(phydev, MII_KSZPHY_CTRL, temp); 439 440 /* enable / disable interrupts */ 441 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 442 err = kszphy_ack_interrupt(phydev); 443 if (err) 444 return err; 445 446 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 447 } else { 448 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 449 if (err) 450 return err; 451 452 err = kszphy_ack_interrupt(phydev); 453 } 454 455 return err; 456 } 457 458 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 459 { 460 int irq_status; 461 462 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 463 if (irq_status < 0) { 464 phy_error(phydev); 465 return IRQ_NONE; 466 } 467 468 if (!(irq_status & KSZPHY_INTCS_STATUS)) 469 return IRQ_NONE; 470 471 phy_trigger_machine(phydev); 472 473 return IRQ_HANDLED; 474 } 475 476 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 477 { 478 int ctrl; 479 480 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 481 if (ctrl < 0) 482 return ctrl; 483 484 if (val) 485 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 486 else 487 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 488 489 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 490 } 491 492 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 493 { 494 int rc, temp, shift; 495 496 switch (reg) { 497 case MII_KSZPHY_CTRL_1: 498 shift = 14; 499 break; 500 case MII_KSZPHY_CTRL_2: 501 shift = 4; 502 break; 503 default: 504 return -EINVAL; 505 } 506 507 temp = phy_read(phydev, reg); 508 if (temp < 0) { 509 rc = temp; 510 goto out; 511 } 512 513 temp &= ~(3 << shift); 514 temp |= val << shift; 515 rc = phy_write(phydev, reg, temp); 516 out: 517 if (rc < 0) 518 phydev_err(phydev, "failed to set led mode\n"); 519 520 return rc; 521 } 522 523 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 524 * unique (non-broadcast) address on a shared bus. 525 */ 526 static int kszphy_broadcast_disable(struct phy_device *phydev) 527 { 528 int ret; 529 530 ret = phy_read(phydev, MII_KSZPHY_OMSO); 531 if (ret < 0) 532 goto out; 533 534 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 535 out: 536 if (ret) 537 phydev_err(phydev, "failed to disable broadcast address\n"); 538 539 return ret; 540 } 541 542 static int kszphy_nand_tree_disable(struct phy_device *phydev) 543 { 544 int ret; 545 546 ret = phy_read(phydev, MII_KSZPHY_OMSO); 547 if (ret < 0) 548 goto out; 549 550 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 551 return 0; 552 553 ret = phy_write(phydev, MII_KSZPHY_OMSO, 554 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 555 out: 556 if (ret) 557 phydev_err(phydev, "failed to disable NAND tree mode\n"); 558 559 return ret; 560 } 561 562 /* Some config bits need to be set again on resume, handle them here. */ 563 static int kszphy_config_reset(struct phy_device *phydev) 564 { 565 struct kszphy_priv *priv = phydev->priv; 566 int ret; 567 568 if (priv->rmii_ref_clk_sel) { 569 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 570 if (ret) { 571 phydev_err(phydev, 572 "failed to set rmii reference clock\n"); 573 return ret; 574 } 575 } 576 577 if (priv->type && priv->led_mode >= 0) 578 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 579 580 return 0; 581 } 582 583 static int kszphy_config_init(struct phy_device *phydev) 584 { 585 struct kszphy_priv *priv = phydev->priv; 586 const struct kszphy_type *type; 587 588 if (!priv) 589 return 0; 590 591 type = priv->type; 592 593 if (type && type->has_broadcast_disable) 594 kszphy_broadcast_disable(phydev); 595 596 if (type && type->has_nand_tree_disable) 597 kszphy_nand_tree_disable(phydev); 598 599 return kszphy_config_reset(phydev); 600 } 601 602 static int ksz8041_fiber_mode(struct phy_device *phydev) 603 { 604 struct device_node *of_node = phydev->mdio.dev.of_node; 605 606 return of_property_read_bool(of_node, "micrel,fiber-mode"); 607 } 608 609 static int ksz8041_config_init(struct phy_device *phydev) 610 { 611 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 612 613 /* Limit supported and advertised modes in fiber mode */ 614 if (ksz8041_fiber_mode(phydev)) { 615 phydev->dev_flags |= MICREL_PHY_FXEN; 616 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 617 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 618 619 linkmode_and(phydev->supported, phydev->supported, mask); 620 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 621 phydev->supported); 622 linkmode_and(phydev->advertising, phydev->advertising, mask); 623 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 624 phydev->advertising); 625 phydev->autoneg = AUTONEG_DISABLE; 626 } 627 628 return kszphy_config_init(phydev); 629 } 630 631 static int ksz8041_config_aneg(struct phy_device *phydev) 632 { 633 /* Skip auto-negotiation in fiber mode */ 634 if (phydev->dev_flags & MICREL_PHY_FXEN) { 635 phydev->speed = SPEED_100; 636 return 0; 637 } 638 639 return genphy_config_aneg(phydev); 640 } 641 642 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 643 const bool ksz_8051) 644 { 645 int ret; 646 647 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 648 return 0; 649 650 ret = phy_read(phydev, MII_BMSR); 651 if (ret < 0) 652 return ret; 653 654 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 655 * exact PHY ID. However, they can be told apart by the extended 656 * capability registers presence. The KSZ8051 PHY has them while 657 * the switch does not. 658 */ 659 ret &= BMSR_ERCAP; 660 if (ksz_8051) 661 return ret; 662 else 663 return !ret; 664 } 665 666 static int ksz8051_match_phy_device(struct phy_device *phydev) 667 { 668 return ksz8051_ksz8795_match_phy_device(phydev, true); 669 } 670 671 static int ksz8081_config_init(struct phy_device *phydev) 672 { 673 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 674 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 675 * pull-down is missing, the factory test mode should be cleared by 676 * manually writing a 0. 677 */ 678 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 679 680 return kszphy_config_init(phydev); 681 } 682 683 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 684 { 685 u16 val; 686 687 switch (ctrl) { 688 case ETH_TP_MDI: 689 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 690 break; 691 case ETH_TP_MDI_X: 692 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 693 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 694 break; 695 case ETH_TP_MDI_AUTO: 696 val = 0; 697 break; 698 default: 699 return 0; 700 } 701 702 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 703 KSZ8081_CTRL2_HP_MDIX | 704 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 705 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 706 KSZ8081_CTRL2_HP_MDIX | val); 707 } 708 709 static int ksz8081_config_aneg(struct phy_device *phydev) 710 { 711 int ret; 712 713 ret = genphy_config_aneg(phydev); 714 if (ret) 715 return ret; 716 717 /* The MDI-X configuration is automatically changed by the PHY after 718 * switching from autoneg off to on. So, take MDI-X configuration under 719 * own control and set it after autoneg configuration was done. 720 */ 721 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 722 } 723 724 static int ksz8081_mdix_update(struct phy_device *phydev) 725 { 726 int ret; 727 728 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 729 if (ret < 0) 730 return ret; 731 732 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 733 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 734 phydev->mdix_ctrl = ETH_TP_MDI_X; 735 else 736 phydev->mdix_ctrl = ETH_TP_MDI; 737 } else { 738 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 739 } 740 741 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 742 if (ret < 0) 743 return ret; 744 745 if (ret & KSZ8081_CTRL1_MDIX_STAT) 746 phydev->mdix = ETH_TP_MDI; 747 else 748 phydev->mdix = ETH_TP_MDI_X; 749 750 return 0; 751 } 752 753 static int ksz8081_read_status(struct phy_device *phydev) 754 { 755 int ret; 756 757 ret = ksz8081_mdix_update(phydev); 758 if (ret < 0) 759 return ret; 760 761 return genphy_read_status(phydev); 762 } 763 764 static int ksz8061_config_init(struct phy_device *phydev) 765 { 766 int ret; 767 768 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 769 if (ret) 770 return ret; 771 772 return kszphy_config_init(phydev); 773 } 774 775 static int ksz8795_match_phy_device(struct phy_device *phydev) 776 { 777 return ksz8051_ksz8795_match_phy_device(phydev, false); 778 } 779 780 static int ksz9021_load_values_from_of(struct phy_device *phydev, 781 const struct device_node *of_node, 782 u16 reg, 783 const char *field1, const char *field2, 784 const char *field3, const char *field4) 785 { 786 int val1 = -1; 787 int val2 = -2; 788 int val3 = -3; 789 int val4 = -4; 790 int newval; 791 int matches = 0; 792 793 if (!of_property_read_u32(of_node, field1, &val1)) 794 matches++; 795 796 if (!of_property_read_u32(of_node, field2, &val2)) 797 matches++; 798 799 if (!of_property_read_u32(of_node, field3, &val3)) 800 matches++; 801 802 if (!of_property_read_u32(of_node, field4, &val4)) 803 matches++; 804 805 if (!matches) 806 return 0; 807 808 if (matches < 4) 809 newval = kszphy_extended_read(phydev, reg); 810 else 811 newval = 0; 812 813 if (val1 != -1) 814 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 815 816 if (val2 != -2) 817 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 818 819 if (val3 != -3) 820 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 821 822 if (val4 != -4) 823 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 824 825 return kszphy_extended_write(phydev, reg, newval); 826 } 827 828 static int ksz9021_config_init(struct phy_device *phydev) 829 { 830 const struct device_node *of_node; 831 const struct device *dev_walker; 832 833 /* The Micrel driver has a deprecated option to place phy OF 834 * properties in the MAC node. Walk up the tree of devices to 835 * find a device with an OF node. 836 */ 837 dev_walker = &phydev->mdio.dev; 838 do { 839 of_node = dev_walker->of_node; 840 dev_walker = dev_walker->parent; 841 842 } while (!of_node && dev_walker); 843 844 if (of_node) { 845 ksz9021_load_values_from_of(phydev, of_node, 846 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 847 "txen-skew-ps", "txc-skew-ps", 848 "rxdv-skew-ps", "rxc-skew-ps"); 849 ksz9021_load_values_from_of(phydev, of_node, 850 MII_KSZPHY_RX_DATA_PAD_SKEW, 851 "rxd0-skew-ps", "rxd1-skew-ps", 852 "rxd2-skew-ps", "rxd3-skew-ps"); 853 ksz9021_load_values_from_of(phydev, of_node, 854 MII_KSZPHY_TX_DATA_PAD_SKEW, 855 "txd0-skew-ps", "txd1-skew-ps", 856 "txd2-skew-ps", "txd3-skew-ps"); 857 } 858 return 0; 859 } 860 861 #define KSZ9031_PS_TO_REG 60 862 863 /* Extended registers */ 864 /* MMD Address 0x0 */ 865 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 866 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 867 868 /* MMD Address 0x2 */ 869 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 870 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 871 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 872 873 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 874 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 875 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 876 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 877 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 878 879 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 880 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 881 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 882 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 883 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 884 885 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 886 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 887 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 888 889 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 890 * provide different RGMII options we need to configure delay offset 891 * for each pad relative to build in delay. 892 */ 893 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 894 * 1.80ns 895 */ 896 #define RX_ID 0x7 897 #define RX_CLK_ID 0x19 898 899 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 900 * internal 1.2ns delay. 901 */ 902 #define RX_ND 0xc 903 #define RX_CLK_ND 0x0 904 905 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 906 #define TX_ID 0x0 907 #define TX_CLK_ID 0x1f 908 909 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 910 * dealy 911 */ 912 #define TX_ND 0x7 913 #define TX_CLK_ND 0xf 914 915 /* MMD Address 0x1C */ 916 #define MII_KSZ9031RN_EDPD 0x23 917 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 918 919 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 920 const struct device_node *of_node, 921 u16 reg, size_t field_sz, 922 const char *field[], u8 numfields, 923 bool *update) 924 { 925 int val[4] = {-1, -2, -3, -4}; 926 int matches = 0; 927 u16 mask; 928 u16 maxval; 929 u16 newval; 930 int i; 931 932 for (i = 0; i < numfields; i++) 933 if (!of_property_read_u32(of_node, field[i], val + i)) 934 matches++; 935 936 if (!matches) 937 return 0; 938 939 *update |= true; 940 941 if (matches < numfields) 942 newval = phy_read_mmd(phydev, 2, reg); 943 else 944 newval = 0; 945 946 maxval = (field_sz == 4) ? 0xf : 0x1f; 947 for (i = 0; i < numfields; i++) 948 if (val[i] != -(i + 1)) { 949 mask = 0xffff; 950 mask ^= maxval << (field_sz * i); 951 newval = (newval & mask) | 952 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 953 << (field_sz * i)); 954 } 955 956 return phy_write_mmd(phydev, 2, reg, newval); 957 } 958 959 /* Center KSZ9031RNX FLP timing at 16ms. */ 960 static int ksz9031_center_flp_timing(struct phy_device *phydev) 961 { 962 int result; 963 964 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 965 0x0006); 966 if (result) 967 return result; 968 969 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 970 0x1A80); 971 if (result) 972 return result; 973 974 return genphy_restart_aneg(phydev); 975 } 976 977 /* Enable energy-detect power-down mode */ 978 static int ksz9031_enable_edpd(struct phy_device *phydev) 979 { 980 int reg; 981 982 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 983 if (reg < 0) 984 return reg; 985 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 986 reg | MII_KSZ9031RN_EDPD_ENABLE); 987 } 988 989 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 990 { 991 u16 rx, tx, rx_clk, tx_clk; 992 int ret; 993 994 switch (phydev->interface) { 995 case PHY_INTERFACE_MODE_RGMII: 996 tx = TX_ND; 997 tx_clk = TX_CLK_ND; 998 rx = RX_ND; 999 rx_clk = RX_CLK_ND; 1000 break; 1001 case PHY_INTERFACE_MODE_RGMII_ID: 1002 tx = TX_ID; 1003 tx_clk = TX_CLK_ID; 1004 rx = RX_ID; 1005 rx_clk = RX_CLK_ID; 1006 break; 1007 case PHY_INTERFACE_MODE_RGMII_RXID: 1008 tx = TX_ND; 1009 tx_clk = TX_CLK_ND; 1010 rx = RX_ID; 1011 rx_clk = RX_CLK_ID; 1012 break; 1013 case PHY_INTERFACE_MODE_RGMII_TXID: 1014 tx = TX_ID; 1015 tx_clk = TX_CLK_ID; 1016 rx = RX_ND; 1017 rx_clk = RX_CLK_ND; 1018 break; 1019 default: 1020 return 0; 1021 } 1022 1023 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1024 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1025 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1026 if (ret < 0) 1027 return ret; 1028 1029 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1030 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1031 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1032 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1033 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1034 if (ret < 0) 1035 return ret; 1036 1037 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1038 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1039 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1040 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1041 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1042 if (ret < 0) 1043 return ret; 1044 1045 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1046 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1047 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1048 } 1049 1050 static int ksz9031_config_init(struct phy_device *phydev) 1051 { 1052 const struct device_node *of_node; 1053 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1054 static const char *rx_data_skews[4] = { 1055 "rxd0-skew-ps", "rxd1-skew-ps", 1056 "rxd2-skew-ps", "rxd3-skew-ps" 1057 }; 1058 static const char *tx_data_skews[4] = { 1059 "txd0-skew-ps", "txd1-skew-ps", 1060 "txd2-skew-ps", "txd3-skew-ps" 1061 }; 1062 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1063 const struct device *dev_walker; 1064 int result; 1065 1066 result = ksz9031_enable_edpd(phydev); 1067 if (result < 0) 1068 return result; 1069 1070 /* The Micrel driver has a deprecated option to place phy OF 1071 * properties in the MAC node. Walk up the tree of devices to 1072 * find a device with an OF node. 1073 */ 1074 dev_walker = &phydev->mdio.dev; 1075 do { 1076 of_node = dev_walker->of_node; 1077 dev_walker = dev_walker->parent; 1078 } while (!of_node && dev_walker); 1079 1080 if (of_node) { 1081 bool update = false; 1082 1083 if (phy_interface_is_rgmii(phydev)) { 1084 result = ksz9031_config_rgmii_delay(phydev); 1085 if (result < 0) 1086 return result; 1087 } 1088 1089 ksz9031_of_load_skew_values(phydev, of_node, 1090 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1091 clk_skews, 2, &update); 1092 1093 ksz9031_of_load_skew_values(phydev, of_node, 1094 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1095 control_skews, 2, &update); 1096 1097 ksz9031_of_load_skew_values(phydev, of_node, 1098 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1099 rx_data_skews, 4, &update); 1100 1101 ksz9031_of_load_skew_values(phydev, of_node, 1102 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1103 tx_data_skews, 4, &update); 1104 1105 if (update && !phy_interface_is_rgmii(phydev)) 1106 phydev_warn(phydev, 1107 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1108 1109 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1110 * When the device links in the 1000BASE-T slave mode only, 1111 * the optional 125MHz reference output clock (CLK125_NDO) 1112 * has wide duty cycle variation. 1113 * 1114 * The optional CLK125_NDO clock does not meet the RGMII 1115 * 45/55 percent (min/max) duty cycle requirement and therefore 1116 * cannot be used directly by the MAC side for clocking 1117 * applications that have setup/hold time requirements on 1118 * rising and falling clock edges. 1119 * 1120 * Workaround: 1121 * Force the phy to be the master to receive a stable clock 1122 * which meets the duty cycle requirement. 1123 */ 1124 if (of_property_read_bool(of_node, "micrel,force-master")) { 1125 result = phy_read(phydev, MII_CTRL1000); 1126 if (result < 0) 1127 goto err_force_master; 1128 1129 /* enable master mode, config & prefer master */ 1130 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1131 result = phy_write(phydev, MII_CTRL1000, result); 1132 if (result < 0) 1133 goto err_force_master; 1134 } 1135 } 1136 1137 return ksz9031_center_flp_timing(phydev); 1138 1139 err_force_master: 1140 phydev_err(phydev, "failed to force the phy to master mode\n"); 1141 return result; 1142 } 1143 1144 #define KSZ9131_SKEW_5BIT_MAX 2400 1145 #define KSZ9131_SKEW_4BIT_MAX 800 1146 #define KSZ9131_OFFSET 700 1147 #define KSZ9131_STEP 100 1148 1149 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1150 struct device_node *of_node, 1151 u16 reg, size_t field_sz, 1152 char *field[], u8 numfields) 1153 { 1154 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1155 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1156 int skewval, skewmax = 0; 1157 int matches = 0; 1158 u16 maxval; 1159 u16 newval; 1160 u16 mask; 1161 int i; 1162 1163 /* psec properties in dts should mean x pico seconds */ 1164 if (field_sz == 5) 1165 skewmax = KSZ9131_SKEW_5BIT_MAX; 1166 else 1167 skewmax = KSZ9131_SKEW_4BIT_MAX; 1168 1169 for (i = 0; i < numfields; i++) 1170 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1171 if (skewval < -KSZ9131_OFFSET) 1172 skewval = -KSZ9131_OFFSET; 1173 else if (skewval > skewmax) 1174 skewval = skewmax; 1175 1176 val[i] = skewval + KSZ9131_OFFSET; 1177 matches++; 1178 } 1179 1180 if (!matches) 1181 return 0; 1182 1183 if (matches < numfields) 1184 newval = phy_read_mmd(phydev, 2, reg); 1185 else 1186 newval = 0; 1187 1188 maxval = (field_sz == 4) ? 0xf : 0x1f; 1189 for (i = 0; i < numfields; i++) 1190 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1191 mask = 0xffff; 1192 mask ^= maxval << (field_sz * i); 1193 newval = (newval & mask) | 1194 (((val[i] / KSZ9131_STEP) & maxval) 1195 << (field_sz * i)); 1196 } 1197 1198 return phy_write_mmd(phydev, 2, reg, newval); 1199 } 1200 1201 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1202 #define KSZ9131RN_RXC_DLL_CTRL 76 1203 #define KSZ9131RN_TXC_DLL_CTRL 77 1204 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1205 1206 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1207 { 1208 const struct kszphy_type *type = phydev->drv->driver_data; 1209 u16 rxcdll_val, txcdll_val; 1210 int ret; 1211 1212 switch (phydev->interface) { 1213 case PHY_INTERFACE_MODE_RGMII: 1214 rxcdll_val = type->disable_dll_rx_bit; 1215 txcdll_val = type->disable_dll_tx_bit; 1216 break; 1217 case PHY_INTERFACE_MODE_RGMII_ID: 1218 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1219 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1220 break; 1221 case PHY_INTERFACE_MODE_RGMII_RXID: 1222 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1223 txcdll_val = type->disable_dll_tx_bit; 1224 break; 1225 case PHY_INTERFACE_MODE_RGMII_TXID: 1226 rxcdll_val = type->disable_dll_rx_bit; 1227 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1228 break; 1229 default: 1230 return 0; 1231 } 1232 1233 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1234 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1235 rxcdll_val); 1236 if (ret < 0) 1237 return ret; 1238 1239 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1240 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1241 txcdll_val); 1242 } 1243 1244 /* Silicon Errata DS80000693B 1245 * 1246 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1247 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1248 * according to the datasheet (off if there is no link). 1249 */ 1250 static int ksz9131_led_errata(struct phy_device *phydev) 1251 { 1252 int reg; 1253 1254 reg = phy_read_mmd(phydev, 2, 0); 1255 if (reg < 0) 1256 return reg; 1257 1258 if (!(reg & BIT(4))) 1259 return 0; 1260 1261 return phy_set_bits(phydev, 0x1e, BIT(9)); 1262 } 1263 1264 static int ksz9131_config_init(struct phy_device *phydev) 1265 { 1266 struct device_node *of_node; 1267 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1268 char *rx_data_skews[4] = { 1269 "rxd0-skew-psec", "rxd1-skew-psec", 1270 "rxd2-skew-psec", "rxd3-skew-psec" 1271 }; 1272 char *tx_data_skews[4] = { 1273 "txd0-skew-psec", "txd1-skew-psec", 1274 "txd2-skew-psec", "txd3-skew-psec" 1275 }; 1276 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1277 const struct device *dev_walker; 1278 int ret; 1279 1280 dev_walker = &phydev->mdio.dev; 1281 do { 1282 of_node = dev_walker->of_node; 1283 dev_walker = dev_walker->parent; 1284 } while (!of_node && dev_walker); 1285 1286 if (!of_node) 1287 return 0; 1288 1289 if (phy_interface_is_rgmii(phydev)) { 1290 ret = ksz9131_config_rgmii_delay(phydev); 1291 if (ret < 0) 1292 return ret; 1293 } 1294 1295 ret = ksz9131_of_load_skew_values(phydev, of_node, 1296 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1297 clk_skews, 2); 1298 if (ret < 0) 1299 return ret; 1300 1301 ret = ksz9131_of_load_skew_values(phydev, of_node, 1302 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1303 control_skews, 2); 1304 if (ret < 0) 1305 return ret; 1306 1307 ret = ksz9131_of_load_skew_values(phydev, of_node, 1308 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1309 rx_data_skews, 4); 1310 if (ret < 0) 1311 return ret; 1312 1313 ret = ksz9131_of_load_skew_values(phydev, of_node, 1314 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1315 tx_data_skews, 4); 1316 if (ret < 0) 1317 return ret; 1318 1319 ret = ksz9131_led_errata(phydev); 1320 if (ret < 0) 1321 return ret; 1322 1323 return 0; 1324 } 1325 1326 #define MII_KSZ9131_AUTO_MDIX 0x1C 1327 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1328 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1329 1330 static int ksz9131_mdix_update(struct phy_device *phydev) 1331 { 1332 int ret; 1333 1334 ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 1335 if (ret < 0) 1336 return ret; 1337 1338 if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) { 1339 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1340 phydev->mdix_ctrl = ETH_TP_MDI; 1341 else 1342 phydev->mdix_ctrl = ETH_TP_MDI_X; 1343 } else { 1344 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1345 } 1346 1347 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1348 phydev->mdix = ETH_TP_MDI; 1349 else 1350 phydev->mdix = ETH_TP_MDI_X; 1351 1352 return 0; 1353 } 1354 1355 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1356 { 1357 u16 val; 1358 1359 switch (ctrl) { 1360 case ETH_TP_MDI: 1361 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1362 MII_KSZ9131_AUTO_MDI_SET; 1363 break; 1364 case ETH_TP_MDI_X: 1365 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1366 break; 1367 case ETH_TP_MDI_AUTO: 1368 val = 0; 1369 break; 1370 default: 1371 return 0; 1372 } 1373 1374 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1375 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1376 MII_KSZ9131_AUTO_MDI_SET, val); 1377 } 1378 1379 static int ksz9131_read_status(struct phy_device *phydev) 1380 { 1381 int ret; 1382 1383 ret = ksz9131_mdix_update(phydev); 1384 if (ret < 0) 1385 return ret; 1386 1387 return genphy_read_status(phydev); 1388 } 1389 1390 static int ksz9131_config_aneg(struct phy_device *phydev) 1391 { 1392 int ret; 1393 1394 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1395 if (ret) 1396 return ret; 1397 1398 return genphy_config_aneg(phydev); 1399 } 1400 1401 static int ksz9477_get_features(struct phy_device *phydev) 1402 { 1403 int ret; 1404 1405 ret = genphy_read_abilities(phydev); 1406 if (ret) 1407 return ret; 1408 1409 /* The "EEE control and capability 1" (Register 3.20) seems to be 1410 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1411 * on the 7.60 will affect 3.20. So, we need to construct our own list 1412 * of caps. 1413 * KSZ8563R should have 100BaseTX/Full only. 1414 */ 1415 linkmode_and(phydev->supported_eee, phydev->supported, 1416 PHY_EEE_CAP1_FEATURES); 1417 1418 return 0; 1419 } 1420 1421 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1422 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1423 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1424 static int ksz8873mll_read_status(struct phy_device *phydev) 1425 { 1426 int regval; 1427 1428 /* dummy read */ 1429 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1430 1431 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1432 1433 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1434 phydev->duplex = DUPLEX_HALF; 1435 else 1436 phydev->duplex = DUPLEX_FULL; 1437 1438 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1439 phydev->speed = SPEED_10; 1440 else 1441 phydev->speed = SPEED_100; 1442 1443 phydev->link = 1; 1444 phydev->pause = phydev->asym_pause = 0; 1445 1446 return 0; 1447 } 1448 1449 static int ksz9031_get_features(struct phy_device *phydev) 1450 { 1451 int ret; 1452 1453 ret = genphy_read_abilities(phydev); 1454 if (ret < 0) 1455 return ret; 1456 1457 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1458 * Whenever the device's Asymmetric Pause capability is set to 1, 1459 * link-up may fail after a link-up to link-down transition. 1460 * 1461 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1462 * 1463 * Workaround: 1464 * Do not enable the Asymmetric Pause capability bit. 1465 */ 1466 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1467 1468 /* We force setting the Pause capability as the core will force the 1469 * Asymmetric Pause capability to 1 otherwise. 1470 */ 1471 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1472 1473 return 0; 1474 } 1475 1476 static int ksz9031_read_status(struct phy_device *phydev) 1477 { 1478 int err; 1479 int regval; 1480 1481 err = genphy_read_status(phydev); 1482 if (err) 1483 return err; 1484 1485 /* Make sure the PHY is not broken. Read idle error count, 1486 * and reset the PHY if it is maxed out. 1487 */ 1488 regval = phy_read(phydev, MII_STAT1000); 1489 if ((regval & 0xFF) == 0xFF) { 1490 phy_init_hw(phydev); 1491 phydev->link = 0; 1492 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1493 phydev->drv->config_intr(phydev); 1494 return genphy_config_aneg(phydev); 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1501 { 1502 struct kszphy_priv *priv = phydev->priv; 1503 int ret; 1504 1505 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1506 * Prior to running the cable diagnostics, Auto-negotiation should 1507 * be disabled, full duplex set and the link speed set to 1000Mbps 1508 * via the Basic Control Register. 1509 */ 1510 ret = phy_modify(phydev, MII_BMCR, 1511 BMCR_SPEED1000 | BMCR_FULLDPLX | 1512 BMCR_ANENABLE | BMCR_SPEED100, 1513 BMCR_SPEED1000 | BMCR_FULLDPLX); 1514 if (ret) 1515 return ret; 1516 1517 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1518 * The Master-Slave configuration should be set to Slave by writing 1519 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1520 * Register. 1521 */ 1522 ret = phy_read(phydev, MII_CTRL1000); 1523 if (ret < 0) 1524 return ret; 1525 1526 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1527 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1528 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1529 ret |= CTL1000_ENABLE_MASTER; 1530 1531 return phy_write(phydev, MII_CTRL1000, ret); 1532 } 1533 1534 static int ksz9x31_cable_test_result_trans(u16 status) 1535 { 1536 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1537 case KSZ9x31_LMD_VCT_ST_NORMAL: 1538 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1539 case KSZ9x31_LMD_VCT_ST_OPEN: 1540 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1541 case KSZ9x31_LMD_VCT_ST_SHORT: 1542 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1543 case KSZ9x31_LMD_VCT_ST_FAIL: 1544 fallthrough; 1545 default: 1546 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1547 } 1548 } 1549 1550 static bool ksz9x31_cable_test_failed(u16 status) 1551 { 1552 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1553 1554 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1555 } 1556 1557 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1558 { 1559 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1560 case KSZ9x31_LMD_VCT_ST_OPEN: 1561 fallthrough; 1562 case KSZ9x31_LMD_VCT_ST_SHORT: 1563 return true; 1564 } 1565 return false; 1566 } 1567 1568 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1569 { 1570 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1571 1572 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1573 * 1574 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1575 */ 1576 if (phydev_id_compare(phydev, PHY_ID_KSZ9131)) 1577 dt = clamp(dt - 22, 0, 255); 1578 1579 return (dt * 400) / 10; 1580 } 1581 1582 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1583 { 1584 int val, ret; 1585 1586 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1587 !(val & KSZ9x31_LMD_VCT_EN), 1588 30000, 100000, true); 1589 1590 return ret < 0 ? ret : 0; 1591 } 1592 1593 static int ksz9x31_cable_test_get_pair(int pair) 1594 { 1595 static const int ethtool_pair[] = { 1596 ETHTOOL_A_CABLE_PAIR_A, 1597 ETHTOOL_A_CABLE_PAIR_B, 1598 ETHTOOL_A_CABLE_PAIR_C, 1599 ETHTOOL_A_CABLE_PAIR_D, 1600 }; 1601 1602 return ethtool_pair[pair]; 1603 } 1604 1605 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1606 { 1607 int ret, val; 1608 1609 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1610 * To test each individual cable pair, set the cable pair in the Cable 1611 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1612 * Diagnostic Register, along with setting the Cable Diagnostics Test 1613 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1614 * will self clear when the test is concluded. 1615 */ 1616 ret = phy_write(phydev, KSZ9x31_LMD, 1617 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1618 if (ret) 1619 return ret; 1620 1621 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1622 if (ret) 1623 return ret; 1624 1625 val = phy_read(phydev, KSZ9x31_LMD); 1626 if (val < 0) 1627 return val; 1628 1629 if (ksz9x31_cable_test_failed(val)) 1630 return -EAGAIN; 1631 1632 ret = ethnl_cable_test_result(phydev, 1633 ksz9x31_cable_test_get_pair(pair), 1634 ksz9x31_cable_test_result_trans(val)); 1635 if (ret) 1636 return ret; 1637 1638 if (!ksz9x31_cable_test_fault_length_valid(val)) 1639 return 0; 1640 1641 return ethnl_cable_test_fault_length(phydev, 1642 ksz9x31_cable_test_get_pair(pair), 1643 ksz9x31_cable_test_fault_length(phydev, val)); 1644 } 1645 1646 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1647 bool *finished) 1648 { 1649 struct kszphy_priv *priv = phydev->priv; 1650 unsigned long pair_mask = 0xf; 1651 int retries = 20; 1652 int pair, ret, rv; 1653 1654 *finished = false; 1655 1656 /* Try harder if link partner is active */ 1657 while (pair_mask && retries--) { 1658 for_each_set_bit(pair, &pair_mask, 4) { 1659 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1660 if (ret == -EAGAIN) 1661 continue; 1662 if (ret < 0) 1663 return ret; 1664 clear_bit(pair, &pair_mask); 1665 } 1666 /* If link partner is in autonegotiation mode it will send 2ms 1667 * of FLPs with at least 6ms of silence. 1668 * Add 2ms sleep to have better chances to hit this silence. 1669 */ 1670 if (pair_mask) 1671 usleep_range(2000, 3000); 1672 } 1673 1674 /* Report remaining unfinished pair result as unknown. */ 1675 for_each_set_bit(pair, &pair_mask, 4) { 1676 ret = ethnl_cable_test_result(phydev, 1677 ksz9x31_cable_test_get_pair(pair), 1678 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1679 } 1680 1681 *finished = true; 1682 1683 /* Restore cached bits from before LinkMD got started. */ 1684 rv = phy_modify(phydev, MII_CTRL1000, 1685 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1686 priv->vct_ctrl1000); 1687 if (rv) 1688 return rv; 1689 1690 return ret; 1691 } 1692 1693 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1694 { 1695 return 0; 1696 } 1697 1698 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1699 { 1700 u16 val; 1701 1702 switch (ctrl) { 1703 case ETH_TP_MDI: 1704 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1705 break; 1706 case ETH_TP_MDI_X: 1707 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1708 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1709 * sheet seems to be missing: 1710 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1711 * 0 = Normal operation (transmit on TX+/TX- pins) 1712 */ 1713 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1714 break; 1715 case ETH_TP_MDI_AUTO: 1716 val = 0; 1717 break; 1718 default: 1719 return 0; 1720 } 1721 1722 return phy_modify(phydev, MII_BMCR, 1723 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1724 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1725 KSZ886X_BMCR_HP_MDIX | val); 1726 } 1727 1728 static int ksz886x_config_aneg(struct phy_device *phydev) 1729 { 1730 int ret; 1731 1732 ret = genphy_config_aneg(phydev); 1733 if (ret) 1734 return ret; 1735 1736 /* The MDI-X configuration is automatically changed by the PHY after 1737 * switching from autoneg off to on. So, take MDI-X configuration under 1738 * own control and set it after autoneg configuration was done. 1739 */ 1740 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1741 } 1742 1743 static int ksz886x_mdix_update(struct phy_device *phydev) 1744 { 1745 int ret; 1746 1747 ret = phy_read(phydev, MII_BMCR); 1748 if (ret < 0) 1749 return ret; 1750 1751 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1752 if (ret & KSZ886X_BMCR_FORCE_MDI) 1753 phydev->mdix_ctrl = ETH_TP_MDI_X; 1754 else 1755 phydev->mdix_ctrl = ETH_TP_MDI; 1756 } else { 1757 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1758 } 1759 1760 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1761 if (ret < 0) 1762 return ret; 1763 1764 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1765 if (ret & KSZ886X_CTRL_MDIX_STAT) 1766 phydev->mdix = ETH_TP_MDI_X; 1767 else 1768 phydev->mdix = ETH_TP_MDI; 1769 1770 return 0; 1771 } 1772 1773 static int ksz886x_read_status(struct phy_device *phydev) 1774 { 1775 int ret; 1776 1777 ret = ksz886x_mdix_update(phydev); 1778 if (ret < 0) 1779 return ret; 1780 1781 return genphy_read_status(phydev); 1782 } 1783 1784 struct ksz9477_errata_write { 1785 u8 dev_addr; 1786 u8 reg_addr; 1787 u16 val; 1788 }; 1789 1790 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 1791 /* Register settings are needed to improve PHY receive performance */ 1792 {0x01, 0x6f, 0xdd0b}, 1793 {0x01, 0x8f, 0x6032}, 1794 {0x01, 0x9d, 0x248c}, 1795 {0x01, 0x75, 0x0060}, 1796 {0x01, 0xd3, 0x7777}, 1797 {0x1c, 0x06, 0x3008}, 1798 {0x1c, 0x08, 0x2000}, 1799 1800 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 1801 {0x1c, 0x04, 0x00d0}, 1802 1803 /* Register settings are required to meet data sheet supply current specifications */ 1804 {0x1c, 0x13, 0x6eff}, 1805 {0x1c, 0x14, 0xe6ff}, 1806 {0x1c, 0x15, 0x6eff}, 1807 {0x1c, 0x16, 0xe6ff}, 1808 {0x1c, 0x17, 0x00ff}, 1809 {0x1c, 0x18, 0x43ff}, 1810 {0x1c, 0x19, 0xc3ff}, 1811 {0x1c, 0x1a, 0x6fff}, 1812 {0x1c, 0x1b, 0x07ff}, 1813 {0x1c, 0x1c, 0x0fff}, 1814 {0x1c, 0x1d, 0xe7ff}, 1815 {0x1c, 0x1e, 0xefff}, 1816 {0x1c, 0x20, 0xeeee}, 1817 }; 1818 1819 static int ksz9477_config_init(struct phy_device *phydev) 1820 { 1821 int err; 1822 int i; 1823 1824 /* Apply PHY settings to address errata listed in 1825 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 1826 * Silicon Errata and Data Sheet Clarification documents. 1827 * 1828 * Document notes: Before configuring the PHY MMD registers, it is 1829 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 1830 * disabled by writing to register 0xN100-0xN101. After writing the 1831 * MMD registers, and after all errata workarounds that involve PHY 1832 * register settings, write register 0xN100-0xN101 again to enable 1833 * and restart auto-negotiation. 1834 */ 1835 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 1836 if (err) 1837 return err; 1838 1839 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 1840 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 1841 1842 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 1843 if (err) 1844 return err; 1845 } 1846 1847 /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes 1848 * in this switch shall be regarded as broken. 1849 */ 1850 if (phydev->dev_flags & MICREL_NO_EEE) 1851 phydev->eee_broken_modes = -1; 1852 1853 err = genphy_restart_aneg(phydev); 1854 if (err) 1855 return err; 1856 1857 return kszphy_config_init(phydev); 1858 } 1859 1860 static int kszphy_get_sset_count(struct phy_device *phydev) 1861 { 1862 return ARRAY_SIZE(kszphy_hw_stats); 1863 } 1864 1865 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 1866 { 1867 int i; 1868 1869 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) { 1870 strscpy(data + i * ETH_GSTRING_LEN, 1871 kszphy_hw_stats[i].string, ETH_GSTRING_LEN); 1872 } 1873 } 1874 1875 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 1876 { 1877 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 1878 struct kszphy_priv *priv = phydev->priv; 1879 int val; 1880 u64 ret; 1881 1882 val = phy_read(phydev, stat.reg); 1883 if (val < 0) { 1884 ret = U64_MAX; 1885 } else { 1886 val = val & ((1 << stat.bits) - 1); 1887 priv->stats[i] += val; 1888 ret = priv->stats[i]; 1889 } 1890 1891 return ret; 1892 } 1893 1894 static void kszphy_get_stats(struct phy_device *phydev, 1895 struct ethtool_stats *stats, u64 *data) 1896 { 1897 int i; 1898 1899 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 1900 data[i] = kszphy_get_stat(phydev, i); 1901 } 1902 1903 static int kszphy_suspend(struct phy_device *phydev) 1904 { 1905 /* Disable PHY Interrupts */ 1906 if (phy_interrupt_is_valid(phydev)) { 1907 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1908 if (phydev->drv->config_intr) 1909 phydev->drv->config_intr(phydev); 1910 } 1911 1912 return genphy_suspend(phydev); 1913 } 1914 1915 static void kszphy_parse_led_mode(struct phy_device *phydev) 1916 { 1917 const struct kszphy_type *type = phydev->drv->driver_data; 1918 const struct device_node *np = phydev->mdio.dev.of_node; 1919 struct kszphy_priv *priv = phydev->priv; 1920 int ret; 1921 1922 if (type && type->led_mode_reg) { 1923 ret = of_property_read_u32(np, "micrel,led-mode", 1924 &priv->led_mode); 1925 1926 if (ret) 1927 priv->led_mode = -1; 1928 1929 if (priv->led_mode > 3) { 1930 phydev_err(phydev, "invalid led mode: 0x%02x\n", 1931 priv->led_mode); 1932 priv->led_mode = -1; 1933 } 1934 } else { 1935 priv->led_mode = -1; 1936 } 1937 } 1938 1939 static int kszphy_resume(struct phy_device *phydev) 1940 { 1941 int ret; 1942 1943 genphy_resume(phydev); 1944 1945 /* After switching from power-down to normal mode, an internal global 1946 * reset is automatically generated. Wait a minimum of 1 ms before 1947 * read/write access to the PHY registers. 1948 */ 1949 usleep_range(1000, 2000); 1950 1951 ret = kszphy_config_reset(phydev); 1952 if (ret) 1953 return ret; 1954 1955 /* Enable PHY Interrupts */ 1956 if (phy_interrupt_is_valid(phydev)) { 1957 phydev->interrupts = PHY_INTERRUPT_ENABLED; 1958 if (phydev->drv->config_intr) 1959 phydev->drv->config_intr(phydev); 1960 } 1961 1962 return 0; 1963 } 1964 1965 static int kszphy_probe(struct phy_device *phydev) 1966 { 1967 const struct kszphy_type *type = phydev->drv->driver_data; 1968 const struct device_node *np = phydev->mdio.dev.of_node; 1969 struct kszphy_priv *priv; 1970 struct clk *clk; 1971 1972 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 1973 if (!priv) 1974 return -ENOMEM; 1975 1976 phydev->priv = priv; 1977 1978 priv->type = type; 1979 1980 kszphy_parse_led_mode(phydev); 1981 1982 clk = devm_clk_get(&phydev->mdio.dev, "rmii-ref"); 1983 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 1984 if (!IS_ERR_OR_NULL(clk)) { 1985 unsigned long rate = clk_get_rate(clk); 1986 bool rmii_ref_clk_sel_25_mhz; 1987 1988 if (type) 1989 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 1990 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 1991 "micrel,rmii-reference-clock-select-25-mhz"); 1992 1993 if (rate > 24500000 && rate < 25500000) { 1994 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 1995 } else if (rate > 49500000 && rate < 50500000) { 1996 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 1997 } else { 1998 phydev_err(phydev, "Clock rate out of range: %ld\n", 1999 rate); 2000 return -EINVAL; 2001 } 2002 } 2003 2004 if (ksz8041_fiber_mode(phydev)) 2005 phydev->port = PORT_FIBRE; 2006 2007 /* Support legacy board-file configuration */ 2008 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2009 priv->rmii_ref_clk_sel = true; 2010 priv->rmii_ref_clk_sel_val = true; 2011 } 2012 2013 return 0; 2014 } 2015 2016 static int lan8814_cable_test_start(struct phy_device *phydev) 2017 { 2018 /* If autoneg is enabled, we won't be able to test cross pair 2019 * short. In this case, the PHY will "detect" a link and 2020 * confuse the internal state machine - disable auto neg here. 2021 * Set the speed to 1000mbit and full duplex. 2022 */ 2023 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2024 BMCR_SPEED1000 | BMCR_FULLDPLX); 2025 } 2026 2027 static int ksz886x_cable_test_start(struct phy_device *phydev) 2028 { 2029 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2030 return -EOPNOTSUPP; 2031 2032 /* If autoneg is enabled, we won't be able to test cross pair 2033 * short. In this case, the PHY will "detect" a link and 2034 * confuse the internal state machine - disable auto neg here. 2035 * If autoneg is disabled, we should set the speed to 10mbit. 2036 */ 2037 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2038 } 2039 2040 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2041 { 2042 switch (FIELD_GET(mask, status)) { 2043 case KSZ8081_LMD_STAT_NORMAL: 2044 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2045 case KSZ8081_LMD_STAT_SHORT: 2046 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2047 case KSZ8081_LMD_STAT_OPEN: 2048 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2049 case KSZ8081_LMD_STAT_FAIL: 2050 fallthrough; 2051 default: 2052 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2053 } 2054 } 2055 2056 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2057 { 2058 return FIELD_GET(mask, status) == 2059 KSZ8081_LMD_STAT_FAIL; 2060 } 2061 2062 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2063 { 2064 switch (FIELD_GET(mask, status)) { 2065 case KSZ8081_LMD_STAT_OPEN: 2066 fallthrough; 2067 case KSZ8081_LMD_STAT_SHORT: 2068 return true; 2069 } 2070 return false; 2071 } 2072 2073 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2074 u16 status, u16 data_mask) 2075 { 2076 int dt; 2077 2078 /* According to the data sheet the distance to the fault is 2079 * DELTA_TIME * 0.4 meters for ksz phys. 2080 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2081 */ 2082 dt = FIELD_GET(data_mask, status); 2083 2084 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2085 return ((dt - 22) * 800) / 10; 2086 else 2087 return (dt * 400) / 10; 2088 } 2089 2090 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2091 { 2092 const struct kszphy_type *type = phydev->drv->driver_data; 2093 int val, ret; 2094 2095 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2096 !(val & KSZ8081_LMD_ENABLE_TEST), 2097 30000, 100000, true); 2098 2099 return ret < 0 ? ret : 0; 2100 } 2101 2102 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2103 { 2104 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2105 ETHTOOL_A_CABLE_PAIR_B, 2106 ETHTOOL_A_CABLE_PAIR_C, 2107 ETHTOOL_A_CABLE_PAIR_D, 2108 }; 2109 u32 fault_length; 2110 int ret; 2111 int val; 2112 2113 val = KSZ8081_LMD_ENABLE_TEST; 2114 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2115 2116 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2117 if (ret < 0) 2118 return ret; 2119 2120 ret = ksz886x_cable_test_wait_for_completion(phydev); 2121 if (ret) 2122 return ret; 2123 2124 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2125 if (val < 0) 2126 return val; 2127 2128 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2129 return -EAGAIN; 2130 2131 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2132 ksz886x_cable_test_result_trans(val, 2133 LAN8814_CABLE_DIAG_STAT_MASK 2134 )); 2135 if (ret) 2136 return ret; 2137 2138 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2139 return 0; 2140 2141 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2142 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2143 2144 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2145 } 2146 2147 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2148 { 2149 static const int ethtool_pair[] = { 2150 ETHTOOL_A_CABLE_PAIR_A, 2151 ETHTOOL_A_CABLE_PAIR_B, 2152 }; 2153 int ret, val, mdix; 2154 u32 fault_length; 2155 2156 /* There is no way to choice the pair, like we do one ksz9031. 2157 * We can workaround this limitation by using the MDI-X functionality. 2158 */ 2159 if (pair == 0) 2160 mdix = ETH_TP_MDI; 2161 else 2162 mdix = ETH_TP_MDI_X; 2163 2164 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2165 case PHY_ID_KSZ8081: 2166 ret = ksz8081_config_mdix(phydev, mdix); 2167 break; 2168 case PHY_ID_KSZ886X: 2169 ret = ksz886x_config_mdix(phydev, mdix); 2170 break; 2171 default: 2172 ret = -ENODEV; 2173 } 2174 2175 if (ret) 2176 return ret; 2177 2178 /* Now we are ready to fire. This command will send a 100ns pulse 2179 * to the pair. 2180 */ 2181 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2182 if (ret) 2183 return ret; 2184 2185 ret = ksz886x_cable_test_wait_for_completion(phydev); 2186 if (ret) 2187 return ret; 2188 2189 val = phy_read(phydev, KSZ8081_LMD); 2190 if (val < 0) 2191 return val; 2192 2193 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2194 return -EAGAIN; 2195 2196 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2197 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2198 if (ret) 2199 return ret; 2200 2201 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2202 return 0; 2203 2204 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2205 2206 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2207 } 2208 2209 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2210 bool *finished) 2211 { 2212 const struct kszphy_type *type = phydev->drv->driver_data; 2213 unsigned long pair_mask = type->pair_mask; 2214 int retries = 20; 2215 int ret = 0; 2216 int pair; 2217 2218 *finished = false; 2219 2220 /* Try harder if link partner is active */ 2221 while (pair_mask && retries--) { 2222 for_each_set_bit(pair, &pair_mask, 4) { 2223 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2224 ret = lan8814_cable_test_one_pair(phydev, pair); 2225 else 2226 ret = ksz886x_cable_test_one_pair(phydev, pair); 2227 if (ret == -EAGAIN) 2228 continue; 2229 if (ret < 0) 2230 return ret; 2231 clear_bit(pair, &pair_mask); 2232 } 2233 /* If link partner is in autonegotiation mode it will send 2ms 2234 * of FLPs with at least 6ms of silence. 2235 * Add 2ms sleep to have better chances to hit this silence. 2236 */ 2237 if (pair_mask) 2238 msleep(2); 2239 } 2240 2241 *finished = true; 2242 2243 return ret; 2244 } 2245 2246 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2247 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2248 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2249 2250 #define LAN8814_QSGMII_SOFT_RESET 0x43 2251 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2252 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2253 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2254 #define LAN8814_ALIGN_SWAP 0x4a 2255 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2256 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2257 2258 #define LAN8804_ALIGN_SWAP 0x4a 2259 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2260 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2261 #define LAN8814_CLOCK_MANAGEMENT 0xd 2262 #define LAN8814_LINK_QUALITY 0x8e 2263 2264 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2265 { 2266 int data; 2267 2268 phy_lock_mdio_bus(phydev); 2269 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2270 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2271 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2272 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2273 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2274 phy_unlock_mdio_bus(phydev); 2275 2276 return data; 2277 } 2278 2279 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2280 u16 val) 2281 { 2282 phy_lock_mdio_bus(phydev); 2283 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2284 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2285 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2286 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2287 2288 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2289 if (val != 0) 2290 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2291 val); 2292 phy_unlock_mdio_bus(phydev); 2293 return val; 2294 } 2295 2296 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2297 { 2298 u16 val = 0; 2299 2300 if (enable) 2301 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2302 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2303 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2304 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2305 2306 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2307 } 2308 2309 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2310 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2311 { 2312 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2313 *seconds = (*seconds << 16) | 2314 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2315 2316 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2317 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2318 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2319 2320 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2321 } 2322 2323 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2324 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2325 { 2326 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2327 *seconds = *seconds << 16 | 2328 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2329 2330 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2331 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2332 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2333 2334 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2335 } 2336 2337 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) 2338 { 2339 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2340 struct phy_device *phydev = ptp_priv->phydev; 2341 struct lan8814_shared_priv *shared = phydev->shared->priv; 2342 2343 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2344 SOF_TIMESTAMPING_RX_HARDWARE | 2345 SOF_TIMESTAMPING_RAW_HARDWARE; 2346 2347 info->phc_index = ptp_clock_index(shared->ptp_clock); 2348 2349 info->tx_types = 2350 (1 << HWTSTAMP_TX_OFF) | 2351 (1 << HWTSTAMP_TX_ON) | 2352 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2353 2354 info->rx_filters = 2355 (1 << HWTSTAMP_FILTER_NONE) | 2356 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2357 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2358 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2359 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2360 2361 return 0; 2362 } 2363 2364 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2365 { 2366 int i; 2367 2368 for (i = 0; i < FIFO_SIZE; ++i) 2369 lanphy_read_page_reg(phydev, 5, 2370 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2371 2372 /* Read to clear overflow status bit */ 2373 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2374 } 2375 2376 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 2377 { 2378 struct kszphy_ptp_priv *ptp_priv = 2379 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2380 struct phy_device *phydev = ptp_priv->phydev; 2381 struct lan8814_shared_priv *shared = phydev->shared->priv; 2382 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2383 struct hwtstamp_config config; 2384 int txcfg = 0, rxcfg = 0; 2385 int pkt_ts_enable; 2386 2387 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2388 return -EFAULT; 2389 2390 ptp_priv->hwts_tx_type = config.tx_type; 2391 ptp_priv->rx_filter = config.rx_filter; 2392 2393 switch (config.rx_filter) { 2394 case HWTSTAMP_FILTER_NONE: 2395 ptp_priv->layer = 0; 2396 ptp_priv->version = 0; 2397 break; 2398 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2399 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2400 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2401 ptp_priv->layer = PTP_CLASS_L4; 2402 ptp_priv->version = PTP_CLASS_V2; 2403 break; 2404 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2405 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2406 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2407 ptp_priv->layer = PTP_CLASS_L2; 2408 ptp_priv->version = PTP_CLASS_V2; 2409 break; 2410 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2411 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2412 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2413 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2414 ptp_priv->version = PTP_CLASS_V2; 2415 break; 2416 default: 2417 return -ERANGE; 2418 } 2419 2420 if (ptp_priv->layer & PTP_CLASS_L2) { 2421 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2422 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2423 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2424 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2425 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2426 } 2427 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2428 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2429 2430 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2431 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2432 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2433 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2434 2435 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) 2436 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2437 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2438 2439 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2440 lan8814_config_ts_intr(ptp_priv->phydev, true); 2441 else 2442 lan8814_config_ts_intr(ptp_priv->phydev, false); 2443 2444 mutex_lock(&shared->shared_lock); 2445 if (config.rx_filter != HWTSTAMP_FILTER_NONE) 2446 shared->ref++; 2447 else 2448 shared->ref--; 2449 2450 if (shared->ref) 2451 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2452 PTP_CMD_CTL_PTP_ENABLE_); 2453 else 2454 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2455 PTP_CMD_CTL_PTP_DISABLE_); 2456 mutex_unlock(&shared->shared_lock); 2457 2458 /* In case of multiple starts and stops, these needs to be cleared */ 2459 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2460 list_del(&rx_ts->list); 2461 kfree(rx_ts); 2462 } 2463 skb_queue_purge(&ptp_priv->rx_queue); 2464 skb_queue_purge(&ptp_priv->tx_queue); 2465 2466 lan8814_flush_fifo(ptp_priv->phydev, false); 2467 lan8814_flush_fifo(ptp_priv->phydev, true); 2468 2469 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 2470 } 2471 2472 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2473 struct sk_buff *skb, int type) 2474 { 2475 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2476 2477 switch (ptp_priv->hwts_tx_type) { 2478 case HWTSTAMP_TX_ONESTEP_SYNC: 2479 if (ptp_msg_is_sync(skb, type)) { 2480 kfree_skb(skb); 2481 return; 2482 } 2483 fallthrough; 2484 case HWTSTAMP_TX_ON: 2485 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2486 skb_queue_tail(&ptp_priv->tx_queue, skb); 2487 break; 2488 case HWTSTAMP_TX_OFF: 2489 default: 2490 kfree_skb(skb); 2491 break; 2492 } 2493 } 2494 2495 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2496 { 2497 struct ptp_header *ptp_header; 2498 u32 type; 2499 2500 skb_push(skb, ETH_HLEN); 2501 type = ptp_classify_raw(skb); 2502 ptp_header = ptp_parse_header(skb, type); 2503 skb_pull_inline(skb, ETH_HLEN); 2504 2505 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2506 } 2507 2508 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 2509 struct sk_buff *skb) 2510 { 2511 struct skb_shared_hwtstamps *shhwtstamps; 2512 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2513 unsigned long flags; 2514 bool ret = false; 2515 u16 skb_sig; 2516 2517 lan8814_get_sig_rx(skb, &skb_sig); 2518 2519 /* Iterate over all RX timestamps and match it with the received skbs */ 2520 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2521 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2522 /* Check if we found the signature we were looking for. */ 2523 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2524 continue; 2525 2526 shhwtstamps = skb_hwtstamps(skb); 2527 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2528 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2529 rx_ts->nsec); 2530 list_del(&rx_ts->list); 2531 kfree(rx_ts); 2532 2533 ret = true; 2534 break; 2535 } 2536 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2537 2538 if (ret) 2539 netif_rx(skb); 2540 return ret; 2541 } 2542 2543 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2544 { 2545 struct kszphy_ptp_priv *ptp_priv = 2546 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2547 2548 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2549 type == PTP_CLASS_NONE) 2550 return false; 2551 2552 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2553 return false; 2554 2555 /* If we failed to match then add it to the queue for when the timestamp 2556 * will come 2557 */ 2558 if (!lan8814_match_rx_skb(ptp_priv, skb)) 2559 skb_queue_tail(&ptp_priv->rx_queue, skb); 2560 2561 return true; 2562 } 2563 2564 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2565 u32 seconds, u32 nano_seconds) 2566 { 2567 u32 sec_low, sec_high, nsec_low, nsec_high; 2568 2569 sec_low = seconds & 0xffff; 2570 sec_high = (seconds >> 16) & 0xffff; 2571 nsec_low = nano_seconds & 0xffff; 2572 nsec_high = (nano_seconds >> 16) & 0x3fff; 2573 2574 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low); 2575 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high); 2576 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low); 2577 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high); 2578 2579 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2580 } 2581 2582 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2583 u32 *seconds, u32 *nano_seconds) 2584 { 2585 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2586 2587 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2588 *seconds = (*seconds << 16) | 2589 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2590 2591 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2592 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2593 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2594 } 2595 2596 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2597 struct timespec64 *ts) 2598 { 2599 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2600 ptp_clock_info); 2601 struct phy_device *phydev = shared->phydev; 2602 u32 nano_seconds; 2603 u32 seconds; 2604 2605 mutex_lock(&shared->shared_lock); 2606 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2607 mutex_unlock(&shared->shared_lock); 2608 ts->tv_sec = seconds; 2609 ts->tv_nsec = nano_seconds; 2610 2611 return 0; 2612 } 2613 2614 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2615 const struct timespec64 *ts) 2616 { 2617 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2618 ptp_clock_info); 2619 struct phy_device *phydev = shared->phydev; 2620 2621 mutex_lock(&shared->shared_lock); 2622 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2623 mutex_unlock(&shared->shared_lock); 2624 2625 return 0; 2626 } 2627 2628 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2629 s64 time_step_ns) 2630 { 2631 u32 nano_seconds_step; 2632 u64 abs_time_step_ns; 2633 u32 unsigned_seconds; 2634 u32 nano_seconds; 2635 u32 remainder; 2636 s32 seconds; 2637 2638 if (time_step_ns > 15000000000LL) { 2639 /* convert to clock set */ 2640 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2641 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2642 &remainder); 2643 nano_seconds += remainder; 2644 if (nano_seconds >= 1000000000) { 2645 unsigned_seconds++; 2646 nano_seconds -= 1000000000; 2647 } 2648 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds); 2649 return; 2650 } else if (time_step_ns < -15000000000LL) { 2651 /* convert to clock set */ 2652 time_step_ns = -time_step_ns; 2653 2654 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2655 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2656 &remainder); 2657 nano_seconds_step = remainder; 2658 if (nano_seconds < nano_seconds_step) { 2659 unsigned_seconds--; 2660 nano_seconds += 1000000000; 2661 } 2662 nano_seconds -= nano_seconds_step; 2663 lan8814_ptp_clock_set(phydev, unsigned_seconds, 2664 nano_seconds); 2665 return; 2666 } 2667 2668 /* do clock step */ 2669 if (time_step_ns >= 0) { 2670 abs_time_step_ns = (u64)time_step_ns; 2671 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2672 &remainder); 2673 nano_seconds = remainder; 2674 } else { 2675 abs_time_step_ns = (u64)(-time_step_ns); 2676 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 2677 &remainder)); 2678 nano_seconds = remainder; 2679 if (nano_seconds > 0) { 2680 /* subtracting nano seconds is not allowed 2681 * convert to subtracting from seconds, 2682 * and adding to nanoseconds 2683 */ 2684 seconds--; 2685 nano_seconds = (1000000000 - nano_seconds); 2686 } 2687 } 2688 2689 if (nano_seconds > 0) { 2690 /* add 8 ns to cover the likely normal increment */ 2691 nano_seconds += 8; 2692 } 2693 2694 if (nano_seconds >= 1000000000) { 2695 /* carry into seconds */ 2696 seconds++; 2697 nano_seconds -= 1000000000; 2698 } 2699 2700 while (seconds) { 2701 if (seconds > 0) { 2702 u32 adjustment_value = (u32)seconds; 2703 u16 adjustment_value_lo, adjustment_value_hi; 2704 2705 if (adjustment_value > 0xF) 2706 adjustment_value = 0xF; 2707 2708 adjustment_value_lo = adjustment_value & 0xffff; 2709 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2710 2711 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2712 adjustment_value_lo); 2713 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2714 PTP_LTC_STEP_ADJ_DIR_ | 2715 adjustment_value_hi); 2716 seconds -= ((s32)adjustment_value); 2717 } else { 2718 u32 adjustment_value = (u32)(-seconds); 2719 u16 adjustment_value_lo, adjustment_value_hi; 2720 2721 if (adjustment_value > 0xF) 2722 adjustment_value = 0xF; 2723 2724 adjustment_value_lo = adjustment_value & 0xffff; 2725 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2726 2727 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2728 adjustment_value_lo); 2729 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2730 adjustment_value_hi); 2731 seconds += ((s32)adjustment_value); 2732 } 2733 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2734 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 2735 } 2736 if (nano_seconds) { 2737 u16 nano_seconds_lo; 2738 u16 nano_seconds_hi; 2739 2740 nano_seconds_lo = nano_seconds & 0xffff; 2741 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 2742 2743 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2744 nano_seconds_lo); 2745 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2746 PTP_LTC_STEP_ADJ_DIR_ | 2747 nano_seconds_hi); 2748 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2749 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 2750 } 2751 } 2752 2753 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 2754 { 2755 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2756 ptp_clock_info); 2757 struct phy_device *phydev = shared->phydev; 2758 2759 mutex_lock(&shared->shared_lock); 2760 lan8814_ptp_clock_step(phydev, delta); 2761 mutex_unlock(&shared->shared_lock); 2762 2763 return 0; 2764 } 2765 2766 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 2767 { 2768 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2769 ptp_clock_info); 2770 struct phy_device *phydev = shared->phydev; 2771 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 2772 bool positive = true; 2773 u32 kszphy_rate_adj; 2774 2775 if (scaled_ppm < 0) { 2776 scaled_ppm = -scaled_ppm; 2777 positive = false; 2778 } 2779 2780 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 2781 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 2782 2783 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 2784 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 2785 2786 if (positive) 2787 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 2788 2789 mutex_lock(&shared->shared_lock); 2790 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 2791 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 2792 mutex_unlock(&shared->shared_lock); 2793 2794 return 0; 2795 } 2796 2797 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 2798 { 2799 struct ptp_header *ptp_header; 2800 u32 type; 2801 2802 type = ptp_classify_raw(skb); 2803 ptp_header = ptp_parse_header(skb, type); 2804 2805 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2806 } 2807 2808 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 2809 u32 seconds, u32 nsec, u16 seq_id) 2810 { 2811 struct skb_shared_hwtstamps shhwtstamps; 2812 struct sk_buff *skb, *skb_tmp; 2813 unsigned long flags; 2814 bool ret = false; 2815 u16 skb_sig; 2816 2817 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 2818 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 2819 lan8814_get_sig_tx(skb, &skb_sig); 2820 2821 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 2822 continue; 2823 2824 __skb_unlink(skb, &ptp_priv->tx_queue); 2825 ret = true; 2826 break; 2827 } 2828 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 2829 2830 if (ret) { 2831 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2832 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 2833 skb_complete_tx_timestamp(skb, &shhwtstamps); 2834 } 2835 } 2836 2837 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 2838 { 2839 struct phy_device *phydev = ptp_priv->phydev; 2840 u32 seconds, nsec; 2841 u16 seq_id; 2842 2843 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 2844 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 2845 } 2846 2847 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 2848 { 2849 struct phy_device *phydev = ptp_priv->phydev; 2850 u32 reg; 2851 2852 do { 2853 lan8814_dequeue_tx_skb(ptp_priv); 2854 2855 /* If other timestamps are available in the FIFO, 2856 * process them. 2857 */ 2858 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2859 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 2860 } 2861 2862 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 2863 struct lan8814_ptp_rx_ts *rx_ts) 2864 { 2865 struct skb_shared_hwtstamps *shhwtstamps; 2866 struct sk_buff *skb, *skb_tmp; 2867 unsigned long flags; 2868 bool ret = false; 2869 u16 skb_sig; 2870 2871 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 2872 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 2873 lan8814_get_sig_rx(skb, &skb_sig); 2874 2875 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2876 continue; 2877 2878 __skb_unlink(skb, &ptp_priv->rx_queue); 2879 2880 ret = true; 2881 break; 2882 } 2883 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 2884 2885 if (ret) { 2886 shhwtstamps = skb_hwtstamps(skb); 2887 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2888 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 2889 netif_rx(skb); 2890 } 2891 2892 return ret; 2893 } 2894 2895 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 2896 struct lan8814_ptp_rx_ts *rx_ts) 2897 { 2898 unsigned long flags; 2899 2900 /* If we failed to match the skb add it to the queue for when 2901 * the frame will come 2902 */ 2903 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 2904 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2905 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 2906 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2907 } else { 2908 kfree(rx_ts); 2909 } 2910 } 2911 2912 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 2913 { 2914 struct phy_device *phydev = ptp_priv->phydev; 2915 struct lan8814_ptp_rx_ts *rx_ts; 2916 u32 reg; 2917 2918 do { 2919 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 2920 if (!rx_ts) 2921 return; 2922 2923 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 2924 &rx_ts->seq_id); 2925 lan8814_match_rx_ts(ptp_priv, rx_ts); 2926 2927 /* If other timestamps are available in the FIFO, 2928 * process them. 2929 */ 2930 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2931 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 2932 } 2933 2934 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 2935 { 2936 struct kszphy_priv *priv = phydev->priv; 2937 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2938 2939 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 2940 lan8814_get_tx_ts(ptp_priv); 2941 2942 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 2943 lan8814_get_rx_ts(ptp_priv); 2944 2945 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 2946 lan8814_flush_fifo(phydev, true); 2947 skb_queue_purge(&ptp_priv->tx_queue); 2948 } 2949 2950 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 2951 lan8814_flush_fifo(phydev, false); 2952 skb_queue_purge(&ptp_priv->rx_queue); 2953 } 2954 } 2955 2956 static int lan8804_config_init(struct phy_device *phydev) 2957 { 2958 int val; 2959 2960 /* MDI-X setting for swap A,B transmit */ 2961 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 2962 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 2963 val |= LAN8804_ALIGN_TX_A_B_SWAP; 2964 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 2965 2966 /* Make sure that the PHY will not stop generating the clock when the 2967 * link partner goes down 2968 */ 2969 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 2970 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 2971 2972 return 0; 2973 } 2974 2975 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 2976 { 2977 int status; 2978 2979 status = phy_read(phydev, LAN8814_INTS); 2980 if (status < 0) { 2981 phy_error(phydev); 2982 return IRQ_NONE; 2983 } 2984 2985 if (status > 0) 2986 phy_trigger_machine(phydev); 2987 2988 return IRQ_HANDLED; 2989 } 2990 2991 #define LAN8804_OUTPUT_CONTROL 25 2992 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 2993 #define LAN8804_CONTROL 31 2994 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 2995 2996 static int lan8804_config_intr(struct phy_device *phydev) 2997 { 2998 int err; 2999 3000 /* This is an internal PHY of lan966x and is not possible to change the 3001 * polarity on the GIC found in lan966x, therefore change the polarity 3002 * of the interrupt in the PHY from being active low instead of active 3003 * high. 3004 */ 3005 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3006 3007 /* By default interrupt buffer is open-drain in which case the interrupt 3008 * can be active only low. Therefore change the interrupt buffer to be 3009 * push-pull to be able to change interrupt polarity 3010 */ 3011 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3012 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3013 3014 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3015 err = phy_read(phydev, LAN8814_INTS); 3016 if (err < 0) 3017 return err; 3018 3019 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3020 if (err) 3021 return err; 3022 } else { 3023 err = phy_write(phydev, LAN8814_INTC, 0); 3024 if (err) 3025 return err; 3026 3027 err = phy_read(phydev, LAN8814_INTS); 3028 if (err < 0) 3029 return err; 3030 } 3031 3032 return 0; 3033 } 3034 3035 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3036 { 3037 int ret = IRQ_NONE; 3038 int irq_status; 3039 3040 irq_status = phy_read(phydev, LAN8814_INTS); 3041 if (irq_status < 0) { 3042 phy_error(phydev); 3043 return IRQ_NONE; 3044 } 3045 3046 if (irq_status & LAN8814_INT_LINK) { 3047 phy_trigger_machine(phydev); 3048 ret = IRQ_HANDLED; 3049 } 3050 3051 while (true) { 3052 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 3053 if (!irq_status) 3054 break; 3055 3056 lan8814_handle_ptp_interrupt(phydev, irq_status); 3057 ret = IRQ_HANDLED; 3058 } 3059 3060 return ret; 3061 } 3062 3063 static int lan8814_ack_interrupt(struct phy_device *phydev) 3064 { 3065 /* bit[12..0] int status, which is a read and clear register. */ 3066 int rc; 3067 3068 rc = phy_read(phydev, LAN8814_INTS); 3069 3070 return (rc < 0) ? rc : 0; 3071 } 3072 3073 static int lan8814_config_intr(struct phy_device *phydev) 3074 { 3075 int err; 3076 3077 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 3078 LAN8814_INTR_CTRL_REG_POLARITY | 3079 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 3080 3081 /* enable / disable interrupts */ 3082 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3083 err = lan8814_ack_interrupt(phydev); 3084 if (err) 3085 return err; 3086 3087 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3088 } else { 3089 err = phy_write(phydev, LAN8814_INTC, 0); 3090 if (err) 3091 return err; 3092 3093 err = lan8814_ack_interrupt(phydev); 3094 } 3095 3096 return err; 3097 } 3098 3099 static void lan8814_ptp_init(struct phy_device *phydev) 3100 { 3101 struct kszphy_priv *priv = phydev->priv; 3102 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3103 u32 temp; 3104 3105 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 3106 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 3107 return; 3108 3109 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 3110 3111 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 3112 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3113 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 3114 3115 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 3116 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3117 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 3118 3119 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 3120 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 3121 3122 /* Removing default registers configs related to L2 and IP */ 3123 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 3124 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 3125 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 3126 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 3127 3128 skb_queue_head_init(&ptp_priv->tx_queue); 3129 skb_queue_head_init(&ptp_priv->rx_queue); 3130 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 3131 spin_lock_init(&ptp_priv->rx_ts_lock); 3132 3133 ptp_priv->phydev = phydev; 3134 3135 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 3136 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 3137 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 3138 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 3139 3140 phydev->mii_ts = &ptp_priv->mii_ts; 3141 } 3142 3143 static int lan8814_ptp_probe_once(struct phy_device *phydev) 3144 { 3145 struct lan8814_shared_priv *shared = phydev->shared->priv; 3146 3147 /* Initialise shared lock for clock*/ 3148 mutex_init(&shared->shared_lock); 3149 3150 shared->ptp_clock_info.owner = THIS_MODULE; 3151 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 3152 shared->ptp_clock_info.max_adj = 31249999; 3153 shared->ptp_clock_info.n_alarm = 0; 3154 shared->ptp_clock_info.n_ext_ts = 0; 3155 shared->ptp_clock_info.n_pins = 0; 3156 shared->ptp_clock_info.pps = 0; 3157 shared->ptp_clock_info.pin_config = NULL; 3158 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 3159 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 3160 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 3161 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 3162 shared->ptp_clock_info.getcrosststamp = NULL; 3163 3164 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 3165 &phydev->mdio.dev); 3166 if (IS_ERR(shared->ptp_clock)) { 3167 phydev_err(phydev, "ptp_clock_register failed %lu\n", 3168 PTR_ERR(shared->ptp_clock)); 3169 return -EINVAL; 3170 } 3171 3172 /* Check if PHC support is missing at the configuration level */ 3173 if (!shared->ptp_clock) 3174 return 0; 3175 3176 phydev_dbg(phydev, "successfully registered ptp clock\n"); 3177 3178 shared->phydev = phydev; 3179 3180 /* The EP.4 is shared between all the PHYs in the package and also it 3181 * can be accessed by any of the PHYs 3182 */ 3183 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 3184 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 3185 PTP_OPERATING_MODE_STANDALONE_); 3186 3187 return 0; 3188 } 3189 3190 static void lan8814_setup_led(struct phy_device *phydev, int val) 3191 { 3192 int temp; 3193 3194 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 3195 3196 if (val) 3197 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3198 else 3199 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3200 3201 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 3202 } 3203 3204 static int lan8814_config_init(struct phy_device *phydev) 3205 { 3206 struct kszphy_priv *lan8814 = phydev->priv; 3207 int val; 3208 3209 /* Reset the PHY */ 3210 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 3211 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 3212 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 3213 3214 /* Disable ANEG with QSGMII PCS Host side */ 3215 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 3216 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 3217 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 3218 3219 /* MDI-X setting for swap A,B transmit */ 3220 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 3221 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 3222 val |= LAN8814_ALIGN_TX_A_B_SWAP; 3223 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 3224 3225 if (lan8814->led_mode >= 0) 3226 lan8814_setup_led(phydev, lan8814->led_mode); 3227 3228 return 0; 3229 } 3230 3231 /* It is expected that there will not be any 'lan8814_take_coma_mode' 3232 * function called in suspend. Because the GPIO line can be shared, so if one of 3233 * the phys goes back in coma mode, then all the other PHYs will go, which is 3234 * wrong. 3235 */ 3236 static int lan8814_release_coma_mode(struct phy_device *phydev) 3237 { 3238 struct gpio_desc *gpiod; 3239 3240 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 3241 GPIOD_OUT_HIGH_OPEN_DRAIN | 3242 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 3243 if (IS_ERR(gpiod)) 3244 return PTR_ERR(gpiod); 3245 3246 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 3247 gpiod_set_value_cansleep(gpiod, 0); 3248 3249 return 0; 3250 } 3251 3252 static int lan8814_probe(struct phy_device *phydev) 3253 { 3254 const struct kszphy_type *type = phydev->drv->driver_data; 3255 struct kszphy_priv *priv; 3256 u16 addr; 3257 int err; 3258 3259 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 3260 if (!priv) 3261 return -ENOMEM; 3262 3263 phydev->priv = priv; 3264 3265 priv->type = type; 3266 3267 kszphy_parse_led_mode(phydev); 3268 3269 /* Strap-in value for PHY address, below register read gives starting 3270 * phy address value 3271 */ 3272 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 3273 devm_phy_package_join(&phydev->mdio.dev, phydev, 3274 addr, sizeof(struct lan8814_shared_priv)); 3275 3276 if (phy_package_init_once(phydev)) { 3277 err = lan8814_release_coma_mode(phydev); 3278 if (err) 3279 return err; 3280 3281 err = lan8814_ptp_probe_once(phydev); 3282 if (err) 3283 return err; 3284 } 3285 3286 lan8814_ptp_init(phydev); 3287 3288 return 0; 3289 } 3290 3291 #define LAN8841_MMD_TIMER_REG 0 3292 #define LAN8841_MMD0_REGISTER_17 17 3293 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 3294 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 3295 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 3296 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 3297 #define LAN8841_MMD_ANALOG_REG 28 3298 #define LAN8841_ANALOG_CONTROL_1 1 3299 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 3300 #define LAN8841_ANALOG_CONTROL_10 13 3301 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 3302 #define LAN8841_ANALOG_CONTROL_11 14 3303 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 3304 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 3305 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 3306 #define LAN8841_BTRX_POWER_DOWN 70 3307 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 3308 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 3309 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 3310 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 3311 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 3312 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 3313 #define LAN8841_ADC_CHANNEL_MASK 198 3314 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 3315 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 3316 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 3317 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 3318 #define LAN8841_PTP_CMD_CTL 256 3319 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 3320 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 3321 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 3322 #define LAN8841_PTP_RX_PARSE_CONFIG 368 3323 #define LAN8841_PTP_TX_PARSE_CONFIG 432 3324 #define LAN8841_PTP_RX_MODE 381 3325 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 3326 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 3327 3328 static int lan8841_config_init(struct phy_device *phydev) 3329 { 3330 int ret; 3331 3332 ret = ksz9131_config_init(phydev); 3333 if (ret) 3334 return ret; 3335 3336 /* Initialize the HW by resetting everything */ 3337 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3338 LAN8841_PTP_CMD_CTL, 3339 LAN8841_PTP_CMD_CTL_PTP_RESET, 3340 LAN8841_PTP_CMD_CTL_PTP_RESET); 3341 3342 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3343 LAN8841_PTP_CMD_CTL, 3344 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 3345 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 3346 3347 /* Don't process any frames */ 3348 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3349 LAN8841_PTP_RX_PARSE_CONFIG, 0); 3350 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3351 LAN8841_PTP_TX_PARSE_CONFIG, 0); 3352 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3353 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 3354 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3355 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 3356 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3357 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 3358 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3359 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 3360 3361 /* 100BT Clause 40 improvenent errata */ 3362 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3363 LAN8841_ANALOG_CONTROL_1, 3364 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 3365 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3366 LAN8841_ANALOG_CONTROL_10, 3367 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 3368 3369 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 3370 * Magnetics 3371 */ 3372 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3373 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 3374 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 3375 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3376 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 3377 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 3378 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3379 LAN8841_BTRX_POWER_DOWN, 3380 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 3381 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 3382 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 3383 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 3384 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 3385 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 3386 } 3387 3388 /* LDO Adjustment errata */ 3389 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3390 LAN8841_ANALOG_CONTROL_11, 3391 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 3392 3393 /* 100BT RGMII latency tuning errata */ 3394 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 3395 LAN8841_ADC_CHANNEL_MASK, 0x0); 3396 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 3397 LAN8841_MMD0_REGISTER_17, 3398 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 3399 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 3400 3401 return 0; 3402 } 3403 3404 #define LAN8841_OUTPUT_CTRL 25 3405 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 3406 #define LAN8841_INT_PTP BIT(9) 3407 3408 static int lan8841_config_intr(struct phy_device *phydev) 3409 { 3410 int err; 3411 3412 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 3413 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 3414 3415 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3416 err = phy_read(phydev, LAN8814_INTS); 3417 if (err) 3418 return err; 3419 3420 /* Enable / disable interrupts. It is OK to enable PTP interrupt 3421 * even if it PTP is not enabled. Because the underneath blocks 3422 * will not enable the PTP so we will never get the PTP 3423 * interrupt. 3424 */ 3425 err = phy_write(phydev, LAN8814_INTC, 3426 LAN8814_INT_LINK | LAN8841_INT_PTP); 3427 } else { 3428 err = phy_write(phydev, LAN8814_INTC, 0); 3429 if (err) 3430 return err; 3431 3432 err = phy_read(phydev, LAN8814_INTS); 3433 } 3434 3435 return err; 3436 } 3437 3438 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 3439 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 3440 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 3441 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 3442 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 3443 #define LAN8841_PTP_TX_MSG_HEADER2 455 3444 3445 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 3446 u32 *sec, u32 *nsec, u16 *seq) 3447 { 3448 struct phy_device *phydev = ptp_priv->phydev; 3449 3450 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 3451 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 3452 return false; 3453 3454 *nsec = ((*nsec & 0x3fff) << 16); 3455 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 3456 3457 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 3458 *sec = *sec << 16; 3459 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 3460 3461 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3462 3463 return true; 3464 } 3465 3466 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3467 { 3468 u32 sec, nsec; 3469 u16 seq; 3470 3471 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 3472 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 3473 } 3474 3475 #define LAN8841_PTP_INT_STS 259 3476 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 3477 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 3478 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 3479 3480 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 3481 { 3482 struct phy_device *phydev = ptp_priv->phydev; 3483 int i; 3484 3485 for (i = 0; i < FIFO_SIZE; ++i) 3486 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3487 3488 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3489 } 3490 3491 #define LAN8841_PTP_GPIO_CAP_STS 506 3492 #define LAN8841_PTP_GPIO_SEL 327 3493 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 3494 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 3495 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 3496 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 3497 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 3498 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 3499 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 3500 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 3501 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 3502 3503 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 3504 { 3505 struct phy_device *phydev = ptp_priv->phydev; 3506 struct ptp_clock_event ptp_event = {0}; 3507 int pin, ret, tmp; 3508 s32 sec, nsec; 3509 3510 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 3511 if (pin == -1) 3512 return; 3513 3514 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 3515 if (tmp < 0) 3516 return; 3517 3518 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 3519 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 3520 if (ret) 3521 return; 3522 3523 mutex_lock(&ptp_priv->ptp_lock); 3524 if (tmp & BIT(pin)) { 3525 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 3526 sec <<= 16; 3527 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 3528 3529 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3530 nsec <<= 16; 3531 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 3532 } else { 3533 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 3534 sec <<= 16; 3535 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 3536 3537 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3538 nsec <<= 16; 3539 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 3540 } 3541 mutex_unlock(&ptp_priv->ptp_lock); 3542 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 3543 if (ret) 3544 return; 3545 3546 ptp_event.index = 0; 3547 ptp_event.timestamp = ktime_set(sec, nsec); 3548 ptp_event.type = PTP_CLOCK_EXTTS; 3549 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 3550 } 3551 3552 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 3553 { 3554 struct kszphy_priv *priv = phydev->priv; 3555 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3556 u16 status; 3557 3558 do { 3559 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3560 3561 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 3562 lan8841_ptp_process_tx_ts(ptp_priv); 3563 3564 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 3565 lan8841_gpio_process_cap(ptp_priv); 3566 3567 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 3568 lan8841_ptp_flush_fifo(ptp_priv); 3569 skb_queue_purge(&ptp_priv->tx_queue); 3570 } 3571 3572 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 3573 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 3574 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 3575 } 3576 3577 #define LAN8841_INTS_PTP BIT(9) 3578 3579 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 3580 { 3581 irqreturn_t ret = IRQ_NONE; 3582 int irq_status; 3583 3584 irq_status = phy_read(phydev, LAN8814_INTS); 3585 if (irq_status < 0) { 3586 phy_error(phydev); 3587 return IRQ_NONE; 3588 } 3589 3590 if (irq_status & LAN8814_INT_LINK) { 3591 phy_trigger_machine(phydev); 3592 ret = IRQ_HANDLED; 3593 } 3594 3595 if (irq_status & LAN8841_INTS_PTP) { 3596 lan8841_handle_ptp_interrupt(phydev); 3597 ret = IRQ_HANDLED; 3598 } 3599 3600 return ret; 3601 } 3602 3603 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 3604 struct ethtool_ts_info *info) 3605 { 3606 struct kszphy_ptp_priv *ptp_priv; 3607 3608 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3609 3610 info->phc_index = ptp_priv->ptp_clock ? 3611 ptp_clock_index(ptp_priv->ptp_clock) : -1; 3612 if (info->phc_index == -1) { 3613 info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE | 3614 SOF_TIMESTAMPING_RX_SOFTWARE | 3615 SOF_TIMESTAMPING_SOFTWARE; 3616 return 0; 3617 } 3618 3619 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 3620 SOF_TIMESTAMPING_RX_HARDWARE | 3621 SOF_TIMESTAMPING_RAW_HARDWARE; 3622 3623 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 3624 (1 << HWTSTAMP_TX_ON) | 3625 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3626 3627 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 3628 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3629 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3630 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3631 3632 return 0; 3633 } 3634 3635 #define LAN8841_PTP_INT_EN 260 3636 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 3637 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 3638 3639 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 3640 bool enable) 3641 { 3642 struct phy_device *phydev = ptp_priv->phydev; 3643 3644 if (enable) { 3645 /* Enable interrupts on the TX side */ 3646 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3647 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3648 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 3649 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3650 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 3651 3652 /* Enable the modification of the frame on RX side, 3653 * this will add the ns and 2 bits of sec in the reserved field 3654 * of the PTP header 3655 */ 3656 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3657 LAN8841_PTP_RX_MODE, 3658 LAN8841_PTP_INSERT_TS_EN | 3659 LAN8841_PTP_INSERT_TS_32BIT, 3660 LAN8841_PTP_INSERT_TS_EN | 3661 LAN8841_PTP_INSERT_TS_32BIT); 3662 3663 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 3664 } else { 3665 /* Disable interrupts on the TX side */ 3666 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3667 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3668 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 3669 3670 /* Disable modification of the RX frames */ 3671 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3672 LAN8841_PTP_RX_MODE, 3673 LAN8841_PTP_INSERT_TS_EN | 3674 LAN8841_PTP_INSERT_TS_32BIT, 0); 3675 3676 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 3677 } 3678 } 3679 3680 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 3681 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 3682 #define LAN8841_PTP_TX_MOD 445 3683 3684 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, struct ifreq *ifr) 3685 { 3686 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3687 struct phy_device *phydev = ptp_priv->phydev; 3688 struct hwtstamp_config config; 3689 int txcfg = 0, rxcfg = 0; 3690 int pkt_ts_enable; 3691 3692 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 3693 return -EFAULT; 3694 3695 ptp_priv->hwts_tx_type = config.tx_type; 3696 ptp_priv->rx_filter = config.rx_filter; 3697 3698 switch (config.rx_filter) { 3699 case HWTSTAMP_FILTER_NONE: 3700 ptp_priv->layer = 0; 3701 ptp_priv->version = 0; 3702 break; 3703 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3704 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3705 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3706 ptp_priv->layer = PTP_CLASS_L4; 3707 ptp_priv->version = PTP_CLASS_V2; 3708 break; 3709 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3710 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3711 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3712 ptp_priv->layer = PTP_CLASS_L2; 3713 ptp_priv->version = PTP_CLASS_V2; 3714 break; 3715 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3716 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3717 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3718 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3719 ptp_priv->version = PTP_CLASS_V2; 3720 break; 3721 default: 3722 return -ERANGE; 3723 } 3724 3725 /* Setup parsing of the frames and enable the timestamping for ptp 3726 * frames 3727 */ 3728 if (ptp_priv->layer & PTP_CLASS_L2) { 3729 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3730 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3731 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3732 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3733 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3734 } 3735 3736 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 3737 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 3738 3739 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3740 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3741 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3742 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3743 3744 /* Enable / disable of the TX timestamp in the SYNC frames */ 3745 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 3746 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3747 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 3748 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 3749 3750 /* Now enable/disable the timestamping */ 3751 lan8841_ptp_enable_processing(ptp_priv, 3752 config.rx_filter != HWTSTAMP_FILTER_NONE); 3753 3754 skb_queue_purge(&ptp_priv->tx_queue); 3755 3756 lan8841_ptp_flush_fifo(ptp_priv); 3757 3758 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; 3759 } 3760 3761 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 3762 struct sk_buff *skb, int type) 3763 { 3764 struct kszphy_ptp_priv *ptp_priv = 3765 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3766 struct ptp_header *header = ptp_parse_header(skb, type); 3767 struct skb_shared_hwtstamps *shhwtstamps; 3768 struct timespec64 ts; 3769 unsigned long flags; 3770 u32 ts_header; 3771 3772 if (!header) 3773 return false; 3774 3775 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3776 type == PTP_CLASS_NONE) 3777 return false; 3778 3779 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3780 return false; 3781 3782 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 3783 ts.tv_sec = ptp_priv->seconds; 3784 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 3785 ts_header = __be32_to_cpu(header->reserved2); 3786 3787 shhwtstamps = skb_hwtstamps(skb); 3788 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3789 3790 /* Check for any wrap arounds for the second part */ 3791 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 3792 ts.tv_sec -= GENMASK(1, 0) + 1; 3793 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 3794 ts.tv_sec += 1; 3795 3796 shhwtstamps->hwtstamp = 3797 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 3798 ts_header & GENMASK(29, 0)); 3799 header->reserved2 = 0; 3800 3801 netif_rx(skb); 3802 3803 return true; 3804 } 3805 3806 #define LAN8841_EVENT_A 0 3807 #define LAN8841_EVENT_B 1 3808 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 3809 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 3810 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 3811 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 3812 3813 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 3814 s64 sec, u32 nsec) 3815 { 3816 struct phy_device *phydev = ptp_priv->phydev; 3817 int ret; 3818 3819 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 3820 upper_16_bits(sec)); 3821 if (ret) 3822 return ret; 3823 3824 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 3825 lower_16_bits(sec)); 3826 if (ret) 3827 return ret; 3828 3829 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 3830 upper_16_bits(nsec)); 3831 if (ret) 3832 return ret; 3833 3834 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 3835 lower_16_bits(nsec)); 3836 } 3837 3838 #define LAN8841_BUFFER_TIME 2 3839 3840 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 3841 const struct timespec64 *ts) 3842 { 3843 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 3844 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 3845 } 3846 3847 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 3848 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 3849 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 3850 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 3851 3852 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 3853 s64 sec, u32 nsec) 3854 { 3855 struct phy_device *phydev = ptp_priv->phydev; 3856 int ret; 3857 3858 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 3859 upper_16_bits(sec)); 3860 if (ret) 3861 return ret; 3862 3863 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 3864 lower_16_bits(sec)); 3865 if (ret) 3866 return ret; 3867 3868 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 3869 upper_16_bits(nsec)); 3870 if (ret) 3871 return ret; 3872 3873 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 3874 lower_16_bits(nsec)); 3875 } 3876 3877 #define LAN8841_PTP_LTC_SET_SEC_HI 262 3878 #define LAN8841_PTP_LTC_SET_SEC_MID 263 3879 #define LAN8841_PTP_LTC_SET_SEC_LO 264 3880 #define LAN8841_PTP_LTC_SET_NS_HI 265 3881 #define LAN8841_PTP_LTC_SET_NS_LO 266 3882 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 3883 3884 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 3885 const struct timespec64 *ts) 3886 { 3887 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3888 ptp_clock_info); 3889 struct phy_device *phydev = ptp_priv->phydev; 3890 unsigned long flags; 3891 int ret; 3892 3893 /* Set the value to be stored */ 3894 mutex_lock(&ptp_priv->ptp_lock); 3895 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 3896 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 3897 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 3898 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 3899 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 3900 3901 /* Set the command to load the LTC */ 3902 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3903 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 3904 ret = lan8841_ptp_update_target(ptp_priv, ts); 3905 mutex_unlock(&ptp_priv->ptp_lock); 3906 3907 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 3908 ptp_priv->seconds = ts->tv_sec; 3909 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 3910 3911 return ret; 3912 } 3913 3914 #define LAN8841_PTP_LTC_RD_SEC_HI 358 3915 #define LAN8841_PTP_LTC_RD_SEC_MID 359 3916 #define LAN8841_PTP_LTC_RD_SEC_LO 360 3917 #define LAN8841_PTP_LTC_RD_NS_HI 361 3918 #define LAN8841_PTP_LTC_RD_NS_LO 362 3919 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 3920 3921 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 3922 struct timespec64 *ts) 3923 { 3924 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3925 ptp_clock_info); 3926 struct phy_device *phydev = ptp_priv->phydev; 3927 time64_t s; 3928 s64 ns; 3929 3930 mutex_lock(&ptp_priv->ptp_lock); 3931 /* Issue the command to read the LTC */ 3932 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3933 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 3934 3935 /* Read the LTC */ 3936 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 3937 s <<= 16; 3938 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 3939 s <<= 16; 3940 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 3941 3942 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 3943 ns <<= 16; 3944 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 3945 mutex_unlock(&ptp_priv->ptp_lock); 3946 3947 set_normalized_timespec64(ts, s, ns); 3948 return 0; 3949 } 3950 3951 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 3952 struct timespec64 *ts) 3953 { 3954 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3955 ptp_clock_info); 3956 struct phy_device *phydev = ptp_priv->phydev; 3957 time64_t s; 3958 3959 mutex_lock(&ptp_priv->ptp_lock); 3960 /* Issue the command to read the LTC */ 3961 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3962 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 3963 3964 /* Read the LTC */ 3965 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 3966 s <<= 16; 3967 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 3968 s <<= 16; 3969 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 3970 mutex_unlock(&ptp_priv->ptp_lock); 3971 3972 set_normalized_timespec64(ts, s, 0); 3973 } 3974 3975 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 3976 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 3977 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 3978 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 3979 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 3980 3981 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 3982 { 3983 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3984 ptp_clock_info); 3985 struct phy_device *phydev = ptp_priv->phydev; 3986 struct timespec64 ts; 3987 bool add = true; 3988 u32 nsec; 3989 s32 sec; 3990 int ret; 3991 3992 /* The HW allows up to 15 sec to adjust the time, but here we limit to 3993 * 10 sec the adjustment. The reason is, in case the adjustment is 14 3994 * sec and 999999999 nsec, then we add 8ns to compansate the actual 3995 * increment so the value can be bigger than 15 sec. Therefore limit the 3996 * possible adjustments so we will not have these corner cases 3997 */ 3998 if (delta > 10000000000LL || delta < -10000000000LL) { 3999 /* The timeadjustment is too big, so fall back using set time */ 4000 u64 now; 4001 4002 ptp->gettime64(ptp, &ts); 4003 4004 now = ktime_to_ns(timespec64_to_ktime(ts)); 4005 ts = ns_to_timespec64(now + delta); 4006 4007 ptp->settime64(ptp, &ts); 4008 return 0; 4009 } 4010 4011 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 4012 if (delta < 0 && nsec != 0) { 4013 /* It is not allowed to adjust low the nsec part, therefore 4014 * subtract more from second part and add to nanosecond such 4015 * that would roll over, so the second part will increase 4016 */ 4017 sec--; 4018 nsec = NSEC_PER_SEC - nsec; 4019 } 4020 4021 /* Calculate the adjustments and the direction */ 4022 if (delta < 0) 4023 add = false; 4024 4025 if (nsec > 0) 4026 /* add 8 ns to cover the likely normal increment */ 4027 nsec += 8; 4028 4029 if (nsec >= NSEC_PER_SEC) { 4030 /* carry into seconds */ 4031 sec++; 4032 nsec -= NSEC_PER_SEC; 4033 } 4034 4035 mutex_lock(&ptp_priv->ptp_lock); 4036 if (sec) { 4037 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 4038 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4039 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 4040 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4041 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 4042 } 4043 4044 if (nsec) { 4045 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 4046 nsec & 0xffff); 4047 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4048 (nsec >> 16) & 0x3fff); 4049 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4050 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 4051 } 4052 mutex_unlock(&ptp_priv->ptp_lock); 4053 4054 /* Update the target clock */ 4055 ptp->gettime64(ptp, &ts); 4056 mutex_lock(&ptp_priv->ptp_lock); 4057 ret = lan8841_ptp_update_target(ptp_priv, &ts); 4058 mutex_unlock(&ptp_priv->ptp_lock); 4059 4060 return ret; 4061 } 4062 4063 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 4064 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 4065 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 4066 4067 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 4068 { 4069 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4070 ptp_clock_info); 4071 struct phy_device *phydev = ptp_priv->phydev; 4072 bool faster = true; 4073 u32 rate; 4074 4075 if (!scaled_ppm) 4076 return 0; 4077 4078 if (scaled_ppm < 0) { 4079 scaled_ppm = -scaled_ppm; 4080 faster = false; 4081 } 4082 4083 rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 4084 rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 4085 4086 mutex_lock(&ptp_priv->ptp_lock); 4087 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 4088 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 4089 : upper_16_bits(rate) & 0x3fff); 4090 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 4091 mutex_unlock(&ptp_priv->ptp_lock); 4092 4093 return 0; 4094 } 4095 4096 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 4097 enum ptp_pin_function func, unsigned int chan) 4098 { 4099 switch (func) { 4100 case PTP_PF_NONE: 4101 case PTP_PF_PEROUT: 4102 case PTP_PF_EXTTS: 4103 break; 4104 default: 4105 return -1; 4106 } 4107 4108 return 0; 4109 } 4110 4111 #define LAN8841_PTP_GPIO_NUM 10 4112 #define LAN8841_GPIO_EN 128 4113 #define LAN8841_GPIO_DIR 129 4114 #define LAN8841_GPIO_BUF 130 4115 4116 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4117 { 4118 struct phy_device *phydev = ptp_priv->phydev; 4119 int ret; 4120 4121 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4122 if (ret) 4123 return ret; 4124 4125 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4126 if (ret) 4127 return ret; 4128 4129 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4130 } 4131 4132 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 4133 { 4134 struct phy_device *phydev = ptp_priv->phydev; 4135 int ret; 4136 4137 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4138 if (ret) 4139 return ret; 4140 4141 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4142 if (ret) 4143 return ret; 4144 4145 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4146 } 4147 4148 #define LAN8841_GPIO_DATA_SEL1 131 4149 #define LAN8841_GPIO_DATA_SEL2 132 4150 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 4151 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 4152 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 4153 #define LAN8841_PTP_GENERAL_CONFIG 257 4154 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 4155 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 4156 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 4157 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 4158 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 4159 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 4160 4161 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4162 u8 event) 4163 { 4164 struct phy_device *phydev = ptp_priv->phydev; 4165 u16 tmp; 4166 int ret; 4167 4168 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 4169 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4170 * depending on the pin, it requires to read a different register 4171 */ 4172 if (pin < 5) { 4173 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 4174 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 4175 } else { 4176 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 4177 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 4178 } 4179 if (ret) 4180 return ret; 4181 4182 /* Disable the event */ 4183 if (event == LAN8841_EVENT_A) 4184 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4185 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 4186 else 4187 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4188 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 4189 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 4190 } 4191 4192 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4193 u8 event, int pulse_width) 4194 { 4195 struct phy_device *phydev = ptp_priv->phydev; 4196 u16 tmp; 4197 int ret; 4198 4199 /* Enable the event */ 4200 if (event == LAN8841_EVENT_A) 4201 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4202 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4203 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 4204 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4205 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 4206 else 4207 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4208 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4209 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 4210 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4211 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 4212 if (ret) 4213 return ret; 4214 4215 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 4216 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4217 * depending on the pin, it requires to read a different register 4218 */ 4219 if (event == LAN8841_EVENT_A) 4220 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 4221 else 4222 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 4223 4224 if (pin < 5) 4225 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 4226 tmp << (3 * pin)); 4227 else 4228 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 4229 tmp << (3 * (pin - 5))); 4230 4231 return ret; 4232 } 4233 4234 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 4235 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 4236 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 4237 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 4238 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 4239 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 4240 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 4241 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 4242 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 4243 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 4244 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 4245 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 4246 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 4247 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 4248 4249 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 4250 struct ptp_clock_request *rq, int on) 4251 { 4252 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4253 ptp_clock_info); 4254 struct phy_device *phydev = ptp_priv->phydev; 4255 struct timespec64 ts_on, ts_period; 4256 s64 on_nsec, period_nsec; 4257 int pulse_width; 4258 int pin; 4259 int ret; 4260 4261 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) 4262 return -EOPNOTSUPP; 4263 4264 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 4265 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4266 return -EINVAL; 4267 4268 if (!on) { 4269 ret = lan8841_ptp_perout_off(ptp_priv, pin); 4270 if (ret) 4271 return ret; 4272 4273 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 4274 } 4275 4276 ts_on.tv_sec = rq->perout.on.sec; 4277 ts_on.tv_nsec = rq->perout.on.nsec; 4278 on_nsec = timespec64_to_ns(&ts_on); 4279 4280 ts_period.tv_sec = rq->perout.period.sec; 4281 ts_period.tv_nsec = rq->perout.period.nsec; 4282 period_nsec = timespec64_to_ns(&ts_period); 4283 4284 if (period_nsec < 200) { 4285 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 4286 phydev_name(phydev)); 4287 return -EOPNOTSUPP; 4288 } 4289 4290 if (on_nsec >= period_nsec) { 4291 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 4292 phydev_name(phydev)); 4293 return -EINVAL; 4294 } 4295 4296 switch (on_nsec) { 4297 case 200000000: 4298 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 4299 break; 4300 case 100000000: 4301 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 4302 break; 4303 case 50000000: 4304 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 4305 break; 4306 case 10000000: 4307 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 4308 break; 4309 case 5000000: 4310 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 4311 break; 4312 case 1000000: 4313 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 4314 break; 4315 case 500000: 4316 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 4317 break; 4318 case 100000: 4319 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 4320 break; 4321 case 50000: 4322 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 4323 break; 4324 case 10000: 4325 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 4326 break; 4327 case 5000: 4328 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 4329 break; 4330 case 1000: 4331 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 4332 break; 4333 case 500: 4334 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 4335 break; 4336 case 100: 4337 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4338 break; 4339 default: 4340 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 4341 phydev_name(phydev)); 4342 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4343 break; 4344 } 4345 4346 mutex_lock(&ptp_priv->ptp_lock); 4347 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 4348 rq->perout.start.nsec); 4349 mutex_unlock(&ptp_priv->ptp_lock); 4350 if (ret) 4351 return ret; 4352 4353 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 4354 rq->perout.period.nsec); 4355 if (ret) 4356 return ret; 4357 4358 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 4359 pulse_width); 4360 if (ret) 4361 return ret; 4362 4363 ret = lan8841_ptp_perout_on(ptp_priv, pin); 4364 if (ret) 4365 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 4366 4367 return ret; 4368 } 4369 4370 #define LAN8841_PTP_GPIO_CAP_EN 496 4371 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 4372 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 4373 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 4374 4375 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 4376 u32 flags) 4377 { 4378 struct phy_device *phydev = ptp_priv->phydev; 4379 u16 tmp = 0; 4380 int ret; 4381 4382 /* Set GPIO to be intput */ 4383 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4384 if (ret) 4385 return ret; 4386 4387 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4388 if (ret) 4389 return ret; 4390 4391 /* Enable capture on the edges of the pin */ 4392 if (flags & PTP_RISING_EDGE) 4393 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 4394 if (flags & PTP_FALLING_EDGE) 4395 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 4396 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 4397 if (ret) 4398 return ret; 4399 4400 /* Enable interrupt */ 4401 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4402 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4403 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 4404 } 4405 4406 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4407 { 4408 struct phy_device *phydev = ptp_priv->phydev; 4409 int ret; 4410 4411 /* Set GPIO to be output */ 4412 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4413 if (ret) 4414 return ret; 4415 4416 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4417 if (ret) 4418 return ret; 4419 4420 /* Disable capture on both of the edges */ 4421 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 4422 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 4423 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 4424 0); 4425 if (ret) 4426 return ret; 4427 4428 /* Disable interrupt */ 4429 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4430 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4431 0); 4432 } 4433 4434 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 4435 struct ptp_clock_request *rq, int on) 4436 { 4437 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4438 ptp_clock_info); 4439 int pin; 4440 int ret; 4441 4442 /* Reject requests with unsupported flags */ 4443 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 4444 PTP_EXTTS_EDGES | 4445 PTP_STRICT_FLAGS)) 4446 return -EOPNOTSUPP; 4447 4448 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 4449 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4450 return -EINVAL; 4451 4452 mutex_lock(&ptp_priv->ptp_lock); 4453 if (on) 4454 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 4455 else 4456 ret = lan8841_ptp_extts_off(ptp_priv, pin); 4457 mutex_unlock(&ptp_priv->ptp_lock); 4458 4459 return ret; 4460 } 4461 4462 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 4463 struct ptp_clock_request *rq, int on) 4464 { 4465 switch (rq->type) { 4466 case PTP_CLK_REQ_EXTTS: 4467 return lan8841_ptp_extts(ptp, rq, on); 4468 case PTP_CLK_REQ_PEROUT: 4469 return lan8841_ptp_perout(ptp, rq, on); 4470 default: 4471 return -EOPNOTSUPP; 4472 } 4473 4474 return 0; 4475 } 4476 4477 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 4478 { 4479 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4480 ptp_clock_info); 4481 struct timespec64 ts; 4482 unsigned long flags; 4483 4484 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 4485 4486 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4487 ptp_priv->seconds = ts.tv_sec; 4488 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4489 4490 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 4491 } 4492 4493 static struct ptp_clock_info lan8841_ptp_clock_info = { 4494 .owner = THIS_MODULE, 4495 .name = "lan8841 ptp", 4496 .max_adj = 31249999, 4497 .gettime64 = lan8841_ptp_gettime64, 4498 .settime64 = lan8841_ptp_settime64, 4499 .adjtime = lan8841_ptp_adjtime, 4500 .adjfine = lan8841_ptp_adjfine, 4501 .verify = lan8841_ptp_verify, 4502 .enable = lan8841_ptp_enable, 4503 .do_aux_work = lan8841_ptp_do_aux_work, 4504 .n_per_out = LAN8841_PTP_GPIO_NUM, 4505 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 4506 .n_pins = LAN8841_PTP_GPIO_NUM, 4507 }; 4508 4509 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 4510 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 4511 4512 static int lan8841_probe(struct phy_device *phydev) 4513 { 4514 struct kszphy_ptp_priv *ptp_priv; 4515 struct kszphy_priv *priv; 4516 int err; 4517 4518 err = kszphy_probe(phydev); 4519 if (err) 4520 return err; 4521 4522 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4523 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 4524 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 4525 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 4526 4527 /* Register the clock */ 4528 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4529 return 0; 4530 4531 priv = phydev->priv; 4532 ptp_priv = &priv->ptp_priv; 4533 4534 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 4535 LAN8841_PTP_GPIO_NUM, 4536 sizeof(*ptp_priv->pin_config), 4537 GFP_KERNEL); 4538 if (!ptp_priv->pin_config) 4539 return -ENOMEM; 4540 4541 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 4542 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 4543 4544 snprintf(p->name, sizeof(p->name), "pin%d", i); 4545 p->index = i; 4546 p->func = PTP_PF_NONE; 4547 } 4548 4549 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 4550 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 4551 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 4552 &phydev->mdio.dev); 4553 if (IS_ERR(ptp_priv->ptp_clock)) { 4554 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 4555 PTR_ERR(ptp_priv->ptp_clock)); 4556 return -EINVAL; 4557 } 4558 4559 if (!ptp_priv->ptp_clock) 4560 return 0; 4561 4562 /* Initialize the SW */ 4563 skb_queue_head_init(&ptp_priv->tx_queue); 4564 ptp_priv->phydev = phydev; 4565 mutex_init(&ptp_priv->ptp_lock); 4566 spin_lock_init(&ptp_priv->seconds_lock); 4567 4568 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 4569 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4570 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 4571 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 4572 4573 phydev->mii_ts = &ptp_priv->mii_ts; 4574 4575 return 0; 4576 } 4577 4578 static int lan8841_suspend(struct phy_device *phydev) 4579 { 4580 struct kszphy_priv *priv = phydev->priv; 4581 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4582 4583 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4584 4585 return genphy_suspend(phydev); 4586 } 4587 4588 static struct phy_driver ksphy_driver[] = { 4589 { 4590 .phy_id = PHY_ID_KS8737, 4591 .phy_id_mask = MICREL_PHY_ID_MASK, 4592 .name = "Micrel KS8737", 4593 /* PHY_BASIC_FEATURES */ 4594 .driver_data = &ks8737_type, 4595 .probe = kszphy_probe, 4596 .config_init = kszphy_config_init, 4597 .config_intr = kszphy_config_intr, 4598 .handle_interrupt = kszphy_handle_interrupt, 4599 .suspend = kszphy_suspend, 4600 .resume = kszphy_resume, 4601 }, { 4602 .phy_id = PHY_ID_KSZ8021, 4603 .phy_id_mask = 0x00ffffff, 4604 .name = "Micrel KSZ8021 or KSZ8031", 4605 /* PHY_BASIC_FEATURES */ 4606 .driver_data = &ksz8021_type, 4607 .probe = kszphy_probe, 4608 .config_init = kszphy_config_init, 4609 .config_intr = kszphy_config_intr, 4610 .handle_interrupt = kszphy_handle_interrupt, 4611 .get_sset_count = kszphy_get_sset_count, 4612 .get_strings = kszphy_get_strings, 4613 .get_stats = kszphy_get_stats, 4614 .suspend = kszphy_suspend, 4615 .resume = kszphy_resume, 4616 }, { 4617 .phy_id = PHY_ID_KSZ8031, 4618 .phy_id_mask = 0x00ffffff, 4619 .name = "Micrel KSZ8031", 4620 /* PHY_BASIC_FEATURES */ 4621 .driver_data = &ksz8021_type, 4622 .probe = kszphy_probe, 4623 .config_init = kszphy_config_init, 4624 .config_intr = kszphy_config_intr, 4625 .handle_interrupt = kszphy_handle_interrupt, 4626 .get_sset_count = kszphy_get_sset_count, 4627 .get_strings = kszphy_get_strings, 4628 .get_stats = kszphy_get_stats, 4629 .suspend = kszphy_suspend, 4630 .resume = kszphy_resume, 4631 }, { 4632 .phy_id = PHY_ID_KSZ8041, 4633 .phy_id_mask = MICREL_PHY_ID_MASK, 4634 .name = "Micrel KSZ8041", 4635 /* PHY_BASIC_FEATURES */ 4636 .driver_data = &ksz8041_type, 4637 .probe = kszphy_probe, 4638 .config_init = ksz8041_config_init, 4639 .config_aneg = ksz8041_config_aneg, 4640 .config_intr = kszphy_config_intr, 4641 .handle_interrupt = kszphy_handle_interrupt, 4642 .get_sset_count = kszphy_get_sset_count, 4643 .get_strings = kszphy_get_strings, 4644 .get_stats = kszphy_get_stats, 4645 /* No suspend/resume callbacks because of errata DS80000700A, 4646 * receiver error following software power down. 4647 */ 4648 }, { 4649 .phy_id = PHY_ID_KSZ8041RNLI, 4650 .phy_id_mask = MICREL_PHY_ID_MASK, 4651 .name = "Micrel KSZ8041RNLI", 4652 /* PHY_BASIC_FEATURES */ 4653 .driver_data = &ksz8041_type, 4654 .probe = kszphy_probe, 4655 .config_init = kszphy_config_init, 4656 .config_intr = kszphy_config_intr, 4657 .handle_interrupt = kszphy_handle_interrupt, 4658 .get_sset_count = kszphy_get_sset_count, 4659 .get_strings = kszphy_get_strings, 4660 .get_stats = kszphy_get_stats, 4661 .suspend = kszphy_suspend, 4662 .resume = kszphy_resume, 4663 }, { 4664 .name = "Micrel KSZ8051", 4665 /* PHY_BASIC_FEATURES */ 4666 .driver_data = &ksz8051_type, 4667 .probe = kszphy_probe, 4668 .config_init = kszphy_config_init, 4669 .config_intr = kszphy_config_intr, 4670 .handle_interrupt = kszphy_handle_interrupt, 4671 .get_sset_count = kszphy_get_sset_count, 4672 .get_strings = kszphy_get_strings, 4673 .get_stats = kszphy_get_stats, 4674 .match_phy_device = ksz8051_match_phy_device, 4675 .suspend = kszphy_suspend, 4676 .resume = kszphy_resume, 4677 }, { 4678 .phy_id = PHY_ID_KSZ8001, 4679 .name = "Micrel KSZ8001 or KS8721", 4680 .phy_id_mask = 0x00fffffc, 4681 /* PHY_BASIC_FEATURES */ 4682 .driver_data = &ksz8041_type, 4683 .probe = kszphy_probe, 4684 .config_init = kszphy_config_init, 4685 .config_intr = kszphy_config_intr, 4686 .handle_interrupt = kszphy_handle_interrupt, 4687 .get_sset_count = kszphy_get_sset_count, 4688 .get_strings = kszphy_get_strings, 4689 .get_stats = kszphy_get_stats, 4690 .suspend = kszphy_suspend, 4691 .resume = kszphy_resume, 4692 }, { 4693 .phy_id = PHY_ID_KSZ8081, 4694 .name = "Micrel KSZ8081 or KSZ8091", 4695 .phy_id_mask = MICREL_PHY_ID_MASK, 4696 .flags = PHY_POLL_CABLE_TEST, 4697 /* PHY_BASIC_FEATURES */ 4698 .driver_data = &ksz8081_type, 4699 .probe = kszphy_probe, 4700 .config_init = ksz8081_config_init, 4701 .soft_reset = genphy_soft_reset, 4702 .config_aneg = ksz8081_config_aneg, 4703 .read_status = ksz8081_read_status, 4704 .config_intr = kszphy_config_intr, 4705 .handle_interrupt = kszphy_handle_interrupt, 4706 .get_sset_count = kszphy_get_sset_count, 4707 .get_strings = kszphy_get_strings, 4708 .get_stats = kszphy_get_stats, 4709 .suspend = kszphy_suspend, 4710 .resume = kszphy_resume, 4711 .cable_test_start = ksz886x_cable_test_start, 4712 .cable_test_get_status = ksz886x_cable_test_get_status, 4713 }, { 4714 .phy_id = PHY_ID_KSZ8061, 4715 .name = "Micrel KSZ8061", 4716 .phy_id_mask = MICREL_PHY_ID_MASK, 4717 /* PHY_BASIC_FEATURES */ 4718 .probe = kszphy_probe, 4719 .config_init = ksz8061_config_init, 4720 .config_intr = kszphy_config_intr, 4721 .handle_interrupt = kszphy_handle_interrupt, 4722 .suspend = kszphy_suspend, 4723 .resume = kszphy_resume, 4724 }, { 4725 .phy_id = PHY_ID_KSZ9021, 4726 .phy_id_mask = 0x000ffffe, 4727 .name = "Micrel KSZ9021 Gigabit PHY", 4728 /* PHY_GBIT_FEATURES */ 4729 .driver_data = &ksz9021_type, 4730 .probe = kszphy_probe, 4731 .get_features = ksz9031_get_features, 4732 .config_init = ksz9021_config_init, 4733 .config_intr = kszphy_config_intr, 4734 .handle_interrupt = kszphy_handle_interrupt, 4735 .get_sset_count = kszphy_get_sset_count, 4736 .get_strings = kszphy_get_strings, 4737 .get_stats = kszphy_get_stats, 4738 .suspend = kszphy_suspend, 4739 .resume = kszphy_resume, 4740 .read_mmd = genphy_read_mmd_unsupported, 4741 .write_mmd = genphy_write_mmd_unsupported, 4742 }, { 4743 .phy_id = PHY_ID_KSZ9031, 4744 .phy_id_mask = MICREL_PHY_ID_MASK, 4745 .name = "Micrel KSZ9031 Gigabit PHY", 4746 .flags = PHY_POLL_CABLE_TEST, 4747 .driver_data = &ksz9021_type, 4748 .probe = kszphy_probe, 4749 .get_features = ksz9031_get_features, 4750 .config_init = ksz9031_config_init, 4751 .soft_reset = genphy_soft_reset, 4752 .read_status = ksz9031_read_status, 4753 .config_intr = kszphy_config_intr, 4754 .handle_interrupt = kszphy_handle_interrupt, 4755 .get_sset_count = kszphy_get_sset_count, 4756 .get_strings = kszphy_get_strings, 4757 .get_stats = kszphy_get_stats, 4758 .suspend = kszphy_suspend, 4759 .resume = kszphy_resume, 4760 .cable_test_start = ksz9x31_cable_test_start, 4761 .cable_test_get_status = ksz9x31_cable_test_get_status, 4762 }, { 4763 .phy_id = PHY_ID_LAN8814, 4764 .phy_id_mask = MICREL_PHY_ID_MASK, 4765 .name = "Microchip INDY Gigabit Quad PHY", 4766 .flags = PHY_POLL_CABLE_TEST, 4767 .config_init = lan8814_config_init, 4768 .driver_data = &lan8814_type, 4769 .probe = lan8814_probe, 4770 .soft_reset = genphy_soft_reset, 4771 .read_status = ksz9031_read_status, 4772 .get_sset_count = kszphy_get_sset_count, 4773 .get_strings = kszphy_get_strings, 4774 .get_stats = kszphy_get_stats, 4775 .suspend = genphy_suspend, 4776 .resume = kszphy_resume, 4777 .config_intr = lan8814_config_intr, 4778 .handle_interrupt = lan8814_handle_interrupt, 4779 .cable_test_start = lan8814_cable_test_start, 4780 .cable_test_get_status = ksz886x_cable_test_get_status, 4781 }, { 4782 .phy_id = PHY_ID_LAN8804, 4783 .phy_id_mask = MICREL_PHY_ID_MASK, 4784 .name = "Microchip LAN966X Gigabit PHY", 4785 .config_init = lan8804_config_init, 4786 .driver_data = &ksz9021_type, 4787 .probe = kszphy_probe, 4788 .soft_reset = genphy_soft_reset, 4789 .read_status = ksz9031_read_status, 4790 .get_sset_count = kszphy_get_sset_count, 4791 .get_strings = kszphy_get_strings, 4792 .get_stats = kszphy_get_stats, 4793 .suspend = genphy_suspend, 4794 .resume = kszphy_resume, 4795 .config_intr = lan8804_config_intr, 4796 .handle_interrupt = lan8804_handle_interrupt, 4797 }, { 4798 .phy_id = PHY_ID_LAN8841, 4799 .phy_id_mask = MICREL_PHY_ID_MASK, 4800 .name = "Microchip LAN8841 Gigabit PHY", 4801 .flags = PHY_POLL_CABLE_TEST, 4802 .driver_data = &lan8841_type, 4803 .config_init = lan8841_config_init, 4804 .probe = lan8841_probe, 4805 .soft_reset = genphy_soft_reset, 4806 .config_intr = lan8841_config_intr, 4807 .handle_interrupt = lan8841_handle_interrupt, 4808 .get_sset_count = kszphy_get_sset_count, 4809 .get_strings = kszphy_get_strings, 4810 .get_stats = kszphy_get_stats, 4811 .suspend = lan8841_suspend, 4812 .resume = genphy_resume, 4813 .cable_test_start = lan8814_cable_test_start, 4814 .cable_test_get_status = ksz886x_cable_test_get_status, 4815 }, { 4816 .phy_id = PHY_ID_KSZ9131, 4817 .phy_id_mask = MICREL_PHY_ID_MASK, 4818 .name = "Microchip KSZ9131 Gigabit PHY", 4819 /* PHY_GBIT_FEATURES */ 4820 .flags = PHY_POLL_CABLE_TEST, 4821 .driver_data = &ksz9131_type, 4822 .probe = kszphy_probe, 4823 .config_init = ksz9131_config_init, 4824 .config_intr = kszphy_config_intr, 4825 .config_aneg = ksz9131_config_aneg, 4826 .read_status = ksz9131_read_status, 4827 .handle_interrupt = kszphy_handle_interrupt, 4828 .get_sset_count = kszphy_get_sset_count, 4829 .get_strings = kszphy_get_strings, 4830 .get_stats = kszphy_get_stats, 4831 .suspend = kszphy_suspend, 4832 .resume = kszphy_resume, 4833 .cable_test_start = ksz9x31_cable_test_start, 4834 .cable_test_get_status = ksz9x31_cable_test_get_status, 4835 .get_features = ksz9477_get_features, 4836 }, { 4837 .phy_id = PHY_ID_KSZ8873MLL, 4838 .phy_id_mask = MICREL_PHY_ID_MASK, 4839 .name = "Micrel KSZ8873MLL Switch", 4840 /* PHY_BASIC_FEATURES */ 4841 .config_init = kszphy_config_init, 4842 .config_aneg = ksz8873mll_config_aneg, 4843 .read_status = ksz8873mll_read_status, 4844 .suspend = genphy_suspend, 4845 .resume = genphy_resume, 4846 }, { 4847 .phy_id = PHY_ID_KSZ886X, 4848 .phy_id_mask = MICREL_PHY_ID_MASK, 4849 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 4850 .driver_data = &ksz886x_type, 4851 /* PHY_BASIC_FEATURES */ 4852 .flags = PHY_POLL_CABLE_TEST, 4853 .config_init = kszphy_config_init, 4854 .config_aneg = ksz886x_config_aneg, 4855 .read_status = ksz886x_read_status, 4856 .suspend = genphy_suspend, 4857 .resume = genphy_resume, 4858 .cable_test_start = ksz886x_cable_test_start, 4859 .cable_test_get_status = ksz886x_cable_test_get_status, 4860 }, { 4861 .name = "Micrel KSZ87XX Switch", 4862 /* PHY_BASIC_FEATURES */ 4863 .config_init = kszphy_config_init, 4864 .match_phy_device = ksz8795_match_phy_device, 4865 .suspend = genphy_suspend, 4866 .resume = genphy_resume, 4867 }, { 4868 .phy_id = PHY_ID_KSZ9477, 4869 .phy_id_mask = MICREL_PHY_ID_MASK, 4870 .name = "Microchip KSZ9477", 4871 /* PHY_GBIT_FEATURES */ 4872 .config_init = ksz9477_config_init, 4873 .config_intr = kszphy_config_intr, 4874 .handle_interrupt = kszphy_handle_interrupt, 4875 .suspend = genphy_suspend, 4876 .resume = genphy_resume, 4877 .get_features = ksz9477_get_features, 4878 } }; 4879 4880 module_phy_driver(ksphy_driver); 4881 4882 MODULE_DESCRIPTION("Micrel PHY driver"); 4883 MODULE_AUTHOR("David J. Choi"); 4884 MODULE_LICENSE("GPL"); 4885 4886 static struct mdio_device_id __maybe_unused micrel_tbl[] = { 4887 { PHY_ID_KSZ9021, 0x000ffffe }, 4888 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 4889 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 4890 { PHY_ID_KSZ8001, 0x00fffffc }, 4891 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 4892 { PHY_ID_KSZ8021, 0x00ffffff }, 4893 { PHY_ID_KSZ8031, 0x00ffffff }, 4894 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 4895 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 4896 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 4897 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 4898 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 4899 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 4900 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 4901 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 4902 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 4903 { } 4904 }; 4905 4906 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 4907