1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_SKUS 0xB 105 106 #define LAN8814_WIRE_PAIR_MASK 0xF 107 108 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 109 #define LAN8814_INTC 0x18 110 #define LAN8814_INTS 0x1B 111 112 #define LAN8814_INT_FLF BIT(15) 113 #define LAN8814_INT_LINK_DOWN BIT(2) 114 #define LAN8814_INT_LINK_UP BIT(0) 115 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 116 LAN8814_INT_LINK_DOWN) 117 118 #define LAN8814_INTR_CTRL_REG 0x34 119 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 120 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 121 122 #define LAN8814_EEE_STATE 0x38 123 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 124 125 #define LAN8814_PD_CONTROLS 0x9d 126 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 127 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 128 129 /* Represents 1ppm adjustment in 2^32 format with 130 * each nsec contains 4 clock cycles. 131 * The value is calculated as following: (1/1000000)/((2^-32)/4) 132 */ 133 #define LAN8814_1PPM_FORMAT 17179 134 135 /* Represents 1ppm adjustment in 2^32 format with 136 * each nsec contains 8 clock cycles. 137 * The value is calculated as following: (1/1000000)/((2^-32)/8) 138 */ 139 #define LAN8841_1PPM_FORMAT 34360 140 141 #define PTP_RX_VERSION 0x0248 142 #define PTP_TX_VERSION 0x0288 143 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 144 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 145 146 #define PTP_RX_MOD 0x024F 147 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 148 #define PTP_RX_TIMESTAMP_EN 0x024D 149 #define PTP_TX_TIMESTAMP_EN 0x028D 150 151 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 152 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 153 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 154 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 155 156 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 157 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 158 159 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 160 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 161 #define LTC_HARD_RESET 0x023F 162 #define LTC_HARD_RESET_ BIT(0) 163 164 #define TSU_HARD_RESET 0x02C1 165 #define TSU_HARD_RESET_ BIT(0) 166 167 #define PTP_CMD_CTL 0x0200 168 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 169 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 170 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 171 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 172 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 173 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 174 175 #define PTP_COMMON_INT_ENA 0x0204 176 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 177 178 #define PTP_CLOCK_SET_SEC_HI 0x0205 179 #define PTP_CLOCK_SET_SEC_MID 0x0206 180 #define PTP_CLOCK_SET_SEC_LO 0x0207 181 #define PTP_CLOCK_SET_NS_HI 0x0208 182 #define PTP_CLOCK_SET_NS_LO 0x0209 183 184 #define PTP_CLOCK_READ_SEC_HI 0x0229 185 #define PTP_CLOCK_READ_SEC_MID 0x022A 186 #define PTP_CLOCK_READ_SEC_LO 0x022B 187 #define PTP_CLOCK_READ_NS_HI 0x022C 188 #define PTP_CLOCK_READ_NS_LO 0x022D 189 190 #define PTP_GPIO_SEL 0x0230 191 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 192 #define PTP_GPIO_CAP_MAP_LO 0x0232 193 194 #define PTP_GPIO_CAP_EN 0x0233 195 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 196 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 197 198 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 199 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 200 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 201 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 202 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 203 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 204 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 205 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 206 207 #define PTP_GPIO_CAP_STS 0x023D 208 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 209 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 210 211 #define PTP_OPERATING_MODE 0x0241 212 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 213 214 #define PTP_TX_MOD 0x028F 215 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 216 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 217 218 #define PTP_RX_PARSE_CONFIG 0x0242 219 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 220 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 221 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 222 223 #define PTP_TX_PARSE_CONFIG 0x0282 224 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 225 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 226 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 227 228 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 229 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 230 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 231 232 #define PTP_LTC_STEP_ADJ_HI 0x0212 233 #define PTP_LTC_STEP_ADJ_LO 0x0213 234 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 235 236 #define LAN8814_INTR_STS_REG 0x0033 237 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 238 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 239 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 240 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 241 242 #define PTP_CAP_INFO 0x022A 243 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 244 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 245 246 #define PTP_TX_EGRESS_SEC_HI 0x0296 247 #define PTP_TX_EGRESS_SEC_LO 0x0297 248 #define PTP_TX_EGRESS_NS_HI 0x0294 249 #define PTP_TX_EGRESS_NS_LO 0x0295 250 #define PTP_TX_MSG_HEADER2 0x0299 251 252 #define PTP_RX_INGRESS_SEC_HI 0x0256 253 #define PTP_RX_INGRESS_SEC_LO 0x0257 254 #define PTP_RX_INGRESS_NS_HI 0x0254 255 #define PTP_RX_INGRESS_NS_LO 0x0255 256 #define PTP_RX_MSG_HEADER2 0x0259 257 258 #define PTP_TSU_INT_EN 0x0200 259 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 260 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 261 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 262 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 263 264 #define PTP_TSU_INT_STS 0x0201 265 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 266 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 267 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 268 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 269 270 #define LAN8814_LED_CTRL_1 0x0 271 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 272 #define LAN8814_LED_CTRL_2 0x1 273 #define LAN8814_LED_CTRL_2_LED1_COM_DIS BIT(8) 274 275 /* PHY Control 1 */ 276 #define MII_KSZPHY_CTRL_1 0x1e 277 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 278 279 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 280 #define MII_KSZPHY_CTRL_2 0x1f 281 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 282 /* bitmap of PHY register to set interrupt mode */ 283 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 284 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 285 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 286 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 287 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 288 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 289 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 290 291 /* Write/read to/from extended registers */ 292 #define MII_KSZPHY_EXTREG 0x0b 293 #define KSZPHY_EXTREG_WRITE 0x8000 294 295 #define MII_KSZPHY_EXTREG_WRITE 0x0c 296 #define MII_KSZPHY_EXTREG_READ 0x0d 297 298 /* Extended registers */ 299 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 300 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 301 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 302 303 #define PS_TO_REG 200 304 #define FIFO_SIZE 8 305 306 #define LAN8814_PTP_GPIO_NUM 24 307 #define LAN8814_PTP_PEROUT_NUM 2 308 #define LAN8814_PTP_EXTTS_NUM 3 309 310 #define LAN8814_BUFFER_TIME 2 311 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 321 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 322 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 323 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 324 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 325 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 326 327 #define LAN8814_GPIO_EN1 0x20 328 #define LAN8814_GPIO_EN2 0x21 329 #define LAN8814_GPIO_DIR1 0x22 330 #define LAN8814_GPIO_DIR2 0x23 331 #define LAN8814_GPIO_BUF1 0x24 332 #define LAN8814_GPIO_BUF2 0x25 333 334 #define LAN8814_GPIO_EN_ADDR(pin) \ 335 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 336 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 337 #define LAN8814_GPIO_DIR_ADDR(pin) \ 338 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 339 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 340 #define LAN8814_GPIO_BUF_ADDR(pin) \ 341 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 342 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 343 344 #define LAN8814_EVENT_A 0 345 #define LAN8814_EVENT_B 1 346 347 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 348 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 349 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 350 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 351 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 352 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 353 ((event) ? BIT(2) : BIT(0)) 354 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 355 ((event) ? BIT(3) : BIT(1)) 356 357 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 358 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 359 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 360 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 361 362 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 363 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 364 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 365 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 366 367 /* Delay used to get the second part from the LTC */ 368 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 369 370 #define LAN8842_REV_8832 0x8832 371 372 #define LAN8814_REV_LAN8814 0x8814 373 #define LAN8814_REV_LAN8818 0x8818 374 375 struct kszphy_hw_stat { 376 const char *string; 377 u8 reg; 378 u8 bits; 379 }; 380 381 static struct kszphy_hw_stat kszphy_hw_stats[] = { 382 { "phy_receive_errors", 21, 16}, 383 { "phy_idle_errors", 10, 8 }, 384 }; 385 386 struct kszphy_type { 387 u32 led_mode_reg; 388 u16 interrupt_level_mask; 389 u16 cable_diag_reg; 390 unsigned long pair_mask; 391 u16 disable_dll_tx_bit; 392 u16 disable_dll_rx_bit; 393 u16 disable_dll_mask; 394 bool has_broadcast_disable; 395 bool has_nand_tree_disable; 396 bool has_rmii_ref_clk_sel; 397 }; 398 399 /* Shared structure between the PHYs of the same package. */ 400 struct lan8814_shared_priv { 401 struct phy_device *phydev; 402 struct ptp_clock *ptp_clock; 403 struct ptp_clock_info ptp_clock_info; 404 struct ptp_pin_desc *pin_config; 405 406 /* Lock for ptp_clock */ 407 struct mutex shared_lock; 408 }; 409 410 struct lan8814_ptp_rx_ts { 411 struct list_head list; 412 u32 seconds; 413 u32 nsec; 414 u16 seq_id; 415 }; 416 417 struct kszphy_ptp_priv { 418 struct mii_timestamper mii_ts; 419 struct phy_device *phydev; 420 421 struct sk_buff_head tx_queue; 422 struct sk_buff_head rx_queue; 423 424 struct list_head rx_ts_list; 425 /* Lock for Rx ts fifo */ 426 spinlock_t rx_ts_lock; 427 428 int hwts_tx_type; 429 enum hwtstamp_rx_filters rx_filter; 430 int layer; 431 int version; 432 433 struct ptp_clock *ptp_clock; 434 struct ptp_clock_info ptp_clock_info; 435 /* Lock for ptp_clock */ 436 struct mutex ptp_lock; 437 struct ptp_pin_desc *pin_config; 438 439 s64 seconds; 440 /* Lock for accessing seconds */ 441 spinlock_t seconds_lock; 442 }; 443 444 struct kszphy_phy_stats { 445 u64 rx_err_pkt_cnt; 446 }; 447 448 struct kszphy_priv { 449 struct kszphy_ptp_priv ptp_priv; 450 const struct kszphy_type *type; 451 struct clk *clk; 452 int led_mode; 453 u16 vct_ctrl1000; 454 bool rmii_ref_clk_sel; 455 bool rmii_ref_clk_sel_val; 456 bool clk_enable; 457 bool is_ptp_available; 458 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 459 struct kszphy_phy_stats phy_stats; 460 }; 461 462 struct lan8842_phy_stats { 463 u64 rx_packets; 464 u64 rx_errors; 465 u64 tx_packets; 466 u64 tx_errors; 467 }; 468 469 struct lan8842_priv { 470 struct lan8842_phy_stats phy_stats; 471 struct kszphy_ptp_priv ptp_priv; 472 u16 rev; 473 }; 474 475 struct lanphy_reg_data { 476 int page; 477 u16 addr; 478 u16 val; 479 }; 480 481 static const struct kszphy_type lan8814_type = { 482 .led_mode_reg = ~LAN8814_LED_CTRL_1, 483 .cable_diag_reg = LAN8814_CABLE_DIAG, 484 .pair_mask = LAN8814_WIRE_PAIR_MASK, 485 }; 486 487 static const struct kszphy_type ksz886x_type = { 488 .cable_diag_reg = KSZ8081_LMD, 489 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 490 }; 491 492 static const struct kszphy_type ksz8021_type = { 493 .led_mode_reg = MII_KSZPHY_CTRL_2, 494 .has_broadcast_disable = true, 495 .has_nand_tree_disable = true, 496 .has_rmii_ref_clk_sel = true, 497 }; 498 499 static const struct kszphy_type ksz8041_type = { 500 .led_mode_reg = MII_KSZPHY_CTRL_1, 501 }; 502 503 static const struct kszphy_type ksz8051_type = { 504 .led_mode_reg = MII_KSZPHY_CTRL_2, 505 .has_nand_tree_disable = true, 506 }; 507 508 static const struct kszphy_type ksz8081_type = { 509 .led_mode_reg = MII_KSZPHY_CTRL_2, 510 .cable_diag_reg = KSZ8081_LMD, 511 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 512 .has_broadcast_disable = true, 513 .has_nand_tree_disable = true, 514 .has_rmii_ref_clk_sel = true, 515 }; 516 517 static const struct kszphy_type ks8737_type = { 518 .interrupt_level_mask = BIT(14), 519 }; 520 521 static const struct kszphy_type ksz9021_type = { 522 .interrupt_level_mask = BIT(14), 523 }; 524 525 static const struct kszphy_type ksz9131_type = { 526 .interrupt_level_mask = BIT(14), 527 .disable_dll_tx_bit = BIT(12), 528 .disable_dll_rx_bit = BIT(12), 529 .disable_dll_mask = BIT_MASK(12), 530 }; 531 532 static const struct kszphy_type lan8841_type = { 533 .disable_dll_tx_bit = BIT(14), 534 .disable_dll_rx_bit = BIT(14), 535 .disable_dll_mask = BIT_MASK(14), 536 .cable_diag_reg = LAN8814_CABLE_DIAG, 537 .pair_mask = LAN8814_WIRE_PAIR_MASK, 538 }; 539 540 static int kszphy_extended_write(struct phy_device *phydev, 541 u32 regnum, u16 val) 542 { 543 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 544 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 545 } 546 547 static int kszphy_extended_read(struct phy_device *phydev, 548 u32 regnum) 549 { 550 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 551 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 552 } 553 554 static int kszphy_ack_interrupt(struct phy_device *phydev) 555 { 556 /* bit[7..0] int status, which is a read and clear register. */ 557 int rc; 558 559 rc = phy_read(phydev, MII_KSZPHY_INTCS); 560 561 return (rc < 0) ? rc : 0; 562 } 563 564 static int kszphy_config_intr(struct phy_device *phydev) 565 { 566 const struct kszphy_type *type = phydev->drv->driver_data; 567 int temp, err; 568 u16 mask; 569 570 if (type && type->interrupt_level_mask) 571 mask = type->interrupt_level_mask; 572 else 573 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 574 575 /* set the interrupt pin active low */ 576 temp = phy_read(phydev, MII_KSZPHY_CTRL); 577 if (temp < 0) 578 return temp; 579 temp &= ~mask; 580 phy_write(phydev, MII_KSZPHY_CTRL, temp); 581 582 /* enable / disable interrupts */ 583 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 584 err = kszphy_ack_interrupt(phydev); 585 if (err) 586 return err; 587 588 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 589 } else { 590 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 591 if (err) 592 return err; 593 594 err = kszphy_ack_interrupt(phydev); 595 } 596 597 return err; 598 } 599 600 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 601 { 602 int irq_status; 603 604 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 605 if (irq_status < 0) { 606 phy_error(phydev); 607 return IRQ_NONE; 608 } 609 610 if (!(irq_status & KSZPHY_INTCS_STATUS)) 611 return IRQ_NONE; 612 613 phy_trigger_machine(phydev); 614 615 return IRQ_HANDLED; 616 } 617 618 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 619 { 620 int ctrl; 621 622 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 623 if (ctrl < 0) 624 return ctrl; 625 626 if (val) 627 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 628 else 629 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 630 631 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 632 } 633 634 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 635 { 636 int rc, temp, shift; 637 638 switch (reg) { 639 case MII_KSZPHY_CTRL_1: 640 shift = 14; 641 break; 642 case MII_KSZPHY_CTRL_2: 643 shift = 4; 644 break; 645 default: 646 return -EINVAL; 647 } 648 649 temp = phy_read(phydev, reg); 650 if (temp < 0) { 651 rc = temp; 652 goto out; 653 } 654 655 temp &= ~(3 << shift); 656 temp |= val << shift; 657 rc = phy_write(phydev, reg, temp); 658 out: 659 if (rc < 0) 660 phydev_err(phydev, "failed to set led mode\n"); 661 662 return rc; 663 } 664 665 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 666 * unique (non-broadcast) address on a shared bus. 667 */ 668 static int kszphy_broadcast_disable(struct phy_device *phydev) 669 { 670 int ret; 671 672 ret = phy_read(phydev, MII_KSZPHY_OMSO); 673 if (ret < 0) 674 goto out; 675 676 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 677 out: 678 if (ret) 679 phydev_err(phydev, "failed to disable broadcast address\n"); 680 681 return ret; 682 } 683 684 static int kszphy_nand_tree_disable(struct phy_device *phydev) 685 { 686 int ret; 687 688 ret = phy_read(phydev, MII_KSZPHY_OMSO); 689 if (ret < 0) 690 goto out; 691 692 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 693 return 0; 694 695 ret = phy_write(phydev, MII_KSZPHY_OMSO, 696 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 697 out: 698 if (ret) 699 phydev_err(phydev, "failed to disable NAND tree mode\n"); 700 701 return ret; 702 } 703 704 /* Some config bits need to be set again on resume, handle them here. */ 705 static int kszphy_config_reset(struct phy_device *phydev) 706 { 707 struct kszphy_priv *priv = phydev->priv; 708 int ret; 709 710 if (priv->rmii_ref_clk_sel) { 711 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 712 if (ret) { 713 phydev_err(phydev, 714 "failed to set rmii reference clock\n"); 715 return ret; 716 } 717 } 718 719 if (priv->type && priv->led_mode >= 0) 720 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 721 722 return 0; 723 } 724 725 static int kszphy_config_init(struct phy_device *phydev) 726 { 727 struct kszphy_priv *priv = phydev->priv; 728 const struct kszphy_type *type; 729 730 if (!priv) 731 return 0; 732 733 type = priv->type; 734 735 if (type && type->has_broadcast_disable) 736 kszphy_broadcast_disable(phydev); 737 738 if (type && type->has_nand_tree_disable) 739 kszphy_nand_tree_disable(phydev); 740 741 return kszphy_config_reset(phydev); 742 } 743 744 static int ksz8041_fiber_mode(struct phy_device *phydev) 745 { 746 struct device_node *of_node = phydev->mdio.dev.of_node; 747 748 return of_property_read_bool(of_node, "micrel,fiber-mode"); 749 } 750 751 static int ksz8041_config_init(struct phy_device *phydev) 752 { 753 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 754 755 /* Limit supported and advertised modes in fiber mode */ 756 if (ksz8041_fiber_mode(phydev)) { 757 phydev->dev_flags |= MICREL_PHY_FXEN; 758 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 759 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 760 761 linkmode_and(phydev->supported, phydev->supported, mask); 762 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 763 phydev->supported); 764 linkmode_and(phydev->advertising, phydev->advertising, mask); 765 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 766 phydev->advertising); 767 phydev->autoneg = AUTONEG_DISABLE; 768 } 769 770 return kszphy_config_init(phydev); 771 } 772 773 static int ksz8041_config_aneg(struct phy_device *phydev) 774 { 775 /* Skip auto-negotiation in fiber mode */ 776 if (phydev->dev_flags & MICREL_PHY_FXEN) { 777 phydev->speed = SPEED_100; 778 return 0; 779 } 780 781 return genphy_config_aneg(phydev); 782 } 783 784 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 785 const bool ksz_8051) 786 { 787 int ret; 788 789 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 790 return 0; 791 792 ret = phy_read(phydev, MII_BMSR); 793 if (ret < 0) 794 return ret; 795 796 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 797 * exact PHY ID. However, they can be told apart by the extended 798 * capability registers presence. The KSZ8051 PHY has them while 799 * the switch does not. 800 */ 801 ret &= BMSR_ERCAP; 802 if (ksz_8051) 803 return ret; 804 else 805 return !ret; 806 } 807 808 static int ksz8051_match_phy_device(struct phy_device *phydev, 809 const struct phy_driver *phydrv) 810 { 811 return ksz8051_ksz8795_match_phy_device(phydev, true); 812 } 813 814 static int ksz8081_config_init(struct phy_device *phydev) 815 { 816 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 817 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 818 * pull-down is missing, the factory test mode should be cleared by 819 * manually writing a 0. 820 */ 821 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 822 823 return kszphy_config_init(phydev); 824 } 825 826 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 827 { 828 u16 val; 829 830 switch (ctrl) { 831 case ETH_TP_MDI: 832 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 833 break; 834 case ETH_TP_MDI_X: 835 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 836 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 837 break; 838 case ETH_TP_MDI_AUTO: 839 val = 0; 840 break; 841 default: 842 return 0; 843 } 844 845 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 846 KSZ8081_CTRL2_HP_MDIX | 847 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 848 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 849 KSZ8081_CTRL2_HP_MDIX | val); 850 } 851 852 static int ksz8081_config_aneg(struct phy_device *phydev) 853 { 854 int ret; 855 856 ret = genphy_config_aneg(phydev); 857 if (ret) 858 return ret; 859 860 /* The MDI-X configuration is automatically changed by the PHY after 861 * switching from autoneg off to on. So, take MDI-X configuration under 862 * own control and set it after autoneg configuration was done. 863 */ 864 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 865 } 866 867 static int ksz8081_mdix_update(struct phy_device *phydev) 868 { 869 int ret; 870 871 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 872 if (ret < 0) 873 return ret; 874 875 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 876 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 877 phydev->mdix_ctrl = ETH_TP_MDI_X; 878 else 879 phydev->mdix_ctrl = ETH_TP_MDI; 880 } else { 881 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 882 } 883 884 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 885 if (ret < 0) 886 return ret; 887 888 if (ret & KSZ8081_CTRL1_MDIX_STAT) 889 phydev->mdix = ETH_TP_MDI; 890 else 891 phydev->mdix = ETH_TP_MDI_X; 892 893 return 0; 894 } 895 896 static int ksz8081_read_status(struct phy_device *phydev) 897 { 898 int ret; 899 900 ret = ksz8081_mdix_update(phydev); 901 if (ret < 0) 902 return ret; 903 904 return genphy_read_status(phydev); 905 } 906 907 static int ksz8061_config_init(struct phy_device *phydev) 908 { 909 int ret; 910 911 /* Chip can be powered down by the bootstrap code. */ 912 ret = phy_read(phydev, MII_BMCR); 913 if (ret < 0) 914 return ret; 915 if (ret & BMCR_PDOWN) { 916 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 917 if (ret < 0) 918 return ret; 919 usleep_range(1000, 2000); 920 } 921 922 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 923 if (ret) 924 return ret; 925 926 return kszphy_config_init(phydev); 927 } 928 929 static int ksz8795_match_phy_device(struct phy_device *phydev, 930 const struct phy_driver *phydrv) 931 { 932 return ksz8051_ksz8795_match_phy_device(phydev, false); 933 } 934 935 static int ksz9021_load_values_from_of(struct phy_device *phydev, 936 const struct device_node *of_node, 937 u16 reg, 938 const char *field1, const char *field2, 939 const char *field3, const char *field4) 940 { 941 int val1 = -1; 942 int val2 = -2; 943 int val3 = -3; 944 int val4 = -4; 945 int newval; 946 int matches = 0; 947 948 if (!of_property_read_u32(of_node, field1, &val1)) 949 matches++; 950 951 if (!of_property_read_u32(of_node, field2, &val2)) 952 matches++; 953 954 if (!of_property_read_u32(of_node, field3, &val3)) 955 matches++; 956 957 if (!of_property_read_u32(of_node, field4, &val4)) 958 matches++; 959 960 if (!matches) 961 return 0; 962 963 if (matches < 4) 964 newval = kszphy_extended_read(phydev, reg); 965 else 966 newval = 0; 967 968 if (val1 != -1) 969 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 970 971 if (val2 != -2) 972 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 973 974 if (val3 != -3) 975 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 976 977 if (val4 != -4) 978 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 979 980 return kszphy_extended_write(phydev, reg, newval); 981 } 982 983 static int ksz9021_config_init(struct phy_device *phydev) 984 { 985 const struct device_node *of_node; 986 const struct device *dev_walker; 987 988 /* The Micrel driver has a deprecated option to place phy OF 989 * properties in the MAC node. Walk up the tree of devices to 990 * find a device with an OF node. 991 */ 992 dev_walker = &phydev->mdio.dev; 993 do { 994 of_node = dev_walker->of_node; 995 dev_walker = dev_walker->parent; 996 997 } while (!of_node && dev_walker); 998 999 if (of_node) { 1000 ksz9021_load_values_from_of(phydev, of_node, 1001 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 1002 "txen-skew-ps", "txc-skew-ps", 1003 "rxdv-skew-ps", "rxc-skew-ps"); 1004 ksz9021_load_values_from_of(phydev, of_node, 1005 MII_KSZPHY_RX_DATA_PAD_SKEW, 1006 "rxd0-skew-ps", "rxd1-skew-ps", 1007 "rxd2-skew-ps", "rxd3-skew-ps"); 1008 ksz9021_load_values_from_of(phydev, of_node, 1009 MII_KSZPHY_TX_DATA_PAD_SKEW, 1010 "txd0-skew-ps", "txd1-skew-ps", 1011 "txd2-skew-ps", "txd3-skew-ps"); 1012 } 1013 return 0; 1014 } 1015 1016 #define KSZ9031_PS_TO_REG 60 1017 1018 /* Extended registers */ 1019 /* MMD Address 0x0 */ 1020 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 1021 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 1022 1023 /* MMD Address 0x2 */ 1024 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 1025 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 1026 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 1027 1028 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 1029 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 1030 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 1031 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 1032 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 1033 1034 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 1035 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 1036 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1037 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1038 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1039 1040 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1041 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1042 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1043 1044 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1045 * provide different RGMII options we need to configure delay offset 1046 * for each pad relative to build in delay. 1047 */ 1048 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1049 * 1.80ns 1050 */ 1051 #define RX_ID 0x7 1052 #define RX_CLK_ID 0x19 1053 1054 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1055 * internal 1.2ns delay. 1056 */ 1057 #define RX_ND 0xc 1058 #define RX_CLK_ND 0x0 1059 1060 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1061 #define TX_ID 0x0 1062 #define TX_CLK_ID 0x1f 1063 1064 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1065 * delay 1066 */ 1067 #define TX_ND 0x7 1068 #define TX_CLK_ND 0xf 1069 1070 /* MMD Address 0x1C */ 1071 #define MII_KSZ9031RN_EDPD 0x23 1072 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1073 1074 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1075 int speed) 1076 { 1077 u16 ctl = BMCR_LOOPBACK; 1078 int val; 1079 1080 if (!enable) 1081 return genphy_loopback(phydev, enable, 0); 1082 1083 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1084 phydev->speed = speed; 1085 else if (speed) 1086 return -EINVAL; 1087 phydev->duplex = DUPLEX_FULL; 1088 1089 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1090 1091 phy_write(phydev, MII_BMCR, ctl); 1092 1093 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1094 5000, 500000, true); 1095 } 1096 1097 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1098 const struct device_node *of_node, 1099 u16 reg, size_t field_sz, 1100 const char *field[], u8 numfields, 1101 bool *update) 1102 { 1103 int val[4] = {-1, -2, -3, -4}; 1104 int matches = 0; 1105 u16 mask; 1106 u16 maxval; 1107 u16 newval; 1108 int i; 1109 1110 for (i = 0; i < numfields; i++) 1111 if (!of_property_read_u32(of_node, field[i], val + i)) 1112 matches++; 1113 1114 if (!matches) 1115 return 0; 1116 1117 *update |= true; 1118 1119 if (matches < numfields) 1120 newval = phy_read_mmd(phydev, 2, reg); 1121 else 1122 newval = 0; 1123 1124 maxval = (field_sz == 4) ? 0xf : 0x1f; 1125 for (i = 0; i < numfields; i++) 1126 if (val[i] != -(i + 1)) { 1127 mask = 0xffff; 1128 mask ^= maxval << (field_sz * i); 1129 newval = (newval & mask) | 1130 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1131 << (field_sz * i)); 1132 } 1133 1134 return phy_write_mmd(phydev, 2, reg, newval); 1135 } 1136 1137 /* Center KSZ9031RNX FLP timing at 16ms. */ 1138 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1139 { 1140 int result; 1141 1142 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1143 0x0006); 1144 if (result) 1145 return result; 1146 1147 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1148 0x1A80); 1149 if (result) 1150 return result; 1151 1152 return genphy_restart_aneg(phydev); 1153 } 1154 1155 /* Enable energy-detect power-down mode */ 1156 static int ksz9031_enable_edpd(struct phy_device *phydev) 1157 { 1158 int reg; 1159 1160 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1161 if (reg < 0) 1162 return reg; 1163 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1164 reg | MII_KSZ9031RN_EDPD_ENABLE); 1165 } 1166 1167 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1168 { 1169 u16 rx, tx, rx_clk, tx_clk; 1170 int ret; 1171 1172 switch (phydev->interface) { 1173 case PHY_INTERFACE_MODE_RGMII: 1174 tx = TX_ND; 1175 tx_clk = TX_CLK_ND; 1176 rx = RX_ND; 1177 rx_clk = RX_CLK_ND; 1178 break; 1179 case PHY_INTERFACE_MODE_RGMII_ID: 1180 tx = TX_ID; 1181 tx_clk = TX_CLK_ID; 1182 rx = RX_ID; 1183 rx_clk = RX_CLK_ID; 1184 break; 1185 case PHY_INTERFACE_MODE_RGMII_RXID: 1186 tx = TX_ND; 1187 tx_clk = TX_CLK_ND; 1188 rx = RX_ID; 1189 rx_clk = RX_CLK_ID; 1190 break; 1191 case PHY_INTERFACE_MODE_RGMII_TXID: 1192 tx = TX_ID; 1193 tx_clk = TX_CLK_ID; 1194 rx = RX_ND; 1195 rx_clk = RX_CLK_ND; 1196 break; 1197 default: 1198 return 0; 1199 } 1200 1201 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1202 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1203 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1204 if (ret < 0) 1205 return ret; 1206 1207 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1208 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1209 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1210 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1211 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1212 if (ret < 0) 1213 return ret; 1214 1215 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1216 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1217 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1218 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1219 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1220 if (ret < 0) 1221 return ret; 1222 1223 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1224 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1225 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1226 } 1227 1228 static int ksz9031_config_init(struct phy_device *phydev) 1229 { 1230 const struct device_node *of_node; 1231 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1232 static const char *rx_data_skews[4] = { 1233 "rxd0-skew-ps", "rxd1-skew-ps", 1234 "rxd2-skew-ps", "rxd3-skew-ps" 1235 }; 1236 static const char *tx_data_skews[4] = { 1237 "txd0-skew-ps", "txd1-skew-ps", 1238 "txd2-skew-ps", "txd3-skew-ps" 1239 }; 1240 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1241 const struct device *dev_walker; 1242 int result; 1243 1244 result = ksz9031_enable_edpd(phydev); 1245 if (result < 0) 1246 return result; 1247 1248 /* The Micrel driver has a deprecated option to place phy OF 1249 * properties in the MAC node. Walk up the tree of devices to 1250 * find a device with an OF node. 1251 */ 1252 dev_walker = &phydev->mdio.dev; 1253 do { 1254 of_node = dev_walker->of_node; 1255 dev_walker = dev_walker->parent; 1256 } while (!of_node && dev_walker); 1257 1258 if (of_node) { 1259 bool update = false; 1260 1261 if (phy_interface_is_rgmii(phydev)) { 1262 result = ksz9031_config_rgmii_delay(phydev); 1263 if (result < 0) 1264 return result; 1265 } 1266 1267 ksz9031_of_load_skew_values(phydev, of_node, 1268 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1269 clk_skews, 2, &update); 1270 1271 ksz9031_of_load_skew_values(phydev, of_node, 1272 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1273 control_skews, 2, &update); 1274 1275 ksz9031_of_load_skew_values(phydev, of_node, 1276 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1277 rx_data_skews, 4, &update); 1278 1279 ksz9031_of_load_skew_values(phydev, of_node, 1280 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1281 tx_data_skews, 4, &update); 1282 1283 if (update && !phy_interface_is_rgmii(phydev)) 1284 phydev_warn(phydev, 1285 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1286 1287 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1288 * When the device links in the 1000BASE-T slave mode only, 1289 * the optional 125MHz reference output clock (CLK125_NDO) 1290 * has wide duty cycle variation. 1291 * 1292 * The optional CLK125_NDO clock does not meet the RGMII 1293 * 45/55 percent (min/max) duty cycle requirement and therefore 1294 * cannot be used directly by the MAC side for clocking 1295 * applications that have setup/hold time requirements on 1296 * rising and falling clock edges. 1297 * 1298 * Workaround: 1299 * Force the phy to be the master to receive a stable clock 1300 * which meets the duty cycle requirement. 1301 */ 1302 if (of_property_read_bool(of_node, "micrel,force-master")) { 1303 result = phy_read(phydev, MII_CTRL1000); 1304 if (result < 0) 1305 goto err_force_master; 1306 1307 /* enable master mode, config & prefer master */ 1308 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1309 result = phy_write(phydev, MII_CTRL1000, result); 1310 if (result < 0) 1311 goto err_force_master; 1312 } 1313 } 1314 1315 return ksz9031_center_flp_timing(phydev); 1316 1317 err_force_master: 1318 phydev_err(phydev, "failed to force the phy to master mode\n"); 1319 return result; 1320 } 1321 1322 #define KSZ9131_SKEW_5BIT_MAX 2400 1323 #define KSZ9131_SKEW_4BIT_MAX 800 1324 #define KSZ9131_OFFSET 700 1325 #define KSZ9131_STEP 100 1326 1327 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1328 struct device_node *of_node, 1329 u16 reg, size_t field_sz, 1330 char *field[], u8 numfields) 1331 { 1332 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1333 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1334 int skewval, skewmax = 0; 1335 int matches = 0; 1336 u16 maxval; 1337 u16 newval; 1338 u16 mask; 1339 int i; 1340 1341 /* psec properties in dts should mean x pico seconds */ 1342 if (field_sz == 5) 1343 skewmax = KSZ9131_SKEW_5BIT_MAX; 1344 else 1345 skewmax = KSZ9131_SKEW_4BIT_MAX; 1346 1347 for (i = 0; i < numfields; i++) 1348 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1349 if (skewval < -KSZ9131_OFFSET) 1350 skewval = -KSZ9131_OFFSET; 1351 else if (skewval > skewmax) 1352 skewval = skewmax; 1353 1354 val[i] = skewval + KSZ9131_OFFSET; 1355 matches++; 1356 } 1357 1358 if (!matches) 1359 return 0; 1360 1361 if (matches < numfields) 1362 newval = phy_read_mmd(phydev, 2, reg); 1363 else 1364 newval = 0; 1365 1366 maxval = (field_sz == 4) ? 0xf : 0x1f; 1367 for (i = 0; i < numfields; i++) 1368 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1369 mask = 0xffff; 1370 mask ^= maxval << (field_sz * i); 1371 newval = (newval & mask) | 1372 (((val[i] / KSZ9131_STEP) & maxval) 1373 << (field_sz * i)); 1374 } 1375 1376 return phy_write_mmd(phydev, 2, reg, newval); 1377 } 1378 1379 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1380 #define KSZ9131RN_RXC_DLL_CTRL 76 1381 #define KSZ9131RN_TXC_DLL_CTRL 77 1382 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1383 1384 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1385 { 1386 const struct kszphy_type *type = phydev->drv->driver_data; 1387 u16 rxcdll_val, txcdll_val; 1388 int ret; 1389 1390 switch (phydev->interface) { 1391 case PHY_INTERFACE_MODE_RGMII: 1392 rxcdll_val = type->disable_dll_rx_bit; 1393 txcdll_val = type->disable_dll_tx_bit; 1394 break; 1395 case PHY_INTERFACE_MODE_RGMII_ID: 1396 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1397 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1398 break; 1399 case PHY_INTERFACE_MODE_RGMII_RXID: 1400 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1401 txcdll_val = type->disable_dll_tx_bit; 1402 break; 1403 case PHY_INTERFACE_MODE_RGMII_TXID: 1404 rxcdll_val = type->disable_dll_rx_bit; 1405 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1406 break; 1407 default: 1408 return 0; 1409 } 1410 1411 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1412 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1413 rxcdll_val); 1414 if (ret < 0) 1415 return ret; 1416 1417 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1418 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1419 txcdll_val); 1420 } 1421 1422 /* Silicon Errata DS80000693B 1423 * 1424 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1425 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1426 * according to the datasheet (off if there is no link). 1427 */ 1428 static int ksz9131_led_errata(struct phy_device *phydev) 1429 { 1430 int reg; 1431 1432 reg = phy_read_mmd(phydev, 2, 0); 1433 if (reg < 0) 1434 return reg; 1435 1436 if (!(reg & BIT(4))) 1437 return 0; 1438 1439 return phy_set_bits(phydev, 0x1e, BIT(9)); 1440 } 1441 1442 static int ksz9131_config_init(struct phy_device *phydev) 1443 { 1444 struct device_node *of_node; 1445 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1446 char *rx_data_skews[4] = { 1447 "rxd0-skew-psec", "rxd1-skew-psec", 1448 "rxd2-skew-psec", "rxd3-skew-psec" 1449 }; 1450 char *tx_data_skews[4] = { 1451 "txd0-skew-psec", "txd1-skew-psec", 1452 "txd2-skew-psec", "txd3-skew-psec" 1453 }; 1454 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1455 const struct device *dev_walker; 1456 int ret; 1457 1458 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1459 1460 dev_walker = &phydev->mdio.dev; 1461 do { 1462 of_node = dev_walker->of_node; 1463 dev_walker = dev_walker->parent; 1464 } while (!of_node && dev_walker); 1465 1466 if (!of_node) 1467 return 0; 1468 1469 if (phy_interface_is_rgmii(phydev)) { 1470 ret = ksz9131_config_rgmii_delay(phydev); 1471 if (ret < 0) 1472 return ret; 1473 } 1474 1475 ret = ksz9131_of_load_skew_values(phydev, of_node, 1476 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1477 clk_skews, 2); 1478 if (ret < 0) 1479 return ret; 1480 1481 ret = ksz9131_of_load_skew_values(phydev, of_node, 1482 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1483 control_skews, 2); 1484 if (ret < 0) 1485 return ret; 1486 1487 ret = ksz9131_of_load_skew_values(phydev, of_node, 1488 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1489 rx_data_skews, 4); 1490 if (ret < 0) 1491 return ret; 1492 1493 ret = ksz9131_of_load_skew_values(phydev, of_node, 1494 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1495 tx_data_skews, 4); 1496 if (ret < 0) 1497 return ret; 1498 1499 ret = ksz9131_led_errata(phydev); 1500 if (ret < 0) 1501 return ret; 1502 1503 return 0; 1504 } 1505 1506 #define MII_KSZ9131_AUTO_MDIX 0x1C 1507 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1508 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1509 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1510 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1511 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1512 1513 static int ksz9131_mdix_update(struct phy_device *phydev) 1514 { 1515 int ret; 1516 1517 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1518 phydev->mdix = phydev->mdix_ctrl; 1519 } else { 1520 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1521 if (ret < 0) 1522 return ret; 1523 1524 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1525 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1526 phydev->mdix = ETH_TP_MDI; 1527 else 1528 phydev->mdix = ETH_TP_MDI_X; 1529 } else { 1530 phydev->mdix = ETH_TP_MDI_INVALID; 1531 } 1532 } 1533 1534 return 0; 1535 } 1536 1537 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1538 { 1539 u16 val; 1540 1541 switch (ctrl) { 1542 case ETH_TP_MDI: 1543 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1544 MII_KSZ9131_AUTO_MDI_SET; 1545 break; 1546 case ETH_TP_MDI_X: 1547 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1548 break; 1549 case ETH_TP_MDI_AUTO: 1550 val = 0; 1551 break; 1552 default: 1553 return 0; 1554 } 1555 1556 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1557 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1558 MII_KSZ9131_AUTO_MDI_SET, val); 1559 } 1560 1561 static int ksz9131_read_status(struct phy_device *phydev) 1562 { 1563 int ret; 1564 1565 ret = ksz9131_mdix_update(phydev); 1566 if (ret < 0) 1567 return ret; 1568 1569 return genphy_read_status(phydev); 1570 } 1571 1572 static int ksz9131_config_aneg(struct phy_device *phydev) 1573 { 1574 int ret; 1575 1576 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1577 if (ret) 1578 return ret; 1579 1580 return genphy_config_aneg(phydev); 1581 } 1582 1583 static int ksz9477_get_features(struct phy_device *phydev) 1584 { 1585 int ret; 1586 1587 ret = genphy_read_abilities(phydev); 1588 if (ret) 1589 return ret; 1590 1591 /* The "EEE control and capability 1" (Register 3.20) seems to be 1592 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1593 * on the 7.60 will affect 3.20. So, we need to construct our own list 1594 * of caps. 1595 * KSZ8563R should have 100BaseTX/Full only. 1596 */ 1597 linkmode_and(phydev->supported_eee, phydev->supported, 1598 PHY_EEE_CAP1_FEATURES); 1599 1600 return 0; 1601 } 1602 1603 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1604 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1605 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1606 static int ksz8873mll_read_status(struct phy_device *phydev) 1607 { 1608 int regval; 1609 1610 /* dummy read */ 1611 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1612 1613 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1614 1615 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1616 phydev->duplex = DUPLEX_HALF; 1617 else 1618 phydev->duplex = DUPLEX_FULL; 1619 1620 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1621 phydev->speed = SPEED_10; 1622 else 1623 phydev->speed = SPEED_100; 1624 1625 phydev->link = 1; 1626 phydev->pause = phydev->asym_pause = 0; 1627 1628 return 0; 1629 } 1630 1631 static int ksz9031_get_features(struct phy_device *phydev) 1632 { 1633 int ret; 1634 1635 ret = genphy_read_abilities(phydev); 1636 if (ret < 0) 1637 return ret; 1638 1639 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1640 * Whenever the device's Asymmetric Pause capability is set to 1, 1641 * link-up may fail after a link-up to link-down transition. 1642 * 1643 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1644 * 1645 * Workaround: 1646 * Do not enable the Asymmetric Pause capability bit. 1647 */ 1648 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1649 1650 /* We force setting the Pause capability as the core will force the 1651 * Asymmetric Pause capability to 1 otherwise. 1652 */ 1653 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1654 1655 return 0; 1656 } 1657 1658 static int ksz9031_read_status(struct phy_device *phydev) 1659 { 1660 int err; 1661 int regval; 1662 1663 err = genphy_read_status(phydev); 1664 if (err) 1665 return err; 1666 1667 /* Make sure the PHY is not broken. Read idle error count, 1668 * and reset the PHY if it is maxed out. 1669 */ 1670 regval = phy_read(phydev, MII_STAT1000); 1671 if ((regval & 0xFF) == 0xFF) { 1672 phy_init_hw(phydev); 1673 phydev->link = 0; 1674 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1675 phydev->drv->config_intr(phydev); 1676 return genphy_config_aneg(phydev); 1677 } 1678 1679 return 0; 1680 } 1681 1682 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1683 { 1684 struct kszphy_priv *priv = phydev->priv; 1685 int ret; 1686 1687 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1688 * Prior to running the cable diagnostics, Auto-negotiation should 1689 * be disabled, full duplex set and the link speed set to 1000Mbps 1690 * via the Basic Control Register. 1691 */ 1692 ret = phy_modify(phydev, MII_BMCR, 1693 BMCR_SPEED1000 | BMCR_FULLDPLX | 1694 BMCR_ANENABLE | BMCR_SPEED100, 1695 BMCR_SPEED1000 | BMCR_FULLDPLX); 1696 if (ret) 1697 return ret; 1698 1699 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1700 * The Master-Slave configuration should be set to Slave by writing 1701 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1702 * Register. 1703 */ 1704 ret = phy_read(phydev, MII_CTRL1000); 1705 if (ret < 0) 1706 return ret; 1707 1708 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1709 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1710 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1711 ret |= CTL1000_ENABLE_MASTER; 1712 1713 return phy_write(phydev, MII_CTRL1000, ret); 1714 } 1715 1716 static int ksz9x31_cable_test_result_trans(u16 status) 1717 { 1718 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1719 case KSZ9x31_LMD_VCT_ST_NORMAL: 1720 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1721 case KSZ9x31_LMD_VCT_ST_OPEN: 1722 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1723 case KSZ9x31_LMD_VCT_ST_SHORT: 1724 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1725 case KSZ9x31_LMD_VCT_ST_FAIL: 1726 fallthrough; 1727 default: 1728 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1729 } 1730 } 1731 1732 static bool ksz9x31_cable_test_failed(u16 status) 1733 { 1734 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1735 1736 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1737 } 1738 1739 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1740 { 1741 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1742 case KSZ9x31_LMD_VCT_ST_OPEN: 1743 fallthrough; 1744 case KSZ9x31_LMD_VCT_ST_SHORT: 1745 return true; 1746 } 1747 return false; 1748 } 1749 1750 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1751 { 1752 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1753 1754 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1755 * 1756 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1757 */ 1758 if (phydev_id_compare(phydev, PHY_ID_KSZ9131) || 1759 phydev_id_compare(phydev, PHY_ID_KSZ9477)) 1760 dt = clamp(dt - 22, 0, 255); 1761 1762 return (dt * 400) / 10; 1763 } 1764 1765 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1766 { 1767 int val, ret; 1768 1769 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1770 !(val & KSZ9x31_LMD_VCT_EN), 1771 30000, 100000, true); 1772 1773 return ret < 0 ? ret : 0; 1774 } 1775 1776 static int ksz9x31_cable_test_get_pair(int pair) 1777 { 1778 static const int ethtool_pair[] = { 1779 ETHTOOL_A_CABLE_PAIR_A, 1780 ETHTOOL_A_CABLE_PAIR_B, 1781 ETHTOOL_A_CABLE_PAIR_C, 1782 ETHTOOL_A_CABLE_PAIR_D, 1783 }; 1784 1785 return ethtool_pair[pair]; 1786 } 1787 1788 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1789 { 1790 int ret, val; 1791 1792 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1793 * To test each individual cable pair, set the cable pair in the Cable 1794 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1795 * Diagnostic Register, along with setting the Cable Diagnostics Test 1796 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1797 * will self clear when the test is concluded. 1798 */ 1799 ret = phy_write(phydev, KSZ9x31_LMD, 1800 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1801 if (ret) 1802 return ret; 1803 1804 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1805 if (ret) 1806 return ret; 1807 1808 val = phy_read(phydev, KSZ9x31_LMD); 1809 if (val < 0) 1810 return val; 1811 1812 if (ksz9x31_cable_test_failed(val)) 1813 return -EAGAIN; 1814 1815 ret = ethnl_cable_test_result(phydev, 1816 ksz9x31_cable_test_get_pair(pair), 1817 ksz9x31_cable_test_result_trans(val)); 1818 if (ret) 1819 return ret; 1820 1821 if (!ksz9x31_cable_test_fault_length_valid(val)) 1822 return 0; 1823 1824 return ethnl_cable_test_fault_length(phydev, 1825 ksz9x31_cable_test_get_pair(pair), 1826 ksz9x31_cable_test_fault_length(phydev, val)); 1827 } 1828 1829 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1830 bool *finished) 1831 { 1832 struct kszphy_priv *priv = phydev->priv; 1833 unsigned long pair_mask; 1834 int retries = 20; 1835 int pair, ret, rv; 1836 1837 *finished = false; 1838 1839 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1840 phydev->supported) || 1841 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1842 phydev->supported)) 1843 pair_mask = 0xf; /* All pairs */ 1844 else 1845 pair_mask = 0x3; /* Pairs A and B only */ 1846 1847 /* Try harder if link partner is active */ 1848 while (pair_mask && retries--) { 1849 for_each_set_bit(pair, &pair_mask, 4) { 1850 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1851 if (ret == -EAGAIN) 1852 continue; 1853 if (ret < 0) 1854 return ret; 1855 clear_bit(pair, &pair_mask); 1856 } 1857 /* If link partner is in autonegotiation mode it will send 2ms 1858 * of FLPs with at least 6ms of silence. 1859 * Add 2ms sleep to have better chances to hit this silence. 1860 */ 1861 if (pair_mask) 1862 usleep_range(2000, 3000); 1863 } 1864 1865 /* Report remaining unfinished pair result as unknown. */ 1866 for_each_set_bit(pair, &pair_mask, 4) { 1867 ret = ethnl_cable_test_result(phydev, 1868 ksz9x31_cable_test_get_pair(pair), 1869 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1870 } 1871 1872 *finished = true; 1873 1874 /* Restore cached bits from before LinkMD got started. */ 1875 rv = phy_modify(phydev, MII_CTRL1000, 1876 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1877 priv->vct_ctrl1000); 1878 if (rv) 1879 return rv; 1880 1881 return ret; 1882 } 1883 1884 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1885 { 1886 return 0; 1887 } 1888 1889 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1890 { 1891 u16 val; 1892 1893 switch (ctrl) { 1894 case ETH_TP_MDI: 1895 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1896 break; 1897 case ETH_TP_MDI_X: 1898 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1899 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1900 * sheet seems to be missing: 1901 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1902 * 0 = Normal operation (transmit on TX+/TX- pins) 1903 */ 1904 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1905 break; 1906 case ETH_TP_MDI_AUTO: 1907 val = 0; 1908 break; 1909 default: 1910 return 0; 1911 } 1912 1913 return phy_modify(phydev, MII_BMCR, 1914 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1915 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1916 KSZ886X_BMCR_HP_MDIX | val); 1917 } 1918 1919 static int ksz886x_config_aneg(struct phy_device *phydev) 1920 { 1921 int ret; 1922 1923 ret = genphy_config_aneg(phydev); 1924 if (ret) 1925 return ret; 1926 1927 if (phydev->autoneg != AUTONEG_ENABLE) { 1928 /* When autonegotiation is disabled, we need to manually force 1929 * the link state. If we don't do this, the PHY will keep 1930 * sending Fast Link Pulses (FLPs) which are part of the 1931 * autonegotiation process. This is not desired when 1932 * autonegotiation is off. 1933 */ 1934 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1935 KSZ886X_CTRL_FORCE_LINK); 1936 if (ret) 1937 return ret; 1938 } else { 1939 /* If we had previously forced the link state, we need to 1940 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1941 * will not perform autonegotiation. 1942 */ 1943 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1944 KSZ886X_CTRL_FORCE_LINK); 1945 if (ret) 1946 return ret; 1947 } 1948 1949 /* The MDI-X configuration is automatically changed by the PHY after 1950 * switching from autoneg off to on. So, take MDI-X configuration under 1951 * own control and set it after autoneg configuration was done. 1952 */ 1953 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1954 } 1955 1956 static int ksz886x_mdix_update(struct phy_device *phydev) 1957 { 1958 int ret; 1959 1960 ret = phy_read(phydev, MII_BMCR); 1961 if (ret < 0) 1962 return ret; 1963 1964 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1965 if (ret & KSZ886X_BMCR_FORCE_MDI) 1966 phydev->mdix_ctrl = ETH_TP_MDI_X; 1967 else 1968 phydev->mdix_ctrl = ETH_TP_MDI; 1969 } else { 1970 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1971 } 1972 1973 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1974 if (ret < 0) 1975 return ret; 1976 1977 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1978 if (ret & KSZ886X_CTRL_MDIX_STAT) 1979 phydev->mdix = ETH_TP_MDI_X; 1980 else 1981 phydev->mdix = ETH_TP_MDI; 1982 1983 return 0; 1984 } 1985 1986 static int ksz886x_read_status(struct phy_device *phydev) 1987 { 1988 int ret; 1989 1990 ret = ksz886x_mdix_update(phydev); 1991 if (ret < 0) 1992 return ret; 1993 1994 return genphy_read_status(phydev); 1995 } 1996 1997 static int ksz9477_mdix_update(struct phy_device *phydev) 1998 { 1999 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) 2000 phydev->mdix = phydev->mdix_ctrl; 2001 else 2002 phydev->mdix = ETH_TP_MDI_INVALID; 2003 2004 return 0; 2005 } 2006 2007 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev) 2008 { 2009 int val; 2010 2011 val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 2012 if (val < 0) 2013 return val; 2014 2015 if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF)) 2016 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 2017 else if (val & MII_KSZ9131_AUTO_MDI_SET) 2018 phydev->mdix_ctrl = ETH_TP_MDI; 2019 else 2020 phydev->mdix_ctrl = ETH_TP_MDI_X; 2021 2022 return 0; 2023 } 2024 2025 static int ksz9477_read_status(struct phy_device *phydev) 2026 { 2027 int ret; 2028 2029 ret = ksz9477_mdix_update(phydev); 2030 if (ret) 2031 return ret; 2032 2033 return genphy_read_status(phydev); 2034 } 2035 2036 static int ksz9477_config_aneg(struct phy_device *phydev) 2037 { 2038 int ret; 2039 2040 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 2041 if (ret) 2042 return ret; 2043 2044 return genphy_config_aneg(phydev); 2045 } 2046 2047 struct ksz9477_errata_write { 2048 u8 dev_addr; 2049 u8 reg_addr; 2050 u16 val; 2051 }; 2052 2053 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 2054 /* Register settings are needed to improve PHY receive performance */ 2055 {0x01, 0x6f, 0xdd0b}, 2056 {0x01, 0x8f, 0x6032}, 2057 {0x01, 0x9d, 0x248c}, 2058 {0x01, 0x75, 0x0060}, 2059 {0x01, 0xd3, 0x7777}, 2060 {0x1c, 0x06, 0x3008}, 2061 {0x1c, 0x08, 0x2000}, 2062 2063 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 2064 {0x1c, 0x04, 0x00d0}, 2065 2066 /* Register settings are required to meet data sheet supply current specifications */ 2067 {0x1c, 0x13, 0x6eff}, 2068 {0x1c, 0x14, 0xe6ff}, 2069 {0x1c, 0x15, 0x6eff}, 2070 {0x1c, 0x16, 0xe6ff}, 2071 {0x1c, 0x17, 0x00ff}, 2072 {0x1c, 0x18, 0x43ff}, 2073 {0x1c, 0x19, 0xc3ff}, 2074 {0x1c, 0x1a, 0x6fff}, 2075 {0x1c, 0x1b, 0x07ff}, 2076 {0x1c, 0x1c, 0x0fff}, 2077 {0x1c, 0x1d, 0xe7ff}, 2078 {0x1c, 0x1e, 0xefff}, 2079 {0x1c, 0x20, 0xeeee}, 2080 }; 2081 2082 static int ksz9477_phy_errata(struct phy_device *phydev) 2083 { 2084 int err; 2085 int i; 2086 2087 /* Apply PHY settings to address errata listed in 2088 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 2089 * Silicon Errata and Data Sheet Clarification documents. 2090 * 2091 * Document notes: Before configuring the PHY MMD registers, it is 2092 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 2093 * disabled by writing to register 0xN100-0xN101. After writing the 2094 * MMD registers, and after all errata workarounds that involve PHY 2095 * register settings, write register 0xN100-0xN101 again to enable 2096 * and restart auto-negotiation. 2097 */ 2098 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2099 if (err) 2100 return err; 2101 2102 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2103 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2104 2105 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2106 if (err) 2107 return err; 2108 } 2109 2110 return genphy_restart_aneg(phydev); 2111 } 2112 2113 static int ksz9477_config_init(struct phy_device *phydev) 2114 { 2115 int err; 2116 2117 /* Only KSZ9897 family of switches needs this fix. */ 2118 if ((phydev->phy_id & 0xf) == 1) { 2119 err = ksz9477_phy_errata(phydev); 2120 if (err) 2121 return err; 2122 } 2123 2124 /* Read initial MDI-X config state. So, we do not need to poll it 2125 * later on. 2126 */ 2127 err = ksz9477_read_mdix_ctrl(phydev); 2128 if (err) 2129 return err; 2130 2131 return kszphy_config_init(phydev); 2132 } 2133 2134 static int kszphy_get_sset_count(struct phy_device *phydev) 2135 { 2136 return ARRAY_SIZE(kszphy_hw_stats); 2137 } 2138 2139 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2140 { 2141 int i; 2142 2143 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2144 ethtool_puts(&data, kszphy_hw_stats[i].string); 2145 } 2146 2147 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2148 { 2149 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2150 struct kszphy_priv *priv = phydev->priv; 2151 int val; 2152 u64 ret; 2153 2154 val = phy_read(phydev, stat.reg); 2155 if (val < 0) { 2156 ret = U64_MAX; 2157 } else { 2158 val = val & ((1 << stat.bits) - 1); 2159 priv->stats[i] += val; 2160 ret = priv->stats[i]; 2161 } 2162 2163 return ret; 2164 } 2165 2166 static void kszphy_get_stats(struct phy_device *phydev, 2167 struct ethtool_stats *stats, u64 *data) 2168 { 2169 int i; 2170 2171 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2172 data[i] = kszphy_get_stat(phydev, i); 2173 } 2174 2175 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313, 2176 * etc. The counter is incremented when the PHY receives a frame with one or 2177 * more symbol errors. The counter is cleared when the register is read. 2178 */ 2179 #define MII_KSZ9477_PHY_RXER_COUNTER 0x15 2180 2181 static int kszphy_update_stats(struct phy_device *phydev) 2182 { 2183 struct kszphy_priv *priv = phydev->priv; 2184 int ret; 2185 2186 ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER); 2187 if (ret < 0) 2188 return ret; 2189 2190 priv->phy_stats.rx_err_pkt_cnt += ret; 2191 2192 return 0; 2193 } 2194 2195 static void kszphy_get_phy_stats(struct phy_device *phydev, 2196 struct ethtool_eth_phy_stats *eth_stats, 2197 struct ethtool_phy_stats *stats) 2198 { 2199 struct kszphy_priv *priv = phydev->priv; 2200 2201 stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt; 2202 } 2203 2204 /* Base register for Signal Quality Indicator (SQI) - Channel A 2205 * 2206 * MMD Address: MDIO_MMD_PMAPMD (0x01) 2207 * Register: 0xAC (Channel A) 2208 * Each channel (pair) has its own register: 2209 * Channel A: 0xAC 2210 * Channel B: 0xAD 2211 * Channel C: 0xAE 2212 * Channel D: 0xAF 2213 */ 2214 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A 0xac 2215 2216 /* SQI field mask for bits [14:8] 2217 * 2218 * SQI indicates relative quality of the signal. 2219 * A lower value indicates better signal quality. 2220 */ 2221 #define KSZ9477_MMD_SQI_MASK GENMASK(14, 8) 2222 2223 #define KSZ9477_MAX_CHANNELS 4 2224 #define KSZ9477_SQI_MAX 7 2225 2226 /* Number of SQI samples to average for a stable result. 2227 * 2228 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2229 * For noisy environments, a minimum of 30–50 readings is recommended. 2230 */ 2231 #define KSZ9477_SQI_SAMPLE_COUNT 40 2232 2233 /* The hardware SQI register provides a raw value from 0-127, where a lower 2234 * value indicates better signal quality. However, empirical testing has 2235 * shown that only the 0-7 range is relevant for a functional link. A raw 2236 * value of 8 or higher was measured directly before link drop. This aligns 2237 * with the OPEN Alliance recommendation that SQI=0 should represent the 2238 * pre-failure state. 2239 * 2240 * This table provides a non-linear mapping from the useful raw hardware 2241 * values (0-7) to the standard 0-7 SQI scale, where higher is better. 2242 */ 2243 static const u8 ksz_sqi_mapping[] = { 2244 7, /* raw 0 -> SQI 7 */ 2245 7, /* raw 1 -> SQI 7 */ 2246 6, /* raw 2 -> SQI 6 */ 2247 5, /* raw 3 -> SQI 5 */ 2248 4, /* raw 4 -> SQI 4 */ 2249 3, /* raw 5 -> SQI 3 */ 2250 2, /* raw 6 -> SQI 2 */ 2251 1, /* raw 7 -> SQI 1 */ 2252 }; 2253 2254 /** 2255 * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI) 2256 * @phydev: the PHY device 2257 * 2258 * This function reads and processes the raw Signal Quality Index from the 2259 * PHY. Based on empirical testing, a raw value of 8 or higher indicates a 2260 * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are 2261 * mapped to the standard 0-7 SQI scale via a lookup table. 2262 * 2263 * Return: SQI value (0–7), or a negative errno on failure. 2264 */ 2265 static int kszphy_get_sqi(struct phy_device *phydev) 2266 { 2267 int sum[KSZ9477_MAX_CHANNELS] = { 0 }; 2268 int worst_sqi = KSZ9477_SQI_MAX; 2269 int i, val, raw_sqi, ch; 2270 u8 channels; 2271 2272 /* Determine applicable channels based on link speed */ 2273 if (phydev->speed == SPEED_1000) 2274 channels = 4; 2275 else if (phydev->speed == SPEED_100) 2276 channels = 1; 2277 else 2278 return -EOPNOTSUPP; 2279 2280 /* Sample and accumulate SQI readings for each pair (currently only one). 2281 * 2282 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2283 * - The SQI register is updated every 2 µs. 2284 * - Values may fluctuate significantly, even in low-noise environments. 2285 * - For reliable estimation, average a minimum of 30–50 samples 2286 * (recommended for noisy environments) 2287 * - In noisy environments, individual readings are highly unreliable. 2288 * 2289 * We use 40 samples per pair with a delay of 3 µs between each 2290 * read to ensure new values are captured (2 µs update interval). 2291 */ 2292 for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) { 2293 for (ch = 0; ch < channels; ch++) { 2294 val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2295 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch); 2296 if (val < 0) 2297 return val; 2298 2299 raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val); 2300 sum[ch] += raw_sqi; 2301 2302 /* We communicate with the PHY via MDIO via SPI or 2303 * I2C, which is relatively slow. At least slower than 2304 * the update interval of the SQI register. 2305 * So, we can skip the delay between reads. 2306 */ 2307 } 2308 } 2309 2310 /* Calculate average for each channel and find the worst SQI */ 2311 for (ch = 0; ch < channels; ch++) { 2312 int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT; 2313 int mapped_sqi; 2314 2315 /* Handle the pre-fail/failed state first. */ 2316 if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping)) 2317 mapped_sqi = 0; 2318 else 2319 /* Use the lookup table for the good signal range. */ 2320 mapped_sqi = ksz_sqi_mapping[avg_raw_sqi]; 2321 2322 if (mapped_sqi < worst_sqi) 2323 worst_sqi = mapped_sqi; 2324 } 2325 2326 return worst_sqi; 2327 } 2328 2329 static int kszphy_get_sqi_max(struct phy_device *phydev) 2330 { 2331 return KSZ9477_SQI_MAX; 2332 } 2333 2334 static int kszphy_get_mse_capability(struct phy_device *phydev, 2335 struct phy_mse_capability *cap) 2336 { 2337 /* Capabilities depend on link mode: 2338 * - 1000BASE-T: per-pair SQI registers exist => expose A..D 2339 * and a WORST selector. 2340 * - 100BASE-TX: HW provides a single MSE/SQI reading in the "channel A" 2341 * register, but with auto MDI-X there is no MDI-X resolution bit, 2342 * so we cannot map that register to a specific wire pair reliably. 2343 * To avoid misleading per-channel data, advertise only LINK. 2344 * Other speeds: no MSE exposure via this driver. 2345 * 2346 * Note: WORST is *not* a hardware selector on this family. 2347 * We expose it because the driver computes it in software 2348 * by scanning per-channel readouts (A..D) and picking the 2349 * maximum average MSE. 2350 */ 2351 if (phydev->speed == SPEED_1000) 2352 cap->supported_caps = PHY_MSE_CAP_CHANNEL_A | 2353 PHY_MSE_CAP_CHANNEL_B | 2354 PHY_MSE_CAP_CHANNEL_C | 2355 PHY_MSE_CAP_CHANNEL_D | 2356 PHY_MSE_CAP_WORST_CHANNEL; 2357 else if (phydev->speed == SPEED_100) 2358 cap->supported_caps = PHY_MSE_CAP_LINK; 2359 else 2360 return -EOPNOTSUPP; 2361 2362 cap->max_average_mse = FIELD_MAX(KSZ9477_MMD_SQI_MASK); 2363 cap->refresh_rate_ps = 2000000; /* 2 us */ 2364 /* Estimated from link modulation (125 MBd per channel) and documented 2365 * refresh rate of 2 us 2366 */ 2367 cap->num_symbols = 250; 2368 2369 cap->supported_caps |= PHY_MSE_CAP_AVG; 2370 2371 return 0; 2372 } 2373 2374 static int kszphy_get_mse_snapshot(struct phy_device *phydev, 2375 enum phy_mse_channel channel, 2376 struct phy_mse_snapshot *snapshot) 2377 { 2378 u8 num_channels; 2379 int ret; 2380 2381 if (phydev->speed == SPEED_1000) 2382 num_channels = 4; 2383 else if (phydev->speed == SPEED_100) 2384 num_channels = 1; 2385 else 2386 return -EOPNOTSUPP; 2387 2388 if (channel == PHY_MSE_CHANNEL_WORST) { 2389 u32 worst_val = 0; 2390 int i; 2391 2392 /* WORST is implemented in software: select the maximum 2393 * average MSE across the available per-channel registers. 2394 * Only defined when multiple channels exist (1000BASE-T). 2395 */ 2396 if (num_channels < 2) 2397 return -EOPNOTSUPP; 2398 2399 for (i = 0; i < num_channels; i++) { 2400 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2401 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + i); 2402 if (ret < 0) 2403 return ret; 2404 2405 ret = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2406 if (ret > worst_val) 2407 worst_val = ret; 2408 } 2409 snapshot->average_mse = worst_val; 2410 } else if (channel == PHY_MSE_CHANNEL_LINK && num_channels == 1) { 2411 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2412 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A); 2413 if (ret < 0) 2414 return ret; 2415 snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2416 } else if (channel >= PHY_MSE_CHANNEL_A && 2417 channel <= PHY_MSE_CHANNEL_D) { 2418 /* Per-channel readouts are valid only for 1000BASE-T. */ 2419 if (phydev->speed != SPEED_1000) 2420 return -EOPNOTSUPP; 2421 2422 ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2423 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + channel); 2424 if (ret < 0) 2425 return ret; 2426 snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret); 2427 } else { 2428 return -EOPNOTSUPP; 2429 } 2430 2431 return 0; 2432 } 2433 2434 static void kszphy_enable_clk(struct phy_device *phydev) 2435 { 2436 struct kszphy_priv *priv = phydev->priv; 2437 2438 if (!priv->clk_enable && priv->clk) { 2439 clk_prepare_enable(priv->clk); 2440 priv->clk_enable = true; 2441 } 2442 } 2443 2444 static void kszphy_disable_clk(struct phy_device *phydev) 2445 { 2446 struct kszphy_priv *priv = phydev->priv; 2447 2448 if (priv->clk_enable && priv->clk) { 2449 clk_disable_unprepare(priv->clk); 2450 priv->clk_enable = false; 2451 } 2452 } 2453 2454 static int kszphy_generic_resume(struct phy_device *phydev) 2455 { 2456 kszphy_enable_clk(phydev); 2457 2458 return genphy_resume(phydev); 2459 } 2460 2461 static int kszphy_generic_suspend(struct phy_device *phydev) 2462 { 2463 int ret; 2464 2465 ret = genphy_suspend(phydev); 2466 if (ret) 2467 return ret; 2468 2469 kszphy_disable_clk(phydev); 2470 2471 return 0; 2472 } 2473 2474 static int kszphy_suspend(struct phy_device *phydev) 2475 { 2476 /* Disable PHY Interrupts */ 2477 if (phy_interrupt_is_valid(phydev)) { 2478 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2479 if (phydev->drv->config_intr) 2480 phydev->drv->config_intr(phydev); 2481 } 2482 2483 return kszphy_generic_suspend(phydev); 2484 } 2485 2486 static void kszphy_parse_led_mode(struct phy_device *phydev) 2487 { 2488 const struct kszphy_type *type = phydev->drv->driver_data; 2489 const struct device_node *np = phydev->mdio.dev.of_node; 2490 struct kszphy_priv *priv = phydev->priv; 2491 int ret; 2492 2493 if (type && type->led_mode_reg) { 2494 ret = of_property_read_u32(np, "micrel,led-mode", 2495 &priv->led_mode); 2496 2497 if (ret) 2498 priv->led_mode = -1; 2499 2500 if (priv->led_mode > 3) { 2501 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2502 priv->led_mode); 2503 priv->led_mode = -1; 2504 } 2505 } else { 2506 priv->led_mode = -1; 2507 } 2508 } 2509 2510 static int kszphy_resume(struct phy_device *phydev) 2511 { 2512 int ret; 2513 2514 ret = kszphy_generic_resume(phydev); 2515 if (ret) 2516 return ret; 2517 2518 /* After switching from power-down to normal mode, an internal global 2519 * reset is automatically generated. Wait a minimum of 1 ms before 2520 * read/write access to the PHY registers. 2521 */ 2522 usleep_range(1000, 2000); 2523 2524 ret = kszphy_config_reset(phydev); 2525 if (ret) 2526 return ret; 2527 2528 /* Enable PHY Interrupts */ 2529 if (phy_interrupt_is_valid(phydev)) { 2530 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2531 if (phydev->drv->config_intr) 2532 phydev->drv->config_intr(phydev); 2533 } 2534 2535 return 0; 2536 } 2537 2538 /* Because of errata DS80000700A, receiver error following software 2539 * power down. Suspend and resume callbacks only disable and enable 2540 * external rmii reference clock. 2541 */ 2542 static int ksz8041_resume(struct phy_device *phydev) 2543 { 2544 kszphy_enable_clk(phydev); 2545 2546 return 0; 2547 } 2548 2549 static int ksz8041_suspend(struct phy_device *phydev) 2550 { 2551 kszphy_disable_clk(phydev); 2552 2553 return 0; 2554 } 2555 2556 static int ksz9477_resume(struct phy_device *phydev) 2557 { 2558 int ret; 2559 2560 /* No need to initialize registers if not powered down. */ 2561 ret = phy_read(phydev, MII_BMCR); 2562 if (ret < 0) 2563 return ret; 2564 if (!(ret & BMCR_PDOWN)) 2565 return 0; 2566 2567 genphy_resume(phydev); 2568 2569 /* After switching from power-down to normal mode, an internal global 2570 * reset is automatically generated. Wait a minimum of 1 ms before 2571 * read/write access to the PHY registers. 2572 */ 2573 usleep_range(1000, 2000); 2574 2575 /* Only KSZ9897 family of switches needs this fix. */ 2576 if ((phydev->phy_id & 0xf) == 1) { 2577 ret = ksz9477_phy_errata(phydev); 2578 if (ret) 2579 return ret; 2580 } 2581 2582 /* Enable PHY Interrupts */ 2583 if (phy_interrupt_is_valid(phydev)) { 2584 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2585 if (phydev->drv->config_intr) 2586 phydev->drv->config_intr(phydev); 2587 } 2588 2589 return 0; 2590 } 2591 2592 static int ksz8061_resume(struct phy_device *phydev) 2593 { 2594 int ret; 2595 2596 /* This function can be called twice when the Ethernet device is on. */ 2597 ret = phy_read(phydev, MII_BMCR); 2598 if (ret < 0) 2599 return ret; 2600 if (!(ret & BMCR_PDOWN)) 2601 return 0; 2602 2603 ret = kszphy_generic_resume(phydev); 2604 if (ret) 2605 return ret; 2606 2607 usleep_range(1000, 2000); 2608 2609 /* Re-program the value after chip is reset. */ 2610 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2611 if (ret) 2612 return ret; 2613 2614 /* Enable PHY Interrupts */ 2615 if (phy_interrupt_is_valid(phydev)) { 2616 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2617 if (phydev->drv->config_intr) 2618 phydev->drv->config_intr(phydev); 2619 } 2620 2621 return 0; 2622 } 2623 2624 static int ksz8061_suspend(struct phy_device *phydev) 2625 { 2626 return kszphy_suspend(phydev); 2627 } 2628 2629 static int kszphy_probe(struct phy_device *phydev) 2630 { 2631 const struct kszphy_type *type = phydev->drv->driver_data; 2632 const struct device_node *np = phydev->mdio.dev.of_node; 2633 struct kszphy_priv *priv; 2634 struct clk *clk; 2635 2636 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2637 if (!priv) 2638 return -ENOMEM; 2639 2640 phydev->priv = priv; 2641 2642 priv->type = type; 2643 2644 kszphy_parse_led_mode(phydev); 2645 2646 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2647 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2648 if (!IS_ERR_OR_NULL(clk)) { 2649 unsigned long rate = clk_get_rate(clk); 2650 bool rmii_ref_clk_sel_25_mhz; 2651 2652 if (type) 2653 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2654 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2655 "micrel,rmii-reference-clock-select-25-mhz"); 2656 2657 if (rate > 24500000 && rate < 25500000) { 2658 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2659 } else if (rate > 49500000 && rate < 50500000) { 2660 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2661 } else { 2662 phydev_err(phydev, "Clock rate out of range: %ld\n", 2663 rate); 2664 return -EINVAL; 2665 } 2666 } else if (!clk) { 2667 /* unnamed clock from the generic ethernet-phy binding */ 2668 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2669 } 2670 2671 if (IS_ERR(clk)) 2672 return PTR_ERR(clk); 2673 2674 clk_disable_unprepare(clk); 2675 priv->clk = clk; 2676 2677 if (ksz8041_fiber_mode(phydev)) 2678 phydev->port = PORT_FIBRE; 2679 2680 /* Support legacy board-file configuration */ 2681 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2682 priv->rmii_ref_clk_sel = true; 2683 priv->rmii_ref_clk_sel_val = true; 2684 } 2685 2686 return 0; 2687 } 2688 2689 static int lan8814_cable_test_start(struct phy_device *phydev) 2690 { 2691 /* If autoneg is enabled, we won't be able to test cross pair 2692 * short. In this case, the PHY will "detect" a link and 2693 * confuse the internal state machine - disable auto neg here. 2694 * Set the speed to 1000mbit and full duplex. 2695 */ 2696 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2697 BMCR_SPEED1000 | BMCR_FULLDPLX); 2698 } 2699 2700 static int ksz886x_cable_test_start(struct phy_device *phydev) 2701 { 2702 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2703 return -EOPNOTSUPP; 2704 2705 /* If autoneg is enabled, we won't be able to test cross pair 2706 * short. In this case, the PHY will "detect" a link and 2707 * confuse the internal state machine - disable auto neg here. 2708 * If autoneg is disabled, we should set the speed to 10mbit. 2709 */ 2710 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2711 } 2712 2713 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2714 { 2715 switch (FIELD_GET(mask, status)) { 2716 case KSZ8081_LMD_STAT_NORMAL: 2717 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2718 case KSZ8081_LMD_STAT_SHORT: 2719 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2720 case KSZ8081_LMD_STAT_OPEN: 2721 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2722 case KSZ8081_LMD_STAT_FAIL: 2723 fallthrough; 2724 default: 2725 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2726 } 2727 } 2728 2729 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2730 { 2731 return FIELD_GET(mask, status) == 2732 KSZ8081_LMD_STAT_FAIL; 2733 } 2734 2735 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2736 { 2737 switch (FIELD_GET(mask, status)) { 2738 case KSZ8081_LMD_STAT_OPEN: 2739 fallthrough; 2740 case KSZ8081_LMD_STAT_SHORT: 2741 return true; 2742 } 2743 return false; 2744 } 2745 2746 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2747 u16 status, u16 data_mask) 2748 { 2749 int dt; 2750 2751 /* According to the data sheet the distance to the fault is 2752 * DELTA_TIME * 0.4 meters for ksz phys. 2753 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2754 */ 2755 dt = FIELD_GET(data_mask, status); 2756 2757 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2758 return ((dt - 22) * 800) / 10; 2759 else 2760 return (dt * 400) / 10; 2761 } 2762 2763 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2764 { 2765 const struct kszphy_type *type = phydev->drv->driver_data; 2766 int val, ret; 2767 2768 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2769 !(val & KSZ8081_LMD_ENABLE_TEST), 2770 30000, 100000, true); 2771 2772 return ret < 0 ? ret : 0; 2773 } 2774 2775 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2776 { 2777 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2778 ETHTOOL_A_CABLE_PAIR_B, 2779 ETHTOOL_A_CABLE_PAIR_C, 2780 ETHTOOL_A_CABLE_PAIR_D, 2781 }; 2782 u32 fault_length; 2783 int ret; 2784 int val; 2785 2786 val = KSZ8081_LMD_ENABLE_TEST; 2787 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2788 2789 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2790 if (ret < 0) 2791 return ret; 2792 2793 ret = ksz886x_cable_test_wait_for_completion(phydev); 2794 if (ret) 2795 return ret; 2796 2797 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2798 if (val < 0) 2799 return val; 2800 2801 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2802 return -EAGAIN; 2803 2804 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2805 ksz886x_cable_test_result_trans(val, 2806 LAN8814_CABLE_DIAG_STAT_MASK 2807 )); 2808 if (ret) 2809 return ret; 2810 2811 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2812 return 0; 2813 2814 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2815 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2816 2817 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2818 } 2819 2820 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2821 { 2822 static const int ethtool_pair[] = { 2823 ETHTOOL_A_CABLE_PAIR_A, 2824 ETHTOOL_A_CABLE_PAIR_B, 2825 }; 2826 int ret, val, mdix; 2827 u32 fault_length; 2828 2829 /* There is no way to choice the pair, like we do one ksz9031. 2830 * We can workaround this limitation by using the MDI-X functionality. 2831 */ 2832 if (pair == 0) 2833 mdix = ETH_TP_MDI; 2834 else 2835 mdix = ETH_TP_MDI_X; 2836 2837 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2838 case PHY_ID_KSZ8081: 2839 ret = ksz8081_config_mdix(phydev, mdix); 2840 break; 2841 case PHY_ID_KSZ886X: 2842 ret = ksz886x_config_mdix(phydev, mdix); 2843 break; 2844 default: 2845 ret = -ENODEV; 2846 } 2847 2848 if (ret) 2849 return ret; 2850 2851 /* Now we are ready to fire. This command will send a 100ns pulse 2852 * to the pair. 2853 */ 2854 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2855 if (ret) 2856 return ret; 2857 2858 ret = ksz886x_cable_test_wait_for_completion(phydev); 2859 if (ret) 2860 return ret; 2861 2862 val = phy_read(phydev, KSZ8081_LMD); 2863 if (val < 0) 2864 return val; 2865 2866 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2867 return -EAGAIN; 2868 2869 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2870 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2871 if (ret) 2872 return ret; 2873 2874 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2875 return 0; 2876 2877 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2878 2879 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2880 } 2881 2882 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2883 bool *finished) 2884 { 2885 const struct kszphy_type *type = phydev->drv->driver_data; 2886 unsigned long pair_mask = type->pair_mask; 2887 int retries = 20; 2888 int ret = 0; 2889 int pair; 2890 2891 *finished = false; 2892 2893 /* Try harder if link partner is active */ 2894 while (pair_mask && retries--) { 2895 for_each_set_bit(pair, &pair_mask, 4) { 2896 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2897 ret = lan8814_cable_test_one_pair(phydev, pair); 2898 else 2899 ret = ksz886x_cable_test_one_pair(phydev, pair); 2900 if (ret == -EAGAIN) 2901 continue; 2902 if (ret < 0) 2903 return ret; 2904 clear_bit(pair, &pair_mask); 2905 } 2906 /* If link partner is in autonegotiation mode it will send 2ms 2907 * of FLPs with at least 6ms of silence. 2908 * Add 2ms sleep to have better chances to hit this silence. 2909 */ 2910 if (pair_mask) 2911 msleep(2); 2912 } 2913 2914 *finished = true; 2915 2916 return ret; 2917 } 2918 2919 /** 2920 * LAN8814_PAGE_PCS - Selects Extended Page 0. 2921 * 2922 * This page contains timers used for auto-negotiation, debug registers and 2923 * register to configure fast link failure. 2924 */ 2925 #define LAN8814_PAGE_PCS 0 2926 2927 /** 2928 * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1. 2929 * 2930 * This page appears to control the Analog Front-End (AFE) and Physical 2931 * Medium Attachment (PMA) layers. It is used to access registers like 2932 * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY. 2933 */ 2934 #define LAN8814_PAGE_AFE_PMA 1 2935 2936 /** 2937 * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2. 2938 * 2939 * This page seems dedicated to the Physical Coding Sublayer (PCS) and other 2940 * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE 2941 * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics 2942 * and self-test counters in the LAN8842. 2943 */ 2944 #define LAN8814_PAGE_PCS_DIGITAL 2 2945 2946 /** 2947 * LAN8814_PAGE_EEE - Selects Extended Page 3. 2948 * 2949 * This page contains EEE registers 2950 */ 2951 #define LAN8814_PAGE_EEE 3 2952 2953 /** 2954 * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4. 2955 * 2956 * This page contains device-common registers that affect the entire chip. 2957 * It includes controls for chip-level resets, strap status, GPIO, 2958 * QSGMII, the shared 1588 PTP block, and the PVT monitor. 2959 */ 2960 #define LAN8814_PAGE_COMMON_REGS 4 2961 2962 /** 2963 * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5. 2964 * 2965 * This page contains port-specific registers that must be accessed 2966 * on a per-port basis. It includes controls for port LEDs, QSGMII PCS, 2967 * rate adaptation FIFOs, and the per-port 1588 TSU block. 2968 */ 2969 #define LAN8814_PAGE_PORT_REGS 5 2970 2971 /** 2972 * LAN8814_PAGE_POWER_REGS - Selects Extended Page 28. 2973 * 2974 * This page contains analog control registers and power mode registers. 2975 */ 2976 #define LAN8814_PAGE_POWER_REGS 28 2977 2978 /** 2979 * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31. 2980 * 2981 * This page appears to hold fundamental system or global controls. In the 2982 * driver, it is used by the related LAN8804 to access the 2983 * LAN8814_CLOCK_MANAGEMENT register. 2984 */ 2985 #define LAN8814_PAGE_SYSTEM_CTRL 31 2986 2987 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2988 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2989 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2990 2991 #define LAN8814_QSGMII_TX_CONFIG 0x35 2992 #define LAN8814_QSGMII_TX_CONFIG_QSGMII BIT(3) 2993 #define LAN8814_QSGMII_SOFT_RESET 0x43 2994 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2995 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2996 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2997 #define LAN8814_ALIGN_SWAP 0x4a 2998 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2999 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 3000 3001 #define LAN8804_ALIGN_SWAP 0x4a 3002 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 3003 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 3004 #define LAN8814_CLOCK_MANAGEMENT 0xd 3005 #define LAN8814_LINK_QUALITY 0x8e 3006 3007 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 3008 { 3009 int data; 3010 3011 phy_lock_mdio_bus(phydev); 3012 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 3013 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 3014 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 3015 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 3016 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 3017 phy_unlock_mdio_bus(phydev); 3018 3019 return data; 3020 } 3021 3022 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 3023 u16 val) 3024 { 3025 phy_lock_mdio_bus(phydev); 3026 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 3027 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 3028 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 3029 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 3030 3031 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 3032 if (val != 0) 3033 phydev_err(phydev, "Error: phy_write has returned error %d\n", 3034 val); 3035 phy_unlock_mdio_bus(phydev); 3036 return val; 3037 } 3038 3039 static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr, 3040 u16 mask, u16 set) 3041 { 3042 int ret; 3043 3044 phy_lock_mdio_bus(phydev); 3045 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 3046 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 3047 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 3048 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 3049 ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, 3050 mask, set); 3051 phy_unlock_mdio_bus(phydev); 3052 3053 if (ret < 0) 3054 phydev_err(phydev, "__phy_modify_changed() failed: %pe\n", 3055 ERR_PTR(ret)); 3056 3057 return ret; 3058 } 3059 3060 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 3061 { 3062 u16 val = 0; 3063 3064 if (enable) 3065 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 3066 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 3067 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 3068 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 3069 3070 return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3071 PTP_TSU_INT_EN, val); 3072 } 3073 3074 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 3075 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 3076 { 3077 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3078 PTP_RX_INGRESS_SEC_HI); 3079 *seconds = (*seconds << 16) | 3080 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3081 PTP_RX_INGRESS_SEC_LO); 3082 3083 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3084 PTP_RX_INGRESS_NS_HI); 3085 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 3086 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3087 PTP_RX_INGRESS_NS_LO); 3088 3089 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3090 PTP_RX_MSG_HEADER2); 3091 } 3092 3093 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 3094 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 3095 { 3096 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3097 PTP_TX_EGRESS_SEC_HI); 3098 *seconds = *seconds << 16 | 3099 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3100 PTP_TX_EGRESS_SEC_LO); 3101 3102 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3103 PTP_TX_EGRESS_NS_HI); 3104 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 3105 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3106 PTP_TX_EGRESS_NS_LO); 3107 3108 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3109 PTP_TX_MSG_HEADER2); 3110 } 3111 3112 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 3113 { 3114 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3115 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 3116 3117 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 3118 SOF_TIMESTAMPING_RX_HARDWARE | 3119 SOF_TIMESTAMPING_RAW_HARDWARE; 3120 3121 info->phc_index = ptp_clock_index(shared->ptp_clock); 3122 3123 info->tx_types = 3124 (1 << HWTSTAMP_TX_OFF) | 3125 (1 << HWTSTAMP_TX_ON) | 3126 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3127 3128 info->rx_filters = 3129 (1 << HWTSTAMP_FILTER_NONE) | 3130 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 3131 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3132 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3133 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3134 3135 return 0; 3136 } 3137 3138 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 3139 { 3140 int i; 3141 3142 for (i = 0; i < FIFO_SIZE; ++i) 3143 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3144 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 3145 3146 /* Read to clear overflow status bit */ 3147 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS); 3148 } 3149 3150 static int lan8814_hwtstamp_get(struct mii_timestamper *mii_ts, 3151 struct kernel_hwtstamp_config *config) 3152 { 3153 struct kszphy_ptp_priv *ptp_priv = 3154 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3155 3156 config->tx_type = ptp_priv->hwts_tx_type; 3157 config->rx_filter = ptp_priv->rx_filter; 3158 3159 return 0; 3160 } 3161 3162 static int lan8814_hwtstamp_set(struct mii_timestamper *mii_ts, 3163 struct kernel_hwtstamp_config *config, 3164 struct netlink_ext_ack *extack) 3165 { 3166 struct kszphy_ptp_priv *ptp_priv = 3167 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3168 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3169 int txcfg = 0, rxcfg = 0; 3170 int pkt_ts_enable; 3171 3172 switch (config->rx_filter) { 3173 case HWTSTAMP_FILTER_NONE: 3174 ptp_priv->layer = 0; 3175 ptp_priv->version = 0; 3176 break; 3177 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3178 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3179 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3180 ptp_priv->layer = PTP_CLASS_L4; 3181 ptp_priv->version = PTP_CLASS_V2; 3182 break; 3183 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3184 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3185 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3186 ptp_priv->layer = PTP_CLASS_L2; 3187 ptp_priv->version = PTP_CLASS_V2; 3188 break; 3189 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3190 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3191 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3192 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3193 ptp_priv->version = PTP_CLASS_V2; 3194 break; 3195 default: 3196 return -ERANGE; 3197 } 3198 3199 switch (config->tx_type) { 3200 case HWTSTAMP_TX_OFF: 3201 case HWTSTAMP_TX_ON: 3202 case HWTSTAMP_TX_ONESTEP_SYNC: 3203 break; 3204 default: 3205 return -ERANGE; 3206 } 3207 3208 ptp_priv->hwts_tx_type = config->tx_type; 3209 ptp_priv->rx_filter = config->rx_filter; 3210 3211 if (ptp_priv->layer & PTP_CLASS_L2) { 3212 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3213 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3214 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3215 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3216 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3217 } 3218 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3219 PTP_RX_PARSE_CONFIG, rxcfg); 3220 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3221 PTP_TX_PARSE_CONFIG, txcfg); 3222 3223 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3224 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3225 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3226 PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3227 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3228 PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3229 3230 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 3231 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3232 PTP_TX_MOD, 3233 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3234 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 3235 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 3236 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3237 PTP_TX_MOD, 3238 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3239 0); 3240 } 3241 3242 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 3243 lan8814_config_ts_intr(ptp_priv->phydev, true); 3244 else 3245 lan8814_config_ts_intr(ptp_priv->phydev, false); 3246 3247 /* In case of multiple starts and stops, these needs to be cleared */ 3248 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3249 list_del(&rx_ts->list); 3250 kfree(rx_ts); 3251 } 3252 skb_queue_purge(&ptp_priv->rx_queue); 3253 skb_queue_purge(&ptp_priv->tx_queue); 3254 3255 lan8814_flush_fifo(ptp_priv->phydev, false); 3256 lan8814_flush_fifo(ptp_priv->phydev, true); 3257 3258 return 0; 3259 } 3260 3261 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 3262 struct sk_buff *skb, int type) 3263 { 3264 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3265 3266 switch (ptp_priv->hwts_tx_type) { 3267 case HWTSTAMP_TX_ONESTEP_SYNC: 3268 if (ptp_msg_is_sync(skb, type)) { 3269 kfree_skb(skb); 3270 return; 3271 } 3272 fallthrough; 3273 case HWTSTAMP_TX_ON: 3274 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3275 skb_queue_tail(&ptp_priv->tx_queue, skb); 3276 break; 3277 case HWTSTAMP_TX_OFF: 3278 default: 3279 kfree_skb(skb); 3280 break; 3281 } 3282 } 3283 3284 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 3285 { 3286 struct ptp_header *ptp_header; 3287 u32 type; 3288 3289 skb_push(skb, ETH_HLEN); 3290 type = ptp_classify_raw(skb); 3291 ptp_header = ptp_parse_header(skb, type); 3292 skb_pull_inline(skb, ETH_HLEN); 3293 3294 if (!ptp_header) 3295 return false; 3296 3297 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3298 return true; 3299 } 3300 3301 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 3302 struct sk_buff *skb) 3303 { 3304 struct skb_shared_hwtstamps *shhwtstamps; 3305 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3306 unsigned long flags; 3307 bool ret = false; 3308 u16 skb_sig; 3309 3310 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3311 return ret; 3312 3313 /* Iterate over all RX timestamps and match it with the received skbs */ 3314 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3315 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3316 /* Check if we found the signature we were looking for. */ 3317 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3318 continue; 3319 3320 shhwtstamps = skb_hwtstamps(skb); 3321 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3322 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 3323 rx_ts->nsec); 3324 list_del(&rx_ts->list); 3325 kfree(rx_ts); 3326 3327 ret = true; 3328 break; 3329 } 3330 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3331 3332 if (ret) 3333 netif_rx(skb); 3334 return ret; 3335 } 3336 3337 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 3338 { 3339 struct kszphy_ptp_priv *ptp_priv = 3340 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3341 3342 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3343 type == PTP_CLASS_NONE) 3344 return false; 3345 3346 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3347 return false; 3348 3349 /* If we failed to match then add it to the queue for when the timestamp 3350 * will come 3351 */ 3352 if (!lan8814_match_rx_skb(ptp_priv, skb)) 3353 skb_queue_tail(&ptp_priv->rx_queue, skb); 3354 3355 return true; 3356 } 3357 3358 static void lan8814_ptp_clock_set(struct phy_device *phydev, 3359 time64_t sec, u32 nsec) 3360 { 3361 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3362 PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 3363 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3364 PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 3365 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3366 PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 3367 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3368 PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 3369 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3370 PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 3371 3372 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3373 PTP_CMD_CTL_PTP_CLOCK_LOAD_); 3374 } 3375 3376 static void lan8814_ptp_clock_get(struct phy_device *phydev, 3377 time64_t *sec, u32 *nsec) 3378 { 3379 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3380 PTP_CMD_CTL_PTP_CLOCK_READ_); 3381 3382 *sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3383 PTP_CLOCK_READ_SEC_HI); 3384 *sec <<= 16; 3385 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3386 PTP_CLOCK_READ_SEC_MID); 3387 *sec <<= 16; 3388 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3389 PTP_CLOCK_READ_SEC_LO); 3390 3391 *nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3392 PTP_CLOCK_READ_NS_HI); 3393 *nsec <<= 16; 3394 *nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3395 PTP_CLOCK_READ_NS_LO); 3396 } 3397 3398 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 3399 struct timespec64 *ts) 3400 { 3401 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3402 ptp_clock_info); 3403 struct phy_device *phydev = shared->phydev; 3404 u32 nano_seconds; 3405 time64_t seconds; 3406 3407 mutex_lock(&shared->shared_lock); 3408 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 3409 mutex_unlock(&shared->shared_lock); 3410 ts->tv_sec = seconds; 3411 ts->tv_nsec = nano_seconds; 3412 3413 return 0; 3414 } 3415 3416 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 3417 const struct timespec64 *ts) 3418 { 3419 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3420 ptp_clock_info); 3421 struct phy_device *phydev = shared->phydev; 3422 3423 mutex_lock(&shared->shared_lock); 3424 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 3425 mutex_unlock(&shared->shared_lock); 3426 3427 return 0; 3428 } 3429 3430 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 3431 s64 start_sec, u32 start_nsec) 3432 { 3433 /* Set the start time */ 3434 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3435 LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 3436 lower_16_bits(start_sec)); 3437 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3438 LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 3439 upper_16_bits(start_sec)); 3440 3441 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3442 LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 3443 lower_16_bits(start_nsec)); 3444 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3445 LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 3446 upper_16_bits(start_nsec) & 0x3fff); 3447 } 3448 3449 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 3450 { 3451 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 3452 sec + LAN8814_BUFFER_TIME, 0); 3453 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 3454 sec + LAN8814_BUFFER_TIME, 0); 3455 } 3456 3457 static void lan8814_ptp_clock_step(struct phy_device *phydev, 3458 s64 time_step_ns) 3459 { 3460 u32 nano_seconds_step; 3461 u64 abs_time_step_ns; 3462 time64_t set_seconds; 3463 u32 nano_seconds; 3464 u32 remainder; 3465 s32 seconds; 3466 3467 if (time_step_ns > 15000000000LL) { 3468 /* convert to clock set */ 3469 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3470 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 3471 &remainder); 3472 nano_seconds += remainder; 3473 if (nano_seconds >= 1000000000) { 3474 set_seconds++; 3475 nano_seconds -= 1000000000; 3476 } 3477 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3478 lan8814_ptp_update_target(phydev, set_seconds); 3479 return; 3480 } else if (time_step_ns < -15000000000LL) { 3481 /* convert to clock set */ 3482 time_step_ns = -time_step_ns; 3483 3484 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3485 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 3486 &remainder); 3487 nano_seconds_step = remainder; 3488 if (nano_seconds < nano_seconds_step) { 3489 set_seconds--; 3490 nano_seconds += 1000000000; 3491 } 3492 nano_seconds -= nano_seconds_step; 3493 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3494 lan8814_ptp_update_target(phydev, set_seconds); 3495 return; 3496 } 3497 3498 /* do clock step */ 3499 if (time_step_ns >= 0) { 3500 abs_time_step_ns = (u64)time_step_ns; 3501 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3502 &remainder); 3503 nano_seconds = remainder; 3504 } else { 3505 abs_time_step_ns = (u64)(-time_step_ns); 3506 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3507 &remainder)); 3508 nano_seconds = remainder; 3509 if (nano_seconds > 0) { 3510 /* subtracting nano seconds is not allowed 3511 * convert to subtracting from seconds, 3512 * and adding to nanoseconds 3513 */ 3514 seconds--; 3515 nano_seconds = (1000000000 - nano_seconds); 3516 } 3517 } 3518 3519 if (nano_seconds > 0) { 3520 /* add 8 ns to cover the likely normal increment */ 3521 nano_seconds += 8; 3522 } 3523 3524 if (nano_seconds >= 1000000000) { 3525 /* carry into seconds */ 3526 seconds++; 3527 nano_seconds -= 1000000000; 3528 } 3529 3530 while (seconds) { 3531 u32 nsec; 3532 3533 if (seconds > 0) { 3534 u32 adjustment_value = (u32)seconds; 3535 u16 adjustment_value_lo, adjustment_value_hi; 3536 3537 if (adjustment_value > 0xF) 3538 adjustment_value = 0xF; 3539 3540 adjustment_value_lo = adjustment_value & 0xffff; 3541 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3542 3543 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3544 PTP_LTC_STEP_ADJ_LO, 3545 adjustment_value_lo); 3546 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3547 PTP_LTC_STEP_ADJ_HI, 3548 PTP_LTC_STEP_ADJ_DIR_ | 3549 adjustment_value_hi); 3550 seconds -= ((s32)adjustment_value); 3551 3552 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3553 set_seconds -= adjustment_value; 3554 lan8814_ptp_update_target(phydev, set_seconds); 3555 } else { 3556 u32 adjustment_value = (u32)(-seconds); 3557 u16 adjustment_value_lo, adjustment_value_hi; 3558 3559 if (adjustment_value > 0xF) 3560 adjustment_value = 0xF; 3561 3562 adjustment_value_lo = adjustment_value & 0xffff; 3563 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3564 3565 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3566 PTP_LTC_STEP_ADJ_LO, 3567 adjustment_value_lo); 3568 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3569 PTP_LTC_STEP_ADJ_HI, 3570 adjustment_value_hi); 3571 seconds += ((s32)adjustment_value); 3572 3573 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3574 set_seconds += adjustment_value; 3575 lan8814_ptp_update_target(phydev, set_seconds); 3576 } 3577 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3578 PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3579 } 3580 if (nano_seconds) { 3581 u16 nano_seconds_lo; 3582 u16 nano_seconds_hi; 3583 3584 nano_seconds_lo = nano_seconds & 0xffff; 3585 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3586 3587 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3588 PTP_LTC_STEP_ADJ_LO, 3589 nano_seconds_lo); 3590 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3591 PTP_LTC_STEP_ADJ_HI, 3592 PTP_LTC_STEP_ADJ_DIR_ | 3593 nano_seconds_hi); 3594 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3595 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3596 } 3597 } 3598 3599 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3600 { 3601 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3602 ptp_clock_info); 3603 struct phy_device *phydev = shared->phydev; 3604 3605 mutex_lock(&shared->shared_lock); 3606 lan8814_ptp_clock_step(phydev, delta); 3607 mutex_unlock(&shared->shared_lock); 3608 3609 return 0; 3610 } 3611 3612 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3613 { 3614 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3615 ptp_clock_info); 3616 struct phy_device *phydev = shared->phydev; 3617 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3618 bool positive = true; 3619 u32 kszphy_rate_adj; 3620 3621 if (scaled_ppm < 0) { 3622 scaled_ppm = -scaled_ppm; 3623 positive = false; 3624 } 3625 3626 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3627 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3628 3629 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3630 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3631 3632 if (positive) 3633 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3634 3635 mutex_lock(&shared->shared_lock); 3636 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI, 3637 kszphy_rate_adj_hi); 3638 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO, 3639 kszphy_rate_adj_lo); 3640 mutex_unlock(&shared->shared_lock); 3641 3642 return 0; 3643 } 3644 3645 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3646 s64 period_sec, u32 period_nsec) 3647 { 3648 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3649 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3650 lower_16_bits(period_sec)); 3651 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3652 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3653 upper_16_bits(period_sec)); 3654 3655 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3656 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3657 lower_16_bits(period_nsec)); 3658 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3659 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3660 upper_16_bits(period_nsec) & 0x3fff); 3661 } 3662 3663 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3664 int pulse_width) 3665 { 3666 /* Set the pulse width of the event, 3667 * Make sure that the target clock will be incremented each time when 3668 * local time reaches or pass it 3669 * Set the polarity high 3670 */ 3671 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3672 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) | 3673 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3674 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) | 3675 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event), 3676 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3677 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event)); 3678 } 3679 3680 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3681 { 3682 /* Set target to too far in the future, effectively disabling it */ 3683 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3684 3685 /* And then reload once it reaches the target */ 3686 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3687 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event), 3688 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3689 } 3690 3691 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3692 { 3693 /* Disable gpio alternate function, 3694 * 1: select as gpio, 3695 * 0: select alt func 3696 */ 3697 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3698 LAN8814_GPIO_EN_ADDR(pin), 3699 LAN8814_GPIO_EN_BIT(pin), 3700 LAN8814_GPIO_EN_BIT(pin)); 3701 3702 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3703 LAN8814_GPIO_DIR_ADDR(pin), 3704 LAN8814_GPIO_DIR_BIT(pin), 3705 0); 3706 3707 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3708 LAN8814_GPIO_BUF_ADDR(pin), 3709 LAN8814_GPIO_BUF_BIT(pin), 3710 0); 3711 } 3712 3713 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3714 { 3715 /* Set as gpio output */ 3716 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3717 LAN8814_GPIO_DIR_ADDR(pin), 3718 LAN8814_GPIO_DIR_BIT(pin), 3719 LAN8814_GPIO_DIR_BIT(pin)); 3720 3721 /* Enable gpio 0:for alternate function, 1:gpio */ 3722 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3723 LAN8814_GPIO_EN_ADDR(pin), 3724 LAN8814_GPIO_EN_BIT(pin), 3725 0); 3726 3727 /* Set buffer type to push pull */ 3728 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3729 LAN8814_GPIO_BUF_ADDR(pin), 3730 LAN8814_GPIO_BUF_BIT(pin), 3731 LAN8814_GPIO_BUF_BIT(pin)); 3732 } 3733 3734 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3735 struct ptp_clock_request *rq, int on) 3736 { 3737 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3738 ptp_clock_info); 3739 struct phy_device *phydev = shared->phydev; 3740 struct timespec64 ts_on, ts_period; 3741 s64 on_nsec, period_nsec; 3742 int pulse_width; 3743 int pin, event; 3744 3745 mutex_lock(&shared->shared_lock); 3746 event = rq->perout.index; 3747 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3748 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3749 mutex_unlock(&shared->shared_lock); 3750 return -EBUSY; 3751 } 3752 3753 if (!on) { 3754 lan8814_ptp_perout_off(phydev, pin); 3755 lan8814_ptp_disable_event(phydev, event); 3756 mutex_unlock(&shared->shared_lock); 3757 return 0; 3758 } 3759 3760 ts_on.tv_sec = rq->perout.on.sec; 3761 ts_on.tv_nsec = rq->perout.on.nsec; 3762 on_nsec = timespec64_to_ns(&ts_on); 3763 3764 ts_period.tv_sec = rq->perout.period.sec; 3765 ts_period.tv_nsec = rq->perout.period.nsec; 3766 period_nsec = timespec64_to_ns(&ts_period); 3767 3768 if (period_nsec < 200) { 3769 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3770 phydev_name(phydev)); 3771 mutex_unlock(&shared->shared_lock); 3772 return -EOPNOTSUPP; 3773 } 3774 3775 if (on_nsec >= period_nsec) { 3776 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3777 phydev_name(phydev)); 3778 mutex_unlock(&shared->shared_lock); 3779 return -EINVAL; 3780 } 3781 3782 switch (on_nsec) { 3783 case 200000000: 3784 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3785 break; 3786 case 100000000: 3787 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3788 break; 3789 case 50000000: 3790 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3791 break; 3792 case 10000000: 3793 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3794 break; 3795 case 5000000: 3796 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3797 break; 3798 case 1000000: 3799 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3800 break; 3801 case 500000: 3802 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3803 break; 3804 case 100000: 3805 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3806 break; 3807 case 50000: 3808 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3809 break; 3810 case 10000: 3811 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3812 break; 3813 case 5000: 3814 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3815 break; 3816 case 1000: 3817 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3818 break; 3819 case 500: 3820 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3821 break; 3822 case 100: 3823 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3824 break; 3825 default: 3826 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3827 phydev_name(phydev)); 3828 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3829 break; 3830 } 3831 3832 /* Configure to pulse every period */ 3833 lan8814_ptp_enable_event(phydev, event, pulse_width); 3834 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3835 rq->perout.start.nsec); 3836 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3837 rq->perout.period.nsec); 3838 lan8814_ptp_perout_on(phydev, pin); 3839 mutex_unlock(&shared->shared_lock); 3840 3841 return 0; 3842 } 3843 3844 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3845 { 3846 /* Set as gpio input */ 3847 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3848 LAN8814_GPIO_DIR_ADDR(pin), 3849 LAN8814_GPIO_DIR_BIT(pin), 3850 0); 3851 3852 /* Map the pin to ltc pin 0 of the capture map registers */ 3853 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3854 PTP_GPIO_CAP_MAP_LO, pin, pin); 3855 3856 /* Enable capture on the edges of the ltc pin */ 3857 if (flags & PTP_RISING_EDGE) 3858 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3859 PTP_GPIO_CAP_EN, 3860 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0), 3861 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0)); 3862 if (flags & PTP_FALLING_EDGE) 3863 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3864 PTP_GPIO_CAP_EN, 3865 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0), 3866 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0)); 3867 3868 /* Enable interrupt top interrupt */ 3869 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3870 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3871 PTP_COMMON_INT_ENA_GPIO_CAP_EN); 3872 } 3873 3874 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3875 { 3876 /* Set as gpio out */ 3877 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3878 LAN8814_GPIO_DIR_ADDR(pin), 3879 LAN8814_GPIO_DIR_BIT(pin), 3880 LAN8814_GPIO_DIR_BIT(pin)); 3881 3882 /* Enable alternate, 0:for alternate function, 1:gpio */ 3883 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3884 LAN8814_GPIO_EN_ADDR(pin), 3885 LAN8814_GPIO_EN_BIT(pin), 3886 0); 3887 3888 /* Clear the mapping of pin to registers 0 of the capture registers */ 3889 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3890 PTP_GPIO_CAP_MAP_LO, 3891 GENMASK(3, 0), 3892 0); 3893 3894 /* Disable capture on both of the edges */ 3895 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN, 3896 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 3897 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 3898 0); 3899 3900 /* Disable interrupt top interrupt */ 3901 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3902 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3903 0); 3904 } 3905 3906 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3907 struct ptp_clock_request *rq, int on) 3908 { 3909 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3910 ptp_clock_info); 3911 struct phy_device *phydev = shared->phydev; 3912 int pin; 3913 3914 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3915 rq->extts.index); 3916 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3917 return -EINVAL; 3918 3919 mutex_lock(&shared->shared_lock); 3920 if (on) 3921 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3922 else 3923 lan8814_ptp_extts_off(phydev, pin); 3924 3925 mutex_unlock(&shared->shared_lock); 3926 3927 return 0; 3928 } 3929 3930 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3931 struct ptp_clock_request *rq, int on) 3932 { 3933 switch (rq->type) { 3934 case PTP_CLK_REQ_PEROUT: 3935 return lan8814_ptp_perout(ptpci, rq, on); 3936 case PTP_CLK_REQ_EXTTS: 3937 return lan8814_ptp_extts(ptpci, rq, on); 3938 default: 3939 return -EINVAL; 3940 } 3941 } 3942 3943 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3944 enum ptp_pin_function func, unsigned int chan) 3945 { 3946 switch (func) { 3947 case PTP_PF_NONE: 3948 case PTP_PF_PEROUT: 3949 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3950 * there is only chan 0 (event A) and for pin 1 there is only 3951 * chan 1 (event B) 3952 */ 3953 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3954 return -1; 3955 break; 3956 case PTP_PF_EXTTS: 3957 if (pin != LAN8814_PTP_EXTTS_NUM) 3958 return -1; 3959 break; 3960 default: 3961 return -1; 3962 } 3963 3964 return 0; 3965 } 3966 3967 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3968 { 3969 struct ptp_header *ptp_header; 3970 u32 type; 3971 3972 type = ptp_classify_raw(skb); 3973 ptp_header = ptp_parse_header(skb, type); 3974 3975 if (!ptp_header) 3976 return false; 3977 3978 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3979 return true; 3980 } 3981 3982 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3983 u32 seconds, u32 nsec, u16 seq_id) 3984 { 3985 struct skb_shared_hwtstamps shhwtstamps; 3986 struct sk_buff *skb, *skb_tmp; 3987 unsigned long flags; 3988 bool ret = false; 3989 u16 skb_sig; 3990 3991 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3992 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3993 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3994 continue; 3995 3996 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3997 continue; 3998 3999 __skb_unlink(skb, &ptp_priv->tx_queue); 4000 ret = true; 4001 break; 4002 } 4003 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 4004 4005 if (ret) { 4006 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 4007 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 4008 skb_complete_tx_timestamp(skb, &shhwtstamps); 4009 } 4010 } 4011 4012 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 4013 { 4014 struct phy_device *phydev = ptp_priv->phydev; 4015 u32 seconds, nsec; 4016 u16 seq_id; 4017 4018 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 4019 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 4020 } 4021 4022 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4023 { 4024 struct phy_device *phydev = ptp_priv->phydev; 4025 u32 reg; 4026 4027 do { 4028 lan8814_dequeue_tx_skb(ptp_priv); 4029 4030 /* If other timestamps are available in the FIFO, 4031 * process them. 4032 */ 4033 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4034 PTP_CAP_INFO); 4035 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 4036 } 4037 4038 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 4039 struct lan8814_ptp_rx_ts *rx_ts) 4040 { 4041 struct skb_shared_hwtstamps *shhwtstamps; 4042 struct sk_buff *skb, *skb_tmp; 4043 unsigned long flags; 4044 bool ret = false; 4045 u16 skb_sig; 4046 4047 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 4048 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 4049 if (!lan8814_get_sig_rx(skb, &skb_sig)) 4050 continue; 4051 4052 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 4053 continue; 4054 4055 __skb_unlink(skb, &ptp_priv->rx_queue); 4056 4057 ret = true; 4058 break; 4059 } 4060 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 4061 4062 if (ret) { 4063 shhwtstamps = skb_hwtstamps(skb); 4064 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4065 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 4066 netif_rx(skb); 4067 } 4068 4069 return ret; 4070 } 4071 4072 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 4073 struct lan8814_ptp_rx_ts *rx_ts) 4074 { 4075 unsigned long flags; 4076 4077 /* If we failed to match the skb add it to the queue for when 4078 * the frame will come 4079 */ 4080 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 4081 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 4082 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 4083 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 4084 } else { 4085 kfree(rx_ts); 4086 } 4087 } 4088 4089 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 4090 { 4091 struct phy_device *phydev = ptp_priv->phydev; 4092 struct lan8814_ptp_rx_ts *rx_ts; 4093 u32 reg; 4094 4095 do { 4096 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 4097 if (!rx_ts) 4098 return; 4099 4100 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 4101 &rx_ts->seq_id); 4102 lan8814_match_rx_ts(ptp_priv, rx_ts); 4103 4104 /* If other timestamps are available in the FIFO, 4105 * process them. 4106 */ 4107 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4108 PTP_CAP_INFO); 4109 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 4110 } 4111 4112 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 4113 { 4114 struct kszphy_priv *priv = phydev->priv; 4115 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4116 4117 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 4118 lan8814_get_tx_ts(ptp_priv); 4119 4120 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 4121 lan8814_get_rx_ts(ptp_priv); 4122 4123 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 4124 lan8814_flush_fifo(phydev, true); 4125 skb_queue_purge(&ptp_priv->tx_queue); 4126 } 4127 4128 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 4129 lan8814_flush_fifo(phydev, false); 4130 skb_queue_purge(&ptp_priv->rx_queue); 4131 } 4132 } 4133 4134 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 4135 { 4136 struct phy_device *phydev = shared->phydev; 4137 struct ptp_clock_event ptp_event = {0}; 4138 unsigned long nsec; 4139 s64 sec; 4140 u16 tmp; 4141 4142 /* This is 0 because whatever was the input pin it was mapped it to 4143 * ltc gpio pin 0 4144 */ 4145 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL, 4146 PTP_GPIO_SEL_GPIO_SEL(0), 4147 PTP_GPIO_SEL_GPIO_SEL(0)); 4148 4149 tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4150 PTP_GPIO_CAP_STS); 4151 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 4152 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 4153 return -1; 4154 4155 if (tmp & BIT(0)) { 4156 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4157 PTP_GPIO_RE_LTC_SEC_HI_CAP); 4158 sec <<= 16; 4159 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4160 PTP_GPIO_RE_LTC_SEC_LO_CAP); 4161 4162 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4163 PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4164 nsec <<= 16; 4165 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4166 PTP_GPIO_RE_LTC_NS_LO_CAP); 4167 } else { 4168 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4169 PTP_GPIO_FE_LTC_SEC_HI_CAP); 4170 sec <<= 16; 4171 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4172 PTP_GPIO_FE_LTC_SEC_LO_CAP); 4173 4174 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4175 PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4176 nsec <<= 16; 4177 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4178 PTP_GPIO_RE_LTC_NS_LO_CAP); 4179 } 4180 4181 ptp_event.index = 0; 4182 ptp_event.timestamp = ktime_set(sec, nsec); 4183 ptp_event.type = PTP_CLOCK_EXTTS; 4184 ptp_clock_event(shared->ptp_clock, &ptp_event); 4185 4186 return 0; 4187 } 4188 4189 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 4190 { 4191 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4192 int ret; 4193 4194 mutex_lock(&shared->shared_lock); 4195 ret = lan8814_gpio_process_cap(shared); 4196 mutex_unlock(&shared->shared_lock); 4197 4198 return ret; 4199 } 4200 4201 static int lan8804_config_init(struct phy_device *phydev) 4202 { 4203 /* MDI-X setting for swap A,B transmit */ 4204 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP, 4205 LAN8804_ALIGN_TX_A_B_SWAP_MASK, 4206 LAN8804_ALIGN_TX_A_B_SWAP); 4207 4208 /* Make sure that the PHY will not stop generating the clock when the 4209 * link partner goes down 4210 */ 4211 lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL, 4212 LAN8814_CLOCK_MANAGEMENT, 0x27e); 4213 lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY); 4214 4215 return 0; 4216 } 4217 4218 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 4219 { 4220 int status; 4221 4222 status = phy_read(phydev, LAN8814_INTS); 4223 if (status < 0) { 4224 phy_error(phydev); 4225 return IRQ_NONE; 4226 } 4227 4228 if (status > 0) 4229 phy_trigger_machine(phydev); 4230 4231 return IRQ_HANDLED; 4232 } 4233 4234 #define LAN8804_OUTPUT_CONTROL 25 4235 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 4236 #define LAN8804_CONTROL 31 4237 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 4238 4239 static int lan8804_config_intr(struct phy_device *phydev) 4240 { 4241 int err; 4242 4243 /* This is an internal PHY of lan966x and is not possible to change the 4244 * polarity on the GIC found in lan966x, therefore change the polarity 4245 * of the interrupt in the PHY from being active low instead of active 4246 * high. 4247 */ 4248 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 4249 4250 /* By default interrupt buffer is open-drain in which case the interrupt 4251 * can be active only low. Therefore change the interrupt buffer to be 4252 * push-pull to be able to change interrupt polarity 4253 */ 4254 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 4255 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 4256 4257 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4258 err = phy_read(phydev, LAN8814_INTS); 4259 if (err < 0) 4260 return err; 4261 4262 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4263 if (err) 4264 return err; 4265 } else { 4266 err = phy_write(phydev, LAN8814_INTC, 0); 4267 if (err) 4268 return err; 4269 4270 err = phy_read(phydev, LAN8814_INTS); 4271 if (err < 0) 4272 return err; 4273 } 4274 4275 return 0; 4276 } 4277 4278 /* Check if the PHY has 1588 support. There are multiple skus of the PHY and 4279 * some of them support PTP while others don't support it. This function will 4280 * return true is the sku supports it, otherwise will return false. 4281 */ 4282 static bool lan8814_has_ptp(struct phy_device *phydev) 4283 { 4284 struct kszphy_priv *priv = phydev->priv; 4285 4286 return priv->is_ptp_available; 4287 } 4288 4289 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 4290 { 4291 int ret = IRQ_NONE; 4292 int irq_status; 4293 4294 irq_status = phy_read(phydev, LAN8814_INTS); 4295 if (irq_status < 0) { 4296 phy_error(phydev); 4297 return IRQ_NONE; 4298 } 4299 4300 if (irq_status & LAN8814_INT_LINK) { 4301 phy_trigger_machine(phydev); 4302 ret = IRQ_HANDLED; 4303 } 4304 4305 if (!lan8814_has_ptp(phydev)) 4306 return ret; 4307 4308 while (true) { 4309 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4310 PTP_TSU_INT_STS); 4311 if (!irq_status) 4312 break; 4313 4314 lan8814_handle_ptp_interrupt(phydev, irq_status); 4315 ret = IRQ_HANDLED; 4316 } 4317 4318 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 4319 ret = IRQ_HANDLED; 4320 4321 return ret; 4322 } 4323 4324 static int lan8814_ack_interrupt(struct phy_device *phydev) 4325 { 4326 /* bit[12..0] int status, which is a read and clear register. */ 4327 int rc; 4328 4329 rc = phy_read(phydev, LAN8814_INTS); 4330 4331 return (rc < 0) ? rc : 0; 4332 } 4333 4334 static int lan8814_config_intr(struct phy_device *phydev) 4335 { 4336 int err; 4337 4338 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG, 4339 LAN8814_INTR_CTRL_REG_POLARITY | 4340 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 4341 4342 /* enable / disable interrupts */ 4343 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4344 err = lan8814_ack_interrupt(phydev); 4345 if (err) 4346 return err; 4347 4348 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4349 } else { 4350 err = phy_write(phydev, LAN8814_INTC, 0); 4351 if (err) 4352 return err; 4353 4354 err = lan8814_ack_interrupt(phydev); 4355 } 4356 4357 return err; 4358 } 4359 4360 static void lan8814_ptp_init(struct phy_device *phydev) 4361 { 4362 struct kszphy_priv *priv = phydev->priv; 4363 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4364 4365 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 4366 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4367 return; 4368 4369 if (!lan8814_has_ptp(phydev)) 4370 return; 4371 4372 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4373 TSU_HARD_RESET, TSU_HARD_RESET_); 4374 4375 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD, 4376 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4377 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4378 4379 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD, 4380 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4381 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4382 4383 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4384 PTP_RX_PARSE_CONFIG, 0); 4385 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4386 PTP_TX_PARSE_CONFIG, 0); 4387 4388 /* Removing default registers configs related to L2 and IP */ 4389 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4390 PTP_TX_PARSE_L2_ADDR_EN, 0); 4391 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4392 PTP_RX_PARSE_L2_ADDR_EN, 0); 4393 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4394 PTP_TX_PARSE_IP_ADDR_EN, 0); 4395 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4396 PTP_RX_PARSE_IP_ADDR_EN, 0); 4397 4398 /* Disable checking for minorVersionPTP field */ 4399 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION, 4400 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4401 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION, 4402 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4403 4404 skb_queue_head_init(&ptp_priv->tx_queue); 4405 skb_queue_head_init(&ptp_priv->rx_queue); 4406 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 4407 spin_lock_init(&ptp_priv->rx_ts_lock); 4408 4409 ptp_priv->phydev = phydev; 4410 4411 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 4412 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4413 ptp_priv->mii_ts.hwtstamp_set = lan8814_hwtstamp_set; 4414 ptp_priv->mii_ts.hwtstamp_get = lan8814_hwtstamp_get; 4415 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 4416 4417 phydev->mii_ts = &ptp_priv->mii_ts; 4418 4419 /* Timestamp selected by default to keep legacy API */ 4420 phydev->default_timestamp = true; 4421 } 4422 4423 static int __lan8814_ptp_probe_once(struct phy_device *phydev, char *pin_name, 4424 int gpios) 4425 { 4426 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4427 4428 shared->phydev = phydev; 4429 4430 /* Initialise shared lock for clock*/ 4431 mutex_init(&shared->shared_lock); 4432 4433 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 4434 gpios, 4435 sizeof(*shared->pin_config), 4436 GFP_KERNEL); 4437 if (!shared->pin_config) 4438 return -ENOMEM; 4439 4440 for (int i = 0; i < gpios; i++) { 4441 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 4442 4443 memset(ptp_pin, 0, sizeof(*ptp_pin)); 4444 snprintf(ptp_pin->name, 4445 sizeof(ptp_pin->name), "%s_%02d", pin_name, i); 4446 ptp_pin->index = i; 4447 ptp_pin->func = PTP_PF_NONE; 4448 } 4449 4450 shared->ptp_clock_info.owner = THIS_MODULE; 4451 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 4452 shared->ptp_clock_info.max_adj = 31249999; 4453 shared->ptp_clock_info.n_alarm = 0; 4454 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 4455 shared->ptp_clock_info.n_pins = gpios; 4456 shared->ptp_clock_info.pps = 0; 4457 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 4458 PTP_FALLING_EDGE | 4459 PTP_STRICT_FLAGS; 4460 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 4461 shared->ptp_clock_info.pin_config = shared->pin_config; 4462 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 4463 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 4464 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 4465 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 4466 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 4467 shared->ptp_clock_info.getcrosststamp = NULL; 4468 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 4469 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 4470 4471 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 4472 &phydev->mdio.dev); 4473 if (IS_ERR(shared->ptp_clock)) { 4474 phydev_err(phydev, "ptp_clock_register failed %pe\n", 4475 shared->ptp_clock); 4476 return -EINVAL; 4477 } 4478 4479 /* Check if PHC support is missing at the configuration level */ 4480 if (!shared->ptp_clock) 4481 return 0; 4482 4483 phydev_dbg(phydev, "successfully registered ptp clock\n"); 4484 4485 /* The EP.4 is shared between all the PHYs in the package and also it 4486 * can be accessed by any of the PHYs 4487 */ 4488 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4489 LTC_HARD_RESET, LTC_HARD_RESET_); 4490 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE, 4491 PTP_OPERATING_MODE_STANDALONE_); 4492 4493 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 4494 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 4495 PTP_CMD_CTL_PTP_ENABLE_); 4496 4497 return 0; 4498 } 4499 4500 static int lan8814_ptp_probe_once(struct phy_device *phydev) 4501 { 4502 if (!lan8814_has_ptp(phydev)) 4503 return 0; 4504 4505 return __lan8814_ptp_probe_once(phydev, "lan8814_ptp_pin", 4506 LAN8814_PTP_GPIO_NUM); 4507 } 4508 4509 static void lan8814_setup_led(struct phy_device *phydev, int val) 4510 { 4511 int temp; 4512 4513 temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4514 LAN8814_LED_CTRL_1); 4515 4516 if (val) 4517 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4518 else 4519 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4520 4521 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4522 LAN8814_LED_CTRL_1, temp); 4523 } 4524 4525 static int lan8814_config_init(struct phy_device *phydev) 4526 { 4527 struct kszphy_priv *lan8814 = phydev->priv; 4528 int ret; 4529 4530 /* Based on the interface type select how the advertise ability is 4531 * encoded, to set as SGMII or as USGMII. 4532 */ 4533 if (phydev->interface == PHY_INTERFACE_MODE_QSGMII) 4534 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4535 LAN8814_QSGMII_TX_CONFIG, 4536 LAN8814_QSGMII_TX_CONFIG_QSGMII, 4537 LAN8814_QSGMII_TX_CONFIG_QSGMII); 4538 else 4539 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4540 LAN8814_QSGMII_TX_CONFIG, 4541 LAN8814_QSGMII_TX_CONFIG_QSGMII, 4542 0); 4543 4544 if (ret < 0) 4545 return ret; 4546 4547 /* MDI-X setting for swap A,B transmit */ 4548 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP, 4549 LAN8814_ALIGN_TX_A_B_SWAP_MASK, 4550 LAN8814_ALIGN_TX_A_B_SWAP); 4551 4552 if (lan8814->led_mode >= 0) 4553 lan8814_setup_led(phydev, lan8814->led_mode); 4554 4555 return 0; 4556 } 4557 4558 /* It is expected that there will not be any 'lan8814_take_coma_mode' 4559 * function called in suspend. Because the GPIO line can be shared, so if one of 4560 * the phys goes back in coma mode, then all the other PHYs will go, which is 4561 * wrong. 4562 */ 4563 static int lan8814_release_coma_mode(struct phy_device *phydev) 4564 { 4565 struct gpio_desc *gpiod; 4566 4567 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4568 GPIOD_OUT_HIGH_OPEN_DRAIN | 4569 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4570 if (IS_ERR(gpiod)) 4571 return PTR_ERR(gpiod); 4572 4573 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4574 gpiod_set_value_cansleep(gpiod, 0); 4575 4576 return 0; 4577 } 4578 4579 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4580 { 4581 /* It was noticed that when traffic is passing through the PHY and the 4582 * cable is removed then the LED was still on even though there is no 4583 * link 4584 */ 4585 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE, 4586 LAN8814_EEE_STATE_MASK2P5P, 4587 0); 4588 } 4589 4590 static void lan8814_update_meas_time(struct phy_device *phydev) 4591 { 4592 /* By setting the measure time to a value of 0xb this will allow cables 4593 * longer than 100m to be used. This configuration can be used 4594 * regardless of the mode of operation of the PHY 4595 */ 4596 lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS, 4597 LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK, 4598 LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL); 4599 } 4600 4601 static int lan8814_probe(struct phy_device *phydev) 4602 { 4603 const struct kszphy_type *type = phydev->drv->driver_data; 4604 struct kszphy_priv *priv; 4605 u16 addr; 4606 int err; 4607 4608 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4609 if (!priv) 4610 return -ENOMEM; 4611 4612 phydev->priv = priv; 4613 4614 priv->type = type; 4615 4616 kszphy_parse_led_mode(phydev); 4617 4618 /* Strap-in value for PHY address, below register read gives starting 4619 * phy address value 4620 */ 4621 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F; 4622 devm_phy_package_join(&phydev->mdio.dev, phydev, 4623 addr, sizeof(struct lan8814_shared_priv)); 4624 4625 /* There are lan8814 SKUs that don't support PTP. Make sure that for 4626 * those skus no PTP device is created. Here we check if the SKU 4627 * supports PTP. 4628 */ 4629 err = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4630 LAN8814_SKUS); 4631 if (err < 0) 4632 return err; 4633 4634 priv->is_ptp_available = err == LAN8814_REV_LAN8814 || 4635 err == LAN8814_REV_LAN8818; 4636 4637 if (phy_package_init_once(phydev)) { 4638 /* Reset the PHY */ 4639 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4640 LAN8814_QSGMII_SOFT_RESET, 4641 LAN8814_QSGMII_SOFT_RESET_BIT, 4642 LAN8814_QSGMII_SOFT_RESET_BIT); 4643 4644 err = lan8814_release_coma_mode(phydev); 4645 if (err) 4646 return err; 4647 4648 err = lan8814_ptp_probe_once(phydev); 4649 if (err) 4650 return err; 4651 } 4652 4653 lan8814_ptp_init(phydev); 4654 4655 /* Errata workarounds */ 4656 lan8814_clear_2psp_bit(phydev); 4657 lan8814_update_meas_time(phydev); 4658 4659 return 0; 4660 } 4661 4662 #define LAN8841_MMD_TIMER_REG 0 4663 #define LAN8841_MMD0_REGISTER_17 17 4664 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4665 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4666 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4667 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4668 #define LAN8841_MMD_ANALOG_REG 28 4669 #define LAN8841_ANALOG_CONTROL_1 1 4670 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4671 #define LAN8841_ANALOG_CONTROL_10 13 4672 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4673 #define LAN8841_ANALOG_CONTROL_11 14 4674 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4675 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4676 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4677 #define LAN8841_BTRX_POWER_DOWN 70 4678 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4679 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4680 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4681 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4682 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4683 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4684 #define LAN8841_ADC_CHANNEL_MASK 198 4685 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4686 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4687 #define LAN8841_PTP_RX_VERSION 374 4688 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4689 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4690 #define LAN8841_PTP_TX_VERSION 438 4691 #define LAN8841_PTP_CMD_CTL 256 4692 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4693 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4694 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4695 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4696 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4697 #define LAN8841_PTP_RX_MODE 381 4698 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4699 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4700 4701 static int lan8841_config_init(struct phy_device *phydev) 4702 { 4703 int ret; 4704 4705 ret = ksz9131_config_init(phydev); 4706 if (ret) 4707 return ret; 4708 4709 /* Initialize the HW by resetting everything */ 4710 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4711 LAN8841_PTP_CMD_CTL, 4712 LAN8841_PTP_CMD_CTL_PTP_RESET, 4713 LAN8841_PTP_CMD_CTL_PTP_RESET); 4714 4715 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4716 LAN8841_PTP_CMD_CTL, 4717 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4718 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4719 4720 /* Don't process any frames */ 4721 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4722 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4723 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4724 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4725 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4726 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4727 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4728 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4729 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4730 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4731 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4732 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4733 4734 /* Disable checking for minorVersionPTP field */ 4735 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4736 LAN8841_PTP_RX_VERSION, 0xff00); 4737 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4738 LAN8841_PTP_TX_VERSION, 0xff00); 4739 4740 /* 100BT Clause 40 improvement errata */ 4741 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4742 LAN8841_ANALOG_CONTROL_1, 4743 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4744 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4745 LAN8841_ANALOG_CONTROL_10, 4746 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4747 4748 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4749 * Magnetics 4750 */ 4751 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4752 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4753 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4754 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4755 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4756 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4757 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4758 LAN8841_BTRX_POWER_DOWN, 4759 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4760 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4761 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4762 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4763 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4764 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4765 } 4766 4767 /* LDO Adjustment errata */ 4768 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4769 LAN8841_ANALOG_CONTROL_11, 4770 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4771 4772 /* 100BT RGMII latency tuning errata */ 4773 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4774 LAN8841_ADC_CHANNEL_MASK, 0x0); 4775 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4776 LAN8841_MMD0_REGISTER_17, 4777 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4778 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4779 4780 return 0; 4781 } 4782 4783 #define LAN8841_OUTPUT_CTRL 25 4784 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4785 #define LAN8841_INT_PTP BIT(9) 4786 4787 static int lan8841_config_intr(struct phy_device *phydev) 4788 { 4789 int err; 4790 4791 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4792 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4793 4794 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4795 err = phy_read(phydev, LAN8814_INTS); 4796 if (err < 0) 4797 return err; 4798 4799 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4800 * even if it PTP is not enabled. Because the underneath blocks 4801 * will not enable the PTP so we will never get the PTP 4802 * interrupt. 4803 */ 4804 err = phy_write(phydev, LAN8814_INTC, 4805 LAN8814_INT_LINK | LAN8841_INT_PTP); 4806 } else { 4807 err = phy_write(phydev, LAN8814_INTC, 0); 4808 if (err) 4809 return err; 4810 4811 err = phy_read(phydev, LAN8814_INTS); 4812 if (err < 0) 4813 return err; 4814 4815 /* Getting a positive value doesn't mean that is an error, it 4816 * just indicates what was the status. Therefore make sure to 4817 * clear the value and say that there is no error. 4818 */ 4819 err = 0; 4820 } 4821 4822 return err; 4823 } 4824 4825 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4826 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4827 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4828 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4829 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4830 #define LAN8841_PTP_TX_MSG_HEADER2 455 4831 4832 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4833 u32 *sec, u32 *nsec, u16 *seq) 4834 { 4835 struct phy_device *phydev = ptp_priv->phydev; 4836 4837 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4838 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4839 return false; 4840 4841 *nsec = ((*nsec & 0x3fff) << 16); 4842 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4843 4844 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4845 *sec = *sec << 16; 4846 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4847 4848 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4849 4850 return true; 4851 } 4852 4853 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4854 { 4855 u32 sec, nsec; 4856 u16 seq; 4857 4858 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4859 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4860 } 4861 4862 #define LAN8841_PTP_INT_STS 259 4863 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4864 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4865 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4866 4867 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4868 { 4869 struct phy_device *phydev = ptp_priv->phydev; 4870 int i; 4871 4872 for (i = 0; i < FIFO_SIZE; ++i) 4873 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4874 4875 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4876 } 4877 4878 #define LAN8841_PTP_GPIO_CAP_STS 506 4879 #define LAN8841_PTP_GPIO_SEL 327 4880 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4881 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4882 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4883 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4884 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4885 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4886 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4887 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4888 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4889 4890 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4891 { 4892 struct phy_device *phydev = ptp_priv->phydev; 4893 struct ptp_clock_event ptp_event = {0}; 4894 int pin, ret, tmp; 4895 s32 sec, nsec; 4896 4897 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4898 if (pin == -1) 4899 return; 4900 4901 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4902 if (tmp < 0) 4903 return; 4904 4905 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4906 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4907 if (ret) 4908 return; 4909 4910 mutex_lock(&ptp_priv->ptp_lock); 4911 if (tmp & BIT(pin)) { 4912 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4913 sec <<= 16; 4914 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4915 4916 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4917 nsec <<= 16; 4918 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4919 } else { 4920 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4921 sec <<= 16; 4922 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4923 4924 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4925 nsec <<= 16; 4926 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4927 } 4928 mutex_unlock(&ptp_priv->ptp_lock); 4929 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4930 if (ret) 4931 return; 4932 4933 ptp_event.index = 0; 4934 ptp_event.timestamp = ktime_set(sec, nsec); 4935 ptp_event.type = PTP_CLOCK_EXTTS; 4936 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4937 } 4938 4939 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4940 { 4941 struct kszphy_priv *priv = phydev->priv; 4942 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4943 u16 status; 4944 4945 do { 4946 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4947 4948 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4949 lan8841_ptp_process_tx_ts(ptp_priv); 4950 4951 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4952 lan8841_gpio_process_cap(ptp_priv); 4953 4954 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4955 lan8841_ptp_flush_fifo(ptp_priv); 4956 skb_queue_purge(&ptp_priv->tx_queue); 4957 } 4958 4959 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4960 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4961 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4962 } 4963 4964 #define LAN8841_INTS_PTP BIT(9) 4965 4966 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4967 { 4968 irqreturn_t ret = IRQ_NONE; 4969 int irq_status; 4970 4971 irq_status = phy_read(phydev, LAN8814_INTS); 4972 if (irq_status < 0) { 4973 phy_error(phydev); 4974 return IRQ_NONE; 4975 } 4976 4977 if (irq_status & LAN8814_INT_LINK) { 4978 phy_trigger_machine(phydev); 4979 ret = IRQ_HANDLED; 4980 } 4981 4982 if (irq_status & LAN8841_INTS_PTP) { 4983 lan8841_handle_ptp_interrupt(phydev); 4984 ret = IRQ_HANDLED; 4985 } 4986 4987 return ret; 4988 } 4989 4990 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4991 struct kernel_ethtool_ts_info *info) 4992 { 4993 struct kszphy_ptp_priv *ptp_priv; 4994 4995 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4996 4997 info->phc_index = ptp_priv->ptp_clock ? 4998 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4999 if (info->phc_index == -1) 5000 return 0; 5001 5002 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 5003 SOF_TIMESTAMPING_RX_HARDWARE | 5004 SOF_TIMESTAMPING_RAW_HARDWARE; 5005 5006 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 5007 (1 << HWTSTAMP_TX_ON) | 5008 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 5009 5010 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 5011 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 5012 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 5013 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 5014 5015 return 0; 5016 } 5017 5018 #define LAN8841_PTP_INT_EN 260 5019 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 5020 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 5021 5022 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 5023 bool enable) 5024 { 5025 struct phy_device *phydev = ptp_priv->phydev; 5026 5027 if (enable) { 5028 /* Enable interrupts on the TX side */ 5029 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5030 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 5031 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 5032 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 5033 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 5034 5035 /* Enable the modification of the frame on RX side, 5036 * this will add the ns and 2 bits of sec in the reserved field 5037 * of the PTP header 5038 */ 5039 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5040 LAN8841_PTP_RX_MODE, 5041 LAN8841_PTP_INSERT_TS_EN | 5042 LAN8841_PTP_INSERT_TS_32BIT, 5043 LAN8841_PTP_INSERT_TS_EN | 5044 LAN8841_PTP_INSERT_TS_32BIT); 5045 5046 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 5047 } else { 5048 /* Disable interrupts on the TX side */ 5049 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5050 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 5051 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 5052 5053 /* Disable modification of the RX frames */ 5054 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5055 LAN8841_PTP_RX_MODE, 5056 LAN8841_PTP_INSERT_TS_EN | 5057 LAN8841_PTP_INSERT_TS_32BIT, 0); 5058 5059 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5060 } 5061 } 5062 5063 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 5064 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 5065 #define LAN8841_PTP_TX_MOD 445 5066 5067 static int lan8841_hwtstamp_set(struct mii_timestamper *mii_ts, 5068 struct kernel_hwtstamp_config *config, 5069 struct netlink_ext_ack *extack) 5070 { 5071 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 5072 struct phy_device *phydev = ptp_priv->phydev; 5073 int txcfg = 0, rxcfg = 0; 5074 int pkt_ts_enable; 5075 5076 switch (config->rx_filter) { 5077 case HWTSTAMP_FILTER_NONE: 5078 ptp_priv->layer = 0; 5079 ptp_priv->version = 0; 5080 break; 5081 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 5082 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 5083 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 5084 ptp_priv->layer = PTP_CLASS_L4; 5085 ptp_priv->version = PTP_CLASS_V2; 5086 break; 5087 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 5088 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 5089 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 5090 ptp_priv->layer = PTP_CLASS_L2; 5091 ptp_priv->version = PTP_CLASS_V2; 5092 break; 5093 case HWTSTAMP_FILTER_PTP_V2_EVENT: 5094 case HWTSTAMP_FILTER_PTP_V2_SYNC: 5095 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 5096 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 5097 ptp_priv->version = PTP_CLASS_V2; 5098 break; 5099 default: 5100 return -ERANGE; 5101 } 5102 5103 switch (config->tx_type) { 5104 case HWTSTAMP_TX_OFF: 5105 case HWTSTAMP_TX_ON: 5106 case HWTSTAMP_TX_ONESTEP_SYNC: 5107 break; 5108 default: 5109 return -ERANGE; 5110 } 5111 5112 ptp_priv->hwts_tx_type = config->tx_type; 5113 ptp_priv->rx_filter = config->rx_filter; 5114 5115 /* Setup parsing of the frames and enable the timestamping for ptp 5116 * frames 5117 */ 5118 if (ptp_priv->layer & PTP_CLASS_L2) { 5119 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 5120 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 5121 } else if (ptp_priv->layer & PTP_CLASS_L4) { 5122 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 5123 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 5124 } 5125 5126 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 5127 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 5128 5129 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 5130 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 5131 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 5132 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 5133 5134 /* Enable / disable of the TX timestamp in the SYNC frames */ 5135 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 5136 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 5137 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 5138 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 5139 5140 /* Now enable/disable the timestamping */ 5141 lan8841_ptp_enable_processing(ptp_priv, 5142 config->rx_filter != HWTSTAMP_FILTER_NONE); 5143 5144 skb_queue_purge(&ptp_priv->tx_queue); 5145 5146 lan8841_ptp_flush_fifo(ptp_priv); 5147 5148 return 0; 5149 } 5150 5151 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 5152 struct sk_buff *skb, int type) 5153 { 5154 struct kszphy_ptp_priv *ptp_priv = 5155 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 5156 struct ptp_header *header = ptp_parse_header(skb, type); 5157 struct skb_shared_hwtstamps *shhwtstamps; 5158 struct timespec64 ts; 5159 unsigned long flags; 5160 u32 ts_header; 5161 5162 if (!header) 5163 return false; 5164 5165 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 5166 type == PTP_CLASS_NONE) 5167 return false; 5168 5169 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 5170 return false; 5171 5172 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5173 ts.tv_sec = ptp_priv->seconds; 5174 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5175 ts_header = __be32_to_cpu(header->reserved2); 5176 5177 shhwtstamps = skb_hwtstamps(skb); 5178 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 5179 5180 /* Check for any wrap arounds for the second part */ 5181 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 5182 ts.tv_sec -= GENMASK(1, 0) + 1; 5183 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 5184 ts.tv_sec += 1; 5185 5186 shhwtstamps->hwtstamp = 5187 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 5188 ts_header & GENMASK(29, 0)); 5189 header->reserved2 = 0; 5190 5191 netif_rx(skb); 5192 5193 return true; 5194 } 5195 5196 #define LAN8841_EVENT_A 0 5197 #define LAN8841_EVENT_B 1 5198 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 5199 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 5200 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 5201 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 5202 5203 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 5204 s64 sec, u32 nsec) 5205 { 5206 struct phy_device *phydev = ptp_priv->phydev; 5207 int ret; 5208 5209 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 5210 upper_16_bits(sec)); 5211 if (ret) 5212 return ret; 5213 5214 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 5215 lower_16_bits(sec)); 5216 if (ret) 5217 return ret; 5218 5219 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 5220 upper_16_bits(nsec)); 5221 if (ret) 5222 return ret; 5223 5224 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 5225 lower_16_bits(nsec)); 5226 } 5227 5228 #define LAN8841_BUFFER_TIME 2 5229 5230 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 5231 const struct timespec64 *ts) 5232 { 5233 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 5234 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 5235 } 5236 5237 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 5238 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 5239 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 5240 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 5241 5242 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 5243 s64 sec, u32 nsec) 5244 { 5245 struct phy_device *phydev = ptp_priv->phydev; 5246 int ret; 5247 5248 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 5249 upper_16_bits(sec)); 5250 if (ret) 5251 return ret; 5252 5253 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 5254 lower_16_bits(sec)); 5255 if (ret) 5256 return ret; 5257 5258 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 5259 upper_16_bits(nsec)); 5260 if (ret) 5261 return ret; 5262 5263 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 5264 lower_16_bits(nsec)); 5265 } 5266 5267 #define LAN8841_PTP_LTC_SET_SEC_HI 262 5268 #define LAN8841_PTP_LTC_SET_SEC_MID 263 5269 #define LAN8841_PTP_LTC_SET_SEC_LO 264 5270 #define LAN8841_PTP_LTC_SET_NS_HI 265 5271 #define LAN8841_PTP_LTC_SET_NS_LO 266 5272 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 5273 5274 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 5275 const struct timespec64 *ts) 5276 { 5277 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5278 ptp_clock_info); 5279 struct phy_device *phydev = ptp_priv->phydev; 5280 unsigned long flags; 5281 int ret; 5282 5283 /* Set the value to be stored */ 5284 mutex_lock(&ptp_priv->ptp_lock); 5285 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 5286 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 5287 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 5288 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 5289 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 5290 5291 /* Set the command to load the LTC */ 5292 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5293 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 5294 ret = lan8841_ptp_update_target(ptp_priv, ts); 5295 mutex_unlock(&ptp_priv->ptp_lock); 5296 5297 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5298 ptp_priv->seconds = ts->tv_sec; 5299 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5300 5301 return ret; 5302 } 5303 5304 #define LAN8841_PTP_LTC_RD_SEC_HI 358 5305 #define LAN8841_PTP_LTC_RD_SEC_MID 359 5306 #define LAN8841_PTP_LTC_RD_SEC_LO 360 5307 #define LAN8841_PTP_LTC_RD_NS_HI 361 5308 #define LAN8841_PTP_LTC_RD_NS_LO 362 5309 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 5310 5311 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 5312 struct timespec64 *ts) 5313 { 5314 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5315 ptp_clock_info); 5316 struct phy_device *phydev = ptp_priv->phydev; 5317 time64_t s; 5318 s64 ns; 5319 5320 mutex_lock(&ptp_priv->ptp_lock); 5321 /* Issue the command to read the LTC */ 5322 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5323 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5324 5325 /* Read the LTC */ 5326 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5327 s <<= 16; 5328 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5329 s <<= 16; 5330 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5331 5332 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 5333 ns <<= 16; 5334 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 5335 mutex_unlock(&ptp_priv->ptp_lock); 5336 5337 set_normalized_timespec64(ts, s, ns); 5338 return 0; 5339 } 5340 5341 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 5342 struct timespec64 *ts) 5343 { 5344 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5345 ptp_clock_info); 5346 struct phy_device *phydev = ptp_priv->phydev; 5347 time64_t s; 5348 5349 mutex_lock(&ptp_priv->ptp_lock); 5350 /* Issue the command to read the LTC */ 5351 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5352 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5353 5354 /* Read the LTC */ 5355 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5356 s <<= 16; 5357 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5358 s <<= 16; 5359 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5360 mutex_unlock(&ptp_priv->ptp_lock); 5361 5362 set_normalized_timespec64(ts, s, 0); 5363 } 5364 5365 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 5366 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 5367 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 5368 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 5369 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 5370 5371 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 5372 { 5373 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5374 ptp_clock_info); 5375 struct phy_device *phydev = ptp_priv->phydev; 5376 struct timespec64 ts; 5377 bool add = true; 5378 u32 nsec; 5379 s32 sec; 5380 int ret; 5381 5382 /* The HW allows up to 15 sec to adjust the time, but here we limit to 5383 * 10 sec the adjustment. The reason is, in case the adjustment is 14 5384 * sec and 999999999 nsec, then we add 8ns to compansate the actual 5385 * increment so the value can be bigger than 15 sec. Therefore limit the 5386 * possible adjustments so we will not have these corner cases 5387 */ 5388 if (delta > 10000000000LL || delta < -10000000000LL) { 5389 /* The timeadjustment is too big, so fall back using set time */ 5390 u64 now; 5391 5392 ptp->gettime64(ptp, &ts); 5393 5394 now = ktime_to_ns(timespec64_to_ktime(ts)); 5395 ts = ns_to_timespec64(now + delta); 5396 5397 ptp->settime64(ptp, &ts); 5398 return 0; 5399 } 5400 5401 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 5402 if (delta < 0 && nsec != 0) { 5403 /* It is not allowed to adjust low the nsec part, therefore 5404 * subtract more from second part and add to nanosecond such 5405 * that would roll over, so the second part will increase 5406 */ 5407 sec--; 5408 nsec = NSEC_PER_SEC - nsec; 5409 } 5410 5411 /* Calculate the adjustments and the direction */ 5412 if (delta < 0) 5413 add = false; 5414 5415 if (nsec > 0) 5416 /* add 8 ns to cover the likely normal increment */ 5417 nsec += 8; 5418 5419 if (nsec >= NSEC_PER_SEC) { 5420 /* carry into seconds */ 5421 sec++; 5422 nsec -= NSEC_PER_SEC; 5423 } 5424 5425 mutex_lock(&ptp_priv->ptp_lock); 5426 if (sec) { 5427 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 5428 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5429 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 5430 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5431 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 5432 } 5433 5434 if (nsec) { 5435 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 5436 nsec & 0xffff); 5437 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5438 (nsec >> 16) & 0x3fff); 5439 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5440 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 5441 } 5442 mutex_unlock(&ptp_priv->ptp_lock); 5443 5444 /* Update the target clock */ 5445 ptp->gettime64(ptp, &ts); 5446 mutex_lock(&ptp_priv->ptp_lock); 5447 ret = lan8841_ptp_update_target(ptp_priv, &ts); 5448 mutex_unlock(&ptp_priv->ptp_lock); 5449 5450 return ret; 5451 } 5452 5453 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 5454 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 5455 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 5456 5457 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 5458 { 5459 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5460 ptp_clock_info); 5461 struct phy_device *phydev = ptp_priv->phydev; 5462 bool faster = true; 5463 u32 rate; 5464 5465 if (!scaled_ppm) 5466 return 0; 5467 5468 if (scaled_ppm < 0) { 5469 scaled_ppm = -scaled_ppm; 5470 faster = false; 5471 } 5472 5473 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 5474 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 5475 5476 mutex_lock(&ptp_priv->ptp_lock); 5477 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 5478 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 5479 : upper_16_bits(rate) & 0x3fff); 5480 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 5481 mutex_unlock(&ptp_priv->ptp_lock); 5482 5483 return 0; 5484 } 5485 5486 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 5487 enum ptp_pin_function func, unsigned int chan) 5488 { 5489 switch (func) { 5490 case PTP_PF_NONE: 5491 case PTP_PF_PEROUT: 5492 case PTP_PF_EXTTS: 5493 break; 5494 default: 5495 return -1; 5496 } 5497 5498 return 0; 5499 } 5500 5501 #define LAN8841_PTP_GPIO_NUM 10 5502 #define LAN8841_GPIO_EN 128 5503 #define LAN8841_GPIO_DIR 129 5504 #define LAN8841_GPIO_BUF 130 5505 5506 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5507 { 5508 struct phy_device *phydev = ptp_priv->phydev; 5509 int ret; 5510 5511 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5512 if (ret) 5513 return ret; 5514 5515 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5516 if (ret) 5517 return ret; 5518 5519 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5520 } 5521 5522 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 5523 { 5524 struct phy_device *phydev = ptp_priv->phydev; 5525 int ret; 5526 5527 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5528 if (ret) 5529 return ret; 5530 5531 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5532 if (ret) 5533 return ret; 5534 5535 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5536 } 5537 5538 #define LAN8841_GPIO_DATA_SEL1 131 5539 #define LAN8841_GPIO_DATA_SEL2 132 5540 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 5541 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 5542 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 5543 #define LAN8841_PTP_GENERAL_CONFIG 257 5544 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 5545 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 5546 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 5547 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 5548 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 5549 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 5550 5551 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5552 u8 event) 5553 { 5554 struct phy_device *phydev = ptp_priv->phydev; 5555 u16 tmp; 5556 int ret; 5557 5558 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 5559 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5560 * depending on the pin, it requires to read a different register 5561 */ 5562 if (pin < 5) { 5563 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 5564 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 5565 } else { 5566 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 5567 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 5568 } 5569 if (ret) 5570 return ret; 5571 5572 /* Disable the event */ 5573 if (event == LAN8841_EVENT_A) 5574 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5575 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 5576 else 5577 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5578 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 5579 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5580 } 5581 5582 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5583 u8 event, int pulse_width) 5584 { 5585 struct phy_device *phydev = ptp_priv->phydev; 5586 u16 tmp; 5587 int ret; 5588 5589 /* Enable the event */ 5590 if (event == LAN8841_EVENT_A) 5591 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5592 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5593 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5594 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5595 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5596 else 5597 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5598 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5599 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5600 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5601 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5602 if (ret) 5603 return ret; 5604 5605 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5606 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5607 * depending on the pin, it requires to read a different register 5608 */ 5609 if (event == LAN8841_EVENT_A) 5610 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5611 else 5612 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5613 5614 if (pin < 5) 5615 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5616 tmp << (3 * pin)); 5617 else 5618 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5619 tmp << (3 * (pin - 5))); 5620 5621 return ret; 5622 } 5623 5624 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5625 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5626 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5627 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5628 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5629 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5630 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5631 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5632 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5633 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5634 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5635 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5636 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5637 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5638 5639 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5640 struct ptp_clock_request *rq, int on) 5641 { 5642 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5643 ptp_clock_info); 5644 struct phy_device *phydev = ptp_priv->phydev; 5645 struct timespec64 ts_on, ts_period; 5646 s64 on_nsec, period_nsec; 5647 int pulse_width; 5648 int pin; 5649 int ret; 5650 5651 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5652 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5653 return -EINVAL; 5654 5655 if (!on) { 5656 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5657 if (ret) 5658 return ret; 5659 5660 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5661 } 5662 5663 ts_on.tv_sec = rq->perout.on.sec; 5664 ts_on.tv_nsec = rq->perout.on.nsec; 5665 on_nsec = timespec64_to_ns(&ts_on); 5666 5667 ts_period.tv_sec = rq->perout.period.sec; 5668 ts_period.tv_nsec = rq->perout.period.nsec; 5669 period_nsec = timespec64_to_ns(&ts_period); 5670 5671 if (period_nsec < 200) { 5672 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5673 phydev_name(phydev)); 5674 return -EOPNOTSUPP; 5675 } 5676 5677 if (on_nsec >= period_nsec) { 5678 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5679 phydev_name(phydev)); 5680 return -EINVAL; 5681 } 5682 5683 switch (on_nsec) { 5684 case 200000000: 5685 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5686 break; 5687 case 100000000: 5688 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5689 break; 5690 case 50000000: 5691 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5692 break; 5693 case 10000000: 5694 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5695 break; 5696 case 5000000: 5697 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5698 break; 5699 case 1000000: 5700 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5701 break; 5702 case 500000: 5703 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5704 break; 5705 case 100000: 5706 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5707 break; 5708 case 50000: 5709 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5710 break; 5711 case 10000: 5712 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5713 break; 5714 case 5000: 5715 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5716 break; 5717 case 1000: 5718 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5719 break; 5720 case 500: 5721 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5722 break; 5723 case 100: 5724 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5725 break; 5726 default: 5727 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5728 phydev_name(phydev)); 5729 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5730 break; 5731 } 5732 5733 mutex_lock(&ptp_priv->ptp_lock); 5734 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5735 rq->perout.start.nsec); 5736 mutex_unlock(&ptp_priv->ptp_lock); 5737 if (ret) 5738 return ret; 5739 5740 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5741 rq->perout.period.nsec); 5742 if (ret) 5743 return ret; 5744 5745 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5746 pulse_width); 5747 if (ret) 5748 return ret; 5749 5750 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5751 if (ret) 5752 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5753 5754 return ret; 5755 } 5756 5757 #define LAN8841_PTP_GPIO_CAP_EN 496 5758 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5759 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5760 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5761 5762 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5763 u32 flags) 5764 { 5765 struct phy_device *phydev = ptp_priv->phydev; 5766 u16 tmp = 0; 5767 int ret; 5768 5769 /* Set GPIO to be input */ 5770 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5771 if (ret) 5772 return ret; 5773 5774 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5775 if (ret) 5776 return ret; 5777 5778 /* Enable capture on the edges of the pin */ 5779 if (flags & PTP_RISING_EDGE) 5780 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5781 if (flags & PTP_FALLING_EDGE) 5782 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5783 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5784 if (ret) 5785 return ret; 5786 5787 /* Enable interrupt */ 5788 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5789 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5790 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5791 } 5792 5793 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5794 { 5795 struct phy_device *phydev = ptp_priv->phydev; 5796 int ret; 5797 5798 /* Set GPIO to be output */ 5799 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5800 if (ret) 5801 return ret; 5802 5803 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5804 if (ret) 5805 return ret; 5806 5807 /* Disable capture on both of the edges */ 5808 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5809 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5810 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5811 0); 5812 if (ret) 5813 return ret; 5814 5815 /* Disable interrupt */ 5816 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5817 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5818 0); 5819 } 5820 5821 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5822 struct ptp_clock_request *rq, int on) 5823 { 5824 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5825 ptp_clock_info); 5826 int pin; 5827 int ret; 5828 5829 /* Reject requests with unsupported flags */ 5830 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5831 PTP_EXTTS_EDGES | 5832 PTP_STRICT_FLAGS)) 5833 return -EOPNOTSUPP; 5834 5835 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5836 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5837 return -EINVAL; 5838 5839 mutex_lock(&ptp_priv->ptp_lock); 5840 if (on) 5841 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5842 else 5843 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5844 mutex_unlock(&ptp_priv->ptp_lock); 5845 5846 return ret; 5847 } 5848 5849 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5850 struct ptp_clock_request *rq, int on) 5851 { 5852 switch (rq->type) { 5853 case PTP_CLK_REQ_EXTTS: 5854 return lan8841_ptp_extts(ptp, rq, on); 5855 case PTP_CLK_REQ_PEROUT: 5856 return lan8841_ptp_perout(ptp, rq, on); 5857 default: 5858 return -EOPNOTSUPP; 5859 } 5860 5861 return 0; 5862 } 5863 5864 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5865 { 5866 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5867 ptp_clock_info); 5868 struct timespec64 ts; 5869 unsigned long flags; 5870 5871 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5872 5873 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5874 ptp_priv->seconds = ts.tv_sec; 5875 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5876 5877 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5878 } 5879 5880 static struct ptp_clock_info lan8841_ptp_clock_info = { 5881 .owner = THIS_MODULE, 5882 .name = "lan8841 ptp", 5883 .max_adj = 31249999, 5884 .gettime64 = lan8841_ptp_gettime64, 5885 .settime64 = lan8841_ptp_settime64, 5886 .adjtime = lan8841_ptp_adjtime, 5887 .adjfine = lan8841_ptp_adjfine, 5888 .verify = lan8841_ptp_verify, 5889 .enable = lan8841_ptp_enable, 5890 .do_aux_work = lan8841_ptp_do_aux_work, 5891 .n_per_out = LAN8841_PTP_GPIO_NUM, 5892 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5893 .n_pins = LAN8841_PTP_GPIO_NUM, 5894 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5895 }; 5896 5897 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5898 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5899 5900 static int lan8841_probe(struct phy_device *phydev) 5901 { 5902 struct kszphy_ptp_priv *ptp_priv; 5903 struct kszphy_priv *priv; 5904 int err; 5905 5906 err = kszphy_probe(phydev); 5907 if (err) 5908 return err; 5909 5910 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5911 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5912 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5913 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5914 5915 /* Register the clock */ 5916 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5917 return 0; 5918 5919 priv = phydev->priv; 5920 ptp_priv = &priv->ptp_priv; 5921 5922 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5923 LAN8841_PTP_GPIO_NUM, 5924 sizeof(*ptp_priv->pin_config), 5925 GFP_KERNEL); 5926 if (!ptp_priv->pin_config) 5927 return -ENOMEM; 5928 5929 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5930 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5931 5932 snprintf(p->name, sizeof(p->name), "pin%d", i); 5933 p->index = i; 5934 p->func = PTP_PF_NONE; 5935 } 5936 5937 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5938 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5939 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5940 &phydev->mdio.dev); 5941 if (IS_ERR(ptp_priv->ptp_clock)) { 5942 phydev_err(phydev, "ptp_clock_register failed: %pe\n", 5943 ptp_priv->ptp_clock); 5944 return -EINVAL; 5945 } 5946 5947 if (!ptp_priv->ptp_clock) 5948 return 0; 5949 5950 /* Initialize the SW */ 5951 skb_queue_head_init(&ptp_priv->tx_queue); 5952 ptp_priv->phydev = phydev; 5953 mutex_init(&ptp_priv->ptp_lock); 5954 spin_lock_init(&ptp_priv->seconds_lock); 5955 5956 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5957 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5958 ptp_priv->mii_ts.hwtstamp_set = lan8841_hwtstamp_set; 5959 ptp_priv->mii_ts.hwtstamp_get = lan8814_hwtstamp_get; 5960 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5961 5962 phydev->mii_ts = &ptp_priv->mii_ts; 5963 5964 /* Timestamp selected by default to keep legacy API */ 5965 phydev->default_timestamp = true; 5966 5967 return 0; 5968 } 5969 5970 static int lan8804_resume(struct phy_device *phydev) 5971 { 5972 return kszphy_resume(phydev); 5973 } 5974 5975 static int lan8804_suspend(struct phy_device *phydev) 5976 { 5977 return kszphy_generic_suspend(phydev); 5978 } 5979 5980 static int lan8841_resume(struct phy_device *phydev) 5981 { 5982 return kszphy_generic_resume(phydev); 5983 } 5984 5985 static int lan8841_suspend(struct phy_device *phydev) 5986 { 5987 struct kszphy_priv *priv = phydev->priv; 5988 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5989 5990 if (ptp_priv->ptp_clock) 5991 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5992 5993 return kszphy_generic_suspend(phydev); 5994 } 5995 5996 static int ksz9131_resume(struct phy_device *phydev) 5997 { 5998 if (phydev->suspended && phy_interface_is_rgmii(phydev)) 5999 ksz9131_config_rgmii_delay(phydev); 6000 6001 return kszphy_resume(phydev); 6002 } 6003 6004 #define LAN8842_PTP_GPIO_NUM 16 6005 6006 static int lan8842_ptp_probe_once(struct phy_device *phydev) 6007 { 6008 return __lan8814_ptp_probe_once(phydev, "lan8842_ptp_pin", 6009 LAN8842_PTP_GPIO_NUM); 6010 } 6011 6012 #define LAN8842_STRAP_REG 0 /* 0x0 */ 6013 #define LAN8842_STRAP_REG_PHYADDR_MASK GENMASK(4, 0) 6014 #define LAN8842_SKU_REG 11 /* 0x0b */ 6015 #define LAN8842_SELF_TEST 14 /* 0x0e */ 6016 #define LAN8842_SELF_TEST_RX_CNT_ENA BIT(8) 6017 #define LAN8842_SELF_TEST_TX_CNT_ENA BIT(4) 6018 6019 static int lan8842_probe(struct phy_device *phydev) 6020 { 6021 struct lan8842_priv *priv; 6022 int addr; 6023 int ret; 6024 6025 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 6026 if (!priv) 6027 return -ENOMEM; 6028 6029 phydev->priv = priv; 6030 6031 /* Similar to lan8814 this PHY has a pin which needs to be pulled down 6032 * to enable to pass any traffic through it. Therefore use the same 6033 * function as lan8814 6034 */ 6035 ret = lan8814_release_coma_mode(phydev); 6036 if (ret) 6037 return ret; 6038 6039 /* Enable to count the RX and TX packets */ 6040 ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 6041 LAN8842_SELF_TEST, 6042 LAN8842_SELF_TEST_RX_CNT_ENA | 6043 LAN8842_SELF_TEST_TX_CNT_ENA); 6044 if (ret < 0) 6045 return ret; 6046 6047 /* Revision lan8832 doesn't have support for PTP, therefore don't add 6048 * any PTP clocks 6049 */ 6050 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6051 LAN8842_SKU_REG); 6052 if (ret < 0) 6053 return ret; 6054 6055 priv->rev = ret; 6056 if (priv->rev == LAN8842_REV_8832) 6057 return 0; 6058 6059 /* As the lan8814 and lan8842 has the same IP for the PTP block, the 6060 * only difference is the number of the GPIOs, then make sure that the 6061 * lan8842 initialized also the shared data pointer as this is used in 6062 * all the PTP functions for lan8814. The lan8842 doesn't have multiple 6063 * PHYs in the same package. 6064 */ 6065 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6066 LAN8842_STRAP_REG); 6067 if (addr < 0) 6068 return addr; 6069 addr &= LAN8842_STRAP_REG_PHYADDR_MASK; 6070 6071 ret = devm_phy_package_join(&phydev->mdio.dev, phydev, addr, 6072 sizeof(struct lan8814_shared_priv)); 6073 if (ret) 6074 return ret; 6075 6076 if (phy_package_init_once(phydev)) { 6077 ret = lan8842_ptp_probe_once(phydev); 6078 if (ret) 6079 return ret; 6080 } 6081 6082 lan8814_ptp_init(phydev); 6083 6084 return 0; 6085 } 6086 6087 #define LAN8814_POWER_MGMT_MODE_3_ANEG_MDI 0x13 6088 #define LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX 0x14 6089 #define LAN8814_POWER_MGMT_MODE_5_10BT_MDI 0x15 6090 #define LAN8814_POWER_MGMT_MODE_6_10BT_MDIX 0x16 6091 #define LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN 0x17 6092 #define LAN8814_POWER_MGMT_MODE_8_100BT_MDI 0x18 6093 #define LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX 0x19 6094 #define LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX 0x1a 6095 #define LAN8814_POWER_MGMT_MODE_11_100BT_MDIX 0x1b 6096 #define LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX 0x1c 6097 #define LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX 0x1d 6098 #define LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX 0x1e 6099 6100 #define LAN8814_POWER_MGMT_DLLPD_D BIT(0) 6101 #define LAN8814_POWER_MGMT_ADCPD_D BIT(1) 6102 #define LAN8814_POWER_MGMT_PGAPD_D BIT(2) 6103 #define LAN8814_POWER_MGMT_TXPD_D BIT(3) 6104 #define LAN8814_POWER_MGMT_DLLPD_C BIT(4) 6105 #define LAN8814_POWER_MGMT_ADCPD_C BIT(5) 6106 #define LAN8814_POWER_MGMT_PGAPD_C BIT(6) 6107 #define LAN8814_POWER_MGMT_TXPD_C BIT(7) 6108 #define LAN8814_POWER_MGMT_DLLPD_B BIT(8) 6109 #define LAN8814_POWER_MGMT_ADCPD_B BIT(9) 6110 #define LAN8814_POWER_MGMT_PGAPD_B BIT(10) 6111 #define LAN8814_POWER_MGMT_TXPD_B BIT(11) 6112 #define LAN8814_POWER_MGMT_DLLPD_A BIT(12) 6113 #define LAN8814_POWER_MGMT_ADCPD_A BIT(13) 6114 #define LAN8814_POWER_MGMT_PGAPD_A BIT(14) 6115 #define LAN8814_POWER_MGMT_TXPD_A BIT(15) 6116 6117 #define LAN8814_POWER_MGMT_C_D (LAN8814_POWER_MGMT_DLLPD_D | \ 6118 LAN8814_POWER_MGMT_ADCPD_D | \ 6119 LAN8814_POWER_MGMT_PGAPD_D | \ 6120 LAN8814_POWER_MGMT_DLLPD_C | \ 6121 LAN8814_POWER_MGMT_ADCPD_C | \ 6122 LAN8814_POWER_MGMT_PGAPD_C) 6123 6124 #define LAN8814_POWER_MGMT_B_C_D (LAN8814_POWER_MGMT_C_D | \ 6125 LAN8814_POWER_MGMT_DLLPD_B | \ 6126 LAN8814_POWER_MGMT_ADCPD_B | \ 6127 LAN8814_POWER_MGMT_PGAPD_B) 6128 6129 #define LAN8814_POWER_MGMT_VAL1 (LAN8814_POWER_MGMT_C_D | \ 6130 LAN8814_POWER_MGMT_ADCPD_B | \ 6131 LAN8814_POWER_MGMT_PGAPD_B | \ 6132 LAN8814_POWER_MGMT_ADCPD_A | \ 6133 LAN8814_POWER_MGMT_PGAPD_A) 6134 6135 #define LAN8814_POWER_MGMT_VAL2 LAN8814_POWER_MGMT_C_D 6136 6137 #define LAN8814_POWER_MGMT_VAL3 (LAN8814_POWER_MGMT_C_D | \ 6138 LAN8814_POWER_MGMT_DLLPD_B | \ 6139 LAN8814_POWER_MGMT_ADCPD_B | \ 6140 LAN8814_POWER_MGMT_PGAPD_A) 6141 6142 #define LAN8814_POWER_MGMT_VAL4 (LAN8814_POWER_MGMT_B_C_D | \ 6143 LAN8814_POWER_MGMT_ADCPD_A | \ 6144 LAN8814_POWER_MGMT_PGAPD_A) 6145 6146 #define LAN8814_POWER_MGMT_VAL5 LAN8814_POWER_MGMT_B_C_D 6147 6148 #define LAN8814_EEE_WAKE_TX_TIMER 0x0e 6149 #define LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL 0x1f 6150 6151 static const struct lanphy_reg_data short_center_tap_errata[] = { 6152 { LAN8814_PAGE_POWER_REGS, 6153 LAN8814_POWER_MGMT_MODE_3_ANEG_MDI, 6154 LAN8814_POWER_MGMT_VAL1 }, 6155 { LAN8814_PAGE_POWER_REGS, 6156 LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX, 6157 LAN8814_POWER_MGMT_VAL1 }, 6158 { LAN8814_PAGE_POWER_REGS, 6159 LAN8814_POWER_MGMT_MODE_5_10BT_MDI, 6160 LAN8814_POWER_MGMT_VAL1 }, 6161 { LAN8814_PAGE_POWER_REGS, 6162 LAN8814_POWER_MGMT_MODE_6_10BT_MDIX, 6163 LAN8814_POWER_MGMT_VAL1 }, 6164 { LAN8814_PAGE_POWER_REGS, 6165 LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN, 6166 LAN8814_POWER_MGMT_VAL2 }, 6167 { LAN8814_PAGE_POWER_REGS, 6168 LAN8814_POWER_MGMT_MODE_8_100BT_MDI, 6169 LAN8814_POWER_MGMT_VAL3 }, 6170 { LAN8814_PAGE_POWER_REGS, 6171 LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX, 6172 LAN8814_POWER_MGMT_VAL3 }, 6173 { LAN8814_PAGE_POWER_REGS, 6174 LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX, 6175 LAN8814_POWER_MGMT_VAL4 }, 6176 { LAN8814_PAGE_POWER_REGS, 6177 LAN8814_POWER_MGMT_MODE_11_100BT_MDIX, 6178 LAN8814_POWER_MGMT_VAL5 }, 6179 { LAN8814_PAGE_POWER_REGS, 6180 LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX, 6181 LAN8814_POWER_MGMT_VAL5 }, 6182 { LAN8814_PAGE_POWER_REGS, 6183 LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX, 6184 LAN8814_POWER_MGMT_VAL4 }, 6185 { LAN8814_PAGE_POWER_REGS, 6186 LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX, 6187 LAN8814_POWER_MGMT_VAL4 }, 6188 }; 6189 6190 static const struct lanphy_reg_data waketx_timer_errata[] = { 6191 { LAN8814_PAGE_EEE, 6192 LAN8814_EEE_WAKE_TX_TIMER, 6193 LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL }, 6194 }; 6195 6196 static int lanphy_write_reg_data(struct phy_device *phydev, 6197 const struct lanphy_reg_data *data, 6198 size_t num) 6199 { 6200 int ret = 0; 6201 6202 while (num--) { 6203 ret = lanphy_write_page_reg(phydev, data->page, data->addr, 6204 data->val); 6205 if (ret) 6206 break; 6207 } 6208 6209 return ret; 6210 } 6211 6212 static int lan8842_erratas(struct phy_device *phydev) 6213 { 6214 int ret; 6215 6216 ret = lanphy_write_reg_data(phydev, short_center_tap_errata, 6217 ARRAY_SIZE(short_center_tap_errata)); 6218 if (ret) 6219 return ret; 6220 6221 return lanphy_write_reg_data(phydev, waketx_timer_errata, 6222 ARRAY_SIZE(waketx_timer_errata)); 6223 } 6224 6225 static int lan8842_config_init(struct phy_device *phydev) 6226 { 6227 int ret; 6228 6229 /* Reset the PHY */ 6230 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6231 LAN8814_QSGMII_SOFT_RESET, 6232 LAN8814_QSGMII_SOFT_RESET_BIT, 6233 LAN8814_QSGMII_SOFT_RESET_BIT); 6234 if (ret < 0) 6235 return ret; 6236 6237 /* Apply the erratas for this device */ 6238 ret = lan8842_erratas(phydev); 6239 if (ret < 0) 6240 return ret; 6241 6242 /* Even if the GPIOs are set to control the LEDs the behaviour of the 6243 * LEDs is wrong, they are not blinking when there is traffic. 6244 * To fix this it is required to set extended LED mode 6245 */ 6246 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6247 LAN8814_LED_CTRL_1, 6248 LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_, 0); 6249 if (ret < 0) 6250 return ret; 6251 6252 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6253 LAN8814_LED_CTRL_2, 6254 LAN8814_LED_CTRL_2_LED1_COM_DIS, 6255 LAN8814_LED_CTRL_2_LED1_COM_DIS); 6256 if (ret < 0) 6257 return ret; 6258 6259 /* To allow the PHY to control the LEDs the GPIOs of the PHY should have 6260 * a function mode and not the GPIO. Apparently by default the value is 6261 * GPIO and not function even though the datasheet it says that it is 6262 * function. Therefore set this value. 6263 */ 6264 return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6265 LAN8814_GPIO_EN2, 0); 6266 } 6267 6268 #define LAN8842_INTR_CTRL_REG 52 /* 0x34 */ 6269 6270 static int lan8842_config_intr(struct phy_device *phydev) 6271 { 6272 int err; 6273 6274 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 6275 LAN8842_INTR_CTRL_REG, 6276 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 6277 6278 /* enable / disable interrupts */ 6279 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 6280 err = lan8814_ack_interrupt(phydev); 6281 if (err) 6282 return err; 6283 6284 err = phy_write(phydev, LAN8814_INTC, 6285 LAN8814_INT_LINK | LAN8814_INT_FLF); 6286 } else { 6287 err = phy_write(phydev, LAN8814_INTC, 0); 6288 if (err) 6289 return err; 6290 6291 err = lan8814_ack_interrupt(phydev); 6292 } 6293 6294 return err; 6295 } 6296 6297 static unsigned int lan8842_inband_caps(struct phy_device *phydev, 6298 phy_interface_t interface) 6299 { 6300 /* Inband configuration can be enabled or disabled using the registers 6301 * PCS1G_ANEG_CONFIG. 6302 */ 6303 return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE; 6304 } 6305 6306 static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes) 6307 { 6308 bool enable; 6309 6310 if (modes == LINK_INBAND_DISABLE) 6311 enable = false; 6312 else 6313 enable = true; 6314 6315 /* Disable or enable in-band autoneg with PCS Host side 6316 * It has the same address as lan8814 6317 */ 6318 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6319 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 6320 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 6321 enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0); 6322 } 6323 6324 static void lan8842_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 6325 { 6326 struct kszphy_ptp_priv *ptp_priv; 6327 struct lan8842_priv *priv; 6328 6329 priv = phydev->priv; 6330 ptp_priv = &priv->ptp_priv; 6331 6332 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 6333 lan8814_get_tx_ts(ptp_priv); 6334 6335 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 6336 lan8814_get_rx_ts(ptp_priv); 6337 6338 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 6339 lan8814_flush_fifo(phydev, true); 6340 skb_queue_purge(&ptp_priv->tx_queue); 6341 } 6342 6343 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 6344 lan8814_flush_fifo(phydev, false); 6345 skb_queue_purge(&ptp_priv->rx_queue); 6346 } 6347 } 6348 6349 static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev) 6350 { 6351 struct lan8842_priv *priv = phydev->priv; 6352 int ret = IRQ_NONE; 6353 int irq_status; 6354 6355 irq_status = phy_read(phydev, LAN8814_INTS); 6356 if (irq_status < 0) { 6357 phy_error(phydev); 6358 return IRQ_NONE; 6359 } 6360 6361 if (irq_status & (LAN8814_INT_LINK | LAN8814_INT_FLF)) { 6362 phy_trigger_machine(phydev); 6363 ret = IRQ_HANDLED; 6364 } 6365 6366 /* Phy revision lan8832 doesn't have support for PTP therefore there is 6367 * not need to check the PTP and GPIO interrupts 6368 */ 6369 if (priv->rev == LAN8842_REV_8832) 6370 goto out; 6371 6372 while (true) { 6373 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6374 PTP_TSU_INT_STS); 6375 if (!irq_status) 6376 break; 6377 6378 lan8842_handle_ptp_interrupt(phydev, irq_status); 6379 ret = IRQ_HANDLED; 6380 } 6381 6382 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 6383 ret = IRQ_HANDLED; 6384 6385 out: 6386 return ret; 6387 } 6388 6389 static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs) 6390 { 6391 u64 ret = 0; 6392 int val; 6393 6394 for (int j = 0; j < count; ++j) { 6395 val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 6396 regs[j]); 6397 if (val < 0) 6398 return U64_MAX; 6399 6400 ret <<= 16; 6401 ret += val; 6402 } 6403 return ret; 6404 } 6405 6406 static int lan8842_update_stats(struct phy_device *phydev) 6407 { 6408 struct lan8842_priv *priv = phydev->priv; 6409 int rx_packets_regs[] = {88, 61, 60}; 6410 int rx_errors_regs[] = {63, 62}; 6411 int tx_packets_regs[] = {89, 85, 84}; 6412 int tx_errors_regs[] = {87, 86}; 6413 6414 priv->phy_stats.rx_packets = lan8842_get_stat(phydev, 6415 ARRAY_SIZE(rx_packets_regs), 6416 rx_packets_regs); 6417 priv->phy_stats.rx_errors = lan8842_get_stat(phydev, 6418 ARRAY_SIZE(rx_errors_regs), 6419 rx_errors_regs); 6420 priv->phy_stats.tx_packets = lan8842_get_stat(phydev, 6421 ARRAY_SIZE(tx_packets_regs), 6422 tx_packets_regs); 6423 priv->phy_stats.tx_errors = lan8842_get_stat(phydev, 6424 ARRAY_SIZE(tx_errors_regs), 6425 tx_errors_regs); 6426 6427 return 0; 6428 } 6429 6430 #define LAN8842_FLF 15 /* 0x0e */ 6431 #define LAN8842_FLF_ENA BIT(1) 6432 #define LAN8842_FLF_ENA_LINK_DOWN BIT(0) 6433 6434 static int lan8842_get_fast_down(struct phy_device *phydev, u8 *msecs) 6435 { 6436 int ret; 6437 6438 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS, LAN8842_FLF); 6439 if (ret < 0) 6440 return ret; 6441 6442 if (ret & LAN8842_FLF_ENA) 6443 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON; 6444 else 6445 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF; 6446 6447 return 0; 6448 } 6449 6450 static int lan8842_set_fast_down(struct phy_device *phydev, const u8 *msecs) 6451 { 6452 u16 flf; 6453 6454 switch (*msecs) { 6455 case ETHTOOL_PHY_FAST_LINK_DOWN_OFF: 6456 flf = 0; 6457 break; 6458 case ETHTOOL_PHY_FAST_LINK_DOWN_ON: 6459 flf = LAN8842_FLF_ENA | LAN8842_FLF_ENA_LINK_DOWN; 6460 break; 6461 default: 6462 return -EINVAL; 6463 } 6464 6465 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS, 6466 LAN8842_FLF, 6467 LAN8842_FLF_ENA | 6468 LAN8842_FLF_ENA_LINK_DOWN, flf); 6469 } 6470 6471 static int lan8842_get_tunable(struct phy_device *phydev, 6472 struct ethtool_tunable *tuna, void *data) 6473 { 6474 switch (tuna->id) { 6475 case ETHTOOL_PHY_FAST_LINK_DOWN: 6476 return lan8842_get_fast_down(phydev, data); 6477 default: 6478 return -EOPNOTSUPP; 6479 } 6480 } 6481 6482 static int lan8842_set_tunable(struct phy_device *phydev, 6483 struct ethtool_tunable *tuna, const void *data) 6484 { 6485 switch (tuna->id) { 6486 case ETHTOOL_PHY_FAST_LINK_DOWN: 6487 return lan8842_set_fast_down(phydev, data); 6488 default: 6489 return -EOPNOTSUPP; 6490 } 6491 } 6492 6493 static void lan8842_get_phy_stats(struct phy_device *phydev, 6494 struct ethtool_eth_phy_stats *eth_stats, 6495 struct ethtool_phy_stats *stats) 6496 { 6497 struct lan8842_priv *priv = phydev->priv; 6498 6499 stats->rx_packets = priv->phy_stats.rx_packets; 6500 stats->rx_errors = priv->phy_stats.rx_errors; 6501 stats->tx_packets = priv->phy_stats.tx_packets; 6502 stats->tx_errors = priv->phy_stats.tx_errors; 6503 } 6504 6505 static struct phy_driver ksphy_driver[] = { 6506 { 6507 PHY_ID_MATCH_MODEL(PHY_ID_KS8737), 6508 .name = "Micrel KS8737", 6509 /* PHY_BASIC_FEATURES */ 6510 .driver_data = &ks8737_type, 6511 .probe = kszphy_probe, 6512 .config_init = kszphy_config_init, 6513 .config_intr = kszphy_config_intr, 6514 .handle_interrupt = kszphy_handle_interrupt, 6515 .suspend = kszphy_suspend, 6516 .resume = kszphy_resume, 6517 }, { 6518 .phy_id = PHY_ID_KSZ8021, 6519 .phy_id_mask = 0x00ffffff, 6520 .name = "Micrel KSZ8021 or KSZ8031", 6521 /* PHY_BASIC_FEATURES */ 6522 .driver_data = &ksz8021_type, 6523 .probe = kszphy_probe, 6524 .config_init = kszphy_config_init, 6525 .config_intr = kszphy_config_intr, 6526 .handle_interrupt = kszphy_handle_interrupt, 6527 .get_sset_count = kszphy_get_sset_count, 6528 .get_strings = kszphy_get_strings, 6529 .get_stats = kszphy_get_stats, 6530 .suspend = kszphy_suspend, 6531 .resume = kszphy_resume, 6532 }, { 6533 .phy_id = PHY_ID_KSZ8031, 6534 .phy_id_mask = 0x00ffffff, 6535 .name = "Micrel KSZ8031", 6536 /* PHY_BASIC_FEATURES */ 6537 .driver_data = &ksz8021_type, 6538 .probe = kszphy_probe, 6539 .config_init = kszphy_config_init, 6540 .config_intr = kszphy_config_intr, 6541 .handle_interrupt = kszphy_handle_interrupt, 6542 .get_sset_count = kszphy_get_sset_count, 6543 .get_strings = kszphy_get_strings, 6544 .get_stats = kszphy_get_stats, 6545 .suspend = kszphy_suspend, 6546 .resume = kszphy_resume, 6547 }, { 6548 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041), 6549 .name = "Micrel KSZ8041", 6550 /* PHY_BASIC_FEATURES */ 6551 .driver_data = &ksz8041_type, 6552 .probe = kszphy_probe, 6553 .config_init = ksz8041_config_init, 6554 .config_aneg = ksz8041_config_aneg, 6555 .config_intr = kszphy_config_intr, 6556 .handle_interrupt = kszphy_handle_interrupt, 6557 .get_sset_count = kszphy_get_sset_count, 6558 .get_strings = kszphy_get_strings, 6559 .get_stats = kszphy_get_stats, 6560 .suspend = ksz8041_suspend, 6561 .resume = ksz8041_resume, 6562 }, { 6563 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI), 6564 .name = "Micrel KSZ8041RNLI", 6565 /* PHY_BASIC_FEATURES */ 6566 .driver_data = &ksz8041_type, 6567 .probe = kszphy_probe, 6568 .config_init = kszphy_config_init, 6569 .config_intr = kszphy_config_intr, 6570 .handle_interrupt = kszphy_handle_interrupt, 6571 .get_sset_count = kszphy_get_sset_count, 6572 .get_strings = kszphy_get_strings, 6573 .get_stats = kszphy_get_stats, 6574 .suspend = kszphy_suspend, 6575 .resume = kszphy_resume, 6576 }, { 6577 .name = "Micrel KSZ8051", 6578 /* PHY_BASIC_FEATURES */ 6579 .driver_data = &ksz8051_type, 6580 .probe = kszphy_probe, 6581 .config_init = kszphy_config_init, 6582 .config_intr = kszphy_config_intr, 6583 .handle_interrupt = kszphy_handle_interrupt, 6584 .get_sset_count = kszphy_get_sset_count, 6585 .get_strings = kszphy_get_strings, 6586 .get_stats = kszphy_get_stats, 6587 .match_phy_device = ksz8051_match_phy_device, 6588 .suspend = kszphy_suspend, 6589 .resume = kszphy_resume, 6590 }, { 6591 .phy_id = PHY_ID_KSZ8001, 6592 .name = "Micrel KSZ8001 or KS8721", 6593 .phy_id_mask = 0x00fffffc, 6594 /* PHY_BASIC_FEATURES */ 6595 .driver_data = &ksz8041_type, 6596 .probe = kszphy_probe, 6597 .config_init = kszphy_config_init, 6598 .config_intr = kszphy_config_intr, 6599 .handle_interrupt = kszphy_handle_interrupt, 6600 .get_sset_count = kszphy_get_sset_count, 6601 .get_strings = kszphy_get_strings, 6602 .get_stats = kszphy_get_stats, 6603 .suspend = kszphy_suspend, 6604 .resume = kszphy_resume, 6605 }, { 6606 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081), 6607 .name = "Micrel KSZ8081 or KSZ8091", 6608 .flags = PHY_POLL_CABLE_TEST, 6609 /* PHY_BASIC_FEATURES */ 6610 .driver_data = &ksz8081_type, 6611 .probe = kszphy_probe, 6612 .config_init = ksz8081_config_init, 6613 .soft_reset = genphy_soft_reset, 6614 .config_aneg = ksz8081_config_aneg, 6615 .read_status = ksz8081_read_status, 6616 .config_intr = kszphy_config_intr, 6617 .handle_interrupt = kszphy_handle_interrupt, 6618 .get_sset_count = kszphy_get_sset_count, 6619 .get_strings = kszphy_get_strings, 6620 .get_stats = kszphy_get_stats, 6621 .suspend = kszphy_suspend, 6622 .resume = kszphy_resume, 6623 .cable_test_start = ksz886x_cable_test_start, 6624 .cable_test_get_status = ksz886x_cable_test_get_status, 6625 }, { 6626 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061), 6627 .name = "Micrel KSZ8061", 6628 /* PHY_BASIC_FEATURES */ 6629 .probe = kszphy_probe, 6630 .config_init = ksz8061_config_init, 6631 .soft_reset = genphy_soft_reset, 6632 .config_intr = kszphy_config_intr, 6633 .handle_interrupt = kszphy_handle_interrupt, 6634 .suspend = ksz8061_suspend, 6635 .resume = ksz8061_resume, 6636 }, { 6637 .phy_id = PHY_ID_KSZ9021, 6638 .phy_id_mask = 0x000ffffe, 6639 .name = "Micrel KSZ9021 Gigabit PHY", 6640 /* PHY_GBIT_FEATURES */ 6641 .driver_data = &ksz9021_type, 6642 .probe = kszphy_probe, 6643 .get_features = ksz9031_get_features, 6644 .config_init = ksz9021_config_init, 6645 .config_intr = kszphy_config_intr, 6646 .handle_interrupt = kszphy_handle_interrupt, 6647 .get_sset_count = kszphy_get_sset_count, 6648 .get_strings = kszphy_get_strings, 6649 .get_stats = kszphy_get_stats, 6650 .suspend = kszphy_suspend, 6651 .resume = kszphy_resume, 6652 .read_mmd = genphy_read_mmd_unsupported, 6653 .write_mmd = genphy_write_mmd_unsupported, 6654 }, { 6655 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031), 6656 .name = "Micrel KSZ9031 Gigabit PHY", 6657 .flags = PHY_POLL_CABLE_TEST, 6658 .driver_data = &ksz9021_type, 6659 .probe = kszphy_probe, 6660 .get_features = ksz9031_get_features, 6661 .config_init = ksz9031_config_init, 6662 .soft_reset = genphy_soft_reset, 6663 .read_status = ksz9031_read_status, 6664 .config_intr = kszphy_config_intr, 6665 .handle_interrupt = kszphy_handle_interrupt, 6666 .get_sset_count = kszphy_get_sset_count, 6667 .get_strings = kszphy_get_strings, 6668 .get_stats = kszphy_get_stats, 6669 .suspend = kszphy_suspend, 6670 .resume = kszphy_resume, 6671 .cable_test_start = ksz9x31_cable_test_start, 6672 .cable_test_get_status = ksz9x31_cable_test_get_status, 6673 .set_loopback = ksz9031_set_loopback, 6674 }, { 6675 PHY_ID_MATCH_MODEL(PHY_ID_LAN8814), 6676 .name = "Microchip INDY Gigabit Quad PHY", 6677 .flags = PHY_POLL_CABLE_TEST, 6678 .config_init = lan8814_config_init, 6679 .driver_data = &lan8814_type, 6680 .probe = lan8814_probe, 6681 .soft_reset = genphy_soft_reset, 6682 .read_status = ksz9031_read_status, 6683 .get_sset_count = kszphy_get_sset_count, 6684 .get_strings = kszphy_get_strings, 6685 .get_stats = kszphy_get_stats, 6686 .suspend = genphy_suspend, 6687 .resume = kszphy_resume, 6688 .config_intr = lan8814_config_intr, 6689 .inband_caps = lan8842_inband_caps, 6690 .config_inband = lan8842_config_inband, 6691 .handle_interrupt = lan8814_handle_interrupt, 6692 .cable_test_start = lan8814_cable_test_start, 6693 .cable_test_get_status = ksz886x_cable_test_get_status, 6694 }, { 6695 PHY_ID_MATCH_MODEL(PHY_ID_LAN8804), 6696 .name = "Microchip LAN966X Gigabit PHY", 6697 .config_init = lan8804_config_init, 6698 .driver_data = &ksz9021_type, 6699 .probe = kszphy_probe, 6700 .soft_reset = genphy_soft_reset, 6701 .read_status = ksz9031_read_status, 6702 .get_sset_count = kszphy_get_sset_count, 6703 .get_strings = kszphy_get_strings, 6704 .get_stats = kszphy_get_stats, 6705 .suspend = lan8804_suspend, 6706 .resume = lan8804_resume, 6707 .config_intr = lan8804_config_intr, 6708 .handle_interrupt = lan8804_handle_interrupt, 6709 }, { 6710 PHY_ID_MATCH_MODEL(PHY_ID_LAN8841), 6711 .name = "Microchip LAN8841 Gigabit PHY", 6712 .flags = PHY_POLL_CABLE_TEST, 6713 .driver_data = &lan8841_type, 6714 .config_init = lan8841_config_init, 6715 .probe = lan8841_probe, 6716 .soft_reset = genphy_soft_reset, 6717 .config_intr = lan8841_config_intr, 6718 .handle_interrupt = lan8841_handle_interrupt, 6719 .get_sset_count = kszphy_get_sset_count, 6720 .get_strings = kszphy_get_strings, 6721 .get_stats = kszphy_get_stats, 6722 .suspend = lan8841_suspend, 6723 .resume = lan8841_resume, 6724 .cable_test_start = lan8814_cable_test_start, 6725 .cable_test_get_status = ksz886x_cable_test_get_status, 6726 }, { 6727 PHY_ID_MATCH_MODEL(PHY_ID_LAN8842), 6728 .name = "Microchip LAN8842 Gigabit PHY", 6729 .flags = PHY_POLL_CABLE_TEST, 6730 .driver_data = &lan8814_type, 6731 .probe = lan8842_probe, 6732 .config_init = lan8842_config_init, 6733 .config_intr = lan8842_config_intr, 6734 .inband_caps = lan8842_inband_caps, 6735 .config_inband = lan8842_config_inband, 6736 .handle_interrupt = lan8842_handle_interrupt, 6737 .get_phy_stats = lan8842_get_phy_stats, 6738 .update_stats = lan8842_update_stats, 6739 .get_tunable = lan8842_get_tunable, 6740 .set_tunable = lan8842_set_tunable, 6741 .cable_test_start = lan8814_cable_test_start, 6742 .cable_test_get_status = ksz886x_cable_test_get_status, 6743 }, { 6744 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131), 6745 .name = "Microchip KSZ9131 Gigabit PHY", 6746 /* PHY_GBIT_FEATURES */ 6747 .flags = PHY_POLL_CABLE_TEST, 6748 .driver_data = &ksz9131_type, 6749 .probe = kszphy_probe, 6750 .soft_reset = genphy_soft_reset, 6751 .config_init = ksz9131_config_init, 6752 .config_intr = kszphy_config_intr, 6753 .config_aneg = ksz9131_config_aneg, 6754 .read_status = ksz9131_read_status, 6755 .handle_interrupt = kszphy_handle_interrupt, 6756 .get_sset_count = kszphy_get_sset_count, 6757 .get_strings = kszphy_get_strings, 6758 .get_stats = kszphy_get_stats, 6759 .suspend = kszphy_suspend, 6760 .resume = ksz9131_resume, 6761 .cable_test_start = ksz9x31_cable_test_start, 6762 .cable_test_get_status = ksz9x31_cable_test_get_status, 6763 .get_features = ksz9477_get_features, 6764 }, { 6765 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL), 6766 .name = "Micrel KSZ8873MLL Switch", 6767 /* PHY_BASIC_FEATURES */ 6768 .config_init = kszphy_config_init, 6769 .config_aneg = ksz8873mll_config_aneg, 6770 .read_status = ksz8873mll_read_status, 6771 .suspend = genphy_suspend, 6772 .resume = genphy_resume, 6773 }, { 6774 PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X), 6775 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 6776 .driver_data = &ksz886x_type, 6777 /* PHY_BASIC_FEATURES */ 6778 .flags = PHY_POLL_CABLE_TEST, 6779 .config_init = kszphy_config_init, 6780 .config_aneg = ksz886x_config_aneg, 6781 .read_status = ksz886x_read_status, 6782 .suspend = genphy_suspend, 6783 .resume = genphy_resume, 6784 .cable_test_start = ksz886x_cable_test_start, 6785 .cable_test_get_status = ksz886x_cable_test_get_status, 6786 }, { 6787 .name = "Micrel KSZ87XX Switch", 6788 /* PHY_BASIC_FEATURES */ 6789 .config_init = kszphy_config_init, 6790 .match_phy_device = ksz8795_match_phy_device, 6791 .suspend = genphy_suspend, 6792 .resume = genphy_resume, 6793 }, { 6794 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477), 6795 .name = "Microchip KSZ9477", 6796 .probe = kszphy_probe, 6797 /* PHY_GBIT_FEATURES */ 6798 .config_init = ksz9477_config_init, 6799 .config_intr = kszphy_config_intr, 6800 .config_aneg = ksz9477_config_aneg, 6801 .read_status = ksz9477_read_status, 6802 .handle_interrupt = kszphy_handle_interrupt, 6803 .suspend = genphy_suspend, 6804 .resume = ksz9477_resume, 6805 .get_phy_stats = kszphy_get_phy_stats, 6806 .update_stats = kszphy_update_stats, 6807 .cable_test_start = ksz9x31_cable_test_start, 6808 .cable_test_get_status = ksz9x31_cable_test_get_status, 6809 .get_sqi = kszphy_get_sqi, 6810 .get_sqi_max = kszphy_get_sqi_max, 6811 .get_mse_capability = kszphy_get_mse_capability, 6812 .get_mse_snapshot = kszphy_get_mse_snapshot, 6813 } }; 6814 6815 module_phy_driver(ksphy_driver); 6816 6817 MODULE_DESCRIPTION("Micrel PHY driver"); 6818 MODULE_AUTHOR("David J. Choi"); 6819 MODULE_LICENSE("GPL"); 6820 6821 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 6822 { PHY_ID_KSZ9021, 0x000ffffe }, 6823 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) }, 6824 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) }, 6825 { PHY_ID_KSZ8001, 0x00fffffc }, 6826 { PHY_ID_MATCH_MODEL(PHY_ID_KS8737) }, 6827 { PHY_ID_KSZ8021, 0x00ffffff }, 6828 { PHY_ID_KSZ8031, 0x00ffffff }, 6829 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) }, 6830 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) }, 6831 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) }, 6832 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) }, 6833 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) }, 6834 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) }, 6835 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) }, 6836 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) }, 6837 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) }, 6838 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) }, 6839 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) }, 6840 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) }, 6841 { } 6842 }; 6843 6844 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 6845