xref: /linux/drivers/net/phy/micrel.c (revision ee61c10cd4820e8844dba4315f2d1e522f1f3b98)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 #include "phylib.h"
38 
39 /* Operation Mode Strap Override */
40 #define MII_KSZPHY_OMSO				0x16
41 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
42 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
43 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
44 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
45 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
46 
47 /* general Interrupt control/status reg in vendor specific block. */
48 #define MII_KSZPHY_INTCS			0x1B
49 #define KSZPHY_INTCS_JABBER			BIT(15)
50 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
51 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
52 #define KSZPHY_INTCS_PARELLEL			BIT(12)
53 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
54 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
55 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
56 #define KSZPHY_INTCS_LINK_UP			BIT(8)
57 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
58 						KSZPHY_INTCS_LINK_DOWN)
59 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
60 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
61 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
62 						 KSZPHY_INTCS_LINK_UP_STATUS)
63 
64 /* LinkMD Control/Status */
65 #define KSZ8081_LMD				0x1d
66 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
67 #define KSZ8081_LMD_STAT_NORMAL			0
68 #define KSZ8081_LMD_STAT_OPEN			1
69 #define KSZ8081_LMD_STAT_SHORT			2
70 #define KSZ8081_LMD_STAT_FAIL			3
71 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
72 /* Short cable (<10 meter) has been detected by LinkMD */
73 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
74 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
75 
76 #define KSZ9x31_LMD				0x12
77 #define KSZ9x31_LMD_VCT_EN			BIT(15)
78 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
79 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
80 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
83 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
84 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
85 #define KSZ9x31_LMD_VCT_ST_OPEN			1
86 #define KSZ9x31_LMD_VCT_ST_SHORT		2
87 #define KSZ9x31_LMD_VCT_ST_FAIL			3
88 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
91 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
95 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
96 
97 #define KSZPHY_WIRE_PAIR_MASK			0x3
98 
99 #define LAN8814_CABLE_DIAG			0x12
100 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
102 #define LAN8814_PAIR_BIT_SHIFT			12
103 
104 #define LAN8814_SKUS				0xB
105 
106 #define LAN8814_WIRE_PAIR_MASK			0xF
107 
108 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
109 #define LAN8814_INTC				0x18
110 #define LAN8814_INTS				0x1B
111 
112 #define LAN8814_INT_FLF				BIT(15)
113 #define LAN8814_INT_LINK_DOWN			BIT(2)
114 #define LAN8814_INT_LINK_UP			BIT(0)
115 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
116 						 LAN8814_INT_LINK_DOWN)
117 
118 #define LAN8814_INTR_CTRL_REG			0x34
119 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
120 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
121 
122 #define LAN8814_EEE_STATE			0x38
123 #define LAN8814_EEE_STATE_MASK2P5P		BIT(10)
124 
125 #define LAN8814_PD_CONTROLS			0x9d
126 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK	GENMASK(3, 0)
127 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL	0xb
128 
129 /* Represents 1ppm adjustment in 2^32 format with
130  * each nsec contains 4 clock cycles.
131  * The value is calculated as following: (1/1000000)/((2^-32)/4)
132  */
133 #define LAN8814_1PPM_FORMAT			17179
134 
135 /* Represents 1ppm adjustment in 2^32 format with
136  * each nsec contains 8 clock cycles.
137  * The value is calculated as following: (1/1000000)/((2^-32)/8)
138  */
139 #define LAN8841_1PPM_FORMAT			34360
140 
141 #define PTP_RX_VERSION				0x0248
142 #define PTP_TX_VERSION				0x0288
143 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
144 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
145 
146 #define PTP_RX_MOD				0x024F
147 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
148 #define PTP_RX_TIMESTAMP_EN			0x024D
149 #define PTP_TX_TIMESTAMP_EN			0x028D
150 
151 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
152 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
153 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
154 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
155 
156 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
157 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
158 
159 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
160 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
161 #define LTC_HARD_RESET				0x023F
162 #define LTC_HARD_RESET_				BIT(0)
163 
164 #define TSU_HARD_RESET				0x02C1
165 #define TSU_HARD_RESET_				BIT(0)
166 
167 #define PTP_CMD_CTL				0x0200
168 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
169 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
170 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
171 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
172 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
173 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
174 
175 #define PTP_COMMON_INT_ENA			0x0204
176 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN		BIT(2)
177 
178 #define PTP_CLOCK_SET_SEC_HI			0x0205
179 #define PTP_CLOCK_SET_SEC_MID			0x0206
180 #define PTP_CLOCK_SET_SEC_LO			0x0207
181 #define PTP_CLOCK_SET_NS_HI			0x0208
182 #define PTP_CLOCK_SET_NS_LO			0x0209
183 
184 #define PTP_CLOCK_READ_SEC_HI			0x0229
185 #define PTP_CLOCK_READ_SEC_MID			0x022A
186 #define PTP_CLOCK_READ_SEC_LO			0x022B
187 #define PTP_CLOCK_READ_NS_HI			0x022C
188 #define PTP_CLOCK_READ_NS_LO			0x022D
189 
190 #define PTP_GPIO_SEL				0x0230
191 #define PTP_GPIO_SEL_GPIO_SEL(pin)		((pin) << 8)
192 #define PTP_GPIO_CAP_MAP_LO			0x0232
193 
194 #define PTP_GPIO_CAP_EN				0x0233
195 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	BIT(gpio)
196 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
197 
198 #define PTP_GPIO_RE_LTC_SEC_HI_CAP		0x0235
199 #define PTP_GPIO_RE_LTC_SEC_LO_CAP		0x0236
200 #define PTP_GPIO_RE_LTC_NS_HI_CAP		0x0237
201 #define PTP_GPIO_RE_LTC_NS_LO_CAP		0x0238
202 #define PTP_GPIO_FE_LTC_SEC_HI_CAP		0x0239
203 #define PTP_GPIO_FE_LTC_SEC_LO_CAP		0x023A
204 #define PTP_GPIO_FE_LTC_NS_HI_CAP		0x023B
205 #define PTP_GPIO_FE_LTC_NS_LO_CAP		0x023C
206 
207 #define PTP_GPIO_CAP_STS			0x023D
208 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio)	BIT(gpio)
209 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio)	(BIT(gpio) << 8)
210 
211 #define PTP_OPERATING_MODE			0x0241
212 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
213 
214 #define PTP_TX_MOD				0x028F
215 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
216 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
217 
218 #define PTP_RX_PARSE_CONFIG			0x0242
219 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
220 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
221 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
222 
223 #define PTP_TX_PARSE_CONFIG			0x0282
224 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
225 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
226 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
227 
228 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
229 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
230 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
231 
232 #define PTP_LTC_STEP_ADJ_HI			0x0212
233 #define PTP_LTC_STEP_ADJ_LO			0x0213
234 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
235 
236 #define LAN8814_INTR_STS_REG			0x0033
237 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
238 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
239 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
240 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
241 
242 #define PTP_CAP_INFO				0x022A
243 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
244 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
245 
246 #define PTP_TX_EGRESS_SEC_HI			0x0296
247 #define PTP_TX_EGRESS_SEC_LO			0x0297
248 #define PTP_TX_EGRESS_NS_HI			0x0294
249 #define PTP_TX_EGRESS_NS_LO			0x0295
250 #define PTP_TX_MSG_HEADER2			0x0299
251 
252 #define PTP_RX_INGRESS_SEC_HI			0x0256
253 #define PTP_RX_INGRESS_SEC_LO			0x0257
254 #define PTP_RX_INGRESS_NS_HI			0x0254
255 #define PTP_RX_INGRESS_NS_LO			0x0255
256 #define PTP_RX_MSG_HEADER2			0x0259
257 
258 #define PTP_TSU_INT_EN				0x0200
259 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
260 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
261 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
262 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
263 
264 #define PTP_TSU_INT_STS				0x0201
265 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
266 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
267 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
268 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
269 
270 #define LAN8814_LED_CTRL_1			0x0
271 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
272 #define LAN8814_LED_CTRL_2			0x1
273 #define LAN8814_LED_CTRL_2_LED1_COM_DIS		BIT(8)
274 
275 /* PHY Control 1 */
276 #define MII_KSZPHY_CTRL_1			0x1e
277 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
278 
279 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
280 #define MII_KSZPHY_CTRL_2			0x1f
281 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
282 /* bitmap of PHY register to set interrupt mode */
283 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
284 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
285 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
286 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
287 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
288 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
289 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
290 
291 /* Write/read to/from extended registers */
292 #define MII_KSZPHY_EXTREG			0x0b
293 #define KSZPHY_EXTREG_WRITE			0x8000
294 
295 #define MII_KSZPHY_EXTREG_WRITE			0x0c
296 #define MII_KSZPHY_EXTREG_READ			0x0d
297 
298 /* Extended registers */
299 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
300 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
301 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
302 
303 #define PS_TO_REG				200
304 #define FIFO_SIZE				8
305 
306 #define LAN8814_PTP_GPIO_NUM			24
307 #define LAN8814_PTP_PEROUT_NUM			2
308 #define LAN8814_PTP_EXTTS_NUM			3
309 
310 #define LAN8814_BUFFER_TIME			2
311 
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
321 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
322 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
323 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
324 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
325 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
326 
327 #define LAN8814_GPIO_EN1			0x20
328 #define LAN8814_GPIO_EN2			0x21
329 #define LAN8814_GPIO_DIR1			0x22
330 #define LAN8814_GPIO_DIR2			0x23
331 #define LAN8814_GPIO_BUF1			0x24
332 #define LAN8814_GPIO_BUF2			0x25
333 
334 #define LAN8814_GPIO_EN_ADDR(pin) \
335 	((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
336 #define LAN8814_GPIO_EN_BIT(pin)		BIT(pin)
337 #define LAN8814_GPIO_DIR_ADDR(pin) \
338 	((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
339 #define LAN8814_GPIO_DIR_BIT(pin)		BIT(pin)
340 #define LAN8814_GPIO_BUF_ADDR(pin) \
341 	((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
342 #define LAN8814_GPIO_BUF_BIT(pin)		BIT(pin)
343 
344 #define LAN8814_EVENT_A				0
345 #define LAN8814_EVENT_B				1
346 
347 #define LAN8814_PTP_GENERAL_CONFIG		0x0201
348 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
349 	((event) ? GENMASK(11, 8) : GENMASK(7, 4))
350 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
351 	(((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
352 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
353 	((event) ? BIT(2) : BIT(0))
354 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
355 	((event) ? BIT(3) : BIT(1))
356 
357 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event)	((event) ? 0x21F : 0x215)
358 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event)	((event) ? 0x220 : 0x216)
359 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event)	((event) ? 0x221 : 0x217)
360 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event)	((event) ? 0x222 : 0x218)
361 
362 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event)	((event) ? 0x223 : 0x219)
363 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event)	((event) ? 0x224 : 0x21A)
364 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event)	((event) ? 0x225 : 0x21B)
365 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event)	((event) ? 0x226 : 0x21C)
366 
367 /* Delay used to get the second part from the LTC */
368 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
369 
370 #define LAN8842_REV_8832			0x8832
371 
372 #define LAN8814_REV_LAN8814			0x8814
373 #define LAN8814_REV_LAN8818			0x8818
374 
375 struct kszphy_hw_stat {
376 	const char *string;
377 	u8 reg;
378 	u8 bits;
379 };
380 
381 static struct kszphy_hw_stat kszphy_hw_stats[] = {
382 	{ "phy_receive_errors", 21, 16},
383 	{ "phy_idle_errors", 10, 8 },
384 };
385 
386 struct kszphy_type {
387 	u32 led_mode_reg;
388 	u16 interrupt_level_mask;
389 	u16 cable_diag_reg;
390 	unsigned long pair_mask;
391 	u16 disable_dll_tx_bit;
392 	u16 disable_dll_rx_bit;
393 	u16 disable_dll_mask;
394 	bool has_broadcast_disable;
395 	bool has_nand_tree_disable;
396 	bool has_rmii_ref_clk_sel;
397 };
398 
399 /* Shared structure between the PHYs of the same package. */
400 struct lan8814_shared_priv {
401 	struct phy_device *phydev;
402 	struct ptp_clock *ptp_clock;
403 	struct ptp_clock_info ptp_clock_info;
404 	struct ptp_pin_desc *pin_config;
405 
406 	/* Lock for ptp_clock */
407 	struct mutex shared_lock;
408 };
409 
410 struct lan8814_ptp_rx_ts {
411 	struct list_head list;
412 	u32 seconds;
413 	u32 nsec;
414 	u16 seq_id;
415 };
416 
417 struct kszphy_ptp_priv {
418 	struct mii_timestamper mii_ts;
419 	struct phy_device *phydev;
420 
421 	struct sk_buff_head tx_queue;
422 	struct sk_buff_head rx_queue;
423 
424 	struct list_head rx_ts_list;
425 	/* Lock for Rx ts fifo */
426 	spinlock_t rx_ts_lock;
427 
428 	int hwts_tx_type;
429 	enum hwtstamp_rx_filters rx_filter;
430 	int layer;
431 	int version;
432 
433 	struct ptp_clock *ptp_clock;
434 	struct ptp_clock_info ptp_clock_info;
435 	/* Lock for ptp_clock */
436 	struct mutex ptp_lock;
437 	struct ptp_pin_desc *pin_config;
438 
439 	s64 seconds;
440 	/* Lock for accessing seconds */
441 	spinlock_t seconds_lock;
442 };
443 
444 struct kszphy_phy_stats {
445 	u64 rx_err_pkt_cnt;
446 };
447 
448 struct kszphy_priv {
449 	struct kszphy_ptp_priv ptp_priv;
450 	const struct kszphy_type *type;
451 	struct clk *clk;
452 	int led_mode;
453 	u16 vct_ctrl1000;
454 	bool rmii_ref_clk_sel;
455 	bool rmii_ref_clk_sel_val;
456 	bool clk_enable;
457 	bool is_ptp_available;
458 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
459 	struct kszphy_phy_stats phy_stats;
460 };
461 
462 struct lan8842_phy_stats {
463 	u64 rx_packets;
464 	u64 rx_errors;
465 	u64 tx_packets;
466 	u64 tx_errors;
467 };
468 
469 struct lan8842_priv {
470 	struct lan8842_phy_stats phy_stats;
471 	struct kszphy_ptp_priv ptp_priv;
472 	u16 rev;
473 };
474 
475 static const struct kszphy_type lan8814_type = {
476 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
477 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
478 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
479 };
480 
481 static const struct kszphy_type ksz886x_type = {
482 	.cable_diag_reg		= KSZ8081_LMD,
483 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
484 };
485 
486 static const struct kszphy_type ksz8021_type = {
487 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
488 	.has_broadcast_disable	= true,
489 	.has_nand_tree_disable	= true,
490 	.has_rmii_ref_clk_sel	= true,
491 };
492 
493 static const struct kszphy_type ksz8041_type = {
494 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
495 };
496 
497 static const struct kszphy_type ksz8051_type = {
498 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
499 	.has_nand_tree_disable	= true,
500 };
501 
502 static const struct kszphy_type ksz8081_type = {
503 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
504 	.cable_diag_reg		= KSZ8081_LMD,
505 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
506 	.has_broadcast_disable	= true,
507 	.has_nand_tree_disable	= true,
508 	.has_rmii_ref_clk_sel	= true,
509 };
510 
511 static const struct kszphy_type ks8737_type = {
512 	.interrupt_level_mask	= BIT(14),
513 };
514 
515 static const struct kszphy_type ksz9021_type = {
516 	.interrupt_level_mask	= BIT(14),
517 };
518 
519 static const struct kszphy_type ksz9131_type = {
520 	.interrupt_level_mask	= BIT(14),
521 	.disable_dll_tx_bit	= BIT(12),
522 	.disable_dll_rx_bit	= BIT(12),
523 	.disable_dll_mask	= BIT_MASK(12),
524 };
525 
526 static const struct kszphy_type lan8841_type = {
527 	.disable_dll_tx_bit	= BIT(14),
528 	.disable_dll_rx_bit	= BIT(14),
529 	.disable_dll_mask	= BIT_MASK(14),
530 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
531 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
532 };
533 
534 static int kszphy_extended_write(struct phy_device *phydev,
535 				u32 regnum, u16 val)
536 {
537 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
538 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
539 }
540 
541 static int kszphy_extended_read(struct phy_device *phydev,
542 				u32 regnum)
543 {
544 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
545 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
546 }
547 
548 static int kszphy_ack_interrupt(struct phy_device *phydev)
549 {
550 	/* bit[7..0] int status, which is a read and clear register. */
551 	int rc;
552 
553 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
554 
555 	return (rc < 0) ? rc : 0;
556 }
557 
558 static int kszphy_config_intr(struct phy_device *phydev)
559 {
560 	const struct kszphy_type *type = phydev->drv->driver_data;
561 	int temp, err;
562 	u16 mask;
563 
564 	if (type && type->interrupt_level_mask)
565 		mask = type->interrupt_level_mask;
566 	else
567 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
568 
569 	/* set the interrupt pin active low */
570 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
571 	if (temp < 0)
572 		return temp;
573 	temp &= ~mask;
574 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
575 
576 	/* enable / disable interrupts */
577 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
578 		err = kszphy_ack_interrupt(phydev);
579 		if (err)
580 			return err;
581 
582 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
583 	} else {
584 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
585 		if (err)
586 			return err;
587 
588 		err = kszphy_ack_interrupt(phydev);
589 	}
590 
591 	return err;
592 }
593 
594 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
595 {
596 	int irq_status;
597 
598 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
599 	if (irq_status < 0) {
600 		phy_error(phydev);
601 		return IRQ_NONE;
602 	}
603 
604 	if (!(irq_status & KSZPHY_INTCS_STATUS))
605 		return IRQ_NONE;
606 
607 	phy_trigger_machine(phydev);
608 
609 	return IRQ_HANDLED;
610 }
611 
612 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
613 {
614 	int ctrl;
615 
616 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
617 	if (ctrl < 0)
618 		return ctrl;
619 
620 	if (val)
621 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
622 	else
623 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
624 
625 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
626 }
627 
628 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
629 {
630 	int rc, temp, shift;
631 
632 	switch (reg) {
633 	case MII_KSZPHY_CTRL_1:
634 		shift = 14;
635 		break;
636 	case MII_KSZPHY_CTRL_2:
637 		shift = 4;
638 		break;
639 	default:
640 		return -EINVAL;
641 	}
642 
643 	temp = phy_read(phydev, reg);
644 	if (temp < 0) {
645 		rc = temp;
646 		goto out;
647 	}
648 
649 	temp &= ~(3 << shift);
650 	temp |= val << shift;
651 	rc = phy_write(phydev, reg, temp);
652 out:
653 	if (rc < 0)
654 		phydev_err(phydev, "failed to set led mode\n");
655 
656 	return rc;
657 }
658 
659 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
660  * unique (non-broadcast) address on a shared bus.
661  */
662 static int kszphy_broadcast_disable(struct phy_device *phydev)
663 {
664 	int ret;
665 
666 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
667 	if (ret < 0)
668 		goto out;
669 
670 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
671 out:
672 	if (ret)
673 		phydev_err(phydev, "failed to disable broadcast address\n");
674 
675 	return ret;
676 }
677 
678 static int kszphy_nand_tree_disable(struct phy_device *phydev)
679 {
680 	int ret;
681 
682 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
683 	if (ret < 0)
684 		goto out;
685 
686 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
687 		return 0;
688 
689 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
690 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
691 out:
692 	if (ret)
693 		phydev_err(phydev, "failed to disable NAND tree mode\n");
694 
695 	return ret;
696 }
697 
698 /* Some config bits need to be set again on resume, handle them here. */
699 static int kszphy_config_reset(struct phy_device *phydev)
700 {
701 	struct kszphy_priv *priv = phydev->priv;
702 	int ret;
703 
704 	if (priv->rmii_ref_clk_sel) {
705 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
706 		if (ret) {
707 			phydev_err(phydev,
708 				   "failed to set rmii reference clock\n");
709 			return ret;
710 		}
711 	}
712 
713 	if (priv->type && priv->led_mode >= 0)
714 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
715 
716 	return 0;
717 }
718 
719 static int kszphy_config_init(struct phy_device *phydev)
720 {
721 	struct kszphy_priv *priv = phydev->priv;
722 	const struct kszphy_type *type;
723 
724 	if (!priv)
725 		return 0;
726 
727 	type = priv->type;
728 
729 	if (type && type->has_broadcast_disable)
730 		kszphy_broadcast_disable(phydev);
731 
732 	if (type && type->has_nand_tree_disable)
733 		kszphy_nand_tree_disable(phydev);
734 
735 	return kszphy_config_reset(phydev);
736 }
737 
738 static int ksz8041_fiber_mode(struct phy_device *phydev)
739 {
740 	struct device_node *of_node = phydev->mdio.dev.of_node;
741 
742 	return of_property_read_bool(of_node, "micrel,fiber-mode");
743 }
744 
745 static int ksz8041_config_init(struct phy_device *phydev)
746 {
747 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
748 
749 	/* Limit supported and advertised modes in fiber mode */
750 	if (ksz8041_fiber_mode(phydev)) {
751 		phydev->dev_flags |= MICREL_PHY_FXEN;
752 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
753 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
754 
755 		linkmode_and(phydev->supported, phydev->supported, mask);
756 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
757 				 phydev->supported);
758 		linkmode_and(phydev->advertising, phydev->advertising, mask);
759 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
760 				 phydev->advertising);
761 		phydev->autoneg = AUTONEG_DISABLE;
762 	}
763 
764 	return kszphy_config_init(phydev);
765 }
766 
767 static int ksz8041_config_aneg(struct phy_device *phydev)
768 {
769 	/* Skip auto-negotiation in fiber mode */
770 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
771 		phydev->speed = SPEED_100;
772 		return 0;
773 	}
774 
775 	return genphy_config_aneg(phydev);
776 }
777 
778 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
779 					    const bool ksz_8051)
780 {
781 	int ret;
782 
783 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
784 		return 0;
785 
786 	ret = phy_read(phydev, MII_BMSR);
787 	if (ret < 0)
788 		return ret;
789 
790 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
791 	 * exact PHY ID. However, they can be told apart by the extended
792 	 * capability registers presence. The KSZ8051 PHY has them while
793 	 * the switch does not.
794 	 */
795 	ret &= BMSR_ERCAP;
796 	if (ksz_8051)
797 		return ret;
798 	else
799 		return !ret;
800 }
801 
802 static int ksz8051_match_phy_device(struct phy_device *phydev,
803 				    const struct phy_driver *phydrv)
804 {
805 	return ksz8051_ksz8795_match_phy_device(phydev, true);
806 }
807 
808 static int ksz8081_config_init(struct phy_device *phydev)
809 {
810 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
811 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
812 	 * pull-down is missing, the factory test mode should be cleared by
813 	 * manually writing a 0.
814 	 */
815 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
816 
817 	return kszphy_config_init(phydev);
818 }
819 
820 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
821 {
822 	u16 val;
823 
824 	switch (ctrl) {
825 	case ETH_TP_MDI:
826 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
827 		break;
828 	case ETH_TP_MDI_X:
829 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
830 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
831 		break;
832 	case ETH_TP_MDI_AUTO:
833 		val = 0;
834 		break;
835 	default:
836 		return 0;
837 	}
838 
839 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
840 			  KSZ8081_CTRL2_HP_MDIX |
841 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
842 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
843 			  KSZ8081_CTRL2_HP_MDIX | val);
844 }
845 
846 static int ksz8081_config_aneg(struct phy_device *phydev)
847 {
848 	int ret;
849 
850 	ret = genphy_config_aneg(phydev);
851 	if (ret)
852 		return ret;
853 
854 	/* The MDI-X configuration is automatically changed by the PHY after
855 	 * switching from autoneg off to on. So, take MDI-X configuration under
856 	 * own control and set it after autoneg configuration was done.
857 	 */
858 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
859 }
860 
861 static int ksz8081_mdix_update(struct phy_device *phydev)
862 {
863 	int ret;
864 
865 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
866 	if (ret < 0)
867 		return ret;
868 
869 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
870 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
871 			phydev->mdix_ctrl = ETH_TP_MDI_X;
872 		else
873 			phydev->mdix_ctrl = ETH_TP_MDI;
874 	} else {
875 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
876 	}
877 
878 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
879 	if (ret < 0)
880 		return ret;
881 
882 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
883 		phydev->mdix = ETH_TP_MDI;
884 	else
885 		phydev->mdix = ETH_TP_MDI_X;
886 
887 	return 0;
888 }
889 
890 static int ksz8081_read_status(struct phy_device *phydev)
891 {
892 	int ret;
893 
894 	ret = ksz8081_mdix_update(phydev);
895 	if (ret < 0)
896 		return ret;
897 
898 	return genphy_read_status(phydev);
899 }
900 
901 static int ksz8061_config_init(struct phy_device *phydev)
902 {
903 	int ret;
904 
905 	/* Chip can be powered down by the bootstrap code. */
906 	ret = phy_read(phydev, MII_BMCR);
907 	if (ret < 0)
908 		return ret;
909 	if (ret & BMCR_PDOWN) {
910 		ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
911 		if (ret < 0)
912 			return ret;
913 		usleep_range(1000, 2000);
914 	}
915 
916 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
917 	if (ret)
918 		return ret;
919 
920 	return kszphy_config_init(phydev);
921 }
922 
923 static int ksz8795_match_phy_device(struct phy_device *phydev,
924 				    const struct phy_driver *phydrv)
925 {
926 	return ksz8051_ksz8795_match_phy_device(phydev, false);
927 }
928 
929 static int ksz9021_load_values_from_of(struct phy_device *phydev,
930 				       const struct device_node *of_node,
931 				       u16 reg,
932 				       const char *field1, const char *field2,
933 				       const char *field3, const char *field4)
934 {
935 	int val1 = -1;
936 	int val2 = -2;
937 	int val3 = -3;
938 	int val4 = -4;
939 	int newval;
940 	int matches = 0;
941 
942 	if (!of_property_read_u32(of_node, field1, &val1))
943 		matches++;
944 
945 	if (!of_property_read_u32(of_node, field2, &val2))
946 		matches++;
947 
948 	if (!of_property_read_u32(of_node, field3, &val3))
949 		matches++;
950 
951 	if (!of_property_read_u32(of_node, field4, &val4))
952 		matches++;
953 
954 	if (!matches)
955 		return 0;
956 
957 	if (matches < 4)
958 		newval = kszphy_extended_read(phydev, reg);
959 	else
960 		newval = 0;
961 
962 	if (val1 != -1)
963 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
964 
965 	if (val2 != -2)
966 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
967 
968 	if (val3 != -3)
969 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
970 
971 	if (val4 != -4)
972 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
973 
974 	return kszphy_extended_write(phydev, reg, newval);
975 }
976 
977 static int ksz9021_config_init(struct phy_device *phydev)
978 {
979 	const struct device_node *of_node;
980 	const struct device *dev_walker;
981 
982 	/* The Micrel driver has a deprecated option to place phy OF
983 	 * properties in the MAC node. Walk up the tree of devices to
984 	 * find a device with an OF node.
985 	 */
986 	dev_walker = &phydev->mdio.dev;
987 	do {
988 		of_node = dev_walker->of_node;
989 		dev_walker = dev_walker->parent;
990 
991 	} while (!of_node && dev_walker);
992 
993 	if (of_node) {
994 		ksz9021_load_values_from_of(phydev, of_node,
995 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
996 				    "txen-skew-ps", "txc-skew-ps",
997 				    "rxdv-skew-ps", "rxc-skew-ps");
998 		ksz9021_load_values_from_of(phydev, of_node,
999 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
1000 				    "rxd0-skew-ps", "rxd1-skew-ps",
1001 				    "rxd2-skew-ps", "rxd3-skew-ps");
1002 		ksz9021_load_values_from_of(phydev, of_node,
1003 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
1004 				    "txd0-skew-ps", "txd1-skew-ps",
1005 				    "txd2-skew-ps", "txd3-skew-ps");
1006 	}
1007 	return 0;
1008 }
1009 
1010 #define KSZ9031_PS_TO_REG		60
1011 
1012 /* Extended registers */
1013 /* MMD Address 0x0 */
1014 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
1015 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
1016 
1017 /* MMD Address 0x2 */
1018 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
1019 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
1020 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
1021 
1022 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
1023 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
1024 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
1025 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
1026 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
1027 
1028 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
1029 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
1030 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
1031 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
1032 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
1033 
1034 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
1035 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
1036 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
1037 
1038 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
1039  * provide different RGMII options we need to configure delay offset
1040  * for each pad relative to build in delay.
1041  */
1042 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
1043  * 1.80ns
1044  */
1045 #define RX_ID				0x7
1046 #define RX_CLK_ID			0x19
1047 
1048 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1049  * internal 1.2ns delay.
1050  */
1051 #define RX_ND				0xc
1052 #define RX_CLK_ND			0x0
1053 
1054 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1055 #define TX_ID				0x0
1056 #define TX_CLK_ID			0x1f
1057 
1058 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1059  * delay
1060  */
1061 #define TX_ND				0x7
1062 #define TX_CLK_ND			0xf
1063 
1064 /* MMD Address 0x1C */
1065 #define MII_KSZ9031RN_EDPD		0x23
1066 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
1067 
1068 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable,
1069 				int speed)
1070 {
1071 	u16 ctl = BMCR_LOOPBACK;
1072 	int val;
1073 
1074 	if (!enable)
1075 		return genphy_loopback(phydev, enable, 0);
1076 
1077 	if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000)
1078 		phydev->speed = speed;
1079 	else if (speed)
1080 		return -EINVAL;
1081 	phydev->duplex = DUPLEX_FULL;
1082 
1083 	ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
1084 
1085 	phy_write(phydev, MII_BMCR, ctl);
1086 
1087 	return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS,
1088 				     5000, 500000, true);
1089 }
1090 
1091 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1092 				       const struct device_node *of_node,
1093 				       u16 reg, size_t field_sz,
1094 				       const char *field[], u8 numfields,
1095 				       bool *update)
1096 {
1097 	int val[4] = {-1, -2, -3, -4};
1098 	int matches = 0;
1099 	u16 mask;
1100 	u16 maxval;
1101 	u16 newval;
1102 	int i;
1103 
1104 	for (i = 0; i < numfields; i++)
1105 		if (!of_property_read_u32(of_node, field[i], val + i))
1106 			matches++;
1107 
1108 	if (!matches)
1109 		return 0;
1110 
1111 	*update |= true;
1112 
1113 	if (matches < numfields)
1114 		newval = phy_read_mmd(phydev, 2, reg);
1115 	else
1116 		newval = 0;
1117 
1118 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1119 	for (i = 0; i < numfields; i++)
1120 		if (val[i] != -(i + 1)) {
1121 			mask = 0xffff;
1122 			mask ^= maxval << (field_sz * i);
1123 			newval = (newval & mask) |
1124 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
1125 					<< (field_sz * i));
1126 		}
1127 
1128 	return phy_write_mmd(phydev, 2, reg, newval);
1129 }
1130 
1131 /* Center KSZ9031RNX FLP timing at 16ms. */
1132 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1133 {
1134 	int result;
1135 
1136 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1137 			       0x0006);
1138 	if (result)
1139 		return result;
1140 
1141 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1142 			       0x1A80);
1143 	if (result)
1144 		return result;
1145 
1146 	return genphy_restart_aneg(phydev);
1147 }
1148 
1149 /* Enable energy-detect power-down mode */
1150 static int ksz9031_enable_edpd(struct phy_device *phydev)
1151 {
1152 	int reg;
1153 
1154 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1155 	if (reg < 0)
1156 		return reg;
1157 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1158 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
1159 }
1160 
1161 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1162 {
1163 	u16 rx, tx, rx_clk, tx_clk;
1164 	int ret;
1165 
1166 	switch (phydev->interface) {
1167 	case PHY_INTERFACE_MODE_RGMII:
1168 		tx = TX_ND;
1169 		tx_clk = TX_CLK_ND;
1170 		rx = RX_ND;
1171 		rx_clk = RX_CLK_ND;
1172 		break;
1173 	case PHY_INTERFACE_MODE_RGMII_ID:
1174 		tx = TX_ID;
1175 		tx_clk = TX_CLK_ID;
1176 		rx = RX_ID;
1177 		rx_clk = RX_CLK_ID;
1178 		break;
1179 	case PHY_INTERFACE_MODE_RGMII_RXID:
1180 		tx = TX_ND;
1181 		tx_clk = TX_CLK_ND;
1182 		rx = RX_ID;
1183 		rx_clk = RX_CLK_ID;
1184 		break;
1185 	case PHY_INTERFACE_MODE_RGMII_TXID:
1186 		tx = TX_ID;
1187 		tx_clk = TX_CLK_ID;
1188 		rx = RX_ND;
1189 		rx_clk = RX_CLK_ND;
1190 		break;
1191 	default:
1192 		return 0;
1193 	}
1194 
1195 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1196 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1197 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1198 	if (ret < 0)
1199 		return ret;
1200 
1201 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1202 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1203 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1204 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1205 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1206 	if (ret < 0)
1207 		return ret;
1208 
1209 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1210 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1211 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1212 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1213 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1214 	if (ret < 0)
1215 		return ret;
1216 
1217 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1218 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1219 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1220 }
1221 
1222 static int ksz9031_config_init(struct phy_device *phydev)
1223 {
1224 	const struct device_node *of_node;
1225 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1226 	static const char *rx_data_skews[4] = {
1227 		"rxd0-skew-ps", "rxd1-skew-ps",
1228 		"rxd2-skew-ps", "rxd3-skew-ps"
1229 	};
1230 	static const char *tx_data_skews[4] = {
1231 		"txd0-skew-ps", "txd1-skew-ps",
1232 		"txd2-skew-ps", "txd3-skew-ps"
1233 	};
1234 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1235 	const struct device *dev_walker;
1236 	int result;
1237 
1238 	result = ksz9031_enable_edpd(phydev);
1239 	if (result < 0)
1240 		return result;
1241 
1242 	/* The Micrel driver has a deprecated option to place phy OF
1243 	 * properties in the MAC node. Walk up the tree of devices to
1244 	 * find a device with an OF node.
1245 	 */
1246 	dev_walker = &phydev->mdio.dev;
1247 	do {
1248 		of_node = dev_walker->of_node;
1249 		dev_walker = dev_walker->parent;
1250 	} while (!of_node && dev_walker);
1251 
1252 	if (of_node) {
1253 		bool update = false;
1254 
1255 		if (phy_interface_is_rgmii(phydev)) {
1256 			result = ksz9031_config_rgmii_delay(phydev);
1257 			if (result < 0)
1258 				return result;
1259 		}
1260 
1261 		ksz9031_of_load_skew_values(phydev, of_node,
1262 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1263 				clk_skews, 2, &update);
1264 
1265 		ksz9031_of_load_skew_values(phydev, of_node,
1266 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1267 				control_skews, 2, &update);
1268 
1269 		ksz9031_of_load_skew_values(phydev, of_node,
1270 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1271 				rx_data_skews, 4, &update);
1272 
1273 		ksz9031_of_load_skew_values(phydev, of_node,
1274 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1275 				tx_data_skews, 4, &update);
1276 
1277 		if (update && !phy_interface_is_rgmii(phydev))
1278 			phydev_warn(phydev,
1279 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1280 
1281 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1282 		 * When the device links in the 1000BASE-T slave mode only,
1283 		 * the optional 125MHz reference output clock (CLK125_NDO)
1284 		 * has wide duty cycle variation.
1285 		 *
1286 		 * The optional CLK125_NDO clock does not meet the RGMII
1287 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1288 		 * cannot be used directly by the MAC side for clocking
1289 		 * applications that have setup/hold time requirements on
1290 		 * rising and falling clock edges.
1291 		 *
1292 		 * Workaround:
1293 		 * Force the phy to be the master to receive a stable clock
1294 		 * which meets the duty cycle requirement.
1295 		 */
1296 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1297 			result = phy_read(phydev, MII_CTRL1000);
1298 			if (result < 0)
1299 				goto err_force_master;
1300 
1301 			/* enable master mode, config & prefer master */
1302 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1303 			result = phy_write(phydev, MII_CTRL1000, result);
1304 			if (result < 0)
1305 				goto err_force_master;
1306 		}
1307 	}
1308 
1309 	return ksz9031_center_flp_timing(phydev);
1310 
1311 err_force_master:
1312 	phydev_err(phydev, "failed to force the phy to master mode\n");
1313 	return result;
1314 }
1315 
1316 #define KSZ9131_SKEW_5BIT_MAX	2400
1317 #define KSZ9131_SKEW_4BIT_MAX	800
1318 #define KSZ9131_OFFSET		700
1319 #define KSZ9131_STEP		100
1320 
1321 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1322 				       struct device_node *of_node,
1323 				       u16 reg, size_t field_sz,
1324 				       char *field[], u8 numfields)
1325 {
1326 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1327 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1328 	int skewval, skewmax = 0;
1329 	int matches = 0;
1330 	u16 maxval;
1331 	u16 newval;
1332 	u16 mask;
1333 	int i;
1334 
1335 	/* psec properties in dts should mean x pico seconds */
1336 	if (field_sz == 5)
1337 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1338 	else
1339 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1340 
1341 	for (i = 0; i < numfields; i++)
1342 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1343 			if (skewval < -KSZ9131_OFFSET)
1344 				skewval = -KSZ9131_OFFSET;
1345 			else if (skewval > skewmax)
1346 				skewval = skewmax;
1347 
1348 			val[i] = skewval + KSZ9131_OFFSET;
1349 			matches++;
1350 		}
1351 
1352 	if (!matches)
1353 		return 0;
1354 
1355 	if (matches < numfields)
1356 		newval = phy_read_mmd(phydev, 2, reg);
1357 	else
1358 		newval = 0;
1359 
1360 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1361 	for (i = 0; i < numfields; i++)
1362 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1363 			mask = 0xffff;
1364 			mask ^= maxval << (field_sz * i);
1365 			newval = (newval & mask) |
1366 				(((val[i] / KSZ9131_STEP) & maxval)
1367 					<< (field_sz * i));
1368 		}
1369 
1370 	return phy_write_mmd(phydev, 2, reg, newval);
1371 }
1372 
1373 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1374 #define KSZ9131RN_RXC_DLL_CTRL		76
1375 #define KSZ9131RN_TXC_DLL_CTRL		77
1376 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1377 
1378 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1379 {
1380 	const struct kszphy_type *type = phydev->drv->driver_data;
1381 	u16 rxcdll_val, txcdll_val;
1382 	int ret;
1383 
1384 	switch (phydev->interface) {
1385 	case PHY_INTERFACE_MODE_RGMII:
1386 		rxcdll_val = type->disable_dll_rx_bit;
1387 		txcdll_val = type->disable_dll_tx_bit;
1388 		break;
1389 	case PHY_INTERFACE_MODE_RGMII_ID:
1390 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1391 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1392 		break;
1393 	case PHY_INTERFACE_MODE_RGMII_RXID:
1394 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1395 		txcdll_val = type->disable_dll_tx_bit;
1396 		break;
1397 	case PHY_INTERFACE_MODE_RGMII_TXID:
1398 		rxcdll_val = type->disable_dll_rx_bit;
1399 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1400 		break;
1401 	default:
1402 		return 0;
1403 	}
1404 
1405 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1406 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1407 			     rxcdll_val);
1408 	if (ret < 0)
1409 		return ret;
1410 
1411 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1412 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1413 			      txcdll_val);
1414 }
1415 
1416 /* Silicon Errata DS80000693B
1417  *
1418  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1419  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1420  * according to the datasheet (off if there is no link).
1421  */
1422 static int ksz9131_led_errata(struct phy_device *phydev)
1423 {
1424 	int reg;
1425 
1426 	reg = phy_read_mmd(phydev, 2, 0);
1427 	if (reg < 0)
1428 		return reg;
1429 
1430 	if (!(reg & BIT(4)))
1431 		return 0;
1432 
1433 	return phy_set_bits(phydev, 0x1e, BIT(9));
1434 }
1435 
1436 static int ksz9131_config_init(struct phy_device *phydev)
1437 {
1438 	struct device_node *of_node;
1439 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1440 	char *rx_data_skews[4] = {
1441 		"rxd0-skew-psec", "rxd1-skew-psec",
1442 		"rxd2-skew-psec", "rxd3-skew-psec"
1443 	};
1444 	char *tx_data_skews[4] = {
1445 		"txd0-skew-psec", "txd1-skew-psec",
1446 		"txd2-skew-psec", "txd3-skew-psec"
1447 	};
1448 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1449 	const struct device *dev_walker;
1450 	int ret;
1451 
1452 	phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1453 
1454 	dev_walker = &phydev->mdio.dev;
1455 	do {
1456 		of_node = dev_walker->of_node;
1457 		dev_walker = dev_walker->parent;
1458 	} while (!of_node && dev_walker);
1459 
1460 	if (!of_node)
1461 		return 0;
1462 
1463 	if (phy_interface_is_rgmii(phydev)) {
1464 		ret = ksz9131_config_rgmii_delay(phydev);
1465 		if (ret < 0)
1466 			return ret;
1467 	}
1468 
1469 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1470 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1471 					  clk_skews, 2);
1472 	if (ret < 0)
1473 		return ret;
1474 
1475 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1476 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1477 					  control_skews, 2);
1478 	if (ret < 0)
1479 		return ret;
1480 
1481 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1482 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1483 					  rx_data_skews, 4);
1484 	if (ret < 0)
1485 		return ret;
1486 
1487 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1488 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1489 					  tx_data_skews, 4);
1490 	if (ret < 0)
1491 		return ret;
1492 
1493 	ret = ksz9131_led_errata(phydev);
1494 	if (ret < 0)
1495 		return ret;
1496 
1497 	return 0;
1498 }
1499 
1500 #define MII_KSZ9131_AUTO_MDIX		0x1C
1501 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1502 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1503 #define MII_KSZ9131_DIG_AXAN_STS	0x14
1504 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET	BIT(14)
1505 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT	BIT(12)
1506 
1507 static int ksz9131_mdix_update(struct phy_device *phydev)
1508 {
1509 	int ret;
1510 
1511 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1512 		phydev->mdix = phydev->mdix_ctrl;
1513 	} else {
1514 		ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1515 		if (ret < 0)
1516 			return ret;
1517 
1518 		if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1519 			if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1520 				phydev->mdix = ETH_TP_MDI;
1521 			else
1522 				phydev->mdix = ETH_TP_MDI_X;
1523 		} else {
1524 			phydev->mdix = ETH_TP_MDI_INVALID;
1525 		}
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1532 {
1533 	u16 val;
1534 
1535 	switch (ctrl) {
1536 	case ETH_TP_MDI:
1537 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1538 		      MII_KSZ9131_AUTO_MDI_SET;
1539 		break;
1540 	case ETH_TP_MDI_X:
1541 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1542 		break;
1543 	case ETH_TP_MDI_AUTO:
1544 		val = 0;
1545 		break;
1546 	default:
1547 		return 0;
1548 	}
1549 
1550 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1551 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1552 			  MII_KSZ9131_AUTO_MDI_SET, val);
1553 }
1554 
1555 static int ksz9131_read_status(struct phy_device *phydev)
1556 {
1557 	int ret;
1558 
1559 	ret = ksz9131_mdix_update(phydev);
1560 	if (ret < 0)
1561 		return ret;
1562 
1563 	return genphy_read_status(phydev);
1564 }
1565 
1566 static int ksz9131_config_aneg(struct phy_device *phydev)
1567 {
1568 	int ret;
1569 
1570 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1571 	if (ret)
1572 		return ret;
1573 
1574 	return genphy_config_aneg(phydev);
1575 }
1576 
1577 static int ksz9477_get_features(struct phy_device *phydev)
1578 {
1579 	int ret;
1580 
1581 	ret = genphy_read_abilities(phydev);
1582 	if (ret)
1583 		return ret;
1584 
1585 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1586 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1587 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1588 	 * of caps.
1589 	 * KSZ8563R should have 100BaseTX/Full only.
1590 	 */
1591 	linkmode_and(phydev->supported_eee, phydev->supported,
1592 		     PHY_EEE_CAP1_FEATURES);
1593 
1594 	return 0;
1595 }
1596 
1597 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1598 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1599 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1600 static int ksz8873mll_read_status(struct phy_device *phydev)
1601 {
1602 	int regval;
1603 
1604 	/* dummy read */
1605 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1606 
1607 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1608 
1609 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1610 		phydev->duplex = DUPLEX_HALF;
1611 	else
1612 		phydev->duplex = DUPLEX_FULL;
1613 
1614 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1615 		phydev->speed = SPEED_10;
1616 	else
1617 		phydev->speed = SPEED_100;
1618 
1619 	phydev->link = 1;
1620 	phydev->pause = phydev->asym_pause = 0;
1621 
1622 	return 0;
1623 }
1624 
1625 static int ksz9031_get_features(struct phy_device *phydev)
1626 {
1627 	int ret;
1628 
1629 	ret = genphy_read_abilities(phydev);
1630 	if (ret < 0)
1631 		return ret;
1632 
1633 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1634 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1635 	 * link-up may fail after a link-up to link-down transition.
1636 	 *
1637 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1638 	 *
1639 	 * Workaround:
1640 	 * Do not enable the Asymmetric Pause capability bit.
1641 	 */
1642 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1643 
1644 	/* We force setting the Pause capability as the core will force the
1645 	 * Asymmetric Pause capability to 1 otherwise.
1646 	 */
1647 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1648 
1649 	return 0;
1650 }
1651 
1652 static int ksz9031_read_status(struct phy_device *phydev)
1653 {
1654 	int err;
1655 	int regval;
1656 
1657 	err = genphy_read_status(phydev);
1658 	if (err)
1659 		return err;
1660 
1661 	/* Make sure the PHY is not broken. Read idle error count,
1662 	 * and reset the PHY if it is maxed out.
1663 	 */
1664 	regval = phy_read(phydev, MII_STAT1000);
1665 	if ((regval & 0xFF) == 0xFF) {
1666 		phy_init_hw(phydev);
1667 		phydev->link = 0;
1668 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1669 			phydev->drv->config_intr(phydev);
1670 		return genphy_config_aneg(phydev);
1671 	}
1672 
1673 	return 0;
1674 }
1675 
1676 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1677 {
1678 	struct kszphy_priv *priv = phydev->priv;
1679 	int ret;
1680 
1681 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1682 	 * Prior to running the cable diagnostics, Auto-negotiation should
1683 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1684 	 * via the Basic Control Register.
1685 	 */
1686 	ret = phy_modify(phydev, MII_BMCR,
1687 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1688 			 BMCR_ANENABLE | BMCR_SPEED100,
1689 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1690 	if (ret)
1691 		return ret;
1692 
1693 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1694 	 * The Master-Slave configuration should be set to Slave by writing
1695 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1696 	 * Register.
1697 	 */
1698 	ret = phy_read(phydev, MII_CTRL1000);
1699 	if (ret < 0)
1700 		return ret;
1701 
1702 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1703 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1704 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1705 	ret |= CTL1000_ENABLE_MASTER;
1706 
1707 	return phy_write(phydev, MII_CTRL1000, ret);
1708 }
1709 
1710 static int ksz9x31_cable_test_result_trans(u16 status)
1711 {
1712 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1713 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1714 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1715 	case KSZ9x31_LMD_VCT_ST_OPEN:
1716 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1717 	case KSZ9x31_LMD_VCT_ST_SHORT:
1718 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1719 	case KSZ9x31_LMD_VCT_ST_FAIL:
1720 		fallthrough;
1721 	default:
1722 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1723 	}
1724 }
1725 
1726 static bool ksz9x31_cable_test_failed(u16 status)
1727 {
1728 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1729 
1730 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1731 }
1732 
1733 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1734 {
1735 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1736 	case KSZ9x31_LMD_VCT_ST_OPEN:
1737 		fallthrough;
1738 	case KSZ9x31_LMD_VCT_ST_SHORT:
1739 		return true;
1740 	}
1741 	return false;
1742 }
1743 
1744 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1745 {
1746 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1747 
1748 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1749 	 *
1750 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1751 	 */
1752 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131) ||
1753 	    phydev_id_compare(phydev, PHY_ID_KSZ9477))
1754 		dt = clamp(dt - 22, 0, 255);
1755 
1756 	return (dt * 400) / 10;
1757 }
1758 
1759 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1760 {
1761 	int val, ret;
1762 
1763 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1764 				    !(val & KSZ9x31_LMD_VCT_EN),
1765 				    30000, 100000, true);
1766 
1767 	return ret < 0 ? ret : 0;
1768 }
1769 
1770 static int ksz9x31_cable_test_get_pair(int pair)
1771 {
1772 	static const int ethtool_pair[] = {
1773 		ETHTOOL_A_CABLE_PAIR_A,
1774 		ETHTOOL_A_CABLE_PAIR_B,
1775 		ETHTOOL_A_CABLE_PAIR_C,
1776 		ETHTOOL_A_CABLE_PAIR_D,
1777 	};
1778 
1779 	return ethtool_pair[pair];
1780 }
1781 
1782 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1783 {
1784 	int ret, val;
1785 
1786 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1787 	 * To test each individual cable pair, set the cable pair in the Cable
1788 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1789 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1790 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1791 	 * will self clear when the test is concluded.
1792 	 */
1793 	ret = phy_write(phydev, KSZ9x31_LMD,
1794 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1795 	if (ret)
1796 		return ret;
1797 
1798 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1799 	if (ret)
1800 		return ret;
1801 
1802 	val = phy_read(phydev, KSZ9x31_LMD);
1803 	if (val < 0)
1804 		return val;
1805 
1806 	if (ksz9x31_cable_test_failed(val))
1807 		return -EAGAIN;
1808 
1809 	ret = ethnl_cable_test_result(phydev,
1810 				      ksz9x31_cable_test_get_pair(pair),
1811 				      ksz9x31_cable_test_result_trans(val));
1812 	if (ret)
1813 		return ret;
1814 
1815 	if (!ksz9x31_cable_test_fault_length_valid(val))
1816 		return 0;
1817 
1818 	return ethnl_cable_test_fault_length(phydev,
1819 					     ksz9x31_cable_test_get_pair(pair),
1820 					     ksz9x31_cable_test_fault_length(phydev, val));
1821 }
1822 
1823 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1824 					 bool *finished)
1825 {
1826 	struct kszphy_priv *priv = phydev->priv;
1827 	unsigned long pair_mask;
1828 	int retries = 20;
1829 	int pair, ret, rv;
1830 
1831 	*finished = false;
1832 
1833 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1834 			      phydev->supported) ||
1835 	    linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
1836 			      phydev->supported))
1837 		pair_mask = 0xf; /* All pairs */
1838 	else
1839 		pair_mask = 0x3; /* Pairs A and B only */
1840 
1841 	/* Try harder if link partner is active */
1842 	while (pair_mask && retries--) {
1843 		for_each_set_bit(pair, &pair_mask, 4) {
1844 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1845 			if (ret == -EAGAIN)
1846 				continue;
1847 			if (ret < 0)
1848 				return ret;
1849 			clear_bit(pair, &pair_mask);
1850 		}
1851 		/* If link partner is in autonegotiation mode it will send 2ms
1852 		 * of FLPs with at least 6ms of silence.
1853 		 * Add 2ms sleep to have better chances to hit this silence.
1854 		 */
1855 		if (pair_mask)
1856 			usleep_range(2000, 3000);
1857 	}
1858 
1859 	/* Report remaining unfinished pair result as unknown. */
1860 	for_each_set_bit(pair, &pair_mask, 4) {
1861 		ret = ethnl_cable_test_result(phydev,
1862 					      ksz9x31_cable_test_get_pair(pair),
1863 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1864 	}
1865 
1866 	*finished = true;
1867 
1868 	/* Restore cached bits from before LinkMD got started. */
1869 	rv = phy_modify(phydev, MII_CTRL1000,
1870 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1871 			priv->vct_ctrl1000);
1872 	if (rv)
1873 		return rv;
1874 
1875 	return ret;
1876 }
1877 
1878 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1879 {
1880 	return 0;
1881 }
1882 
1883 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1884 {
1885 	u16 val;
1886 
1887 	switch (ctrl) {
1888 	case ETH_TP_MDI:
1889 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1890 		break;
1891 	case ETH_TP_MDI_X:
1892 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1893 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1894 		 * sheet seems to be missing:
1895 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1896 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1897 		 */
1898 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1899 		break;
1900 	case ETH_TP_MDI_AUTO:
1901 		val = 0;
1902 		break;
1903 	default:
1904 		return 0;
1905 	}
1906 
1907 	return phy_modify(phydev, MII_BMCR,
1908 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1909 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1910 			  KSZ886X_BMCR_HP_MDIX | val);
1911 }
1912 
1913 static int ksz886x_config_aneg(struct phy_device *phydev)
1914 {
1915 	int ret;
1916 
1917 	ret = genphy_config_aneg(phydev);
1918 	if (ret)
1919 		return ret;
1920 
1921 	if (phydev->autoneg != AUTONEG_ENABLE) {
1922 		/* When autonegotiation is disabled, we need to manually force
1923 		 * the link state. If we don't do this, the PHY will keep
1924 		 * sending Fast Link Pulses (FLPs) which are part of the
1925 		 * autonegotiation process. This is not desired when
1926 		 * autonegotiation is off.
1927 		 */
1928 		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1929 				   KSZ886X_CTRL_FORCE_LINK);
1930 		if (ret)
1931 			return ret;
1932 	} else {
1933 		/* If we had previously forced the link state, we need to
1934 		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1935 		 * will not perform autonegotiation.
1936 		 */
1937 		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1938 				     KSZ886X_CTRL_FORCE_LINK);
1939 		if (ret)
1940 			return ret;
1941 	}
1942 
1943 	/* The MDI-X configuration is automatically changed by the PHY after
1944 	 * switching from autoneg off to on. So, take MDI-X configuration under
1945 	 * own control and set it after autoneg configuration was done.
1946 	 */
1947 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1948 }
1949 
1950 static int ksz886x_mdix_update(struct phy_device *phydev)
1951 {
1952 	int ret;
1953 
1954 	ret = phy_read(phydev, MII_BMCR);
1955 	if (ret < 0)
1956 		return ret;
1957 
1958 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1959 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1960 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1961 		else
1962 			phydev->mdix_ctrl = ETH_TP_MDI;
1963 	} else {
1964 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1965 	}
1966 
1967 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1968 	if (ret < 0)
1969 		return ret;
1970 
1971 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1972 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1973 		phydev->mdix = ETH_TP_MDI_X;
1974 	else
1975 		phydev->mdix = ETH_TP_MDI;
1976 
1977 	return 0;
1978 }
1979 
1980 static int ksz886x_read_status(struct phy_device *phydev)
1981 {
1982 	int ret;
1983 
1984 	ret = ksz886x_mdix_update(phydev);
1985 	if (ret < 0)
1986 		return ret;
1987 
1988 	return genphy_read_status(phydev);
1989 }
1990 
1991 static int ksz9477_mdix_update(struct phy_device *phydev)
1992 {
1993 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO)
1994 		phydev->mdix = phydev->mdix_ctrl;
1995 	else
1996 		phydev->mdix = ETH_TP_MDI_INVALID;
1997 
1998 	return 0;
1999 }
2000 
2001 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev)
2002 {
2003 	int val;
2004 
2005 	val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
2006 	if (val < 0)
2007 		return val;
2008 
2009 	if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF))
2010 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
2011 	else if (val & MII_KSZ9131_AUTO_MDI_SET)
2012 		phydev->mdix_ctrl = ETH_TP_MDI;
2013 	else
2014 		phydev->mdix_ctrl = ETH_TP_MDI_X;
2015 
2016 	return 0;
2017 }
2018 
2019 static int ksz9477_read_status(struct phy_device *phydev)
2020 {
2021 	int ret;
2022 
2023 	ret = ksz9477_mdix_update(phydev);
2024 	if (ret)
2025 		return ret;
2026 
2027 	return genphy_read_status(phydev);
2028 }
2029 
2030 static int ksz9477_config_aneg(struct phy_device *phydev)
2031 {
2032 	int ret;
2033 
2034 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
2035 	if (ret)
2036 		return ret;
2037 
2038 	return genphy_config_aneg(phydev);
2039 }
2040 
2041 struct ksz9477_errata_write {
2042 	u8 dev_addr;
2043 	u8 reg_addr;
2044 	u16 val;
2045 };
2046 
2047 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
2048 	 /* Register settings are needed to improve PHY receive performance */
2049 	{0x01, 0x6f, 0xdd0b},
2050 	{0x01, 0x8f, 0x6032},
2051 	{0x01, 0x9d, 0x248c},
2052 	{0x01, 0x75, 0x0060},
2053 	{0x01, 0xd3, 0x7777},
2054 	{0x1c, 0x06, 0x3008},
2055 	{0x1c, 0x08, 0x2000},
2056 
2057 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
2058 	{0x1c, 0x04, 0x00d0},
2059 
2060 	/* Register settings are required to meet data sheet supply current specifications */
2061 	{0x1c, 0x13, 0x6eff},
2062 	{0x1c, 0x14, 0xe6ff},
2063 	{0x1c, 0x15, 0x6eff},
2064 	{0x1c, 0x16, 0xe6ff},
2065 	{0x1c, 0x17, 0x00ff},
2066 	{0x1c, 0x18, 0x43ff},
2067 	{0x1c, 0x19, 0xc3ff},
2068 	{0x1c, 0x1a, 0x6fff},
2069 	{0x1c, 0x1b, 0x07ff},
2070 	{0x1c, 0x1c, 0x0fff},
2071 	{0x1c, 0x1d, 0xe7ff},
2072 	{0x1c, 0x1e, 0xefff},
2073 	{0x1c, 0x20, 0xeeee},
2074 };
2075 
2076 static int ksz9477_phy_errata(struct phy_device *phydev)
2077 {
2078 	int err;
2079 	int i;
2080 
2081 	/* Apply PHY settings to address errata listed in
2082 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
2083 	 * Silicon Errata and Data Sheet Clarification documents.
2084 	 *
2085 	 * Document notes: Before configuring the PHY MMD registers, it is
2086 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
2087 	 * disabled by writing to register 0xN100-0xN101. After writing the
2088 	 * MMD registers, and after all errata workarounds that involve PHY
2089 	 * register settings, write register 0xN100-0xN101 again to enable
2090 	 * and restart auto-negotiation.
2091 	 */
2092 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
2093 	if (err)
2094 		return err;
2095 
2096 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
2097 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
2098 
2099 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
2100 		if (err)
2101 			return err;
2102 	}
2103 
2104 	return genphy_restart_aneg(phydev);
2105 }
2106 
2107 static int ksz9477_config_init(struct phy_device *phydev)
2108 {
2109 	int err;
2110 
2111 	/* Only KSZ9897 family of switches needs this fix. */
2112 	if ((phydev->phy_id & 0xf) == 1) {
2113 		err = ksz9477_phy_errata(phydev);
2114 		if (err)
2115 			return err;
2116 	}
2117 
2118 	/* Read initial MDI-X config state. So, we do not need to poll it
2119 	 * later on.
2120 	 */
2121 	err = ksz9477_read_mdix_ctrl(phydev);
2122 	if (err)
2123 		return err;
2124 
2125 	return kszphy_config_init(phydev);
2126 }
2127 
2128 static int kszphy_get_sset_count(struct phy_device *phydev)
2129 {
2130 	return ARRAY_SIZE(kszphy_hw_stats);
2131 }
2132 
2133 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
2134 {
2135 	int i;
2136 
2137 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2138 		ethtool_puts(&data, kszphy_hw_stats[i].string);
2139 }
2140 
2141 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
2142 {
2143 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2144 	struct kszphy_priv *priv = phydev->priv;
2145 	int val;
2146 	u64 ret;
2147 
2148 	val = phy_read(phydev, stat.reg);
2149 	if (val < 0) {
2150 		ret = U64_MAX;
2151 	} else {
2152 		val = val & ((1 << stat.bits) - 1);
2153 		priv->stats[i] += val;
2154 		ret = priv->stats[i];
2155 	}
2156 
2157 	return ret;
2158 }
2159 
2160 static void kszphy_get_stats(struct phy_device *phydev,
2161 			     struct ethtool_stats *stats, u64 *data)
2162 {
2163 	int i;
2164 
2165 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2166 		data[i] = kszphy_get_stat(phydev, i);
2167 }
2168 
2169 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313,
2170  * etc. The counter is incremented when the PHY receives a frame with one or
2171  * more symbol errors. The counter is cleared when the register is read.
2172  */
2173 #define MII_KSZ9477_PHY_RXER_COUNTER	0x15
2174 
2175 static int kszphy_update_stats(struct phy_device *phydev)
2176 {
2177 	struct kszphy_priv *priv = phydev->priv;
2178 	int ret;
2179 
2180 	ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER);
2181 	if (ret < 0)
2182 		return ret;
2183 
2184 	priv->phy_stats.rx_err_pkt_cnt += ret;
2185 
2186 	return 0;
2187 }
2188 
2189 static void kszphy_get_phy_stats(struct phy_device *phydev,
2190 				 struct ethtool_eth_phy_stats *eth_stats,
2191 				 struct ethtool_phy_stats *stats)
2192 {
2193 	struct kszphy_priv *priv = phydev->priv;
2194 
2195 	stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt;
2196 }
2197 
2198 /* Base register for Signal Quality Indicator (SQI) - Channel A
2199  *
2200  * MMD Address: MDIO_MMD_PMAPMD (0x01)
2201  * Register:    0xAC (Channel A)
2202  * Each channel (pair) has its own register:
2203  *   Channel A: 0xAC
2204  *   Channel B: 0xAD
2205  *   Channel C: 0xAE
2206  *   Channel D: 0xAF
2207  */
2208 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A	0xac
2209 
2210 /* SQI field mask for bits [14:8]
2211  *
2212  * SQI indicates relative quality of the signal.
2213  * A lower value indicates better signal quality.
2214  */
2215 #define KSZ9477_MMD_SQI_MASK			GENMASK(14, 8)
2216 
2217 #define KSZ9477_MAX_CHANNELS			4
2218 #define KSZ9477_SQI_MAX				7
2219 
2220 /* Number of SQI samples to average for a stable result.
2221  *
2222  * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26)
2223  * For noisy environments, a minimum of 30–50 readings is recommended.
2224  */
2225 #define KSZ9477_SQI_SAMPLE_COUNT		40
2226 
2227 /* The hardware SQI register provides a raw value from 0-127, where a lower
2228  * value indicates better signal quality. However, empirical testing has
2229  * shown that only the 0-7 range is relevant for a functional link. A raw
2230  * value of 8 or higher was measured directly before link drop. This aligns
2231  * with the OPEN Alliance recommendation that SQI=0 should represent the
2232  * pre-failure state.
2233  *
2234  * This table provides a non-linear mapping from the useful raw hardware
2235  * values (0-7) to the standard 0-7 SQI scale, where higher is better.
2236  */
2237 static const u8 ksz_sqi_mapping[] = {
2238 	7, /* raw 0 -> SQI 7 */
2239 	7, /* raw 1 -> SQI 7 */
2240 	6, /* raw 2 -> SQI 6 */
2241 	5, /* raw 3 -> SQI 5 */
2242 	4, /* raw 4 -> SQI 4 */
2243 	3, /* raw 5 -> SQI 3 */
2244 	2, /* raw 6 -> SQI 2 */
2245 	1, /* raw 7 -> SQI 1 */
2246 };
2247 
2248 /**
2249  * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI)
2250  * @phydev: the PHY device
2251  *
2252  * This function reads and processes the raw Signal Quality Index from the
2253  * PHY. Based on empirical testing, a raw value of 8 or higher indicates a
2254  * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are
2255  * mapped to the standard 0-7 SQI scale via a lookup table.
2256  *
2257  * Return: SQI value (0–7), or a negative errno on failure.
2258  */
2259 static int kszphy_get_sqi(struct phy_device *phydev)
2260 {
2261 	int sum[KSZ9477_MAX_CHANNELS] = { 0 };
2262 	int worst_sqi = KSZ9477_SQI_MAX;
2263 	int i, val, raw_sqi, ch;
2264 	u8 channels;
2265 
2266 	/* Determine applicable channels based on link speed */
2267 	if (phydev->speed == SPEED_1000)
2268 		channels = 4;
2269 	else if (phydev->speed == SPEED_100)
2270 		channels = 1;
2271 	else
2272 		return -EOPNOTSUPP;
2273 
2274 	/* Sample and accumulate SQI readings for each pair (currently only one).
2275 	 *
2276 	 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26)
2277 	 * - The SQI register is updated every 2 µs.
2278 	 * - Values may fluctuate significantly, even in low-noise environments.
2279 	 * - For reliable estimation, average a minimum of 30–50 samples
2280 	 *   (recommended for noisy environments)
2281 	 * - In noisy environments, individual readings are highly unreliable.
2282 	 *
2283 	 * We use 40 samples per pair with a delay of 3 µs between each
2284 	 * read to ensure new values are captured (2 µs update interval).
2285 	 */
2286 	for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) {
2287 		for (ch = 0; ch < channels; ch++) {
2288 			val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD,
2289 					   KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch);
2290 			if (val < 0)
2291 				return val;
2292 
2293 			raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val);
2294 			sum[ch] += raw_sqi;
2295 
2296 			/* We communicate with the PHY via MDIO via SPI or
2297 			 * I2C, which is relatively slow. At least slower than
2298 			 * the update interval of the SQI register.
2299 			 * So, we can skip the delay between reads.
2300 			 */
2301 		}
2302 	}
2303 
2304 	/* Calculate average for each channel and find the worst SQI */
2305 	for (ch = 0; ch < channels; ch++) {
2306 		int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT;
2307 		int mapped_sqi;
2308 
2309 		/* Handle the pre-fail/failed state first. */
2310 		if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping))
2311 			mapped_sqi = 0;
2312 		else
2313 			/* Use the lookup table for the good signal range. */
2314 			mapped_sqi = ksz_sqi_mapping[avg_raw_sqi];
2315 
2316 		if (mapped_sqi < worst_sqi)
2317 			worst_sqi = mapped_sqi;
2318 	}
2319 
2320 	return worst_sqi;
2321 }
2322 
2323 static int kszphy_get_sqi_max(struct phy_device *phydev)
2324 {
2325 	return KSZ9477_SQI_MAX;
2326 }
2327 
2328 static int kszphy_get_mse_capability(struct phy_device *phydev,
2329 				     struct phy_mse_capability *cap)
2330 {
2331 	/* Capabilities depend on link mode:
2332 	 * - 1000BASE-T: per-pair SQI registers exist => expose A..D
2333 	 *   and a WORST selector.
2334 	 * - 100BASE-TX: HW provides a single MSE/SQI reading in the "channel A"
2335 	 *   register, but with auto MDI-X there is no MDI-X resolution bit,
2336 	 *   so we cannot map that register to a specific wire pair reliably.
2337 	 *   To avoid misleading per-channel data, advertise only LINK.
2338 	 * Other speeds: no MSE exposure via this driver.
2339 	 *
2340 	 * Note: WORST is *not* a hardware selector on this family.
2341 	 * We expose it because the driver computes it in software
2342 	 * by scanning per-channel readouts (A..D) and picking the
2343 	 * maximum average MSE.
2344 	 */
2345 	if (phydev->speed == SPEED_1000)
2346 		cap->supported_caps = PHY_MSE_CAP_CHANNEL_A |
2347 				      PHY_MSE_CAP_CHANNEL_B |
2348 				      PHY_MSE_CAP_CHANNEL_C |
2349 				      PHY_MSE_CAP_CHANNEL_D |
2350 				      PHY_MSE_CAP_WORST_CHANNEL;
2351 	else if (phydev->speed == SPEED_100)
2352 		cap->supported_caps = PHY_MSE_CAP_LINK;
2353 	else
2354 		return -EOPNOTSUPP;
2355 
2356 	cap->max_average_mse = FIELD_MAX(KSZ9477_MMD_SQI_MASK);
2357 	cap->refresh_rate_ps = 2000000; /* 2 us */
2358 	/* Estimated from link modulation (125 MBd per channel) and documented
2359 	 * refresh rate of 2 us
2360 	 */
2361 	cap->num_symbols = 250;
2362 
2363 	cap->supported_caps |= PHY_MSE_CAP_AVG;
2364 
2365 	return 0;
2366 }
2367 
2368 static int kszphy_get_mse_snapshot(struct phy_device *phydev,
2369 				   enum phy_mse_channel channel,
2370 				   struct phy_mse_snapshot *snapshot)
2371 {
2372 	u8 num_channels;
2373 	int ret;
2374 
2375 	if (phydev->speed == SPEED_1000)
2376 		num_channels = 4;
2377 	else if (phydev->speed == SPEED_100)
2378 		num_channels = 1;
2379 	else
2380 		return -EOPNOTSUPP;
2381 
2382 	if (channel == PHY_MSE_CHANNEL_WORST) {
2383 		u32 worst_val = 0;
2384 		int i;
2385 
2386 		/* WORST is implemented in software: select the maximum
2387 		 * average MSE across the available per-channel registers.
2388 		 * Only defined when multiple channels exist (1000BASE-T).
2389 		 */
2390 		if (num_channels < 2)
2391 			return -EOPNOTSUPP;
2392 
2393 		for (i = 0; i < num_channels; i++) {
2394 			ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD,
2395 					KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + i);
2396 			if (ret < 0)
2397 				return ret;
2398 
2399 			ret = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret);
2400 			if (ret > worst_val)
2401 				worst_val = ret;
2402 		}
2403 		snapshot->average_mse = worst_val;
2404 	} else if (channel == PHY_MSE_CHANNEL_LINK && num_channels == 1) {
2405 		ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD,
2406 				   KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A);
2407 		if (ret < 0)
2408 			return ret;
2409 		snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret);
2410 	} else if (channel >= PHY_MSE_CHANNEL_A &&
2411 		   channel <= PHY_MSE_CHANNEL_D) {
2412 		/* Per-channel readouts are valid only for 1000BASE-T. */
2413 		if (phydev->speed != SPEED_1000)
2414 			return -EOPNOTSUPP;
2415 
2416 		ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD,
2417 				   KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + channel);
2418 		if (ret < 0)
2419 			return ret;
2420 		snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret);
2421 	} else {
2422 		return -EOPNOTSUPP;
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 static void kszphy_enable_clk(struct phy_device *phydev)
2429 {
2430 	struct kszphy_priv *priv = phydev->priv;
2431 
2432 	if (!priv->clk_enable && priv->clk) {
2433 		clk_prepare_enable(priv->clk);
2434 		priv->clk_enable = true;
2435 	}
2436 }
2437 
2438 static void kszphy_disable_clk(struct phy_device *phydev)
2439 {
2440 	struct kszphy_priv *priv = phydev->priv;
2441 
2442 	if (priv->clk_enable && priv->clk) {
2443 		clk_disable_unprepare(priv->clk);
2444 		priv->clk_enable = false;
2445 	}
2446 }
2447 
2448 static int kszphy_generic_resume(struct phy_device *phydev)
2449 {
2450 	kszphy_enable_clk(phydev);
2451 
2452 	return genphy_resume(phydev);
2453 }
2454 
2455 static int kszphy_generic_suspend(struct phy_device *phydev)
2456 {
2457 	int ret;
2458 
2459 	ret = genphy_suspend(phydev);
2460 	if (ret)
2461 		return ret;
2462 
2463 	kszphy_disable_clk(phydev);
2464 
2465 	return 0;
2466 }
2467 
2468 static int kszphy_suspend(struct phy_device *phydev)
2469 {
2470 	/* Disable PHY Interrupts */
2471 	if (phy_interrupt_is_valid(phydev)) {
2472 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
2473 		if (phydev->drv->config_intr)
2474 			phydev->drv->config_intr(phydev);
2475 	}
2476 
2477 	return kszphy_generic_suspend(phydev);
2478 }
2479 
2480 static void kszphy_parse_led_mode(struct phy_device *phydev)
2481 {
2482 	const struct kszphy_type *type = phydev->drv->driver_data;
2483 	const struct device_node *np = phydev->mdio.dev.of_node;
2484 	struct kszphy_priv *priv = phydev->priv;
2485 	int ret;
2486 
2487 	if (type && type->led_mode_reg) {
2488 		ret = of_property_read_u32(np, "micrel,led-mode",
2489 					   &priv->led_mode);
2490 
2491 		if (ret)
2492 			priv->led_mode = -1;
2493 
2494 		if (priv->led_mode > 3) {
2495 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
2496 				   priv->led_mode);
2497 			priv->led_mode = -1;
2498 		}
2499 	} else {
2500 		priv->led_mode = -1;
2501 	}
2502 }
2503 
2504 static int kszphy_resume(struct phy_device *phydev)
2505 {
2506 	int ret;
2507 
2508 	ret = kszphy_generic_resume(phydev);
2509 	if (ret)
2510 		return ret;
2511 
2512 	/* After switching from power-down to normal mode, an internal global
2513 	 * reset is automatically generated. Wait a minimum of 1 ms before
2514 	 * read/write access to the PHY registers.
2515 	 */
2516 	usleep_range(1000, 2000);
2517 
2518 	ret = kszphy_config_reset(phydev);
2519 	if (ret)
2520 		return ret;
2521 
2522 	/* Enable PHY Interrupts */
2523 	if (phy_interrupt_is_valid(phydev)) {
2524 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2525 		if (phydev->drv->config_intr)
2526 			phydev->drv->config_intr(phydev);
2527 	}
2528 
2529 	return 0;
2530 }
2531 
2532 /* Because of errata DS80000700A, receiver error following software
2533  * power down. Suspend and resume callbacks only disable and enable
2534  * external rmii reference clock.
2535  */
2536 static int ksz8041_resume(struct phy_device *phydev)
2537 {
2538 	kszphy_enable_clk(phydev);
2539 
2540 	return 0;
2541 }
2542 
2543 static int ksz8041_suspend(struct phy_device *phydev)
2544 {
2545 	kszphy_disable_clk(phydev);
2546 
2547 	return 0;
2548 }
2549 
2550 static int ksz9477_resume(struct phy_device *phydev)
2551 {
2552 	int ret;
2553 
2554 	/* No need to initialize registers if not powered down. */
2555 	ret = phy_read(phydev, MII_BMCR);
2556 	if (ret < 0)
2557 		return ret;
2558 	if (!(ret & BMCR_PDOWN))
2559 		return 0;
2560 
2561 	genphy_resume(phydev);
2562 
2563 	/* After switching from power-down to normal mode, an internal global
2564 	 * reset is automatically generated. Wait a minimum of 1 ms before
2565 	 * read/write access to the PHY registers.
2566 	 */
2567 	usleep_range(1000, 2000);
2568 
2569 	/* Only KSZ9897 family of switches needs this fix. */
2570 	if ((phydev->phy_id & 0xf) == 1) {
2571 		ret = ksz9477_phy_errata(phydev);
2572 		if (ret)
2573 			return ret;
2574 	}
2575 
2576 	/* Enable PHY Interrupts */
2577 	if (phy_interrupt_is_valid(phydev)) {
2578 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2579 		if (phydev->drv->config_intr)
2580 			phydev->drv->config_intr(phydev);
2581 	}
2582 
2583 	return 0;
2584 }
2585 
2586 static int ksz8061_resume(struct phy_device *phydev)
2587 {
2588 	int ret;
2589 
2590 	/* This function can be called twice when the Ethernet device is on. */
2591 	ret = phy_read(phydev, MII_BMCR);
2592 	if (ret < 0)
2593 		return ret;
2594 	if (!(ret & BMCR_PDOWN))
2595 		return 0;
2596 
2597 	ret = kszphy_generic_resume(phydev);
2598 	if (ret)
2599 		return ret;
2600 
2601 	usleep_range(1000, 2000);
2602 
2603 	/* Re-program the value after chip is reset. */
2604 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2605 	if (ret)
2606 		return ret;
2607 
2608 	/* Enable PHY Interrupts */
2609 	if (phy_interrupt_is_valid(phydev)) {
2610 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2611 		if (phydev->drv->config_intr)
2612 			phydev->drv->config_intr(phydev);
2613 	}
2614 
2615 	return 0;
2616 }
2617 
2618 static int ksz8061_suspend(struct phy_device *phydev)
2619 {
2620 	return kszphy_suspend(phydev);
2621 }
2622 
2623 static int kszphy_probe(struct phy_device *phydev)
2624 {
2625 	const struct kszphy_type *type = phydev->drv->driver_data;
2626 	const struct device_node *np = phydev->mdio.dev.of_node;
2627 	struct kszphy_priv *priv;
2628 	struct clk *clk;
2629 
2630 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2631 	if (!priv)
2632 		return -ENOMEM;
2633 
2634 	phydev->priv = priv;
2635 
2636 	priv->type = type;
2637 
2638 	kszphy_parse_led_mode(phydev);
2639 
2640 	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2641 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2642 	if (!IS_ERR_OR_NULL(clk)) {
2643 		unsigned long rate = clk_get_rate(clk);
2644 		bool rmii_ref_clk_sel_25_mhz;
2645 
2646 		if (type)
2647 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2648 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2649 				"micrel,rmii-reference-clock-select-25-mhz");
2650 
2651 		if (rate > 24500000 && rate < 25500000) {
2652 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2653 		} else if (rate > 49500000 && rate < 50500000) {
2654 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2655 		} else {
2656 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2657 				   rate);
2658 			return -EINVAL;
2659 		}
2660 	} else if (!clk) {
2661 		/* unnamed clock from the generic ethernet-phy binding */
2662 		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2663 	}
2664 
2665 	if (IS_ERR(clk))
2666 		return PTR_ERR(clk);
2667 
2668 	clk_disable_unprepare(clk);
2669 	priv->clk = clk;
2670 
2671 	if (ksz8041_fiber_mode(phydev))
2672 		phydev->port = PORT_FIBRE;
2673 
2674 	/* Support legacy board-file configuration */
2675 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2676 		priv->rmii_ref_clk_sel = true;
2677 		priv->rmii_ref_clk_sel_val = true;
2678 	}
2679 
2680 	return 0;
2681 }
2682 
2683 static int lan8814_cable_test_start(struct phy_device *phydev)
2684 {
2685 	/* If autoneg is enabled, we won't be able to test cross pair
2686 	 * short. In this case, the PHY will "detect" a link and
2687 	 * confuse the internal state machine - disable auto neg here.
2688 	 * Set the speed to 1000mbit and full duplex.
2689 	 */
2690 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2691 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2692 }
2693 
2694 static int ksz886x_cable_test_start(struct phy_device *phydev)
2695 {
2696 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2697 		return -EOPNOTSUPP;
2698 
2699 	/* If autoneg is enabled, we won't be able to test cross pair
2700 	 * short. In this case, the PHY will "detect" a link and
2701 	 * confuse the internal state machine - disable auto neg here.
2702 	 * If autoneg is disabled, we should set the speed to 10mbit.
2703 	 */
2704 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2705 }
2706 
2707 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2708 {
2709 	switch (FIELD_GET(mask, status)) {
2710 	case KSZ8081_LMD_STAT_NORMAL:
2711 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2712 	case KSZ8081_LMD_STAT_SHORT:
2713 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2714 	case KSZ8081_LMD_STAT_OPEN:
2715 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2716 	case KSZ8081_LMD_STAT_FAIL:
2717 		fallthrough;
2718 	default:
2719 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2720 	}
2721 }
2722 
2723 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2724 {
2725 	return FIELD_GET(mask, status) ==
2726 		KSZ8081_LMD_STAT_FAIL;
2727 }
2728 
2729 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2730 {
2731 	switch (FIELD_GET(mask, status)) {
2732 	case KSZ8081_LMD_STAT_OPEN:
2733 		fallthrough;
2734 	case KSZ8081_LMD_STAT_SHORT:
2735 		return true;
2736 	}
2737 	return false;
2738 }
2739 
2740 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2741 							   u16 status, u16 data_mask)
2742 {
2743 	int dt;
2744 
2745 	/* According to the data sheet the distance to the fault is
2746 	 * DELTA_TIME * 0.4 meters for ksz phys.
2747 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2748 	 */
2749 	dt = FIELD_GET(data_mask, status);
2750 
2751 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2752 		return ((dt - 22) * 800) / 10;
2753 	else
2754 		return (dt * 400) / 10;
2755 }
2756 
2757 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2758 {
2759 	const struct kszphy_type *type = phydev->drv->driver_data;
2760 	int val, ret;
2761 
2762 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2763 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2764 				    30000, 100000, true);
2765 
2766 	return ret < 0 ? ret : 0;
2767 }
2768 
2769 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2770 {
2771 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2772 					    ETHTOOL_A_CABLE_PAIR_B,
2773 					    ETHTOOL_A_CABLE_PAIR_C,
2774 					    ETHTOOL_A_CABLE_PAIR_D,
2775 					  };
2776 	u32 fault_length;
2777 	int ret;
2778 	int val;
2779 
2780 	val = KSZ8081_LMD_ENABLE_TEST;
2781 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2782 
2783 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2784 	if (ret < 0)
2785 		return ret;
2786 
2787 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2788 	if (ret)
2789 		return ret;
2790 
2791 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2792 	if (val < 0)
2793 		return val;
2794 
2795 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2796 		return -EAGAIN;
2797 
2798 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2799 				      ksz886x_cable_test_result_trans(val,
2800 								      LAN8814_CABLE_DIAG_STAT_MASK
2801 								      ));
2802 	if (ret)
2803 		return ret;
2804 
2805 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2806 		return 0;
2807 
2808 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2809 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2810 
2811 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2812 }
2813 
2814 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2815 {
2816 	static const int ethtool_pair[] = {
2817 		ETHTOOL_A_CABLE_PAIR_A,
2818 		ETHTOOL_A_CABLE_PAIR_B,
2819 	};
2820 	int ret, val, mdix;
2821 	u32 fault_length;
2822 
2823 	/* There is no way to choice the pair, like we do one ksz9031.
2824 	 * We can workaround this limitation by using the MDI-X functionality.
2825 	 */
2826 	if (pair == 0)
2827 		mdix = ETH_TP_MDI;
2828 	else
2829 		mdix = ETH_TP_MDI_X;
2830 
2831 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2832 	case PHY_ID_KSZ8081:
2833 		ret = ksz8081_config_mdix(phydev, mdix);
2834 		break;
2835 	case PHY_ID_KSZ886X:
2836 		ret = ksz886x_config_mdix(phydev, mdix);
2837 		break;
2838 	default:
2839 		ret = -ENODEV;
2840 	}
2841 
2842 	if (ret)
2843 		return ret;
2844 
2845 	/* Now we are ready to fire. This command will send a 100ns pulse
2846 	 * to the pair.
2847 	 */
2848 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2849 	if (ret)
2850 		return ret;
2851 
2852 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2853 	if (ret)
2854 		return ret;
2855 
2856 	val = phy_read(phydev, KSZ8081_LMD);
2857 	if (val < 0)
2858 		return val;
2859 
2860 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2861 		return -EAGAIN;
2862 
2863 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2864 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2865 	if (ret)
2866 		return ret;
2867 
2868 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2869 		return 0;
2870 
2871 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2872 
2873 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2874 }
2875 
2876 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2877 					 bool *finished)
2878 {
2879 	const struct kszphy_type *type = phydev->drv->driver_data;
2880 	unsigned long pair_mask = type->pair_mask;
2881 	int retries = 20;
2882 	int ret = 0;
2883 	int pair;
2884 
2885 	*finished = false;
2886 
2887 	/* Try harder if link partner is active */
2888 	while (pair_mask && retries--) {
2889 		for_each_set_bit(pair, &pair_mask, 4) {
2890 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2891 				ret = lan8814_cable_test_one_pair(phydev, pair);
2892 			else
2893 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2894 			if (ret == -EAGAIN)
2895 				continue;
2896 			if (ret < 0)
2897 				return ret;
2898 			clear_bit(pair, &pair_mask);
2899 		}
2900 		/* If link partner is in autonegotiation mode it will send 2ms
2901 		 * of FLPs with at least 6ms of silence.
2902 		 * Add 2ms sleep to have better chances to hit this silence.
2903 		 */
2904 		if (pair_mask)
2905 			msleep(2);
2906 	}
2907 
2908 	*finished = true;
2909 
2910 	return ret;
2911 }
2912 
2913 /**
2914  * LAN8814_PAGE_PCS - Selects Extended Page 0.
2915  *
2916  * This page contains timers used for auto-negotiation, debug registers and
2917  * register to configure fast link failure.
2918  */
2919 #define LAN8814_PAGE_PCS 0
2920 
2921 /**
2922  * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1.
2923  *
2924  * This page appears to control the Analog Front-End (AFE) and Physical
2925  * Medium Attachment (PMA) layers. It is used to access registers like
2926  * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY.
2927  */
2928 #define LAN8814_PAGE_AFE_PMA 1
2929 
2930 /**
2931  * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2.
2932  *
2933  * This page seems dedicated to the Physical Coding Sublayer (PCS) and other
2934  * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE
2935  * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics
2936  * and self-test counters in the LAN8842.
2937  */
2938 #define LAN8814_PAGE_PCS_DIGITAL 2
2939 
2940 /**
2941  * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4.
2942  *
2943  * This page contains device-common registers that affect the entire chip.
2944  * It includes controls for chip-level resets, strap status, GPIO,
2945  * QSGMII, the shared 1588 PTP block, and the PVT monitor.
2946  */
2947 #define LAN8814_PAGE_COMMON_REGS 4
2948 
2949 /**
2950  * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5.
2951  *
2952  * This page contains port-specific registers that must be accessed
2953  * on a per-port basis. It includes controls for port LEDs, QSGMII PCS,
2954  * rate adaptation FIFOs, and the per-port 1588 TSU block.
2955  */
2956 #define LAN8814_PAGE_PORT_REGS 5
2957 
2958 /**
2959  * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31.
2960  *
2961  * This page appears to hold fundamental system or global controls. In the
2962  * driver, it is used by the related LAN8804 to access the
2963  * LAN8814_CLOCK_MANAGEMENT register.
2964  */
2965 #define LAN8814_PAGE_SYSTEM_CTRL 31
2966 
2967 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2968 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2969 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2970 
2971 #define LAN8814_QSGMII_SOFT_RESET			0x43
2972 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2973 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2974 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2975 #define LAN8814_ALIGN_SWAP				0x4a
2976 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2977 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2978 
2979 #define LAN8804_ALIGN_SWAP				0x4a
2980 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2981 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2982 #define LAN8814_CLOCK_MANAGEMENT			0xd
2983 #define LAN8814_LINK_QUALITY				0x8e
2984 
2985 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2986 {
2987 	int data;
2988 
2989 	phy_lock_mdio_bus(phydev);
2990 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2991 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2992 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2993 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2994 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2995 	phy_unlock_mdio_bus(phydev);
2996 
2997 	return data;
2998 }
2999 
3000 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
3001 				 u16 val)
3002 {
3003 	phy_lock_mdio_bus(phydev);
3004 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
3005 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
3006 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
3007 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
3008 
3009 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
3010 	if (val != 0)
3011 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
3012 			   val);
3013 	phy_unlock_mdio_bus(phydev);
3014 	return val;
3015 }
3016 
3017 static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr,
3018 				  u16 mask, u16 set)
3019 {
3020 	int ret;
3021 
3022 	phy_lock_mdio_bus(phydev);
3023 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
3024 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
3025 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
3026 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
3027 	ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA,
3028 				   mask, set);
3029 	phy_unlock_mdio_bus(phydev);
3030 
3031 	if (ret < 0)
3032 		phydev_err(phydev, "__phy_modify_changed() failed: %pe\n",
3033 			   ERR_PTR(ret));
3034 
3035 	return ret;
3036 }
3037 
3038 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
3039 {
3040 	u16 val = 0;
3041 
3042 	if (enable)
3043 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
3044 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
3045 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
3046 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
3047 
3048 	return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3049 				     PTP_TSU_INT_EN, val);
3050 }
3051 
3052 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
3053 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
3054 {
3055 	*seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3056 					PTP_RX_INGRESS_SEC_HI);
3057 	*seconds = (*seconds << 16) |
3058 		   lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3059 					PTP_RX_INGRESS_SEC_LO);
3060 
3061 	*nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3062 					     PTP_RX_INGRESS_NS_HI);
3063 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
3064 			lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3065 					     PTP_RX_INGRESS_NS_LO);
3066 
3067 	*seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3068 				       PTP_RX_MSG_HEADER2);
3069 }
3070 
3071 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
3072 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
3073 {
3074 	*seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3075 					PTP_TX_EGRESS_SEC_HI);
3076 	*seconds = *seconds << 16 |
3077 		   lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3078 					PTP_TX_EGRESS_SEC_LO);
3079 
3080 	*nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3081 					     PTP_TX_EGRESS_NS_HI);
3082 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
3083 			lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3084 					     PTP_TX_EGRESS_NS_LO);
3085 
3086 	*seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3087 				       PTP_TX_MSG_HEADER2);
3088 }
3089 
3090 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
3091 {
3092 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3093 	struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev);
3094 
3095 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3096 				SOF_TIMESTAMPING_RX_HARDWARE |
3097 				SOF_TIMESTAMPING_RAW_HARDWARE;
3098 
3099 	info->phc_index = ptp_clock_index(shared->ptp_clock);
3100 
3101 	info->tx_types =
3102 		(1 << HWTSTAMP_TX_OFF) |
3103 		(1 << HWTSTAMP_TX_ON) |
3104 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
3105 
3106 	info->rx_filters =
3107 		(1 << HWTSTAMP_FILTER_NONE) |
3108 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
3109 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3110 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3111 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3112 
3113 	return 0;
3114 }
3115 
3116 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
3117 {
3118 	int i;
3119 
3120 	for (i = 0; i < FIFO_SIZE; ++i)
3121 		lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3122 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
3123 
3124 	/* Read to clear overflow status bit */
3125 	lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS);
3126 }
3127 
3128 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
3129 			    struct kernel_hwtstamp_config *config,
3130 			    struct netlink_ext_ack *extack)
3131 {
3132 	struct kszphy_ptp_priv *ptp_priv =
3133 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3134 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
3135 	int txcfg = 0, rxcfg = 0;
3136 	int pkt_ts_enable;
3137 
3138 	ptp_priv->hwts_tx_type = config->tx_type;
3139 	ptp_priv->rx_filter = config->rx_filter;
3140 
3141 	switch (config->rx_filter) {
3142 	case HWTSTAMP_FILTER_NONE:
3143 		ptp_priv->layer = 0;
3144 		ptp_priv->version = 0;
3145 		break;
3146 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3147 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3148 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3149 		ptp_priv->layer = PTP_CLASS_L4;
3150 		ptp_priv->version = PTP_CLASS_V2;
3151 		break;
3152 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3153 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3154 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3155 		ptp_priv->layer = PTP_CLASS_L2;
3156 		ptp_priv->version = PTP_CLASS_V2;
3157 		break;
3158 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3159 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3160 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3161 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3162 		ptp_priv->version = PTP_CLASS_V2;
3163 		break;
3164 	default:
3165 		return -ERANGE;
3166 	}
3167 
3168 	if (ptp_priv->layer & PTP_CLASS_L2) {
3169 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3170 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3171 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3172 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3173 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3174 	}
3175 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3176 			      PTP_RX_PARSE_CONFIG, rxcfg);
3177 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3178 			      PTP_TX_PARSE_CONFIG, txcfg);
3179 
3180 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3181 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3182 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3183 			      PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3184 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3185 			      PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3186 
3187 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
3188 		lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3189 				       PTP_TX_MOD,
3190 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3191 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
3192 	} else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
3193 		lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3194 				       PTP_TX_MOD,
3195 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3196 				       0);
3197 	}
3198 
3199 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
3200 		lan8814_config_ts_intr(ptp_priv->phydev, true);
3201 	else
3202 		lan8814_config_ts_intr(ptp_priv->phydev, false);
3203 
3204 	/* In case of multiple starts and stops, these needs to be cleared */
3205 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
3206 		list_del(&rx_ts->list);
3207 		kfree(rx_ts);
3208 	}
3209 	skb_queue_purge(&ptp_priv->rx_queue);
3210 	skb_queue_purge(&ptp_priv->tx_queue);
3211 
3212 	lan8814_flush_fifo(ptp_priv->phydev, false);
3213 	lan8814_flush_fifo(ptp_priv->phydev, true);
3214 
3215 	return 0;
3216 }
3217 
3218 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
3219 			     struct sk_buff *skb, int type)
3220 {
3221 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3222 
3223 	switch (ptp_priv->hwts_tx_type) {
3224 	case HWTSTAMP_TX_ONESTEP_SYNC:
3225 		if (ptp_msg_is_sync(skb, type)) {
3226 			kfree_skb(skb);
3227 			return;
3228 		}
3229 		fallthrough;
3230 	case HWTSTAMP_TX_ON:
3231 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3232 		skb_queue_tail(&ptp_priv->tx_queue, skb);
3233 		break;
3234 	case HWTSTAMP_TX_OFF:
3235 	default:
3236 		kfree_skb(skb);
3237 		break;
3238 	}
3239 }
3240 
3241 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
3242 {
3243 	struct ptp_header *ptp_header;
3244 	u32 type;
3245 
3246 	skb_push(skb, ETH_HLEN);
3247 	type = ptp_classify_raw(skb);
3248 	ptp_header = ptp_parse_header(skb, type);
3249 	skb_pull_inline(skb, ETH_HLEN);
3250 
3251 	if (!ptp_header)
3252 		return false;
3253 
3254 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3255 	return true;
3256 }
3257 
3258 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
3259 				 struct sk_buff *skb)
3260 {
3261 	struct skb_shared_hwtstamps *shhwtstamps;
3262 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
3263 	unsigned long flags;
3264 	bool ret = false;
3265 	u16 skb_sig;
3266 
3267 	if (!lan8814_get_sig_rx(skb, &skb_sig))
3268 		return ret;
3269 
3270 	/* Iterate over all RX timestamps and match it with the received skbs */
3271 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3272 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
3273 		/* Check if we found the signature we were looking for. */
3274 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3275 			continue;
3276 
3277 		shhwtstamps = skb_hwtstamps(skb);
3278 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3279 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
3280 						  rx_ts->nsec);
3281 		list_del(&rx_ts->list);
3282 		kfree(rx_ts);
3283 
3284 		ret = true;
3285 		break;
3286 	}
3287 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3288 
3289 	if (ret)
3290 		netif_rx(skb);
3291 	return ret;
3292 }
3293 
3294 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
3295 {
3296 	struct kszphy_ptp_priv *ptp_priv =
3297 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3298 
3299 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3300 	    type == PTP_CLASS_NONE)
3301 		return false;
3302 
3303 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3304 		return false;
3305 
3306 	/* If we failed to match then add it to the queue for when the timestamp
3307 	 * will come
3308 	 */
3309 	if (!lan8814_match_rx_skb(ptp_priv, skb))
3310 		skb_queue_tail(&ptp_priv->rx_queue, skb);
3311 
3312 	return true;
3313 }
3314 
3315 static void lan8814_ptp_clock_set(struct phy_device *phydev,
3316 				  time64_t sec, u32 nsec)
3317 {
3318 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3319 			      PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
3320 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3321 			      PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
3322 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3323 			      PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
3324 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3325 			      PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
3326 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3327 			      PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
3328 
3329 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3330 			      PTP_CMD_CTL_PTP_CLOCK_LOAD_);
3331 }
3332 
3333 static void lan8814_ptp_clock_get(struct phy_device *phydev,
3334 				  time64_t *sec, u32 *nsec)
3335 {
3336 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3337 			      PTP_CMD_CTL_PTP_CLOCK_READ_);
3338 
3339 	*sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3340 				    PTP_CLOCK_READ_SEC_HI);
3341 	*sec <<= 16;
3342 	*sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3343 				     PTP_CLOCK_READ_SEC_MID);
3344 	*sec <<= 16;
3345 	*sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3346 				     PTP_CLOCK_READ_SEC_LO);
3347 
3348 	*nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3349 				     PTP_CLOCK_READ_NS_HI);
3350 	*nsec <<= 16;
3351 	*nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3352 				      PTP_CLOCK_READ_NS_LO);
3353 }
3354 
3355 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
3356 				   struct timespec64 *ts)
3357 {
3358 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3359 							  ptp_clock_info);
3360 	struct phy_device *phydev = shared->phydev;
3361 	u32 nano_seconds;
3362 	time64_t seconds;
3363 
3364 	mutex_lock(&shared->shared_lock);
3365 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
3366 	mutex_unlock(&shared->shared_lock);
3367 	ts->tv_sec = seconds;
3368 	ts->tv_nsec = nano_seconds;
3369 
3370 	return 0;
3371 }
3372 
3373 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
3374 				   const struct timespec64 *ts)
3375 {
3376 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3377 							  ptp_clock_info);
3378 	struct phy_device *phydev = shared->phydev;
3379 
3380 	mutex_lock(&shared->shared_lock);
3381 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
3382 	mutex_unlock(&shared->shared_lock);
3383 
3384 	return 0;
3385 }
3386 
3387 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
3388 				   s64 start_sec, u32 start_nsec)
3389 {
3390 	/* Set the start time */
3391 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3392 			      LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
3393 			      lower_16_bits(start_sec));
3394 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3395 			      LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
3396 			      upper_16_bits(start_sec));
3397 
3398 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3399 			      LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
3400 			      lower_16_bits(start_nsec));
3401 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3402 			      LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
3403 			      upper_16_bits(start_nsec) & 0x3fff);
3404 }
3405 
3406 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
3407 {
3408 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
3409 			       sec + LAN8814_BUFFER_TIME, 0);
3410 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
3411 			       sec + LAN8814_BUFFER_TIME, 0);
3412 }
3413 
3414 static void lan8814_ptp_clock_step(struct phy_device *phydev,
3415 				   s64 time_step_ns)
3416 {
3417 	u32 nano_seconds_step;
3418 	u64 abs_time_step_ns;
3419 	time64_t set_seconds;
3420 	u32 nano_seconds;
3421 	u32 remainder;
3422 	s32 seconds;
3423 
3424 	if (time_step_ns >  15000000000LL) {
3425 		/* convert to clock set */
3426 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
3427 		set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
3428 					   &remainder);
3429 		nano_seconds += remainder;
3430 		if (nano_seconds >= 1000000000) {
3431 			set_seconds++;
3432 			nano_seconds -= 1000000000;
3433 		}
3434 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
3435 		lan8814_ptp_update_target(phydev, set_seconds);
3436 		return;
3437 	} else if (time_step_ns < -15000000000LL) {
3438 		/* convert to clock set */
3439 		time_step_ns = -time_step_ns;
3440 
3441 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
3442 		set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
3443 					   &remainder);
3444 		nano_seconds_step = remainder;
3445 		if (nano_seconds < nano_seconds_step) {
3446 			set_seconds--;
3447 			nano_seconds += 1000000000;
3448 		}
3449 		nano_seconds -= nano_seconds_step;
3450 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
3451 		lan8814_ptp_update_target(phydev, set_seconds);
3452 		return;
3453 	}
3454 
3455 	/* do clock step */
3456 	if (time_step_ns >= 0) {
3457 		abs_time_step_ns = (u64)time_step_ns;
3458 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
3459 					   &remainder);
3460 		nano_seconds = remainder;
3461 	} else {
3462 		abs_time_step_ns = (u64)(-time_step_ns);
3463 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
3464 			    &remainder));
3465 		nano_seconds = remainder;
3466 		if (nano_seconds > 0) {
3467 			/* subtracting nano seconds is not allowed
3468 			 * convert to subtracting from seconds,
3469 			 * and adding to nanoseconds
3470 			 */
3471 			seconds--;
3472 			nano_seconds = (1000000000 - nano_seconds);
3473 		}
3474 	}
3475 
3476 	if (nano_seconds > 0) {
3477 		/* add 8 ns to cover the likely normal increment */
3478 		nano_seconds += 8;
3479 	}
3480 
3481 	if (nano_seconds >= 1000000000) {
3482 		/* carry into seconds */
3483 		seconds++;
3484 		nano_seconds -= 1000000000;
3485 	}
3486 
3487 	while (seconds) {
3488 		u32 nsec;
3489 
3490 		if (seconds > 0) {
3491 			u32 adjustment_value = (u32)seconds;
3492 			u16 adjustment_value_lo, adjustment_value_hi;
3493 
3494 			if (adjustment_value > 0xF)
3495 				adjustment_value = 0xF;
3496 
3497 			adjustment_value_lo = adjustment_value & 0xffff;
3498 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3499 
3500 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3501 					      PTP_LTC_STEP_ADJ_LO,
3502 					      adjustment_value_lo);
3503 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3504 					      PTP_LTC_STEP_ADJ_HI,
3505 					      PTP_LTC_STEP_ADJ_DIR_ |
3506 					      adjustment_value_hi);
3507 			seconds -= ((s32)adjustment_value);
3508 
3509 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3510 			set_seconds -= adjustment_value;
3511 			lan8814_ptp_update_target(phydev, set_seconds);
3512 		} else {
3513 			u32 adjustment_value = (u32)(-seconds);
3514 			u16 adjustment_value_lo, adjustment_value_hi;
3515 
3516 			if (adjustment_value > 0xF)
3517 				adjustment_value = 0xF;
3518 
3519 			adjustment_value_lo = adjustment_value & 0xffff;
3520 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3521 
3522 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3523 					      PTP_LTC_STEP_ADJ_LO,
3524 					      adjustment_value_lo);
3525 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3526 					      PTP_LTC_STEP_ADJ_HI,
3527 					      adjustment_value_hi);
3528 			seconds += ((s32)adjustment_value);
3529 
3530 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3531 			set_seconds += adjustment_value;
3532 			lan8814_ptp_update_target(phydev, set_seconds);
3533 		}
3534 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3535 				      PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
3536 	}
3537 	if (nano_seconds) {
3538 		u16 nano_seconds_lo;
3539 		u16 nano_seconds_hi;
3540 
3541 		nano_seconds_lo = nano_seconds & 0xffff;
3542 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
3543 
3544 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3545 				      PTP_LTC_STEP_ADJ_LO,
3546 				      nano_seconds_lo);
3547 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3548 				      PTP_LTC_STEP_ADJ_HI,
3549 				      PTP_LTC_STEP_ADJ_DIR_ |
3550 				      nano_seconds_hi);
3551 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3552 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
3553 	}
3554 }
3555 
3556 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
3557 {
3558 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3559 							  ptp_clock_info);
3560 	struct phy_device *phydev = shared->phydev;
3561 
3562 	mutex_lock(&shared->shared_lock);
3563 	lan8814_ptp_clock_step(phydev, delta);
3564 	mutex_unlock(&shared->shared_lock);
3565 
3566 	return 0;
3567 }
3568 
3569 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
3570 {
3571 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3572 							  ptp_clock_info);
3573 	struct phy_device *phydev = shared->phydev;
3574 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
3575 	bool positive = true;
3576 	u32 kszphy_rate_adj;
3577 
3578 	if (scaled_ppm < 0) {
3579 		scaled_ppm = -scaled_ppm;
3580 		positive = false;
3581 	}
3582 
3583 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
3584 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
3585 
3586 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
3587 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
3588 
3589 	if (positive)
3590 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
3591 
3592 	mutex_lock(&shared->shared_lock);
3593 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI,
3594 			      kszphy_rate_adj_hi);
3595 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO,
3596 			      kszphy_rate_adj_lo);
3597 	mutex_unlock(&shared->shared_lock);
3598 
3599 	return 0;
3600 }
3601 
3602 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
3603 				   s64 period_sec, u32 period_nsec)
3604 {
3605 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3606 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
3607 			      lower_16_bits(period_sec));
3608 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3609 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
3610 			      upper_16_bits(period_sec));
3611 
3612 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3613 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
3614 			      lower_16_bits(period_nsec));
3615 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3616 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
3617 			      upper_16_bits(period_nsec) & 0x3fff);
3618 }
3619 
3620 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
3621 				     int pulse_width)
3622 {
3623 	/* Set the pulse width of the event,
3624 	 * Make sure that the target clock will be incremented each time when
3625 	 * local time reaches or pass it
3626 	 * Set the polarity high
3627 	 */
3628 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG,
3629 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) |
3630 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) |
3631 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) |
3632 			       LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event),
3633 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) |
3634 			       LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event));
3635 }
3636 
3637 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
3638 {
3639 	/* Set target to too far in the future, effectively disabling it */
3640 	lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
3641 
3642 	/* And then reload once it reaches the target */
3643 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG,
3644 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event),
3645 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
3646 }
3647 
3648 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
3649 {
3650 	/* Disable gpio alternate function,
3651 	 * 1: select as gpio,
3652 	 * 0: select alt func
3653 	 */
3654 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3655 			       LAN8814_GPIO_EN_ADDR(pin),
3656 			       LAN8814_GPIO_EN_BIT(pin),
3657 			       LAN8814_GPIO_EN_BIT(pin));
3658 
3659 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3660 			       LAN8814_GPIO_DIR_ADDR(pin),
3661 			       LAN8814_GPIO_DIR_BIT(pin),
3662 			       0);
3663 
3664 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3665 			       LAN8814_GPIO_BUF_ADDR(pin),
3666 			       LAN8814_GPIO_BUF_BIT(pin),
3667 			       0);
3668 }
3669 
3670 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3671 {
3672 	/* Set as gpio output */
3673 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3674 			       LAN8814_GPIO_DIR_ADDR(pin),
3675 			       LAN8814_GPIO_DIR_BIT(pin),
3676 			       LAN8814_GPIO_DIR_BIT(pin));
3677 
3678 	/* Enable gpio 0:for alternate function, 1:gpio */
3679 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3680 			       LAN8814_GPIO_EN_ADDR(pin),
3681 			       LAN8814_GPIO_EN_BIT(pin),
3682 			       0);
3683 
3684 	/* Set buffer type to push pull */
3685 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3686 			       LAN8814_GPIO_BUF_ADDR(pin),
3687 			       LAN8814_GPIO_BUF_BIT(pin),
3688 			       LAN8814_GPIO_BUF_BIT(pin));
3689 }
3690 
3691 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3692 			      struct ptp_clock_request *rq, int on)
3693 {
3694 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3695 							  ptp_clock_info);
3696 	struct phy_device *phydev = shared->phydev;
3697 	struct timespec64 ts_on, ts_period;
3698 	s64 on_nsec, period_nsec;
3699 	int pulse_width;
3700 	int pin, event;
3701 
3702 	mutex_lock(&shared->shared_lock);
3703 	event = rq->perout.index;
3704 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3705 	if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3706 		mutex_unlock(&shared->shared_lock);
3707 		return -EBUSY;
3708 	}
3709 
3710 	if (!on) {
3711 		lan8814_ptp_perout_off(phydev, pin);
3712 		lan8814_ptp_disable_event(phydev, event);
3713 		mutex_unlock(&shared->shared_lock);
3714 		return 0;
3715 	}
3716 
3717 	ts_on.tv_sec = rq->perout.on.sec;
3718 	ts_on.tv_nsec = rq->perout.on.nsec;
3719 	on_nsec = timespec64_to_ns(&ts_on);
3720 
3721 	ts_period.tv_sec = rq->perout.period.sec;
3722 	ts_period.tv_nsec = rq->perout.period.nsec;
3723 	period_nsec = timespec64_to_ns(&ts_period);
3724 
3725 	if (period_nsec < 200) {
3726 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3727 				    phydev_name(phydev));
3728 		mutex_unlock(&shared->shared_lock);
3729 		return -EOPNOTSUPP;
3730 	}
3731 
3732 	if (on_nsec >= period_nsec) {
3733 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3734 				    phydev_name(phydev));
3735 		mutex_unlock(&shared->shared_lock);
3736 		return -EINVAL;
3737 	}
3738 
3739 	switch (on_nsec) {
3740 	case 200000000:
3741 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3742 		break;
3743 	case 100000000:
3744 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3745 		break;
3746 	case 50000000:
3747 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3748 		break;
3749 	case 10000000:
3750 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3751 		break;
3752 	case 5000000:
3753 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3754 		break;
3755 	case 1000000:
3756 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3757 		break;
3758 	case 500000:
3759 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3760 		break;
3761 	case 100000:
3762 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3763 		break;
3764 	case 50000:
3765 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3766 		break;
3767 	case 10000:
3768 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3769 		break;
3770 	case 5000:
3771 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3772 		break;
3773 	case 1000:
3774 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3775 		break;
3776 	case 500:
3777 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3778 		break;
3779 	case 100:
3780 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3781 		break;
3782 	default:
3783 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3784 				    phydev_name(phydev));
3785 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3786 		break;
3787 	}
3788 
3789 	/* Configure to pulse every period */
3790 	lan8814_ptp_enable_event(phydev, event, pulse_width);
3791 	lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3792 			       rq->perout.start.nsec);
3793 	lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3794 			       rq->perout.period.nsec);
3795 	lan8814_ptp_perout_on(phydev, pin);
3796 	mutex_unlock(&shared->shared_lock);
3797 
3798 	return 0;
3799 }
3800 
3801 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3802 {
3803 	/* Set as gpio input */
3804 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3805 			       LAN8814_GPIO_DIR_ADDR(pin),
3806 			       LAN8814_GPIO_DIR_BIT(pin),
3807 			       0);
3808 
3809 	/* Map the pin to ltc pin 0 of the capture map registers */
3810 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3811 			       PTP_GPIO_CAP_MAP_LO, pin, pin);
3812 
3813 	/* Enable capture on the edges of the ltc pin */
3814 	if (flags & PTP_RISING_EDGE)
3815 		lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3816 				       PTP_GPIO_CAP_EN,
3817 				       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0),
3818 				       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0));
3819 	if (flags & PTP_FALLING_EDGE)
3820 		lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3821 				       PTP_GPIO_CAP_EN,
3822 				       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0),
3823 				       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0));
3824 
3825 	/* Enable interrupt top interrupt */
3826 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA,
3827 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN,
3828 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN);
3829 }
3830 
3831 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3832 {
3833 	/* Set as gpio out */
3834 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3835 			       LAN8814_GPIO_DIR_ADDR(pin),
3836 			       LAN8814_GPIO_DIR_BIT(pin),
3837 			       LAN8814_GPIO_DIR_BIT(pin));
3838 
3839 	/* Enable alternate, 0:for alternate function, 1:gpio */
3840 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3841 			       LAN8814_GPIO_EN_ADDR(pin),
3842 			       LAN8814_GPIO_EN_BIT(pin),
3843 			       0);
3844 
3845 	/* Clear the mapping of pin to registers 0 of the capture registers */
3846 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3847 			       PTP_GPIO_CAP_MAP_LO,
3848 			       GENMASK(3, 0),
3849 			       0);
3850 
3851 	/* Disable capture on both of the edges */
3852 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN,
3853 			       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
3854 			       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
3855 			       0);
3856 
3857 	/* Disable interrupt top interrupt */
3858 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA,
3859 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN,
3860 			       0);
3861 }
3862 
3863 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3864 			     struct ptp_clock_request *rq, int on)
3865 {
3866 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3867 							  ptp_clock_info);
3868 	struct phy_device *phydev = shared->phydev;
3869 	int pin;
3870 
3871 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3872 			   rq->extts.index);
3873 	if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3874 		return -EINVAL;
3875 
3876 	mutex_lock(&shared->shared_lock);
3877 	if (on)
3878 		lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3879 	else
3880 		lan8814_ptp_extts_off(phydev, pin);
3881 
3882 	mutex_unlock(&shared->shared_lock);
3883 
3884 	return 0;
3885 }
3886 
3887 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3888 				struct ptp_clock_request *rq, int on)
3889 {
3890 	switch (rq->type) {
3891 	case PTP_CLK_REQ_PEROUT:
3892 		return lan8814_ptp_perout(ptpci, rq, on);
3893 	case PTP_CLK_REQ_EXTTS:
3894 		return lan8814_ptp_extts(ptpci, rq, on);
3895 	default:
3896 		return -EINVAL;
3897 	}
3898 }
3899 
3900 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3901 				enum ptp_pin_function func, unsigned int chan)
3902 {
3903 	switch (func) {
3904 	case PTP_PF_NONE:
3905 	case PTP_PF_PEROUT:
3906 		/* Only pins 0 and 1 can generate perout signals. And for pin 0
3907 		 * there is only chan 0 (event A) and for pin 1 there is only
3908 		 * chan 1 (event B)
3909 		 */
3910 		if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3911 			return -1;
3912 		break;
3913 	case PTP_PF_EXTTS:
3914 		if (pin != LAN8814_PTP_EXTTS_NUM)
3915 			return -1;
3916 		break;
3917 	default:
3918 		return -1;
3919 	}
3920 
3921 	return 0;
3922 }
3923 
3924 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3925 {
3926 	struct ptp_header *ptp_header;
3927 	u32 type;
3928 
3929 	type = ptp_classify_raw(skb);
3930 	ptp_header = ptp_parse_header(skb, type);
3931 
3932 	if (!ptp_header)
3933 		return false;
3934 
3935 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3936 	return true;
3937 }
3938 
3939 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3940 				 u32 seconds, u32 nsec, u16 seq_id)
3941 {
3942 	struct skb_shared_hwtstamps shhwtstamps;
3943 	struct sk_buff *skb, *skb_tmp;
3944 	unsigned long flags;
3945 	bool ret = false;
3946 	u16 skb_sig;
3947 
3948 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3949 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3950 		if (!lan8814_get_sig_tx(skb, &skb_sig))
3951 			continue;
3952 
3953 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3954 			continue;
3955 
3956 		__skb_unlink(skb, &ptp_priv->tx_queue);
3957 		ret = true;
3958 		break;
3959 	}
3960 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3961 
3962 	if (ret) {
3963 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3964 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3965 		skb_complete_tx_timestamp(skb, &shhwtstamps);
3966 	}
3967 }
3968 
3969 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3970 {
3971 	struct phy_device *phydev = ptp_priv->phydev;
3972 	u32 seconds, nsec;
3973 	u16 seq_id;
3974 
3975 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3976 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3977 }
3978 
3979 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3980 {
3981 	struct phy_device *phydev = ptp_priv->phydev;
3982 	u32 reg;
3983 
3984 	do {
3985 		lan8814_dequeue_tx_skb(ptp_priv);
3986 
3987 		/* If other timestamps are available in the FIFO,
3988 		 * process them.
3989 		 */
3990 		reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3991 					   PTP_CAP_INFO);
3992 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
3993 }
3994 
3995 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
3996 			      struct lan8814_ptp_rx_ts *rx_ts)
3997 {
3998 	struct skb_shared_hwtstamps *shhwtstamps;
3999 	struct sk_buff *skb, *skb_tmp;
4000 	unsigned long flags;
4001 	bool ret = false;
4002 	u16 skb_sig;
4003 
4004 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
4005 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
4006 		if (!lan8814_get_sig_rx(skb, &skb_sig))
4007 			continue;
4008 
4009 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
4010 			continue;
4011 
4012 		__skb_unlink(skb, &ptp_priv->rx_queue);
4013 
4014 		ret = true;
4015 		break;
4016 	}
4017 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
4018 
4019 	if (ret) {
4020 		shhwtstamps = skb_hwtstamps(skb);
4021 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4022 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
4023 		netif_rx(skb);
4024 	}
4025 
4026 	return ret;
4027 }
4028 
4029 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
4030 				struct lan8814_ptp_rx_ts *rx_ts)
4031 {
4032 	unsigned long flags;
4033 
4034 	/* If we failed to match the skb add it to the queue for when
4035 	 * the frame will come
4036 	 */
4037 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
4038 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
4039 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
4040 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
4041 	} else {
4042 		kfree(rx_ts);
4043 	}
4044 }
4045 
4046 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
4047 {
4048 	struct phy_device *phydev = ptp_priv->phydev;
4049 	struct lan8814_ptp_rx_ts *rx_ts;
4050 	u32 reg;
4051 
4052 	do {
4053 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
4054 		if (!rx_ts)
4055 			return;
4056 
4057 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
4058 				      &rx_ts->seq_id);
4059 		lan8814_match_rx_ts(ptp_priv, rx_ts);
4060 
4061 		/* If other timestamps are available in the FIFO,
4062 		 * process them.
4063 		 */
4064 		reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4065 					   PTP_CAP_INFO);
4066 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
4067 }
4068 
4069 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
4070 {
4071 	struct kszphy_priv *priv = phydev->priv;
4072 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4073 
4074 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
4075 		lan8814_get_tx_ts(ptp_priv);
4076 
4077 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
4078 		lan8814_get_rx_ts(ptp_priv);
4079 
4080 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
4081 		lan8814_flush_fifo(phydev, true);
4082 		skb_queue_purge(&ptp_priv->tx_queue);
4083 	}
4084 
4085 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
4086 		lan8814_flush_fifo(phydev, false);
4087 		skb_queue_purge(&ptp_priv->rx_queue);
4088 	}
4089 }
4090 
4091 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
4092 {
4093 	struct phy_device *phydev = shared->phydev;
4094 	struct ptp_clock_event ptp_event = {0};
4095 	unsigned long nsec;
4096 	s64 sec;
4097 	u16 tmp;
4098 
4099 	/* This is 0 because whatever was the input pin it was mapped it to
4100 	 * ltc gpio pin 0
4101 	 */
4102 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL,
4103 			       PTP_GPIO_SEL_GPIO_SEL(0),
4104 			       PTP_GPIO_SEL_GPIO_SEL(0));
4105 
4106 	tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4107 				   PTP_GPIO_CAP_STS);
4108 	if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
4109 	    !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
4110 		return -1;
4111 
4112 	if (tmp & BIT(0)) {
4113 		sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4114 					   PTP_GPIO_RE_LTC_SEC_HI_CAP);
4115 		sec <<= 16;
4116 		sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4117 					    PTP_GPIO_RE_LTC_SEC_LO_CAP);
4118 
4119 		nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4120 					    PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4121 		nsec <<= 16;
4122 		nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4123 					     PTP_GPIO_RE_LTC_NS_LO_CAP);
4124 	} else {
4125 		sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4126 					   PTP_GPIO_FE_LTC_SEC_HI_CAP);
4127 		sec <<= 16;
4128 		sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4129 					    PTP_GPIO_FE_LTC_SEC_LO_CAP);
4130 
4131 		nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4132 					    PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4133 		nsec <<= 16;
4134 		nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4135 					     PTP_GPIO_RE_LTC_NS_LO_CAP);
4136 	}
4137 
4138 	ptp_event.index = 0;
4139 	ptp_event.timestamp = ktime_set(sec, nsec);
4140 	ptp_event.type = PTP_CLOCK_EXTTS;
4141 	ptp_clock_event(shared->ptp_clock, &ptp_event);
4142 
4143 	return 0;
4144 }
4145 
4146 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
4147 {
4148 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
4149 	int ret;
4150 
4151 	mutex_lock(&shared->shared_lock);
4152 	ret = lan8814_gpio_process_cap(shared);
4153 	mutex_unlock(&shared->shared_lock);
4154 
4155 	return ret;
4156 }
4157 
4158 static int lan8804_config_init(struct phy_device *phydev)
4159 {
4160 	/* MDI-X setting for swap A,B transmit */
4161 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP,
4162 			       LAN8804_ALIGN_TX_A_B_SWAP_MASK,
4163 			       LAN8804_ALIGN_TX_A_B_SWAP);
4164 
4165 	/* Make sure that the PHY will not stop generating the clock when the
4166 	 * link partner goes down
4167 	 */
4168 	lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL,
4169 			      LAN8814_CLOCK_MANAGEMENT, 0x27e);
4170 	lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY);
4171 
4172 	return 0;
4173 }
4174 
4175 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
4176 {
4177 	int status;
4178 
4179 	status = phy_read(phydev, LAN8814_INTS);
4180 	if (status < 0) {
4181 		phy_error(phydev);
4182 		return IRQ_NONE;
4183 	}
4184 
4185 	if (status > 0)
4186 		phy_trigger_machine(phydev);
4187 
4188 	return IRQ_HANDLED;
4189 }
4190 
4191 #define LAN8804_OUTPUT_CONTROL			25
4192 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
4193 #define LAN8804_CONTROL				31
4194 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
4195 
4196 static int lan8804_config_intr(struct phy_device *phydev)
4197 {
4198 	int err;
4199 
4200 	/* This is an internal PHY of lan966x and is not possible to change the
4201 	 * polarity on the GIC found in lan966x, therefore change the polarity
4202 	 * of the interrupt in the PHY from being active low instead of active
4203 	 * high.
4204 	 */
4205 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
4206 
4207 	/* By default interrupt buffer is open-drain in which case the interrupt
4208 	 * can be active only low. Therefore change the interrupt buffer to be
4209 	 * push-pull to be able to change interrupt polarity
4210 	 */
4211 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
4212 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
4213 
4214 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4215 		err = phy_read(phydev, LAN8814_INTS);
4216 		if (err < 0)
4217 			return err;
4218 
4219 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
4220 		if (err)
4221 			return err;
4222 	} else {
4223 		err = phy_write(phydev, LAN8814_INTC, 0);
4224 		if (err)
4225 			return err;
4226 
4227 		err = phy_read(phydev, LAN8814_INTS);
4228 		if (err < 0)
4229 			return err;
4230 	}
4231 
4232 	return 0;
4233 }
4234 
4235 /* Check if the PHY has 1588 support. There are multiple skus of the PHY and
4236  * some of them support PTP while others don't support it. This function will
4237  * return true is the sku supports it, otherwise will return false.
4238  */
4239 static bool lan8814_has_ptp(struct phy_device *phydev)
4240 {
4241 	struct kszphy_priv *priv = phydev->priv;
4242 
4243 	return priv->is_ptp_available;
4244 }
4245 
4246 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
4247 {
4248 	int ret = IRQ_NONE;
4249 	int irq_status;
4250 
4251 	irq_status = phy_read(phydev, LAN8814_INTS);
4252 	if (irq_status < 0) {
4253 		phy_error(phydev);
4254 		return IRQ_NONE;
4255 	}
4256 
4257 	if (irq_status & LAN8814_INT_LINK) {
4258 		phy_trigger_machine(phydev);
4259 		ret = IRQ_HANDLED;
4260 	}
4261 
4262 	if (!lan8814_has_ptp(phydev))
4263 		return ret;
4264 
4265 	while (true) {
4266 		irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4267 						  PTP_TSU_INT_STS);
4268 		if (!irq_status)
4269 			break;
4270 
4271 		lan8814_handle_ptp_interrupt(phydev, irq_status);
4272 		ret = IRQ_HANDLED;
4273 	}
4274 
4275 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
4276 		ret = IRQ_HANDLED;
4277 
4278 	return ret;
4279 }
4280 
4281 static int lan8814_ack_interrupt(struct phy_device *phydev)
4282 {
4283 	/* bit[12..0] int status, which is a read and clear register. */
4284 	int rc;
4285 
4286 	rc = phy_read(phydev, LAN8814_INTS);
4287 
4288 	return (rc < 0) ? rc : 0;
4289 }
4290 
4291 static int lan8814_config_intr(struct phy_device *phydev)
4292 {
4293 	int err;
4294 
4295 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG,
4296 			      LAN8814_INTR_CTRL_REG_POLARITY |
4297 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
4298 
4299 	/* enable / disable interrupts */
4300 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4301 		err = lan8814_ack_interrupt(phydev);
4302 		if (err)
4303 			return err;
4304 
4305 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
4306 	} else {
4307 		err = phy_write(phydev, LAN8814_INTC, 0);
4308 		if (err)
4309 			return err;
4310 
4311 		err = lan8814_ack_interrupt(phydev);
4312 	}
4313 
4314 	return err;
4315 }
4316 
4317 static void lan8814_ptp_init(struct phy_device *phydev)
4318 {
4319 	struct kszphy_priv *priv = phydev->priv;
4320 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4321 
4322 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
4323 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4324 		return;
4325 
4326 	if (!lan8814_has_ptp(phydev))
4327 		return;
4328 
4329 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4330 			      TSU_HARD_RESET, TSU_HARD_RESET_);
4331 
4332 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD,
4333 			       PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_,
4334 			       PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_);
4335 
4336 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD,
4337 			       PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_,
4338 			       PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_);
4339 
4340 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4341 			      PTP_RX_PARSE_CONFIG, 0);
4342 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4343 			      PTP_TX_PARSE_CONFIG, 0);
4344 
4345 	/* Removing default registers configs related to L2 and IP */
4346 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4347 			      PTP_TX_PARSE_L2_ADDR_EN, 0);
4348 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4349 			      PTP_RX_PARSE_L2_ADDR_EN, 0);
4350 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4351 			      PTP_TX_PARSE_IP_ADDR_EN, 0);
4352 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4353 			      PTP_RX_PARSE_IP_ADDR_EN, 0);
4354 
4355 	/* Disable checking for minorVersionPTP field */
4356 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION,
4357 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
4358 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION,
4359 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
4360 
4361 	skb_queue_head_init(&ptp_priv->tx_queue);
4362 	skb_queue_head_init(&ptp_priv->rx_queue);
4363 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
4364 	spin_lock_init(&ptp_priv->rx_ts_lock);
4365 
4366 	ptp_priv->phydev = phydev;
4367 
4368 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
4369 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4370 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
4371 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
4372 
4373 	phydev->mii_ts = &ptp_priv->mii_ts;
4374 
4375 	/* Timestamp selected by default to keep legacy API */
4376 	phydev->default_timestamp = true;
4377 }
4378 
4379 static int __lan8814_ptp_probe_once(struct phy_device *phydev, char *pin_name,
4380 				    int gpios)
4381 {
4382 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
4383 
4384 	shared->phydev = phydev;
4385 
4386 	/* Initialise shared lock for clock*/
4387 	mutex_init(&shared->shared_lock);
4388 
4389 	shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
4390 						gpios,
4391 						sizeof(*shared->pin_config),
4392 						GFP_KERNEL);
4393 	if (!shared->pin_config)
4394 		return -ENOMEM;
4395 
4396 	for (int i = 0; i < gpios; i++) {
4397 		struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
4398 
4399 		memset(ptp_pin, 0, sizeof(*ptp_pin));
4400 		snprintf(ptp_pin->name,
4401 			 sizeof(ptp_pin->name), "%s_%02d", pin_name, i);
4402 		ptp_pin->index = i;
4403 		ptp_pin->func =  PTP_PF_NONE;
4404 	}
4405 
4406 	shared->ptp_clock_info.owner = THIS_MODULE;
4407 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
4408 	shared->ptp_clock_info.max_adj = 31249999;
4409 	shared->ptp_clock_info.n_alarm = 0;
4410 	shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
4411 	shared->ptp_clock_info.n_pins = gpios;
4412 	shared->ptp_clock_info.pps = 0;
4413 	shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE |
4414 						       PTP_FALLING_EDGE |
4415 						       PTP_STRICT_FLAGS;
4416 	shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE;
4417 	shared->ptp_clock_info.pin_config = shared->pin_config;
4418 	shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
4419 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
4420 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
4421 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
4422 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
4423 	shared->ptp_clock_info.getcrosststamp = NULL;
4424 	shared->ptp_clock_info.enable = lan8814_ptpci_enable;
4425 	shared->ptp_clock_info.verify = lan8814_ptpci_verify;
4426 
4427 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
4428 					       &phydev->mdio.dev);
4429 	if (IS_ERR(shared->ptp_clock)) {
4430 		phydev_err(phydev, "ptp_clock_register failed %pe\n",
4431 			   shared->ptp_clock);
4432 		return -EINVAL;
4433 	}
4434 
4435 	/* Check if PHC support is missing at the configuration level */
4436 	if (!shared->ptp_clock)
4437 		return 0;
4438 
4439 	phydev_dbg(phydev, "successfully registered ptp clock\n");
4440 
4441 	/* The EP.4 is shared between all the PHYs in the package and also it
4442 	 * can be accessed by any of the PHYs
4443 	 */
4444 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4445 			      LTC_HARD_RESET, LTC_HARD_RESET_);
4446 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE,
4447 			      PTP_OPERATING_MODE_STANDALONE_);
4448 
4449 	/* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
4450 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
4451 			      PTP_CMD_CTL_PTP_ENABLE_);
4452 
4453 	return 0;
4454 }
4455 
4456 static int lan8814_ptp_probe_once(struct phy_device *phydev)
4457 {
4458 	if (!lan8814_has_ptp(phydev))
4459 		return 0;
4460 
4461 	return __lan8814_ptp_probe_once(phydev, "lan8814_ptp_pin",
4462 					LAN8814_PTP_GPIO_NUM);
4463 }
4464 
4465 static void lan8814_setup_led(struct phy_device *phydev, int val)
4466 {
4467 	int temp;
4468 
4469 	temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4470 				    LAN8814_LED_CTRL_1);
4471 
4472 	if (val)
4473 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
4474 	else
4475 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
4476 
4477 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4478 			      LAN8814_LED_CTRL_1, temp);
4479 }
4480 
4481 static int lan8814_config_init(struct phy_device *phydev)
4482 {
4483 	struct kszphy_priv *lan8814 = phydev->priv;
4484 
4485 	/* Reset the PHY */
4486 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4487 			       LAN8814_QSGMII_SOFT_RESET,
4488 			       LAN8814_QSGMII_SOFT_RESET_BIT,
4489 			       LAN8814_QSGMII_SOFT_RESET_BIT);
4490 
4491 	/* Disable ANEG with QSGMII PCS Host side */
4492 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4493 			       LAN8814_QSGMII_PCS1G_ANEG_CONFIG,
4494 			       LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA,
4495 			       0);
4496 
4497 	/* MDI-X setting for swap A,B transmit */
4498 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP,
4499 			       LAN8814_ALIGN_TX_A_B_SWAP_MASK,
4500 			       LAN8814_ALIGN_TX_A_B_SWAP);
4501 
4502 	if (lan8814->led_mode >= 0)
4503 		lan8814_setup_led(phydev, lan8814->led_mode);
4504 
4505 	return 0;
4506 }
4507 
4508 /* It is expected that there will not be any 'lan8814_take_coma_mode'
4509  * function called in suspend. Because the GPIO line can be shared, so if one of
4510  * the phys goes back in coma mode, then all the other PHYs will go, which is
4511  * wrong.
4512  */
4513 static int lan8814_release_coma_mode(struct phy_device *phydev)
4514 {
4515 	struct gpio_desc *gpiod;
4516 
4517 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
4518 					GPIOD_OUT_HIGH_OPEN_DRAIN |
4519 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
4520 	if (IS_ERR(gpiod))
4521 		return PTR_ERR(gpiod);
4522 
4523 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
4524 	gpiod_set_value_cansleep(gpiod, 0);
4525 
4526 	return 0;
4527 }
4528 
4529 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
4530 {
4531 	/* It was noticed that when traffic is passing through the PHY and the
4532 	 * cable is removed then the LED was still on even though there is no
4533 	 * link
4534 	 */
4535 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE,
4536 			       LAN8814_EEE_STATE_MASK2P5P,
4537 			       0);
4538 }
4539 
4540 static void lan8814_update_meas_time(struct phy_device *phydev)
4541 {
4542 	/* By setting the measure time to a value of 0xb this will allow cables
4543 	 * longer than 100m to be used. This configuration can be used
4544 	 * regardless of the mode of operation of the PHY
4545 	 */
4546 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS,
4547 			       LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK,
4548 			       LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL);
4549 }
4550 
4551 static int lan8814_probe(struct phy_device *phydev)
4552 {
4553 	const struct kszphy_type *type = phydev->drv->driver_data;
4554 	struct kszphy_priv *priv;
4555 	u16 addr;
4556 	int err;
4557 
4558 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
4559 	if (!priv)
4560 		return -ENOMEM;
4561 
4562 	phydev->priv = priv;
4563 
4564 	priv->type = type;
4565 
4566 	kszphy_parse_led_mode(phydev);
4567 
4568 	/* Strap-in value for PHY address, below register read gives starting
4569 	 * phy address value
4570 	 */
4571 	addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F;
4572 	devm_phy_package_join(&phydev->mdio.dev, phydev,
4573 			      addr, sizeof(struct lan8814_shared_priv));
4574 
4575 	/* There are lan8814 SKUs that don't support PTP. Make sure that for
4576 	 * those skus no PTP device is created. Here we check if the SKU
4577 	 * supports PTP.
4578 	 */
4579 	err = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4580 				   LAN8814_SKUS);
4581 	if (err < 0)
4582 		return err;
4583 
4584 	priv->is_ptp_available = err == LAN8814_REV_LAN8814 ||
4585 				 err == LAN8814_REV_LAN8818;
4586 
4587 	if (phy_package_init_once(phydev)) {
4588 		err = lan8814_release_coma_mode(phydev);
4589 		if (err)
4590 			return err;
4591 
4592 		err = lan8814_ptp_probe_once(phydev);
4593 		if (err)
4594 			return err;
4595 	}
4596 
4597 	lan8814_ptp_init(phydev);
4598 
4599 	/* Errata workarounds */
4600 	lan8814_clear_2psp_bit(phydev);
4601 	lan8814_update_meas_time(phydev);
4602 
4603 	return 0;
4604 }
4605 
4606 #define LAN8841_MMD_TIMER_REG			0
4607 #define LAN8841_MMD0_REGISTER_17		17
4608 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
4609 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
4610 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
4611 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
4612 #define LAN8841_MMD_ANALOG_REG			28
4613 #define LAN8841_ANALOG_CONTROL_1		1
4614 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
4615 #define LAN8841_ANALOG_CONTROL_10		13
4616 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
4617 #define LAN8841_ANALOG_CONTROL_11		14
4618 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
4619 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
4620 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
4621 #define LAN8841_BTRX_POWER_DOWN			70
4622 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
4623 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
4624 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
4625 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
4626 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
4627 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
4628 #define LAN8841_ADC_CHANNEL_MASK		198
4629 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
4630 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
4631 #define LAN8841_PTP_RX_VERSION			374
4632 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
4633 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
4634 #define LAN8841_PTP_TX_VERSION			438
4635 #define LAN8841_PTP_CMD_CTL			256
4636 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
4637 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
4638 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
4639 #define LAN8841_PTP_RX_PARSE_CONFIG		368
4640 #define LAN8841_PTP_TX_PARSE_CONFIG		432
4641 #define LAN8841_PTP_RX_MODE			381
4642 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
4643 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
4644 
4645 static int lan8841_config_init(struct phy_device *phydev)
4646 {
4647 	int ret;
4648 
4649 	ret = ksz9131_config_init(phydev);
4650 	if (ret)
4651 		return ret;
4652 
4653 	/* Initialize the HW by resetting everything */
4654 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4655 		       LAN8841_PTP_CMD_CTL,
4656 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
4657 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
4658 
4659 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4660 		       LAN8841_PTP_CMD_CTL,
4661 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
4662 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
4663 
4664 	/* Don't process any frames */
4665 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4666 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
4667 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4668 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
4669 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4670 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
4671 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4672 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
4673 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4674 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
4675 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4676 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
4677 
4678 	/* Disable checking for minorVersionPTP field */
4679 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4680 		      LAN8841_PTP_RX_VERSION, 0xff00);
4681 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4682 		      LAN8841_PTP_TX_VERSION, 0xff00);
4683 
4684 	/* 100BT Clause 40 improvement errata */
4685 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4686 		      LAN8841_ANALOG_CONTROL_1,
4687 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
4688 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4689 		      LAN8841_ANALOG_CONTROL_10,
4690 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
4691 
4692 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
4693 	 * Magnetics
4694 	 */
4695 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4696 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
4697 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
4698 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4699 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
4700 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
4701 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4702 			      LAN8841_BTRX_POWER_DOWN,
4703 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
4704 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
4705 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
4706 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
4707 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4708 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4709 	}
4710 
4711 	/* LDO Adjustment errata */
4712 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4713 		      LAN8841_ANALOG_CONTROL_11,
4714 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4715 
4716 	/* 100BT RGMII latency tuning errata */
4717 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4718 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
4719 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4720 		      LAN8841_MMD0_REGISTER_17,
4721 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4722 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4723 
4724 	return 0;
4725 }
4726 
4727 #define LAN8841_OUTPUT_CTRL			25
4728 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
4729 #define LAN8841_INT_PTP				BIT(9)
4730 
4731 static int lan8841_config_intr(struct phy_device *phydev)
4732 {
4733 	int err;
4734 
4735 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4736 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4737 
4738 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4739 		err = phy_read(phydev, LAN8814_INTS);
4740 		if (err < 0)
4741 			return err;
4742 
4743 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
4744 		 * even if it PTP is not enabled. Because the underneath blocks
4745 		 * will not enable the PTP so we will never get the PTP
4746 		 * interrupt.
4747 		 */
4748 		err = phy_write(phydev, LAN8814_INTC,
4749 				LAN8814_INT_LINK | LAN8841_INT_PTP);
4750 	} else {
4751 		err = phy_write(phydev, LAN8814_INTC, 0);
4752 		if (err)
4753 			return err;
4754 
4755 		err = phy_read(phydev, LAN8814_INTS);
4756 		if (err < 0)
4757 			return err;
4758 
4759 		/* Getting a positive value doesn't mean that is an error, it
4760 		 * just indicates what was the status. Therefore make sure to
4761 		 * clear the value and say that there is no error.
4762 		 */
4763 		err = 0;
4764 	}
4765 
4766 	return err;
4767 }
4768 
4769 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
4770 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
4771 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
4772 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
4773 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
4774 #define LAN8841_PTP_TX_MSG_HEADER2			455
4775 
4776 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4777 				  u32 *sec, u32 *nsec, u16 *seq)
4778 {
4779 	struct phy_device *phydev = ptp_priv->phydev;
4780 
4781 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4782 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4783 		return false;
4784 
4785 	*nsec = ((*nsec & 0x3fff) << 16);
4786 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4787 
4788 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4789 	*sec = *sec << 16;
4790 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4791 
4792 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4793 
4794 	return true;
4795 }
4796 
4797 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4798 {
4799 	u32 sec, nsec;
4800 	u16 seq;
4801 
4802 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4803 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4804 }
4805 
4806 #define LAN8841_PTP_INT_STS			259
4807 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
4808 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
4809 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
4810 
4811 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4812 {
4813 	struct phy_device *phydev = ptp_priv->phydev;
4814 	int i;
4815 
4816 	for (i = 0; i < FIFO_SIZE; ++i)
4817 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4818 
4819 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4820 }
4821 
4822 #define LAN8841_PTP_GPIO_CAP_STS			506
4823 #define LAN8841_PTP_GPIO_SEL				327
4824 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
4825 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
4826 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
4827 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
4828 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
4829 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
4830 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
4831 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
4832 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
4833 
4834 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4835 {
4836 	struct phy_device *phydev = ptp_priv->phydev;
4837 	struct ptp_clock_event ptp_event = {0};
4838 	int pin, ret, tmp;
4839 	s32 sec, nsec;
4840 
4841 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4842 	if (pin == -1)
4843 		return;
4844 
4845 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4846 	if (tmp < 0)
4847 		return;
4848 
4849 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4850 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4851 	if (ret)
4852 		return;
4853 
4854 	mutex_lock(&ptp_priv->ptp_lock);
4855 	if (tmp & BIT(pin)) {
4856 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4857 		sec <<= 16;
4858 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4859 
4860 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4861 		nsec <<= 16;
4862 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4863 	} else {
4864 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4865 		sec <<= 16;
4866 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4867 
4868 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4869 		nsec <<= 16;
4870 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4871 	}
4872 	mutex_unlock(&ptp_priv->ptp_lock);
4873 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4874 	if (ret)
4875 		return;
4876 
4877 	ptp_event.index = 0;
4878 	ptp_event.timestamp = ktime_set(sec, nsec);
4879 	ptp_event.type = PTP_CLOCK_EXTTS;
4880 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4881 }
4882 
4883 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4884 {
4885 	struct kszphy_priv *priv = phydev->priv;
4886 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4887 	u16 status;
4888 
4889 	do {
4890 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4891 
4892 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4893 			lan8841_ptp_process_tx_ts(ptp_priv);
4894 
4895 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4896 			lan8841_gpio_process_cap(ptp_priv);
4897 
4898 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4899 			lan8841_ptp_flush_fifo(ptp_priv);
4900 			skb_queue_purge(&ptp_priv->tx_queue);
4901 		}
4902 
4903 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4904 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4905 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4906 }
4907 
4908 #define LAN8841_INTS_PTP		BIT(9)
4909 
4910 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4911 {
4912 	irqreturn_t ret = IRQ_NONE;
4913 	int irq_status;
4914 
4915 	irq_status = phy_read(phydev, LAN8814_INTS);
4916 	if (irq_status < 0) {
4917 		phy_error(phydev);
4918 		return IRQ_NONE;
4919 	}
4920 
4921 	if (irq_status & LAN8814_INT_LINK) {
4922 		phy_trigger_machine(phydev);
4923 		ret = IRQ_HANDLED;
4924 	}
4925 
4926 	if (irq_status & LAN8841_INTS_PTP) {
4927 		lan8841_handle_ptp_interrupt(phydev);
4928 		ret = IRQ_HANDLED;
4929 	}
4930 
4931 	return ret;
4932 }
4933 
4934 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4935 			   struct kernel_ethtool_ts_info *info)
4936 {
4937 	struct kszphy_ptp_priv *ptp_priv;
4938 
4939 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4940 
4941 	info->phc_index = ptp_priv->ptp_clock ?
4942 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
4943 	if (info->phc_index == -1)
4944 		return 0;
4945 
4946 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4947 				SOF_TIMESTAMPING_RX_HARDWARE |
4948 				SOF_TIMESTAMPING_RAW_HARDWARE;
4949 
4950 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4951 			 (1 << HWTSTAMP_TX_ON) |
4952 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4953 
4954 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4955 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4956 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4957 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4958 
4959 	return 0;
4960 }
4961 
4962 #define LAN8841_PTP_INT_EN			260
4963 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
4964 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
4965 
4966 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4967 					  bool enable)
4968 {
4969 	struct phy_device *phydev = ptp_priv->phydev;
4970 
4971 	if (enable) {
4972 		/* Enable interrupts on the TX side */
4973 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4974 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4975 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4976 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4977 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4978 
4979 		/* Enable the modification of the frame on RX side,
4980 		 * this will add the ns and 2 bits of sec in the reserved field
4981 		 * of the PTP header
4982 		 */
4983 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4984 			       LAN8841_PTP_RX_MODE,
4985 			       LAN8841_PTP_INSERT_TS_EN |
4986 			       LAN8841_PTP_INSERT_TS_32BIT,
4987 			       LAN8841_PTP_INSERT_TS_EN |
4988 			       LAN8841_PTP_INSERT_TS_32BIT);
4989 
4990 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
4991 	} else {
4992 		/* Disable interrupts on the TX side */
4993 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4994 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4995 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
4996 
4997 		/* Disable modification of the RX frames */
4998 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4999 			       LAN8841_PTP_RX_MODE,
5000 			       LAN8841_PTP_INSERT_TS_EN |
5001 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
5002 
5003 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5004 	}
5005 }
5006 
5007 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
5008 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
5009 #define LAN8841_PTP_TX_MOD			445
5010 
5011 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
5012 			    struct kernel_hwtstamp_config *config,
5013 			    struct netlink_ext_ack *extack)
5014 {
5015 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
5016 	struct phy_device *phydev = ptp_priv->phydev;
5017 	int txcfg = 0, rxcfg = 0;
5018 	int pkt_ts_enable;
5019 
5020 	ptp_priv->hwts_tx_type = config->tx_type;
5021 	ptp_priv->rx_filter = config->rx_filter;
5022 
5023 	switch (config->rx_filter) {
5024 	case HWTSTAMP_FILTER_NONE:
5025 		ptp_priv->layer = 0;
5026 		ptp_priv->version = 0;
5027 		break;
5028 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5029 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5030 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5031 		ptp_priv->layer = PTP_CLASS_L4;
5032 		ptp_priv->version = PTP_CLASS_V2;
5033 		break;
5034 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5035 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5036 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5037 		ptp_priv->layer = PTP_CLASS_L2;
5038 		ptp_priv->version = PTP_CLASS_V2;
5039 		break;
5040 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
5041 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
5042 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5043 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
5044 		ptp_priv->version = PTP_CLASS_V2;
5045 		break;
5046 	default:
5047 		return -ERANGE;
5048 	}
5049 
5050 	/* Setup parsing of the frames and enable the timestamping for ptp
5051 	 * frames
5052 	 */
5053 	if (ptp_priv->layer & PTP_CLASS_L2) {
5054 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
5055 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
5056 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
5057 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
5058 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
5059 	}
5060 
5061 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
5062 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
5063 
5064 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
5065 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
5066 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
5067 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
5068 
5069 	/* Enable / disable of the TX timestamp in the SYNC frames */
5070 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
5071 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
5072 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
5073 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
5074 
5075 	/* Now enable/disable the timestamping */
5076 	lan8841_ptp_enable_processing(ptp_priv,
5077 				      config->rx_filter != HWTSTAMP_FILTER_NONE);
5078 
5079 	skb_queue_purge(&ptp_priv->tx_queue);
5080 
5081 	lan8841_ptp_flush_fifo(ptp_priv);
5082 
5083 	return 0;
5084 }
5085 
5086 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
5087 			     struct sk_buff *skb, int type)
5088 {
5089 	struct kszphy_ptp_priv *ptp_priv =
5090 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
5091 	struct ptp_header *header = ptp_parse_header(skb, type);
5092 	struct skb_shared_hwtstamps *shhwtstamps;
5093 	struct timespec64 ts;
5094 	unsigned long flags;
5095 	u32 ts_header;
5096 
5097 	if (!header)
5098 		return false;
5099 
5100 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
5101 	    type == PTP_CLASS_NONE)
5102 		return false;
5103 
5104 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
5105 		return false;
5106 
5107 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5108 	ts.tv_sec = ptp_priv->seconds;
5109 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5110 	ts_header = __be32_to_cpu(header->reserved2);
5111 
5112 	shhwtstamps = skb_hwtstamps(skb);
5113 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
5114 
5115 	/* Check for any wrap arounds for the second part */
5116 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
5117 		ts.tv_sec -= GENMASK(1, 0) + 1;
5118 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
5119 		ts.tv_sec += 1;
5120 
5121 	shhwtstamps->hwtstamp =
5122 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
5123 			  ts_header & GENMASK(29, 0));
5124 	header->reserved2 = 0;
5125 
5126 	netif_rx(skb);
5127 
5128 	return true;
5129 }
5130 
5131 #define LAN8841_EVENT_A		0
5132 #define LAN8841_EVENT_B		1
5133 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
5134 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
5135 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
5136 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
5137 
5138 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
5139 				  s64 sec, u32 nsec)
5140 {
5141 	struct phy_device *phydev = ptp_priv->phydev;
5142 	int ret;
5143 
5144 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
5145 			    upper_16_bits(sec));
5146 	if (ret)
5147 		return ret;
5148 
5149 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
5150 			    lower_16_bits(sec));
5151 	if (ret)
5152 		return ret;
5153 
5154 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
5155 			    upper_16_bits(nsec));
5156 	if (ret)
5157 		return ret;
5158 
5159 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
5160 			    lower_16_bits(nsec));
5161 }
5162 
5163 #define LAN8841_BUFFER_TIME	2
5164 
5165 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
5166 				     const struct timespec64 *ts)
5167 {
5168 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
5169 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
5170 }
5171 
5172 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
5173 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
5174 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
5175 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
5176 
5177 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
5178 				  s64 sec, u32 nsec)
5179 {
5180 	struct phy_device *phydev = ptp_priv->phydev;
5181 	int ret;
5182 
5183 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
5184 			    upper_16_bits(sec));
5185 	if (ret)
5186 		return ret;
5187 
5188 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
5189 			    lower_16_bits(sec));
5190 	if (ret)
5191 		return ret;
5192 
5193 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
5194 			    upper_16_bits(nsec));
5195 	if (ret)
5196 		return ret;
5197 
5198 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
5199 			     lower_16_bits(nsec));
5200 }
5201 
5202 #define LAN8841_PTP_LTC_SET_SEC_HI	262
5203 #define LAN8841_PTP_LTC_SET_SEC_MID	263
5204 #define LAN8841_PTP_LTC_SET_SEC_LO	264
5205 #define LAN8841_PTP_LTC_SET_NS_HI	265
5206 #define LAN8841_PTP_LTC_SET_NS_LO	266
5207 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
5208 
5209 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
5210 				 const struct timespec64 *ts)
5211 {
5212 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5213 							ptp_clock_info);
5214 	struct phy_device *phydev = ptp_priv->phydev;
5215 	unsigned long flags;
5216 	int ret;
5217 
5218 	/* Set the value to be stored */
5219 	mutex_lock(&ptp_priv->ptp_lock);
5220 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
5221 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
5222 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
5223 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
5224 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
5225 
5226 	/* Set the command to load the LTC */
5227 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5228 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
5229 	ret = lan8841_ptp_update_target(ptp_priv, ts);
5230 	mutex_unlock(&ptp_priv->ptp_lock);
5231 
5232 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5233 	ptp_priv->seconds = ts->tv_sec;
5234 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5235 
5236 	return ret;
5237 }
5238 
5239 #define LAN8841_PTP_LTC_RD_SEC_HI	358
5240 #define LAN8841_PTP_LTC_RD_SEC_MID	359
5241 #define LAN8841_PTP_LTC_RD_SEC_LO	360
5242 #define LAN8841_PTP_LTC_RD_NS_HI	361
5243 #define LAN8841_PTP_LTC_RD_NS_LO	362
5244 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
5245 
5246 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
5247 				 struct timespec64 *ts)
5248 {
5249 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5250 							ptp_clock_info);
5251 	struct phy_device *phydev = ptp_priv->phydev;
5252 	time64_t s;
5253 	s64 ns;
5254 
5255 	mutex_lock(&ptp_priv->ptp_lock);
5256 	/* Issue the command to read the LTC */
5257 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5258 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
5259 
5260 	/* Read the LTC */
5261 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
5262 	s <<= 16;
5263 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
5264 	s <<= 16;
5265 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
5266 
5267 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
5268 	ns <<= 16;
5269 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
5270 	mutex_unlock(&ptp_priv->ptp_lock);
5271 
5272 	set_normalized_timespec64(ts, s, ns);
5273 	return 0;
5274 }
5275 
5276 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
5277 				   struct timespec64 *ts)
5278 {
5279 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5280 							ptp_clock_info);
5281 	struct phy_device *phydev = ptp_priv->phydev;
5282 	time64_t s;
5283 
5284 	mutex_lock(&ptp_priv->ptp_lock);
5285 	/* Issue the command to read the LTC */
5286 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5287 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
5288 
5289 	/* Read the LTC */
5290 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
5291 	s <<= 16;
5292 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
5293 	s <<= 16;
5294 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
5295 	mutex_unlock(&ptp_priv->ptp_lock);
5296 
5297 	set_normalized_timespec64(ts, s, 0);
5298 }
5299 
5300 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
5301 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
5302 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
5303 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
5304 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
5305 
5306 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
5307 {
5308 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5309 							ptp_clock_info);
5310 	struct phy_device *phydev = ptp_priv->phydev;
5311 	struct timespec64 ts;
5312 	bool add = true;
5313 	u32 nsec;
5314 	s32 sec;
5315 	int ret;
5316 
5317 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
5318 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
5319 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
5320 	 * increment so the value can be bigger than 15 sec. Therefore limit the
5321 	 * possible adjustments so we will not have these corner cases
5322 	 */
5323 	if (delta > 10000000000LL || delta < -10000000000LL) {
5324 		/* The timeadjustment is too big, so fall back using set time */
5325 		u64 now;
5326 
5327 		ptp->gettime64(ptp, &ts);
5328 
5329 		now = ktime_to_ns(timespec64_to_ktime(ts));
5330 		ts = ns_to_timespec64(now + delta);
5331 
5332 		ptp->settime64(ptp, &ts);
5333 		return 0;
5334 	}
5335 
5336 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
5337 	if (delta < 0 && nsec != 0) {
5338 		/* It is not allowed to adjust low the nsec part, therefore
5339 		 * subtract more from second part and add to nanosecond such
5340 		 * that would roll over, so the second part will increase
5341 		 */
5342 		sec--;
5343 		nsec = NSEC_PER_SEC - nsec;
5344 	}
5345 
5346 	/* Calculate the adjustments and the direction */
5347 	if (delta < 0)
5348 		add = false;
5349 
5350 	if (nsec > 0)
5351 		/* add 8 ns to cover the likely normal increment */
5352 		nsec += 8;
5353 
5354 	if (nsec >= NSEC_PER_SEC) {
5355 		/* carry into seconds */
5356 		sec++;
5357 		nsec -= NSEC_PER_SEC;
5358 	}
5359 
5360 	mutex_lock(&ptp_priv->ptp_lock);
5361 	if (sec) {
5362 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
5363 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
5364 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
5365 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5366 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
5367 	}
5368 
5369 	if (nsec) {
5370 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
5371 			      nsec & 0xffff);
5372 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
5373 			      (nsec >> 16) & 0x3fff);
5374 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5375 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
5376 	}
5377 	mutex_unlock(&ptp_priv->ptp_lock);
5378 
5379 	/* Update the target clock */
5380 	ptp->gettime64(ptp, &ts);
5381 	mutex_lock(&ptp_priv->ptp_lock);
5382 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
5383 	mutex_unlock(&ptp_priv->ptp_lock);
5384 
5385 	return ret;
5386 }
5387 
5388 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
5389 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
5390 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
5391 
5392 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
5393 {
5394 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5395 							ptp_clock_info);
5396 	struct phy_device *phydev = ptp_priv->phydev;
5397 	bool faster = true;
5398 	u32 rate;
5399 
5400 	if (!scaled_ppm)
5401 		return 0;
5402 
5403 	if (scaled_ppm < 0) {
5404 		scaled_ppm = -scaled_ppm;
5405 		faster = false;
5406 	}
5407 
5408 	rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
5409 	rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
5410 
5411 	mutex_lock(&ptp_priv->ptp_lock);
5412 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
5413 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
5414 			     : upper_16_bits(rate) & 0x3fff);
5415 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
5416 	mutex_unlock(&ptp_priv->ptp_lock);
5417 
5418 	return 0;
5419 }
5420 
5421 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
5422 			      enum ptp_pin_function func, unsigned int chan)
5423 {
5424 	switch (func) {
5425 	case PTP_PF_NONE:
5426 	case PTP_PF_PEROUT:
5427 	case PTP_PF_EXTTS:
5428 		break;
5429 	default:
5430 		return -1;
5431 	}
5432 
5433 	return 0;
5434 }
5435 
5436 #define LAN8841_PTP_GPIO_NUM	10
5437 #define LAN8841_GPIO_EN		128
5438 #define LAN8841_GPIO_DIR	129
5439 #define LAN8841_GPIO_BUF	130
5440 
5441 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5442 {
5443 	struct phy_device *phydev = ptp_priv->phydev;
5444 	int ret;
5445 
5446 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5447 	if (ret)
5448 		return ret;
5449 
5450 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
5451 	if (ret)
5452 		return ret;
5453 
5454 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5455 }
5456 
5457 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
5458 {
5459 	struct phy_device *phydev = ptp_priv->phydev;
5460 	int ret;
5461 
5462 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5463 	if (ret)
5464 		return ret;
5465 
5466 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
5467 	if (ret)
5468 		return ret;
5469 
5470 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5471 }
5472 
5473 #define LAN8841_GPIO_DATA_SEL1				131
5474 #define LAN8841_GPIO_DATA_SEL2				132
5475 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
5476 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
5477 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
5478 #define LAN8841_PTP_GENERAL_CONFIG			257
5479 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
5480 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
5481 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
5482 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
5483 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
5484 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
5485 
5486 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
5487 				    u8 event)
5488 {
5489 	struct phy_device *phydev = ptp_priv->phydev;
5490 	u16 tmp;
5491 	int ret;
5492 
5493 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
5494 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5495 	 * depending on the pin, it requires to read a different register
5496 	 */
5497 	if (pin < 5) {
5498 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
5499 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
5500 	} else {
5501 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
5502 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
5503 	}
5504 	if (ret)
5505 		return ret;
5506 
5507 	/* Disable the event */
5508 	if (event == LAN8841_EVENT_A)
5509 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5510 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
5511 	else
5512 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5513 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
5514 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
5515 }
5516 
5517 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
5518 				    u8 event, int pulse_width)
5519 {
5520 	struct phy_device *phydev = ptp_priv->phydev;
5521 	u16 tmp;
5522 	int ret;
5523 
5524 	/* Enable the event */
5525 	if (event == LAN8841_EVENT_A)
5526 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5527 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5528 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
5529 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5530 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
5531 	else
5532 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5533 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5534 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
5535 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5536 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
5537 	if (ret)
5538 		return ret;
5539 
5540 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
5541 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5542 	 * depending on the pin, it requires to read a different register
5543 	 */
5544 	if (event == LAN8841_EVENT_A)
5545 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
5546 	else
5547 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
5548 
5549 	if (pin < 5)
5550 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
5551 				       tmp << (3 * pin));
5552 	else
5553 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
5554 				       tmp << (3 * (pin - 5)));
5555 
5556 	return ret;
5557 }
5558 
5559 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
5560 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
5561 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
5562 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
5563 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
5564 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
5565 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
5566 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
5567 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
5568 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
5569 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
5570 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
5571 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
5572 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
5573 
5574 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
5575 			      struct ptp_clock_request *rq, int on)
5576 {
5577 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5578 							ptp_clock_info);
5579 	struct phy_device *phydev = ptp_priv->phydev;
5580 	struct timespec64 ts_on, ts_period;
5581 	s64 on_nsec, period_nsec;
5582 	int pulse_width;
5583 	int pin;
5584 	int ret;
5585 
5586 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
5587 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5588 		return -EINVAL;
5589 
5590 	if (!on) {
5591 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
5592 		if (ret)
5593 			return ret;
5594 
5595 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
5596 	}
5597 
5598 	ts_on.tv_sec = rq->perout.on.sec;
5599 	ts_on.tv_nsec = rq->perout.on.nsec;
5600 	on_nsec = timespec64_to_ns(&ts_on);
5601 
5602 	ts_period.tv_sec = rq->perout.period.sec;
5603 	ts_period.tv_nsec = rq->perout.period.nsec;
5604 	period_nsec = timespec64_to_ns(&ts_period);
5605 
5606 	if (period_nsec < 200) {
5607 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
5608 				    phydev_name(phydev));
5609 		return -EOPNOTSUPP;
5610 	}
5611 
5612 	if (on_nsec >= period_nsec) {
5613 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
5614 				    phydev_name(phydev));
5615 		return -EINVAL;
5616 	}
5617 
5618 	switch (on_nsec) {
5619 	case 200000000:
5620 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
5621 		break;
5622 	case 100000000:
5623 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
5624 		break;
5625 	case 50000000:
5626 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
5627 		break;
5628 	case 10000000:
5629 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
5630 		break;
5631 	case 5000000:
5632 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
5633 		break;
5634 	case 1000000:
5635 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
5636 		break;
5637 	case 500000:
5638 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
5639 		break;
5640 	case 100000:
5641 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
5642 		break;
5643 	case 50000:
5644 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
5645 		break;
5646 	case 10000:
5647 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
5648 		break;
5649 	case 5000:
5650 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
5651 		break;
5652 	case 1000:
5653 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
5654 		break;
5655 	case 500:
5656 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
5657 		break;
5658 	case 100:
5659 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5660 		break;
5661 	default:
5662 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
5663 				    phydev_name(phydev));
5664 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5665 		break;
5666 	}
5667 
5668 	mutex_lock(&ptp_priv->ptp_lock);
5669 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
5670 				     rq->perout.start.nsec);
5671 	mutex_unlock(&ptp_priv->ptp_lock);
5672 	if (ret)
5673 		return ret;
5674 
5675 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
5676 				     rq->perout.period.nsec);
5677 	if (ret)
5678 		return ret;
5679 
5680 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
5681 				       pulse_width);
5682 	if (ret)
5683 		return ret;
5684 
5685 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
5686 	if (ret)
5687 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
5688 
5689 	return ret;
5690 }
5691 
5692 #define LAN8841_PTP_GPIO_CAP_EN			496
5693 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
5694 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
5695 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
5696 
5697 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
5698 				u32 flags)
5699 {
5700 	struct phy_device *phydev = ptp_priv->phydev;
5701 	u16 tmp = 0;
5702 	int ret;
5703 
5704 	/* Set GPIO to be input */
5705 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5706 	if (ret)
5707 		return ret;
5708 
5709 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5710 	if (ret)
5711 		return ret;
5712 
5713 	/* Enable capture on the edges of the pin */
5714 	if (flags & PTP_RISING_EDGE)
5715 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5716 	if (flags & PTP_FALLING_EDGE)
5717 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5718 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5719 	if (ret)
5720 		return ret;
5721 
5722 	/* Enable interrupt */
5723 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5724 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5725 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5726 }
5727 
5728 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5729 {
5730 	struct phy_device *phydev = ptp_priv->phydev;
5731 	int ret;
5732 
5733 	/* Set GPIO to be output */
5734 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5735 	if (ret)
5736 		return ret;
5737 
5738 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5739 	if (ret)
5740 		return ret;
5741 
5742 	/* Disable capture on both of the edges */
5743 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5744 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5745 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5746 			     0);
5747 	if (ret)
5748 		return ret;
5749 
5750 	/* Disable interrupt */
5751 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5752 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5753 			      0);
5754 }
5755 
5756 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5757 			     struct ptp_clock_request *rq, int on)
5758 {
5759 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5760 							ptp_clock_info);
5761 	int pin;
5762 	int ret;
5763 
5764 	/* Reject requests with unsupported flags */
5765 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5766 				PTP_EXTTS_EDGES |
5767 				PTP_STRICT_FLAGS))
5768 		return -EOPNOTSUPP;
5769 
5770 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5771 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5772 		return -EINVAL;
5773 
5774 	mutex_lock(&ptp_priv->ptp_lock);
5775 	if (on)
5776 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5777 	else
5778 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
5779 	mutex_unlock(&ptp_priv->ptp_lock);
5780 
5781 	return ret;
5782 }
5783 
5784 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5785 			      struct ptp_clock_request *rq, int on)
5786 {
5787 	switch (rq->type) {
5788 	case PTP_CLK_REQ_EXTTS:
5789 		return lan8841_ptp_extts(ptp, rq, on);
5790 	case PTP_CLK_REQ_PEROUT:
5791 		return lan8841_ptp_perout(ptp, rq, on);
5792 	default:
5793 		return -EOPNOTSUPP;
5794 	}
5795 
5796 	return 0;
5797 }
5798 
5799 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5800 {
5801 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5802 							ptp_clock_info);
5803 	struct timespec64 ts;
5804 	unsigned long flags;
5805 
5806 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5807 
5808 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5809 	ptp_priv->seconds = ts.tv_sec;
5810 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5811 
5812 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5813 }
5814 
5815 static struct ptp_clock_info lan8841_ptp_clock_info = {
5816 	.owner		= THIS_MODULE,
5817 	.name		= "lan8841 ptp",
5818 	.max_adj	= 31249999,
5819 	.gettime64	= lan8841_ptp_gettime64,
5820 	.settime64	= lan8841_ptp_settime64,
5821 	.adjtime	= lan8841_ptp_adjtime,
5822 	.adjfine	= lan8841_ptp_adjfine,
5823 	.verify         = lan8841_ptp_verify,
5824 	.enable         = lan8841_ptp_enable,
5825 	.do_aux_work	= lan8841_ptp_do_aux_work,
5826 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
5827 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
5828 	.n_pins         = LAN8841_PTP_GPIO_NUM,
5829 	.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE,
5830 };
5831 
5832 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5833 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5834 
5835 static int lan8841_probe(struct phy_device *phydev)
5836 {
5837 	struct kszphy_ptp_priv *ptp_priv;
5838 	struct kszphy_priv *priv;
5839 	int err;
5840 
5841 	err = kszphy_probe(phydev);
5842 	if (err)
5843 		return err;
5844 
5845 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5846 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5847 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5848 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5849 
5850 	/* Register the clock */
5851 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5852 		return 0;
5853 
5854 	priv = phydev->priv;
5855 	ptp_priv = &priv->ptp_priv;
5856 
5857 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5858 					    LAN8841_PTP_GPIO_NUM,
5859 					    sizeof(*ptp_priv->pin_config),
5860 					    GFP_KERNEL);
5861 	if (!ptp_priv->pin_config)
5862 		return -ENOMEM;
5863 
5864 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5865 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5866 
5867 		snprintf(p->name, sizeof(p->name), "pin%d", i);
5868 		p->index = i;
5869 		p->func = PTP_PF_NONE;
5870 	}
5871 
5872 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5873 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5874 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5875 						 &phydev->mdio.dev);
5876 	if (IS_ERR(ptp_priv->ptp_clock)) {
5877 		phydev_err(phydev, "ptp_clock_register failed: %pe\n",
5878 			   ptp_priv->ptp_clock);
5879 		return -EINVAL;
5880 	}
5881 
5882 	if (!ptp_priv->ptp_clock)
5883 		return 0;
5884 
5885 	/* Initialize the SW */
5886 	skb_queue_head_init(&ptp_priv->tx_queue);
5887 	ptp_priv->phydev = phydev;
5888 	mutex_init(&ptp_priv->ptp_lock);
5889 	spin_lock_init(&ptp_priv->seconds_lock);
5890 
5891 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5892 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5893 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5894 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5895 
5896 	phydev->mii_ts = &ptp_priv->mii_ts;
5897 
5898 	/* Timestamp selected by default to keep legacy API */
5899 	phydev->default_timestamp = true;
5900 
5901 	return 0;
5902 }
5903 
5904 static int lan8804_resume(struct phy_device *phydev)
5905 {
5906 	return kszphy_resume(phydev);
5907 }
5908 
5909 static int lan8804_suspend(struct phy_device *phydev)
5910 {
5911 	return kszphy_generic_suspend(phydev);
5912 }
5913 
5914 static int lan8841_resume(struct phy_device *phydev)
5915 {
5916 	return kszphy_generic_resume(phydev);
5917 }
5918 
5919 static int lan8841_suspend(struct phy_device *phydev)
5920 {
5921 	struct kszphy_priv *priv = phydev->priv;
5922 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5923 
5924 	if (ptp_priv->ptp_clock)
5925 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5926 
5927 	return kszphy_generic_suspend(phydev);
5928 }
5929 
5930 static int ksz9131_resume(struct phy_device *phydev)
5931 {
5932 	if (phydev->suspended && phy_interface_is_rgmii(phydev))
5933 		ksz9131_config_rgmii_delay(phydev);
5934 
5935 	return kszphy_resume(phydev);
5936 }
5937 
5938 #define LAN8842_PTP_GPIO_NUM 16
5939 
5940 static int lan8842_ptp_probe_once(struct phy_device *phydev)
5941 {
5942 	return __lan8814_ptp_probe_once(phydev, "lan8842_ptp_pin",
5943 					LAN8842_PTP_GPIO_NUM);
5944 }
5945 
5946 #define LAN8842_STRAP_REG			0 /* 0x0 */
5947 #define LAN8842_STRAP_REG_PHYADDR_MASK		GENMASK(4, 0)
5948 #define LAN8842_SKU_REG				11 /* 0x0b */
5949 #define LAN8842_SELF_TEST			14 /* 0x0e */
5950 #define LAN8842_SELF_TEST_RX_CNT_ENA		BIT(8)
5951 #define LAN8842_SELF_TEST_TX_CNT_ENA		BIT(4)
5952 
5953 static int lan8842_probe(struct phy_device *phydev)
5954 {
5955 	struct lan8842_priv *priv;
5956 	int addr;
5957 	int ret;
5958 
5959 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
5960 	if (!priv)
5961 		return -ENOMEM;
5962 
5963 	phydev->priv = priv;
5964 
5965 	/* Similar to lan8814 this PHY has a pin which needs to be pulled down
5966 	 * to enable to pass any traffic through it. Therefore use the same
5967 	 * function as lan8814
5968 	 */
5969 	ret = lan8814_release_coma_mode(phydev);
5970 	if (ret)
5971 		return ret;
5972 
5973 	/* Enable to count the RX and TX packets */
5974 	ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL,
5975 				    LAN8842_SELF_TEST,
5976 				    LAN8842_SELF_TEST_RX_CNT_ENA |
5977 				    LAN8842_SELF_TEST_TX_CNT_ENA);
5978 	if (ret < 0)
5979 		return ret;
5980 
5981 	/* Revision lan8832 doesn't have support for PTP, therefore don't add
5982 	 * any PTP clocks
5983 	 */
5984 	ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
5985 				   LAN8842_SKU_REG);
5986 	if (ret < 0)
5987 		return ret;
5988 
5989 	priv->rev = ret;
5990 	if (priv->rev == LAN8842_REV_8832)
5991 		return 0;
5992 
5993 	/* As the lan8814 and lan8842 has the same IP for the PTP block, the
5994 	 * only difference is the number of the GPIOs, then make sure that the
5995 	 * lan8842 initialized also the shared data pointer as this is used in
5996 	 * all the PTP functions for lan8814. The lan8842 doesn't have multiple
5997 	 * PHYs in the same package.
5998 	 */
5999 	addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6000 				    LAN8842_STRAP_REG);
6001 	if (addr < 0)
6002 		return addr;
6003 	addr &= LAN8842_STRAP_REG_PHYADDR_MASK;
6004 
6005 	ret = devm_phy_package_join(&phydev->mdio.dev, phydev, addr,
6006 				    sizeof(struct lan8814_shared_priv));
6007 	if (ret)
6008 		return ret;
6009 
6010 	if (phy_package_init_once(phydev)) {
6011 		ret = lan8842_ptp_probe_once(phydev);
6012 		if (ret)
6013 			return ret;
6014 	}
6015 
6016 	lan8814_ptp_init(phydev);
6017 
6018 	return 0;
6019 }
6020 
6021 static int lan8842_config_init(struct phy_device *phydev)
6022 {
6023 	int ret;
6024 
6025 	/* Reset the PHY */
6026 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6027 				     LAN8814_QSGMII_SOFT_RESET,
6028 				     LAN8814_QSGMII_SOFT_RESET_BIT,
6029 				     LAN8814_QSGMII_SOFT_RESET_BIT);
6030 	if (ret < 0)
6031 		return ret;
6032 
6033 	/* Even if the GPIOs are set to control the LEDs the behaviour of the
6034 	 * LEDs is wrong, they are not blinking when there is traffic.
6035 	 * To fix this it is required to set extended LED mode
6036 	 */
6037 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6038 				     LAN8814_LED_CTRL_1,
6039 				     LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_, 0);
6040 	if (ret < 0)
6041 		return ret;
6042 
6043 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6044 				     LAN8814_LED_CTRL_2,
6045 				     LAN8814_LED_CTRL_2_LED1_COM_DIS,
6046 				     LAN8814_LED_CTRL_2_LED1_COM_DIS);
6047 	if (ret < 0)
6048 		return ret;
6049 
6050 	/* To allow the PHY to control the LEDs the GPIOs of the PHY should have
6051 	 * a function mode and not the GPIO. Apparently by default the value is
6052 	 * GPIO and not function even though the datasheet it says that it is
6053 	 * function. Therefore set this value.
6054 	 */
6055 	return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6056 				     LAN8814_GPIO_EN2, 0);
6057 }
6058 
6059 #define LAN8842_INTR_CTRL_REG			52 /* 0x34 */
6060 
6061 static int lan8842_config_intr(struct phy_device *phydev)
6062 {
6063 	int err;
6064 
6065 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6066 			      LAN8842_INTR_CTRL_REG,
6067 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
6068 
6069 	/* enable / disable interrupts */
6070 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
6071 		err = lan8814_ack_interrupt(phydev);
6072 		if (err)
6073 			return err;
6074 
6075 		err = phy_write(phydev, LAN8814_INTC,
6076 				LAN8814_INT_LINK | LAN8814_INT_FLF);
6077 	} else {
6078 		err = phy_write(phydev, LAN8814_INTC, 0);
6079 		if (err)
6080 			return err;
6081 
6082 		err = lan8814_ack_interrupt(phydev);
6083 	}
6084 
6085 	return err;
6086 }
6087 
6088 static unsigned int lan8842_inband_caps(struct phy_device *phydev,
6089 					phy_interface_t interface)
6090 {
6091 	/* Inband configuration can be enabled or disabled using the registers
6092 	 * PCS1G_ANEG_CONFIG.
6093 	 */
6094 	return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE;
6095 }
6096 
6097 static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes)
6098 {
6099 	bool enable;
6100 
6101 	if (modes == LINK_INBAND_DISABLE)
6102 		enable = false;
6103 	else
6104 		enable = true;
6105 
6106 	/* Disable or enable in-band autoneg with PCS Host side
6107 	 * It has the same address as lan8814
6108 	 */
6109 	return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6110 				      LAN8814_QSGMII_PCS1G_ANEG_CONFIG,
6111 				      LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA,
6112 				      enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0);
6113 }
6114 
6115 static void lan8842_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
6116 {
6117 	struct kszphy_ptp_priv *ptp_priv;
6118 	struct lan8842_priv *priv;
6119 
6120 	priv = phydev->priv;
6121 	ptp_priv = &priv->ptp_priv;
6122 
6123 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
6124 		lan8814_get_tx_ts(ptp_priv);
6125 
6126 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
6127 		lan8814_get_rx_ts(ptp_priv);
6128 
6129 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
6130 		lan8814_flush_fifo(phydev, true);
6131 		skb_queue_purge(&ptp_priv->tx_queue);
6132 	}
6133 
6134 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
6135 		lan8814_flush_fifo(phydev, false);
6136 		skb_queue_purge(&ptp_priv->rx_queue);
6137 	}
6138 }
6139 
6140 static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev)
6141 {
6142 	struct lan8842_priv *priv = phydev->priv;
6143 	int ret = IRQ_NONE;
6144 	int irq_status;
6145 
6146 	irq_status = phy_read(phydev, LAN8814_INTS);
6147 	if (irq_status < 0) {
6148 		phy_error(phydev);
6149 		return IRQ_NONE;
6150 	}
6151 
6152 	if (irq_status & (LAN8814_INT_LINK | LAN8814_INT_FLF)) {
6153 		phy_trigger_machine(phydev);
6154 		ret = IRQ_HANDLED;
6155 	}
6156 
6157 	/* Phy revision lan8832 doesn't have support for PTP therefore there is
6158 	 * not need to check the PTP and GPIO interrupts
6159 	 */
6160 	if (priv->rev == LAN8842_REV_8832)
6161 		goto out;
6162 
6163 	while (true) {
6164 		irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6165 						  PTP_TSU_INT_STS);
6166 		if (!irq_status)
6167 			break;
6168 
6169 		lan8842_handle_ptp_interrupt(phydev, irq_status);
6170 		ret = IRQ_HANDLED;
6171 	}
6172 
6173 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
6174 		ret = IRQ_HANDLED;
6175 
6176 out:
6177 	return ret;
6178 }
6179 
6180 static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs)
6181 {
6182 	u64 ret = 0;
6183 	int val;
6184 
6185 	for (int j = 0; j < count; ++j) {
6186 		val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL,
6187 					   regs[j]);
6188 		if (val < 0)
6189 			return U64_MAX;
6190 
6191 		ret <<= 16;
6192 		ret += val;
6193 	}
6194 	return ret;
6195 }
6196 
6197 static int lan8842_update_stats(struct phy_device *phydev)
6198 {
6199 	struct lan8842_priv *priv = phydev->priv;
6200 	int rx_packets_regs[] = {88, 61, 60};
6201 	int rx_errors_regs[] = {63, 62};
6202 	int tx_packets_regs[] = {89, 85, 84};
6203 	int tx_errors_regs[] = {87, 86};
6204 
6205 	priv->phy_stats.rx_packets = lan8842_get_stat(phydev,
6206 						      ARRAY_SIZE(rx_packets_regs),
6207 						      rx_packets_regs);
6208 	priv->phy_stats.rx_errors = lan8842_get_stat(phydev,
6209 						     ARRAY_SIZE(rx_errors_regs),
6210 						     rx_errors_regs);
6211 	priv->phy_stats.tx_packets = lan8842_get_stat(phydev,
6212 						      ARRAY_SIZE(tx_packets_regs),
6213 						      tx_packets_regs);
6214 	priv->phy_stats.tx_errors = lan8842_get_stat(phydev,
6215 						     ARRAY_SIZE(tx_errors_regs),
6216 						     tx_errors_regs);
6217 
6218 	return 0;
6219 }
6220 
6221 #define LAN8842_FLF				15 /* 0x0e */
6222 #define LAN8842_FLF_ENA				BIT(1)
6223 #define LAN8842_FLF_ENA_LINK_DOWN		BIT(0)
6224 
6225 static int lan8842_get_fast_down(struct phy_device *phydev, u8 *msecs)
6226 {
6227 	int ret;
6228 
6229 	ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS, LAN8842_FLF);
6230 	if (ret < 0)
6231 		return ret;
6232 
6233 	if (ret & LAN8842_FLF_ENA)
6234 		*msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON;
6235 	else
6236 		*msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF;
6237 
6238 	return 0;
6239 }
6240 
6241 static int lan8842_set_fast_down(struct phy_device *phydev, const u8 *msecs)
6242 {
6243 	u16 flf;
6244 
6245 	switch (*msecs) {
6246 	case ETHTOOL_PHY_FAST_LINK_DOWN_OFF:
6247 		flf = 0;
6248 		break;
6249 	case ETHTOOL_PHY_FAST_LINK_DOWN_ON:
6250 		flf = LAN8842_FLF_ENA | LAN8842_FLF_ENA_LINK_DOWN;
6251 		break;
6252 	default:
6253 		return -EINVAL;
6254 	}
6255 
6256 	return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS,
6257 				      LAN8842_FLF,
6258 				      LAN8842_FLF_ENA |
6259 				      LAN8842_FLF_ENA_LINK_DOWN, flf);
6260 }
6261 
6262 static int lan8842_get_tunable(struct phy_device *phydev,
6263 			       struct ethtool_tunable *tuna, void *data)
6264 {
6265 	switch (tuna->id) {
6266 	case ETHTOOL_PHY_FAST_LINK_DOWN:
6267 		return lan8842_get_fast_down(phydev, data);
6268 	default:
6269 		return -EOPNOTSUPP;
6270 	}
6271 }
6272 
6273 static int lan8842_set_tunable(struct phy_device *phydev,
6274 			       struct ethtool_tunable *tuna, const void *data)
6275 {
6276 	switch (tuna->id) {
6277 	case ETHTOOL_PHY_FAST_LINK_DOWN:
6278 		return lan8842_set_fast_down(phydev, data);
6279 	default:
6280 		return -EOPNOTSUPP;
6281 	}
6282 }
6283 
6284 static void lan8842_get_phy_stats(struct phy_device *phydev,
6285 				  struct ethtool_eth_phy_stats *eth_stats,
6286 				  struct ethtool_phy_stats *stats)
6287 {
6288 	struct lan8842_priv *priv = phydev->priv;
6289 
6290 	stats->rx_packets = priv->phy_stats.rx_packets;
6291 	stats->rx_errors = priv->phy_stats.rx_errors;
6292 	stats->tx_packets = priv->phy_stats.tx_packets;
6293 	stats->tx_errors = priv->phy_stats.tx_errors;
6294 }
6295 
6296 static struct phy_driver ksphy_driver[] = {
6297 {
6298 	PHY_ID_MATCH_MODEL(PHY_ID_KS8737),
6299 	.name		= "Micrel KS8737",
6300 	/* PHY_BASIC_FEATURES */
6301 	.driver_data	= &ks8737_type,
6302 	.probe		= kszphy_probe,
6303 	.config_init	= kszphy_config_init,
6304 	.config_intr	= kszphy_config_intr,
6305 	.handle_interrupt = kszphy_handle_interrupt,
6306 	.suspend	= kszphy_suspend,
6307 	.resume		= kszphy_resume,
6308 }, {
6309 	.phy_id		= PHY_ID_KSZ8021,
6310 	.phy_id_mask	= 0x00ffffff,
6311 	.name		= "Micrel KSZ8021 or KSZ8031",
6312 	/* PHY_BASIC_FEATURES */
6313 	.driver_data	= &ksz8021_type,
6314 	.probe		= kszphy_probe,
6315 	.config_init	= kszphy_config_init,
6316 	.config_intr	= kszphy_config_intr,
6317 	.handle_interrupt = kszphy_handle_interrupt,
6318 	.get_sset_count = kszphy_get_sset_count,
6319 	.get_strings	= kszphy_get_strings,
6320 	.get_stats	= kszphy_get_stats,
6321 	.suspend	= kszphy_suspend,
6322 	.resume		= kszphy_resume,
6323 }, {
6324 	.phy_id		= PHY_ID_KSZ8031,
6325 	.phy_id_mask	= 0x00ffffff,
6326 	.name		= "Micrel KSZ8031",
6327 	/* PHY_BASIC_FEATURES */
6328 	.driver_data	= &ksz8021_type,
6329 	.probe		= kszphy_probe,
6330 	.config_init	= kszphy_config_init,
6331 	.config_intr	= kszphy_config_intr,
6332 	.handle_interrupt = kszphy_handle_interrupt,
6333 	.get_sset_count = kszphy_get_sset_count,
6334 	.get_strings	= kszphy_get_strings,
6335 	.get_stats	= kszphy_get_stats,
6336 	.suspend	= kszphy_suspend,
6337 	.resume		= kszphy_resume,
6338 }, {
6339 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041),
6340 	.name		= "Micrel KSZ8041",
6341 	/* PHY_BASIC_FEATURES */
6342 	.driver_data	= &ksz8041_type,
6343 	.probe		= kszphy_probe,
6344 	.config_init	= ksz8041_config_init,
6345 	.config_aneg	= ksz8041_config_aneg,
6346 	.config_intr	= kszphy_config_intr,
6347 	.handle_interrupt = kszphy_handle_interrupt,
6348 	.get_sset_count = kszphy_get_sset_count,
6349 	.get_strings	= kszphy_get_strings,
6350 	.get_stats	= kszphy_get_stats,
6351 	.suspend	= ksz8041_suspend,
6352 	.resume		= ksz8041_resume,
6353 }, {
6354 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI),
6355 	.name		= "Micrel KSZ8041RNLI",
6356 	/* PHY_BASIC_FEATURES */
6357 	.driver_data	= &ksz8041_type,
6358 	.probe		= kszphy_probe,
6359 	.config_init	= kszphy_config_init,
6360 	.config_intr	= kszphy_config_intr,
6361 	.handle_interrupt = kszphy_handle_interrupt,
6362 	.get_sset_count = kszphy_get_sset_count,
6363 	.get_strings	= kszphy_get_strings,
6364 	.get_stats	= kszphy_get_stats,
6365 	.suspend	= kszphy_suspend,
6366 	.resume		= kszphy_resume,
6367 }, {
6368 	.name		= "Micrel KSZ8051",
6369 	/* PHY_BASIC_FEATURES */
6370 	.driver_data	= &ksz8051_type,
6371 	.probe		= kszphy_probe,
6372 	.config_init	= kszphy_config_init,
6373 	.config_intr	= kszphy_config_intr,
6374 	.handle_interrupt = kszphy_handle_interrupt,
6375 	.get_sset_count = kszphy_get_sset_count,
6376 	.get_strings	= kszphy_get_strings,
6377 	.get_stats	= kszphy_get_stats,
6378 	.match_phy_device = ksz8051_match_phy_device,
6379 	.suspend	= kszphy_suspend,
6380 	.resume		= kszphy_resume,
6381 }, {
6382 	.phy_id		= PHY_ID_KSZ8001,
6383 	.name		= "Micrel KSZ8001 or KS8721",
6384 	.phy_id_mask	= 0x00fffffc,
6385 	/* PHY_BASIC_FEATURES */
6386 	.driver_data	= &ksz8041_type,
6387 	.probe		= kszphy_probe,
6388 	.config_init	= kszphy_config_init,
6389 	.config_intr	= kszphy_config_intr,
6390 	.handle_interrupt = kszphy_handle_interrupt,
6391 	.get_sset_count = kszphy_get_sset_count,
6392 	.get_strings	= kszphy_get_strings,
6393 	.get_stats	= kszphy_get_stats,
6394 	.suspend	= kszphy_suspend,
6395 	.resume		= kszphy_resume,
6396 }, {
6397 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081),
6398 	.name		= "Micrel KSZ8081 or KSZ8091",
6399 	.flags		= PHY_POLL_CABLE_TEST,
6400 	/* PHY_BASIC_FEATURES */
6401 	.driver_data	= &ksz8081_type,
6402 	.probe		= kszphy_probe,
6403 	.config_init	= ksz8081_config_init,
6404 	.soft_reset	= genphy_soft_reset,
6405 	.config_aneg	= ksz8081_config_aneg,
6406 	.read_status	= ksz8081_read_status,
6407 	.config_intr	= kszphy_config_intr,
6408 	.handle_interrupt = kszphy_handle_interrupt,
6409 	.get_sset_count = kszphy_get_sset_count,
6410 	.get_strings	= kszphy_get_strings,
6411 	.get_stats	= kszphy_get_stats,
6412 	.suspend	= kszphy_suspend,
6413 	.resume		= kszphy_resume,
6414 	.cable_test_start	= ksz886x_cable_test_start,
6415 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6416 }, {
6417 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061),
6418 	.name		= "Micrel KSZ8061",
6419 	/* PHY_BASIC_FEATURES */
6420 	.probe		= kszphy_probe,
6421 	.config_init	= ksz8061_config_init,
6422 	.soft_reset	= genphy_soft_reset,
6423 	.config_intr	= kszphy_config_intr,
6424 	.handle_interrupt = kszphy_handle_interrupt,
6425 	.suspend	= ksz8061_suspend,
6426 	.resume		= ksz8061_resume,
6427 }, {
6428 	.phy_id		= PHY_ID_KSZ9021,
6429 	.phy_id_mask	= 0x000ffffe,
6430 	.name		= "Micrel KSZ9021 Gigabit PHY",
6431 	/* PHY_GBIT_FEATURES */
6432 	.driver_data	= &ksz9021_type,
6433 	.probe		= kszphy_probe,
6434 	.get_features	= ksz9031_get_features,
6435 	.config_init	= ksz9021_config_init,
6436 	.config_intr	= kszphy_config_intr,
6437 	.handle_interrupt = kszphy_handle_interrupt,
6438 	.get_sset_count = kszphy_get_sset_count,
6439 	.get_strings	= kszphy_get_strings,
6440 	.get_stats	= kszphy_get_stats,
6441 	.suspend	= kszphy_suspend,
6442 	.resume		= kszphy_resume,
6443 	.read_mmd	= genphy_read_mmd_unsupported,
6444 	.write_mmd	= genphy_write_mmd_unsupported,
6445 }, {
6446 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031),
6447 	.name		= "Micrel KSZ9031 Gigabit PHY",
6448 	.flags		= PHY_POLL_CABLE_TEST,
6449 	.driver_data	= &ksz9021_type,
6450 	.probe		= kszphy_probe,
6451 	.get_features	= ksz9031_get_features,
6452 	.config_init	= ksz9031_config_init,
6453 	.soft_reset	= genphy_soft_reset,
6454 	.read_status	= ksz9031_read_status,
6455 	.config_intr	= kszphy_config_intr,
6456 	.handle_interrupt = kszphy_handle_interrupt,
6457 	.get_sset_count = kszphy_get_sset_count,
6458 	.get_strings	= kszphy_get_strings,
6459 	.get_stats	= kszphy_get_stats,
6460 	.suspend	= kszphy_suspend,
6461 	.resume		= kszphy_resume,
6462 	.cable_test_start	= ksz9x31_cable_test_start,
6463 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6464 	.set_loopback	= ksz9031_set_loopback,
6465 }, {
6466 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8814),
6467 	.name		= "Microchip INDY Gigabit Quad PHY",
6468 	.flags          = PHY_POLL_CABLE_TEST,
6469 	.config_init	= lan8814_config_init,
6470 	.driver_data	= &lan8814_type,
6471 	.probe		= lan8814_probe,
6472 	.soft_reset	= genphy_soft_reset,
6473 	.read_status	= ksz9031_read_status,
6474 	.get_sset_count	= kszphy_get_sset_count,
6475 	.get_strings	= kszphy_get_strings,
6476 	.get_stats	= kszphy_get_stats,
6477 	.suspend	= genphy_suspend,
6478 	.resume		= kszphy_resume,
6479 	.config_intr	= lan8814_config_intr,
6480 	.handle_interrupt = lan8814_handle_interrupt,
6481 	.cable_test_start	= lan8814_cable_test_start,
6482 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6483 }, {
6484 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8804),
6485 	.name		= "Microchip LAN966X Gigabit PHY",
6486 	.config_init	= lan8804_config_init,
6487 	.driver_data	= &ksz9021_type,
6488 	.probe		= kszphy_probe,
6489 	.soft_reset	= genphy_soft_reset,
6490 	.read_status	= ksz9031_read_status,
6491 	.get_sset_count	= kszphy_get_sset_count,
6492 	.get_strings	= kszphy_get_strings,
6493 	.get_stats	= kszphy_get_stats,
6494 	.suspend	= lan8804_suspend,
6495 	.resume		= lan8804_resume,
6496 	.config_intr	= lan8804_config_intr,
6497 	.handle_interrupt = lan8804_handle_interrupt,
6498 }, {
6499 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8841),
6500 	.name		= "Microchip LAN8841 Gigabit PHY",
6501 	.flags		= PHY_POLL_CABLE_TEST,
6502 	.driver_data	= &lan8841_type,
6503 	.config_init	= lan8841_config_init,
6504 	.probe		= lan8841_probe,
6505 	.soft_reset	= genphy_soft_reset,
6506 	.config_intr	= lan8841_config_intr,
6507 	.handle_interrupt = lan8841_handle_interrupt,
6508 	.get_sset_count = kszphy_get_sset_count,
6509 	.get_strings	= kszphy_get_strings,
6510 	.get_stats	= kszphy_get_stats,
6511 	.suspend	= lan8841_suspend,
6512 	.resume		= lan8841_resume,
6513 	.cable_test_start	= lan8814_cable_test_start,
6514 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6515 }, {
6516 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8842),
6517 	.name		= "Microchip LAN8842 Gigabit PHY",
6518 	.flags		= PHY_POLL_CABLE_TEST,
6519 	.driver_data	= &lan8814_type,
6520 	.probe		= lan8842_probe,
6521 	.config_init	= lan8842_config_init,
6522 	.config_intr	= lan8842_config_intr,
6523 	.inband_caps	= lan8842_inband_caps,
6524 	.config_inband	= lan8842_config_inband,
6525 	.handle_interrupt = lan8842_handle_interrupt,
6526 	.get_phy_stats	= lan8842_get_phy_stats,
6527 	.update_stats	= lan8842_update_stats,
6528 	.get_tunable	= lan8842_get_tunable,
6529 	.set_tunable	= lan8842_set_tunable,
6530 	.cable_test_start	= lan8814_cable_test_start,
6531 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6532 }, {
6533 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131),
6534 	.name		= "Microchip KSZ9131 Gigabit PHY",
6535 	/* PHY_GBIT_FEATURES */
6536 	.flags		= PHY_POLL_CABLE_TEST,
6537 	.driver_data	= &ksz9131_type,
6538 	.probe		= kszphy_probe,
6539 	.soft_reset	= genphy_soft_reset,
6540 	.config_init	= ksz9131_config_init,
6541 	.config_intr	= kszphy_config_intr,
6542 	.config_aneg	= ksz9131_config_aneg,
6543 	.read_status	= ksz9131_read_status,
6544 	.handle_interrupt = kszphy_handle_interrupt,
6545 	.get_sset_count = kszphy_get_sset_count,
6546 	.get_strings	= kszphy_get_strings,
6547 	.get_stats	= kszphy_get_stats,
6548 	.suspend	= kszphy_suspend,
6549 	.resume		= ksz9131_resume,
6550 	.cable_test_start	= ksz9x31_cable_test_start,
6551 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6552 	.get_features	= ksz9477_get_features,
6553 }, {
6554 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL),
6555 	.name		= "Micrel KSZ8873MLL Switch",
6556 	/* PHY_BASIC_FEATURES */
6557 	.config_init	= kszphy_config_init,
6558 	.config_aneg	= ksz8873mll_config_aneg,
6559 	.read_status	= ksz8873mll_read_status,
6560 	.suspend	= genphy_suspend,
6561 	.resume		= genphy_resume,
6562 }, {
6563 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X),
6564 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
6565 	.driver_data	= &ksz886x_type,
6566 	/* PHY_BASIC_FEATURES */
6567 	.flags		= PHY_POLL_CABLE_TEST,
6568 	.config_init	= kszphy_config_init,
6569 	.config_aneg	= ksz886x_config_aneg,
6570 	.read_status	= ksz886x_read_status,
6571 	.suspend	= genphy_suspend,
6572 	.resume		= genphy_resume,
6573 	.cable_test_start	= ksz886x_cable_test_start,
6574 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6575 }, {
6576 	.name		= "Micrel KSZ87XX Switch",
6577 	/* PHY_BASIC_FEATURES */
6578 	.config_init	= kszphy_config_init,
6579 	.match_phy_device = ksz8795_match_phy_device,
6580 	.suspend	= genphy_suspend,
6581 	.resume		= genphy_resume,
6582 }, {
6583 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477),
6584 	.name		= "Microchip KSZ9477",
6585 	.probe		= kszphy_probe,
6586 	/* PHY_GBIT_FEATURES */
6587 	.config_init	= ksz9477_config_init,
6588 	.config_intr	= kszphy_config_intr,
6589 	.config_aneg	= ksz9477_config_aneg,
6590 	.read_status	= ksz9477_read_status,
6591 	.handle_interrupt = kszphy_handle_interrupt,
6592 	.suspend	= genphy_suspend,
6593 	.resume		= ksz9477_resume,
6594 	.get_phy_stats	= kszphy_get_phy_stats,
6595 	.update_stats	= kszphy_update_stats,
6596 	.cable_test_start	= ksz9x31_cable_test_start,
6597 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6598 	.get_sqi	= kszphy_get_sqi,
6599 	.get_sqi_max	= kszphy_get_sqi_max,
6600 	.get_mse_capability = kszphy_get_mse_capability,
6601 	.get_mse_snapshot = kszphy_get_mse_snapshot,
6602 } };
6603 
6604 module_phy_driver(ksphy_driver);
6605 
6606 MODULE_DESCRIPTION("Micrel PHY driver");
6607 MODULE_AUTHOR("David J. Choi");
6608 MODULE_LICENSE("GPL");
6609 
6610 static const struct mdio_device_id __maybe_unused micrel_tbl[] = {
6611 	{ PHY_ID_KSZ9021, 0x000ffffe },
6612 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) },
6613 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) },
6614 	{ PHY_ID_KSZ8001, 0x00fffffc },
6615 	{ PHY_ID_MATCH_MODEL(PHY_ID_KS8737) },
6616 	{ PHY_ID_KSZ8021, 0x00ffffff },
6617 	{ PHY_ID_KSZ8031, 0x00ffffff },
6618 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) },
6619 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) },
6620 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) },
6621 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) },
6622 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) },
6623 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) },
6624 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) },
6625 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) },
6626 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) },
6627 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) },
6628 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) },
6629 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) },
6630 	{ }
6631 };
6632 
6633 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
6634