1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_SKUS 0xB 105 106 #define LAN8814_WIRE_PAIR_MASK 0xF 107 108 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 109 #define LAN8814_INTC 0x18 110 #define LAN8814_INTS 0x1B 111 112 #define LAN8814_INT_FLF BIT(15) 113 #define LAN8814_INT_LINK_DOWN BIT(2) 114 #define LAN8814_INT_LINK_UP BIT(0) 115 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 116 LAN8814_INT_LINK_DOWN) 117 118 #define LAN8814_INTR_CTRL_REG 0x34 119 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 120 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 121 122 #define LAN8814_EEE_STATE 0x38 123 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 124 125 #define LAN8814_PD_CONTROLS 0x9d 126 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 127 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 128 129 /* Represents 1ppm adjustment in 2^32 format with 130 * each nsec contains 4 clock cycles. 131 * The value is calculated as following: (1/1000000)/((2^-32)/4) 132 */ 133 #define LAN8814_1PPM_FORMAT 17179 134 135 /* Represents 1ppm adjustment in 2^32 format with 136 * each nsec contains 8 clock cycles. 137 * The value is calculated as following: (1/1000000)/((2^-32)/8) 138 */ 139 #define LAN8841_1PPM_FORMAT 34360 140 141 #define PTP_RX_VERSION 0x0248 142 #define PTP_TX_VERSION 0x0288 143 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 144 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 145 146 #define PTP_RX_MOD 0x024F 147 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 148 #define PTP_RX_TIMESTAMP_EN 0x024D 149 #define PTP_TX_TIMESTAMP_EN 0x028D 150 151 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 152 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 153 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 154 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 155 156 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 157 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 158 159 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 160 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 161 #define LTC_HARD_RESET 0x023F 162 #define LTC_HARD_RESET_ BIT(0) 163 164 #define TSU_HARD_RESET 0x02C1 165 #define TSU_HARD_RESET_ BIT(0) 166 167 #define PTP_CMD_CTL 0x0200 168 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 169 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 170 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 171 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 172 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 173 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 174 175 #define PTP_COMMON_INT_ENA 0x0204 176 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 177 178 #define PTP_CLOCK_SET_SEC_HI 0x0205 179 #define PTP_CLOCK_SET_SEC_MID 0x0206 180 #define PTP_CLOCK_SET_SEC_LO 0x0207 181 #define PTP_CLOCK_SET_NS_HI 0x0208 182 #define PTP_CLOCK_SET_NS_LO 0x0209 183 184 #define PTP_CLOCK_READ_SEC_HI 0x0229 185 #define PTP_CLOCK_READ_SEC_MID 0x022A 186 #define PTP_CLOCK_READ_SEC_LO 0x022B 187 #define PTP_CLOCK_READ_NS_HI 0x022C 188 #define PTP_CLOCK_READ_NS_LO 0x022D 189 190 #define PTP_GPIO_SEL 0x0230 191 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 192 #define PTP_GPIO_CAP_MAP_LO 0x0232 193 194 #define PTP_GPIO_CAP_EN 0x0233 195 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 196 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 197 198 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 199 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 200 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 201 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 202 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 203 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 204 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 205 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 206 207 #define PTP_GPIO_CAP_STS 0x023D 208 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 209 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 210 211 #define PTP_OPERATING_MODE 0x0241 212 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 213 214 #define PTP_TX_MOD 0x028F 215 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 216 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 217 218 #define PTP_RX_PARSE_CONFIG 0x0242 219 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 220 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 221 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 222 223 #define PTP_TX_PARSE_CONFIG 0x0282 224 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 225 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 226 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 227 228 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 229 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 230 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 231 232 #define PTP_LTC_STEP_ADJ_HI 0x0212 233 #define PTP_LTC_STEP_ADJ_LO 0x0213 234 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 235 236 #define LAN8814_INTR_STS_REG 0x0033 237 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 238 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 239 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 240 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 241 242 #define PTP_CAP_INFO 0x022A 243 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 244 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 245 246 #define PTP_TX_EGRESS_SEC_HI 0x0296 247 #define PTP_TX_EGRESS_SEC_LO 0x0297 248 #define PTP_TX_EGRESS_NS_HI 0x0294 249 #define PTP_TX_EGRESS_NS_LO 0x0295 250 #define PTP_TX_MSG_HEADER2 0x0299 251 252 #define PTP_RX_INGRESS_SEC_HI 0x0256 253 #define PTP_RX_INGRESS_SEC_LO 0x0257 254 #define PTP_RX_INGRESS_NS_HI 0x0254 255 #define PTP_RX_INGRESS_NS_LO 0x0255 256 #define PTP_RX_MSG_HEADER2 0x0259 257 258 #define PTP_TSU_INT_EN 0x0200 259 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 260 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 261 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 262 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 263 264 #define PTP_TSU_INT_STS 0x0201 265 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 266 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 267 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 268 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 269 270 #define LAN8814_LED_CTRL_1 0x0 271 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 272 #define LAN8814_LED_CTRL_2 0x1 273 #define LAN8814_LED_CTRL_2_LED1_COM_DIS BIT(8) 274 275 /* PHY Control 1 */ 276 #define MII_KSZPHY_CTRL_1 0x1e 277 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 278 279 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 280 #define MII_KSZPHY_CTRL_2 0x1f 281 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 282 /* bitmap of PHY register to set interrupt mode */ 283 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 284 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 285 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 286 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 287 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 288 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 289 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 290 291 /* Write/read to/from extended registers */ 292 #define MII_KSZPHY_EXTREG 0x0b 293 #define KSZPHY_EXTREG_WRITE 0x8000 294 295 #define MII_KSZPHY_EXTREG_WRITE 0x0c 296 #define MII_KSZPHY_EXTREG_READ 0x0d 297 298 /* Extended registers */ 299 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 300 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 301 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 302 303 #define PS_TO_REG 200 304 #define FIFO_SIZE 8 305 306 #define LAN8814_PTP_GPIO_NUM 24 307 #define LAN8814_PTP_PEROUT_NUM 2 308 #define LAN8814_PTP_EXTTS_NUM 3 309 310 #define LAN8814_BUFFER_TIME 2 311 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 321 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 322 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 323 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 324 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 325 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 326 327 #define LAN8814_GPIO_EN1 0x20 328 #define LAN8814_GPIO_EN2 0x21 329 #define LAN8814_GPIO_DIR1 0x22 330 #define LAN8814_GPIO_DIR2 0x23 331 #define LAN8814_GPIO_BUF1 0x24 332 #define LAN8814_GPIO_BUF2 0x25 333 334 #define LAN8814_GPIO_EN_ADDR(pin) \ 335 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 336 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 337 #define LAN8814_GPIO_DIR_ADDR(pin) \ 338 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 339 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 340 #define LAN8814_GPIO_BUF_ADDR(pin) \ 341 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 342 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 343 344 #define LAN8814_EVENT_A 0 345 #define LAN8814_EVENT_B 1 346 347 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 348 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 349 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 350 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 351 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 352 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 353 ((event) ? BIT(2) : BIT(0)) 354 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 355 ((event) ? BIT(3) : BIT(1)) 356 357 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 358 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 359 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 360 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 361 362 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 363 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 364 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 365 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 366 367 /* Delay used to get the second part from the LTC */ 368 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 369 370 #define LAN8842_REV_8832 0x8832 371 372 #define LAN8814_REV_LAN8814 0x8814 373 #define LAN8814_REV_LAN8818 0x8818 374 375 struct kszphy_hw_stat { 376 const char *string; 377 u8 reg; 378 u8 bits; 379 }; 380 381 static struct kszphy_hw_stat kszphy_hw_stats[] = { 382 { "phy_receive_errors", 21, 16}, 383 { "phy_idle_errors", 10, 8 }, 384 }; 385 386 struct kszphy_type { 387 u32 led_mode_reg; 388 u16 interrupt_level_mask; 389 u16 cable_diag_reg; 390 unsigned long pair_mask; 391 u16 disable_dll_tx_bit; 392 u16 disable_dll_rx_bit; 393 u16 disable_dll_mask; 394 bool has_broadcast_disable; 395 bool has_nand_tree_disable; 396 bool has_rmii_ref_clk_sel; 397 }; 398 399 /* Shared structure between the PHYs of the same package. */ 400 struct lan8814_shared_priv { 401 struct phy_device *phydev; 402 struct ptp_clock *ptp_clock; 403 struct ptp_clock_info ptp_clock_info; 404 struct ptp_pin_desc *pin_config; 405 406 /* Lock for ptp_clock */ 407 struct mutex shared_lock; 408 }; 409 410 struct lan8814_ptp_rx_ts { 411 struct list_head list; 412 u32 seconds; 413 u32 nsec; 414 u16 seq_id; 415 }; 416 417 struct kszphy_ptp_priv { 418 struct mii_timestamper mii_ts; 419 struct phy_device *phydev; 420 421 struct sk_buff_head tx_queue; 422 struct sk_buff_head rx_queue; 423 424 struct list_head rx_ts_list; 425 /* Lock for Rx ts fifo */ 426 spinlock_t rx_ts_lock; 427 428 int hwts_tx_type; 429 enum hwtstamp_rx_filters rx_filter; 430 int layer; 431 int version; 432 433 struct ptp_clock *ptp_clock; 434 struct ptp_clock_info ptp_clock_info; 435 /* Lock for ptp_clock */ 436 struct mutex ptp_lock; 437 struct ptp_pin_desc *pin_config; 438 439 s64 seconds; 440 /* Lock for accessing seconds */ 441 spinlock_t seconds_lock; 442 }; 443 444 struct kszphy_phy_stats { 445 u64 rx_err_pkt_cnt; 446 }; 447 448 struct kszphy_priv { 449 struct kszphy_ptp_priv ptp_priv; 450 const struct kszphy_type *type; 451 struct clk *clk; 452 int led_mode; 453 u16 vct_ctrl1000; 454 bool rmii_ref_clk_sel; 455 bool rmii_ref_clk_sel_val; 456 bool clk_enable; 457 bool is_ptp_available; 458 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 459 struct kszphy_phy_stats phy_stats; 460 }; 461 462 struct lan8842_phy_stats { 463 u64 rx_packets; 464 u64 rx_errors; 465 u64 tx_packets; 466 u64 tx_errors; 467 }; 468 469 struct lan8842_priv { 470 struct lan8842_phy_stats phy_stats; 471 struct kszphy_ptp_priv ptp_priv; 472 u16 rev; 473 }; 474 475 static const struct kszphy_type lan8814_type = { 476 .led_mode_reg = ~LAN8814_LED_CTRL_1, 477 .cable_diag_reg = LAN8814_CABLE_DIAG, 478 .pair_mask = LAN8814_WIRE_PAIR_MASK, 479 }; 480 481 static const struct kszphy_type ksz886x_type = { 482 .cable_diag_reg = KSZ8081_LMD, 483 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 484 }; 485 486 static const struct kszphy_type ksz8021_type = { 487 .led_mode_reg = MII_KSZPHY_CTRL_2, 488 .has_broadcast_disable = true, 489 .has_nand_tree_disable = true, 490 .has_rmii_ref_clk_sel = true, 491 }; 492 493 static const struct kszphy_type ksz8041_type = { 494 .led_mode_reg = MII_KSZPHY_CTRL_1, 495 }; 496 497 static const struct kszphy_type ksz8051_type = { 498 .led_mode_reg = MII_KSZPHY_CTRL_2, 499 .has_nand_tree_disable = true, 500 }; 501 502 static const struct kszphy_type ksz8081_type = { 503 .led_mode_reg = MII_KSZPHY_CTRL_2, 504 .cable_diag_reg = KSZ8081_LMD, 505 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 506 .has_broadcast_disable = true, 507 .has_nand_tree_disable = true, 508 .has_rmii_ref_clk_sel = true, 509 }; 510 511 static const struct kszphy_type ks8737_type = { 512 .interrupt_level_mask = BIT(14), 513 }; 514 515 static const struct kszphy_type ksz9021_type = { 516 .interrupt_level_mask = BIT(14), 517 }; 518 519 static const struct kszphy_type ksz9131_type = { 520 .interrupt_level_mask = BIT(14), 521 .disable_dll_tx_bit = BIT(12), 522 .disable_dll_rx_bit = BIT(12), 523 .disable_dll_mask = BIT_MASK(12), 524 }; 525 526 static const struct kszphy_type lan8841_type = { 527 .disable_dll_tx_bit = BIT(14), 528 .disable_dll_rx_bit = BIT(14), 529 .disable_dll_mask = BIT_MASK(14), 530 .cable_diag_reg = LAN8814_CABLE_DIAG, 531 .pair_mask = LAN8814_WIRE_PAIR_MASK, 532 }; 533 534 static int kszphy_extended_write(struct phy_device *phydev, 535 u32 regnum, u16 val) 536 { 537 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 538 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 539 } 540 541 static int kszphy_extended_read(struct phy_device *phydev, 542 u32 regnum) 543 { 544 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 545 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 546 } 547 548 static int kszphy_ack_interrupt(struct phy_device *phydev) 549 { 550 /* bit[7..0] int status, which is a read and clear register. */ 551 int rc; 552 553 rc = phy_read(phydev, MII_KSZPHY_INTCS); 554 555 return (rc < 0) ? rc : 0; 556 } 557 558 static int kszphy_config_intr(struct phy_device *phydev) 559 { 560 const struct kszphy_type *type = phydev->drv->driver_data; 561 int temp, err; 562 u16 mask; 563 564 if (type && type->interrupt_level_mask) 565 mask = type->interrupt_level_mask; 566 else 567 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 568 569 /* set the interrupt pin active low */ 570 temp = phy_read(phydev, MII_KSZPHY_CTRL); 571 if (temp < 0) 572 return temp; 573 temp &= ~mask; 574 phy_write(phydev, MII_KSZPHY_CTRL, temp); 575 576 /* enable / disable interrupts */ 577 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 578 err = kszphy_ack_interrupt(phydev); 579 if (err) 580 return err; 581 582 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 583 } else { 584 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 585 if (err) 586 return err; 587 588 err = kszphy_ack_interrupt(phydev); 589 } 590 591 return err; 592 } 593 594 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 595 { 596 int irq_status; 597 598 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 599 if (irq_status < 0) { 600 phy_error(phydev); 601 return IRQ_NONE; 602 } 603 604 if (!(irq_status & KSZPHY_INTCS_STATUS)) 605 return IRQ_NONE; 606 607 phy_trigger_machine(phydev); 608 609 return IRQ_HANDLED; 610 } 611 612 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 613 { 614 int ctrl; 615 616 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 617 if (ctrl < 0) 618 return ctrl; 619 620 if (val) 621 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 622 else 623 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 624 625 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 626 } 627 628 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 629 { 630 int rc, temp, shift; 631 632 switch (reg) { 633 case MII_KSZPHY_CTRL_1: 634 shift = 14; 635 break; 636 case MII_KSZPHY_CTRL_2: 637 shift = 4; 638 break; 639 default: 640 return -EINVAL; 641 } 642 643 temp = phy_read(phydev, reg); 644 if (temp < 0) { 645 rc = temp; 646 goto out; 647 } 648 649 temp &= ~(3 << shift); 650 temp |= val << shift; 651 rc = phy_write(phydev, reg, temp); 652 out: 653 if (rc < 0) 654 phydev_err(phydev, "failed to set led mode\n"); 655 656 return rc; 657 } 658 659 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 660 * unique (non-broadcast) address on a shared bus. 661 */ 662 static int kszphy_broadcast_disable(struct phy_device *phydev) 663 { 664 int ret; 665 666 ret = phy_read(phydev, MII_KSZPHY_OMSO); 667 if (ret < 0) 668 goto out; 669 670 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 671 out: 672 if (ret) 673 phydev_err(phydev, "failed to disable broadcast address\n"); 674 675 return ret; 676 } 677 678 static int kszphy_nand_tree_disable(struct phy_device *phydev) 679 { 680 int ret; 681 682 ret = phy_read(phydev, MII_KSZPHY_OMSO); 683 if (ret < 0) 684 goto out; 685 686 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 687 return 0; 688 689 ret = phy_write(phydev, MII_KSZPHY_OMSO, 690 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 691 out: 692 if (ret) 693 phydev_err(phydev, "failed to disable NAND tree mode\n"); 694 695 return ret; 696 } 697 698 /* Some config bits need to be set again on resume, handle them here. */ 699 static int kszphy_config_reset(struct phy_device *phydev) 700 { 701 struct kszphy_priv *priv = phydev->priv; 702 int ret; 703 704 if (priv->rmii_ref_clk_sel) { 705 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 706 if (ret) { 707 phydev_err(phydev, 708 "failed to set rmii reference clock\n"); 709 return ret; 710 } 711 } 712 713 if (priv->type && priv->led_mode >= 0) 714 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 715 716 return 0; 717 } 718 719 static int kszphy_config_init(struct phy_device *phydev) 720 { 721 struct kszphy_priv *priv = phydev->priv; 722 const struct kszphy_type *type; 723 724 if (!priv) 725 return 0; 726 727 type = priv->type; 728 729 if (type && type->has_broadcast_disable) 730 kszphy_broadcast_disable(phydev); 731 732 if (type && type->has_nand_tree_disable) 733 kszphy_nand_tree_disable(phydev); 734 735 return kszphy_config_reset(phydev); 736 } 737 738 static int ksz8041_fiber_mode(struct phy_device *phydev) 739 { 740 struct device_node *of_node = phydev->mdio.dev.of_node; 741 742 return of_property_read_bool(of_node, "micrel,fiber-mode"); 743 } 744 745 static int ksz8041_config_init(struct phy_device *phydev) 746 { 747 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 748 749 /* Limit supported and advertised modes in fiber mode */ 750 if (ksz8041_fiber_mode(phydev)) { 751 phydev->dev_flags |= MICREL_PHY_FXEN; 752 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 753 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 754 755 linkmode_and(phydev->supported, phydev->supported, mask); 756 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 757 phydev->supported); 758 linkmode_and(phydev->advertising, phydev->advertising, mask); 759 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 760 phydev->advertising); 761 phydev->autoneg = AUTONEG_DISABLE; 762 } 763 764 return kszphy_config_init(phydev); 765 } 766 767 static int ksz8041_config_aneg(struct phy_device *phydev) 768 { 769 /* Skip auto-negotiation in fiber mode */ 770 if (phydev->dev_flags & MICREL_PHY_FXEN) { 771 phydev->speed = SPEED_100; 772 return 0; 773 } 774 775 return genphy_config_aneg(phydev); 776 } 777 778 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 779 const bool ksz_8051) 780 { 781 int ret; 782 783 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 784 return 0; 785 786 ret = phy_read(phydev, MII_BMSR); 787 if (ret < 0) 788 return ret; 789 790 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 791 * exact PHY ID. However, they can be told apart by the extended 792 * capability registers presence. The KSZ8051 PHY has them while 793 * the switch does not. 794 */ 795 ret &= BMSR_ERCAP; 796 if (ksz_8051) 797 return ret; 798 else 799 return !ret; 800 } 801 802 static int ksz8051_match_phy_device(struct phy_device *phydev, 803 const struct phy_driver *phydrv) 804 { 805 return ksz8051_ksz8795_match_phy_device(phydev, true); 806 } 807 808 static int ksz8081_config_init(struct phy_device *phydev) 809 { 810 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 811 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 812 * pull-down is missing, the factory test mode should be cleared by 813 * manually writing a 0. 814 */ 815 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 816 817 return kszphy_config_init(phydev); 818 } 819 820 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 821 { 822 u16 val; 823 824 switch (ctrl) { 825 case ETH_TP_MDI: 826 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 827 break; 828 case ETH_TP_MDI_X: 829 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 830 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 831 break; 832 case ETH_TP_MDI_AUTO: 833 val = 0; 834 break; 835 default: 836 return 0; 837 } 838 839 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 840 KSZ8081_CTRL2_HP_MDIX | 841 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 842 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 843 KSZ8081_CTRL2_HP_MDIX | val); 844 } 845 846 static int ksz8081_config_aneg(struct phy_device *phydev) 847 { 848 int ret; 849 850 ret = genphy_config_aneg(phydev); 851 if (ret) 852 return ret; 853 854 /* The MDI-X configuration is automatically changed by the PHY after 855 * switching from autoneg off to on. So, take MDI-X configuration under 856 * own control and set it after autoneg configuration was done. 857 */ 858 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 859 } 860 861 static int ksz8081_mdix_update(struct phy_device *phydev) 862 { 863 int ret; 864 865 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 866 if (ret < 0) 867 return ret; 868 869 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 870 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 871 phydev->mdix_ctrl = ETH_TP_MDI_X; 872 else 873 phydev->mdix_ctrl = ETH_TP_MDI; 874 } else { 875 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 876 } 877 878 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 879 if (ret < 0) 880 return ret; 881 882 if (ret & KSZ8081_CTRL1_MDIX_STAT) 883 phydev->mdix = ETH_TP_MDI; 884 else 885 phydev->mdix = ETH_TP_MDI_X; 886 887 return 0; 888 } 889 890 static int ksz8081_read_status(struct phy_device *phydev) 891 { 892 int ret; 893 894 ret = ksz8081_mdix_update(phydev); 895 if (ret < 0) 896 return ret; 897 898 return genphy_read_status(phydev); 899 } 900 901 static int ksz8061_config_init(struct phy_device *phydev) 902 { 903 int ret; 904 905 /* Chip can be powered down by the bootstrap code. */ 906 ret = phy_read(phydev, MII_BMCR); 907 if (ret < 0) 908 return ret; 909 if (ret & BMCR_PDOWN) { 910 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 911 if (ret < 0) 912 return ret; 913 usleep_range(1000, 2000); 914 } 915 916 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 917 if (ret) 918 return ret; 919 920 return kszphy_config_init(phydev); 921 } 922 923 static int ksz8795_match_phy_device(struct phy_device *phydev, 924 const struct phy_driver *phydrv) 925 { 926 return ksz8051_ksz8795_match_phy_device(phydev, false); 927 } 928 929 static int ksz9021_load_values_from_of(struct phy_device *phydev, 930 const struct device_node *of_node, 931 u16 reg, 932 const char *field1, const char *field2, 933 const char *field3, const char *field4) 934 { 935 int val1 = -1; 936 int val2 = -2; 937 int val3 = -3; 938 int val4 = -4; 939 int newval; 940 int matches = 0; 941 942 if (!of_property_read_u32(of_node, field1, &val1)) 943 matches++; 944 945 if (!of_property_read_u32(of_node, field2, &val2)) 946 matches++; 947 948 if (!of_property_read_u32(of_node, field3, &val3)) 949 matches++; 950 951 if (!of_property_read_u32(of_node, field4, &val4)) 952 matches++; 953 954 if (!matches) 955 return 0; 956 957 if (matches < 4) 958 newval = kszphy_extended_read(phydev, reg); 959 else 960 newval = 0; 961 962 if (val1 != -1) 963 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 964 965 if (val2 != -2) 966 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 967 968 if (val3 != -3) 969 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 970 971 if (val4 != -4) 972 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 973 974 return kszphy_extended_write(phydev, reg, newval); 975 } 976 977 static int ksz9021_config_init(struct phy_device *phydev) 978 { 979 const struct device_node *of_node; 980 const struct device *dev_walker; 981 982 /* The Micrel driver has a deprecated option to place phy OF 983 * properties in the MAC node. Walk up the tree of devices to 984 * find a device with an OF node. 985 */ 986 dev_walker = &phydev->mdio.dev; 987 do { 988 of_node = dev_walker->of_node; 989 dev_walker = dev_walker->parent; 990 991 } while (!of_node && dev_walker); 992 993 if (of_node) { 994 ksz9021_load_values_from_of(phydev, of_node, 995 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 996 "txen-skew-ps", "txc-skew-ps", 997 "rxdv-skew-ps", "rxc-skew-ps"); 998 ksz9021_load_values_from_of(phydev, of_node, 999 MII_KSZPHY_RX_DATA_PAD_SKEW, 1000 "rxd0-skew-ps", "rxd1-skew-ps", 1001 "rxd2-skew-ps", "rxd3-skew-ps"); 1002 ksz9021_load_values_from_of(phydev, of_node, 1003 MII_KSZPHY_TX_DATA_PAD_SKEW, 1004 "txd0-skew-ps", "txd1-skew-ps", 1005 "txd2-skew-ps", "txd3-skew-ps"); 1006 } 1007 return 0; 1008 } 1009 1010 #define KSZ9031_PS_TO_REG 60 1011 1012 /* Extended registers */ 1013 /* MMD Address 0x0 */ 1014 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 1015 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 1016 1017 /* MMD Address 0x2 */ 1018 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 1019 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 1020 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 1021 1022 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 1023 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 1024 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 1025 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 1026 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 1027 1028 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 1029 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 1030 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1031 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1032 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1033 1034 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1035 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1036 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1037 1038 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1039 * provide different RGMII options we need to configure delay offset 1040 * for each pad relative to build in delay. 1041 */ 1042 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1043 * 1.80ns 1044 */ 1045 #define RX_ID 0x7 1046 #define RX_CLK_ID 0x19 1047 1048 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1049 * internal 1.2ns delay. 1050 */ 1051 #define RX_ND 0xc 1052 #define RX_CLK_ND 0x0 1053 1054 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1055 #define TX_ID 0x0 1056 #define TX_CLK_ID 0x1f 1057 1058 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1059 * delay 1060 */ 1061 #define TX_ND 0x7 1062 #define TX_CLK_ND 0xf 1063 1064 /* MMD Address 0x1C */ 1065 #define MII_KSZ9031RN_EDPD 0x23 1066 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1067 1068 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1069 int speed) 1070 { 1071 u16 ctl = BMCR_LOOPBACK; 1072 int val; 1073 1074 if (!enable) 1075 return genphy_loopback(phydev, enable, 0); 1076 1077 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1078 phydev->speed = speed; 1079 else if (speed) 1080 return -EINVAL; 1081 phydev->duplex = DUPLEX_FULL; 1082 1083 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1084 1085 phy_write(phydev, MII_BMCR, ctl); 1086 1087 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1088 5000, 500000, true); 1089 } 1090 1091 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1092 const struct device_node *of_node, 1093 u16 reg, size_t field_sz, 1094 const char *field[], u8 numfields, 1095 bool *update) 1096 { 1097 int val[4] = {-1, -2, -3, -4}; 1098 int matches = 0; 1099 u16 mask; 1100 u16 maxval; 1101 u16 newval; 1102 int i; 1103 1104 for (i = 0; i < numfields; i++) 1105 if (!of_property_read_u32(of_node, field[i], val + i)) 1106 matches++; 1107 1108 if (!matches) 1109 return 0; 1110 1111 *update |= true; 1112 1113 if (matches < numfields) 1114 newval = phy_read_mmd(phydev, 2, reg); 1115 else 1116 newval = 0; 1117 1118 maxval = (field_sz == 4) ? 0xf : 0x1f; 1119 for (i = 0; i < numfields; i++) 1120 if (val[i] != -(i + 1)) { 1121 mask = 0xffff; 1122 mask ^= maxval << (field_sz * i); 1123 newval = (newval & mask) | 1124 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1125 << (field_sz * i)); 1126 } 1127 1128 return phy_write_mmd(phydev, 2, reg, newval); 1129 } 1130 1131 /* Center KSZ9031RNX FLP timing at 16ms. */ 1132 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1133 { 1134 int result; 1135 1136 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1137 0x0006); 1138 if (result) 1139 return result; 1140 1141 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1142 0x1A80); 1143 if (result) 1144 return result; 1145 1146 return genphy_restart_aneg(phydev); 1147 } 1148 1149 /* Enable energy-detect power-down mode */ 1150 static int ksz9031_enable_edpd(struct phy_device *phydev) 1151 { 1152 int reg; 1153 1154 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1155 if (reg < 0) 1156 return reg; 1157 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1158 reg | MII_KSZ9031RN_EDPD_ENABLE); 1159 } 1160 1161 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1162 { 1163 u16 rx, tx, rx_clk, tx_clk; 1164 int ret; 1165 1166 switch (phydev->interface) { 1167 case PHY_INTERFACE_MODE_RGMII: 1168 tx = TX_ND; 1169 tx_clk = TX_CLK_ND; 1170 rx = RX_ND; 1171 rx_clk = RX_CLK_ND; 1172 break; 1173 case PHY_INTERFACE_MODE_RGMII_ID: 1174 tx = TX_ID; 1175 tx_clk = TX_CLK_ID; 1176 rx = RX_ID; 1177 rx_clk = RX_CLK_ID; 1178 break; 1179 case PHY_INTERFACE_MODE_RGMII_RXID: 1180 tx = TX_ND; 1181 tx_clk = TX_CLK_ND; 1182 rx = RX_ID; 1183 rx_clk = RX_CLK_ID; 1184 break; 1185 case PHY_INTERFACE_MODE_RGMII_TXID: 1186 tx = TX_ID; 1187 tx_clk = TX_CLK_ID; 1188 rx = RX_ND; 1189 rx_clk = RX_CLK_ND; 1190 break; 1191 default: 1192 return 0; 1193 } 1194 1195 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1196 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1197 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1198 if (ret < 0) 1199 return ret; 1200 1201 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1202 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1203 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1204 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1205 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1206 if (ret < 0) 1207 return ret; 1208 1209 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1210 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1211 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1212 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1213 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1214 if (ret < 0) 1215 return ret; 1216 1217 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1218 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1219 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1220 } 1221 1222 static int ksz9031_config_init(struct phy_device *phydev) 1223 { 1224 const struct device_node *of_node; 1225 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1226 static const char *rx_data_skews[4] = { 1227 "rxd0-skew-ps", "rxd1-skew-ps", 1228 "rxd2-skew-ps", "rxd3-skew-ps" 1229 }; 1230 static const char *tx_data_skews[4] = { 1231 "txd0-skew-ps", "txd1-skew-ps", 1232 "txd2-skew-ps", "txd3-skew-ps" 1233 }; 1234 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1235 const struct device *dev_walker; 1236 int result; 1237 1238 result = ksz9031_enable_edpd(phydev); 1239 if (result < 0) 1240 return result; 1241 1242 /* The Micrel driver has a deprecated option to place phy OF 1243 * properties in the MAC node. Walk up the tree of devices to 1244 * find a device with an OF node. 1245 */ 1246 dev_walker = &phydev->mdio.dev; 1247 do { 1248 of_node = dev_walker->of_node; 1249 dev_walker = dev_walker->parent; 1250 } while (!of_node && dev_walker); 1251 1252 if (of_node) { 1253 bool update = false; 1254 1255 if (phy_interface_is_rgmii(phydev)) { 1256 result = ksz9031_config_rgmii_delay(phydev); 1257 if (result < 0) 1258 return result; 1259 } 1260 1261 ksz9031_of_load_skew_values(phydev, of_node, 1262 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1263 clk_skews, 2, &update); 1264 1265 ksz9031_of_load_skew_values(phydev, of_node, 1266 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1267 control_skews, 2, &update); 1268 1269 ksz9031_of_load_skew_values(phydev, of_node, 1270 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1271 rx_data_skews, 4, &update); 1272 1273 ksz9031_of_load_skew_values(phydev, of_node, 1274 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1275 tx_data_skews, 4, &update); 1276 1277 if (update && !phy_interface_is_rgmii(phydev)) 1278 phydev_warn(phydev, 1279 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1280 1281 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1282 * When the device links in the 1000BASE-T slave mode only, 1283 * the optional 125MHz reference output clock (CLK125_NDO) 1284 * has wide duty cycle variation. 1285 * 1286 * The optional CLK125_NDO clock does not meet the RGMII 1287 * 45/55 percent (min/max) duty cycle requirement and therefore 1288 * cannot be used directly by the MAC side for clocking 1289 * applications that have setup/hold time requirements on 1290 * rising and falling clock edges. 1291 * 1292 * Workaround: 1293 * Force the phy to be the master to receive a stable clock 1294 * which meets the duty cycle requirement. 1295 */ 1296 if (of_property_read_bool(of_node, "micrel,force-master")) { 1297 result = phy_read(phydev, MII_CTRL1000); 1298 if (result < 0) 1299 goto err_force_master; 1300 1301 /* enable master mode, config & prefer master */ 1302 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1303 result = phy_write(phydev, MII_CTRL1000, result); 1304 if (result < 0) 1305 goto err_force_master; 1306 } 1307 } 1308 1309 return ksz9031_center_flp_timing(phydev); 1310 1311 err_force_master: 1312 phydev_err(phydev, "failed to force the phy to master mode\n"); 1313 return result; 1314 } 1315 1316 #define KSZ9131_SKEW_5BIT_MAX 2400 1317 #define KSZ9131_SKEW_4BIT_MAX 800 1318 #define KSZ9131_OFFSET 700 1319 #define KSZ9131_STEP 100 1320 1321 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1322 struct device_node *of_node, 1323 u16 reg, size_t field_sz, 1324 char *field[], u8 numfields) 1325 { 1326 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1327 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1328 int skewval, skewmax = 0; 1329 int matches = 0; 1330 u16 maxval; 1331 u16 newval; 1332 u16 mask; 1333 int i; 1334 1335 /* psec properties in dts should mean x pico seconds */ 1336 if (field_sz == 5) 1337 skewmax = KSZ9131_SKEW_5BIT_MAX; 1338 else 1339 skewmax = KSZ9131_SKEW_4BIT_MAX; 1340 1341 for (i = 0; i < numfields; i++) 1342 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1343 if (skewval < -KSZ9131_OFFSET) 1344 skewval = -KSZ9131_OFFSET; 1345 else if (skewval > skewmax) 1346 skewval = skewmax; 1347 1348 val[i] = skewval + KSZ9131_OFFSET; 1349 matches++; 1350 } 1351 1352 if (!matches) 1353 return 0; 1354 1355 if (matches < numfields) 1356 newval = phy_read_mmd(phydev, 2, reg); 1357 else 1358 newval = 0; 1359 1360 maxval = (field_sz == 4) ? 0xf : 0x1f; 1361 for (i = 0; i < numfields; i++) 1362 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1363 mask = 0xffff; 1364 mask ^= maxval << (field_sz * i); 1365 newval = (newval & mask) | 1366 (((val[i] / KSZ9131_STEP) & maxval) 1367 << (field_sz * i)); 1368 } 1369 1370 return phy_write_mmd(phydev, 2, reg, newval); 1371 } 1372 1373 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1374 #define KSZ9131RN_RXC_DLL_CTRL 76 1375 #define KSZ9131RN_TXC_DLL_CTRL 77 1376 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1377 1378 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1379 { 1380 const struct kszphy_type *type = phydev->drv->driver_data; 1381 u16 rxcdll_val, txcdll_val; 1382 int ret; 1383 1384 switch (phydev->interface) { 1385 case PHY_INTERFACE_MODE_RGMII: 1386 rxcdll_val = type->disable_dll_rx_bit; 1387 txcdll_val = type->disable_dll_tx_bit; 1388 break; 1389 case PHY_INTERFACE_MODE_RGMII_ID: 1390 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1391 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1392 break; 1393 case PHY_INTERFACE_MODE_RGMII_RXID: 1394 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1395 txcdll_val = type->disable_dll_tx_bit; 1396 break; 1397 case PHY_INTERFACE_MODE_RGMII_TXID: 1398 rxcdll_val = type->disable_dll_rx_bit; 1399 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1400 break; 1401 default: 1402 return 0; 1403 } 1404 1405 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1406 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1407 rxcdll_val); 1408 if (ret < 0) 1409 return ret; 1410 1411 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1412 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1413 txcdll_val); 1414 } 1415 1416 /* Silicon Errata DS80000693B 1417 * 1418 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1419 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1420 * according to the datasheet (off if there is no link). 1421 */ 1422 static int ksz9131_led_errata(struct phy_device *phydev) 1423 { 1424 int reg; 1425 1426 reg = phy_read_mmd(phydev, 2, 0); 1427 if (reg < 0) 1428 return reg; 1429 1430 if (!(reg & BIT(4))) 1431 return 0; 1432 1433 return phy_set_bits(phydev, 0x1e, BIT(9)); 1434 } 1435 1436 static int ksz9131_config_init(struct phy_device *phydev) 1437 { 1438 struct device_node *of_node; 1439 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1440 char *rx_data_skews[4] = { 1441 "rxd0-skew-psec", "rxd1-skew-psec", 1442 "rxd2-skew-psec", "rxd3-skew-psec" 1443 }; 1444 char *tx_data_skews[4] = { 1445 "txd0-skew-psec", "txd1-skew-psec", 1446 "txd2-skew-psec", "txd3-skew-psec" 1447 }; 1448 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1449 const struct device *dev_walker; 1450 int ret; 1451 1452 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1453 1454 dev_walker = &phydev->mdio.dev; 1455 do { 1456 of_node = dev_walker->of_node; 1457 dev_walker = dev_walker->parent; 1458 } while (!of_node && dev_walker); 1459 1460 if (!of_node) 1461 return 0; 1462 1463 if (phy_interface_is_rgmii(phydev)) { 1464 ret = ksz9131_config_rgmii_delay(phydev); 1465 if (ret < 0) 1466 return ret; 1467 } 1468 1469 ret = ksz9131_of_load_skew_values(phydev, of_node, 1470 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1471 clk_skews, 2); 1472 if (ret < 0) 1473 return ret; 1474 1475 ret = ksz9131_of_load_skew_values(phydev, of_node, 1476 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1477 control_skews, 2); 1478 if (ret < 0) 1479 return ret; 1480 1481 ret = ksz9131_of_load_skew_values(phydev, of_node, 1482 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1483 rx_data_skews, 4); 1484 if (ret < 0) 1485 return ret; 1486 1487 ret = ksz9131_of_load_skew_values(phydev, of_node, 1488 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1489 tx_data_skews, 4); 1490 if (ret < 0) 1491 return ret; 1492 1493 ret = ksz9131_led_errata(phydev); 1494 if (ret < 0) 1495 return ret; 1496 1497 return 0; 1498 } 1499 1500 #define MII_KSZ9131_AUTO_MDIX 0x1C 1501 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1502 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1503 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1504 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1505 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1506 1507 static int ksz9131_mdix_update(struct phy_device *phydev) 1508 { 1509 int ret; 1510 1511 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1512 phydev->mdix = phydev->mdix_ctrl; 1513 } else { 1514 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1515 if (ret < 0) 1516 return ret; 1517 1518 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1519 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1520 phydev->mdix = ETH_TP_MDI; 1521 else 1522 phydev->mdix = ETH_TP_MDI_X; 1523 } else { 1524 phydev->mdix = ETH_TP_MDI_INVALID; 1525 } 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1532 { 1533 u16 val; 1534 1535 switch (ctrl) { 1536 case ETH_TP_MDI: 1537 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1538 MII_KSZ9131_AUTO_MDI_SET; 1539 break; 1540 case ETH_TP_MDI_X: 1541 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1542 break; 1543 case ETH_TP_MDI_AUTO: 1544 val = 0; 1545 break; 1546 default: 1547 return 0; 1548 } 1549 1550 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1551 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1552 MII_KSZ9131_AUTO_MDI_SET, val); 1553 } 1554 1555 static int ksz9131_read_status(struct phy_device *phydev) 1556 { 1557 int ret; 1558 1559 ret = ksz9131_mdix_update(phydev); 1560 if (ret < 0) 1561 return ret; 1562 1563 return genphy_read_status(phydev); 1564 } 1565 1566 static int ksz9131_config_aneg(struct phy_device *phydev) 1567 { 1568 int ret; 1569 1570 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1571 if (ret) 1572 return ret; 1573 1574 return genphy_config_aneg(phydev); 1575 } 1576 1577 static int ksz9477_get_features(struct phy_device *phydev) 1578 { 1579 int ret; 1580 1581 ret = genphy_read_abilities(phydev); 1582 if (ret) 1583 return ret; 1584 1585 /* The "EEE control and capability 1" (Register 3.20) seems to be 1586 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1587 * on the 7.60 will affect 3.20. So, we need to construct our own list 1588 * of caps. 1589 * KSZ8563R should have 100BaseTX/Full only. 1590 */ 1591 linkmode_and(phydev->supported_eee, phydev->supported, 1592 PHY_EEE_CAP1_FEATURES); 1593 1594 return 0; 1595 } 1596 1597 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1598 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1599 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1600 static int ksz8873mll_read_status(struct phy_device *phydev) 1601 { 1602 int regval; 1603 1604 /* dummy read */ 1605 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1606 1607 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1608 1609 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1610 phydev->duplex = DUPLEX_HALF; 1611 else 1612 phydev->duplex = DUPLEX_FULL; 1613 1614 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1615 phydev->speed = SPEED_10; 1616 else 1617 phydev->speed = SPEED_100; 1618 1619 phydev->link = 1; 1620 phydev->pause = phydev->asym_pause = 0; 1621 1622 return 0; 1623 } 1624 1625 static int ksz9031_get_features(struct phy_device *phydev) 1626 { 1627 int ret; 1628 1629 ret = genphy_read_abilities(phydev); 1630 if (ret < 0) 1631 return ret; 1632 1633 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1634 * Whenever the device's Asymmetric Pause capability is set to 1, 1635 * link-up may fail after a link-up to link-down transition. 1636 * 1637 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1638 * 1639 * Workaround: 1640 * Do not enable the Asymmetric Pause capability bit. 1641 */ 1642 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1643 1644 /* We force setting the Pause capability as the core will force the 1645 * Asymmetric Pause capability to 1 otherwise. 1646 */ 1647 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1648 1649 return 0; 1650 } 1651 1652 static int ksz9031_read_status(struct phy_device *phydev) 1653 { 1654 int err; 1655 int regval; 1656 1657 err = genphy_read_status(phydev); 1658 if (err) 1659 return err; 1660 1661 /* Make sure the PHY is not broken. Read idle error count, 1662 * and reset the PHY if it is maxed out. 1663 */ 1664 regval = phy_read(phydev, MII_STAT1000); 1665 if ((regval & 0xFF) == 0xFF) { 1666 phy_init_hw(phydev); 1667 phydev->link = 0; 1668 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1669 phydev->drv->config_intr(phydev); 1670 return genphy_config_aneg(phydev); 1671 } 1672 1673 return 0; 1674 } 1675 1676 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1677 { 1678 struct kszphy_priv *priv = phydev->priv; 1679 int ret; 1680 1681 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1682 * Prior to running the cable diagnostics, Auto-negotiation should 1683 * be disabled, full duplex set and the link speed set to 1000Mbps 1684 * via the Basic Control Register. 1685 */ 1686 ret = phy_modify(phydev, MII_BMCR, 1687 BMCR_SPEED1000 | BMCR_FULLDPLX | 1688 BMCR_ANENABLE | BMCR_SPEED100, 1689 BMCR_SPEED1000 | BMCR_FULLDPLX); 1690 if (ret) 1691 return ret; 1692 1693 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1694 * The Master-Slave configuration should be set to Slave by writing 1695 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1696 * Register. 1697 */ 1698 ret = phy_read(phydev, MII_CTRL1000); 1699 if (ret < 0) 1700 return ret; 1701 1702 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1703 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1704 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1705 ret |= CTL1000_ENABLE_MASTER; 1706 1707 return phy_write(phydev, MII_CTRL1000, ret); 1708 } 1709 1710 static int ksz9x31_cable_test_result_trans(u16 status) 1711 { 1712 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1713 case KSZ9x31_LMD_VCT_ST_NORMAL: 1714 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1715 case KSZ9x31_LMD_VCT_ST_OPEN: 1716 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1717 case KSZ9x31_LMD_VCT_ST_SHORT: 1718 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1719 case KSZ9x31_LMD_VCT_ST_FAIL: 1720 fallthrough; 1721 default: 1722 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1723 } 1724 } 1725 1726 static bool ksz9x31_cable_test_failed(u16 status) 1727 { 1728 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1729 1730 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1731 } 1732 1733 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1734 { 1735 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1736 case KSZ9x31_LMD_VCT_ST_OPEN: 1737 fallthrough; 1738 case KSZ9x31_LMD_VCT_ST_SHORT: 1739 return true; 1740 } 1741 return false; 1742 } 1743 1744 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1745 { 1746 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1747 1748 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1749 * 1750 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1751 */ 1752 if (phydev_id_compare(phydev, PHY_ID_KSZ9131) || 1753 phydev_id_compare(phydev, PHY_ID_KSZ9477)) 1754 dt = clamp(dt - 22, 0, 255); 1755 1756 return (dt * 400) / 10; 1757 } 1758 1759 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1760 { 1761 int val, ret; 1762 1763 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1764 !(val & KSZ9x31_LMD_VCT_EN), 1765 30000, 100000, true); 1766 1767 return ret < 0 ? ret : 0; 1768 } 1769 1770 static int ksz9x31_cable_test_get_pair(int pair) 1771 { 1772 static const int ethtool_pair[] = { 1773 ETHTOOL_A_CABLE_PAIR_A, 1774 ETHTOOL_A_CABLE_PAIR_B, 1775 ETHTOOL_A_CABLE_PAIR_C, 1776 ETHTOOL_A_CABLE_PAIR_D, 1777 }; 1778 1779 return ethtool_pair[pair]; 1780 } 1781 1782 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1783 { 1784 int ret, val; 1785 1786 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1787 * To test each individual cable pair, set the cable pair in the Cable 1788 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1789 * Diagnostic Register, along with setting the Cable Diagnostics Test 1790 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1791 * will self clear when the test is concluded. 1792 */ 1793 ret = phy_write(phydev, KSZ9x31_LMD, 1794 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1795 if (ret) 1796 return ret; 1797 1798 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1799 if (ret) 1800 return ret; 1801 1802 val = phy_read(phydev, KSZ9x31_LMD); 1803 if (val < 0) 1804 return val; 1805 1806 if (ksz9x31_cable_test_failed(val)) 1807 return -EAGAIN; 1808 1809 ret = ethnl_cable_test_result(phydev, 1810 ksz9x31_cable_test_get_pair(pair), 1811 ksz9x31_cable_test_result_trans(val)); 1812 if (ret) 1813 return ret; 1814 1815 if (!ksz9x31_cable_test_fault_length_valid(val)) 1816 return 0; 1817 1818 return ethnl_cable_test_fault_length(phydev, 1819 ksz9x31_cable_test_get_pair(pair), 1820 ksz9x31_cable_test_fault_length(phydev, val)); 1821 } 1822 1823 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1824 bool *finished) 1825 { 1826 struct kszphy_priv *priv = phydev->priv; 1827 unsigned long pair_mask; 1828 int retries = 20; 1829 int pair, ret, rv; 1830 1831 *finished = false; 1832 1833 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1834 phydev->supported) || 1835 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1836 phydev->supported)) 1837 pair_mask = 0xf; /* All pairs */ 1838 else 1839 pair_mask = 0x3; /* Pairs A and B only */ 1840 1841 /* Try harder if link partner is active */ 1842 while (pair_mask && retries--) { 1843 for_each_set_bit(pair, &pair_mask, 4) { 1844 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1845 if (ret == -EAGAIN) 1846 continue; 1847 if (ret < 0) 1848 return ret; 1849 clear_bit(pair, &pair_mask); 1850 } 1851 /* If link partner is in autonegotiation mode it will send 2ms 1852 * of FLPs with at least 6ms of silence. 1853 * Add 2ms sleep to have better chances to hit this silence. 1854 */ 1855 if (pair_mask) 1856 usleep_range(2000, 3000); 1857 } 1858 1859 /* Report remaining unfinished pair result as unknown. */ 1860 for_each_set_bit(pair, &pair_mask, 4) { 1861 ret = ethnl_cable_test_result(phydev, 1862 ksz9x31_cable_test_get_pair(pair), 1863 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1864 } 1865 1866 *finished = true; 1867 1868 /* Restore cached bits from before LinkMD got started. */ 1869 rv = phy_modify(phydev, MII_CTRL1000, 1870 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1871 priv->vct_ctrl1000); 1872 if (rv) 1873 return rv; 1874 1875 return ret; 1876 } 1877 1878 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1879 { 1880 return 0; 1881 } 1882 1883 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1884 { 1885 u16 val; 1886 1887 switch (ctrl) { 1888 case ETH_TP_MDI: 1889 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1890 break; 1891 case ETH_TP_MDI_X: 1892 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1893 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1894 * sheet seems to be missing: 1895 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1896 * 0 = Normal operation (transmit on TX+/TX- pins) 1897 */ 1898 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1899 break; 1900 case ETH_TP_MDI_AUTO: 1901 val = 0; 1902 break; 1903 default: 1904 return 0; 1905 } 1906 1907 return phy_modify(phydev, MII_BMCR, 1908 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1909 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1910 KSZ886X_BMCR_HP_MDIX | val); 1911 } 1912 1913 static int ksz886x_config_aneg(struct phy_device *phydev) 1914 { 1915 int ret; 1916 1917 ret = genphy_config_aneg(phydev); 1918 if (ret) 1919 return ret; 1920 1921 if (phydev->autoneg != AUTONEG_ENABLE) { 1922 /* When autonegotiation is disabled, we need to manually force 1923 * the link state. If we don't do this, the PHY will keep 1924 * sending Fast Link Pulses (FLPs) which are part of the 1925 * autonegotiation process. This is not desired when 1926 * autonegotiation is off. 1927 */ 1928 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1929 KSZ886X_CTRL_FORCE_LINK); 1930 if (ret) 1931 return ret; 1932 } else { 1933 /* If we had previously forced the link state, we need to 1934 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1935 * will not perform autonegotiation. 1936 */ 1937 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1938 KSZ886X_CTRL_FORCE_LINK); 1939 if (ret) 1940 return ret; 1941 } 1942 1943 /* The MDI-X configuration is automatically changed by the PHY after 1944 * switching from autoneg off to on. So, take MDI-X configuration under 1945 * own control and set it after autoneg configuration was done. 1946 */ 1947 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1948 } 1949 1950 static int ksz886x_mdix_update(struct phy_device *phydev) 1951 { 1952 int ret; 1953 1954 ret = phy_read(phydev, MII_BMCR); 1955 if (ret < 0) 1956 return ret; 1957 1958 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1959 if (ret & KSZ886X_BMCR_FORCE_MDI) 1960 phydev->mdix_ctrl = ETH_TP_MDI_X; 1961 else 1962 phydev->mdix_ctrl = ETH_TP_MDI; 1963 } else { 1964 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1965 } 1966 1967 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1968 if (ret < 0) 1969 return ret; 1970 1971 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1972 if (ret & KSZ886X_CTRL_MDIX_STAT) 1973 phydev->mdix = ETH_TP_MDI_X; 1974 else 1975 phydev->mdix = ETH_TP_MDI; 1976 1977 return 0; 1978 } 1979 1980 static int ksz886x_read_status(struct phy_device *phydev) 1981 { 1982 int ret; 1983 1984 ret = ksz886x_mdix_update(phydev); 1985 if (ret < 0) 1986 return ret; 1987 1988 return genphy_read_status(phydev); 1989 } 1990 1991 static int ksz9477_mdix_update(struct phy_device *phydev) 1992 { 1993 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) 1994 phydev->mdix = phydev->mdix_ctrl; 1995 else 1996 phydev->mdix = ETH_TP_MDI_INVALID; 1997 1998 return 0; 1999 } 2000 2001 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev) 2002 { 2003 int val; 2004 2005 val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 2006 if (val < 0) 2007 return val; 2008 2009 if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF)) 2010 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 2011 else if (val & MII_KSZ9131_AUTO_MDI_SET) 2012 phydev->mdix_ctrl = ETH_TP_MDI; 2013 else 2014 phydev->mdix_ctrl = ETH_TP_MDI_X; 2015 2016 return 0; 2017 } 2018 2019 static int ksz9477_read_status(struct phy_device *phydev) 2020 { 2021 int ret; 2022 2023 ret = ksz9477_mdix_update(phydev); 2024 if (ret) 2025 return ret; 2026 2027 return genphy_read_status(phydev); 2028 } 2029 2030 static int ksz9477_config_aneg(struct phy_device *phydev) 2031 { 2032 int ret; 2033 2034 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 2035 if (ret) 2036 return ret; 2037 2038 return genphy_config_aneg(phydev); 2039 } 2040 2041 struct ksz9477_errata_write { 2042 u8 dev_addr; 2043 u8 reg_addr; 2044 u16 val; 2045 }; 2046 2047 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 2048 /* Register settings are needed to improve PHY receive performance */ 2049 {0x01, 0x6f, 0xdd0b}, 2050 {0x01, 0x8f, 0x6032}, 2051 {0x01, 0x9d, 0x248c}, 2052 {0x01, 0x75, 0x0060}, 2053 {0x01, 0xd3, 0x7777}, 2054 {0x1c, 0x06, 0x3008}, 2055 {0x1c, 0x08, 0x2000}, 2056 2057 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 2058 {0x1c, 0x04, 0x00d0}, 2059 2060 /* Register settings are required to meet data sheet supply current specifications */ 2061 {0x1c, 0x13, 0x6eff}, 2062 {0x1c, 0x14, 0xe6ff}, 2063 {0x1c, 0x15, 0x6eff}, 2064 {0x1c, 0x16, 0xe6ff}, 2065 {0x1c, 0x17, 0x00ff}, 2066 {0x1c, 0x18, 0x43ff}, 2067 {0x1c, 0x19, 0xc3ff}, 2068 {0x1c, 0x1a, 0x6fff}, 2069 {0x1c, 0x1b, 0x07ff}, 2070 {0x1c, 0x1c, 0x0fff}, 2071 {0x1c, 0x1d, 0xe7ff}, 2072 {0x1c, 0x1e, 0xefff}, 2073 {0x1c, 0x20, 0xeeee}, 2074 }; 2075 2076 static int ksz9477_phy_errata(struct phy_device *phydev) 2077 { 2078 int err; 2079 int i; 2080 2081 /* Apply PHY settings to address errata listed in 2082 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 2083 * Silicon Errata and Data Sheet Clarification documents. 2084 * 2085 * Document notes: Before configuring the PHY MMD registers, it is 2086 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 2087 * disabled by writing to register 0xN100-0xN101. After writing the 2088 * MMD registers, and after all errata workarounds that involve PHY 2089 * register settings, write register 0xN100-0xN101 again to enable 2090 * and restart auto-negotiation. 2091 */ 2092 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2093 if (err) 2094 return err; 2095 2096 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2097 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2098 2099 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2100 if (err) 2101 return err; 2102 } 2103 2104 return genphy_restart_aneg(phydev); 2105 } 2106 2107 static int ksz9477_config_init(struct phy_device *phydev) 2108 { 2109 int err; 2110 2111 /* Only KSZ9897 family of switches needs this fix. */ 2112 if ((phydev->phy_id & 0xf) == 1) { 2113 err = ksz9477_phy_errata(phydev); 2114 if (err) 2115 return err; 2116 } 2117 2118 /* Read initial MDI-X config state. So, we do not need to poll it 2119 * later on. 2120 */ 2121 err = ksz9477_read_mdix_ctrl(phydev); 2122 if (err) 2123 return err; 2124 2125 return kszphy_config_init(phydev); 2126 } 2127 2128 static int kszphy_get_sset_count(struct phy_device *phydev) 2129 { 2130 return ARRAY_SIZE(kszphy_hw_stats); 2131 } 2132 2133 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2134 { 2135 int i; 2136 2137 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2138 ethtool_puts(&data, kszphy_hw_stats[i].string); 2139 } 2140 2141 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2142 { 2143 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2144 struct kszphy_priv *priv = phydev->priv; 2145 int val; 2146 u64 ret; 2147 2148 val = phy_read(phydev, stat.reg); 2149 if (val < 0) { 2150 ret = U64_MAX; 2151 } else { 2152 val = val & ((1 << stat.bits) - 1); 2153 priv->stats[i] += val; 2154 ret = priv->stats[i]; 2155 } 2156 2157 return ret; 2158 } 2159 2160 static void kszphy_get_stats(struct phy_device *phydev, 2161 struct ethtool_stats *stats, u64 *data) 2162 { 2163 int i; 2164 2165 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2166 data[i] = kszphy_get_stat(phydev, i); 2167 } 2168 2169 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313, 2170 * etc. The counter is incremented when the PHY receives a frame with one or 2171 * more symbol errors. The counter is cleared when the register is read. 2172 */ 2173 #define MII_KSZ9477_PHY_RXER_COUNTER 0x15 2174 2175 static int kszphy_update_stats(struct phy_device *phydev) 2176 { 2177 struct kszphy_priv *priv = phydev->priv; 2178 int ret; 2179 2180 ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER); 2181 if (ret < 0) 2182 return ret; 2183 2184 priv->phy_stats.rx_err_pkt_cnt += ret; 2185 2186 return 0; 2187 } 2188 2189 static void kszphy_get_phy_stats(struct phy_device *phydev, 2190 struct ethtool_eth_phy_stats *eth_stats, 2191 struct ethtool_phy_stats *stats) 2192 { 2193 struct kszphy_priv *priv = phydev->priv; 2194 2195 stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt; 2196 } 2197 2198 /* Base register for Signal Quality Indicator (SQI) - Channel A 2199 * 2200 * MMD Address: MDIO_MMD_PMAPMD (0x01) 2201 * Register: 0xAC (Channel A) 2202 * Each channel (pair) has its own register: 2203 * Channel A: 0xAC 2204 * Channel B: 0xAD 2205 * Channel C: 0xAE 2206 * Channel D: 0xAF 2207 */ 2208 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A 0xac 2209 2210 /* SQI field mask for bits [14:8] 2211 * 2212 * SQI indicates relative quality of the signal. 2213 * A lower value indicates better signal quality. 2214 */ 2215 #define KSZ9477_MMD_SQI_MASK GENMASK(14, 8) 2216 2217 #define KSZ9477_MAX_CHANNELS 4 2218 #define KSZ9477_SQI_MAX 7 2219 2220 /* Number of SQI samples to average for a stable result. 2221 * 2222 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2223 * For noisy environments, a minimum of 30–50 readings is recommended. 2224 */ 2225 #define KSZ9477_SQI_SAMPLE_COUNT 40 2226 2227 /* The hardware SQI register provides a raw value from 0-127, where a lower 2228 * value indicates better signal quality. However, empirical testing has 2229 * shown that only the 0-7 range is relevant for a functional link. A raw 2230 * value of 8 or higher was measured directly before link drop. This aligns 2231 * with the OPEN Alliance recommendation that SQI=0 should represent the 2232 * pre-failure state. 2233 * 2234 * This table provides a non-linear mapping from the useful raw hardware 2235 * values (0-7) to the standard 0-7 SQI scale, where higher is better. 2236 */ 2237 static const u8 ksz_sqi_mapping[] = { 2238 7, /* raw 0 -> SQI 7 */ 2239 7, /* raw 1 -> SQI 7 */ 2240 6, /* raw 2 -> SQI 6 */ 2241 5, /* raw 3 -> SQI 5 */ 2242 4, /* raw 4 -> SQI 4 */ 2243 3, /* raw 5 -> SQI 3 */ 2244 2, /* raw 6 -> SQI 2 */ 2245 1, /* raw 7 -> SQI 1 */ 2246 }; 2247 2248 /** 2249 * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI) 2250 * @phydev: the PHY device 2251 * 2252 * This function reads and processes the raw Signal Quality Index from the 2253 * PHY. Based on empirical testing, a raw value of 8 or higher indicates a 2254 * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are 2255 * mapped to the standard 0-7 SQI scale via a lookup table. 2256 * 2257 * Return: SQI value (0–7), or a negative errno on failure. 2258 */ 2259 static int kszphy_get_sqi(struct phy_device *phydev) 2260 { 2261 int sum[KSZ9477_MAX_CHANNELS] = { 0 }; 2262 int worst_sqi = KSZ9477_SQI_MAX; 2263 int i, val, raw_sqi, ch; 2264 u8 channels; 2265 2266 /* Determine applicable channels based on link speed */ 2267 if (phydev->speed == SPEED_1000) 2268 channels = 4; 2269 else if (phydev->speed == SPEED_100) 2270 channels = 1; 2271 else 2272 return -EOPNOTSUPP; 2273 2274 /* Sample and accumulate SQI readings for each pair (currently only one). 2275 * 2276 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2277 * - The SQI register is updated every 2 µs. 2278 * - Values may fluctuate significantly, even in low-noise environments. 2279 * - For reliable estimation, average a minimum of 30–50 samples 2280 * (recommended for noisy environments) 2281 * - In noisy environments, individual readings are highly unreliable. 2282 * 2283 * We use 40 samples per pair with a delay of 3 µs between each 2284 * read to ensure new values are captured (2 µs update interval). 2285 */ 2286 for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) { 2287 for (ch = 0; ch < channels; ch++) { 2288 val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2289 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch); 2290 if (val < 0) 2291 return val; 2292 2293 raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val); 2294 sum[ch] += raw_sqi; 2295 2296 /* We communicate with the PHY via MDIO via SPI or 2297 * I2C, which is relatively slow. At least slower than 2298 * the update interval of the SQI register. 2299 * So, we can skip the delay between reads. 2300 */ 2301 } 2302 } 2303 2304 /* Calculate average for each channel and find the worst SQI */ 2305 for (ch = 0; ch < channels; ch++) { 2306 int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT; 2307 int mapped_sqi; 2308 2309 /* Handle the pre-fail/failed state first. */ 2310 if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping)) 2311 mapped_sqi = 0; 2312 else 2313 /* Use the lookup table for the good signal range. */ 2314 mapped_sqi = ksz_sqi_mapping[avg_raw_sqi]; 2315 2316 if (mapped_sqi < worst_sqi) 2317 worst_sqi = mapped_sqi; 2318 } 2319 2320 return worst_sqi; 2321 } 2322 2323 static int kszphy_get_sqi_max(struct phy_device *phydev) 2324 { 2325 return KSZ9477_SQI_MAX; 2326 } 2327 2328 static int kszphy_get_mse_capability(struct phy_device *phydev, 2329 struct phy_mse_capability *cap) 2330 { 2331 /* Capabilities depend on link mode: 2332 * - 1000BASE-T: per-pair SQI registers exist => expose A..D 2333 * and a WORST selector. 2334 * - 100BASE-TX: HW provides a single MSE/SQI reading in the "channel A" 2335 * register, but with auto MDI-X there is no MDI-X resolution bit, 2336 * so we cannot map that register to a specific wire pair reliably. 2337 * To avoid misleading per-channel data, advertise only LINK. 2338 * Other speeds: no MSE exposure via this driver. 2339 * 2340 * Note: WORST is *not* a hardware selector on this family. 2341 * We expose it because the driver computes it in software 2342 * by scanning per-channel readouts (A..D) and picking the 2343 * maximum average MSE. 2344 */ 2345 if (phydev->speed == SPEED_1000) 2346 cap->supported_caps = PHY_MSE_CAP_CHANNEL_A | 2347 PHY_MSE_CAP_CHANNEL_B | 2348 PHY_MSE_CAP_CHANNEL_C | 2349 PHY_MSE_CAP_CHANNEL_D | 2350 PHY_MSE_CAP_WORST_CHANNEL; 2351 else if (phydev->speed == SPEED_100) 2352 cap->supported_caps = PHY_MSE_CAP_LINK; 2353 else 2354 return -EOPNOTSUPP; 2355 2356 cap->max_average_mse = FIELD_MAX(KSZ9477_MMD_SQI_MASK); 2357 cap->refresh_rate_ps = 2000000; /* 2 us */ 2358 /* Estimated from link modulation (125 MBd per channel) and documented 2359 * refresh rate of 2 us 2360 */ 2361 cap->num_symbols = 250; 2362 2363 cap->supported_caps |= PHY_MSE_CAP_AVG; 2364 2365 return 0; 2366 } 2367 2368 static int kszphy_get_mse_snapshot(struct phy_device *phydev, 2369 enum phy_mse_channel channel, 2370 struct phy_mse_snapshot *snapshot) 2371 { 2372 u8 num_channels; 2373 int ret; 2374 2375 if (phydev->speed == SPEED_1000) 2376 num_channels = 4; 2377 else if (phydev->speed == SPEED_100) 2378 num_channels = 1; 2379 else 2380 return -EOPNOTSUPP; 2381 2382 if (channel == PHY_MSE_CHANNEL_WORST) { 2383 u32 worst_val = 0; 2384 int i; 2385 2386 /* WORST is implemented in software: select the maximum 2387 * average MSE across the available per-channel registers. 2388 * Only defined when multiple channels exist (1000BASE-T). 2389 */ 2390 if (num_channels < 2) 2391 return -EOPNOTSUPP; 2392 2393 for (i = 0; i < num_channels; i++) { 2394 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2395 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + i); 2396 if (ret < 0) 2397 return ret; 2398 2399 ret = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2400 if (ret > worst_val) 2401 worst_val = ret; 2402 } 2403 snapshot->average_mse = worst_val; 2404 } else if (channel == PHY_MSE_CHANNEL_LINK && num_channels == 1) { 2405 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2406 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A); 2407 if (ret < 0) 2408 return ret; 2409 snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2410 } else if (channel >= PHY_MSE_CHANNEL_A && 2411 channel <= PHY_MSE_CHANNEL_D) { 2412 /* Per-channel readouts are valid only for 1000BASE-T. */ 2413 if (phydev->speed != SPEED_1000) 2414 return -EOPNOTSUPP; 2415 2416 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2417 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + channel); 2418 if (ret < 0) 2419 return ret; 2420 snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2421 } else { 2422 return -EOPNOTSUPP; 2423 } 2424 2425 return 0; 2426 } 2427 2428 static void kszphy_enable_clk(struct phy_device *phydev) 2429 { 2430 struct kszphy_priv *priv = phydev->priv; 2431 2432 if (!priv->clk_enable && priv->clk) { 2433 clk_prepare_enable(priv->clk); 2434 priv->clk_enable = true; 2435 } 2436 } 2437 2438 static void kszphy_disable_clk(struct phy_device *phydev) 2439 { 2440 struct kszphy_priv *priv = phydev->priv; 2441 2442 if (priv->clk_enable && priv->clk) { 2443 clk_disable_unprepare(priv->clk); 2444 priv->clk_enable = false; 2445 } 2446 } 2447 2448 static int kszphy_generic_resume(struct phy_device *phydev) 2449 { 2450 kszphy_enable_clk(phydev); 2451 2452 return genphy_resume(phydev); 2453 } 2454 2455 static int kszphy_generic_suspend(struct phy_device *phydev) 2456 { 2457 int ret; 2458 2459 ret = genphy_suspend(phydev); 2460 if (ret) 2461 return ret; 2462 2463 kszphy_disable_clk(phydev); 2464 2465 return 0; 2466 } 2467 2468 static int kszphy_suspend(struct phy_device *phydev) 2469 { 2470 /* Disable PHY Interrupts */ 2471 if (phy_interrupt_is_valid(phydev)) { 2472 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2473 if (phydev->drv->config_intr) 2474 phydev->drv->config_intr(phydev); 2475 } 2476 2477 return kszphy_generic_suspend(phydev); 2478 } 2479 2480 static void kszphy_parse_led_mode(struct phy_device *phydev) 2481 { 2482 const struct kszphy_type *type = phydev->drv->driver_data; 2483 const struct device_node *np = phydev->mdio.dev.of_node; 2484 struct kszphy_priv *priv = phydev->priv; 2485 int ret; 2486 2487 if (type && type->led_mode_reg) { 2488 ret = of_property_read_u32(np, "micrel,led-mode", 2489 &priv->led_mode); 2490 2491 if (ret) 2492 priv->led_mode = -1; 2493 2494 if (priv->led_mode > 3) { 2495 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2496 priv->led_mode); 2497 priv->led_mode = -1; 2498 } 2499 } else { 2500 priv->led_mode = -1; 2501 } 2502 } 2503 2504 static int kszphy_resume(struct phy_device *phydev) 2505 { 2506 int ret; 2507 2508 ret = kszphy_generic_resume(phydev); 2509 if (ret) 2510 return ret; 2511 2512 /* After switching from power-down to normal mode, an internal global 2513 * reset is automatically generated. Wait a minimum of 1 ms before 2514 * read/write access to the PHY registers. 2515 */ 2516 usleep_range(1000, 2000); 2517 2518 ret = kszphy_config_reset(phydev); 2519 if (ret) 2520 return ret; 2521 2522 /* Enable PHY Interrupts */ 2523 if (phy_interrupt_is_valid(phydev)) { 2524 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2525 if (phydev->drv->config_intr) 2526 phydev->drv->config_intr(phydev); 2527 } 2528 2529 return 0; 2530 } 2531 2532 /* Because of errata DS80000700A, receiver error following software 2533 * power down. Suspend and resume callbacks only disable and enable 2534 * external rmii reference clock. 2535 */ 2536 static int ksz8041_resume(struct phy_device *phydev) 2537 { 2538 kszphy_enable_clk(phydev); 2539 2540 return 0; 2541 } 2542 2543 static int ksz8041_suspend(struct phy_device *phydev) 2544 { 2545 kszphy_disable_clk(phydev); 2546 2547 return 0; 2548 } 2549 2550 static int ksz9477_resume(struct phy_device *phydev) 2551 { 2552 int ret; 2553 2554 /* No need to initialize registers if not powered down. */ 2555 ret = phy_read(phydev, MII_BMCR); 2556 if (ret < 0) 2557 return ret; 2558 if (!(ret & BMCR_PDOWN)) 2559 return 0; 2560 2561 genphy_resume(phydev); 2562 2563 /* After switching from power-down to normal mode, an internal global 2564 * reset is automatically generated. Wait a minimum of 1 ms before 2565 * read/write access to the PHY registers. 2566 */ 2567 usleep_range(1000, 2000); 2568 2569 /* Only KSZ9897 family of switches needs this fix. */ 2570 if ((phydev->phy_id & 0xf) == 1) { 2571 ret = ksz9477_phy_errata(phydev); 2572 if (ret) 2573 return ret; 2574 } 2575 2576 /* Enable PHY Interrupts */ 2577 if (phy_interrupt_is_valid(phydev)) { 2578 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2579 if (phydev->drv->config_intr) 2580 phydev->drv->config_intr(phydev); 2581 } 2582 2583 return 0; 2584 } 2585 2586 static int ksz8061_resume(struct phy_device *phydev) 2587 { 2588 int ret; 2589 2590 /* This function can be called twice when the Ethernet device is on. */ 2591 ret = phy_read(phydev, MII_BMCR); 2592 if (ret < 0) 2593 return ret; 2594 if (!(ret & BMCR_PDOWN)) 2595 return 0; 2596 2597 ret = kszphy_generic_resume(phydev); 2598 if (ret) 2599 return ret; 2600 2601 usleep_range(1000, 2000); 2602 2603 /* Re-program the value after chip is reset. */ 2604 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2605 if (ret) 2606 return ret; 2607 2608 /* Enable PHY Interrupts */ 2609 if (phy_interrupt_is_valid(phydev)) { 2610 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2611 if (phydev->drv->config_intr) 2612 phydev->drv->config_intr(phydev); 2613 } 2614 2615 return 0; 2616 } 2617 2618 static int ksz8061_suspend(struct phy_device *phydev) 2619 { 2620 return kszphy_suspend(phydev); 2621 } 2622 2623 static int kszphy_probe(struct phy_device *phydev) 2624 { 2625 const struct kszphy_type *type = phydev->drv->driver_data; 2626 const struct device_node *np = phydev->mdio.dev.of_node; 2627 struct kszphy_priv *priv; 2628 struct clk *clk; 2629 2630 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2631 if (!priv) 2632 return -ENOMEM; 2633 2634 phydev->priv = priv; 2635 2636 priv->type = type; 2637 2638 kszphy_parse_led_mode(phydev); 2639 2640 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2641 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2642 if (!IS_ERR_OR_NULL(clk)) { 2643 unsigned long rate = clk_get_rate(clk); 2644 bool rmii_ref_clk_sel_25_mhz; 2645 2646 if (type) 2647 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2648 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2649 "micrel,rmii-reference-clock-select-25-mhz"); 2650 2651 if (rate > 24500000 && rate < 25500000) { 2652 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2653 } else if (rate > 49500000 && rate < 50500000) { 2654 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2655 } else { 2656 phydev_err(phydev, "Clock rate out of range: %ld\n", 2657 rate); 2658 return -EINVAL; 2659 } 2660 } else if (!clk) { 2661 /* unnamed clock from the generic ethernet-phy binding */ 2662 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2663 } 2664 2665 if (IS_ERR(clk)) 2666 return PTR_ERR(clk); 2667 2668 clk_disable_unprepare(clk); 2669 priv->clk = clk; 2670 2671 if (ksz8041_fiber_mode(phydev)) 2672 phydev->port = PORT_FIBRE; 2673 2674 /* Support legacy board-file configuration */ 2675 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2676 priv->rmii_ref_clk_sel = true; 2677 priv->rmii_ref_clk_sel_val = true; 2678 } 2679 2680 return 0; 2681 } 2682 2683 static int lan8814_cable_test_start(struct phy_device *phydev) 2684 { 2685 /* If autoneg is enabled, we won't be able to test cross pair 2686 * short. In this case, the PHY will "detect" a link and 2687 * confuse the internal state machine - disable auto neg here. 2688 * Set the speed to 1000mbit and full duplex. 2689 */ 2690 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2691 BMCR_SPEED1000 | BMCR_FULLDPLX); 2692 } 2693 2694 static int ksz886x_cable_test_start(struct phy_device *phydev) 2695 { 2696 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2697 return -EOPNOTSUPP; 2698 2699 /* If autoneg is enabled, we won't be able to test cross pair 2700 * short. In this case, the PHY will "detect" a link and 2701 * confuse the internal state machine - disable auto neg here. 2702 * If autoneg is disabled, we should set the speed to 10mbit. 2703 */ 2704 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2705 } 2706 2707 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2708 { 2709 switch (FIELD_GET(mask, status)) { 2710 case KSZ8081_LMD_STAT_NORMAL: 2711 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2712 case KSZ8081_LMD_STAT_SHORT: 2713 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2714 case KSZ8081_LMD_STAT_OPEN: 2715 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2716 case KSZ8081_LMD_STAT_FAIL: 2717 fallthrough; 2718 default: 2719 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2720 } 2721 } 2722 2723 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2724 { 2725 return FIELD_GET(mask, status) == 2726 KSZ8081_LMD_STAT_FAIL; 2727 } 2728 2729 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2730 { 2731 switch (FIELD_GET(mask, status)) { 2732 case KSZ8081_LMD_STAT_OPEN: 2733 fallthrough; 2734 case KSZ8081_LMD_STAT_SHORT: 2735 return true; 2736 } 2737 return false; 2738 } 2739 2740 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2741 u16 status, u16 data_mask) 2742 { 2743 int dt; 2744 2745 /* According to the data sheet the distance to the fault is 2746 * DELTA_TIME * 0.4 meters for ksz phys. 2747 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2748 */ 2749 dt = FIELD_GET(data_mask, status); 2750 2751 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2752 return ((dt - 22) * 800) / 10; 2753 else 2754 return (dt * 400) / 10; 2755 } 2756 2757 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2758 { 2759 const struct kszphy_type *type = phydev->drv->driver_data; 2760 int val, ret; 2761 2762 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2763 !(val & KSZ8081_LMD_ENABLE_TEST), 2764 30000, 100000, true); 2765 2766 return ret < 0 ? ret : 0; 2767 } 2768 2769 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2770 { 2771 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2772 ETHTOOL_A_CABLE_PAIR_B, 2773 ETHTOOL_A_CABLE_PAIR_C, 2774 ETHTOOL_A_CABLE_PAIR_D, 2775 }; 2776 u32 fault_length; 2777 int ret; 2778 int val; 2779 2780 val = KSZ8081_LMD_ENABLE_TEST; 2781 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2782 2783 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2784 if (ret < 0) 2785 return ret; 2786 2787 ret = ksz886x_cable_test_wait_for_completion(phydev); 2788 if (ret) 2789 return ret; 2790 2791 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2792 if (val < 0) 2793 return val; 2794 2795 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2796 return -EAGAIN; 2797 2798 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2799 ksz886x_cable_test_result_trans(val, 2800 LAN8814_CABLE_DIAG_STAT_MASK 2801 )); 2802 if (ret) 2803 return ret; 2804 2805 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2806 return 0; 2807 2808 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2809 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2810 2811 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2812 } 2813 2814 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2815 { 2816 static const int ethtool_pair[] = { 2817 ETHTOOL_A_CABLE_PAIR_A, 2818 ETHTOOL_A_CABLE_PAIR_B, 2819 }; 2820 int ret, val, mdix; 2821 u32 fault_length; 2822 2823 /* There is no way to choice the pair, like we do one ksz9031. 2824 * We can workaround this limitation by using the MDI-X functionality. 2825 */ 2826 if (pair == 0) 2827 mdix = ETH_TP_MDI; 2828 else 2829 mdix = ETH_TP_MDI_X; 2830 2831 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2832 case PHY_ID_KSZ8081: 2833 ret = ksz8081_config_mdix(phydev, mdix); 2834 break; 2835 case PHY_ID_KSZ886X: 2836 ret = ksz886x_config_mdix(phydev, mdix); 2837 break; 2838 default: 2839 ret = -ENODEV; 2840 } 2841 2842 if (ret) 2843 return ret; 2844 2845 /* Now we are ready to fire. This command will send a 100ns pulse 2846 * to the pair. 2847 */ 2848 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2849 if (ret) 2850 return ret; 2851 2852 ret = ksz886x_cable_test_wait_for_completion(phydev); 2853 if (ret) 2854 return ret; 2855 2856 val = phy_read(phydev, KSZ8081_LMD); 2857 if (val < 0) 2858 return val; 2859 2860 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2861 return -EAGAIN; 2862 2863 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2864 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2865 if (ret) 2866 return ret; 2867 2868 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2869 return 0; 2870 2871 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2872 2873 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2874 } 2875 2876 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2877 bool *finished) 2878 { 2879 const struct kszphy_type *type = phydev->drv->driver_data; 2880 unsigned long pair_mask = type->pair_mask; 2881 int retries = 20; 2882 int ret = 0; 2883 int pair; 2884 2885 *finished = false; 2886 2887 /* Try harder if link partner is active */ 2888 while (pair_mask && retries--) { 2889 for_each_set_bit(pair, &pair_mask, 4) { 2890 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2891 ret = lan8814_cable_test_one_pair(phydev, pair); 2892 else 2893 ret = ksz886x_cable_test_one_pair(phydev, pair); 2894 if (ret == -EAGAIN) 2895 continue; 2896 if (ret < 0) 2897 return ret; 2898 clear_bit(pair, &pair_mask); 2899 } 2900 /* If link partner is in autonegotiation mode it will send 2ms 2901 * of FLPs with at least 6ms of silence. 2902 * Add 2ms sleep to have better chances to hit this silence. 2903 */ 2904 if (pair_mask) 2905 msleep(2); 2906 } 2907 2908 *finished = true; 2909 2910 return ret; 2911 } 2912 2913 /** 2914 * LAN8814_PAGE_PCS - Selects Extended Page 0. 2915 * 2916 * This page contains timers used for auto-negotiation, debug registers and 2917 * register to configure fast link failure. 2918 */ 2919 #define LAN8814_PAGE_PCS 0 2920 2921 /** 2922 * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1. 2923 * 2924 * This page appears to control the Analog Front-End (AFE) and Physical 2925 * Medium Attachment (PMA) layers. It is used to access registers like 2926 * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY. 2927 */ 2928 #define LAN8814_PAGE_AFE_PMA 1 2929 2930 /** 2931 * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2. 2932 * 2933 * This page seems dedicated to the Physical Coding Sublayer (PCS) and other 2934 * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE 2935 * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics 2936 * and self-test counters in the LAN8842. 2937 */ 2938 #define LAN8814_PAGE_PCS_DIGITAL 2 2939 2940 /** 2941 * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4. 2942 * 2943 * This page contains device-common registers that affect the entire chip. 2944 * It includes controls for chip-level resets, strap status, GPIO, 2945 * QSGMII, the shared 1588 PTP block, and the PVT monitor. 2946 */ 2947 #define LAN8814_PAGE_COMMON_REGS 4 2948 2949 /** 2950 * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5. 2951 * 2952 * This page contains port-specific registers that must be accessed 2953 * on a per-port basis. It includes controls for port LEDs, QSGMII PCS, 2954 * rate adaptation FIFOs, and the per-port 1588 TSU block. 2955 */ 2956 #define LAN8814_PAGE_PORT_REGS 5 2957 2958 /** 2959 * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31. 2960 * 2961 * This page appears to hold fundamental system or global controls. In the 2962 * driver, it is used by the related LAN8804 to access the 2963 * LAN8814_CLOCK_MANAGEMENT register. 2964 */ 2965 #define LAN8814_PAGE_SYSTEM_CTRL 31 2966 2967 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2968 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2969 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2970 2971 #define LAN8814_QSGMII_SOFT_RESET 0x43 2972 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2973 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2974 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2975 #define LAN8814_ALIGN_SWAP 0x4a 2976 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2977 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2978 2979 #define LAN8804_ALIGN_SWAP 0x4a 2980 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2981 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2982 #define LAN8814_CLOCK_MANAGEMENT 0xd 2983 #define LAN8814_LINK_QUALITY 0x8e 2984 2985 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2986 { 2987 int data; 2988 2989 phy_lock_mdio_bus(phydev); 2990 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2991 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2992 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2993 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2994 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2995 phy_unlock_mdio_bus(phydev); 2996 2997 return data; 2998 } 2999 3000 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 3001 u16 val) 3002 { 3003 phy_lock_mdio_bus(phydev); 3004 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 3005 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 3006 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 3007 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 3008 3009 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 3010 if (val != 0) 3011 phydev_err(phydev, "Error: phy_write has returned error %d\n", 3012 val); 3013 phy_unlock_mdio_bus(phydev); 3014 return val; 3015 } 3016 3017 static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr, 3018 u16 mask, u16 set) 3019 { 3020 int ret; 3021 3022 phy_lock_mdio_bus(phydev); 3023 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 3024 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 3025 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 3026 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 3027 ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, 3028 mask, set); 3029 phy_unlock_mdio_bus(phydev); 3030 3031 if (ret < 0) 3032 phydev_err(phydev, "__phy_modify_changed() failed: %pe\n", 3033 ERR_PTR(ret)); 3034 3035 return ret; 3036 } 3037 3038 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 3039 { 3040 u16 val = 0; 3041 3042 if (enable) 3043 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 3044 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 3045 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 3046 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 3047 3048 return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3049 PTP_TSU_INT_EN, val); 3050 } 3051 3052 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 3053 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 3054 { 3055 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3056 PTP_RX_INGRESS_SEC_HI); 3057 *seconds = (*seconds << 16) | 3058 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3059 PTP_RX_INGRESS_SEC_LO); 3060 3061 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3062 PTP_RX_INGRESS_NS_HI); 3063 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 3064 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3065 PTP_RX_INGRESS_NS_LO); 3066 3067 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3068 PTP_RX_MSG_HEADER2); 3069 } 3070 3071 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 3072 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 3073 { 3074 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3075 PTP_TX_EGRESS_SEC_HI); 3076 *seconds = *seconds << 16 | 3077 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3078 PTP_TX_EGRESS_SEC_LO); 3079 3080 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3081 PTP_TX_EGRESS_NS_HI); 3082 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 3083 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3084 PTP_TX_EGRESS_NS_LO); 3085 3086 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3087 PTP_TX_MSG_HEADER2); 3088 } 3089 3090 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 3091 { 3092 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3093 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 3094 3095 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 3096 SOF_TIMESTAMPING_RX_HARDWARE | 3097 SOF_TIMESTAMPING_RAW_HARDWARE; 3098 3099 info->phc_index = ptp_clock_index(shared->ptp_clock); 3100 3101 info->tx_types = 3102 (1 << HWTSTAMP_TX_OFF) | 3103 (1 << HWTSTAMP_TX_ON) | 3104 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3105 3106 info->rx_filters = 3107 (1 << HWTSTAMP_FILTER_NONE) | 3108 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 3109 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3110 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3111 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3112 3113 return 0; 3114 } 3115 3116 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 3117 { 3118 int i; 3119 3120 for (i = 0; i < FIFO_SIZE; ++i) 3121 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3122 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 3123 3124 /* Read to clear overflow status bit */ 3125 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS); 3126 } 3127 3128 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 3129 struct kernel_hwtstamp_config *config, 3130 struct netlink_ext_ack *extack) 3131 { 3132 struct kszphy_ptp_priv *ptp_priv = 3133 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3134 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3135 int txcfg = 0, rxcfg = 0; 3136 int pkt_ts_enable; 3137 3138 ptp_priv->hwts_tx_type = config->tx_type; 3139 ptp_priv->rx_filter = config->rx_filter; 3140 3141 switch (config->rx_filter) { 3142 case HWTSTAMP_FILTER_NONE: 3143 ptp_priv->layer = 0; 3144 ptp_priv->version = 0; 3145 break; 3146 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3147 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3148 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3149 ptp_priv->layer = PTP_CLASS_L4; 3150 ptp_priv->version = PTP_CLASS_V2; 3151 break; 3152 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3153 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3154 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3155 ptp_priv->layer = PTP_CLASS_L2; 3156 ptp_priv->version = PTP_CLASS_V2; 3157 break; 3158 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3159 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3160 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3161 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3162 ptp_priv->version = PTP_CLASS_V2; 3163 break; 3164 default: 3165 return -ERANGE; 3166 } 3167 3168 if (ptp_priv->layer & PTP_CLASS_L2) { 3169 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3170 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3171 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3172 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3173 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3174 } 3175 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3176 PTP_RX_PARSE_CONFIG, rxcfg); 3177 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3178 PTP_TX_PARSE_CONFIG, txcfg); 3179 3180 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3181 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3182 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3183 PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3184 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3185 PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3186 3187 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 3188 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3189 PTP_TX_MOD, 3190 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3191 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 3192 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 3193 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3194 PTP_TX_MOD, 3195 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3196 0); 3197 } 3198 3199 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 3200 lan8814_config_ts_intr(ptp_priv->phydev, true); 3201 else 3202 lan8814_config_ts_intr(ptp_priv->phydev, false); 3203 3204 /* In case of multiple starts and stops, these needs to be cleared */ 3205 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3206 list_del(&rx_ts->list); 3207 kfree(rx_ts); 3208 } 3209 skb_queue_purge(&ptp_priv->rx_queue); 3210 skb_queue_purge(&ptp_priv->tx_queue); 3211 3212 lan8814_flush_fifo(ptp_priv->phydev, false); 3213 lan8814_flush_fifo(ptp_priv->phydev, true); 3214 3215 return 0; 3216 } 3217 3218 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 3219 struct sk_buff *skb, int type) 3220 { 3221 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3222 3223 switch (ptp_priv->hwts_tx_type) { 3224 case HWTSTAMP_TX_ONESTEP_SYNC: 3225 if (ptp_msg_is_sync(skb, type)) { 3226 kfree_skb(skb); 3227 return; 3228 } 3229 fallthrough; 3230 case HWTSTAMP_TX_ON: 3231 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3232 skb_queue_tail(&ptp_priv->tx_queue, skb); 3233 break; 3234 case HWTSTAMP_TX_OFF: 3235 default: 3236 kfree_skb(skb); 3237 break; 3238 } 3239 } 3240 3241 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 3242 { 3243 struct ptp_header *ptp_header; 3244 u32 type; 3245 3246 skb_push(skb, ETH_HLEN); 3247 type = ptp_classify_raw(skb); 3248 ptp_header = ptp_parse_header(skb, type); 3249 skb_pull_inline(skb, ETH_HLEN); 3250 3251 if (!ptp_header) 3252 return false; 3253 3254 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3255 return true; 3256 } 3257 3258 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 3259 struct sk_buff *skb) 3260 { 3261 struct skb_shared_hwtstamps *shhwtstamps; 3262 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3263 unsigned long flags; 3264 bool ret = false; 3265 u16 skb_sig; 3266 3267 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3268 return ret; 3269 3270 /* Iterate over all RX timestamps and match it with the received skbs */ 3271 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3272 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3273 /* Check if we found the signature we were looking for. */ 3274 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3275 continue; 3276 3277 shhwtstamps = skb_hwtstamps(skb); 3278 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3279 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 3280 rx_ts->nsec); 3281 list_del(&rx_ts->list); 3282 kfree(rx_ts); 3283 3284 ret = true; 3285 break; 3286 } 3287 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3288 3289 if (ret) 3290 netif_rx(skb); 3291 return ret; 3292 } 3293 3294 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 3295 { 3296 struct kszphy_ptp_priv *ptp_priv = 3297 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3298 3299 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3300 type == PTP_CLASS_NONE) 3301 return false; 3302 3303 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3304 return false; 3305 3306 /* If we failed to match then add it to the queue for when the timestamp 3307 * will come 3308 */ 3309 if (!lan8814_match_rx_skb(ptp_priv, skb)) 3310 skb_queue_tail(&ptp_priv->rx_queue, skb); 3311 3312 return true; 3313 } 3314 3315 static void lan8814_ptp_clock_set(struct phy_device *phydev, 3316 time64_t sec, u32 nsec) 3317 { 3318 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3319 PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 3320 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3321 PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 3322 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3323 PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 3324 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3325 PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 3326 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3327 PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 3328 3329 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3330 PTP_CMD_CTL_PTP_CLOCK_LOAD_); 3331 } 3332 3333 static void lan8814_ptp_clock_get(struct phy_device *phydev, 3334 time64_t *sec, u32 *nsec) 3335 { 3336 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3337 PTP_CMD_CTL_PTP_CLOCK_READ_); 3338 3339 *sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3340 PTP_CLOCK_READ_SEC_HI); 3341 *sec <<= 16; 3342 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3343 PTP_CLOCK_READ_SEC_MID); 3344 *sec <<= 16; 3345 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3346 PTP_CLOCK_READ_SEC_LO); 3347 3348 *nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3349 PTP_CLOCK_READ_NS_HI); 3350 *nsec <<= 16; 3351 *nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3352 PTP_CLOCK_READ_NS_LO); 3353 } 3354 3355 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 3356 struct timespec64 *ts) 3357 { 3358 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3359 ptp_clock_info); 3360 struct phy_device *phydev = shared->phydev; 3361 u32 nano_seconds; 3362 time64_t seconds; 3363 3364 mutex_lock(&shared->shared_lock); 3365 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 3366 mutex_unlock(&shared->shared_lock); 3367 ts->tv_sec = seconds; 3368 ts->tv_nsec = nano_seconds; 3369 3370 return 0; 3371 } 3372 3373 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 3374 const struct timespec64 *ts) 3375 { 3376 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3377 ptp_clock_info); 3378 struct phy_device *phydev = shared->phydev; 3379 3380 mutex_lock(&shared->shared_lock); 3381 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 3382 mutex_unlock(&shared->shared_lock); 3383 3384 return 0; 3385 } 3386 3387 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 3388 s64 start_sec, u32 start_nsec) 3389 { 3390 /* Set the start time */ 3391 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3392 LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 3393 lower_16_bits(start_sec)); 3394 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3395 LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 3396 upper_16_bits(start_sec)); 3397 3398 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3399 LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 3400 lower_16_bits(start_nsec)); 3401 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3402 LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 3403 upper_16_bits(start_nsec) & 0x3fff); 3404 } 3405 3406 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 3407 { 3408 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 3409 sec + LAN8814_BUFFER_TIME, 0); 3410 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 3411 sec + LAN8814_BUFFER_TIME, 0); 3412 } 3413 3414 static void lan8814_ptp_clock_step(struct phy_device *phydev, 3415 s64 time_step_ns) 3416 { 3417 u32 nano_seconds_step; 3418 u64 abs_time_step_ns; 3419 time64_t set_seconds; 3420 u32 nano_seconds; 3421 u32 remainder; 3422 s32 seconds; 3423 3424 if (time_step_ns > 15000000000LL) { 3425 /* convert to clock set */ 3426 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3427 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 3428 &remainder); 3429 nano_seconds += remainder; 3430 if (nano_seconds >= 1000000000) { 3431 set_seconds++; 3432 nano_seconds -= 1000000000; 3433 } 3434 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3435 lan8814_ptp_update_target(phydev, set_seconds); 3436 return; 3437 } else if (time_step_ns < -15000000000LL) { 3438 /* convert to clock set */ 3439 time_step_ns = -time_step_ns; 3440 3441 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3442 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 3443 &remainder); 3444 nano_seconds_step = remainder; 3445 if (nano_seconds < nano_seconds_step) { 3446 set_seconds--; 3447 nano_seconds += 1000000000; 3448 } 3449 nano_seconds -= nano_seconds_step; 3450 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3451 lan8814_ptp_update_target(phydev, set_seconds); 3452 return; 3453 } 3454 3455 /* do clock step */ 3456 if (time_step_ns >= 0) { 3457 abs_time_step_ns = (u64)time_step_ns; 3458 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3459 &remainder); 3460 nano_seconds = remainder; 3461 } else { 3462 abs_time_step_ns = (u64)(-time_step_ns); 3463 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3464 &remainder)); 3465 nano_seconds = remainder; 3466 if (nano_seconds > 0) { 3467 /* subtracting nano seconds is not allowed 3468 * convert to subtracting from seconds, 3469 * and adding to nanoseconds 3470 */ 3471 seconds--; 3472 nano_seconds = (1000000000 - nano_seconds); 3473 } 3474 } 3475 3476 if (nano_seconds > 0) { 3477 /* add 8 ns to cover the likely normal increment */ 3478 nano_seconds += 8; 3479 } 3480 3481 if (nano_seconds >= 1000000000) { 3482 /* carry into seconds */ 3483 seconds++; 3484 nano_seconds -= 1000000000; 3485 } 3486 3487 while (seconds) { 3488 u32 nsec; 3489 3490 if (seconds > 0) { 3491 u32 adjustment_value = (u32)seconds; 3492 u16 adjustment_value_lo, adjustment_value_hi; 3493 3494 if (adjustment_value > 0xF) 3495 adjustment_value = 0xF; 3496 3497 adjustment_value_lo = adjustment_value & 0xffff; 3498 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3499 3500 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3501 PTP_LTC_STEP_ADJ_LO, 3502 adjustment_value_lo); 3503 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3504 PTP_LTC_STEP_ADJ_HI, 3505 PTP_LTC_STEP_ADJ_DIR_ | 3506 adjustment_value_hi); 3507 seconds -= ((s32)adjustment_value); 3508 3509 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3510 set_seconds -= adjustment_value; 3511 lan8814_ptp_update_target(phydev, set_seconds); 3512 } else { 3513 u32 adjustment_value = (u32)(-seconds); 3514 u16 adjustment_value_lo, adjustment_value_hi; 3515 3516 if (adjustment_value > 0xF) 3517 adjustment_value = 0xF; 3518 3519 adjustment_value_lo = adjustment_value & 0xffff; 3520 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3521 3522 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3523 PTP_LTC_STEP_ADJ_LO, 3524 adjustment_value_lo); 3525 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3526 PTP_LTC_STEP_ADJ_HI, 3527 adjustment_value_hi); 3528 seconds += ((s32)adjustment_value); 3529 3530 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3531 set_seconds += adjustment_value; 3532 lan8814_ptp_update_target(phydev, set_seconds); 3533 } 3534 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3535 PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3536 } 3537 if (nano_seconds) { 3538 u16 nano_seconds_lo; 3539 u16 nano_seconds_hi; 3540 3541 nano_seconds_lo = nano_seconds & 0xffff; 3542 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3543 3544 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3545 PTP_LTC_STEP_ADJ_LO, 3546 nano_seconds_lo); 3547 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3548 PTP_LTC_STEP_ADJ_HI, 3549 PTP_LTC_STEP_ADJ_DIR_ | 3550 nano_seconds_hi); 3551 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3552 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3553 } 3554 } 3555 3556 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3557 { 3558 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3559 ptp_clock_info); 3560 struct phy_device *phydev = shared->phydev; 3561 3562 mutex_lock(&shared->shared_lock); 3563 lan8814_ptp_clock_step(phydev, delta); 3564 mutex_unlock(&shared->shared_lock); 3565 3566 return 0; 3567 } 3568 3569 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3570 { 3571 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3572 ptp_clock_info); 3573 struct phy_device *phydev = shared->phydev; 3574 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3575 bool positive = true; 3576 u32 kszphy_rate_adj; 3577 3578 if (scaled_ppm < 0) { 3579 scaled_ppm = -scaled_ppm; 3580 positive = false; 3581 } 3582 3583 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3584 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3585 3586 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3587 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3588 3589 if (positive) 3590 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3591 3592 mutex_lock(&shared->shared_lock); 3593 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI, 3594 kszphy_rate_adj_hi); 3595 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO, 3596 kszphy_rate_adj_lo); 3597 mutex_unlock(&shared->shared_lock); 3598 3599 return 0; 3600 } 3601 3602 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3603 s64 period_sec, u32 period_nsec) 3604 { 3605 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3606 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3607 lower_16_bits(period_sec)); 3608 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3609 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3610 upper_16_bits(period_sec)); 3611 3612 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3613 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3614 lower_16_bits(period_nsec)); 3615 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3616 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3617 upper_16_bits(period_nsec) & 0x3fff); 3618 } 3619 3620 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3621 int pulse_width) 3622 { 3623 /* Set the pulse width of the event, 3624 * Make sure that the target clock will be incremented each time when 3625 * local time reaches or pass it 3626 * Set the polarity high 3627 */ 3628 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3629 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) | 3630 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3631 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) | 3632 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event), 3633 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3634 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event)); 3635 } 3636 3637 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3638 { 3639 /* Set target to too far in the future, effectively disabling it */ 3640 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3641 3642 /* And then reload once it reaches the target */ 3643 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3644 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event), 3645 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3646 } 3647 3648 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3649 { 3650 /* Disable gpio alternate function, 3651 * 1: select as gpio, 3652 * 0: select alt func 3653 */ 3654 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3655 LAN8814_GPIO_EN_ADDR(pin), 3656 LAN8814_GPIO_EN_BIT(pin), 3657 LAN8814_GPIO_EN_BIT(pin)); 3658 3659 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3660 LAN8814_GPIO_DIR_ADDR(pin), 3661 LAN8814_GPIO_DIR_BIT(pin), 3662 0); 3663 3664 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3665 LAN8814_GPIO_BUF_ADDR(pin), 3666 LAN8814_GPIO_BUF_BIT(pin), 3667 0); 3668 } 3669 3670 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3671 { 3672 /* Set as gpio output */ 3673 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3674 LAN8814_GPIO_DIR_ADDR(pin), 3675 LAN8814_GPIO_DIR_BIT(pin), 3676 LAN8814_GPIO_DIR_BIT(pin)); 3677 3678 /* Enable gpio 0:for alternate function, 1:gpio */ 3679 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3680 LAN8814_GPIO_EN_ADDR(pin), 3681 LAN8814_GPIO_EN_BIT(pin), 3682 0); 3683 3684 /* Set buffer type to push pull */ 3685 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3686 LAN8814_GPIO_BUF_ADDR(pin), 3687 LAN8814_GPIO_BUF_BIT(pin), 3688 LAN8814_GPIO_BUF_BIT(pin)); 3689 } 3690 3691 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3692 struct ptp_clock_request *rq, int on) 3693 { 3694 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3695 ptp_clock_info); 3696 struct phy_device *phydev = shared->phydev; 3697 struct timespec64 ts_on, ts_period; 3698 s64 on_nsec, period_nsec; 3699 int pulse_width; 3700 int pin, event; 3701 3702 mutex_lock(&shared->shared_lock); 3703 event = rq->perout.index; 3704 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3705 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3706 mutex_unlock(&shared->shared_lock); 3707 return -EBUSY; 3708 } 3709 3710 if (!on) { 3711 lan8814_ptp_perout_off(phydev, pin); 3712 lan8814_ptp_disable_event(phydev, event); 3713 mutex_unlock(&shared->shared_lock); 3714 return 0; 3715 } 3716 3717 ts_on.tv_sec = rq->perout.on.sec; 3718 ts_on.tv_nsec = rq->perout.on.nsec; 3719 on_nsec = timespec64_to_ns(&ts_on); 3720 3721 ts_period.tv_sec = rq->perout.period.sec; 3722 ts_period.tv_nsec = rq->perout.period.nsec; 3723 period_nsec = timespec64_to_ns(&ts_period); 3724 3725 if (period_nsec < 200) { 3726 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3727 phydev_name(phydev)); 3728 mutex_unlock(&shared->shared_lock); 3729 return -EOPNOTSUPP; 3730 } 3731 3732 if (on_nsec >= period_nsec) { 3733 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3734 phydev_name(phydev)); 3735 mutex_unlock(&shared->shared_lock); 3736 return -EINVAL; 3737 } 3738 3739 switch (on_nsec) { 3740 case 200000000: 3741 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3742 break; 3743 case 100000000: 3744 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3745 break; 3746 case 50000000: 3747 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3748 break; 3749 case 10000000: 3750 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3751 break; 3752 case 5000000: 3753 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3754 break; 3755 case 1000000: 3756 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3757 break; 3758 case 500000: 3759 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3760 break; 3761 case 100000: 3762 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3763 break; 3764 case 50000: 3765 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3766 break; 3767 case 10000: 3768 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3769 break; 3770 case 5000: 3771 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3772 break; 3773 case 1000: 3774 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3775 break; 3776 case 500: 3777 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3778 break; 3779 case 100: 3780 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3781 break; 3782 default: 3783 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3784 phydev_name(phydev)); 3785 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3786 break; 3787 } 3788 3789 /* Configure to pulse every period */ 3790 lan8814_ptp_enable_event(phydev, event, pulse_width); 3791 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3792 rq->perout.start.nsec); 3793 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3794 rq->perout.period.nsec); 3795 lan8814_ptp_perout_on(phydev, pin); 3796 mutex_unlock(&shared->shared_lock); 3797 3798 return 0; 3799 } 3800 3801 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3802 { 3803 /* Set as gpio input */ 3804 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3805 LAN8814_GPIO_DIR_ADDR(pin), 3806 LAN8814_GPIO_DIR_BIT(pin), 3807 0); 3808 3809 /* Map the pin to ltc pin 0 of the capture map registers */ 3810 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3811 PTP_GPIO_CAP_MAP_LO, pin, pin); 3812 3813 /* Enable capture on the edges of the ltc pin */ 3814 if (flags & PTP_RISING_EDGE) 3815 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3816 PTP_GPIO_CAP_EN, 3817 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0), 3818 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0)); 3819 if (flags & PTP_FALLING_EDGE) 3820 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3821 PTP_GPIO_CAP_EN, 3822 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0), 3823 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0)); 3824 3825 /* Enable interrupt top interrupt */ 3826 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3827 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3828 PTP_COMMON_INT_ENA_GPIO_CAP_EN); 3829 } 3830 3831 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3832 { 3833 /* Set as gpio out */ 3834 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3835 LAN8814_GPIO_DIR_ADDR(pin), 3836 LAN8814_GPIO_DIR_BIT(pin), 3837 LAN8814_GPIO_DIR_BIT(pin)); 3838 3839 /* Enable alternate, 0:for alternate function, 1:gpio */ 3840 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3841 LAN8814_GPIO_EN_ADDR(pin), 3842 LAN8814_GPIO_EN_BIT(pin), 3843 0); 3844 3845 /* Clear the mapping of pin to registers 0 of the capture registers */ 3846 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3847 PTP_GPIO_CAP_MAP_LO, 3848 GENMASK(3, 0), 3849 0); 3850 3851 /* Disable capture on both of the edges */ 3852 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN, 3853 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 3854 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 3855 0); 3856 3857 /* Disable interrupt top interrupt */ 3858 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3859 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3860 0); 3861 } 3862 3863 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3864 struct ptp_clock_request *rq, int on) 3865 { 3866 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3867 ptp_clock_info); 3868 struct phy_device *phydev = shared->phydev; 3869 int pin; 3870 3871 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3872 rq->extts.index); 3873 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3874 return -EINVAL; 3875 3876 mutex_lock(&shared->shared_lock); 3877 if (on) 3878 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3879 else 3880 lan8814_ptp_extts_off(phydev, pin); 3881 3882 mutex_unlock(&shared->shared_lock); 3883 3884 return 0; 3885 } 3886 3887 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3888 struct ptp_clock_request *rq, int on) 3889 { 3890 switch (rq->type) { 3891 case PTP_CLK_REQ_PEROUT: 3892 return lan8814_ptp_perout(ptpci, rq, on); 3893 case PTP_CLK_REQ_EXTTS: 3894 return lan8814_ptp_extts(ptpci, rq, on); 3895 default: 3896 return -EINVAL; 3897 } 3898 } 3899 3900 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3901 enum ptp_pin_function func, unsigned int chan) 3902 { 3903 switch (func) { 3904 case PTP_PF_NONE: 3905 case PTP_PF_PEROUT: 3906 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3907 * there is only chan 0 (event A) and for pin 1 there is only 3908 * chan 1 (event B) 3909 */ 3910 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3911 return -1; 3912 break; 3913 case PTP_PF_EXTTS: 3914 if (pin != LAN8814_PTP_EXTTS_NUM) 3915 return -1; 3916 break; 3917 default: 3918 return -1; 3919 } 3920 3921 return 0; 3922 } 3923 3924 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3925 { 3926 struct ptp_header *ptp_header; 3927 u32 type; 3928 3929 type = ptp_classify_raw(skb); 3930 ptp_header = ptp_parse_header(skb, type); 3931 3932 if (!ptp_header) 3933 return false; 3934 3935 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3936 return true; 3937 } 3938 3939 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3940 u32 seconds, u32 nsec, u16 seq_id) 3941 { 3942 struct skb_shared_hwtstamps shhwtstamps; 3943 struct sk_buff *skb, *skb_tmp; 3944 unsigned long flags; 3945 bool ret = false; 3946 u16 skb_sig; 3947 3948 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3949 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3950 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3951 continue; 3952 3953 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3954 continue; 3955 3956 __skb_unlink(skb, &ptp_priv->tx_queue); 3957 ret = true; 3958 break; 3959 } 3960 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3961 3962 if (ret) { 3963 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3964 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3965 skb_complete_tx_timestamp(skb, &shhwtstamps); 3966 } 3967 } 3968 3969 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3970 { 3971 struct phy_device *phydev = ptp_priv->phydev; 3972 u32 seconds, nsec; 3973 u16 seq_id; 3974 3975 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3976 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3977 } 3978 3979 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3980 { 3981 struct phy_device *phydev = ptp_priv->phydev; 3982 u32 reg; 3983 3984 do { 3985 lan8814_dequeue_tx_skb(ptp_priv); 3986 3987 /* If other timestamps are available in the FIFO, 3988 * process them. 3989 */ 3990 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3991 PTP_CAP_INFO); 3992 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 3993 } 3994 3995 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 3996 struct lan8814_ptp_rx_ts *rx_ts) 3997 { 3998 struct skb_shared_hwtstamps *shhwtstamps; 3999 struct sk_buff *skb, *skb_tmp; 4000 unsigned long flags; 4001 bool ret = false; 4002 u16 skb_sig; 4003 4004 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 4005 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 4006 if (!lan8814_get_sig_rx(skb, &skb_sig)) 4007 continue; 4008 4009 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 4010 continue; 4011 4012 __skb_unlink(skb, &ptp_priv->rx_queue); 4013 4014 ret = true; 4015 break; 4016 } 4017 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 4018 4019 if (ret) { 4020 shhwtstamps = skb_hwtstamps(skb); 4021 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4022 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 4023 netif_rx(skb); 4024 } 4025 4026 return ret; 4027 } 4028 4029 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 4030 struct lan8814_ptp_rx_ts *rx_ts) 4031 { 4032 unsigned long flags; 4033 4034 /* If we failed to match the skb add it to the queue for when 4035 * the frame will come 4036 */ 4037 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 4038 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 4039 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 4040 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 4041 } else { 4042 kfree(rx_ts); 4043 } 4044 } 4045 4046 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 4047 { 4048 struct phy_device *phydev = ptp_priv->phydev; 4049 struct lan8814_ptp_rx_ts *rx_ts; 4050 u32 reg; 4051 4052 do { 4053 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 4054 if (!rx_ts) 4055 return; 4056 4057 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 4058 &rx_ts->seq_id); 4059 lan8814_match_rx_ts(ptp_priv, rx_ts); 4060 4061 /* If other timestamps are available in the FIFO, 4062 * process them. 4063 */ 4064 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4065 PTP_CAP_INFO); 4066 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 4067 } 4068 4069 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 4070 { 4071 struct kszphy_priv *priv = phydev->priv; 4072 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4073 4074 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 4075 lan8814_get_tx_ts(ptp_priv); 4076 4077 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 4078 lan8814_get_rx_ts(ptp_priv); 4079 4080 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 4081 lan8814_flush_fifo(phydev, true); 4082 skb_queue_purge(&ptp_priv->tx_queue); 4083 } 4084 4085 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 4086 lan8814_flush_fifo(phydev, false); 4087 skb_queue_purge(&ptp_priv->rx_queue); 4088 } 4089 } 4090 4091 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 4092 { 4093 struct phy_device *phydev = shared->phydev; 4094 struct ptp_clock_event ptp_event = {0}; 4095 unsigned long nsec; 4096 s64 sec; 4097 u16 tmp; 4098 4099 /* This is 0 because whatever was the input pin it was mapped it to 4100 * ltc gpio pin 0 4101 */ 4102 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL, 4103 PTP_GPIO_SEL_GPIO_SEL(0), 4104 PTP_GPIO_SEL_GPIO_SEL(0)); 4105 4106 tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4107 PTP_GPIO_CAP_STS); 4108 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 4109 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 4110 return -1; 4111 4112 if (tmp & BIT(0)) { 4113 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4114 PTP_GPIO_RE_LTC_SEC_HI_CAP); 4115 sec <<= 16; 4116 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4117 PTP_GPIO_RE_LTC_SEC_LO_CAP); 4118 4119 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4120 PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4121 nsec <<= 16; 4122 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4123 PTP_GPIO_RE_LTC_NS_LO_CAP); 4124 } else { 4125 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4126 PTP_GPIO_FE_LTC_SEC_HI_CAP); 4127 sec <<= 16; 4128 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4129 PTP_GPIO_FE_LTC_SEC_LO_CAP); 4130 4131 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4132 PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4133 nsec <<= 16; 4134 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4135 PTP_GPIO_RE_LTC_NS_LO_CAP); 4136 } 4137 4138 ptp_event.index = 0; 4139 ptp_event.timestamp = ktime_set(sec, nsec); 4140 ptp_event.type = PTP_CLOCK_EXTTS; 4141 ptp_clock_event(shared->ptp_clock, &ptp_event); 4142 4143 return 0; 4144 } 4145 4146 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 4147 { 4148 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4149 int ret; 4150 4151 mutex_lock(&shared->shared_lock); 4152 ret = lan8814_gpio_process_cap(shared); 4153 mutex_unlock(&shared->shared_lock); 4154 4155 return ret; 4156 } 4157 4158 static int lan8804_config_init(struct phy_device *phydev) 4159 { 4160 /* MDI-X setting for swap A,B transmit */ 4161 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP, 4162 LAN8804_ALIGN_TX_A_B_SWAP_MASK, 4163 LAN8804_ALIGN_TX_A_B_SWAP); 4164 4165 /* Make sure that the PHY will not stop generating the clock when the 4166 * link partner goes down 4167 */ 4168 lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL, 4169 LAN8814_CLOCK_MANAGEMENT, 0x27e); 4170 lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY); 4171 4172 return 0; 4173 } 4174 4175 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 4176 { 4177 int status; 4178 4179 status = phy_read(phydev, LAN8814_INTS); 4180 if (status < 0) { 4181 phy_error(phydev); 4182 return IRQ_NONE; 4183 } 4184 4185 if (status > 0) 4186 phy_trigger_machine(phydev); 4187 4188 return IRQ_HANDLED; 4189 } 4190 4191 #define LAN8804_OUTPUT_CONTROL 25 4192 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 4193 #define LAN8804_CONTROL 31 4194 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 4195 4196 static int lan8804_config_intr(struct phy_device *phydev) 4197 { 4198 int err; 4199 4200 /* This is an internal PHY of lan966x and is not possible to change the 4201 * polarity on the GIC found in lan966x, therefore change the polarity 4202 * of the interrupt in the PHY from being active low instead of active 4203 * high. 4204 */ 4205 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 4206 4207 /* By default interrupt buffer is open-drain in which case the interrupt 4208 * can be active only low. Therefore change the interrupt buffer to be 4209 * push-pull to be able to change interrupt polarity 4210 */ 4211 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 4212 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 4213 4214 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4215 err = phy_read(phydev, LAN8814_INTS); 4216 if (err < 0) 4217 return err; 4218 4219 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4220 if (err) 4221 return err; 4222 } else { 4223 err = phy_write(phydev, LAN8814_INTC, 0); 4224 if (err) 4225 return err; 4226 4227 err = phy_read(phydev, LAN8814_INTS); 4228 if (err < 0) 4229 return err; 4230 } 4231 4232 return 0; 4233 } 4234 4235 /* Check if the PHY has 1588 support. There are multiple skus of the PHY and 4236 * some of them support PTP while others don't support it. This function will 4237 * return true is the sku supports it, otherwise will return false. 4238 */ 4239 static bool lan8814_has_ptp(struct phy_device *phydev) 4240 { 4241 struct kszphy_priv *priv = phydev->priv; 4242 4243 return priv->is_ptp_available; 4244 } 4245 4246 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 4247 { 4248 int ret = IRQ_NONE; 4249 int irq_status; 4250 4251 irq_status = phy_read(phydev, LAN8814_INTS); 4252 if (irq_status < 0) { 4253 phy_error(phydev); 4254 return IRQ_NONE; 4255 } 4256 4257 if (irq_status & LAN8814_INT_LINK) { 4258 phy_trigger_machine(phydev); 4259 ret = IRQ_HANDLED; 4260 } 4261 4262 if (!lan8814_has_ptp(phydev)) 4263 return ret; 4264 4265 while (true) { 4266 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4267 PTP_TSU_INT_STS); 4268 if (!irq_status) 4269 break; 4270 4271 lan8814_handle_ptp_interrupt(phydev, irq_status); 4272 ret = IRQ_HANDLED; 4273 } 4274 4275 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 4276 ret = IRQ_HANDLED; 4277 4278 return ret; 4279 } 4280 4281 static int lan8814_ack_interrupt(struct phy_device *phydev) 4282 { 4283 /* bit[12..0] int status, which is a read and clear register. */ 4284 int rc; 4285 4286 rc = phy_read(phydev, LAN8814_INTS); 4287 4288 return (rc < 0) ? rc : 0; 4289 } 4290 4291 static int lan8814_config_intr(struct phy_device *phydev) 4292 { 4293 int err; 4294 4295 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG, 4296 LAN8814_INTR_CTRL_REG_POLARITY | 4297 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 4298 4299 /* enable / disable interrupts */ 4300 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4301 err = lan8814_ack_interrupt(phydev); 4302 if (err) 4303 return err; 4304 4305 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4306 } else { 4307 err = phy_write(phydev, LAN8814_INTC, 0); 4308 if (err) 4309 return err; 4310 4311 err = lan8814_ack_interrupt(phydev); 4312 } 4313 4314 return err; 4315 } 4316 4317 static void lan8814_ptp_init(struct phy_device *phydev) 4318 { 4319 struct kszphy_priv *priv = phydev->priv; 4320 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4321 4322 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 4323 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4324 return; 4325 4326 if (!lan8814_has_ptp(phydev)) 4327 return; 4328 4329 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4330 TSU_HARD_RESET, TSU_HARD_RESET_); 4331 4332 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD, 4333 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4334 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4335 4336 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD, 4337 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4338 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4339 4340 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4341 PTP_RX_PARSE_CONFIG, 0); 4342 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4343 PTP_TX_PARSE_CONFIG, 0); 4344 4345 /* Removing default registers configs related to L2 and IP */ 4346 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4347 PTP_TX_PARSE_L2_ADDR_EN, 0); 4348 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4349 PTP_RX_PARSE_L2_ADDR_EN, 0); 4350 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4351 PTP_TX_PARSE_IP_ADDR_EN, 0); 4352 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4353 PTP_RX_PARSE_IP_ADDR_EN, 0); 4354 4355 /* Disable checking for minorVersionPTP field */ 4356 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION, 4357 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4358 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION, 4359 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4360 4361 skb_queue_head_init(&ptp_priv->tx_queue); 4362 skb_queue_head_init(&ptp_priv->rx_queue); 4363 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 4364 spin_lock_init(&ptp_priv->rx_ts_lock); 4365 4366 ptp_priv->phydev = phydev; 4367 4368 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 4369 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4370 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 4371 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 4372 4373 phydev->mii_ts = &ptp_priv->mii_ts; 4374 4375 /* Timestamp selected by default to keep legacy API */ 4376 phydev->default_timestamp = true; 4377 } 4378 4379 static int __lan8814_ptp_probe_once(struct phy_device *phydev, char *pin_name, 4380 int gpios) 4381 { 4382 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4383 4384 shared->phydev = phydev; 4385 4386 /* Initialise shared lock for clock*/ 4387 mutex_init(&shared->shared_lock); 4388 4389 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 4390 gpios, 4391 sizeof(*shared->pin_config), 4392 GFP_KERNEL); 4393 if (!shared->pin_config) 4394 return -ENOMEM; 4395 4396 for (int i = 0; i < gpios; i++) { 4397 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 4398 4399 memset(ptp_pin, 0, sizeof(*ptp_pin)); 4400 snprintf(ptp_pin->name, 4401 sizeof(ptp_pin->name), "%s_%02d", pin_name, i); 4402 ptp_pin->index = i; 4403 ptp_pin->func = PTP_PF_NONE; 4404 } 4405 4406 shared->ptp_clock_info.owner = THIS_MODULE; 4407 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 4408 shared->ptp_clock_info.max_adj = 31249999; 4409 shared->ptp_clock_info.n_alarm = 0; 4410 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 4411 shared->ptp_clock_info.n_pins = gpios; 4412 shared->ptp_clock_info.pps = 0; 4413 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 4414 PTP_FALLING_EDGE | 4415 PTP_STRICT_FLAGS; 4416 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 4417 shared->ptp_clock_info.pin_config = shared->pin_config; 4418 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 4419 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 4420 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 4421 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 4422 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 4423 shared->ptp_clock_info.getcrosststamp = NULL; 4424 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 4425 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 4426 4427 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 4428 &phydev->mdio.dev); 4429 if (IS_ERR(shared->ptp_clock)) { 4430 phydev_err(phydev, "ptp_clock_register failed %pe\n", 4431 shared->ptp_clock); 4432 return -EINVAL; 4433 } 4434 4435 /* Check if PHC support is missing at the configuration level */ 4436 if (!shared->ptp_clock) 4437 return 0; 4438 4439 phydev_dbg(phydev, "successfully registered ptp clock\n"); 4440 4441 /* The EP.4 is shared between all the PHYs in the package and also it 4442 * can be accessed by any of the PHYs 4443 */ 4444 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4445 LTC_HARD_RESET, LTC_HARD_RESET_); 4446 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE, 4447 PTP_OPERATING_MODE_STANDALONE_); 4448 4449 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 4450 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 4451 PTP_CMD_CTL_PTP_ENABLE_); 4452 4453 return 0; 4454 } 4455 4456 static int lan8814_ptp_probe_once(struct phy_device *phydev) 4457 { 4458 if (!lan8814_has_ptp(phydev)) 4459 return 0; 4460 4461 return __lan8814_ptp_probe_once(phydev, "lan8814_ptp_pin", 4462 LAN8814_PTP_GPIO_NUM); 4463 } 4464 4465 static void lan8814_setup_led(struct phy_device *phydev, int val) 4466 { 4467 int temp; 4468 4469 temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4470 LAN8814_LED_CTRL_1); 4471 4472 if (val) 4473 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4474 else 4475 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4476 4477 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4478 LAN8814_LED_CTRL_1, temp); 4479 } 4480 4481 static int lan8814_config_init(struct phy_device *phydev) 4482 { 4483 struct kszphy_priv *lan8814 = phydev->priv; 4484 4485 /* Reset the PHY */ 4486 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4487 LAN8814_QSGMII_SOFT_RESET, 4488 LAN8814_QSGMII_SOFT_RESET_BIT, 4489 LAN8814_QSGMII_SOFT_RESET_BIT); 4490 4491 /* Disable ANEG with QSGMII PCS Host side */ 4492 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4493 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 4494 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 4495 0); 4496 4497 /* MDI-X setting for swap A,B transmit */ 4498 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP, 4499 LAN8814_ALIGN_TX_A_B_SWAP_MASK, 4500 LAN8814_ALIGN_TX_A_B_SWAP); 4501 4502 if (lan8814->led_mode >= 0) 4503 lan8814_setup_led(phydev, lan8814->led_mode); 4504 4505 return 0; 4506 } 4507 4508 /* It is expected that there will not be any 'lan8814_take_coma_mode' 4509 * function called in suspend. Because the GPIO line can be shared, so if one of 4510 * the phys goes back in coma mode, then all the other PHYs will go, which is 4511 * wrong. 4512 */ 4513 static int lan8814_release_coma_mode(struct phy_device *phydev) 4514 { 4515 struct gpio_desc *gpiod; 4516 4517 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4518 GPIOD_OUT_HIGH_OPEN_DRAIN | 4519 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4520 if (IS_ERR(gpiod)) 4521 return PTR_ERR(gpiod); 4522 4523 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4524 gpiod_set_value_cansleep(gpiod, 0); 4525 4526 return 0; 4527 } 4528 4529 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4530 { 4531 /* It was noticed that when traffic is passing through the PHY and the 4532 * cable is removed then the LED was still on even though there is no 4533 * link 4534 */ 4535 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE, 4536 LAN8814_EEE_STATE_MASK2P5P, 4537 0); 4538 } 4539 4540 static void lan8814_update_meas_time(struct phy_device *phydev) 4541 { 4542 /* By setting the measure time to a value of 0xb this will allow cables 4543 * longer than 100m to be used. This configuration can be used 4544 * regardless of the mode of operation of the PHY 4545 */ 4546 lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS, 4547 LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK, 4548 LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL); 4549 } 4550 4551 static int lan8814_probe(struct phy_device *phydev) 4552 { 4553 const struct kszphy_type *type = phydev->drv->driver_data; 4554 struct kszphy_priv *priv; 4555 u16 addr; 4556 int err; 4557 4558 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4559 if (!priv) 4560 return -ENOMEM; 4561 4562 phydev->priv = priv; 4563 4564 priv->type = type; 4565 4566 kszphy_parse_led_mode(phydev); 4567 4568 /* Strap-in value for PHY address, below register read gives starting 4569 * phy address value 4570 */ 4571 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F; 4572 devm_phy_package_join(&phydev->mdio.dev, phydev, 4573 addr, sizeof(struct lan8814_shared_priv)); 4574 4575 /* There are lan8814 SKUs that don't support PTP. Make sure that for 4576 * those skus no PTP device is created. Here we check if the SKU 4577 * supports PTP. 4578 */ 4579 err = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4580 LAN8814_SKUS); 4581 if (err < 0) 4582 return err; 4583 4584 priv->is_ptp_available = err == LAN8814_REV_LAN8814 || 4585 err == LAN8814_REV_LAN8818; 4586 4587 if (phy_package_init_once(phydev)) { 4588 err = lan8814_release_coma_mode(phydev); 4589 if (err) 4590 return err; 4591 4592 err = lan8814_ptp_probe_once(phydev); 4593 if (err) 4594 return err; 4595 } 4596 4597 lan8814_ptp_init(phydev); 4598 4599 /* Errata workarounds */ 4600 lan8814_clear_2psp_bit(phydev); 4601 lan8814_update_meas_time(phydev); 4602 4603 return 0; 4604 } 4605 4606 #define LAN8841_MMD_TIMER_REG 0 4607 #define LAN8841_MMD0_REGISTER_17 17 4608 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4609 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4610 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4611 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4612 #define LAN8841_MMD_ANALOG_REG 28 4613 #define LAN8841_ANALOG_CONTROL_1 1 4614 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4615 #define LAN8841_ANALOG_CONTROL_10 13 4616 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4617 #define LAN8841_ANALOG_CONTROL_11 14 4618 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4619 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4620 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4621 #define LAN8841_BTRX_POWER_DOWN 70 4622 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4623 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4624 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4625 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4626 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4627 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4628 #define LAN8841_ADC_CHANNEL_MASK 198 4629 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4630 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4631 #define LAN8841_PTP_RX_VERSION 374 4632 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4633 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4634 #define LAN8841_PTP_TX_VERSION 438 4635 #define LAN8841_PTP_CMD_CTL 256 4636 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4637 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4638 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4639 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4640 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4641 #define LAN8841_PTP_RX_MODE 381 4642 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4643 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4644 4645 static int lan8841_config_init(struct phy_device *phydev) 4646 { 4647 int ret; 4648 4649 ret = ksz9131_config_init(phydev); 4650 if (ret) 4651 return ret; 4652 4653 /* Initialize the HW by resetting everything */ 4654 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4655 LAN8841_PTP_CMD_CTL, 4656 LAN8841_PTP_CMD_CTL_PTP_RESET, 4657 LAN8841_PTP_CMD_CTL_PTP_RESET); 4658 4659 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4660 LAN8841_PTP_CMD_CTL, 4661 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4662 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4663 4664 /* Don't process any frames */ 4665 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4666 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4667 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4668 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4669 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4670 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4671 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4672 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4673 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4674 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4675 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4676 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4677 4678 /* Disable checking for minorVersionPTP field */ 4679 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4680 LAN8841_PTP_RX_VERSION, 0xff00); 4681 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4682 LAN8841_PTP_TX_VERSION, 0xff00); 4683 4684 /* 100BT Clause 40 improvement errata */ 4685 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4686 LAN8841_ANALOG_CONTROL_1, 4687 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4688 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4689 LAN8841_ANALOG_CONTROL_10, 4690 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4691 4692 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4693 * Magnetics 4694 */ 4695 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4696 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4697 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4698 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4699 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4700 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4701 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4702 LAN8841_BTRX_POWER_DOWN, 4703 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4704 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4705 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4706 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4707 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4708 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4709 } 4710 4711 /* LDO Adjustment errata */ 4712 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4713 LAN8841_ANALOG_CONTROL_11, 4714 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4715 4716 /* 100BT RGMII latency tuning errata */ 4717 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4718 LAN8841_ADC_CHANNEL_MASK, 0x0); 4719 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4720 LAN8841_MMD0_REGISTER_17, 4721 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4722 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4723 4724 return 0; 4725 } 4726 4727 #define LAN8841_OUTPUT_CTRL 25 4728 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4729 #define LAN8841_INT_PTP BIT(9) 4730 4731 static int lan8841_config_intr(struct phy_device *phydev) 4732 { 4733 int err; 4734 4735 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4736 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4737 4738 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4739 err = phy_read(phydev, LAN8814_INTS); 4740 if (err < 0) 4741 return err; 4742 4743 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4744 * even if it PTP is not enabled. Because the underneath blocks 4745 * will not enable the PTP so we will never get the PTP 4746 * interrupt. 4747 */ 4748 err = phy_write(phydev, LAN8814_INTC, 4749 LAN8814_INT_LINK | LAN8841_INT_PTP); 4750 } else { 4751 err = phy_write(phydev, LAN8814_INTC, 0); 4752 if (err) 4753 return err; 4754 4755 err = phy_read(phydev, LAN8814_INTS); 4756 if (err < 0) 4757 return err; 4758 4759 /* Getting a positive value doesn't mean that is an error, it 4760 * just indicates what was the status. Therefore make sure to 4761 * clear the value and say that there is no error. 4762 */ 4763 err = 0; 4764 } 4765 4766 return err; 4767 } 4768 4769 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4770 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4771 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4772 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4773 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4774 #define LAN8841_PTP_TX_MSG_HEADER2 455 4775 4776 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4777 u32 *sec, u32 *nsec, u16 *seq) 4778 { 4779 struct phy_device *phydev = ptp_priv->phydev; 4780 4781 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4782 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4783 return false; 4784 4785 *nsec = ((*nsec & 0x3fff) << 16); 4786 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4787 4788 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4789 *sec = *sec << 16; 4790 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4791 4792 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4793 4794 return true; 4795 } 4796 4797 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4798 { 4799 u32 sec, nsec; 4800 u16 seq; 4801 4802 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4803 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4804 } 4805 4806 #define LAN8841_PTP_INT_STS 259 4807 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4808 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4809 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4810 4811 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4812 { 4813 struct phy_device *phydev = ptp_priv->phydev; 4814 int i; 4815 4816 for (i = 0; i < FIFO_SIZE; ++i) 4817 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4818 4819 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4820 } 4821 4822 #define LAN8841_PTP_GPIO_CAP_STS 506 4823 #define LAN8841_PTP_GPIO_SEL 327 4824 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4825 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4826 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4827 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4828 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4829 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4830 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4831 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4832 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4833 4834 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4835 { 4836 struct phy_device *phydev = ptp_priv->phydev; 4837 struct ptp_clock_event ptp_event = {0}; 4838 int pin, ret, tmp; 4839 s32 sec, nsec; 4840 4841 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4842 if (pin == -1) 4843 return; 4844 4845 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4846 if (tmp < 0) 4847 return; 4848 4849 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4850 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4851 if (ret) 4852 return; 4853 4854 mutex_lock(&ptp_priv->ptp_lock); 4855 if (tmp & BIT(pin)) { 4856 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4857 sec <<= 16; 4858 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4859 4860 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4861 nsec <<= 16; 4862 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4863 } else { 4864 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4865 sec <<= 16; 4866 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4867 4868 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4869 nsec <<= 16; 4870 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4871 } 4872 mutex_unlock(&ptp_priv->ptp_lock); 4873 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4874 if (ret) 4875 return; 4876 4877 ptp_event.index = 0; 4878 ptp_event.timestamp = ktime_set(sec, nsec); 4879 ptp_event.type = PTP_CLOCK_EXTTS; 4880 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4881 } 4882 4883 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4884 { 4885 struct kszphy_priv *priv = phydev->priv; 4886 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4887 u16 status; 4888 4889 do { 4890 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4891 4892 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4893 lan8841_ptp_process_tx_ts(ptp_priv); 4894 4895 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4896 lan8841_gpio_process_cap(ptp_priv); 4897 4898 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4899 lan8841_ptp_flush_fifo(ptp_priv); 4900 skb_queue_purge(&ptp_priv->tx_queue); 4901 } 4902 4903 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4904 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4905 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4906 } 4907 4908 #define LAN8841_INTS_PTP BIT(9) 4909 4910 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4911 { 4912 irqreturn_t ret = IRQ_NONE; 4913 int irq_status; 4914 4915 irq_status = phy_read(phydev, LAN8814_INTS); 4916 if (irq_status < 0) { 4917 phy_error(phydev); 4918 return IRQ_NONE; 4919 } 4920 4921 if (irq_status & LAN8814_INT_LINK) { 4922 phy_trigger_machine(phydev); 4923 ret = IRQ_HANDLED; 4924 } 4925 4926 if (irq_status & LAN8841_INTS_PTP) { 4927 lan8841_handle_ptp_interrupt(phydev); 4928 ret = IRQ_HANDLED; 4929 } 4930 4931 return ret; 4932 } 4933 4934 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4935 struct kernel_ethtool_ts_info *info) 4936 { 4937 struct kszphy_ptp_priv *ptp_priv; 4938 4939 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4940 4941 info->phc_index = ptp_priv->ptp_clock ? 4942 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4943 if (info->phc_index == -1) 4944 return 0; 4945 4946 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4947 SOF_TIMESTAMPING_RX_HARDWARE | 4948 SOF_TIMESTAMPING_RAW_HARDWARE; 4949 4950 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4951 (1 << HWTSTAMP_TX_ON) | 4952 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4953 4954 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4955 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4956 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4957 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4958 4959 return 0; 4960 } 4961 4962 #define LAN8841_PTP_INT_EN 260 4963 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4964 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4965 4966 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 4967 bool enable) 4968 { 4969 struct phy_device *phydev = ptp_priv->phydev; 4970 4971 if (enable) { 4972 /* Enable interrupts on the TX side */ 4973 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4974 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4975 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 4976 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4977 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 4978 4979 /* Enable the modification of the frame on RX side, 4980 * this will add the ns and 2 bits of sec in the reserved field 4981 * of the PTP header 4982 */ 4983 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4984 LAN8841_PTP_RX_MODE, 4985 LAN8841_PTP_INSERT_TS_EN | 4986 LAN8841_PTP_INSERT_TS_32BIT, 4987 LAN8841_PTP_INSERT_TS_EN | 4988 LAN8841_PTP_INSERT_TS_32BIT); 4989 4990 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 4991 } else { 4992 /* Disable interrupts on the TX side */ 4993 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4994 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4995 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 4996 4997 /* Disable modification of the RX frames */ 4998 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4999 LAN8841_PTP_RX_MODE, 5000 LAN8841_PTP_INSERT_TS_EN | 5001 LAN8841_PTP_INSERT_TS_32BIT, 0); 5002 5003 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5004 } 5005 } 5006 5007 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 5008 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 5009 #define LAN8841_PTP_TX_MOD 445 5010 5011 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 5012 struct kernel_hwtstamp_config *config, 5013 struct netlink_ext_ack *extack) 5014 { 5015 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 5016 struct phy_device *phydev = ptp_priv->phydev; 5017 int txcfg = 0, rxcfg = 0; 5018 int pkt_ts_enable; 5019 5020 ptp_priv->hwts_tx_type = config->tx_type; 5021 ptp_priv->rx_filter = config->rx_filter; 5022 5023 switch (config->rx_filter) { 5024 case HWTSTAMP_FILTER_NONE: 5025 ptp_priv->layer = 0; 5026 ptp_priv->version = 0; 5027 break; 5028 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 5029 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 5030 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 5031 ptp_priv->layer = PTP_CLASS_L4; 5032 ptp_priv->version = PTP_CLASS_V2; 5033 break; 5034 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 5035 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 5036 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 5037 ptp_priv->layer = PTP_CLASS_L2; 5038 ptp_priv->version = PTP_CLASS_V2; 5039 break; 5040 case HWTSTAMP_FILTER_PTP_V2_EVENT: 5041 case HWTSTAMP_FILTER_PTP_V2_SYNC: 5042 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 5043 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 5044 ptp_priv->version = PTP_CLASS_V2; 5045 break; 5046 default: 5047 return -ERANGE; 5048 } 5049 5050 /* Setup parsing of the frames and enable the timestamping for ptp 5051 * frames 5052 */ 5053 if (ptp_priv->layer & PTP_CLASS_L2) { 5054 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 5055 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 5056 } else if (ptp_priv->layer & PTP_CLASS_L4) { 5057 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 5058 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 5059 } 5060 5061 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 5062 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 5063 5064 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 5065 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 5066 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 5067 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 5068 5069 /* Enable / disable of the TX timestamp in the SYNC frames */ 5070 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 5071 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 5072 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 5073 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 5074 5075 /* Now enable/disable the timestamping */ 5076 lan8841_ptp_enable_processing(ptp_priv, 5077 config->rx_filter != HWTSTAMP_FILTER_NONE); 5078 5079 skb_queue_purge(&ptp_priv->tx_queue); 5080 5081 lan8841_ptp_flush_fifo(ptp_priv); 5082 5083 return 0; 5084 } 5085 5086 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 5087 struct sk_buff *skb, int type) 5088 { 5089 struct kszphy_ptp_priv *ptp_priv = 5090 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 5091 struct ptp_header *header = ptp_parse_header(skb, type); 5092 struct skb_shared_hwtstamps *shhwtstamps; 5093 struct timespec64 ts; 5094 unsigned long flags; 5095 u32 ts_header; 5096 5097 if (!header) 5098 return false; 5099 5100 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 5101 type == PTP_CLASS_NONE) 5102 return false; 5103 5104 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 5105 return false; 5106 5107 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5108 ts.tv_sec = ptp_priv->seconds; 5109 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5110 ts_header = __be32_to_cpu(header->reserved2); 5111 5112 shhwtstamps = skb_hwtstamps(skb); 5113 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 5114 5115 /* Check for any wrap arounds for the second part */ 5116 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 5117 ts.tv_sec -= GENMASK(1, 0) + 1; 5118 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 5119 ts.tv_sec += 1; 5120 5121 shhwtstamps->hwtstamp = 5122 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 5123 ts_header & GENMASK(29, 0)); 5124 header->reserved2 = 0; 5125 5126 netif_rx(skb); 5127 5128 return true; 5129 } 5130 5131 #define LAN8841_EVENT_A 0 5132 #define LAN8841_EVENT_B 1 5133 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 5134 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 5135 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 5136 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 5137 5138 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 5139 s64 sec, u32 nsec) 5140 { 5141 struct phy_device *phydev = ptp_priv->phydev; 5142 int ret; 5143 5144 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 5145 upper_16_bits(sec)); 5146 if (ret) 5147 return ret; 5148 5149 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 5150 lower_16_bits(sec)); 5151 if (ret) 5152 return ret; 5153 5154 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 5155 upper_16_bits(nsec)); 5156 if (ret) 5157 return ret; 5158 5159 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 5160 lower_16_bits(nsec)); 5161 } 5162 5163 #define LAN8841_BUFFER_TIME 2 5164 5165 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 5166 const struct timespec64 *ts) 5167 { 5168 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 5169 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 5170 } 5171 5172 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 5173 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 5174 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 5175 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 5176 5177 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 5178 s64 sec, u32 nsec) 5179 { 5180 struct phy_device *phydev = ptp_priv->phydev; 5181 int ret; 5182 5183 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 5184 upper_16_bits(sec)); 5185 if (ret) 5186 return ret; 5187 5188 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 5189 lower_16_bits(sec)); 5190 if (ret) 5191 return ret; 5192 5193 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 5194 upper_16_bits(nsec)); 5195 if (ret) 5196 return ret; 5197 5198 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 5199 lower_16_bits(nsec)); 5200 } 5201 5202 #define LAN8841_PTP_LTC_SET_SEC_HI 262 5203 #define LAN8841_PTP_LTC_SET_SEC_MID 263 5204 #define LAN8841_PTP_LTC_SET_SEC_LO 264 5205 #define LAN8841_PTP_LTC_SET_NS_HI 265 5206 #define LAN8841_PTP_LTC_SET_NS_LO 266 5207 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 5208 5209 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 5210 const struct timespec64 *ts) 5211 { 5212 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5213 ptp_clock_info); 5214 struct phy_device *phydev = ptp_priv->phydev; 5215 unsigned long flags; 5216 int ret; 5217 5218 /* Set the value to be stored */ 5219 mutex_lock(&ptp_priv->ptp_lock); 5220 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 5221 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 5222 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 5223 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 5224 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 5225 5226 /* Set the command to load the LTC */ 5227 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5228 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 5229 ret = lan8841_ptp_update_target(ptp_priv, ts); 5230 mutex_unlock(&ptp_priv->ptp_lock); 5231 5232 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5233 ptp_priv->seconds = ts->tv_sec; 5234 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5235 5236 return ret; 5237 } 5238 5239 #define LAN8841_PTP_LTC_RD_SEC_HI 358 5240 #define LAN8841_PTP_LTC_RD_SEC_MID 359 5241 #define LAN8841_PTP_LTC_RD_SEC_LO 360 5242 #define LAN8841_PTP_LTC_RD_NS_HI 361 5243 #define LAN8841_PTP_LTC_RD_NS_LO 362 5244 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 5245 5246 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 5247 struct timespec64 *ts) 5248 { 5249 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5250 ptp_clock_info); 5251 struct phy_device *phydev = ptp_priv->phydev; 5252 time64_t s; 5253 s64 ns; 5254 5255 mutex_lock(&ptp_priv->ptp_lock); 5256 /* Issue the command to read the LTC */ 5257 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5258 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5259 5260 /* Read the LTC */ 5261 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5262 s <<= 16; 5263 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5264 s <<= 16; 5265 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5266 5267 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 5268 ns <<= 16; 5269 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 5270 mutex_unlock(&ptp_priv->ptp_lock); 5271 5272 set_normalized_timespec64(ts, s, ns); 5273 return 0; 5274 } 5275 5276 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 5277 struct timespec64 *ts) 5278 { 5279 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5280 ptp_clock_info); 5281 struct phy_device *phydev = ptp_priv->phydev; 5282 time64_t s; 5283 5284 mutex_lock(&ptp_priv->ptp_lock); 5285 /* Issue the command to read the LTC */ 5286 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5287 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5288 5289 /* Read the LTC */ 5290 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5291 s <<= 16; 5292 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5293 s <<= 16; 5294 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5295 mutex_unlock(&ptp_priv->ptp_lock); 5296 5297 set_normalized_timespec64(ts, s, 0); 5298 } 5299 5300 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 5301 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 5302 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 5303 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 5304 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 5305 5306 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 5307 { 5308 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5309 ptp_clock_info); 5310 struct phy_device *phydev = ptp_priv->phydev; 5311 struct timespec64 ts; 5312 bool add = true; 5313 u32 nsec; 5314 s32 sec; 5315 int ret; 5316 5317 /* The HW allows up to 15 sec to adjust the time, but here we limit to 5318 * 10 sec the adjustment. The reason is, in case the adjustment is 14 5319 * sec and 999999999 nsec, then we add 8ns to compansate the actual 5320 * increment so the value can be bigger than 15 sec. Therefore limit the 5321 * possible adjustments so we will not have these corner cases 5322 */ 5323 if (delta > 10000000000LL || delta < -10000000000LL) { 5324 /* The timeadjustment is too big, so fall back using set time */ 5325 u64 now; 5326 5327 ptp->gettime64(ptp, &ts); 5328 5329 now = ktime_to_ns(timespec64_to_ktime(ts)); 5330 ts = ns_to_timespec64(now + delta); 5331 5332 ptp->settime64(ptp, &ts); 5333 return 0; 5334 } 5335 5336 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 5337 if (delta < 0 && nsec != 0) { 5338 /* It is not allowed to adjust low the nsec part, therefore 5339 * subtract more from second part and add to nanosecond such 5340 * that would roll over, so the second part will increase 5341 */ 5342 sec--; 5343 nsec = NSEC_PER_SEC - nsec; 5344 } 5345 5346 /* Calculate the adjustments and the direction */ 5347 if (delta < 0) 5348 add = false; 5349 5350 if (nsec > 0) 5351 /* add 8 ns to cover the likely normal increment */ 5352 nsec += 8; 5353 5354 if (nsec >= NSEC_PER_SEC) { 5355 /* carry into seconds */ 5356 sec++; 5357 nsec -= NSEC_PER_SEC; 5358 } 5359 5360 mutex_lock(&ptp_priv->ptp_lock); 5361 if (sec) { 5362 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 5363 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5364 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 5365 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5366 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 5367 } 5368 5369 if (nsec) { 5370 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 5371 nsec & 0xffff); 5372 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5373 (nsec >> 16) & 0x3fff); 5374 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5375 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 5376 } 5377 mutex_unlock(&ptp_priv->ptp_lock); 5378 5379 /* Update the target clock */ 5380 ptp->gettime64(ptp, &ts); 5381 mutex_lock(&ptp_priv->ptp_lock); 5382 ret = lan8841_ptp_update_target(ptp_priv, &ts); 5383 mutex_unlock(&ptp_priv->ptp_lock); 5384 5385 return ret; 5386 } 5387 5388 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 5389 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 5390 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 5391 5392 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 5393 { 5394 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5395 ptp_clock_info); 5396 struct phy_device *phydev = ptp_priv->phydev; 5397 bool faster = true; 5398 u32 rate; 5399 5400 if (!scaled_ppm) 5401 return 0; 5402 5403 if (scaled_ppm < 0) { 5404 scaled_ppm = -scaled_ppm; 5405 faster = false; 5406 } 5407 5408 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 5409 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 5410 5411 mutex_lock(&ptp_priv->ptp_lock); 5412 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 5413 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 5414 : upper_16_bits(rate) & 0x3fff); 5415 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 5416 mutex_unlock(&ptp_priv->ptp_lock); 5417 5418 return 0; 5419 } 5420 5421 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 5422 enum ptp_pin_function func, unsigned int chan) 5423 { 5424 switch (func) { 5425 case PTP_PF_NONE: 5426 case PTP_PF_PEROUT: 5427 case PTP_PF_EXTTS: 5428 break; 5429 default: 5430 return -1; 5431 } 5432 5433 return 0; 5434 } 5435 5436 #define LAN8841_PTP_GPIO_NUM 10 5437 #define LAN8841_GPIO_EN 128 5438 #define LAN8841_GPIO_DIR 129 5439 #define LAN8841_GPIO_BUF 130 5440 5441 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5442 { 5443 struct phy_device *phydev = ptp_priv->phydev; 5444 int ret; 5445 5446 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5447 if (ret) 5448 return ret; 5449 5450 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5451 if (ret) 5452 return ret; 5453 5454 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5455 } 5456 5457 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 5458 { 5459 struct phy_device *phydev = ptp_priv->phydev; 5460 int ret; 5461 5462 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5463 if (ret) 5464 return ret; 5465 5466 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5467 if (ret) 5468 return ret; 5469 5470 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5471 } 5472 5473 #define LAN8841_GPIO_DATA_SEL1 131 5474 #define LAN8841_GPIO_DATA_SEL2 132 5475 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 5476 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 5477 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 5478 #define LAN8841_PTP_GENERAL_CONFIG 257 5479 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 5480 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 5481 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 5482 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 5483 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 5484 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 5485 5486 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5487 u8 event) 5488 { 5489 struct phy_device *phydev = ptp_priv->phydev; 5490 u16 tmp; 5491 int ret; 5492 5493 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 5494 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5495 * depending on the pin, it requires to read a different register 5496 */ 5497 if (pin < 5) { 5498 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 5499 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 5500 } else { 5501 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 5502 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 5503 } 5504 if (ret) 5505 return ret; 5506 5507 /* Disable the event */ 5508 if (event == LAN8841_EVENT_A) 5509 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5510 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 5511 else 5512 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5513 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 5514 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5515 } 5516 5517 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5518 u8 event, int pulse_width) 5519 { 5520 struct phy_device *phydev = ptp_priv->phydev; 5521 u16 tmp; 5522 int ret; 5523 5524 /* Enable the event */ 5525 if (event == LAN8841_EVENT_A) 5526 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5527 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5528 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5529 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5530 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5531 else 5532 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5533 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5534 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5535 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5536 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5537 if (ret) 5538 return ret; 5539 5540 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5541 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5542 * depending on the pin, it requires to read a different register 5543 */ 5544 if (event == LAN8841_EVENT_A) 5545 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5546 else 5547 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5548 5549 if (pin < 5) 5550 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5551 tmp << (3 * pin)); 5552 else 5553 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5554 tmp << (3 * (pin - 5))); 5555 5556 return ret; 5557 } 5558 5559 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5560 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5561 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5562 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5563 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5564 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5565 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5566 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5567 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5568 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5569 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5570 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5571 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5572 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5573 5574 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5575 struct ptp_clock_request *rq, int on) 5576 { 5577 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5578 ptp_clock_info); 5579 struct phy_device *phydev = ptp_priv->phydev; 5580 struct timespec64 ts_on, ts_period; 5581 s64 on_nsec, period_nsec; 5582 int pulse_width; 5583 int pin; 5584 int ret; 5585 5586 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5587 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5588 return -EINVAL; 5589 5590 if (!on) { 5591 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5592 if (ret) 5593 return ret; 5594 5595 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5596 } 5597 5598 ts_on.tv_sec = rq->perout.on.sec; 5599 ts_on.tv_nsec = rq->perout.on.nsec; 5600 on_nsec = timespec64_to_ns(&ts_on); 5601 5602 ts_period.tv_sec = rq->perout.period.sec; 5603 ts_period.tv_nsec = rq->perout.period.nsec; 5604 period_nsec = timespec64_to_ns(&ts_period); 5605 5606 if (period_nsec < 200) { 5607 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5608 phydev_name(phydev)); 5609 return -EOPNOTSUPP; 5610 } 5611 5612 if (on_nsec >= period_nsec) { 5613 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5614 phydev_name(phydev)); 5615 return -EINVAL; 5616 } 5617 5618 switch (on_nsec) { 5619 case 200000000: 5620 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5621 break; 5622 case 100000000: 5623 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5624 break; 5625 case 50000000: 5626 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5627 break; 5628 case 10000000: 5629 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5630 break; 5631 case 5000000: 5632 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5633 break; 5634 case 1000000: 5635 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5636 break; 5637 case 500000: 5638 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5639 break; 5640 case 100000: 5641 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5642 break; 5643 case 50000: 5644 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5645 break; 5646 case 10000: 5647 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5648 break; 5649 case 5000: 5650 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5651 break; 5652 case 1000: 5653 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5654 break; 5655 case 500: 5656 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5657 break; 5658 case 100: 5659 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5660 break; 5661 default: 5662 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5663 phydev_name(phydev)); 5664 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5665 break; 5666 } 5667 5668 mutex_lock(&ptp_priv->ptp_lock); 5669 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5670 rq->perout.start.nsec); 5671 mutex_unlock(&ptp_priv->ptp_lock); 5672 if (ret) 5673 return ret; 5674 5675 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5676 rq->perout.period.nsec); 5677 if (ret) 5678 return ret; 5679 5680 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5681 pulse_width); 5682 if (ret) 5683 return ret; 5684 5685 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5686 if (ret) 5687 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5688 5689 return ret; 5690 } 5691 5692 #define LAN8841_PTP_GPIO_CAP_EN 496 5693 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5694 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5695 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5696 5697 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5698 u32 flags) 5699 { 5700 struct phy_device *phydev = ptp_priv->phydev; 5701 u16 tmp = 0; 5702 int ret; 5703 5704 /* Set GPIO to be input */ 5705 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5706 if (ret) 5707 return ret; 5708 5709 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5710 if (ret) 5711 return ret; 5712 5713 /* Enable capture on the edges of the pin */ 5714 if (flags & PTP_RISING_EDGE) 5715 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5716 if (flags & PTP_FALLING_EDGE) 5717 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5718 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5719 if (ret) 5720 return ret; 5721 5722 /* Enable interrupt */ 5723 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5724 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5725 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5726 } 5727 5728 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5729 { 5730 struct phy_device *phydev = ptp_priv->phydev; 5731 int ret; 5732 5733 /* Set GPIO to be output */ 5734 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5735 if (ret) 5736 return ret; 5737 5738 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5739 if (ret) 5740 return ret; 5741 5742 /* Disable capture on both of the edges */ 5743 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5744 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5745 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5746 0); 5747 if (ret) 5748 return ret; 5749 5750 /* Disable interrupt */ 5751 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5752 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5753 0); 5754 } 5755 5756 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5757 struct ptp_clock_request *rq, int on) 5758 { 5759 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5760 ptp_clock_info); 5761 int pin; 5762 int ret; 5763 5764 /* Reject requests with unsupported flags */ 5765 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5766 PTP_EXTTS_EDGES | 5767 PTP_STRICT_FLAGS)) 5768 return -EOPNOTSUPP; 5769 5770 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5771 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5772 return -EINVAL; 5773 5774 mutex_lock(&ptp_priv->ptp_lock); 5775 if (on) 5776 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5777 else 5778 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5779 mutex_unlock(&ptp_priv->ptp_lock); 5780 5781 return ret; 5782 } 5783 5784 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5785 struct ptp_clock_request *rq, int on) 5786 { 5787 switch (rq->type) { 5788 case PTP_CLK_REQ_EXTTS: 5789 return lan8841_ptp_extts(ptp, rq, on); 5790 case PTP_CLK_REQ_PEROUT: 5791 return lan8841_ptp_perout(ptp, rq, on); 5792 default: 5793 return -EOPNOTSUPP; 5794 } 5795 5796 return 0; 5797 } 5798 5799 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5800 { 5801 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5802 ptp_clock_info); 5803 struct timespec64 ts; 5804 unsigned long flags; 5805 5806 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5807 5808 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5809 ptp_priv->seconds = ts.tv_sec; 5810 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5811 5812 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5813 } 5814 5815 static struct ptp_clock_info lan8841_ptp_clock_info = { 5816 .owner = THIS_MODULE, 5817 .name = "lan8841 ptp", 5818 .max_adj = 31249999, 5819 .gettime64 = lan8841_ptp_gettime64, 5820 .settime64 = lan8841_ptp_settime64, 5821 .adjtime = lan8841_ptp_adjtime, 5822 .adjfine = lan8841_ptp_adjfine, 5823 .verify = lan8841_ptp_verify, 5824 .enable = lan8841_ptp_enable, 5825 .do_aux_work = lan8841_ptp_do_aux_work, 5826 .n_per_out = LAN8841_PTP_GPIO_NUM, 5827 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5828 .n_pins = LAN8841_PTP_GPIO_NUM, 5829 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5830 }; 5831 5832 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5833 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5834 5835 static int lan8841_probe(struct phy_device *phydev) 5836 { 5837 struct kszphy_ptp_priv *ptp_priv; 5838 struct kszphy_priv *priv; 5839 int err; 5840 5841 err = kszphy_probe(phydev); 5842 if (err) 5843 return err; 5844 5845 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5846 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5847 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5848 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5849 5850 /* Register the clock */ 5851 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5852 return 0; 5853 5854 priv = phydev->priv; 5855 ptp_priv = &priv->ptp_priv; 5856 5857 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5858 LAN8841_PTP_GPIO_NUM, 5859 sizeof(*ptp_priv->pin_config), 5860 GFP_KERNEL); 5861 if (!ptp_priv->pin_config) 5862 return -ENOMEM; 5863 5864 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5865 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5866 5867 snprintf(p->name, sizeof(p->name), "pin%d", i); 5868 p->index = i; 5869 p->func = PTP_PF_NONE; 5870 } 5871 5872 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5873 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5874 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5875 &phydev->mdio.dev); 5876 if (IS_ERR(ptp_priv->ptp_clock)) { 5877 phydev_err(phydev, "ptp_clock_register failed: %pe\n", 5878 ptp_priv->ptp_clock); 5879 return -EINVAL; 5880 } 5881 5882 if (!ptp_priv->ptp_clock) 5883 return 0; 5884 5885 /* Initialize the SW */ 5886 skb_queue_head_init(&ptp_priv->tx_queue); 5887 ptp_priv->phydev = phydev; 5888 mutex_init(&ptp_priv->ptp_lock); 5889 spin_lock_init(&ptp_priv->seconds_lock); 5890 5891 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5892 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5893 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 5894 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5895 5896 phydev->mii_ts = &ptp_priv->mii_ts; 5897 5898 /* Timestamp selected by default to keep legacy API */ 5899 phydev->default_timestamp = true; 5900 5901 return 0; 5902 } 5903 5904 static int lan8804_resume(struct phy_device *phydev) 5905 { 5906 return kszphy_resume(phydev); 5907 } 5908 5909 static int lan8804_suspend(struct phy_device *phydev) 5910 { 5911 return kszphy_generic_suspend(phydev); 5912 } 5913 5914 static int lan8841_resume(struct phy_device *phydev) 5915 { 5916 return kszphy_generic_resume(phydev); 5917 } 5918 5919 static int lan8841_suspend(struct phy_device *phydev) 5920 { 5921 struct kszphy_priv *priv = phydev->priv; 5922 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5923 5924 if (ptp_priv->ptp_clock) 5925 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5926 5927 return kszphy_generic_suspend(phydev); 5928 } 5929 5930 static int ksz9131_resume(struct phy_device *phydev) 5931 { 5932 if (phydev->suspended && phy_interface_is_rgmii(phydev)) 5933 ksz9131_config_rgmii_delay(phydev); 5934 5935 return kszphy_resume(phydev); 5936 } 5937 5938 #define LAN8842_PTP_GPIO_NUM 16 5939 5940 static int lan8842_ptp_probe_once(struct phy_device *phydev) 5941 { 5942 return __lan8814_ptp_probe_once(phydev, "lan8842_ptp_pin", 5943 LAN8842_PTP_GPIO_NUM); 5944 } 5945 5946 #define LAN8842_STRAP_REG 0 /* 0x0 */ 5947 #define LAN8842_STRAP_REG_PHYADDR_MASK GENMASK(4, 0) 5948 #define LAN8842_SKU_REG 11 /* 0x0b */ 5949 #define LAN8842_SELF_TEST 14 /* 0x0e */ 5950 #define LAN8842_SELF_TEST_RX_CNT_ENA BIT(8) 5951 #define LAN8842_SELF_TEST_TX_CNT_ENA BIT(4) 5952 5953 static int lan8842_probe(struct phy_device *phydev) 5954 { 5955 struct lan8842_priv *priv; 5956 int addr; 5957 int ret; 5958 5959 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 5960 if (!priv) 5961 return -ENOMEM; 5962 5963 phydev->priv = priv; 5964 5965 /* Similar to lan8814 this PHY has a pin which needs to be pulled down 5966 * to enable to pass any traffic through it. Therefore use the same 5967 * function as lan8814 5968 */ 5969 ret = lan8814_release_coma_mode(phydev); 5970 if (ret) 5971 return ret; 5972 5973 /* Enable to count the RX and TX packets */ 5974 ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 5975 LAN8842_SELF_TEST, 5976 LAN8842_SELF_TEST_RX_CNT_ENA | 5977 LAN8842_SELF_TEST_TX_CNT_ENA); 5978 if (ret < 0) 5979 return ret; 5980 5981 /* Revision lan8832 doesn't have support for PTP, therefore don't add 5982 * any PTP clocks 5983 */ 5984 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5985 LAN8842_SKU_REG); 5986 if (ret < 0) 5987 return ret; 5988 5989 priv->rev = ret; 5990 if (priv->rev == LAN8842_REV_8832) 5991 return 0; 5992 5993 /* As the lan8814 and lan8842 has the same IP for the PTP block, the 5994 * only difference is the number of the GPIOs, then make sure that the 5995 * lan8842 initialized also the shared data pointer as this is used in 5996 * all the PTP functions for lan8814. The lan8842 doesn't have multiple 5997 * PHYs in the same package. 5998 */ 5999 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6000 LAN8842_STRAP_REG); 6001 if (addr < 0) 6002 return addr; 6003 addr &= LAN8842_STRAP_REG_PHYADDR_MASK; 6004 6005 ret = devm_phy_package_join(&phydev->mdio.dev, phydev, addr, 6006 sizeof(struct lan8814_shared_priv)); 6007 if (ret) 6008 return ret; 6009 6010 if (phy_package_init_once(phydev)) { 6011 ret = lan8842_ptp_probe_once(phydev); 6012 if (ret) 6013 return ret; 6014 } 6015 6016 lan8814_ptp_init(phydev); 6017 6018 return 0; 6019 } 6020 6021 static int lan8842_config_init(struct phy_device *phydev) 6022 { 6023 int ret; 6024 6025 /* Reset the PHY */ 6026 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6027 LAN8814_QSGMII_SOFT_RESET, 6028 LAN8814_QSGMII_SOFT_RESET_BIT, 6029 LAN8814_QSGMII_SOFT_RESET_BIT); 6030 if (ret < 0) 6031 return ret; 6032 6033 /* Even if the GPIOs are set to control the LEDs the behaviour of the 6034 * LEDs is wrong, they are not blinking when there is traffic. 6035 * To fix this it is required to set extended LED mode 6036 */ 6037 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6038 LAN8814_LED_CTRL_1, 6039 LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_, 0); 6040 if (ret < 0) 6041 return ret; 6042 6043 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6044 LAN8814_LED_CTRL_2, 6045 LAN8814_LED_CTRL_2_LED1_COM_DIS, 6046 LAN8814_LED_CTRL_2_LED1_COM_DIS); 6047 if (ret < 0) 6048 return ret; 6049 6050 /* To allow the PHY to control the LEDs the GPIOs of the PHY should have 6051 * a function mode and not the GPIO. Apparently by default the value is 6052 * GPIO and not function even though the datasheet it says that it is 6053 * function. Therefore set this value. 6054 */ 6055 return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6056 LAN8814_GPIO_EN2, 0); 6057 } 6058 6059 #define LAN8842_INTR_CTRL_REG 52 /* 0x34 */ 6060 6061 static int lan8842_config_intr(struct phy_device *phydev) 6062 { 6063 int err; 6064 6065 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6066 LAN8842_INTR_CTRL_REG, 6067 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 6068 6069 /* enable / disable interrupts */ 6070 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 6071 err = lan8814_ack_interrupt(phydev); 6072 if (err) 6073 return err; 6074 6075 err = phy_write(phydev, LAN8814_INTC, 6076 LAN8814_INT_LINK | LAN8814_INT_FLF); 6077 } else { 6078 err = phy_write(phydev, LAN8814_INTC, 0); 6079 if (err) 6080 return err; 6081 6082 err = lan8814_ack_interrupt(phydev); 6083 } 6084 6085 return err; 6086 } 6087 6088 static unsigned int lan8842_inband_caps(struct phy_device *phydev, 6089 phy_interface_t interface) 6090 { 6091 /* Inband configuration can be enabled or disabled using the registers 6092 * PCS1G_ANEG_CONFIG. 6093 */ 6094 return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE; 6095 } 6096 6097 static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes) 6098 { 6099 bool enable; 6100 6101 if (modes == LINK_INBAND_DISABLE) 6102 enable = false; 6103 else 6104 enable = true; 6105 6106 /* Disable or enable in-band autoneg with PCS Host side 6107 * It has the same address as lan8814 6108 */ 6109 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6110 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 6111 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 6112 enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0); 6113 } 6114 6115 static void lan8842_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 6116 { 6117 struct kszphy_ptp_priv *ptp_priv; 6118 struct lan8842_priv *priv; 6119 6120 priv = phydev->priv; 6121 ptp_priv = &priv->ptp_priv; 6122 6123 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 6124 lan8814_get_tx_ts(ptp_priv); 6125 6126 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 6127 lan8814_get_rx_ts(ptp_priv); 6128 6129 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 6130 lan8814_flush_fifo(phydev, true); 6131 skb_queue_purge(&ptp_priv->tx_queue); 6132 } 6133 6134 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 6135 lan8814_flush_fifo(phydev, false); 6136 skb_queue_purge(&ptp_priv->rx_queue); 6137 } 6138 } 6139 6140 static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev) 6141 { 6142 struct lan8842_priv *priv = phydev->priv; 6143 int ret = IRQ_NONE; 6144 int irq_status; 6145 6146 irq_status = phy_read(phydev, LAN8814_INTS); 6147 if (irq_status < 0) { 6148 phy_error(phydev); 6149 return IRQ_NONE; 6150 } 6151 6152 if (irq_status & (LAN8814_INT_LINK | LAN8814_INT_FLF)) { 6153 phy_trigger_machine(phydev); 6154 ret = IRQ_HANDLED; 6155 } 6156 6157 /* Phy revision lan8832 doesn't have support for PTP therefore there is 6158 * not need to check the PTP and GPIO interrupts 6159 */ 6160 if (priv->rev == LAN8842_REV_8832) 6161 goto out; 6162 6163 while (true) { 6164 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6165 PTP_TSU_INT_STS); 6166 if (!irq_status) 6167 break; 6168 6169 lan8842_handle_ptp_interrupt(phydev, irq_status); 6170 ret = IRQ_HANDLED; 6171 } 6172 6173 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 6174 ret = IRQ_HANDLED; 6175 6176 out: 6177 return ret; 6178 } 6179 6180 static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs) 6181 { 6182 u64 ret = 0; 6183 int val; 6184 6185 for (int j = 0; j < count; ++j) { 6186 val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 6187 regs[j]); 6188 if (val < 0) 6189 return U64_MAX; 6190 6191 ret <<= 16; 6192 ret += val; 6193 } 6194 return ret; 6195 } 6196 6197 static int lan8842_update_stats(struct phy_device *phydev) 6198 { 6199 struct lan8842_priv *priv = phydev->priv; 6200 int rx_packets_regs[] = {88, 61, 60}; 6201 int rx_errors_regs[] = {63, 62}; 6202 int tx_packets_regs[] = {89, 85, 84}; 6203 int tx_errors_regs[] = {87, 86}; 6204 6205 priv->phy_stats.rx_packets = lan8842_get_stat(phydev, 6206 ARRAY_SIZE(rx_packets_regs), 6207 rx_packets_regs); 6208 priv->phy_stats.rx_errors = lan8842_get_stat(phydev, 6209 ARRAY_SIZE(rx_errors_regs), 6210 rx_errors_regs); 6211 priv->phy_stats.tx_packets = lan8842_get_stat(phydev, 6212 ARRAY_SIZE(tx_packets_regs), 6213 tx_packets_regs); 6214 priv->phy_stats.tx_errors = lan8842_get_stat(phydev, 6215 ARRAY_SIZE(tx_errors_regs), 6216 tx_errors_regs); 6217 6218 return 0; 6219 } 6220 6221 #define LAN8842_FLF 15 /* 0x0e */ 6222 #define LAN8842_FLF_ENA BIT(1) 6223 #define LAN8842_FLF_ENA_LINK_DOWN BIT(0) 6224 6225 static int lan8842_get_fast_down(struct phy_device *phydev, u8 *msecs) 6226 { 6227 int ret; 6228 6229 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS, LAN8842_FLF); 6230 if (ret < 0) 6231 return ret; 6232 6233 if (ret & LAN8842_FLF_ENA) 6234 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON; 6235 else 6236 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF; 6237 6238 return 0; 6239 } 6240 6241 static int lan8842_set_fast_down(struct phy_device *phydev, const u8 *msecs) 6242 { 6243 u16 flf; 6244 6245 switch (*msecs) { 6246 case ETHTOOL_PHY_FAST_LINK_DOWN_OFF: 6247 flf = 0; 6248 break; 6249 case ETHTOOL_PHY_FAST_LINK_DOWN_ON: 6250 flf = LAN8842_FLF_ENA | LAN8842_FLF_ENA_LINK_DOWN; 6251 break; 6252 default: 6253 return -EINVAL; 6254 } 6255 6256 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS, 6257 LAN8842_FLF, 6258 LAN8842_FLF_ENA | 6259 LAN8842_FLF_ENA_LINK_DOWN, flf); 6260 } 6261 6262 static int lan8842_get_tunable(struct phy_device *phydev, 6263 struct ethtool_tunable *tuna, void *data) 6264 { 6265 switch (tuna->id) { 6266 case ETHTOOL_PHY_FAST_LINK_DOWN: 6267 return lan8842_get_fast_down(phydev, data); 6268 default: 6269 return -EOPNOTSUPP; 6270 } 6271 } 6272 6273 static int lan8842_set_tunable(struct phy_device *phydev, 6274 struct ethtool_tunable *tuna, const void *data) 6275 { 6276 switch (tuna->id) { 6277 case ETHTOOL_PHY_FAST_LINK_DOWN: 6278 return lan8842_set_fast_down(phydev, data); 6279 default: 6280 return -EOPNOTSUPP; 6281 } 6282 } 6283 6284 static void lan8842_get_phy_stats(struct phy_device *phydev, 6285 struct ethtool_eth_phy_stats *eth_stats, 6286 struct ethtool_phy_stats *stats) 6287 { 6288 struct lan8842_priv *priv = phydev->priv; 6289 6290 stats->rx_packets = priv->phy_stats.rx_packets; 6291 stats->rx_errors = priv->phy_stats.rx_errors; 6292 stats->tx_packets = priv->phy_stats.tx_packets; 6293 stats->tx_errors = priv->phy_stats.tx_errors; 6294 } 6295 6296 static struct phy_driver ksphy_driver[] = { 6297 { 6298 PHY_ID_MATCH_MODEL(PHY_ID_KS8737), 6299 .name = "Micrel KS8737", 6300 /* PHY_BASIC_FEATURES */ 6301 .driver_data = &ks8737_type, 6302 .probe = kszphy_probe, 6303 .config_init = kszphy_config_init, 6304 .config_intr = kszphy_config_intr, 6305 .handle_interrupt = kszphy_handle_interrupt, 6306 .suspend = kszphy_suspend, 6307 .resume = kszphy_resume, 6308 }, { 6309 .phy_id = PHY_ID_KSZ8021, 6310 .phy_id_mask = 0x00ffffff, 6311 .name = "Micrel KSZ8021 or KSZ8031", 6312 /* PHY_BASIC_FEATURES */ 6313 .driver_data = &ksz8021_type, 6314 .probe = kszphy_probe, 6315 .config_init = kszphy_config_init, 6316 .config_intr = kszphy_config_intr, 6317 .handle_interrupt = kszphy_handle_interrupt, 6318 .get_sset_count = kszphy_get_sset_count, 6319 .get_strings = kszphy_get_strings, 6320 .get_stats = kszphy_get_stats, 6321 .suspend = kszphy_suspend, 6322 .resume = kszphy_resume, 6323 }, { 6324 .phy_id = PHY_ID_KSZ8031, 6325 .phy_id_mask = 0x00ffffff, 6326 .name = "Micrel KSZ8031", 6327 /* PHY_BASIC_FEATURES */ 6328 .driver_data = &ksz8021_type, 6329 .probe = kszphy_probe, 6330 .config_init = kszphy_config_init, 6331 .config_intr = kszphy_config_intr, 6332 .handle_interrupt = kszphy_handle_interrupt, 6333 .get_sset_count = kszphy_get_sset_count, 6334 .get_strings = kszphy_get_strings, 6335 .get_stats = kszphy_get_stats, 6336 .suspend = kszphy_suspend, 6337 .resume = kszphy_resume, 6338 }, { 6339 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041), 6340 .name = "Micrel KSZ8041", 6341 /* PHY_BASIC_FEATURES */ 6342 .driver_data = &ksz8041_type, 6343 .probe = kszphy_probe, 6344 .config_init = ksz8041_config_init, 6345 .config_aneg = ksz8041_config_aneg, 6346 .config_intr = kszphy_config_intr, 6347 .handle_interrupt = kszphy_handle_interrupt, 6348 .get_sset_count = kszphy_get_sset_count, 6349 .get_strings = kszphy_get_strings, 6350 .get_stats = kszphy_get_stats, 6351 .suspend = ksz8041_suspend, 6352 .resume = ksz8041_resume, 6353 }, { 6354 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI), 6355 .name = "Micrel KSZ8041RNLI", 6356 /* PHY_BASIC_FEATURES */ 6357 .driver_data = &ksz8041_type, 6358 .probe = kszphy_probe, 6359 .config_init = kszphy_config_init, 6360 .config_intr = kszphy_config_intr, 6361 .handle_interrupt = kszphy_handle_interrupt, 6362 .get_sset_count = kszphy_get_sset_count, 6363 .get_strings = kszphy_get_strings, 6364 .get_stats = kszphy_get_stats, 6365 .suspend = kszphy_suspend, 6366 .resume = kszphy_resume, 6367 }, { 6368 .name = "Micrel KSZ8051", 6369 /* PHY_BASIC_FEATURES */ 6370 .driver_data = &ksz8051_type, 6371 .probe = kszphy_probe, 6372 .config_init = kszphy_config_init, 6373 .config_intr = kszphy_config_intr, 6374 .handle_interrupt = kszphy_handle_interrupt, 6375 .get_sset_count = kszphy_get_sset_count, 6376 .get_strings = kszphy_get_strings, 6377 .get_stats = kszphy_get_stats, 6378 .match_phy_device = ksz8051_match_phy_device, 6379 .suspend = kszphy_suspend, 6380 .resume = kszphy_resume, 6381 }, { 6382 .phy_id = PHY_ID_KSZ8001, 6383 .name = "Micrel KSZ8001 or KS8721", 6384 .phy_id_mask = 0x00fffffc, 6385 /* PHY_BASIC_FEATURES */ 6386 .driver_data = &ksz8041_type, 6387 .probe = kszphy_probe, 6388 .config_init = kszphy_config_init, 6389 .config_intr = kszphy_config_intr, 6390 .handle_interrupt = kszphy_handle_interrupt, 6391 .get_sset_count = kszphy_get_sset_count, 6392 .get_strings = kszphy_get_strings, 6393 .get_stats = kszphy_get_stats, 6394 .suspend = kszphy_suspend, 6395 .resume = kszphy_resume, 6396 }, { 6397 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081), 6398 .name = "Micrel KSZ8081 or KSZ8091", 6399 .flags = PHY_POLL_CABLE_TEST, 6400 /* PHY_BASIC_FEATURES */ 6401 .driver_data = &ksz8081_type, 6402 .probe = kszphy_probe, 6403 .config_init = ksz8081_config_init, 6404 .soft_reset = genphy_soft_reset, 6405 .config_aneg = ksz8081_config_aneg, 6406 .read_status = ksz8081_read_status, 6407 .config_intr = kszphy_config_intr, 6408 .handle_interrupt = kszphy_handle_interrupt, 6409 .get_sset_count = kszphy_get_sset_count, 6410 .get_strings = kszphy_get_strings, 6411 .get_stats = kszphy_get_stats, 6412 .suspend = kszphy_suspend, 6413 .resume = kszphy_resume, 6414 .cable_test_start = ksz886x_cable_test_start, 6415 .cable_test_get_status = ksz886x_cable_test_get_status, 6416 }, { 6417 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061), 6418 .name = "Micrel KSZ8061", 6419 /* PHY_BASIC_FEATURES */ 6420 .probe = kszphy_probe, 6421 .config_init = ksz8061_config_init, 6422 .soft_reset = genphy_soft_reset, 6423 .config_intr = kszphy_config_intr, 6424 .handle_interrupt = kszphy_handle_interrupt, 6425 .suspend = ksz8061_suspend, 6426 .resume = ksz8061_resume, 6427 }, { 6428 .phy_id = PHY_ID_KSZ9021, 6429 .phy_id_mask = 0x000ffffe, 6430 .name = "Micrel KSZ9021 Gigabit PHY", 6431 /* PHY_GBIT_FEATURES */ 6432 .driver_data = &ksz9021_type, 6433 .probe = kszphy_probe, 6434 .get_features = ksz9031_get_features, 6435 .config_init = ksz9021_config_init, 6436 .config_intr = kszphy_config_intr, 6437 .handle_interrupt = kszphy_handle_interrupt, 6438 .get_sset_count = kszphy_get_sset_count, 6439 .get_strings = kszphy_get_strings, 6440 .get_stats = kszphy_get_stats, 6441 .suspend = kszphy_suspend, 6442 .resume = kszphy_resume, 6443 .read_mmd = genphy_read_mmd_unsupported, 6444 .write_mmd = genphy_write_mmd_unsupported, 6445 }, { 6446 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031), 6447 .name = "Micrel KSZ9031 Gigabit PHY", 6448 .flags = PHY_POLL_CABLE_TEST, 6449 .driver_data = &ksz9021_type, 6450 .probe = kszphy_probe, 6451 .get_features = ksz9031_get_features, 6452 .config_init = ksz9031_config_init, 6453 .soft_reset = genphy_soft_reset, 6454 .read_status = ksz9031_read_status, 6455 .config_intr = kszphy_config_intr, 6456 .handle_interrupt = kszphy_handle_interrupt, 6457 .get_sset_count = kszphy_get_sset_count, 6458 .get_strings = kszphy_get_strings, 6459 .get_stats = kszphy_get_stats, 6460 .suspend = kszphy_suspend, 6461 .resume = kszphy_resume, 6462 .cable_test_start = ksz9x31_cable_test_start, 6463 .cable_test_get_status = ksz9x31_cable_test_get_status, 6464 .set_loopback = ksz9031_set_loopback, 6465 }, { 6466 PHY_ID_MATCH_MODEL(PHY_ID_LAN8814), 6467 .name = "Microchip INDY Gigabit Quad PHY", 6468 .flags = PHY_POLL_CABLE_TEST, 6469 .config_init = lan8814_config_init, 6470 .driver_data = &lan8814_type, 6471 .probe = lan8814_probe, 6472 .soft_reset = genphy_soft_reset, 6473 .read_status = ksz9031_read_status, 6474 .get_sset_count = kszphy_get_sset_count, 6475 .get_strings = kszphy_get_strings, 6476 .get_stats = kszphy_get_stats, 6477 .suspend = genphy_suspend, 6478 .resume = kszphy_resume, 6479 .config_intr = lan8814_config_intr, 6480 .handle_interrupt = lan8814_handle_interrupt, 6481 .cable_test_start = lan8814_cable_test_start, 6482 .cable_test_get_status = ksz886x_cable_test_get_status, 6483 }, { 6484 PHY_ID_MATCH_MODEL(PHY_ID_LAN8804), 6485 .name = "Microchip LAN966X Gigabit PHY", 6486 .config_init = lan8804_config_init, 6487 .driver_data = &ksz9021_type, 6488 .probe = kszphy_probe, 6489 .soft_reset = genphy_soft_reset, 6490 .read_status = ksz9031_read_status, 6491 .get_sset_count = kszphy_get_sset_count, 6492 .get_strings = kszphy_get_strings, 6493 .get_stats = kszphy_get_stats, 6494 .suspend = lan8804_suspend, 6495 .resume = lan8804_resume, 6496 .config_intr = lan8804_config_intr, 6497 .handle_interrupt = lan8804_handle_interrupt, 6498 }, { 6499 PHY_ID_MATCH_MODEL(PHY_ID_LAN8841), 6500 .name = "Microchip LAN8841 Gigabit PHY", 6501 .flags = PHY_POLL_CABLE_TEST, 6502 .driver_data = &lan8841_type, 6503 .config_init = lan8841_config_init, 6504 .probe = lan8841_probe, 6505 .soft_reset = genphy_soft_reset, 6506 .config_intr = lan8841_config_intr, 6507 .handle_interrupt = lan8841_handle_interrupt, 6508 .get_sset_count = kszphy_get_sset_count, 6509 .get_strings = kszphy_get_strings, 6510 .get_stats = kszphy_get_stats, 6511 .suspend = lan8841_suspend, 6512 .resume = lan8841_resume, 6513 .cable_test_start = lan8814_cable_test_start, 6514 .cable_test_get_status = ksz886x_cable_test_get_status, 6515 }, { 6516 PHY_ID_MATCH_MODEL(PHY_ID_LAN8842), 6517 .name = "Microchip LAN8842 Gigabit PHY", 6518 .flags = PHY_POLL_CABLE_TEST, 6519 .driver_data = &lan8814_type, 6520 .probe = lan8842_probe, 6521 .config_init = lan8842_config_init, 6522 .config_intr = lan8842_config_intr, 6523 .inband_caps = lan8842_inband_caps, 6524 .config_inband = lan8842_config_inband, 6525 .handle_interrupt = lan8842_handle_interrupt, 6526 .get_phy_stats = lan8842_get_phy_stats, 6527 .update_stats = lan8842_update_stats, 6528 .get_tunable = lan8842_get_tunable, 6529 .set_tunable = lan8842_set_tunable, 6530 .cable_test_start = lan8814_cable_test_start, 6531 .cable_test_get_status = ksz886x_cable_test_get_status, 6532 }, { 6533 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131), 6534 .name = "Microchip KSZ9131 Gigabit PHY", 6535 /* PHY_GBIT_FEATURES */ 6536 .flags = PHY_POLL_CABLE_TEST, 6537 .driver_data = &ksz9131_type, 6538 .probe = kszphy_probe, 6539 .soft_reset = genphy_soft_reset, 6540 .config_init = ksz9131_config_init, 6541 .config_intr = kszphy_config_intr, 6542 .config_aneg = ksz9131_config_aneg, 6543 .read_status = ksz9131_read_status, 6544 .handle_interrupt = kszphy_handle_interrupt, 6545 .get_sset_count = kszphy_get_sset_count, 6546 .get_strings = kszphy_get_strings, 6547 .get_stats = kszphy_get_stats, 6548 .suspend = kszphy_suspend, 6549 .resume = ksz9131_resume, 6550 .cable_test_start = ksz9x31_cable_test_start, 6551 .cable_test_get_status = ksz9x31_cable_test_get_status, 6552 .get_features = ksz9477_get_features, 6553 }, { 6554 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL), 6555 .name = "Micrel KSZ8873MLL Switch", 6556 /* PHY_BASIC_FEATURES */ 6557 .config_init = kszphy_config_init, 6558 .config_aneg = ksz8873mll_config_aneg, 6559 .read_status = ksz8873mll_read_status, 6560 .suspend = genphy_suspend, 6561 .resume = genphy_resume, 6562 }, { 6563 PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X), 6564 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 6565 .driver_data = &ksz886x_type, 6566 /* PHY_BASIC_FEATURES */ 6567 .flags = PHY_POLL_CABLE_TEST, 6568 .config_init = kszphy_config_init, 6569 .config_aneg = ksz886x_config_aneg, 6570 .read_status = ksz886x_read_status, 6571 .suspend = genphy_suspend, 6572 .resume = genphy_resume, 6573 .cable_test_start = ksz886x_cable_test_start, 6574 .cable_test_get_status = ksz886x_cable_test_get_status, 6575 }, { 6576 .name = "Micrel KSZ87XX Switch", 6577 /* PHY_BASIC_FEATURES */ 6578 .config_init = kszphy_config_init, 6579 .match_phy_device = ksz8795_match_phy_device, 6580 .suspend = genphy_suspend, 6581 .resume = genphy_resume, 6582 }, { 6583 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477), 6584 .name = "Microchip KSZ9477", 6585 .probe = kszphy_probe, 6586 /* PHY_GBIT_FEATURES */ 6587 .config_init = ksz9477_config_init, 6588 .config_intr = kszphy_config_intr, 6589 .config_aneg = ksz9477_config_aneg, 6590 .read_status = ksz9477_read_status, 6591 .handle_interrupt = kszphy_handle_interrupt, 6592 .suspend = genphy_suspend, 6593 .resume = ksz9477_resume, 6594 .get_phy_stats = kszphy_get_phy_stats, 6595 .update_stats = kszphy_update_stats, 6596 .cable_test_start = ksz9x31_cable_test_start, 6597 .cable_test_get_status = ksz9x31_cable_test_get_status, 6598 .get_sqi = kszphy_get_sqi, 6599 .get_sqi_max = kszphy_get_sqi_max, 6600 .get_mse_capability = kszphy_get_mse_capability, 6601 .get_mse_snapshot = kszphy_get_mse_snapshot, 6602 } }; 6603 6604 module_phy_driver(ksphy_driver); 6605 6606 MODULE_DESCRIPTION("Micrel PHY driver"); 6607 MODULE_AUTHOR("David J. Choi"); 6608 MODULE_LICENSE("GPL"); 6609 6610 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 6611 { PHY_ID_KSZ9021, 0x000ffffe }, 6612 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) }, 6613 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) }, 6614 { PHY_ID_KSZ8001, 0x00fffffc }, 6615 { PHY_ID_MATCH_MODEL(PHY_ID_KS8737) }, 6616 { PHY_ID_KSZ8021, 0x00ffffff }, 6617 { PHY_ID_KSZ8031, 0x00ffffff }, 6618 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) }, 6619 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) }, 6620 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) }, 6621 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) }, 6622 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) }, 6623 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) }, 6624 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) }, 6625 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) }, 6626 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) }, 6627 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) }, 6628 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) }, 6629 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) }, 6630 { } 6631 }; 6632 6633 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 6634