xref: /linux/drivers/net/phy/micrel.c (revision d0d2203b9ab71b69c22c8ee1d60c51f9561426a3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 #include "phylib.h"
38 
39 /* Operation Mode Strap Override */
40 #define MII_KSZPHY_OMSO				0x16
41 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
42 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
43 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
44 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
45 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
46 
47 /* general Interrupt control/status reg in vendor specific block. */
48 #define MII_KSZPHY_INTCS			0x1B
49 #define KSZPHY_INTCS_JABBER			BIT(15)
50 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
51 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
52 #define KSZPHY_INTCS_PARELLEL			BIT(12)
53 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
54 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
55 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
56 #define KSZPHY_INTCS_LINK_UP			BIT(8)
57 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
58 						KSZPHY_INTCS_LINK_DOWN)
59 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
60 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
61 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
62 						 KSZPHY_INTCS_LINK_UP_STATUS)
63 
64 /* LinkMD Control/Status */
65 #define KSZ8081_LMD				0x1d
66 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
67 #define KSZ8081_LMD_STAT_NORMAL			0
68 #define KSZ8081_LMD_STAT_OPEN			1
69 #define KSZ8081_LMD_STAT_SHORT			2
70 #define KSZ8081_LMD_STAT_FAIL			3
71 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
72 /* Short cable (<10 meter) has been detected by LinkMD */
73 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
74 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
75 
76 #define KSZ9x31_LMD				0x12
77 #define KSZ9x31_LMD_VCT_EN			BIT(15)
78 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
79 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
80 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
83 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
84 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
85 #define KSZ9x31_LMD_VCT_ST_OPEN			1
86 #define KSZ9x31_LMD_VCT_ST_SHORT		2
87 #define KSZ9x31_LMD_VCT_ST_FAIL			3
88 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
91 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
95 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
96 
97 #define KSZPHY_WIRE_PAIR_MASK			0x3
98 
99 #define LAN8814_CABLE_DIAG			0x12
100 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
102 #define LAN8814_PAIR_BIT_SHIFT			12
103 
104 #define LAN8814_SKUS				0xB
105 
106 #define LAN8814_WIRE_PAIR_MASK			0xF
107 
108 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
109 #define LAN8814_INTC				0x18
110 #define LAN8814_INTS				0x1B
111 
112 #define LAN8814_INT_FLF				BIT(15)
113 #define LAN8814_INT_LINK_DOWN			BIT(2)
114 #define LAN8814_INT_LINK_UP			BIT(0)
115 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
116 						 LAN8814_INT_LINK_DOWN)
117 
118 #define LAN8814_INTR_CTRL_REG			0x34
119 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
120 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
121 
122 #define LAN8814_EEE_STATE			0x38
123 #define LAN8814_EEE_STATE_MASK2P5P		BIT(10)
124 
125 #define LAN8814_PD_CONTROLS			0x9d
126 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK	GENMASK(3, 0)
127 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL	0xb
128 
129 /* Represents 1ppm adjustment in 2^32 format with
130  * each nsec contains 4 clock cycles.
131  * The value is calculated as following: (1/1000000)/((2^-32)/4)
132  */
133 #define LAN8814_1PPM_FORMAT			17179
134 
135 /* Represents 1ppm adjustment in 2^32 format with
136  * each nsec contains 8 clock cycles.
137  * The value is calculated as following: (1/1000000)/((2^-32)/8)
138  */
139 #define LAN8841_1PPM_FORMAT			34360
140 
141 #define PTP_RX_VERSION				0x0248
142 #define PTP_TX_VERSION				0x0288
143 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
144 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
145 
146 #define PTP_RX_MOD				0x024F
147 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
148 #define PTP_RX_TIMESTAMP_EN			0x024D
149 #define PTP_TX_TIMESTAMP_EN			0x028D
150 
151 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
152 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
153 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
154 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
155 
156 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
157 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
158 
159 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
160 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
161 #define LTC_HARD_RESET				0x023F
162 #define LTC_HARD_RESET_				BIT(0)
163 
164 #define TSU_HARD_RESET				0x02C1
165 #define TSU_HARD_RESET_				BIT(0)
166 
167 #define PTP_CMD_CTL				0x0200
168 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
169 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
170 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
171 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
172 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
173 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
174 
175 #define PTP_COMMON_INT_ENA			0x0204
176 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN		BIT(2)
177 
178 #define PTP_CLOCK_SET_SEC_HI			0x0205
179 #define PTP_CLOCK_SET_SEC_MID			0x0206
180 #define PTP_CLOCK_SET_SEC_LO			0x0207
181 #define PTP_CLOCK_SET_NS_HI			0x0208
182 #define PTP_CLOCK_SET_NS_LO			0x0209
183 
184 #define PTP_CLOCK_READ_SEC_HI			0x0229
185 #define PTP_CLOCK_READ_SEC_MID			0x022A
186 #define PTP_CLOCK_READ_SEC_LO			0x022B
187 #define PTP_CLOCK_READ_NS_HI			0x022C
188 #define PTP_CLOCK_READ_NS_LO			0x022D
189 
190 #define PTP_GPIO_SEL				0x0230
191 #define PTP_GPIO_SEL_GPIO_SEL(pin)		((pin) << 8)
192 #define PTP_GPIO_CAP_MAP_LO			0x0232
193 
194 #define PTP_GPIO_CAP_EN				0x0233
195 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	BIT(gpio)
196 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
197 
198 #define PTP_GPIO_RE_LTC_SEC_HI_CAP		0x0235
199 #define PTP_GPIO_RE_LTC_SEC_LO_CAP		0x0236
200 #define PTP_GPIO_RE_LTC_NS_HI_CAP		0x0237
201 #define PTP_GPIO_RE_LTC_NS_LO_CAP		0x0238
202 #define PTP_GPIO_FE_LTC_SEC_HI_CAP		0x0239
203 #define PTP_GPIO_FE_LTC_SEC_LO_CAP		0x023A
204 #define PTP_GPIO_FE_LTC_NS_HI_CAP		0x023B
205 #define PTP_GPIO_FE_LTC_NS_LO_CAP		0x023C
206 
207 #define PTP_GPIO_CAP_STS			0x023D
208 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio)	BIT(gpio)
209 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio)	(BIT(gpio) << 8)
210 
211 #define PTP_OPERATING_MODE			0x0241
212 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
213 
214 #define PTP_TX_MOD				0x028F
215 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
216 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
217 
218 #define PTP_RX_PARSE_CONFIG			0x0242
219 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
220 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
221 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
222 
223 #define PTP_TX_PARSE_CONFIG			0x0282
224 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
225 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
226 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
227 
228 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
229 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
230 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
231 
232 #define PTP_LTC_STEP_ADJ_HI			0x0212
233 #define PTP_LTC_STEP_ADJ_LO			0x0213
234 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
235 
236 #define LAN8814_INTR_STS_REG			0x0033
237 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
238 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
239 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
240 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
241 
242 #define PTP_CAP_INFO				0x022A
243 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
244 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
245 
246 #define PTP_TX_EGRESS_SEC_HI			0x0296
247 #define PTP_TX_EGRESS_SEC_LO			0x0297
248 #define PTP_TX_EGRESS_NS_HI			0x0294
249 #define PTP_TX_EGRESS_NS_LO			0x0295
250 #define PTP_TX_MSG_HEADER2			0x0299
251 
252 #define PTP_RX_INGRESS_SEC_HI			0x0256
253 #define PTP_RX_INGRESS_SEC_LO			0x0257
254 #define PTP_RX_INGRESS_NS_HI			0x0254
255 #define PTP_RX_INGRESS_NS_LO			0x0255
256 #define PTP_RX_MSG_HEADER2			0x0259
257 
258 #define PTP_TSU_INT_EN				0x0200
259 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
260 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
261 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
262 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
263 
264 #define PTP_TSU_INT_STS				0x0201
265 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
266 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
267 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
268 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
269 
270 #define LAN8814_LED_CTRL_1			0x0
271 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
272 #define LAN8814_LED_CTRL_2			0x1
273 #define LAN8814_LED_CTRL_2_LED1_COM_DIS		BIT(8)
274 
275 /* PHY Control 1 */
276 #define MII_KSZPHY_CTRL_1			0x1e
277 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
278 
279 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
280 #define MII_KSZPHY_CTRL_2			0x1f
281 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
282 /* bitmap of PHY register to set interrupt mode */
283 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
284 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
285 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
286 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
287 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
288 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
289 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
290 
291 /* Write/read to/from extended registers */
292 #define MII_KSZPHY_EXTREG			0x0b
293 #define KSZPHY_EXTREG_WRITE			0x8000
294 
295 #define MII_KSZPHY_EXTREG_WRITE			0x0c
296 #define MII_KSZPHY_EXTREG_READ			0x0d
297 
298 /* Extended registers */
299 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
300 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
301 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
302 
303 #define PS_TO_REG				200
304 #define FIFO_SIZE				8
305 
306 #define LAN8814_PTP_GPIO_NUM			24
307 #define LAN8814_PTP_PEROUT_NUM			2
308 #define LAN8814_PTP_EXTTS_NUM			3
309 
310 #define LAN8814_BUFFER_TIME			2
311 
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
321 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
322 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
323 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
324 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
325 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
326 
327 #define LAN8814_GPIO_EN1			0x20
328 #define LAN8814_GPIO_EN2			0x21
329 #define LAN8814_GPIO_DIR1			0x22
330 #define LAN8814_GPIO_DIR2			0x23
331 #define LAN8814_GPIO_BUF1			0x24
332 #define LAN8814_GPIO_BUF2			0x25
333 
334 #define LAN8814_GPIO_EN_ADDR(pin) \
335 	((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
336 #define LAN8814_GPIO_EN_BIT(pin)		BIT(pin)
337 #define LAN8814_GPIO_DIR_ADDR(pin) \
338 	((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
339 #define LAN8814_GPIO_DIR_BIT(pin)		BIT(pin)
340 #define LAN8814_GPIO_BUF_ADDR(pin) \
341 	((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
342 #define LAN8814_GPIO_BUF_BIT(pin)		BIT(pin)
343 
344 #define LAN8814_EVENT_A				0
345 #define LAN8814_EVENT_B				1
346 
347 #define LAN8814_PTP_GENERAL_CONFIG		0x0201
348 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
349 	((event) ? GENMASK(11, 8) : GENMASK(7, 4))
350 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
351 	(((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
352 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
353 	((event) ? BIT(2) : BIT(0))
354 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
355 	((event) ? BIT(3) : BIT(1))
356 
357 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event)	((event) ? 0x21F : 0x215)
358 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event)	((event) ? 0x220 : 0x216)
359 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event)	((event) ? 0x221 : 0x217)
360 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event)	((event) ? 0x222 : 0x218)
361 
362 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event)	((event) ? 0x223 : 0x219)
363 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event)	((event) ? 0x224 : 0x21A)
364 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event)	((event) ? 0x225 : 0x21B)
365 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event)	((event) ? 0x226 : 0x21C)
366 
367 /* Delay used to get the second part from the LTC */
368 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
369 
370 #define LAN8842_REV_8832			0x8832
371 
372 #define LAN8814_REV_LAN8814			0x8814
373 #define LAN8814_REV_LAN8818			0x8818
374 
375 struct kszphy_hw_stat {
376 	const char *string;
377 	u8 reg;
378 	u8 bits;
379 };
380 
381 static struct kszphy_hw_stat kszphy_hw_stats[] = {
382 	{ "phy_receive_errors", 21, 16},
383 	{ "phy_idle_errors", 10, 8 },
384 };
385 
386 struct kszphy_type {
387 	u32 led_mode_reg;
388 	u16 interrupt_level_mask;
389 	u16 cable_diag_reg;
390 	unsigned long pair_mask;
391 	u16 disable_dll_tx_bit;
392 	u16 disable_dll_rx_bit;
393 	u16 disable_dll_mask;
394 	bool has_broadcast_disable;
395 	bool has_nand_tree_disable;
396 	bool has_rmii_ref_clk_sel;
397 };
398 
399 /* Shared structure between the PHYs of the same package. */
400 struct lan8814_shared_priv {
401 	struct phy_device *phydev;
402 	struct ptp_clock *ptp_clock;
403 	struct ptp_clock_info ptp_clock_info;
404 	struct ptp_pin_desc *pin_config;
405 
406 	/* Lock for ptp_clock */
407 	struct mutex shared_lock;
408 };
409 
410 struct lan8814_ptp_rx_ts {
411 	struct list_head list;
412 	u32 seconds;
413 	u32 nsec;
414 	u16 seq_id;
415 };
416 
417 struct kszphy_ptp_priv {
418 	struct mii_timestamper mii_ts;
419 	struct phy_device *phydev;
420 
421 	struct sk_buff_head tx_queue;
422 	struct sk_buff_head rx_queue;
423 
424 	struct list_head rx_ts_list;
425 	/* Lock for Rx ts fifo */
426 	spinlock_t rx_ts_lock;
427 
428 	int hwts_tx_type;
429 	enum hwtstamp_rx_filters rx_filter;
430 	int layer;
431 	int version;
432 
433 	struct ptp_clock *ptp_clock;
434 	struct ptp_clock_info ptp_clock_info;
435 	/* Lock for ptp_clock */
436 	struct mutex ptp_lock;
437 	struct ptp_pin_desc *pin_config;
438 
439 	s64 seconds;
440 	/* Lock for accessing seconds */
441 	spinlock_t seconds_lock;
442 };
443 
444 struct kszphy_phy_stats {
445 	u64 rx_err_pkt_cnt;
446 };
447 
448 struct kszphy_priv {
449 	struct kszphy_ptp_priv ptp_priv;
450 	const struct kszphy_type *type;
451 	struct clk *clk;
452 	int led_mode;
453 	u16 vct_ctrl1000;
454 	bool rmii_ref_clk_sel;
455 	bool rmii_ref_clk_sel_val;
456 	bool clk_enable;
457 	bool is_ptp_available;
458 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
459 	struct kszphy_phy_stats phy_stats;
460 };
461 
462 struct lan8842_phy_stats {
463 	u64 rx_packets;
464 	u64 rx_errors;
465 	u64 tx_packets;
466 	u64 tx_errors;
467 };
468 
469 struct lan8842_priv {
470 	struct lan8842_phy_stats phy_stats;
471 	struct kszphy_ptp_priv ptp_priv;
472 	u16 rev;
473 };
474 
475 static const struct kszphy_type lan8814_type = {
476 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
477 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
478 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
479 };
480 
481 static const struct kszphy_type ksz886x_type = {
482 	.cable_diag_reg		= KSZ8081_LMD,
483 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
484 };
485 
486 static const struct kszphy_type ksz8021_type = {
487 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
488 	.has_broadcast_disable	= true,
489 	.has_nand_tree_disable	= true,
490 	.has_rmii_ref_clk_sel	= true,
491 };
492 
493 static const struct kszphy_type ksz8041_type = {
494 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
495 };
496 
497 static const struct kszphy_type ksz8051_type = {
498 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
499 	.has_nand_tree_disable	= true,
500 };
501 
502 static const struct kszphy_type ksz8081_type = {
503 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
504 	.cable_diag_reg		= KSZ8081_LMD,
505 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
506 	.has_broadcast_disable	= true,
507 	.has_nand_tree_disable	= true,
508 	.has_rmii_ref_clk_sel	= true,
509 };
510 
511 static const struct kszphy_type ks8737_type = {
512 	.interrupt_level_mask	= BIT(14),
513 };
514 
515 static const struct kszphy_type ksz9021_type = {
516 	.interrupt_level_mask	= BIT(14),
517 };
518 
519 static const struct kszphy_type ksz9131_type = {
520 	.interrupt_level_mask	= BIT(14),
521 	.disable_dll_tx_bit	= BIT(12),
522 	.disable_dll_rx_bit	= BIT(12),
523 	.disable_dll_mask	= BIT_MASK(12),
524 };
525 
526 static const struct kszphy_type lan8841_type = {
527 	.disable_dll_tx_bit	= BIT(14),
528 	.disable_dll_rx_bit	= BIT(14),
529 	.disable_dll_mask	= BIT_MASK(14),
530 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
531 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
532 };
533 
534 static int kszphy_extended_write(struct phy_device *phydev,
535 				u32 regnum, u16 val)
536 {
537 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
538 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
539 }
540 
541 static int kszphy_extended_read(struct phy_device *phydev,
542 				u32 regnum)
543 {
544 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
545 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
546 }
547 
548 static int kszphy_ack_interrupt(struct phy_device *phydev)
549 {
550 	/* bit[7..0] int status, which is a read and clear register. */
551 	int rc;
552 
553 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
554 
555 	return (rc < 0) ? rc : 0;
556 }
557 
558 static int kszphy_config_intr(struct phy_device *phydev)
559 {
560 	const struct kszphy_type *type = phydev->drv->driver_data;
561 	int temp, err;
562 	u16 mask;
563 
564 	if (type && type->interrupt_level_mask)
565 		mask = type->interrupt_level_mask;
566 	else
567 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
568 
569 	/* set the interrupt pin active low */
570 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
571 	if (temp < 0)
572 		return temp;
573 	temp &= ~mask;
574 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
575 
576 	/* enable / disable interrupts */
577 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
578 		err = kszphy_ack_interrupt(phydev);
579 		if (err)
580 			return err;
581 
582 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
583 	} else {
584 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
585 		if (err)
586 			return err;
587 
588 		err = kszphy_ack_interrupt(phydev);
589 	}
590 
591 	return err;
592 }
593 
594 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
595 {
596 	int irq_status;
597 
598 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
599 	if (irq_status < 0) {
600 		phy_error(phydev);
601 		return IRQ_NONE;
602 	}
603 
604 	if (!(irq_status & KSZPHY_INTCS_STATUS))
605 		return IRQ_NONE;
606 
607 	phy_trigger_machine(phydev);
608 
609 	return IRQ_HANDLED;
610 }
611 
612 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
613 {
614 	int ctrl;
615 
616 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
617 	if (ctrl < 0)
618 		return ctrl;
619 
620 	if (val)
621 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
622 	else
623 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
624 
625 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
626 }
627 
628 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
629 {
630 	int rc, temp, shift;
631 
632 	switch (reg) {
633 	case MII_KSZPHY_CTRL_1:
634 		shift = 14;
635 		break;
636 	case MII_KSZPHY_CTRL_2:
637 		shift = 4;
638 		break;
639 	default:
640 		return -EINVAL;
641 	}
642 
643 	temp = phy_read(phydev, reg);
644 	if (temp < 0) {
645 		rc = temp;
646 		goto out;
647 	}
648 
649 	temp &= ~(3 << shift);
650 	temp |= val << shift;
651 	rc = phy_write(phydev, reg, temp);
652 out:
653 	if (rc < 0)
654 		phydev_err(phydev, "failed to set led mode\n");
655 
656 	return rc;
657 }
658 
659 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
660  * unique (non-broadcast) address on a shared bus.
661  */
662 static int kszphy_broadcast_disable(struct phy_device *phydev)
663 {
664 	int ret;
665 
666 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
667 	if (ret < 0)
668 		goto out;
669 
670 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
671 out:
672 	if (ret)
673 		phydev_err(phydev, "failed to disable broadcast address\n");
674 
675 	return ret;
676 }
677 
678 static int kszphy_nand_tree_disable(struct phy_device *phydev)
679 {
680 	int ret;
681 
682 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
683 	if (ret < 0)
684 		goto out;
685 
686 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
687 		return 0;
688 
689 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
690 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
691 out:
692 	if (ret)
693 		phydev_err(phydev, "failed to disable NAND tree mode\n");
694 
695 	return ret;
696 }
697 
698 /* Some config bits need to be set again on resume, handle them here. */
699 static int kszphy_config_reset(struct phy_device *phydev)
700 {
701 	struct kszphy_priv *priv = phydev->priv;
702 	int ret;
703 
704 	if (priv->rmii_ref_clk_sel) {
705 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
706 		if (ret) {
707 			phydev_err(phydev,
708 				   "failed to set rmii reference clock\n");
709 			return ret;
710 		}
711 	}
712 
713 	if (priv->type && priv->led_mode >= 0)
714 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
715 
716 	return 0;
717 }
718 
719 static int kszphy_config_init(struct phy_device *phydev)
720 {
721 	struct kszphy_priv *priv = phydev->priv;
722 	const struct kszphy_type *type;
723 
724 	if (!priv)
725 		return 0;
726 
727 	type = priv->type;
728 
729 	if (type && type->has_broadcast_disable)
730 		kszphy_broadcast_disable(phydev);
731 
732 	if (type && type->has_nand_tree_disable)
733 		kszphy_nand_tree_disable(phydev);
734 
735 	return kszphy_config_reset(phydev);
736 }
737 
738 static int ksz8041_fiber_mode(struct phy_device *phydev)
739 {
740 	struct device_node *of_node = phydev->mdio.dev.of_node;
741 
742 	return of_property_read_bool(of_node, "micrel,fiber-mode");
743 }
744 
745 static int ksz8041_config_init(struct phy_device *phydev)
746 {
747 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
748 
749 	/* Limit supported and advertised modes in fiber mode */
750 	if (ksz8041_fiber_mode(phydev)) {
751 		phydev->dev_flags |= MICREL_PHY_FXEN;
752 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
753 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
754 
755 		linkmode_and(phydev->supported, phydev->supported, mask);
756 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
757 				 phydev->supported);
758 		linkmode_and(phydev->advertising, phydev->advertising, mask);
759 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
760 				 phydev->advertising);
761 		phydev->autoneg = AUTONEG_DISABLE;
762 	}
763 
764 	return kszphy_config_init(phydev);
765 }
766 
767 static int ksz8041_config_aneg(struct phy_device *phydev)
768 {
769 	/* Skip auto-negotiation in fiber mode */
770 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
771 		phydev->speed = SPEED_100;
772 		return 0;
773 	}
774 
775 	return genphy_config_aneg(phydev);
776 }
777 
778 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
779 					    const bool ksz_8051)
780 {
781 	int ret;
782 
783 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
784 		return 0;
785 
786 	ret = phy_read(phydev, MII_BMSR);
787 	if (ret < 0)
788 		return ret;
789 
790 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
791 	 * exact PHY ID. However, they can be told apart by the extended
792 	 * capability registers presence. The KSZ8051 PHY has them while
793 	 * the switch does not.
794 	 */
795 	ret &= BMSR_ERCAP;
796 	if (ksz_8051)
797 		return ret;
798 	else
799 		return !ret;
800 }
801 
802 static int ksz8051_match_phy_device(struct phy_device *phydev,
803 				    const struct phy_driver *phydrv)
804 {
805 	return ksz8051_ksz8795_match_phy_device(phydev, true);
806 }
807 
808 static int ksz8081_config_init(struct phy_device *phydev)
809 {
810 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
811 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
812 	 * pull-down is missing, the factory test mode should be cleared by
813 	 * manually writing a 0.
814 	 */
815 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
816 
817 	return kszphy_config_init(phydev);
818 }
819 
820 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
821 {
822 	u16 val;
823 
824 	switch (ctrl) {
825 	case ETH_TP_MDI:
826 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
827 		break;
828 	case ETH_TP_MDI_X:
829 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
830 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
831 		break;
832 	case ETH_TP_MDI_AUTO:
833 		val = 0;
834 		break;
835 	default:
836 		return 0;
837 	}
838 
839 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
840 			  KSZ8081_CTRL2_HP_MDIX |
841 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
842 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
843 			  KSZ8081_CTRL2_HP_MDIX | val);
844 }
845 
846 static int ksz8081_config_aneg(struct phy_device *phydev)
847 {
848 	int ret;
849 
850 	ret = genphy_config_aneg(phydev);
851 	if (ret)
852 		return ret;
853 
854 	/* The MDI-X configuration is automatically changed by the PHY after
855 	 * switching from autoneg off to on. So, take MDI-X configuration under
856 	 * own control and set it after autoneg configuration was done.
857 	 */
858 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
859 }
860 
861 static int ksz8081_mdix_update(struct phy_device *phydev)
862 {
863 	int ret;
864 
865 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
866 	if (ret < 0)
867 		return ret;
868 
869 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
870 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
871 			phydev->mdix_ctrl = ETH_TP_MDI_X;
872 		else
873 			phydev->mdix_ctrl = ETH_TP_MDI;
874 	} else {
875 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
876 	}
877 
878 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
879 	if (ret < 0)
880 		return ret;
881 
882 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
883 		phydev->mdix = ETH_TP_MDI;
884 	else
885 		phydev->mdix = ETH_TP_MDI_X;
886 
887 	return 0;
888 }
889 
890 static int ksz8081_read_status(struct phy_device *phydev)
891 {
892 	int ret;
893 
894 	ret = ksz8081_mdix_update(phydev);
895 	if (ret < 0)
896 		return ret;
897 
898 	return genphy_read_status(phydev);
899 }
900 
901 static int ksz8061_config_init(struct phy_device *phydev)
902 {
903 	int ret;
904 
905 	/* Chip can be powered down by the bootstrap code. */
906 	ret = phy_read(phydev, MII_BMCR);
907 	if (ret < 0)
908 		return ret;
909 	if (ret & BMCR_PDOWN) {
910 		ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
911 		if (ret < 0)
912 			return ret;
913 		usleep_range(1000, 2000);
914 	}
915 
916 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
917 	if (ret)
918 		return ret;
919 
920 	return kszphy_config_init(phydev);
921 }
922 
923 static int ksz8795_match_phy_device(struct phy_device *phydev,
924 				    const struct phy_driver *phydrv)
925 {
926 	return ksz8051_ksz8795_match_phy_device(phydev, false);
927 }
928 
929 static int ksz9021_load_values_from_of(struct phy_device *phydev,
930 				       const struct device_node *of_node,
931 				       u16 reg,
932 				       const char *field1, const char *field2,
933 				       const char *field3, const char *field4)
934 {
935 	int val1 = -1;
936 	int val2 = -2;
937 	int val3 = -3;
938 	int val4 = -4;
939 	int newval;
940 	int matches = 0;
941 
942 	if (!of_property_read_u32(of_node, field1, &val1))
943 		matches++;
944 
945 	if (!of_property_read_u32(of_node, field2, &val2))
946 		matches++;
947 
948 	if (!of_property_read_u32(of_node, field3, &val3))
949 		matches++;
950 
951 	if (!of_property_read_u32(of_node, field4, &val4))
952 		matches++;
953 
954 	if (!matches)
955 		return 0;
956 
957 	if (matches < 4)
958 		newval = kszphy_extended_read(phydev, reg);
959 	else
960 		newval = 0;
961 
962 	if (val1 != -1)
963 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
964 
965 	if (val2 != -2)
966 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
967 
968 	if (val3 != -3)
969 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
970 
971 	if (val4 != -4)
972 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
973 
974 	return kszphy_extended_write(phydev, reg, newval);
975 }
976 
977 static int ksz9021_config_init(struct phy_device *phydev)
978 {
979 	const struct device_node *of_node;
980 	const struct device *dev_walker;
981 
982 	/* The Micrel driver has a deprecated option to place phy OF
983 	 * properties in the MAC node. Walk up the tree of devices to
984 	 * find a device with an OF node.
985 	 */
986 	dev_walker = &phydev->mdio.dev;
987 	do {
988 		of_node = dev_walker->of_node;
989 		dev_walker = dev_walker->parent;
990 
991 	} while (!of_node && dev_walker);
992 
993 	if (of_node) {
994 		ksz9021_load_values_from_of(phydev, of_node,
995 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
996 				    "txen-skew-ps", "txc-skew-ps",
997 				    "rxdv-skew-ps", "rxc-skew-ps");
998 		ksz9021_load_values_from_of(phydev, of_node,
999 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
1000 				    "rxd0-skew-ps", "rxd1-skew-ps",
1001 				    "rxd2-skew-ps", "rxd3-skew-ps");
1002 		ksz9021_load_values_from_of(phydev, of_node,
1003 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
1004 				    "txd0-skew-ps", "txd1-skew-ps",
1005 				    "txd2-skew-ps", "txd3-skew-ps");
1006 	}
1007 	return 0;
1008 }
1009 
1010 #define KSZ9031_PS_TO_REG		60
1011 
1012 /* Extended registers */
1013 /* MMD Address 0x0 */
1014 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
1015 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
1016 
1017 /* MMD Address 0x2 */
1018 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
1019 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
1020 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
1021 
1022 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
1023 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
1024 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
1025 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
1026 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
1027 
1028 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
1029 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
1030 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
1031 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
1032 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
1033 
1034 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
1035 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
1036 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
1037 
1038 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
1039  * provide different RGMII options we need to configure delay offset
1040  * for each pad relative to build in delay.
1041  */
1042 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
1043  * 1.80ns
1044  */
1045 #define RX_ID				0x7
1046 #define RX_CLK_ID			0x19
1047 
1048 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1049  * internal 1.2ns delay.
1050  */
1051 #define RX_ND				0xc
1052 #define RX_CLK_ND			0x0
1053 
1054 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1055 #define TX_ID				0x0
1056 #define TX_CLK_ID			0x1f
1057 
1058 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1059  * delay
1060  */
1061 #define TX_ND				0x7
1062 #define TX_CLK_ND			0xf
1063 
1064 /* MMD Address 0x1C */
1065 #define MII_KSZ9031RN_EDPD		0x23
1066 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
1067 
1068 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable,
1069 				int speed)
1070 {
1071 	u16 ctl = BMCR_LOOPBACK;
1072 	int val;
1073 
1074 	if (!enable)
1075 		return genphy_loopback(phydev, enable, 0);
1076 
1077 	if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000)
1078 		phydev->speed = speed;
1079 	else if (speed)
1080 		return -EINVAL;
1081 	phydev->duplex = DUPLEX_FULL;
1082 
1083 	ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
1084 
1085 	phy_write(phydev, MII_BMCR, ctl);
1086 
1087 	return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS,
1088 				     5000, 500000, true);
1089 }
1090 
1091 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1092 				       const struct device_node *of_node,
1093 				       u16 reg, size_t field_sz,
1094 				       const char *field[], u8 numfields,
1095 				       bool *update)
1096 {
1097 	int val[4] = {-1, -2, -3, -4};
1098 	int matches = 0;
1099 	u16 mask;
1100 	u16 maxval;
1101 	u16 newval;
1102 	int i;
1103 
1104 	for (i = 0; i < numfields; i++)
1105 		if (!of_property_read_u32(of_node, field[i], val + i))
1106 			matches++;
1107 
1108 	if (!matches)
1109 		return 0;
1110 
1111 	*update |= true;
1112 
1113 	if (matches < numfields)
1114 		newval = phy_read_mmd(phydev, 2, reg);
1115 	else
1116 		newval = 0;
1117 
1118 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1119 	for (i = 0; i < numfields; i++)
1120 		if (val[i] != -(i + 1)) {
1121 			mask = 0xffff;
1122 			mask ^= maxval << (field_sz * i);
1123 			newval = (newval & mask) |
1124 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
1125 					<< (field_sz * i));
1126 		}
1127 
1128 	return phy_write_mmd(phydev, 2, reg, newval);
1129 }
1130 
1131 /* Center KSZ9031RNX FLP timing at 16ms. */
1132 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1133 {
1134 	int result;
1135 
1136 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1137 			       0x0006);
1138 	if (result)
1139 		return result;
1140 
1141 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1142 			       0x1A80);
1143 	if (result)
1144 		return result;
1145 
1146 	return genphy_restart_aneg(phydev);
1147 }
1148 
1149 /* Enable energy-detect power-down mode */
1150 static int ksz9031_enable_edpd(struct phy_device *phydev)
1151 {
1152 	int reg;
1153 
1154 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1155 	if (reg < 0)
1156 		return reg;
1157 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1158 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
1159 }
1160 
1161 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1162 {
1163 	u16 rx, tx, rx_clk, tx_clk;
1164 	int ret;
1165 
1166 	switch (phydev->interface) {
1167 	case PHY_INTERFACE_MODE_RGMII:
1168 		tx = TX_ND;
1169 		tx_clk = TX_CLK_ND;
1170 		rx = RX_ND;
1171 		rx_clk = RX_CLK_ND;
1172 		break;
1173 	case PHY_INTERFACE_MODE_RGMII_ID:
1174 		tx = TX_ID;
1175 		tx_clk = TX_CLK_ID;
1176 		rx = RX_ID;
1177 		rx_clk = RX_CLK_ID;
1178 		break;
1179 	case PHY_INTERFACE_MODE_RGMII_RXID:
1180 		tx = TX_ND;
1181 		tx_clk = TX_CLK_ND;
1182 		rx = RX_ID;
1183 		rx_clk = RX_CLK_ID;
1184 		break;
1185 	case PHY_INTERFACE_MODE_RGMII_TXID:
1186 		tx = TX_ID;
1187 		tx_clk = TX_CLK_ID;
1188 		rx = RX_ND;
1189 		rx_clk = RX_CLK_ND;
1190 		break;
1191 	default:
1192 		return 0;
1193 	}
1194 
1195 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1196 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1197 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1198 	if (ret < 0)
1199 		return ret;
1200 
1201 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1202 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1203 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1204 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1205 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1206 	if (ret < 0)
1207 		return ret;
1208 
1209 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1210 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1211 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1212 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1213 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1214 	if (ret < 0)
1215 		return ret;
1216 
1217 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1218 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1219 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1220 }
1221 
1222 static int ksz9031_config_init(struct phy_device *phydev)
1223 {
1224 	const struct device_node *of_node;
1225 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1226 	static const char *rx_data_skews[4] = {
1227 		"rxd0-skew-ps", "rxd1-skew-ps",
1228 		"rxd2-skew-ps", "rxd3-skew-ps"
1229 	};
1230 	static const char *tx_data_skews[4] = {
1231 		"txd0-skew-ps", "txd1-skew-ps",
1232 		"txd2-skew-ps", "txd3-skew-ps"
1233 	};
1234 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1235 	const struct device *dev_walker;
1236 	int result;
1237 
1238 	result = ksz9031_enable_edpd(phydev);
1239 	if (result < 0)
1240 		return result;
1241 
1242 	/* The Micrel driver has a deprecated option to place phy OF
1243 	 * properties in the MAC node. Walk up the tree of devices to
1244 	 * find a device with an OF node.
1245 	 */
1246 	dev_walker = &phydev->mdio.dev;
1247 	do {
1248 		of_node = dev_walker->of_node;
1249 		dev_walker = dev_walker->parent;
1250 	} while (!of_node && dev_walker);
1251 
1252 	if (of_node) {
1253 		bool update = false;
1254 
1255 		if (phy_interface_is_rgmii(phydev)) {
1256 			result = ksz9031_config_rgmii_delay(phydev);
1257 			if (result < 0)
1258 				return result;
1259 		}
1260 
1261 		ksz9031_of_load_skew_values(phydev, of_node,
1262 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1263 				clk_skews, 2, &update);
1264 
1265 		ksz9031_of_load_skew_values(phydev, of_node,
1266 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1267 				control_skews, 2, &update);
1268 
1269 		ksz9031_of_load_skew_values(phydev, of_node,
1270 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1271 				rx_data_skews, 4, &update);
1272 
1273 		ksz9031_of_load_skew_values(phydev, of_node,
1274 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1275 				tx_data_skews, 4, &update);
1276 
1277 		if (update && !phy_interface_is_rgmii(phydev))
1278 			phydev_warn(phydev,
1279 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1280 
1281 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1282 		 * When the device links in the 1000BASE-T slave mode only,
1283 		 * the optional 125MHz reference output clock (CLK125_NDO)
1284 		 * has wide duty cycle variation.
1285 		 *
1286 		 * The optional CLK125_NDO clock does not meet the RGMII
1287 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1288 		 * cannot be used directly by the MAC side for clocking
1289 		 * applications that have setup/hold time requirements on
1290 		 * rising and falling clock edges.
1291 		 *
1292 		 * Workaround:
1293 		 * Force the phy to be the master to receive a stable clock
1294 		 * which meets the duty cycle requirement.
1295 		 */
1296 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1297 			result = phy_read(phydev, MII_CTRL1000);
1298 			if (result < 0)
1299 				goto err_force_master;
1300 
1301 			/* enable master mode, config & prefer master */
1302 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1303 			result = phy_write(phydev, MII_CTRL1000, result);
1304 			if (result < 0)
1305 				goto err_force_master;
1306 		}
1307 	}
1308 
1309 	return ksz9031_center_flp_timing(phydev);
1310 
1311 err_force_master:
1312 	phydev_err(phydev, "failed to force the phy to master mode\n");
1313 	return result;
1314 }
1315 
1316 #define KSZ9131_SKEW_5BIT_MAX	2400
1317 #define KSZ9131_SKEW_4BIT_MAX	800
1318 #define KSZ9131_OFFSET		700
1319 #define KSZ9131_STEP		100
1320 
1321 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1322 				       struct device_node *of_node,
1323 				       u16 reg, size_t field_sz,
1324 				       char *field[], u8 numfields)
1325 {
1326 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1327 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1328 	int skewval, skewmax = 0;
1329 	int matches = 0;
1330 	u16 maxval;
1331 	u16 newval;
1332 	u16 mask;
1333 	int i;
1334 
1335 	/* psec properties in dts should mean x pico seconds */
1336 	if (field_sz == 5)
1337 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1338 	else
1339 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1340 
1341 	for (i = 0; i < numfields; i++)
1342 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1343 			if (skewval < -KSZ9131_OFFSET)
1344 				skewval = -KSZ9131_OFFSET;
1345 			else if (skewval > skewmax)
1346 				skewval = skewmax;
1347 
1348 			val[i] = skewval + KSZ9131_OFFSET;
1349 			matches++;
1350 		}
1351 
1352 	if (!matches)
1353 		return 0;
1354 
1355 	if (matches < numfields)
1356 		newval = phy_read_mmd(phydev, 2, reg);
1357 	else
1358 		newval = 0;
1359 
1360 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1361 	for (i = 0; i < numfields; i++)
1362 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1363 			mask = 0xffff;
1364 			mask ^= maxval << (field_sz * i);
1365 			newval = (newval & mask) |
1366 				(((val[i] / KSZ9131_STEP) & maxval)
1367 					<< (field_sz * i));
1368 		}
1369 
1370 	return phy_write_mmd(phydev, 2, reg, newval);
1371 }
1372 
1373 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1374 #define KSZ9131RN_RXC_DLL_CTRL		76
1375 #define KSZ9131RN_TXC_DLL_CTRL		77
1376 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1377 
1378 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1379 {
1380 	const struct kszphy_type *type = phydev->drv->driver_data;
1381 	u16 rxcdll_val, txcdll_val;
1382 	int ret;
1383 
1384 	switch (phydev->interface) {
1385 	case PHY_INTERFACE_MODE_RGMII:
1386 		rxcdll_val = type->disable_dll_rx_bit;
1387 		txcdll_val = type->disable_dll_tx_bit;
1388 		break;
1389 	case PHY_INTERFACE_MODE_RGMII_ID:
1390 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1391 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1392 		break;
1393 	case PHY_INTERFACE_MODE_RGMII_RXID:
1394 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1395 		txcdll_val = type->disable_dll_tx_bit;
1396 		break;
1397 	case PHY_INTERFACE_MODE_RGMII_TXID:
1398 		rxcdll_val = type->disable_dll_rx_bit;
1399 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1400 		break;
1401 	default:
1402 		return 0;
1403 	}
1404 
1405 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1406 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1407 			     rxcdll_val);
1408 	if (ret < 0)
1409 		return ret;
1410 
1411 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1412 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1413 			      txcdll_val);
1414 }
1415 
1416 /* Silicon Errata DS80000693B
1417  *
1418  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1419  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1420  * according to the datasheet (off if there is no link).
1421  */
1422 static int ksz9131_led_errata(struct phy_device *phydev)
1423 {
1424 	int reg;
1425 
1426 	reg = phy_read_mmd(phydev, 2, 0);
1427 	if (reg < 0)
1428 		return reg;
1429 
1430 	if (!(reg & BIT(4)))
1431 		return 0;
1432 
1433 	return phy_set_bits(phydev, 0x1e, BIT(9));
1434 }
1435 
1436 static int ksz9131_config_init(struct phy_device *phydev)
1437 {
1438 	struct device_node *of_node;
1439 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1440 	char *rx_data_skews[4] = {
1441 		"rxd0-skew-psec", "rxd1-skew-psec",
1442 		"rxd2-skew-psec", "rxd3-skew-psec"
1443 	};
1444 	char *tx_data_skews[4] = {
1445 		"txd0-skew-psec", "txd1-skew-psec",
1446 		"txd2-skew-psec", "txd3-skew-psec"
1447 	};
1448 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1449 	const struct device *dev_walker;
1450 	int ret;
1451 
1452 	phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1453 
1454 	dev_walker = &phydev->mdio.dev;
1455 	do {
1456 		of_node = dev_walker->of_node;
1457 		dev_walker = dev_walker->parent;
1458 	} while (!of_node && dev_walker);
1459 
1460 	if (!of_node)
1461 		return 0;
1462 
1463 	if (phy_interface_is_rgmii(phydev)) {
1464 		ret = ksz9131_config_rgmii_delay(phydev);
1465 		if (ret < 0)
1466 			return ret;
1467 	}
1468 
1469 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1470 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1471 					  clk_skews, 2);
1472 	if (ret < 0)
1473 		return ret;
1474 
1475 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1476 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1477 					  control_skews, 2);
1478 	if (ret < 0)
1479 		return ret;
1480 
1481 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1482 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1483 					  rx_data_skews, 4);
1484 	if (ret < 0)
1485 		return ret;
1486 
1487 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1488 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1489 					  tx_data_skews, 4);
1490 	if (ret < 0)
1491 		return ret;
1492 
1493 	ret = ksz9131_led_errata(phydev);
1494 	if (ret < 0)
1495 		return ret;
1496 
1497 	return 0;
1498 }
1499 
1500 #define MII_KSZ9131_AUTO_MDIX		0x1C
1501 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1502 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1503 #define MII_KSZ9131_DIG_AXAN_STS	0x14
1504 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET	BIT(14)
1505 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT	BIT(12)
1506 
1507 static int ksz9131_mdix_update(struct phy_device *phydev)
1508 {
1509 	int ret;
1510 
1511 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1512 		phydev->mdix = phydev->mdix_ctrl;
1513 	} else {
1514 		ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1515 		if (ret < 0)
1516 			return ret;
1517 
1518 		if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1519 			if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1520 				phydev->mdix = ETH_TP_MDI;
1521 			else
1522 				phydev->mdix = ETH_TP_MDI_X;
1523 		} else {
1524 			phydev->mdix = ETH_TP_MDI_INVALID;
1525 		}
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1532 {
1533 	u16 val;
1534 
1535 	switch (ctrl) {
1536 	case ETH_TP_MDI:
1537 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1538 		      MII_KSZ9131_AUTO_MDI_SET;
1539 		break;
1540 	case ETH_TP_MDI_X:
1541 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1542 		break;
1543 	case ETH_TP_MDI_AUTO:
1544 		val = 0;
1545 		break;
1546 	default:
1547 		return 0;
1548 	}
1549 
1550 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1551 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1552 			  MII_KSZ9131_AUTO_MDI_SET, val);
1553 }
1554 
1555 static int ksz9131_read_status(struct phy_device *phydev)
1556 {
1557 	int ret;
1558 
1559 	ret = ksz9131_mdix_update(phydev);
1560 	if (ret < 0)
1561 		return ret;
1562 
1563 	return genphy_read_status(phydev);
1564 }
1565 
1566 static int ksz9131_config_aneg(struct phy_device *phydev)
1567 {
1568 	int ret;
1569 
1570 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1571 	if (ret)
1572 		return ret;
1573 
1574 	return genphy_config_aneg(phydev);
1575 }
1576 
1577 static int ksz9477_get_features(struct phy_device *phydev)
1578 {
1579 	int ret;
1580 
1581 	ret = genphy_read_abilities(phydev);
1582 	if (ret)
1583 		return ret;
1584 
1585 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1586 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1587 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1588 	 * of caps.
1589 	 * KSZ8563R should have 100BaseTX/Full only.
1590 	 */
1591 	linkmode_and(phydev->supported_eee, phydev->supported,
1592 		     PHY_EEE_CAP1_FEATURES);
1593 
1594 	return 0;
1595 }
1596 
1597 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1598 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1599 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1600 static int ksz8873mll_read_status(struct phy_device *phydev)
1601 {
1602 	int regval;
1603 
1604 	/* dummy read */
1605 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1606 
1607 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1608 
1609 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1610 		phydev->duplex = DUPLEX_HALF;
1611 	else
1612 		phydev->duplex = DUPLEX_FULL;
1613 
1614 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1615 		phydev->speed = SPEED_10;
1616 	else
1617 		phydev->speed = SPEED_100;
1618 
1619 	phydev->link = 1;
1620 	phydev->pause = phydev->asym_pause = 0;
1621 
1622 	return 0;
1623 }
1624 
1625 static int ksz9031_get_features(struct phy_device *phydev)
1626 {
1627 	int ret;
1628 
1629 	ret = genphy_read_abilities(phydev);
1630 	if (ret < 0)
1631 		return ret;
1632 
1633 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1634 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1635 	 * link-up may fail after a link-up to link-down transition.
1636 	 *
1637 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1638 	 *
1639 	 * Workaround:
1640 	 * Do not enable the Asymmetric Pause capability bit.
1641 	 */
1642 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1643 
1644 	/* We force setting the Pause capability as the core will force the
1645 	 * Asymmetric Pause capability to 1 otherwise.
1646 	 */
1647 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1648 
1649 	return 0;
1650 }
1651 
1652 static int ksz9031_read_status(struct phy_device *phydev)
1653 {
1654 	int err;
1655 	int regval;
1656 
1657 	err = genphy_read_status(phydev);
1658 	if (err)
1659 		return err;
1660 
1661 	/* Make sure the PHY is not broken. Read idle error count,
1662 	 * and reset the PHY if it is maxed out.
1663 	 */
1664 	regval = phy_read(phydev, MII_STAT1000);
1665 	if ((regval & 0xFF) == 0xFF) {
1666 		phy_init_hw(phydev);
1667 		phydev->link = 0;
1668 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1669 			phydev->drv->config_intr(phydev);
1670 		return genphy_config_aneg(phydev);
1671 	}
1672 
1673 	return 0;
1674 }
1675 
1676 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1677 {
1678 	struct kszphy_priv *priv = phydev->priv;
1679 	int ret;
1680 
1681 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1682 	 * Prior to running the cable diagnostics, Auto-negotiation should
1683 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1684 	 * via the Basic Control Register.
1685 	 */
1686 	ret = phy_modify(phydev, MII_BMCR,
1687 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1688 			 BMCR_ANENABLE | BMCR_SPEED100,
1689 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1690 	if (ret)
1691 		return ret;
1692 
1693 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1694 	 * The Master-Slave configuration should be set to Slave by writing
1695 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1696 	 * Register.
1697 	 */
1698 	ret = phy_read(phydev, MII_CTRL1000);
1699 	if (ret < 0)
1700 		return ret;
1701 
1702 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1703 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1704 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1705 	ret |= CTL1000_ENABLE_MASTER;
1706 
1707 	return phy_write(phydev, MII_CTRL1000, ret);
1708 }
1709 
1710 static int ksz9x31_cable_test_result_trans(u16 status)
1711 {
1712 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1713 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1714 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1715 	case KSZ9x31_LMD_VCT_ST_OPEN:
1716 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1717 	case KSZ9x31_LMD_VCT_ST_SHORT:
1718 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1719 	case KSZ9x31_LMD_VCT_ST_FAIL:
1720 		fallthrough;
1721 	default:
1722 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1723 	}
1724 }
1725 
1726 static bool ksz9x31_cable_test_failed(u16 status)
1727 {
1728 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1729 
1730 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1731 }
1732 
1733 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1734 {
1735 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1736 	case KSZ9x31_LMD_VCT_ST_OPEN:
1737 		fallthrough;
1738 	case KSZ9x31_LMD_VCT_ST_SHORT:
1739 		return true;
1740 	}
1741 	return false;
1742 }
1743 
1744 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1745 {
1746 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1747 
1748 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1749 	 *
1750 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1751 	 */
1752 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131) ||
1753 	    phydev_id_compare(phydev, PHY_ID_KSZ9477))
1754 		dt = clamp(dt - 22, 0, 255);
1755 
1756 	return (dt * 400) / 10;
1757 }
1758 
1759 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1760 {
1761 	int val, ret;
1762 
1763 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1764 				    !(val & KSZ9x31_LMD_VCT_EN),
1765 				    30000, 100000, true);
1766 
1767 	return ret < 0 ? ret : 0;
1768 }
1769 
1770 static int ksz9x31_cable_test_get_pair(int pair)
1771 {
1772 	static const int ethtool_pair[] = {
1773 		ETHTOOL_A_CABLE_PAIR_A,
1774 		ETHTOOL_A_CABLE_PAIR_B,
1775 		ETHTOOL_A_CABLE_PAIR_C,
1776 		ETHTOOL_A_CABLE_PAIR_D,
1777 	};
1778 
1779 	return ethtool_pair[pair];
1780 }
1781 
1782 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1783 {
1784 	int ret, val;
1785 
1786 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1787 	 * To test each individual cable pair, set the cable pair in the Cable
1788 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1789 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1790 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1791 	 * will self clear when the test is concluded.
1792 	 */
1793 	ret = phy_write(phydev, KSZ9x31_LMD,
1794 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1795 	if (ret)
1796 		return ret;
1797 
1798 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1799 	if (ret)
1800 		return ret;
1801 
1802 	val = phy_read(phydev, KSZ9x31_LMD);
1803 	if (val < 0)
1804 		return val;
1805 
1806 	if (ksz9x31_cable_test_failed(val))
1807 		return -EAGAIN;
1808 
1809 	ret = ethnl_cable_test_result(phydev,
1810 				      ksz9x31_cable_test_get_pair(pair),
1811 				      ksz9x31_cable_test_result_trans(val));
1812 	if (ret)
1813 		return ret;
1814 
1815 	if (!ksz9x31_cable_test_fault_length_valid(val))
1816 		return 0;
1817 
1818 	return ethnl_cable_test_fault_length(phydev,
1819 					     ksz9x31_cable_test_get_pair(pair),
1820 					     ksz9x31_cable_test_fault_length(phydev, val));
1821 }
1822 
1823 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1824 					 bool *finished)
1825 {
1826 	struct kszphy_priv *priv = phydev->priv;
1827 	unsigned long pair_mask;
1828 	int retries = 20;
1829 	int pair, ret, rv;
1830 
1831 	*finished = false;
1832 
1833 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1834 			      phydev->supported) ||
1835 	    linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
1836 			      phydev->supported))
1837 		pair_mask = 0xf; /* All pairs */
1838 	else
1839 		pair_mask = 0x3; /* Pairs A and B only */
1840 
1841 	/* Try harder if link partner is active */
1842 	while (pair_mask && retries--) {
1843 		for_each_set_bit(pair, &pair_mask, 4) {
1844 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1845 			if (ret == -EAGAIN)
1846 				continue;
1847 			if (ret < 0)
1848 				return ret;
1849 			clear_bit(pair, &pair_mask);
1850 		}
1851 		/* If link partner is in autonegotiation mode it will send 2ms
1852 		 * of FLPs with at least 6ms of silence.
1853 		 * Add 2ms sleep to have better chances to hit this silence.
1854 		 */
1855 		if (pair_mask)
1856 			usleep_range(2000, 3000);
1857 	}
1858 
1859 	/* Report remaining unfinished pair result as unknown. */
1860 	for_each_set_bit(pair, &pair_mask, 4) {
1861 		ret = ethnl_cable_test_result(phydev,
1862 					      ksz9x31_cable_test_get_pair(pair),
1863 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1864 	}
1865 
1866 	*finished = true;
1867 
1868 	/* Restore cached bits from before LinkMD got started. */
1869 	rv = phy_modify(phydev, MII_CTRL1000,
1870 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1871 			priv->vct_ctrl1000);
1872 	if (rv)
1873 		return rv;
1874 
1875 	return ret;
1876 }
1877 
1878 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1879 {
1880 	return 0;
1881 }
1882 
1883 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1884 {
1885 	u16 val;
1886 
1887 	switch (ctrl) {
1888 	case ETH_TP_MDI:
1889 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1890 		break;
1891 	case ETH_TP_MDI_X:
1892 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1893 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1894 		 * sheet seems to be missing:
1895 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1896 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1897 		 */
1898 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1899 		break;
1900 	case ETH_TP_MDI_AUTO:
1901 		val = 0;
1902 		break;
1903 	default:
1904 		return 0;
1905 	}
1906 
1907 	return phy_modify(phydev, MII_BMCR,
1908 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1909 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1910 			  KSZ886X_BMCR_HP_MDIX | val);
1911 }
1912 
1913 static int ksz886x_config_aneg(struct phy_device *phydev)
1914 {
1915 	int ret;
1916 
1917 	ret = genphy_config_aneg(phydev);
1918 	if (ret)
1919 		return ret;
1920 
1921 	if (phydev->autoneg != AUTONEG_ENABLE) {
1922 		/* When autonegotiation is disabled, we need to manually force
1923 		 * the link state. If we don't do this, the PHY will keep
1924 		 * sending Fast Link Pulses (FLPs) which are part of the
1925 		 * autonegotiation process. This is not desired when
1926 		 * autonegotiation is off.
1927 		 */
1928 		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1929 				   KSZ886X_CTRL_FORCE_LINK);
1930 		if (ret)
1931 			return ret;
1932 	} else {
1933 		/* If we had previously forced the link state, we need to
1934 		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1935 		 * will not perform autonegotiation.
1936 		 */
1937 		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1938 				     KSZ886X_CTRL_FORCE_LINK);
1939 		if (ret)
1940 			return ret;
1941 	}
1942 
1943 	/* The MDI-X configuration is automatically changed by the PHY after
1944 	 * switching from autoneg off to on. So, take MDI-X configuration under
1945 	 * own control and set it after autoneg configuration was done.
1946 	 */
1947 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1948 }
1949 
1950 static int ksz886x_mdix_update(struct phy_device *phydev)
1951 {
1952 	int ret;
1953 
1954 	ret = phy_read(phydev, MII_BMCR);
1955 	if (ret < 0)
1956 		return ret;
1957 
1958 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1959 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1960 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1961 		else
1962 			phydev->mdix_ctrl = ETH_TP_MDI;
1963 	} else {
1964 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1965 	}
1966 
1967 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1968 	if (ret < 0)
1969 		return ret;
1970 
1971 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1972 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1973 		phydev->mdix = ETH_TP_MDI_X;
1974 	else
1975 		phydev->mdix = ETH_TP_MDI;
1976 
1977 	return 0;
1978 }
1979 
1980 static int ksz886x_read_status(struct phy_device *phydev)
1981 {
1982 	int ret;
1983 
1984 	ret = ksz886x_mdix_update(phydev);
1985 	if (ret < 0)
1986 		return ret;
1987 
1988 	return genphy_read_status(phydev);
1989 }
1990 
1991 static int ksz9477_mdix_update(struct phy_device *phydev)
1992 {
1993 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO)
1994 		phydev->mdix = phydev->mdix_ctrl;
1995 	else
1996 		phydev->mdix = ETH_TP_MDI_INVALID;
1997 
1998 	return 0;
1999 }
2000 
2001 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev)
2002 {
2003 	int val;
2004 
2005 	val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
2006 	if (val < 0)
2007 		return val;
2008 
2009 	if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF))
2010 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
2011 	else if (val & MII_KSZ9131_AUTO_MDI_SET)
2012 		phydev->mdix_ctrl = ETH_TP_MDI;
2013 	else
2014 		phydev->mdix_ctrl = ETH_TP_MDI_X;
2015 
2016 	return 0;
2017 }
2018 
2019 static int ksz9477_read_status(struct phy_device *phydev)
2020 {
2021 	int ret;
2022 
2023 	ret = ksz9477_mdix_update(phydev);
2024 	if (ret)
2025 		return ret;
2026 
2027 	return genphy_read_status(phydev);
2028 }
2029 
2030 static int ksz9477_config_aneg(struct phy_device *phydev)
2031 {
2032 	int ret;
2033 
2034 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
2035 	if (ret)
2036 		return ret;
2037 
2038 	return genphy_config_aneg(phydev);
2039 }
2040 
2041 struct ksz9477_errata_write {
2042 	u8 dev_addr;
2043 	u8 reg_addr;
2044 	u16 val;
2045 };
2046 
2047 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
2048 	 /* Register settings are needed to improve PHY receive performance */
2049 	{0x01, 0x6f, 0xdd0b},
2050 	{0x01, 0x8f, 0x6032},
2051 	{0x01, 0x9d, 0x248c},
2052 	{0x01, 0x75, 0x0060},
2053 	{0x01, 0xd3, 0x7777},
2054 	{0x1c, 0x06, 0x3008},
2055 	{0x1c, 0x08, 0x2000},
2056 
2057 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
2058 	{0x1c, 0x04, 0x00d0},
2059 
2060 	/* Register settings are required to meet data sheet supply current specifications */
2061 	{0x1c, 0x13, 0x6eff},
2062 	{0x1c, 0x14, 0xe6ff},
2063 	{0x1c, 0x15, 0x6eff},
2064 	{0x1c, 0x16, 0xe6ff},
2065 	{0x1c, 0x17, 0x00ff},
2066 	{0x1c, 0x18, 0x43ff},
2067 	{0x1c, 0x19, 0xc3ff},
2068 	{0x1c, 0x1a, 0x6fff},
2069 	{0x1c, 0x1b, 0x07ff},
2070 	{0x1c, 0x1c, 0x0fff},
2071 	{0x1c, 0x1d, 0xe7ff},
2072 	{0x1c, 0x1e, 0xefff},
2073 	{0x1c, 0x20, 0xeeee},
2074 };
2075 
2076 static int ksz9477_phy_errata(struct phy_device *phydev)
2077 {
2078 	int err;
2079 	int i;
2080 
2081 	/* Apply PHY settings to address errata listed in
2082 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
2083 	 * Silicon Errata and Data Sheet Clarification documents.
2084 	 *
2085 	 * Document notes: Before configuring the PHY MMD registers, it is
2086 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
2087 	 * disabled by writing to register 0xN100-0xN101. After writing the
2088 	 * MMD registers, and after all errata workarounds that involve PHY
2089 	 * register settings, write register 0xN100-0xN101 again to enable
2090 	 * and restart auto-negotiation.
2091 	 */
2092 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
2093 	if (err)
2094 		return err;
2095 
2096 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
2097 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
2098 
2099 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
2100 		if (err)
2101 			return err;
2102 	}
2103 
2104 	return genphy_restart_aneg(phydev);
2105 }
2106 
2107 static int ksz9477_config_init(struct phy_device *phydev)
2108 {
2109 	int err;
2110 
2111 	/* Only KSZ9897 family of switches needs this fix. */
2112 	if ((phydev->phy_id & 0xf) == 1) {
2113 		err = ksz9477_phy_errata(phydev);
2114 		if (err)
2115 			return err;
2116 	}
2117 
2118 	/* Read initial MDI-X config state. So, we do not need to poll it
2119 	 * later on.
2120 	 */
2121 	err = ksz9477_read_mdix_ctrl(phydev);
2122 	if (err)
2123 		return err;
2124 
2125 	return kszphy_config_init(phydev);
2126 }
2127 
2128 static int kszphy_get_sset_count(struct phy_device *phydev)
2129 {
2130 	return ARRAY_SIZE(kszphy_hw_stats);
2131 }
2132 
2133 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
2134 {
2135 	int i;
2136 
2137 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2138 		ethtool_puts(&data, kszphy_hw_stats[i].string);
2139 }
2140 
2141 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
2142 {
2143 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2144 	struct kszphy_priv *priv = phydev->priv;
2145 	int val;
2146 	u64 ret;
2147 
2148 	val = phy_read(phydev, stat.reg);
2149 	if (val < 0) {
2150 		ret = U64_MAX;
2151 	} else {
2152 		val = val & ((1 << stat.bits) - 1);
2153 		priv->stats[i] += val;
2154 		ret = priv->stats[i];
2155 	}
2156 
2157 	return ret;
2158 }
2159 
2160 static void kszphy_get_stats(struct phy_device *phydev,
2161 			     struct ethtool_stats *stats, u64 *data)
2162 {
2163 	int i;
2164 
2165 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2166 		data[i] = kszphy_get_stat(phydev, i);
2167 }
2168 
2169 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313,
2170  * etc. The counter is incremented when the PHY receives a frame with one or
2171  * more symbol errors. The counter is cleared when the register is read.
2172  */
2173 #define MII_KSZ9477_PHY_RXER_COUNTER	0x15
2174 
2175 static int kszphy_update_stats(struct phy_device *phydev)
2176 {
2177 	struct kszphy_priv *priv = phydev->priv;
2178 	int ret;
2179 
2180 	ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER);
2181 	if (ret < 0)
2182 		return ret;
2183 
2184 	priv->phy_stats.rx_err_pkt_cnt += ret;
2185 
2186 	return 0;
2187 }
2188 
2189 static void kszphy_get_phy_stats(struct phy_device *phydev,
2190 				 struct ethtool_eth_phy_stats *eth_stats,
2191 				 struct ethtool_phy_stats *stats)
2192 {
2193 	struct kszphy_priv *priv = phydev->priv;
2194 
2195 	stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt;
2196 }
2197 
2198 /* Base register for Signal Quality Indicator (SQI) - Channel A
2199  *
2200  * MMD Address: MDIO_MMD_PMAPMD (0x01)
2201  * Register:    0xAC (Channel A)
2202  * Each channel (pair) has its own register:
2203  *   Channel A: 0xAC
2204  *   Channel B: 0xAD
2205  *   Channel C: 0xAE
2206  *   Channel D: 0xAF
2207  */
2208 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A	0xac
2209 
2210 /* SQI field mask for bits [14:8]
2211  *
2212  * SQI indicates relative quality of the signal.
2213  * A lower value indicates better signal quality.
2214  */
2215 #define KSZ9477_MMD_SQI_MASK			GENMASK(14, 8)
2216 
2217 #define KSZ9477_MAX_CHANNELS			4
2218 #define KSZ9477_SQI_MAX				7
2219 
2220 /* Number of SQI samples to average for a stable result.
2221  *
2222  * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26)
2223  * For noisy environments, a minimum of 30–50 readings is recommended.
2224  */
2225 #define KSZ9477_SQI_SAMPLE_COUNT		40
2226 
2227 /* The hardware SQI register provides a raw value from 0-127, where a lower
2228  * value indicates better signal quality. However, empirical testing has
2229  * shown that only the 0-7 range is relevant for a functional link. A raw
2230  * value of 8 or higher was measured directly before link drop. This aligns
2231  * with the OPEN Alliance recommendation that SQI=0 should represent the
2232  * pre-failure state.
2233  *
2234  * This table provides a non-linear mapping from the useful raw hardware
2235  * values (0-7) to the standard 0-7 SQI scale, where higher is better.
2236  */
2237 static const u8 ksz_sqi_mapping[] = {
2238 	7, /* raw 0 -> SQI 7 */
2239 	7, /* raw 1 -> SQI 7 */
2240 	6, /* raw 2 -> SQI 6 */
2241 	5, /* raw 3 -> SQI 5 */
2242 	4, /* raw 4 -> SQI 4 */
2243 	3, /* raw 5 -> SQI 3 */
2244 	2, /* raw 6 -> SQI 2 */
2245 	1, /* raw 7 -> SQI 1 */
2246 };
2247 
2248 /**
2249  * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI)
2250  * @phydev: the PHY device
2251  *
2252  * This function reads and processes the raw Signal Quality Index from the
2253  * PHY. Based on empirical testing, a raw value of 8 or higher indicates a
2254  * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are
2255  * mapped to the standard 0-7 SQI scale via a lookup table.
2256  *
2257  * Return: SQI value (0–7), or a negative errno on failure.
2258  */
2259 static int kszphy_get_sqi(struct phy_device *phydev)
2260 {
2261 	int sum[KSZ9477_MAX_CHANNELS] = { 0 };
2262 	int worst_sqi = KSZ9477_SQI_MAX;
2263 	int i, val, raw_sqi, ch;
2264 	u8 channels;
2265 
2266 	/* Determine applicable channels based on link speed */
2267 	if (phydev->speed == SPEED_1000)
2268 		channels = 4;
2269 	else if (phydev->speed == SPEED_100)
2270 		channels = 1;
2271 	else
2272 		return -EOPNOTSUPP;
2273 
2274 	/* Sample and accumulate SQI readings for each pair (currently only one).
2275 	 *
2276 	 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26)
2277 	 * - The SQI register is updated every 2 µs.
2278 	 * - Values may fluctuate significantly, even in low-noise environments.
2279 	 * - For reliable estimation, average a minimum of 30–50 samples
2280 	 *   (recommended for noisy environments)
2281 	 * - In noisy environments, individual readings are highly unreliable.
2282 	 *
2283 	 * We use 40 samples per pair with a delay of 3 µs between each
2284 	 * read to ensure new values are captured (2 µs update interval).
2285 	 */
2286 	for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) {
2287 		for (ch = 0; ch < channels; ch++) {
2288 			val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD,
2289 					   KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch);
2290 			if (val < 0)
2291 				return val;
2292 
2293 			raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val);
2294 			sum[ch] += raw_sqi;
2295 
2296 			/* We communicate with the PHY via MDIO via SPI or
2297 			 * I2C, which is relatively slow. At least slower than
2298 			 * the update interval of the SQI register.
2299 			 * So, we can skip the delay between reads.
2300 			 */
2301 		}
2302 	}
2303 
2304 	/* Calculate average for each channel and find the worst SQI */
2305 	for (ch = 0; ch < channels; ch++) {
2306 		int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT;
2307 		int mapped_sqi;
2308 
2309 		/* Handle the pre-fail/failed state first. */
2310 		if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping))
2311 			mapped_sqi = 0;
2312 		else
2313 			/* Use the lookup table for the good signal range. */
2314 			mapped_sqi = ksz_sqi_mapping[avg_raw_sqi];
2315 
2316 		if (mapped_sqi < worst_sqi)
2317 			worst_sqi = mapped_sqi;
2318 	}
2319 
2320 	return worst_sqi;
2321 }
2322 
2323 static int kszphy_get_sqi_max(struct phy_device *phydev)
2324 {
2325 	return KSZ9477_SQI_MAX;
2326 }
2327 
2328 static void kszphy_enable_clk(struct phy_device *phydev)
2329 {
2330 	struct kszphy_priv *priv = phydev->priv;
2331 
2332 	if (!priv->clk_enable && priv->clk) {
2333 		clk_prepare_enable(priv->clk);
2334 		priv->clk_enable = true;
2335 	}
2336 }
2337 
2338 static void kszphy_disable_clk(struct phy_device *phydev)
2339 {
2340 	struct kszphy_priv *priv = phydev->priv;
2341 
2342 	if (priv->clk_enable && priv->clk) {
2343 		clk_disable_unprepare(priv->clk);
2344 		priv->clk_enable = false;
2345 	}
2346 }
2347 
2348 static int kszphy_generic_resume(struct phy_device *phydev)
2349 {
2350 	kszphy_enable_clk(phydev);
2351 
2352 	return genphy_resume(phydev);
2353 }
2354 
2355 static int kszphy_generic_suspend(struct phy_device *phydev)
2356 {
2357 	int ret;
2358 
2359 	ret = genphy_suspend(phydev);
2360 	if (ret)
2361 		return ret;
2362 
2363 	kszphy_disable_clk(phydev);
2364 
2365 	return 0;
2366 }
2367 
2368 static int kszphy_suspend(struct phy_device *phydev)
2369 {
2370 	/* Disable PHY Interrupts */
2371 	if (phy_interrupt_is_valid(phydev)) {
2372 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
2373 		if (phydev->drv->config_intr)
2374 			phydev->drv->config_intr(phydev);
2375 	}
2376 
2377 	return kszphy_generic_suspend(phydev);
2378 }
2379 
2380 static void kszphy_parse_led_mode(struct phy_device *phydev)
2381 {
2382 	const struct kszphy_type *type = phydev->drv->driver_data;
2383 	const struct device_node *np = phydev->mdio.dev.of_node;
2384 	struct kszphy_priv *priv = phydev->priv;
2385 	int ret;
2386 
2387 	if (type && type->led_mode_reg) {
2388 		ret = of_property_read_u32(np, "micrel,led-mode",
2389 					   &priv->led_mode);
2390 
2391 		if (ret)
2392 			priv->led_mode = -1;
2393 
2394 		if (priv->led_mode > 3) {
2395 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
2396 				   priv->led_mode);
2397 			priv->led_mode = -1;
2398 		}
2399 	} else {
2400 		priv->led_mode = -1;
2401 	}
2402 }
2403 
2404 static int kszphy_resume(struct phy_device *phydev)
2405 {
2406 	int ret;
2407 
2408 	ret = kszphy_generic_resume(phydev);
2409 	if (ret)
2410 		return ret;
2411 
2412 	/* After switching from power-down to normal mode, an internal global
2413 	 * reset is automatically generated. Wait a minimum of 1 ms before
2414 	 * read/write access to the PHY registers.
2415 	 */
2416 	usleep_range(1000, 2000);
2417 
2418 	ret = kszphy_config_reset(phydev);
2419 	if (ret)
2420 		return ret;
2421 
2422 	/* Enable PHY Interrupts */
2423 	if (phy_interrupt_is_valid(phydev)) {
2424 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2425 		if (phydev->drv->config_intr)
2426 			phydev->drv->config_intr(phydev);
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 /* Because of errata DS80000700A, receiver error following software
2433  * power down. Suspend and resume callbacks only disable and enable
2434  * external rmii reference clock.
2435  */
2436 static int ksz8041_resume(struct phy_device *phydev)
2437 {
2438 	kszphy_enable_clk(phydev);
2439 
2440 	return 0;
2441 }
2442 
2443 static int ksz8041_suspend(struct phy_device *phydev)
2444 {
2445 	kszphy_disable_clk(phydev);
2446 
2447 	return 0;
2448 }
2449 
2450 static int ksz9477_resume(struct phy_device *phydev)
2451 {
2452 	int ret;
2453 
2454 	/* No need to initialize registers if not powered down. */
2455 	ret = phy_read(phydev, MII_BMCR);
2456 	if (ret < 0)
2457 		return ret;
2458 	if (!(ret & BMCR_PDOWN))
2459 		return 0;
2460 
2461 	genphy_resume(phydev);
2462 
2463 	/* After switching from power-down to normal mode, an internal global
2464 	 * reset is automatically generated. Wait a minimum of 1 ms before
2465 	 * read/write access to the PHY registers.
2466 	 */
2467 	usleep_range(1000, 2000);
2468 
2469 	/* Only KSZ9897 family of switches needs this fix. */
2470 	if ((phydev->phy_id & 0xf) == 1) {
2471 		ret = ksz9477_phy_errata(phydev);
2472 		if (ret)
2473 			return ret;
2474 	}
2475 
2476 	/* Enable PHY Interrupts */
2477 	if (phy_interrupt_is_valid(phydev)) {
2478 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2479 		if (phydev->drv->config_intr)
2480 			phydev->drv->config_intr(phydev);
2481 	}
2482 
2483 	return 0;
2484 }
2485 
2486 static int ksz8061_resume(struct phy_device *phydev)
2487 {
2488 	int ret;
2489 
2490 	/* This function can be called twice when the Ethernet device is on. */
2491 	ret = phy_read(phydev, MII_BMCR);
2492 	if (ret < 0)
2493 		return ret;
2494 	if (!(ret & BMCR_PDOWN))
2495 		return 0;
2496 
2497 	ret = kszphy_generic_resume(phydev);
2498 	if (ret)
2499 		return ret;
2500 
2501 	usleep_range(1000, 2000);
2502 
2503 	/* Re-program the value after chip is reset. */
2504 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2505 	if (ret)
2506 		return ret;
2507 
2508 	/* Enable PHY Interrupts */
2509 	if (phy_interrupt_is_valid(phydev)) {
2510 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2511 		if (phydev->drv->config_intr)
2512 			phydev->drv->config_intr(phydev);
2513 	}
2514 
2515 	return 0;
2516 }
2517 
2518 static int ksz8061_suspend(struct phy_device *phydev)
2519 {
2520 	return kszphy_suspend(phydev);
2521 }
2522 
2523 static int kszphy_probe(struct phy_device *phydev)
2524 {
2525 	const struct kszphy_type *type = phydev->drv->driver_data;
2526 	const struct device_node *np = phydev->mdio.dev.of_node;
2527 	struct kszphy_priv *priv;
2528 	struct clk *clk;
2529 
2530 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2531 	if (!priv)
2532 		return -ENOMEM;
2533 
2534 	phydev->priv = priv;
2535 
2536 	priv->type = type;
2537 
2538 	kszphy_parse_led_mode(phydev);
2539 
2540 	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2541 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2542 	if (!IS_ERR_OR_NULL(clk)) {
2543 		unsigned long rate = clk_get_rate(clk);
2544 		bool rmii_ref_clk_sel_25_mhz;
2545 
2546 		if (type)
2547 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2548 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2549 				"micrel,rmii-reference-clock-select-25-mhz");
2550 
2551 		if (rate > 24500000 && rate < 25500000) {
2552 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2553 		} else if (rate > 49500000 && rate < 50500000) {
2554 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2555 		} else {
2556 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2557 				   rate);
2558 			return -EINVAL;
2559 		}
2560 	} else if (!clk) {
2561 		/* unnamed clock from the generic ethernet-phy binding */
2562 		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2563 	}
2564 
2565 	if (IS_ERR(clk))
2566 		return PTR_ERR(clk);
2567 
2568 	clk_disable_unprepare(clk);
2569 	priv->clk = clk;
2570 
2571 	if (ksz8041_fiber_mode(phydev))
2572 		phydev->port = PORT_FIBRE;
2573 
2574 	/* Support legacy board-file configuration */
2575 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2576 		priv->rmii_ref_clk_sel = true;
2577 		priv->rmii_ref_clk_sel_val = true;
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 static int lan8814_cable_test_start(struct phy_device *phydev)
2584 {
2585 	/* If autoneg is enabled, we won't be able to test cross pair
2586 	 * short. In this case, the PHY will "detect" a link and
2587 	 * confuse the internal state machine - disable auto neg here.
2588 	 * Set the speed to 1000mbit and full duplex.
2589 	 */
2590 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2591 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2592 }
2593 
2594 static int ksz886x_cable_test_start(struct phy_device *phydev)
2595 {
2596 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2597 		return -EOPNOTSUPP;
2598 
2599 	/* If autoneg is enabled, we won't be able to test cross pair
2600 	 * short. In this case, the PHY will "detect" a link and
2601 	 * confuse the internal state machine - disable auto neg here.
2602 	 * If autoneg is disabled, we should set the speed to 10mbit.
2603 	 */
2604 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2605 }
2606 
2607 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2608 {
2609 	switch (FIELD_GET(mask, status)) {
2610 	case KSZ8081_LMD_STAT_NORMAL:
2611 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2612 	case KSZ8081_LMD_STAT_SHORT:
2613 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2614 	case KSZ8081_LMD_STAT_OPEN:
2615 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2616 	case KSZ8081_LMD_STAT_FAIL:
2617 		fallthrough;
2618 	default:
2619 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2620 	}
2621 }
2622 
2623 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2624 {
2625 	return FIELD_GET(mask, status) ==
2626 		KSZ8081_LMD_STAT_FAIL;
2627 }
2628 
2629 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2630 {
2631 	switch (FIELD_GET(mask, status)) {
2632 	case KSZ8081_LMD_STAT_OPEN:
2633 		fallthrough;
2634 	case KSZ8081_LMD_STAT_SHORT:
2635 		return true;
2636 	}
2637 	return false;
2638 }
2639 
2640 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2641 							   u16 status, u16 data_mask)
2642 {
2643 	int dt;
2644 
2645 	/* According to the data sheet the distance to the fault is
2646 	 * DELTA_TIME * 0.4 meters for ksz phys.
2647 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2648 	 */
2649 	dt = FIELD_GET(data_mask, status);
2650 
2651 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2652 		return ((dt - 22) * 800) / 10;
2653 	else
2654 		return (dt * 400) / 10;
2655 }
2656 
2657 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2658 {
2659 	const struct kszphy_type *type = phydev->drv->driver_data;
2660 	int val, ret;
2661 
2662 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2663 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2664 				    30000, 100000, true);
2665 
2666 	return ret < 0 ? ret : 0;
2667 }
2668 
2669 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2670 {
2671 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2672 					    ETHTOOL_A_CABLE_PAIR_B,
2673 					    ETHTOOL_A_CABLE_PAIR_C,
2674 					    ETHTOOL_A_CABLE_PAIR_D,
2675 					  };
2676 	u32 fault_length;
2677 	int ret;
2678 	int val;
2679 
2680 	val = KSZ8081_LMD_ENABLE_TEST;
2681 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2682 
2683 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2684 	if (ret < 0)
2685 		return ret;
2686 
2687 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2688 	if (ret)
2689 		return ret;
2690 
2691 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2692 	if (val < 0)
2693 		return val;
2694 
2695 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2696 		return -EAGAIN;
2697 
2698 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2699 				      ksz886x_cable_test_result_trans(val,
2700 								      LAN8814_CABLE_DIAG_STAT_MASK
2701 								      ));
2702 	if (ret)
2703 		return ret;
2704 
2705 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2706 		return 0;
2707 
2708 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2709 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2710 
2711 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2712 }
2713 
2714 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2715 {
2716 	static const int ethtool_pair[] = {
2717 		ETHTOOL_A_CABLE_PAIR_A,
2718 		ETHTOOL_A_CABLE_PAIR_B,
2719 	};
2720 	int ret, val, mdix;
2721 	u32 fault_length;
2722 
2723 	/* There is no way to choice the pair, like we do one ksz9031.
2724 	 * We can workaround this limitation by using the MDI-X functionality.
2725 	 */
2726 	if (pair == 0)
2727 		mdix = ETH_TP_MDI;
2728 	else
2729 		mdix = ETH_TP_MDI_X;
2730 
2731 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2732 	case PHY_ID_KSZ8081:
2733 		ret = ksz8081_config_mdix(phydev, mdix);
2734 		break;
2735 	case PHY_ID_KSZ886X:
2736 		ret = ksz886x_config_mdix(phydev, mdix);
2737 		break;
2738 	default:
2739 		ret = -ENODEV;
2740 	}
2741 
2742 	if (ret)
2743 		return ret;
2744 
2745 	/* Now we are ready to fire. This command will send a 100ns pulse
2746 	 * to the pair.
2747 	 */
2748 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2749 	if (ret)
2750 		return ret;
2751 
2752 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2753 	if (ret)
2754 		return ret;
2755 
2756 	val = phy_read(phydev, KSZ8081_LMD);
2757 	if (val < 0)
2758 		return val;
2759 
2760 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2761 		return -EAGAIN;
2762 
2763 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2764 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2765 	if (ret)
2766 		return ret;
2767 
2768 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2769 		return 0;
2770 
2771 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2772 
2773 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2774 }
2775 
2776 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2777 					 bool *finished)
2778 {
2779 	const struct kszphy_type *type = phydev->drv->driver_data;
2780 	unsigned long pair_mask = type->pair_mask;
2781 	int retries = 20;
2782 	int ret = 0;
2783 	int pair;
2784 
2785 	*finished = false;
2786 
2787 	/* Try harder if link partner is active */
2788 	while (pair_mask && retries--) {
2789 		for_each_set_bit(pair, &pair_mask, 4) {
2790 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2791 				ret = lan8814_cable_test_one_pair(phydev, pair);
2792 			else
2793 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2794 			if (ret == -EAGAIN)
2795 				continue;
2796 			if (ret < 0)
2797 				return ret;
2798 			clear_bit(pair, &pair_mask);
2799 		}
2800 		/* If link partner is in autonegotiation mode it will send 2ms
2801 		 * of FLPs with at least 6ms of silence.
2802 		 * Add 2ms sleep to have better chances to hit this silence.
2803 		 */
2804 		if (pair_mask)
2805 			msleep(2);
2806 	}
2807 
2808 	*finished = true;
2809 
2810 	return ret;
2811 }
2812 
2813 /**
2814  * LAN8814_PAGE_PCS - Selects Extended Page 0.
2815  *
2816  * This page contains timers used for auto-negotiation, debug registers and
2817  * register to configure fast link failure.
2818  */
2819 #define LAN8814_PAGE_PCS 0
2820 
2821 /**
2822  * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1.
2823  *
2824  * This page appears to control the Analog Front-End (AFE) and Physical
2825  * Medium Attachment (PMA) layers. It is used to access registers like
2826  * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY.
2827  */
2828 #define LAN8814_PAGE_AFE_PMA 1
2829 
2830 /**
2831  * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2.
2832  *
2833  * This page seems dedicated to the Physical Coding Sublayer (PCS) and other
2834  * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE
2835  * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics
2836  * and self-test counters in the LAN8842.
2837  */
2838 #define LAN8814_PAGE_PCS_DIGITAL 2
2839 
2840 /**
2841  * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4.
2842  *
2843  * This page contains device-common registers that affect the entire chip.
2844  * It includes controls for chip-level resets, strap status, GPIO,
2845  * QSGMII, the shared 1588 PTP block, and the PVT monitor.
2846  */
2847 #define LAN8814_PAGE_COMMON_REGS 4
2848 
2849 /**
2850  * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5.
2851  *
2852  * This page contains port-specific registers that must be accessed
2853  * on a per-port basis. It includes controls for port LEDs, QSGMII PCS,
2854  * rate adaptation FIFOs, and the per-port 1588 TSU block.
2855  */
2856 #define LAN8814_PAGE_PORT_REGS 5
2857 
2858 /**
2859  * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31.
2860  *
2861  * This page appears to hold fundamental system or global controls. In the
2862  * driver, it is used by the related LAN8804 to access the
2863  * LAN8814_CLOCK_MANAGEMENT register.
2864  */
2865 #define LAN8814_PAGE_SYSTEM_CTRL 31
2866 
2867 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2868 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2869 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2870 
2871 #define LAN8814_QSGMII_SOFT_RESET			0x43
2872 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2873 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2874 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2875 #define LAN8814_ALIGN_SWAP				0x4a
2876 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2877 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2878 
2879 #define LAN8804_ALIGN_SWAP				0x4a
2880 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2881 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2882 #define LAN8814_CLOCK_MANAGEMENT			0xd
2883 #define LAN8814_LINK_QUALITY				0x8e
2884 
2885 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2886 {
2887 	int data;
2888 
2889 	phy_lock_mdio_bus(phydev);
2890 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2891 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2892 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2893 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2894 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2895 	phy_unlock_mdio_bus(phydev);
2896 
2897 	return data;
2898 }
2899 
2900 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2901 				 u16 val)
2902 {
2903 	phy_lock_mdio_bus(phydev);
2904 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2905 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2906 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2907 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2908 
2909 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2910 	if (val != 0)
2911 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2912 			   val);
2913 	phy_unlock_mdio_bus(phydev);
2914 	return val;
2915 }
2916 
2917 static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr,
2918 				  u16 mask, u16 set)
2919 {
2920 	int ret;
2921 
2922 	phy_lock_mdio_bus(phydev);
2923 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2924 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2925 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2926 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2927 	ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA,
2928 				   mask, set);
2929 	phy_unlock_mdio_bus(phydev);
2930 
2931 	if (ret < 0)
2932 		phydev_err(phydev, "__phy_modify_changed() failed: %pe\n",
2933 			   ERR_PTR(ret));
2934 
2935 	return ret;
2936 }
2937 
2938 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2939 {
2940 	u16 val = 0;
2941 
2942 	if (enable)
2943 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2944 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2945 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2946 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2947 
2948 	return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2949 				     PTP_TSU_INT_EN, val);
2950 }
2951 
2952 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2953 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2954 {
2955 	*seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2956 					PTP_RX_INGRESS_SEC_HI);
2957 	*seconds = (*seconds << 16) |
2958 		   lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2959 					PTP_RX_INGRESS_SEC_LO);
2960 
2961 	*nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2962 					     PTP_RX_INGRESS_NS_HI);
2963 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2964 			lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2965 					     PTP_RX_INGRESS_NS_LO);
2966 
2967 	*seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2968 				       PTP_RX_MSG_HEADER2);
2969 }
2970 
2971 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2972 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2973 {
2974 	*seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2975 					PTP_TX_EGRESS_SEC_HI);
2976 	*seconds = *seconds << 16 |
2977 		   lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2978 					PTP_TX_EGRESS_SEC_LO);
2979 
2980 	*nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2981 					     PTP_TX_EGRESS_NS_HI);
2982 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2983 			lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2984 					     PTP_TX_EGRESS_NS_LO);
2985 
2986 	*seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
2987 				       PTP_TX_MSG_HEADER2);
2988 }
2989 
2990 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
2991 {
2992 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2993 	struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev);
2994 
2995 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2996 				SOF_TIMESTAMPING_RX_HARDWARE |
2997 				SOF_TIMESTAMPING_RAW_HARDWARE;
2998 
2999 	info->phc_index = ptp_clock_index(shared->ptp_clock);
3000 
3001 	info->tx_types =
3002 		(1 << HWTSTAMP_TX_OFF) |
3003 		(1 << HWTSTAMP_TX_ON) |
3004 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
3005 
3006 	info->rx_filters =
3007 		(1 << HWTSTAMP_FILTER_NONE) |
3008 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
3009 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3010 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3011 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3012 
3013 	return 0;
3014 }
3015 
3016 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
3017 {
3018 	int i;
3019 
3020 	for (i = 0; i < FIFO_SIZE; ++i)
3021 		lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3022 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
3023 
3024 	/* Read to clear overflow status bit */
3025 	lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS);
3026 }
3027 
3028 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
3029 			    struct kernel_hwtstamp_config *config,
3030 			    struct netlink_ext_ack *extack)
3031 {
3032 	struct kszphy_ptp_priv *ptp_priv =
3033 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3034 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
3035 	int txcfg = 0, rxcfg = 0;
3036 	int pkt_ts_enable;
3037 
3038 	ptp_priv->hwts_tx_type = config->tx_type;
3039 	ptp_priv->rx_filter = config->rx_filter;
3040 
3041 	switch (config->rx_filter) {
3042 	case HWTSTAMP_FILTER_NONE:
3043 		ptp_priv->layer = 0;
3044 		ptp_priv->version = 0;
3045 		break;
3046 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3047 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3048 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3049 		ptp_priv->layer = PTP_CLASS_L4;
3050 		ptp_priv->version = PTP_CLASS_V2;
3051 		break;
3052 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3053 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3054 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3055 		ptp_priv->layer = PTP_CLASS_L2;
3056 		ptp_priv->version = PTP_CLASS_V2;
3057 		break;
3058 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3059 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3060 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3061 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3062 		ptp_priv->version = PTP_CLASS_V2;
3063 		break;
3064 	default:
3065 		return -ERANGE;
3066 	}
3067 
3068 	if (ptp_priv->layer & PTP_CLASS_L2) {
3069 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3070 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3071 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3072 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3073 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3074 	}
3075 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3076 			      PTP_RX_PARSE_CONFIG, rxcfg);
3077 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3078 			      PTP_TX_PARSE_CONFIG, txcfg);
3079 
3080 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3081 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3082 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3083 			      PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3084 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3085 			      PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3086 
3087 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
3088 		lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3089 				       PTP_TX_MOD,
3090 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3091 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
3092 	} else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
3093 		lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3094 				       PTP_TX_MOD,
3095 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3096 				       0);
3097 	}
3098 
3099 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
3100 		lan8814_config_ts_intr(ptp_priv->phydev, true);
3101 	else
3102 		lan8814_config_ts_intr(ptp_priv->phydev, false);
3103 
3104 	/* In case of multiple starts and stops, these needs to be cleared */
3105 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
3106 		list_del(&rx_ts->list);
3107 		kfree(rx_ts);
3108 	}
3109 	skb_queue_purge(&ptp_priv->rx_queue);
3110 	skb_queue_purge(&ptp_priv->tx_queue);
3111 
3112 	lan8814_flush_fifo(ptp_priv->phydev, false);
3113 	lan8814_flush_fifo(ptp_priv->phydev, true);
3114 
3115 	return 0;
3116 }
3117 
3118 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
3119 			     struct sk_buff *skb, int type)
3120 {
3121 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3122 
3123 	switch (ptp_priv->hwts_tx_type) {
3124 	case HWTSTAMP_TX_ONESTEP_SYNC:
3125 		if (ptp_msg_is_sync(skb, type)) {
3126 			kfree_skb(skb);
3127 			return;
3128 		}
3129 		fallthrough;
3130 	case HWTSTAMP_TX_ON:
3131 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3132 		skb_queue_tail(&ptp_priv->tx_queue, skb);
3133 		break;
3134 	case HWTSTAMP_TX_OFF:
3135 	default:
3136 		kfree_skb(skb);
3137 		break;
3138 	}
3139 }
3140 
3141 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
3142 {
3143 	struct ptp_header *ptp_header;
3144 	u32 type;
3145 
3146 	skb_push(skb, ETH_HLEN);
3147 	type = ptp_classify_raw(skb);
3148 	ptp_header = ptp_parse_header(skb, type);
3149 	skb_pull_inline(skb, ETH_HLEN);
3150 
3151 	if (!ptp_header)
3152 		return false;
3153 
3154 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3155 	return true;
3156 }
3157 
3158 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
3159 				 struct sk_buff *skb)
3160 {
3161 	struct skb_shared_hwtstamps *shhwtstamps;
3162 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
3163 	unsigned long flags;
3164 	bool ret = false;
3165 	u16 skb_sig;
3166 
3167 	if (!lan8814_get_sig_rx(skb, &skb_sig))
3168 		return ret;
3169 
3170 	/* Iterate over all RX timestamps and match it with the received skbs */
3171 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3172 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
3173 		/* Check if we found the signature we were looking for. */
3174 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3175 			continue;
3176 
3177 		shhwtstamps = skb_hwtstamps(skb);
3178 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3179 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
3180 						  rx_ts->nsec);
3181 		list_del(&rx_ts->list);
3182 		kfree(rx_ts);
3183 
3184 		ret = true;
3185 		break;
3186 	}
3187 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3188 
3189 	if (ret)
3190 		netif_rx(skb);
3191 	return ret;
3192 }
3193 
3194 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
3195 {
3196 	struct kszphy_ptp_priv *ptp_priv =
3197 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3198 
3199 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3200 	    type == PTP_CLASS_NONE)
3201 		return false;
3202 
3203 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3204 		return false;
3205 
3206 	/* If we failed to match then add it to the queue for when the timestamp
3207 	 * will come
3208 	 */
3209 	if (!lan8814_match_rx_skb(ptp_priv, skb))
3210 		skb_queue_tail(&ptp_priv->rx_queue, skb);
3211 
3212 	return true;
3213 }
3214 
3215 static void lan8814_ptp_clock_set(struct phy_device *phydev,
3216 				  time64_t sec, u32 nsec)
3217 {
3218 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3219 			      PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
3220 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3221 			      PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
3222 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3223 			      PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
3224 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3225 			      PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
3226 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3227 			      PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
3228 
3229 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3230 			      PTP_CMD_CTL_PTP_CLOCK_LOAD_);
3231 }
3232 
3233 static void lan8814_ptp_clock_get(struct phy_device *phydev,
3234 				  time64_t *sec, u32 *nsec)
3235 {
3236 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3237 			      PTP_CMD_CTL_PTP_CLOCK_READ_);
3238 
3239 	*sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3240 				    PTP_CLOCK_READ_SEC_HI);
3241 	*sec <<= 16;
3242 	*sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3243 				     PTP_CLOCK_READ_SEC_MID);
3244 	*sec <<= 16;
3245 	*sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3246 				     PTP_CLOCK_READ_SEC_LO);
3247 
3248 	*nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3249 				     PTP_CLOCK_READ_NS_HI);
3250 	*nsec <<= 16;
3251 	*nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3252 				      PTP_CLOCK_READ_NS_LO);
3253 }
3254 
3255 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
3256 				   struct timespec64 *ts)
3257 {
3258 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3259 							  ptp_clock_info);
3260 	struct phy_device *phydev = shared->phydev;
3261 	u32 nano_seconds;
3262 	time64_t seconds;
3263 
3264 	mutex_lock(&shared->shared_lock);
3265 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
3266 	mutex_unlock(&shared->shared_lock);
3267 	ts->tv_sec = seconds;
3268 	ts->tv_nsec = nano_seconds;
3269 
3270 	return 0;
3271 }
3272 
3273 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
3274 				   const struct timespec64 *ts)
3275 {
3276 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3277 							  ptp_clock_info);
3278 	struct phy_device *phydev = shared->phydev;
3279 
3280 	mutex_lock(&shared->shared_lock);
3281 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
3282 	mutex_unlock(&shared->shared_lock);
3283 
3284 	return 0;
3285 }
3286 
3287 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
3288 				   s64 start_sec, u32 start_nsec)
3289 {
3290 	/* Set the start time */
3291 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3292 			      LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
3293 			      lower_16_bits(start_sec));
3294 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3295 			      LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
3296 			      upper_16_bits(start_sec));
3297 
3298 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3299 			      LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
3300 			      lower_16_bits(start_nsec));
3301 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3302 			      LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
3303 			      upper_16_bits(start_nsec) & 0x3fff);
3304 }
3305 
3306 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
3307 {
3308 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
3309 			       sec + LAN8814_BUFFER_TIME, 0);
3310 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
3311 			       sec + LAN8814_BUFFER_TIME, 0);
3312 }
3313 
3314 static void lan8814_ptp_clock_step(struct phy_device *phydev,
3315 				   s64 time_step_ns)
3316 {
3317 	u32 nano_seconds_step;
3318 	u64 abs_time_step_ns;
3319 	time64_t set_seconds;
3320 	u32 nano_seconds;
3321 	u32 remainder;
3322 	s32 seconds;
3323 
3324 	if (time_step_ns >  15000000000LL) {
3325 		/* convert to clock set */
3326 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
3327 		set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
3328 					   &remainder);
3329 		nano_seconds += remainder;
3330 		if (nano_seconds >= 1000000000) {
3331 			set_seconds++;
3332 			nano_seconds -= 1000000000;
3333 		}
3334 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
3335 		lan8814_ptp_update_target(phydev, set_seconds);
3336 		return;
3337 	} else if (time_step_ns < -15000000000LL) {
3338 		/* convert to clock set */
3339 		time_step_ns = -time_step_ns;
3340 
3341 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
3342 		set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
3343 					   &remainder);
3344 		nano_seconds_step = remainder;
3345 		if (nano_seconds < nano_seconds_step) {
3346 			set_seconds--;
3347 			nano_seconds += 1000000000;
3348 		}
3349 		nano_seconds -= nano_seconds_step;
3350 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
3351 		lan8814_ptp_update_target(phydev, set_seconds);
3352 		return;
3353 	}
3354 
3355 	/* do clock step */
3356 	if (time_step_ns >= 0) {
3357 		abs_time_step_ns = (u64)time_step_ns;
3358 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
3359 					   &remainder);
3360 		nano_seconds = remainder;
3361 	} else {
3362 		abs_time_step_ns = (u64)(-time_step_ns);
3363 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
3364 			    &remainder));
3365 		nano_seconds = remainder;
3366 		if (nano_seconds > 0) {
3367 			/* subtracting nano seconds is not allowed
3368 			 * convert to subtracting from seconds,
3369 			 * and adding to nanoseconds
3370 			 */
3371 			seconds--;
3372 			nano_seconds = (1000000000 - nano_seconds);
3373 		}
3374 	}
3375 
3376 	if (nano_seconds > 0) {
3377 		/* add 8 ns to cover the likely normal increment */
3378 		nano_seconds += 8;
3379 	}
3380 
3381 	if (nano_seconds >= 1000000000) {
3382 		/* carry into seconds */
3383 		seconds++;
3384 		nano_seconds -= 1000000000;
3385 	}
3386 
3387 	while (seconds) {
3388 		u32 nsec;
3389 
3390 		if (seconds > 0) {
3391 			u32 adjustment_value = (u32)seconds;
3392 			u16 adjustment_value_lo, adjustment_value_hi;
3393 
3394 			if (adjustment_value > 0xF)
3395 				adjustment_value = 0xF;
3396 
3397 			adjustment_value_lo = adjustment_value & 0xffff;
3398 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3399 
3400 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3401 					      PTP_LTC_STEP_ADJ_LO,
3402 					      adjustment_value_lo);
3403 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3404 					      PTP_LTC_STEP_ADJ_HI,
3405 					      PTP_LTC_STEP_ADJ_DIR_ |
3406 					      adjustment_value_hi);
3407 			seconds -= ((s32)adjustment_value);
3408 
3409 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3410 			set_seconds -= adjustment_value;
3411 			lan8814_ptp_update_target(phydev, set_seconds);
3412 		} else {
3413 			u32 adjustment_value = (u32)(-seconds);
3414 			u16 adjustment_value_lo, adjustment_value_hi;
3415 
3416 			if (adjustment_value > 0xF)
3417 				adjustment_value = 0xF;
3418 
3419 			adjustment_value_lo = adjustment_value & 0xffff;
3420 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3421 
3422 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3423 					      PTP_LTC_STEP_ADJ_LO,
3424 					      adjustment_value_lo);
3425 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3426 					      PTP_LTC_STEP_ADJ_HI,
3427 					      adjustment_value_hi);
3428 			seconds += ((s32)adjustment_value);
3429 
3430 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3431 			set_seconds += adjustment_value;
3432 			lan8814_ptp_update_target(phydev, set_seconds);
3433 		}
3434 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3435 				      PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
3436 	}
3437 	if (nano_seconds) {
3438 		u16 nano_seconds_lo;
3439 		u16 nano_seconds_hi;
3440 
3441 		nano_seconds_lo = nano_seconds & 0xffff;
3442 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
3443 
3444 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3445 				      PTP_LTC_STEP_ADJ_LO,
3446 				      nano_seconds_lo);
3447 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3448 				      PTP_LTC_STEP_ADJ_HI,
3449 				      PTP_LTC_STEP_ADJ_DIR_ |
3450 				      nano_seconds_hi);
3451 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3452 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
3453 	}
3454 }
3455 
3456 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
3457 {
3458 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3459 							  ptp_clock_info);
3460 	struct phy_device *phydev = shared->phydev;
3461 
3462 	mutex_lock(&shared->shared_lock);
3463 	lan8814_ptp_clock_step(phydev, delta);
3464 	mutex_unlock(&shared->shared_lock);
3465 
3466 	return 0;
3467 }
3468 
3469 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
3470 {
3471 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3472 							  ptp_clock_info);
3473 	struct phy_device *phydev = shared->phydev;
3474 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
3475 	bool positive = true;
3476 	u32 kszphy_rate_adj;
3477 
3478 	if (scaled_ppm < 0) {
3479 		scaled_ppm = -scaled_ppm;
3480 		positive = false;
3481 	}
3482 
3483 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
3484 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
3485 
3486 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
3487 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
3488 
3489 	if (positive)
3490 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
3491 
3492 	mutex_lock(&shared->shared_lock);
3493 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI,
3494 			      kszphy_rate_adj_hi);
3495 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO,
3496 			      kszphy_rate_adj_lo);
3497 	mutex_unlock(&shared->shared_lock);
3498 
3499 	return 0;
3500 }
3501 
3502 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
3503 				   s64 period_sec, u32 period_nsec)
3504 {
3505 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3506 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
3507 			      lower_16_bits(period_sec));
3508 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3509 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
3510 			      upper_16_bits(period_sec));
3511 
3512 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3513 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
3514 			      lower_16_bits(period_nsec));
3515 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3516 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
3517 			      upper_16_bits(period_nsec) & 0x3fff);
3518 }
3519 
3520 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
3521 				     int pulse_width)
3522 {
3523 	/* Set the pulse width of the event,
3524 	 * Make sure that the target clock will be incremented each time when
3525 	 * local time reaches or pass it
3526 	 * Set the polarity high
3527 	 */
3528 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG,
3529 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) |
3530 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) |
3531 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) |
3532 			       LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event),
3533 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) |
3534 			       LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event));
3535 }
3536 
3537 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
3538 {
3539 	/* Set target to too far in the future, effectively disabling it */
3540 	lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
3541 
3542 	/* And then reload once it reaches the target */
3543 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG,
3544 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event),
3545 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
3546 }
3547 
3548 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
3549 {
3550 	/* Disable gpio alternate function,
3551 	 * 1: select as gpio,
3552 	 * 0: select alt func
3553 	 */
3554 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3555 			       LAN8814_GPIO_EN_ADDR(pin),
3556 			       LAN8814_GPIO_EN_BIT(pin),
3557 			       LAN8814_GPIO_EN_BIT(pin));
3558 
3559 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3560 			       LAN8814_GPIO_DIR_ADDR(pin),
3561 			       LAN8814_GPIO_DIR_BIT(pin),
3562 			       0);
3563 
3564 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3565 			       LAN8814_GPIO_BUF_ADDR(pin),
3566 			       LAN8814_GPIO_BUF_BIT(pin),
3567 			       0);
3568 }
3569 
3570 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3571 {
3572 	/* Set as gpio output */
3573 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3574 			       LAN8814_GPIO_DIR_ADDR(pin),
3575 			       LAN8814_GPIO_DIR_BIT(pin),
3576 			       LAN8814_GPIO_DIR_BIT(pin));
3577 
3578 	/* Enable gpio 0:for alternate function, 1:gpio */
3579 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3580 			       LAN8814_GPIO_EN_ADDR(pin),
3581 			       LAN8814_GPIO_EN_BIT(pin),
3582 			       0);
3583 
3584 	/* Set buffer type to push pull */
3585 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3586 			       LAN8814_GPIO_BUF_ADDR(pin),
3587 			       LAN8814_GPIO_BUF_BIT(pin),
3588 			       LAN8814_GPIO_BUF_BIT(pin));
3589 }
3590 
3591 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3592 			      struct ptp_clock_request *rq, int on)
3593 {
3594 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3595 							  ptp_clock_info);
3596 	struct phy_device *phydev = shared->phydev;
3597 	struct timespec64 ts_on, ts_period;
3598 	s64 on_nsec, period_nsec;
3599 	int pulse_width;
3600 	int pin, event;
3601 
3602 	mutex_lock(&shared->shared_lock);
3603 	event = rq->perout.index;
3604 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3605 	if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3606 		mutex_unlock(&shared->shared_lock);
3607 		return -EBUSY;
3608 	}
3609 
3610 	if (!on) {
3611 		lan8814_ptp_perout_off(phydev, pin);
3612 		lan8814_ptp_disable_event(phydev, event);
3613 		mutex_unlock(&shared->shared_lock);
3614 		return 0;
3615 	}
3616 
3617 	ts_on.tv_sec = rq->perout.on.sec;
3618 	ts_on.tv_nsec = rq->perout.on.nsec;
3619 	on_nsec = timespec64_to_ns(&ts_on);
3620 
3621 	ts_period.tv_sec = rq->perout.period.sec;
3622 	ts_period.tv_nsec = rq->perout.period.nsec;
3623 	period_nsec = timespec64_to_ns(&ts_period);
3624 
3625 	if (period_nsec < 200) {
3626 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3627 				    phydev_name(phydev));
3628 		mutex_unlock(&shared->shared_lock);
3629 		return -EOPNOTSUPP;
3630 	}
3631 
3632 	if (on_nsec >= period_nsec) {
3633 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3634 				    phydev_name(phydev));
3635 		mutex_unlock(&shared->shared_lock);
3636 		return -EINVAL;
3637 	}
3638 
3639 	switch (on_nsec) {
3640 	case 200000000:
3641 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3642 		break;
3643 	case 100000000:
3644 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3645 		break;
3646 	case 50000000:
3647 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3648 		break;
3649 	case 10000000:
3650 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3651 		break;
3652 	case 5000000:
3653 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3654 		break;
3655 	case 1000000:
3656 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3657 		break;
3658 	case 500000:
3659 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3660 		break;
3661 	case 100000:
3662 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3663 		break;
3664 	case 50000:
3665 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3666 		break;
3667 	case 10000:
3668 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3669 		break;
3670 	case 5000:
3671 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3672 		break;
3673 	case 1000:
3674 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3675 		break;
3676 	case 500:
3677 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3678 		break;
3679 	case 100:
3680 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3681 		break;
3682 	default:
3683 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3684 				    phydev_name(phydev));
3685 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3686 		break;
3687 	}
3688 
3689 	/* Configure to pulse every period */
3690 	lan8814_ptp_enable_event(phydev, event, pulse_width);
3691 	lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3692 			       rq->perout.start.nsec);
3693 	lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3694 			       rq->perout.period.nsec);
3695 	lan8814_ptp_perout_on(phydev, pin);
3696 	mutex_unlock(&shared->shared_lock);
3697 
3698 	return 0;
3699 }
3700 
3701 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3702 {
3703 	/* Set as gpio input */
3704 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3705 			       LAN8814_GPIO_DIR_ADDR(pin),
3706 			       LAN8814_GPIO_DIR_BIT(pin),
3707 			       0);
3708 
3709 	/* Map the pin to ltc pin 0 of the capture map registers */
3710 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3711 			       PTP_GPIO_CAP_MAP_LO, pin, pin);
3712 
3713 	/* Enable capture on the edges of the ltc pin */
3714 	if (flags & PTP_RISING_EDGE)
3715 		lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3716 				       PTP_GPIO_CAP_EN,
3717 				       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0),
3718 				       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0));
3719 	if (flags & PTP_FALLING_EDGE)
3720 		lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3721 				       PTP_GPIO_CAP_EN,
3722 				       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0),
3723 				       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0));
3724 
3725 	/* Enable interrupt top interrupt */
3726 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA,
3727 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN,
3728 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN);
3729 }
3730 
3731 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3732 {
3733 	/* Set as gpio out */
3734 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3735 			       LAN8814_GPIO_DIR_ADDR(pin),
3736 			       LAN8814_GPIO_DIR_BIT(pin),
3737 			       LAN8814_GPIO_DIR_BIT(pin));
3738 
3739 	/* Enable alternate, 0:for alternate function, 1:gpio */
3740 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3741 			       LAN8814_GPIO_EN_ADDR(pin),
3742 			       LAN8814_GPIO_EN_BIT(pin),
3743 			       0);
3744 
3745 	/* Clear the mapping of pin to registers 0 of the capture registers */
3746 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3747 			       PTP_GPIO_CAP_MAP_LO,
3748 			       GENMASK(3, 0),
3749 			       0);
3750 
3751 	/* Disable capture on both of the edges */
3752 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN,
3753 			       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
3754 			       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
3755 			       0);
3756 
3757 	/* Disable interrupt top interrupt */
3758 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA,
3759 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN,
3760 			       0);
3761 }
3762 
3763 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3764 			     struct ptp_clock_request *rq, int on)
3765 {
3766 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3767 							  ptp_clock_info);
3768 	struct phy_device *phydev = shared->phydev;
3769 	int pin;
3770 
3771 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3772 			   rq->extts.index);
3773 	if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3774 		return -EINVAL;
3775 
3776 	mutex_lock(&shared->shared_lock);
3777 	if (on)
3778 		lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3779 	else
3780 		lan8814_ptp_extts_off(phydev, pin);
3781 
3782 	mutex_unlock(&shared->shared_lock);
3783 
3784 	return 0;
3785 }
3786 
3787 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3788 				struct ptp_clock_request *rq, int on)
3789 {
3790 	switch (rq->type) {
3791 	case PTP_CLK_REQ_PEROUT:
3792 		return lan8814_ptp_perout(ptpci, rq, on);
3793 	case PTP_CLK_REQ_EXTTS:
3794 		return lan8814_ptp_extts(ptpci, rq, on);
3795 	default:
3796 		return -EINVAL;
3797 	}
3798 }
3799 
3800 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3801 				enum ptp_pin_function func, unsigned int chan)
3802 {
3803 	switch (func) {
3804 	case PTP_PF_NONE:
3805 	case PTP_PF_PEROUT:
3806 		/* Only pins 0 and 1 can generate perout signals. And for pin 0
3807 		 * there is only chan 0 (event A) and for pin 1 there is only
3808 		 * chan 1 (event B)
3809 		 */
3810 		if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3811 			return -1;
3812 		break;
3813 	case PTP_PF_EXTTS:
3814 		if (pin != LAN8814_PTP_EXTTS_NUM)
3815 			return -1;
3816 		break;
3817 	default:
3818 		return -1;
3819 	}
3820 
3821 	return 0;
3822 }
3823 
3824 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3825 {
3826 	struct ptp_header *ptp_header;
3827 	u32 type;
3828 
3829 	type = ptp_classify_raw(skb);
3830 	ptp_header = ptp_parse_header(skb, type);
3831 
3832 	if (!ptp_header)
3833 		return false;
3834 
3835 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3836 	return true;
3837 }
3838 
3839 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3840 				 u32 seconds, u32 nsec, u16 seq_id)
3841 {
3842 	struct skb_shared_hwtstamps shhwtstamps;
3843 	struct sk_buff *skb, *skb_tmp;
3844 	unsigned long flags;
3845 	bool ret = false;
3846 	u16 skb_sig;
3847 
3848 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3849 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3850 		if (!lan8814_get_sig_tx(skb, &skb_sig))
3851 			continue;
3852 
3853 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3854 			continue;
3855 
3856 		__skb_unlink(skb, &ptp_priv->tx_queue);
3857 		ret = true;
3858 		break;
3859 	}
3860 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3861 
3862 	if (ret) {
3863 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3864 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3865 		skb_complete_tx_timestamp(skb, &shhwtstamps);
3866 	}
3867 }
3868 
3869 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3870 {
3871 	struct phy_device *phydev = ptp_priv->phydev;
3872 	u32 seconds, nsec;
3873 	u16 seq_id;
3874 
3875 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3876 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3877 }
3878 
3879 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3880 {
3881 	struct phy_device *phydev = ptp_priv->phydev;
3882 	u32 reg;
3883 
3884 	do {
3885 		lan8814_dequeue_tx_skb(ptp_priv);
3886 
3887 		/* If other timestamps are available in the FIFO,
3888 		 * process them.
3889 		 */
3890 		reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3891 					   PTP_CAP_INFO);
3892 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
3893 }
3894 
3895 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
3896 			      struct lan8814_ptp_rx_ts *rx_ts)
3897 {
3898 	struct skb_shared_hwtstamps *shhwtstamps;
3899 	struct sk_buff *skb, *skb_tmp;
3900 	unsigned long flags;
3901 	bool ret = false;
3902 	u16 skb_sig;
3903 
3904 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
3905 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
3906 		if (!lan8814_get_sig_rx(skb, &skb_sig))
3907 			continue;
3908 
3909 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3910 			continue;
3911 
3912 		__skb_unlink(skb, &ptp_priv->rx_queue);
3913 
3914 		ret = true;
3915 		break;
3916 	}
3917 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
3918 
3919 	if (ret) {
3920 		shhwtstamps = skb_hwtstamps(skb);
3921 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3922 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3923 		netif_rx(skb);
3924 	}
3925 
3926 	return ret;
3927 }
3928 
3929 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3930 				struct lan8814_ptp_rx_ts *rx_ts)
3931 {
3932 	unsigned long flags;
3933 
3934 	/* If we failed to match the skb add it to the queue for when
3935 	 * the frame will come
3936 	 */
3937 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3938 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3939 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3940 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3941 	} else {
3942 		kfree(rx_ts);
3943 	}
3944 }
3945 
3946 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3947 {
3948 	struct phy_device *phydev = ptp_priv->phydev;
3949 	struct lan8814_ptp_rx_ts *rx_ts;
3950 	u32 reg;
3951 
3952 	do {
3953 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3954 		if (!rx_ts)
3955 			return;
3956 
3957 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3958 				      &rx_ts->seq_id);
3959 		lan8814_match_rx_ts(ptp_priv, rx_ts);
3960 
3961 		/* If other timestamps are available in the FIFO,
3962 		 * process them.
3963 		 */
3964 		reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3965 					   PTP_CAP_INFO);
3966 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3967 }
3968 
3969 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3970 {
3971 	struct kszphy_priv *priv = phydev->priv;
3972 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3973 
3974 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3975 		lan8814_get_tx_ts(ptp_priv);
3976 
3977 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3978 		lan8814_get_rx_ts(ptp_priv);
3979 
3980 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3981 		lan8814_flush_fifo(phydev, true);
3982 		skb_queue_purge(&ptp_priv->tx_queue);
3983 	}
3984 
3985 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3986 		lan8814_flush_fifo(phydev, false);
3987 		skb_queue_purge(&ptp_priv->rx_queue);
3988 	}
3989 }
3990 
3991 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
3992 {
3993 	struct phy_device *phydev = shared->phydev;
3994 	struct ptp_clock_event ptp_event = {0};
3995 	unsigned long nsec;
3996 	s64 sec;
3997 	u16 tmp;
3998 
3999 	/* This is 0 because whatever was the input pin it was mapped it to
4000 	 * ltc gpio pin 0
4001 	 */
4002 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL,
4003 			       PTP_GPIO_SEL_GPIO_SEL(0),
4004 			       PTP_GPIO_SEL_GPIO_SEL(0));
4005 
4006 	tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4007 				   PTP_GPIO_CAP_STS);
4008 	if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
4009 	    !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
4010 		return -1;
4011 
4012 	if (tmp & BIT(0)) {
4013 		sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4014 					   PTP_GPIO_RE_LTC_SEC_HI_CAP);
4015 		sec <<= 16;
4016 		sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4017 					    PTP_GPIO_RE_LTC_SEC_LO_CAP);
4018 
4019 		nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4020 					    PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4021 		nsec <<= 16;
4022 		nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4023 					     PTP_GPIO_RE_LTC_NS_LO_CAP);
4024 	} else {
4025 		sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4026 					   PTP_GPIO_FE_LTC_SEC_HI_CAP);
4027 		sec <<= 16;
4028 		sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4029 					    PTP_GPIO_FE_LTC_SEC_LO_CAP);
4030 
4031 		nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4032 					    PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4033 		nsec <<= 16;
4034 		nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4035 					     PTP_GPIO_RE_LTC_NS_LO_CAP);
4036 	}
4037 
4038 	ptp_event.index = 0;
4039 	ptp_event.timestamp = ktime_set(sec, nsec);
4040 	ptp_event.type = PTP_CLOCK_EXTTS;
4041 	ptp_clock_event(shared->ptp_clock, &ptp_event);
4042 
4043 	return 0;
4044 }
4045 
4046 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
4047 {
4048 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
4049 	int ret;
4050 
4051 	mutex_lock(&shared->shared_lock);
4052 	ret = lan8814_gpio_process_cap(shared);
4053 	mutex_unlock(&shared->shared_lock);
4054 
4055 	return ret;
4056 }
4057 
4058 static int lan8804_config_init(struct phy_device *phydev)
4059 {
4060 	/* MDI-X setting for swap A,B transmit */
4061 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP,
4062 			       LAN8804_ALIGN_TX_A_B_SWAP_MASK,
4063 			       LAN8804_ALIGN_TX_A_B_SWAP);
4064 
4065 	/* Make sure that the PHY will not stop generating the clock when the
4066 	 * link partner goes down
4067 	 */
4068 	lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL,
4069 			      LAN8814_CLOCK_MANAGEMENT, 0x27e);
4070 	lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY);
4071 
4072 	return 0;
4073 }
4074 
4075 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
4076 {
4077 	int status;
4078 
4079 	status = phy_read(phydev, LAN8814_INTS);
4080 	if (status < 0) {
4081 		phy_error(phydev);
4082 		return IRQ_NONE;
4083 	}
4084 
4085 	if (status > 0)
4086 		phy_trigger_machine(phydev);
4087 
4088 	return IRQ_HANDLED;
4089 }
4090 
4091 #define LAN8804_OUTPUT_CONTROL			25
4092 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
4093 #define LAN8804_CONTROL				31
4094 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
4095 
4096 static int lan8804_config_intr(struct phy_device *phydev)
4097 {
4098 	int err;
4099 
4100 	/* This is an internal PHY of lan966x and is not possible to change the
4101 	 * polarity on the GIC found in lan966x, therefore change the polarity
4102 	 * of the interrupt in the PHY from being active low instead of active
4103 	 * high.
4104 	 */
4105 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
4106 
4107 	/* By default interrupt buffer is open-drain in which case the interrupt
4108 	 * can be active only low. Therefore change the interrupt buffer to be
4109 	 * push-pull to be able to change interrupt polarity
4110 	 */
4111 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
4112 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
4113 
4114 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4115 		err = phy_read(phydev, LAN8814_INTS);
4116 		if (err < 0)
4117 			return err;
4118 
4119 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
4120 		if (err)
4121 			return err;
4122 	} else {
4123 		err = phy_write(phydev, LAN8814_INTC, 0);
4124 		if (err)
4125 			return err;
4126 
4127 		err = phy_read(phydev, LAN8814_INTS);
4128 		if (err < 0)
4129 			return err;
4130 	}
4131 
4132 	return 0;
4133 }
4134 
4135 /* Check if the PHY has 1588 support. There are multiple skus of the PHY and
4136  * some of them support PTP while others don't support it. This function will
4137  * return true is the sku supports it, otherwise will return false.
4138  */
4139 static bool lan8814_has_ptp(struct phy_device *phydev)
4140 {
4141 	struct kszphy_priv *priv = phydev->priv;
4142 
4143 	return priv->is_ptp_available;
4144 }
4145 
4146 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
4147 {
4148 	int ret = IRQ_NONE;
4149 	int irq_status;
4150 
4151 	irq_status = phy_read(phydev, LAN8814_INTS);
4152 	if (irq_status < 0) {
4153 		phy_error(phydev);
4154 		return IRQ_NONE;
4155 	}
4156 
4157 	if (irq_status & LAN8814_INT_LINK) {
4158 		phy_trigger_machine(phydev);
4159 		ret = IRQ_HANDLED;
4160 	}
4161 
4162 	if (!lan8814_has_ptp(phydev))
4163 		return ret;
4164 
4165 	while (true) {
4166 		irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4167 						  PTP_TSU_INT_STS);
4168 		if (!irq_status)
4169 			break;
4170 
4171 		lan8814_handle_ptp_interrupt(phydev, irq_status);
4172 		ret = IRQ_HANDLED;
4173 	}
4174 
4175 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
4176 		ret = IRQ_HANDLED;
4177 
4178 	return ret;
4179 }
4180 
4181 static int lan8814_ack_interrupt(struct phy_device *phydev)
4182 {
4183 	/* bit[12..0] int status, which is a read and clear register. */
4184 	int rc;
4185 
4186 	rc = phy_read(phydev, LAN8814_INTS);
4187 
4188 	return (rc < 0) ? rc : 0;
4189 }
4190 
4191 static int lan8814_config_intr(struct phy_device *phydev)
4192 {
4193 	int err;
4194 
4195 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG,
4196 			      LAN8814_INTR_CTRL_REG_POLARITY |
4197 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
4198 
4199 	/* enable / disable interrupts */
4200 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4201 		err = lan8814_ack_interrupt(phydev);
4202 		if (err)
4203 			return err;
4204 
4205 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
4206 	} else {
4207 		err = phy_write(phydev, LAN8814_INTC, 0);
4208 		if (err)
4209 			return err;
4210 
4211 		err = lan8814_ack_interrupt(phydev);
4212 	}
4213 
4214 	return err;
4215 }
4216 
4217 static void lan8814_ptp_init(struct phy_device *phydev)
4218 {
4219 	struct kszphy_priv *priv = phydev->priv;
4220 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4221 
4222 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
4223 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4224 		return;
4225 
4226 	if (!lan8814_has_ptp(phydev))
4227 		return;
4228 
4229 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4230 			      TSU_HARD_RESET, TSU_HARD_RESET_);
4231 
4232 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD,
4233 			       PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_,
4234 			       PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_);
4235 
4236 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD,
4237 			       PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_,
4238 			       PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_);
4239 
4240 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4241 			      PTP_RX_PARSE_CONFIG, 0);
4242 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4243 			      PTP_TX_PARSE_CONFIG, 0);
4244 
4245 	/* Removing default registers configs related to L2 and IP */
4246 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4247 			      PTP_TX_PARSE_L2_ADDR_EN, 0);
4248 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4249 			      PTP_RX_PARSE_L2_ADDR_EN, 0);
4250 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4251 			      PTP_TX_PARSE_IP_ADDR_EN, 0);
4252 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4253 			      PTP_RX_PARSE_IP_ADDR_EN, 0);
4254 
4255 	/* Disable checking for minorVersionPTP field */
4256 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION,
4257 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
4258 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION,
4259 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
4260 
4261 	skb_queue_head_init(&ptp_priv->tx_queue);
4262 	skb_queue_head_init(&ptp_priv->rx_queue);
4263 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
4264 	spin_lock_init(&ptp_priv->rx_ts_lock);
4265 
4266 	ptp_priv->phydev = phydev;
4267 
4268 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
4269 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4270 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
4271 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
4272 
4273 	phydev->mii_ts = &ptp_priv->mii_ts;
4274 
4275 	/* Timestamp selected by default to keep legacy API */
4276 	phydev->default_timestamp = true;
4277 }
4278 
4279 static int __lan8814_ptp_probe_once(struct phy_device *phydev, char *pin_name,
4280 				    int gpios)
4281 {
4282 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
4283 
4284 	shared->phydev = phydev;
4285 
4286 	/* Initialise shared lock for clock*/
4287 	mutex_init(&shared->shared_lock);
4288 
4289 	shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
4290 						gpios,
4291 						sizeof(*shared->pin_config),
4292 						GFP_KERNEL);
4293 	if (!shared->pin_config)
4294 		return -ENOMEM;
4295 
4296 	for (int i = 0; i < gpios; i++) {
4297 		struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
4298 
4299 		memset(ptp_pin, 0, sizeof(*ptp_pin));
4300 		snprintf(ptp_pin->name,
4301 			 sizeof(ptp_pin->name), "%s_%02d", pin_name, i);
4302 		ptp_pin->index = i;
4303 		ptp_pin->func =  PTP_PF_NONE;
4304 	}
4305 
4306 	shared->ptp_clock_info.owner = THIS_MODULE;
4307 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
4308 	shared->ptp_clock_info.max_adj = 31249999;
4309 	shared->ptp_clock_info.n_alarm = 0;
4310 	shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
4311 	shared->ptp_clock_info.n_pins = gpios;
4312 	shared->ptp_clock_info.pps = 0;
4313 	shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE |
4314 						       PTP_FALLING_EDGE |
4315 						       PTP_STRICT_FLAGS;
4316 	shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE;
4317 	shared->ptp_clock_info.pin_config = shared->pin_config;
4318 	shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
4319 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
4320 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
4321 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
4322 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
4323 	shared->ptp_clock_info.getcrosststamp = NULL;
4324 	shared->ptp_clock_info.enable = lan8814_ptpci_enable;
4325 	shared->ptp_clock_info.verify = lan8814_ptpci_verify;
4326 
4327 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
4328 					       &phydev->mdio.dev);
4329 	if (IS_ERR(shared->ptp_clock)) {
4330 		phydev_err(phydev, "ptp_clock_register failed %pe\n",
4331 			   shared->ptp_clock);
4332 		return -EINVAL;
4333 	}
4334 
4335 	/* Check if PHC support is missing at the configuration level */
4336 	if (!shared->ptp_clock)
4337 		return 0;
4338 
4339 	phydev_dbg(phydev, "successfully registered ptp clock\n");
4340 
4341 	/* The EP.4 is shared between all the PHYs in the package and also it
4342 	 * can be accessed by any of the PHYs
4343 	 */
4344 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4345 			      LTC_HARD_RESET, LTC_HARD_RESET_);
4346 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE,
4347 			      PTP_OPERATING_MODE_STANDALONE_);
4348 
4349 	/* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
4350 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
4351 			      PTP_CMD_CTL_PTP_ENABLE_);
4352 
4353 	return 0;
4354 }
4355 
4356 static int lan8814_ptp_probe_once(struct phy_device *phydev)
4357 {
4358 	if (!lan8814_has_ptp(phydev))
4359 		return 0;
4360 
4361 	return __lan8814_ptp_probe_once(phydev, "lan8814_ptp_pin",
4362 					LAN8814_PTP_GPIO_NUM);
4363 }
4364 
4365 static void lan8814_setup_led(struct phy_device *phydev, int val)
4366 {
4367 	int temp;
4368 
4369 	temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4370 				    LAN8814_LED_CTRL_1);
4371 
4372 	if (val)
4373 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
4374 	else
4375 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
4376 
4377 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4378 			      LAN8814_LED_CTRL_1, temp);
4379 }
4380 
4381 static int lan8814_config_init(struct phy_device *phydev)
4382 {
4383 	struct kszphy_priv *lan8814 = phydev->priv;
4384 
4385 	/* Reset the PHY */
4386 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4387 			       LAN8814_QSGMII_SOFT_RESET,
4388 			       LAN8814_QSGMII_SOFT_RESET_BIT,
4389 			       LAN8814_QSGMII_SOFT_RESET_BIT);
4390 
4391 	/* Disable ANEG with QSGMII PCS Host side */
4392 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4393 			       LAN8814_QSGMII_PCS1G_ANEG_CONFIG,
4394 			       LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA,
4395 			       0);
4396 
4397 	/* MDI-X setting for swap A,B transmit */
4398 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP,
4399 			       LAN8814_ALIGN_TX_A_B_SWAP_MASK,
4400 			       LAN8814_ALIGN_TX_A_B_SWAP);
4401 
4402 	if (lan8814->led_mode >= 0)
4403 		lan8814_setup_led(phydev, lan8814->led_mode);
4404 
4405 	return 0;
4406 }
4407 
4408 /* It is expected that there will not be any 'lan8814_take_coma_mode'
4409  * function called in suspend. Because the GPIO line can be shared, so if one of
4410  * the phys goes back in coma mode, then all the other PHYs will go, which is
4411  * wrong.
4412  */
4413 static int lan8814_release_coma_mode(struct phy_device *phydev)
4414 {
4415 	struct gpio_desc *gpiod;
4416 
4417 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
4418 					GPIOD_OUT_HIGH_OPEN_DRAIN |
4419 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
4420 	if (IS_ERR(gpiod))
4421 		return PTR_ERR(gpiod);
4422 
4423 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
4424 	gpiod_set_value_cansleep(gpiod, 0);
4425 
4426 	return 0;
4427 }
4428 
4429 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
4430 {
4431 	/* It was noticed that when traffic is passing through the PHY and the
4432 	 * cable is removed then the LED was still on even though there is no
4433 	 * link
4434 	 */
4435 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE,
4436 			       LAN8814_EEE_STATE_MASK2P5P,
4437 			       0);
4438 }
4439 
4440 static void lan8814_update_meas_time(struct phy_device *phydev)
4441 {
4442 	/* By setting the measure time to a value of 0xb this will allow cables
4443 	 * longer than 100m to be used. This configuration can be used
4444 	 * regardless of the mode of operation of the PHY
4445 	 */
4446 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS,
4447 			       LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK,
4448 			       LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL);
4449 }
4450 
4451 static int lan8814_probe(struct phy_device *phydev)
4452 {
4453 	const struct kszphy_type *type = phydev->drv->driver_data;
4454 	struct kszphy_priv *priv;
4455 	u16 addr;
4456 	int err;
4457 
4458 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
4459 	if (!priv)
4460 		return -ENOMEM;
4461 
4462 	phydev->priv = priv;
4463 
4464 	priv->type = type;
4465 
4466 	kszphy_parse_led_mode(phydev);
4467 
4468 	/* Strap-in value for PHY address, below register read gives starting
4469 	 * phy address value
4470 	 */
4471 	addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F;
4472 	devm_phy_package_join(&phydev->mdio.dev, phydev,
4473 			      addr, sizeof(struct lan8814_shared_priv));
4474 
4475 	/* There are lan8814 SKUs that don't support PTP. Make sure that for
4476 	 * those skus no PTP device is created. Here we check if the SKU
4477 	 * supports PTP.
4478 	 */
4479 	err = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4480 				   LAN8814_SKUS);
4481 	if (err < 0)
4482 		return err;
4483 
4484 	priv->is_ptp_available = err == LAN8814_REV_LAN8814 ||
4485 				 err == LAN8814_REV_LAN8818;
4486 
4487 	if (phy_package_init_once(phydev)) {
4488 		err = lan8814_release_coma_mode(phydev);
4489 		if (err)
4490 			return err;
4491 
4492 		err = lan8814_ptp_probe_once(phydev);
4493 		if (err)
4494 			return err;
4495 	}
4496 
4497 	lan8814_ptp_init(phydev);
4498 
4499 	/* Errata workarounds */
4500 	lan8814_clear_2psp_bit(phydev);
4501 	lan8814_update_meas_time(phydev);
4502 
4503 	return 0;
4504 }
4505 
4506 #define LAN8841_MMD_TIMER_REG			0
4507 #define LAN8841_MMD0_REGISTER_17		17
4508 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
4509 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
4510 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
4511 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
4512 #define LAN8841_MMD_ANALOG_REG			28
4513 #define LAN8841_ANALOG_CONTROL_1		1
4514 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
4515 #define LAN8841_ANALOG_CONTROL_10		13
4516 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
4517 #define LAN8841_ANALOG_CONTROL_11		14
4518 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
4519 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
4520 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
4521 #define LAN8841_BTRX_POWER_DOWN			70
4522 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
4523 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
4524 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
4525 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
4526 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
4527 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
4528 #define LAN8841_ADC_CHANNEL_MASK		198
4529 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
4530 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
4531 #define LAN8841_PTP_RX_VERSION			374
4532 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
4533 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
4534 #define LAN8841_PTP_TX_VERSION			438
4535 #define LAN8841_PTP_CMD_CTL			256
4536 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
4537 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
4538 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
4539 #define LAN8841_PTP_RX_PARSE_CONFIG		368
4540 #define LAN8841_PTP_TX_PARSE_CONFIG		432
4541 #define LAN8841_PTP_RX_MODE			381
4542 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
4543 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
4544 
4545 static int lan8841_config_init(struct phy_device *phydev)
4546 {
4547 	int ret;
4548 
4549 	ret = ksz9131_config_init(phydev);
4550 	if (ret)
4551 		return ret;
4552 
4553 	/* Initialize the HW by resetting everything */
4554 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4555 		       LAN8841_PTP_CMD_CTL,
4556 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
4557 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
4558 
4559 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4560 		       LAN8841_PTP_CMD_CTL,
4561 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
4562 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
4563 
4564 	/* Don't process any frames */
4565 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4566 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
4567 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4568 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
4569 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4570 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
4571 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4572 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
4573 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4574 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
4575 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4576 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
4577 
4578 	/* Disable checking for minorVersionPTP field */
4579 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4580 		      LAN8841_PTP_RX_VERSION, 0xff00);
4581 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4582 		      LAN8841_PTP_TX_VERSION, 0xff00);
4583 
4584 	/* 100BT Clause 40 improvement errata */
4585 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4586 		      LAN8841_ANALOG_CONTROL_1,
4587 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
4588 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4589 		      LAN8841_ANALOG_CONTROL_10,
4590 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
4591 
4592 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
4593 	 * Magnetics
4594 	 */
4595 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4596 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
4597 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
4598 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4599 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
4600 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
4601 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4602 			      LAN8841_BTRX_POWER_DOWN,
4603 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
4604 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
4605 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
4606 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
4607 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4608 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4609 	}
4610 
4611 	/* LDO Adjustment errata */
4612 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4613 		      LAN8841_ANALOG_CONTROL_11,
4614 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4615 
4616 	/* 100BT RGMII latency tuning errata */
4617 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4618 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
4619 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4620 		      LAN8841_MMD0_REGISTER_17,
4621 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4622 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4623 
4624 	return 0;
4625 }
4626 
4627 #define LAN8841_OUTPUT_CTRL			25
4628 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
4629 #define LAN8841_INT_PTP				BIT(9)
4630 
4631 static int lan8841_config_intr(struct phy_device *phydev)
4632 {
4633 	int err;
4634 
4635 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4636 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4637 
4638 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4639 		err = phy_read(phydev, LAN8814_INTS);
4640 		if (err < 0)
4641 			return err;
4642 
4643 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
4644 		 * even if it PTP is not enabled. Because the underneath blocks
4645 		 * will not enable the PTP so we will never get the PTP
4646 		 * interrupt.
4647 		 */
4648 		err = phy_write(phydev, LAN8814_INTC,
4649 				LAN8814_INT_LINK | LAN8841_INT_PTP);
4650 	} else {
4651 		err = phy_write(phydev, LAN8814_INTC, 0);
4652 		if (err)
4653 			return err;
4654 
4655 		err = phy_read(phydev, LAN8814_INTS);
4656 		if (err < 0)
4657 			return err;
4658 
4659 		/* Getting a positive value doesn't mean that is an error, it
4660 		 * just indicates what was the status. Therefore make sure to
4661 		 * clear the value and say that there is no error.
4662 		 */
4663 		err = 0;
4664 	}
4665 
4666 	return err;
4667 }
4668 
4669 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
4670 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
4671 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
4672 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
4673 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
4674 #define LAN8841_PTP_TX_MSG_HEADER2			455
4675 
4676 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4677 				  u32 *sec, u32 *nsec, u16 *seq)
4678 {
4679 	struct phy_device *phydev = ptp_priv->phydev;
4680 
4681 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4682 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4683 		return false;
4684 
4685 	*nsec = ((*nsec & 0x3fff) << 16);
4686 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4687 
4688 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4689 	*sec = *sec << 16;
4690 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4691 
4692 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4693 
4694 	return true;
4695 }
4696 
4697 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4698 {
4699 	u32 sec, nsec;
4700 	u16 seq;
4701 
4702 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4703 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4704 }
4705 
4706 #define LAN8841_PTP_INT_STS			259
4707 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
4708 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
4709 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
4710 
4711 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4712 {
4713 	struct phy_device *phydev = ptp_priv->phydev;
4714 	int i;
4715 
4716 	for (i = 0; i < FIFO_SIZE; ++i)
4717 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4718 
4719 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4720 }
4721 
4722 #define LAN8841_PTP_GPIO_CAP_STS			506
4723 #define LAN8841_PTP_GPIO_SEL				327
4724 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
4725 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
4726 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
4727 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
4728 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
4729 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
4730 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
4731 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
4732 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
4733 
4734 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4735 {
4736 	struct phy_device *phydev = ptp_priv->phydev;
4737 	struct ptp_clock_event ptp_event = {0};
4738 	int pin, ret, tmp;
4739 	s32 sec, nsec;
4740 
4741 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4742 	if (pin == -1)
4743 		return;
4744 
4745 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4746 	if (tmp < 0)
4747 		return;
4748 
4749 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4750 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4751 	if (ret)
4752 		return;
4753 
4754 	mutex_lock(&ptp_priv->ptp_lock);
4755 	if (tmp & BIT(pin)) {
4756 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4757 		sec <<= 16;
4758 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4759 
4760 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4761 		nsec <<= 16;
4762 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4763 	} else {
4764 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4765 		sec <<= 16;
4766 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4767 
4768 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4769 		nsec <<= 16;
4770 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4771 	}
4772 	mutex_unlock(&ptp_priv->ptp_lock);
4773 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4774 	if (ret)
4775 		return;
4776 
4777 	ptp_event.index = 0;
4778 	ptp_event.timestamp = ktime_set(sec, nsec);
4779 	ptp_event.type = PTP_CLOCK_EXTTS;
4780 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4781 }
4782 
4783 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4784 {
4785 	struct kszphy_priv *priv = phydev->priv;
4786 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4787 	u16 status;
4788 
4789 	do {
4790 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4791 
4792 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4793 			lan8841_ptp_process_tx_ts(ptp_priv);
4794 
4795 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4796 			lan8841_gpio_process_cap(ptp_priv);
4797 
4798 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4799 			lan8841_ptp_flush_fifo(ptp_priv);
4800 			skb_queue_purge(&ptp_priv->tx_queue);
4801 		}
4802 
4803 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4804 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4805 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4806 }
4807 
4808 #define LAN8841_INTS_PTP		BIT(9)
4809 
4810 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4811 {
4812 	irqreturn_t ret = IRQ_NONE;
4813 	int irq_status;
4814 
4815 	irq_status = phy_read(phydev, LAN8814_INTS);
4816 	if (irq_status < 0) {
4817 		phy_error(phydev);
4818 		return IRQ_NONE;
4819 	}
4820 
4821 	if (irq_status & LAN8814_INT_LINK) {
4822 		phy_trigger_machine(phydev);
4823 		ret = IRQ_HANDLED;
4824 	}
4825 
4826 	if (irq_status & LAN8841_INTS_PTP) {
4827 		lan8841_handle_ptp_interrupt(phydev);
4828 		ret = IRQ_HANDLED;
4829 	}
4830 
4831 	return ret;
4832 }
4833 
4834 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4835 			   struct kernel_ethtool_ts_info *info)
4836 {
4837 	struct kszphy_ptp_priv *ptp_priv;
4838 
4839 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4840 
4841 	info->phc_index = ptp_priv->ptp_clock ?
4842 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
4843 	if (info->phc_index == -1)
4844 		return 0;
4845 
4846 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4847 				SOF_TIMESTAMPING_RX_HARDWARE |
4848 				SOF_TIMESTAMPING_RAW_HARDWARE;
4849 
4850 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4851 			 (1 << HWTSTAMP_TX_ON) |
4852 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4853 
4854 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4855 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4856 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4857 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4858 
4859 	return 0;
4860 }
4861 
4862 #define LAN8841_PTP_INT_EN			260
4863 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
4864 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
4865 
4866 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4867 					  bool enable)
4868 {
4869 	struct phy_device *phydev = ptp_priv->phydev;
4870 
4871 	if (enable) {
4872 		/* Enable interrupts on the TX side */
4873 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4874 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4875 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4876 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4877 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4878 
4879 		/* Enable the modification of the frame on RX side,
4880 		 * this will add the ns and 2 bits of sec in the reserved field
4881 		 * of the PTP header
4882 		 */
4883 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4884 			       LAN8841_PTP_RX_MODE,
4885 			       LAN8841_PTP_INSERT_TS_EN |
4886 			       LAN8841_PTP_INSERT_TS_32BIT,
4887 			       LAN8841_PTP_INSERT_TS_EN |
4888 			       LAN8841_PTP_INSERT_TS_32BIT);
4889 
4890 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
4891 	} else {
4892 		/* Disable interrupts on the TX side */
4893 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4894 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4895 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
4896 
4897 		/* Disable modification of the RX frames */
4898 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4899 			       LAN8841_PTP_RX_MODE,
4900 			       LAN8841_PTP_INSERT_TS_EN |
4901 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
4902 
4903 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4904 	}
4905 }
4906 
4907 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
4908 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
4909 #define LAN8841_PTP_TX_MOD			445
4910 
4911 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
4912 			    struct kernel_hwtstamp_config *config,
4913 			    struct netlink_ext_ack *extack)
4914 {
4915 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4916 	struct phy_device *phydev = ptp_priv->phydev;
4917 	int txcfg = 0, rxcfg = 0;
4918 	int pkt_ts_enable;
4919 
4920 	ptp_priv->hwts_tx_type = config->tx_type;
4921 	ptp_priv->rx_filter = config->rx_filter;
4922 
4923 	switch (config->rx_filter) {
4924 	case HWTSTAMP_FILTER_NONE:
4925 		ptp_priv->layer = 0;
4926 		ptp_priv->version = 0;
4927 		break;
4928 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4929 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4930 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4931 		ptp_priv->layer = PTP_CLASS_L4;
4932 		ptp_priv->version = PTP_CLASS_V2;
4933 		break;
4934 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4935 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4936 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4937 		ptp_priv->layer = PTP_CLASS_L2;
4938 		ptp_priv->version = PTP_CLASS_V2;
4939 		break;
4940 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
4941 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
4942 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4943 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
4944 		ptp_priv->version = PTP_CLASS_V2;
4945 		break;
4946 	default:
4947 		return -ERANGE;
4948 	}
4949 
4950 	/* Setup parsing of the frames and enable the timestamping for ptp
4951 	 * frames
4952 	 */
4953 	if (ptp_priv->layer & PTP_CLASS_L2) {
4954 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
4955 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
4956 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
4957 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
4958 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
4959 	}
4960 
4961 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
4962 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
4963 
4964 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
4965 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
4966 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
4967 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
4968 
4969 	/* Enable / disable of the TX timestamp in the SYNC frames */
4970 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
4971 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
4972 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
4973 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
4974 
4975 	/* Now enable/disable the timestamping */
4976 	lan8841_ptp_enable_processing(ptp_priv,
4977 				      config->rx_filter != HWTSTAMP_FILTER_NONE);
4978 
4979 	skb_queue_purge(&ptp_priv->tx_queue);
4980 
4981 	lan8841_ptp_flush_fifo(ptp_priv);
4982 
4983 	return 0;
4984 }
4985 
4986 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
4987 			     struct sk_buff *skb, int type)
4988 {
4989 	struct kszphy_ptp_priv *ptp_priv =
4990 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4991 	struct ptp_header *header = ptp_parse_header(skb, type);
4992 	struct skb_shared_hwtstamps *shhwtstamps;
4993 	struct timespec64 ts;
4994 	unsigned long flags;
4995 	u32 ts_header;
4996 
4997 	if (!header)
4998 		return false;
4999 
5000 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
5001 	    type == PTP_CLASS_NONE)
5002 		return false;
5003 
5004 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
5005 		return false;
5006 
5007 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5008 	ts.tv_sec = ptp_priv->seconds;
5009 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5010 	ts_header = __be32_to_cpu(header->reserved2);
5011 
5012 	shhwtstamps = skb_hwtstamps(skb);
5013 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
5014 
5015 	/* Check for any wrap arounds for the second part */
5016 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
5017 		ts.tv_sec -= GENMASK(1, 0) + 1;
5018 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
5019 		ts.tv_sec += 1;
5020 
5021 	shhwtstamps->hwtstamp =
5022 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
5023 			  ts_header & GENMASK(29, 0));
5024 	header->reserved2 = 0;
5025 
5026 	netif_rx(skb);
5027 
5028 	return true;
5029 }
5030 
5031 #define LAN8841_EVENT_A		0
5032 #define LAN8841_EVENT_B		1
5033 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
5034 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
5035 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
5036 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
5037 
5038 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
5039 				  s64 sec, u32 nsec)
5040 {
5041 	struct phy_device *phydev = ptp_priv->phydev;
5042 	int ret;
5043 
5044 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
5045 			    upper_16_bits(sec));
5046 	if (ret)
5047 		return ret;
5048 
5049 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
5050 			    lower_16_bits(sec));
5051 	if (ret)
5052 		return ret;
5053 
5054 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
5055 			    upper_16_bits(nsec));
5056 	if (ret)
5057 		return ret;
5058 
5059 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
5060 			    lower_16_bits(nsec));
5061 }
5062 
5063 #define LAN8841_BUFFER_TIME	2
5064 
5065 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
5066 				     const struct timespec64 *ts)
5067 {
5068 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
5069 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
5070 }
5071 
5072 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
5073 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
5074 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
5075 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
5076 
5077 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
5078 				  s64 sec, u32 nsec)
5079 {
5080 	struct phy_device *phydev = ptp_priv->phydev;
5081 	int ret;
5082 
5083 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
5084 			    upper_16_bits(sec));
5085 	if (ret)
5086 		return ret;
5087 
5088 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
5089 			    lower_16_bits(sec));
5090 	if (ret)
5091 		return ret;
5092 
5093 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
5094 			    upper_16_bits(nsec));
5095 	if (ret)
5096 		return ret;
5097 
5098 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
5099 			     lower_16_bits(nsec));
5100 }
5101 
5102 #define LAN8841_PTP_LTC_SET_SEC_HI	262
5103 #define LAN8841_PTP_LTC_SET_SEC_MID	263
5104 #define LAN8841_PTP_LTC_SET_SEC_LO	264
5105 #define LAN8841_PTP_LTC_SET_NS_HI	265
5106 #define LAN8841_PTP_LTC_SET_NS_LO	266
5107 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
5108 
5109 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
5110 				 const struct timespec64 *ts)
5111 {
5112 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5113 							ptp_clock_info);
5114 	struct phy_device *phydev = ptp_priv->phydev;
5115 	unsigned long flags;
5116 	int ret;
5117 
5118 	/* Set the value to be stored */
5119 	mutex_lock(&ptp_priv->ptp_lock);
5120 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
5121 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
5122 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
5123 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
5124 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
5125 
5126 	/* Set the command to load the LTC */
5127 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5128 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
5129 	ret = lan8841_ptp_update_target(ptp_priv, ts);
5130 	mutex_unlock(&ptp_priv->ptp_lock);
5131 
5132 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5133 	ptp_priv->seconds = ts->tv_sec;
5134 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5135 
5136 	return ret;
5137 }
5138 
5139 #define LAN8841_PTP_LTC_RD_SEC_HI	358
5140 #define LAN8841_PTP_LTC_RD_SEC_MID	359
5141 #define LAN8841_PTP_LTC_RD_SEC_LO	360
5142 #define LAN8841_PTP_LTC_RD_NS_HI	361
5143 #define LAN8841_PTP_LTC_RD_NS_LO	362
5144 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
5145 
5146 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
5147 				 struct timespec64 *ts)
5148 {
5149 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5150 							ptp_clock_info);
5151 	struct phy_device *phydev = ptp_priv->phydev;
5152 	time64_t s;
5153 	s64 ns;
5154 
5155 	mutex_lock(&ptp_priv->ptp_lock);
5156 	/* Issue the command to read the LTC */
5157 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5158 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
5159 
5160 	/* Read the LTC */
5161 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
5162 	s <<= 16;
5163 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
5164 	s <<= 16;
5165 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
5166 
5167 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
5168 	ns <<= 16;
5169 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
5170 	mutex_unlock(&ptp_priv->ptp_lock);
5171 
5172 	set_normalized_timespec64(ts, s, ns);
5173 	return 0;
5174 }
5175 
5176 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
5177 				   struct timespec64 *ts)
5178 {
5179 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5180 							ptp_clock_info);
5181 	struct phy_device *phydev = ptp_priv->phydev;
5182 	time64_t s;
5183 
5184 	mutex_lock(&ptp_priv->ptp_lock);
5185 	/* Issue the command to read the LTC */
5186 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5187 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
5188 
5189 	/* Read the LTC */
5190 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
5191 	s <<= 16;
5192 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
5193 	s <<= 16;
5194 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
5195 	mutex_unlock(&ptp_priv->ptp_lock);
5196 
5197 	set_normalized_timespec64(ts, s, 0);
5198 }
5199 
5200 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
5201 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
5202 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
5203 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
5204 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
5205 
5206 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
5207 {
5208 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5209 							ptp_clock_info);
5210 	struct phy_device *phydev = ptp_priv->phydev;
5211 	struct timespec64 ts;
5212 	bool add = true;
5213 	u32 nsec;
5214 	s32 sec;
5215 	int ret;
5216 
5217 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
5218 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
5219 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
5220 	 * increment so the value can be bigger than 15 sec. Therefore limit the
5221 	 * possible adjustments so we will not have these corner cases
5222 	 */
5223 	if (delta > 10000000000LL || delta < -10000000000LL) {
5224 		/* The timeadjustment is too big, so fall back using set time */
5225 		u64 now;
5226 
5227 		ptp->gettime64(ptp, &ts);
5228 
5229 		now = ktime_to_ns(timespec64_to_ktime(ts));
5230 		ts = ns_to_timespec64(now + delta);
5231 
5232 		ptp->settime64(ptp, &ts);
5233 		return 0;
5234 	}
5235 
5236 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
5237 	if (delta < 0 && nsec != 0) {
5238 		/* It is not allowed to adjust low the nsec part, therefore
5239 		 * subtract more from second part and add to nanosecond such
5240 		 * that would roll over, so the second part will increase
5241 		 */
5242 		sec--;
5243 		nsec = NSEC_PER_SEC - nsec;
5244 	}
5245 
5246 	/* Calculate the adjustments and the direction */
5247 	if (delta < 0)
5248 		add = false;
5249 
5250 	if (nsec > 0)
5251 		/* add 8 ns to cover the likely normal increment */
5252 		nsec += 8;
5253 
5254 	if (nsec >= NSEC_PER_SEC) {
5255 		/* carry into seconds */
5256 		sec++;
5257 		nsec -= NSEC_PER_SEC;
5258 	}
5259 
5260 	mutex_lock(&ptp_priv->ptp_lock);
5261 	if (sec) {
5262 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
5263 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
5264 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
5265 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5266 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
5267 	}
5268 
5269 	if (nsec) {
5270 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
5271 			      nsec & 0xffff);
5272 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
5273 			      (nsec >> 16) & 0x3fff);
5274 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5275 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
5276 	}
5277 	mutex_unlock(&ptp_priv->ptp_lock);
5278 
5279 	/* Update the target clock */
5280 	ptp->gettime64(ptp, &ts);
5281 	mutex_lock(&ptp_priv->ptp_lock);
5282 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
5283 	mutex_unlock(&ptp_priv->ptp_lock);
5284 
5285 	return ret;
5286 }
5287 
5288 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
5289 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
5290 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
5291 
5292 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
5293 {
5294 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5295 							ptp_clock_info);
5296 	struct phy_device *phydev = ptp_priv->phydev;
5297 	bool faster = true;
5298 	u32 rate;
5299 
5300 	if (!scaled_ppm)
5301 		return 0;
5302 
5303 	if (scaled_ppm < 0) {
5304 		scaled_ppm = -scaled_ppm;
5305 		faster = false;
5306 	}
5307 
5308 	rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
5309 	rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
5310 
5311 	mutex_lock(&ptp_priv->ptp_lock);
5312 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
5313 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
5314 			     : upper_16_bits(rate) & 0x3fff);
5315 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
5316 	mutex_unlock(&ptp_priv->ptp_lock);
5317 
5318 	return 0;
5319 }
5320 
5321 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
5322 			      enum ptp_pin_function func, unsigned int chan)
5323 {
5324 	switch (func) {
5325 	case PTP_PF_NONE:
5326 	case PTP_PF_PEROUT:
5327 	case PTP_PF_EXTTS:
5328 		break;
5329 	default:
5330 		return -1;
5331 	}
5332 
5333 	return 0;
5334 }
5335 
5336 #define LAN8841_PTP_GPIO_NUM	10
5337 #define LAN8841_GPIO_EN		128
5338 #define LAN8841_GPIO_DIR	129
5339 #define LAN8841_GPIO_BUF	130
5340 
5341 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5342 {
5343 	struct phy_device *phydev = ptp_priv->phydev;
5344 	int ret;
5345 
5346 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5347 	if (ret)
5348 		return ret;
5349 
5350 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
5351 	if (ret)
5352 		return ret;
5353 
5354 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5355 }
5356 
5357 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
5358 {
5359 	struct phy_device *phydev = ptp_priv->phydev;
5360 	int ret;
5361 
5362 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5363 	if (ret)
5364 		return ret;
5365 
5366 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
5367 	if (ret)
5368 		return ret;
5369 
5370 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5371 }
5372 
5373 #define LAN8841_GPIO_DATA_SEL1				131
5374 #define LAN8841_GPIO_DATA_SEL2				132
5375 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
5376 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
5377 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
5378 #define LAN8841_PTP_GENERAL_CONFIG			257
5379 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
5380 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
5381 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
5382 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
5383 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
5384 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
5385 
5386 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
5387 				    u8 event)
5388 {
5389 	struct phy_device *phydev = ptp_priv->phydev;
5390 	u16 tmp;
5391 	int ret;
5392 
5393 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
5394 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5395 	 * depending on the pin, it requires to read a different register
5396 	 */
5397 	if (pin < 5) {
5398 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
5399 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
5400 	} else {
5401 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
5402 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
5403 	}
5404 	if (ret)
5405 		return ret;
5406 
5407 	/* Disable the event */
5408 	if (event == LAN8841_EVENT_A)
5409 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5410 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
5411 	else
5412 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5413 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
5414 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
5415 }
5416 
5417 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
5418 				    u8 event, int pulse_width)
5419 {
5420 	struct phy_device *phydev = ptp_priv->phydev;
5421 	u16 tmp;
5422 	int ret;
5423 
5424 	/* Enable the event */
5425 	if (event == LAN8841_EVENT_A)
5426 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5427 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5428 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
5429 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5430 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
5431 	else
5432 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5433 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5434 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
5435 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5436 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
5437 	if (ret)
5438 		return ret;
5439 
5440 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
5441 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5442 	 * depending on the pin, it requires to read a different register
5443 	 */
5444 	if (event == LAN8841_EVENT_A)
5445 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
5446 	else
5447 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
5448 
5449 	if (pin < 5)
5450 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
5451 				       tmp << (3 * pin));
5452 	else
5453 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
5454 				       tmp << (3 * (pin - 5)));
5455 
5456 	return ret;
5457 }
5458 
5459 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
5460 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
5461 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
5462 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
5463 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
5464 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
5465 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
5466 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
5467 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
5468 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
5469 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
5470 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
5471 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
5472 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
5473 
5474 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
5475 			      struct ptp_clock_request *rq, int on)
5476 {
5477 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5478 							ptp_clock_info);
5479 	struct phy_device *phydev = ptp_priv->phydev;
5480 	struct timespec64 ts_on, ts_period;
5481 	s64 on_nsec, period_nsec;
5482 	int pulse_width;
5483 	int pin;
5484 	int ret;
5485 
5486 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
5487 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5488 		return -EINVAL;
5489 
5490 	if (!on) {
5491 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
5492 		if (ret)
5493 			return ret;
5494 
5495 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
5496 	}
5497 
5498 	ts_on.tv_sec = rq->perout.on.sec;
5499 	ts_on.tv_nsec = rq->perout.on.nsec;
5500 	on_nsec = timespec64_to_ns(&ts_on);
5501 
5502 	ts_period.tv_sec = rq->perout.period.sec;
5503 	ts_period.tv_nsec = rq->perout.period.nsec;
5504 	period_nsec = timespec64_to_ns(&ts_period);
5505 
5506 	if (period_nsec < 200) {
5507 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
5508 				    phydev_name(phydev));
5509 		return -EOPNOTSUPP;
5510 	}
5511 
5512 	if (on_nsec >= period_nsec) {
5513 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
5514 				    phydev_name(phydev));
5515 		return -EINVAL;
5516 	}
5517 
5518 	switch (on_nsec) {
5519 	case 200000000:
5520 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
5521 		break;
5522 	case 100000000:
5523 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
5524 		break;
5525 	case 50000000:
5526 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
5527 		break;
5528 	case 10000000:
5529 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
5530 		break;
5531 	case 5000000:
5532 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
5533 		break;
5534 	case 1000000:
5535 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
5536 		break;
5537 	case 500000:
5538 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
5539 		break;
5540 	case 100000:
5541 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
5542 		break;
5543 	case 50000:
5544 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
5545 		break;
5546 	case 10000:
5547 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
5548 		break;
5549 	case 5000:
5550 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
5551 		break;
5552 	case 1000:
5553 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
5554 		break;
5555 	case 500:
5556 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
5557 		break;
5558 	case 100:
5559 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5560 		break;
5561 	default:
5562 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
5563 				    phydev_name(phydev));
5564 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5565 		break;
5566 	}
5567 
5568 	mutex_lock(&ptp_priv->ptp_lock);
5569 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
5570 				     rq->perout.start.nsec);
5571 	mutex_unlock(&ptp_priv->ptp_lock);
5572 	if (ret)
5573 		return ret;
5574 
5575 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
5576 				     rq->perout.period.nsec);
5577 	if (ret)
5578 		return ret;
5579 
5580 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
5581 				       pulse_width);
5582 	if (ret)
5583 		return ret;
5584 
5585 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
5586 	if (ret)
5587 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
5588 
5589 	return ret;
5590 }
5591 
5592 #define LAN8841_PTP_GPIO_CAP_EN			496
5593 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
5594 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
5595 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
5596 
5597 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
5598 				u32 flags)
5599 {
5600 	struct phy_device *phydev = ptp_priv->phydev;
5601 	u16 tmp = 0;
5602 	int ret;
5603 
5604 	/* Set GPIO to be input */
5605 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5606 	if (ret)
5607 		return ret;
5608 
5609 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5610 	if (ret)
5611 		return ret;
5612 
5613 	/* Enable capture on the edges of the pin */
5614 	if (flags & PTP_RISING_EDGE)
5615 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5616 	if (flags & PTP_FALLING_EDGE)
5617 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5618 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5619 	if (ret)
5620 		return ret;
5621 
5622 	/* Enable interrupt */
5623 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5624 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5625 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5626 }
5627 
5628 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5629 {
5630 	struct phy_device *phydev = ptp_priv->phydev;
5631 	int ret;
5632 
5633 	/* Set GPIO to be output */
5634 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5635 	if (ret)
5636 		return ret;
5637 
5638 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5639 	if (ret)
5640 		return ret;
5641 
5642 	/* Disable capture on both of the edges */
5643 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5644 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5645 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5646 			     0);
5647 	if (ret)
5648 		return ret;
5649 
5650 	/* Disable interrupt */
5651 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5652 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5653 			      0);
5654 }
5655 
5656 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5657 			     struct ptp_clock_request *rq, int on)
5658 {
5659 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5660 							ptp_clock_info);
5661 	int pin;
5662 	int ret;
5663 
5664 	/* Reject requests with unsupported flags */
5665 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5666 				PTP_EXTTS_EDGES |
5667 				PTP_STRICT_FLAGS))
5668 		return -EOPNOTSUPP;
5669 
5670 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5671 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5672 		return -EINVAL;
5673 
5674 	mutex_lock(&ptp_priv->ptp_lock);
5675 	if (on)
5676 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5677 	else
5678 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
5679 	mutex_unlock(&ptp_priv->ptp_lock);
5680 
5681 	return ret;
5682 }
5683 
5684 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5685 			      struct ptp_clock_request *rq, int on)
5686 {
5687 	switch (rq->type) {
5688 	case PTP_CLK_REQ_EXTTS:
5689 		return lan8841_ptp_extts(ptp, rq, on);
5690 	case PTP_CLK_REQ_PEROUT:
5691 		return lan8841_ptp_perout(ptp, rq, on);
5692 	default:
5693 		return -EOPNOTSUPP;
5694 	}
5695 
5696 	return 0;
5697 }
5698 
5699 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5700 {
5701 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5702 							ptp_clock_info);
5703 	struct timespec64 ts;
5704 	unsigned long flags;
5705 
5706 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5707 
5708 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5709 	ptp_priv->seconds = ts.tv_sec;
5710 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5711 
5712 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5713 }
5714 
5715 static struct ptp_clock_info lan8841_ptp_clock_info = {
5716 	.owner		= THIS_MODULE,
5717 	.name		= "lan8841 ptp",
5718 	.max_adj	= 31249999,
5719 	.gettime64	= lan8841_ptp_gettime64,
5720 	.settime64	= lan8841_ptp_settime64,
5721 	.adjtime	= lan8841_ptp_adjtime,
5722 	.adjfine	= lan8841_ptp_adjfine,
5723 	.verify         = lan8841_ptp_verify,
5724 	.enable         = lan8841_ptp_enable,
5725 	.do_aux_work	= lan8841_ptp_do_aux_work,
5726 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
5727 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
5728 	.n_pins         = LAN8841_PTP_GPIO_NUM,
5729 	.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE,
5730 };
5731 
5732 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5733 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5734 
5735 static int lan8841_probe(struct phy_device *phydev)
5736 {
5737 	struct kszphy_ptp_priv *ptp_priv;
5738 	struct kszphy_priv *priv;
5739 	int err;
5740 
5741 	err = kszphy_probe(phydev);
5742 	if (err)
5743 		return err;
5744 
5745 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5746 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5747 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5748 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5749 
5750 	/* Register the clock */
5751 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5752 		return 0;
5753 
5754 	priv = phydev->priv;
5755 	ptp_priv = &priv->ptp_priv;
5756 
5757 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5758 					    LAN8841_PTP_GPIO_NUM,
5759 					    sizeof(*ptp_priv->pin_config),
5760 					    GFP_KERNEL);
5761 	if (!ptp_priv->pin_config)
5762 		return -ENOMEM;
5763 
5764 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5765 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5766 
5767 		snprintf(p->name, sizeof(p->name), "pin%d", i);
5768 		p->index = i;
5769 		p->func = PTP_PF_NONE;
5770 	}
5771 
5772 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5773 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5774 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5775 						 &phydev->mdio.dev);
5776 	if (IS_ERR(ptp_priv->ptp_clock)) {
5777 		phydev_err(phydev, "ptp_clock_register failed: %pe\n",
5778 			   ptp_priv->ptp_clock);
5779 		return -EINVAL;
5780 	}
5781 
5782 	if (!ptp_priv->ptp_clock)
5783 		return 0;
5784 
5785 	/* Initialize the SW */
5786 	skb_queue_head_init(&ptp_priv->tx_queue);
5787 	ptp_priv->phydev = phydev;
5788 	mutex_init(&ptp_priv->ptp_lock);
5789 	spin_lock_init(&ptp_priv->seconds_lock);
5790 
5791 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5792 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5793 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5794 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5795 
5796 	phydev->mii_ts = &ptp_priv->mii_ts;
5797 
5798 	/* Timestamp selected by default to keep legacy API */
5799 	phydev->default_timestamp = true;
5800 
5801 	return 0;
5802 }
5803 
5804 static int lan8804_resume(struct phy_device *phydev)
5805 {
5806 	return kszphy_resume(phydev);
5807 }
5808 
5809 static int lan8804_suspend(struct phy_device *phydev)
5810 {
5811 	return kszphy_generic_suspend(phydev);
5812 }
5813 
5814 static int lan8841_resume(struct phy_device *phydev)
5815 {
5816 	return kszphy_generic_resume(phydev);
5817 }
5818 
5819 static int lan8841_suspend(struct phy_device *phydev)
5820 {
5821 	struct kszphy_priv *priv = phydev->priv;
5822 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5823 
5824 	if (ptp_priv->ptp_clock)
5825 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5826 
5827 	return kszphy_generic_suspend(phydev);
5828 }
5829 
5830 static int ksz9131_resume(struct phy_device *phydev)
5831 {
5832 	if (phydev->suspended && phy_interface_is_rgmii(phydev))
5833 		ksz9131_config_rgmii_delay(phydev);
5834 
5835 	return kszphy_resume(phydev);
5836 }
5837 
5838 #define LAN8842_PTP_GPIO_NUM 16
5839 
5840 static int lan8842_ptp_probe_once(struct phy_device *phydev)
5841 {
5842 	return __lan8814_ptp_probe_once(phydev, "lan8842_ptp_pin",
5843 					LAN8842_PTP_GPIO_NUM);
5844 }
5845 
5846 #define LAN8842_STRAP_REG			0 /* 0x0 */
5847 #define LAN8842_STRAP_REG_PHYADDR_MASK		GENMASK(4, 0)
5848 #define LAN8842_SKU_REG				11 /* 0x0b */
5849 #define LAN8842_SELF_TEST			14 /* 0x0e */
5850 #define LAN8842_SELF_TEST_RX_CNT_ENA		BIT(8)
5851 #define LAN8842_SELF_TEST_TX_CNT_ENA		BIT(4)
5852 
5853 static int lan8842_probe(struct phy_device *phydev)
5854 {
5855 	struct lan8842_priv *priv;
5856 	int addr;
5857 	int ret;
5858 
5859 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
5860 	if (!priv)
5861 		return -ENOMEM;
5862 
5863 	phydev->priv = priv;
5864 
5865 	/* Similar to lan8814 this PHY has a pin which needs to be pulled down
5866 	 * to enable to pass any traffic through it. Therefore use the same
5867 	 * function as lan8814
5868 	 */
5869 	ret = lan8814_release_coma_mode(phydev);
5870 	if (ret)
5871 		return ret;
5872 
5873 	/* Enable to count the RX and TX packets */
5874 	ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL,
5875 				    LAN8842_SELF_TEST,
5876 				    LAN8842_SELF_TEST_RX_CNT_ENA |
5877 				    LAN8842_SELF_TEST_TX_CNT_ENA);
5878 	if (ret < 0)
5879 		return ret;
5880 
5881 	/* Revision lan8832 doesn't have support for PTP, therefore don't add
5882 	 * any PTP clocks
5883 	 */
5884 	ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
5885 				   LAN8842_SKU_REG);
5886 	if (ret < 0)
5887 		return ret;
5888 
5889 	priv->rev = ret;
5890 	if (priv->rev == LAN8842_REV_8832)
5891 		return 0;
5892 
5893 	/* As the lan8814 and lan8842 has the same IP for the PTP block, the
5894 	 * only difference is the number of the GPIOs, then make sure that the
5895 	 * lan8842 initialized also the shared data pointer as this is used in
5896 	 * all the PTP functions for lan8814. The lan8842 doesn't have multiple
5897 	 * PHYs in the same package.
5898 	 */
5899 	addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
5900 				    LAN8842_STRAP_REG);
5901 	if (addr < 0)
5902 		return addr;
5903 	addr &= LAN8842_STRAP_REG_PHYADDR_MASK;
5904 
5905 	ret = devm_phy_package_join(&phydev->mdio.dev, phydev, addr,
5906 				    sizeof(struct lan8814_shared_priv));
5907 	if (ret)
5908 		return ret;
5909 
5910 	if (phy_package_init_once(phydev)) {
5911 		ret = lan8842_ptp_probe_once(phydev);
5912 		if (ret)
5913 			return ret;
5914 	}
5915 
5916 	lan8814_ptp_init(phydev);
5917 
5918 	return 0;
5919 }
5920 
5921 static int lan8842_config_init(struct phy_device *phydev)
5922 {
5923 	int ret;
5924 
5925 	/* Reset the PHY */
5926 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
5927 				     LAN8814_QSGMII_SOFT_RESET,
5928 				     LAN8814_QSGMII_SOFT_RESET_BIT,
5929 				     LAN8814_QSGMII_SOFT_RESET_BIT);
5930 	if (ret < 0)
5931 		return ret;
5932 
5933 	/* Even if the GPIOs are set to control the LEDs the behaviour of the
5934 	 * LEDs is wrong, they are not blinking when there is traffic.
5935 	 * To fix this it is required to set extended LED mode
5936 	 */
5937 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
5938 				     LAN8814_LED_CTRL_1,
5939 				     LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_, 0);
5940 	if (ret < 0)
5941 		return ret;
5942 
5943 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
5944 				     LAN8814_LED_CTRL_2,
5945 				     LAN8814_LED_CTRL_2_LED1_COM_DIS,
5946 				     LAN8814_LED_CTRL_2_LED1_COM_DIS);
5947 	if (ret < 0)
5948 		return ret;
5949 
5950 	/* To allow the PHY to control the LEDs the GPIOs of the PHY should have
5951 	 * a function mode and not the GPIO. Apparently by default the value is
5952 	 * GPIO and not function even though the datasheet it says that it is
5953 	 * function. Therefore set this value.
5954 	 */
5955 	return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
5956 				     LAN8814_GPIO_EN2, 0);
5957 }
5958 
5959 #define LAN8842_INTR_CTRL_REG			52 /* 0x34 */
5960 
5961 static int lan8842_config_intr(struct phy_device *phydev)
5962 {
5963 	int err;
5964 
5965 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
5966 			      LAN8842_INTR_CTRL_REG,
5967 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
5968 
5969 	/* enable / disable interrupts */
5970 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
5971 		err = lan8814_ack_interrupt(phydev);
5972 		if (err)
5973 			return err;
5974 
5975 		err = phy_write(phydev, LAN8814_INTC,
5976 				LAN8814_INT_LINK | LAN8814_INT_FLF);
5977 	} else {
5978 		err = phy_write(phydev, LAN8814_INTC, 0);
5979 		if (err)
5980 			return err;
5981 
5982 		err = lan8814_ack_interrupt(phydev);
5983 	}
5984 
5985 	return err;
5986 }
5987 
5988 static unsigned int lan8842_inband_caps(struct phy_device *phydev,
5989 					phy_interface_t interface)
5990 {
5991 	/* Inband configuration can be enabled or disabled using the registers
5992 	 * PCS1G_ANEG_CONFIG.
5993 	 */
5994 	return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE;
5995 }
5996 
5997 static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes)
5998 {
5999 	bool enable;
6000 
6001 	if (modes == LINK_INBAND_DISABLE)
6002 		enable = false;
6003 	else
6004 		enable = true;
6005 
6006 	/* Disable or enable in-band autoneg with PCS Host side
6007 	 * It has the same address as lan8814
6008 	 */
6009 	return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6010 				      LAN8814_QSGMII_PCS1G_ANEG_CONFIG,
6011 				      LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA,
6012 				      enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0);
6013 }
6014 
6015 static void lan8842_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
6016 {
6017 	struct kszphy_ptp_priv *ptp_priv;
6018 	struct lan8842_priv *priv;
6019 
6020 	priv = phydev->priv;
6021 	ptp_priv = &priv->ptp_priv;
6022 
6023 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
6024 		lan8814_get_tx_ts(ptp_priv);
6025 
6026 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
6027 		lan8814_get_rx_ts(ptp_priv);
6028 
6029 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
6030 		lan8814_flush_fifo(phydev, true);
6031 		skb_queue_purge(&ptp_priv->tx_queue);
6032 	}
6033 
6034 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
6035 		lan8814_flush_fifo(phydev, false);
6036 		skb_queue_purge(&ptp_priv->rx_queue);
6037 	}
6038 }
6039 
6040 static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev)
6041 {
6042 	struct lan8842_priv *priv = phydev->priv;
6043 	int ret = IRQ_NONE;
6044 	int irq_status;
6045 
6046 	irq_status = phy_read(phydev, LAN8814_INTS);
6047 	if (irq_status < 0) {
6048 		phy_error(phydev);
6049 		return IRQ_NONE;
6050 	}
6051 
6052 	if (irq_status & (LAN8814_INT_LINK | LAN8814_INT_FLF)) {
6053 		phy_trigger_machine(phydev);
6054 		ret = IRQ_HANDLED;
6055 	}
6056 
6057 	/* Phy revision lan8832 doesn't have support for PTP therefore there is
6058 	 * not need to check the PTP and GPIO interrupts
6059 	 */
6060 	if (priv->rev == LAN8842_REV_8832)
6061 		goto out;
6062 
6063 	while (true) {
6064 		irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6065 						  PTP_TSU_INT_STS);
6066 		if (!irq_status)
6067 			break;
6068 
6069 		lan8842_handle_ptp_interrupt(phydev, irq_status);
6070 		ret = IRQ_HANDLED;
6071 	}
6072 
6073 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
6074 		ret = IRQ_HANDLED;
6075 
6076 out:
6077 	return ret;
6078 }
6079 
6080 static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs)
6081 {
6082 	u64 ret = 0;
6083 	int val;
6084 
6085 	for (int j = 0; j < count; ++j) {
6086 		val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL,
6087 					   regs[j]);
6088 		if (val < 0)
6089 			return U64_MAX;
6090 
6091 		ret <<= 16;
6092 		ret += val;
6093 	}
6094 	return ret;
6095 }
6096 
6097 static int lan8842_update_stats(struct phy_device *phydev)
6098 {
6099 	struct lan8842_priv *priv = phydev->priv;
6100 	int rx_packets_regs[] = {88, 61, 60};
6101 	int rx_errors_regs[] = {63, 62};
6102 	int tx_packets_regs[] = {89, 85, 84};
6103 	int tx_errors_regs[] = {87, 86};
6104 
6105 	priv->phy_stats.rx_packets = lan8842_get_stat(phydev,
6106 						      ARRAY_SIZE(rx_packets_regs),
6107 						      rx_packets_regs);
6108 	priv->phy_stats.rx_errors = lan8842_get_stat(phydev,
6109 						     ARRAY_SIZE(rx_errors_regs),
6110 						     rx_errors_regs);
6111 	priv->phy_stats.tx_packets = lan8842_get_stat(phydev,
6112 						      ARRAY_SIZE(tx_packets_regs),
6113 						      tx_packets_regs);
6114 	priv->phy_stats.tx_errors = lan8842_get_stat(phydev,
6115 						     ARRAY_SIZE(tx_errors_regs),
6116 						     tx_errors_regs);
6117 
6118 	return 0;
6119 }
6120 
6121 #define LAN8842_FLF				15 /* 0x0e */
6122 #define LAN8842_FLF_ENA				BIT(1)
6123 #define LAN8842_FLF_ENA_LINK_DOWN		BIT(0)
6124 
6125 static int lan8842_get_fast_down(struct phy_device *phydev, u8 *msecs)
6126 {
6127 	int ret;
6128 
6129 	ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS, LAN8842_FLF);
6130 	if (ret < 0)
6131 		return ret;
6132 
6133 	if (ret & LAN8842_FLF_ENA)
6134 		*msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON;
6135 	else
6136 		*msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF;
6137 
6138 	return 0;
6139 }
6140 
6141 static int lan8842_set_fast_down(struct phy_device *phydev, const u8 *msecs)
6142 {
6143 	u16 flf;
6144 
6145 	switch (*msecs) {
6146 	case ETHTOOL_PHY_FAST_LINK_DOWN_OFF:
6147 		flf = 0;
6148 		break;
6149 	case ETHTOOL_PHY_FAST_LINK_DOWN_ON:
6150 		flf = LAN8842_FLF_ENA | LAN8842_FLF_ENA_LINK_DOWN;
6151 		break;
6152 	default:
6153 		return -EINVAL;
6154 	}
6155 
6156 	return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS,
6157 				      LAN8842_FLF,
6158 				      LAN8842_FLF_ENA |
6159 				      LAN8842_FLF_ENA_LINK_DOWN, flf);
6160 }
6161 
6162 static int lan8842_get_tunable(struct phy_device *phydev,
6163 			       struct ethtool_tunable *tuna, void *data)
6164 {
6165 	switch (tuna->id) {
6166 	case ETHTOOL_PHY_FAST_LINK_DOWN:
6167 		return lan8842_get_fast_down(phydev, data);
6168 	default:
6169 		return -EOPNOTSUPP;
6170 	}
6171 }
6172 
6173 static int lan8842_set_tunable(struct phy_device *phydev,
6174 			       struct ethtool_tunable *tuna, const void *data)
6175 {
6176 	switch (tuna->id) {
6177 	case ETHTOOL_PHY_FAST_LINK_DOWN:
6178 		return lan8842_set_fast_down(phydev, data);
6179 	default:
6180 		return -EOPNOTSUPP;
6181 	}
6182 }
6183 
6184 static void lan8842_get_phy_stats(struct phy_device *phydev,
6185 				  struct ethtool_eth_phy_stats *eth_stats,
6186 				  struct ethtool_phy_stats *stats)
6187 {
6188 	struct lan8842_priv *priv = phydev->priv;
6189 
6190 	stats->rx_packets = priv->phy_stats.rx_packets;
6191 	stats->rx_errors = priv->phy_stats.rx_errors;
6192 	stats->tx_packets = priv->phy_stats.tx_packets;
6193 	stats->tx_errors = priv->phy_stats.tx_errors;
6194 }
6195 
6196 static struct phy_driver ksphy_driver[] = {
6197 {
6198 	PHY_ID_MATCH_MODEL(PHY_ID_KS8737),
6199 	.name		= "Micrel KS8737",
6200 	/* PHY_BASIC_FEATURES */
6201 	.driver_data	= &ks8737_type,
6202 	.probe		= kszphy_probe,
6203 	.config_init	= kszphy_config_init,
6204 	.config_intr	= kszphy_config_intr,
6205 	.handle_interrupt = kszphy_handle_interrupt,
6206 	.suspend	= kszphy_suspend,
6207 	.resume		= kszphy_resume,
6208 }, {
6209 	.phy_id		= PHY_ID_KSZ8021,
6210 	.phy_id_mask	= 0x00ffffff,
6211 	.name		= "Micrel KSZ8021 or KSZ8031",
6212 	/* PHY_BASIC_FEATURES */
6213 	.driver_data	= &ksz8021_type,
6214 	.probe		= kszphy_probe,
6215 	.config_init	= kszphy_config_init,
6216 	.config_intr	= kszphy_config_intr,
6217 	.handle_interrupt = kszphy_handle_interrupt,
6218 	.get_sset_count = kszphy_get_sset_count,
6219 	.get_strings	= kszphy_get_strings,
6220 	.get_stats	= kszphy_get_stats,
6221 	.suspend	= kszphy_suspend,
6222 	.resume		= kszphy_resume,
6223 }, {
6224 	.phy_id		= PHY_ID_KSZ8031,
6225 	.phy_id_mask	= 0x00ffffff,
6226 	.name		= "Micrel KSZ8031",
6227 	/* PHY_BASIC_FEATURES */
6228 	.driver_data	= &ksz8021_type,
6229 	.probe		= kszphy_probe,
6230 	.config_init	= kszphy_config_init,
6231 	.config_intr	= kszphy_config_intr,
6232 	.handle_interrupt = kszphy_handle_interrupt,
6233 	.get_sset_count = kszphy_get_sset_count,
6234 	.get_strings	= kszphy_get_strings,
6235 	.get_stats	= kszphy_get_stats,
6236 	.suspend	= kszphy_suspend,
6237 	.resume		= kszphy_resume,
6238 }, {
6239 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041),
6240 	.name		= "Micrel KSZ8041",
6241 	/* PHY_BASIC_FEATURES */
6242 	.driver_data	= &ksz8041_type,
6243 	.probe		= kszphy_probe,
6244 	.config_init	= ksz8041_config_init,
6245 	.config_aneg	= ksz8041_config_aneg,
6246 	.config_intr	= kszphy_config_intr,
6247 	.handle_interrupt = kszphy_handle_interrupt,
6248 	.get_sset_count = kszphy_get_sset_count,
6249 	.get_strings	= kszphy_get_strings,
6250 	.get_stats	= kszphy_get_stats,
6251 	.suspend	= ksz8041_suspend,
6252 	.resume		= ksz8041_resume,
6253 }, {
6254 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI),
6255 	.name		= "Micrel KSZ8041RNLI",
6256 	/* PHY_BASIC_FEATURES */
6257 	.driver_data	= &ksz8041_type,
6258 	.probe		= kszphy_probe,
6259 	.config_init	= kszphy_config_init,
6260 	.config_intr	= kszphy_config_intr,
6261 	.handle_interrupt = kszphy_handle_interrupt,
6262 	.get_sset_count = kszphy_get_sset_count,
6263 	.get_strings	= kszphy_get_strings,
6264 	.get_stats	= kszphy_get_stats,
6265 	.suspend	= kszphy_suspend,
6266 	.resume		= kszphy_resume,
6267 }, {
6268 	.name		= "Micrel KSZ8051",
6269 	/* PHY_BASIC_FEATURES */
6270 	.driver_data	= &ksz8051_type,
6271 	.probe		= kszphy_probe,
6272 	.config_init	= kszphy_config_init,
6273 	.config_intr	= kszphy_config_intr,
6274 	.handle_interrupt = kszphy_handle_interrupt,
6275 	.get_sset_count = kszphy_get_sset_count,
6276 	.get_strings	= kszphy_get_strings,
6277 	.get_stats	= kszphy_get_stats,
6278 	.match_phy_device = ksz8051_match_phy_device,
6279 	.suspend	= kszphy_suspend,
6280 	.resume		= kszphy_resume,
6281 }, {
6282 	.phy_id		= PHY_ID_KSZ8001,
6283 	.name		= "Micrel KSZ8001 or KS8721",
6284 	.phy_id_mask	= 0x00fffffc,
6285 	/* PHY_BASIC_FEATURES */
6286 	.driver_data	= &ksz8041_type,
6287 	.probe		= kszphy_probe,
6288 	.config_init	= kszphy_config_init,
6289 	.config_intr	= kszphy_config_intr,
6290 	.handle_interrupt = kszphy_handle_interrupt,
6291 	.get_sset_count = kszphy_get_sset_count,
6292 	.get_strings	= kszphy_get_strings,
6293 	.get_stats	= kszphy_get_stats,
6294 	.suspend	= kszphy_suspend,
6295 	.resume		= kszphy_resume,
6296 }, {
6297 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081),
6298 	.name		= "Micrel KSZ8081 or KSZ8091",
6299 	.flags		= PHY_POLL_CABLE_TEST,
6300 	/* PHY_BASIC_FEATURES */
6301 	.driver_data	= &ksz8081_type,
6302 	.probe		= kszphy_probe,
6303 	.config_init	= ksz8081_config_init,
6304 	.soft_reset	= genphy_soft_reset,
6305 	.config_aneg	= ksz8081_config_aneg,
6306 	.read_status	= ksz8081_read_status,
6307 	.config_intr	= kszphy_config_intr,
6308 	.handle_interrupt = kszphy_handle_interrupt,
6309 	.get_sset_count = kszphy_get_sset_count,
6310 	.get_strings	= kszphy_get_strings,
6311 	.get_stats	= kszphy_get_stats,
6312 	.suspend	= kszphy_suspend,
6313 	.resume		= kszphy_resume,
6314 	.cable_test_start	= ksz886x_cable_test_start,
6315 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6316 }, {
6317 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061),
6318 	.name		= "Micrel KSZ8061",
6319 	/* PHY_BASIC_FEATURES */
6320 	.probe		= kszphy_probe,
6321 	.config_init	= ksz8061_config_init,
6322 	.soft_reset	= genphy_soft_reset,
6323 	.config_intr	= kszphy_config_intr,
6324 	.handle_interrupt = kszphy_handle_interrupt,
6325 	.suspend	= ksz8061_suspend,
6326 	.resume		= ksz8061_resume,
6327 }, {
6328 	.phy_id		= PHY_ID_KSZ9021,
6329 	.phy_id_mask	= 0x000ffffe,
6330 	.name		= "Micrel KSZ9021 Gigabit PHY",
6331 	/* PHY_GBIT_FEATURES */
6332 	.driver_data	= &ksz9021_type,
6333 	.probe		= kszphy_probe,
6334 	.get_features	= ksz9031_get_features,
6335 	.config_init	= ksz9021_config_init,
6336 	.config_intr	= kszphy_config_intr,
6337 	.handle_interrupt = kszphy_handle_interrupt,
6338 	.get_sset_count = kszphy_get_sset_count,
6339 	.get_strings	= kszphy_get_strings,
6340 	.get_stats	= kszphy_get_stats,
6341 	.suspend	= kszphy_suspend,
6342 	.resume		= kszphy_resume,
6343 	.read_mmd	= genphy_read_mmd_unsupported,
6344 	.write_mmd	= genphy_write_mmd_unsupported,
6345 }, {
6346 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031),
6347 	.name		= "Micrel KSZ9031 Gigabit PHY",
6348 	.flags		= PHY_POLL_CABLE_TEST,
6349 	.driver_data	= &ksz9021_type,
6350 	.probe		= kszphy_probe,
6351 	.get_features	= ksz9031_get_features,
6352 	.config_init	= ksz9031_config_init,
6353 	.soft_reset	= genphy_soft_reset,
6354 	.read_status	= ksz9031_read_status,
6355 	.config_intr	= kszphy_config_intr,
6356 	.handle_interrupt = kszphy_handle_interrupt,
6357 	.get_sset_count = kszphy_get_sset_count,
6358 	.get_strings	= kszphy_get_strings,
6359 	.get_stats	= kszphy_get_stats,
6360 	.suspend	= kszphy_suspend,
6361 	.resume		= kszphy_resume,
6362 	.cable_test_start	= ksz9x31_cable_test_start,
6363 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6364 	.set_loopback	= ksz9031_set_loopback,
6365 }, {
6366 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8814),
6367 	.name		= "Microchip INDY Gigabit Quad PHY",
6368 	.flags          = PHY_POLL_CABLE_TEST,
6369 	.config_init	= lan8814_config_init,
6370 	.driver_data	= &lan8814_type,
6371 	.probe		= lan8814_probe,
6372 	.soft_reset	= genphy_soft_reset,
6373 	.read_status	= ksz9031_read_status,
6374 	.get_sset_count	= kszphy_get_sset_count,
6375 	.get_strings	= kszphy_get_strings,
6376 	.get_stats	= kszphy_get_stats,
6377 	.suspend	= genphy_suspend,
6378 	.resume		= kszphy_resume,
6379 	.config_intr	= lan8814_config_intr,
6380 	.handle_interrupt = lan8814_handle_interrupt,
6381 	.cable_test_start	= lan8814_cable_test_start,
6382 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6383 }, {
6384 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8804),
6385 	.name		= "Microchip LAN966X Gigabit PHY",
6386 	.config_init	= lan8804_config_init,
6387 	.driver_data	= &ksz9021_type,
6388 	.probe		= kszphy_probe,
6389 	.soft_reset	= genphy_soft_reset,
6390 	.read_status	= ksz9031_read_status,
6391 	.get_sset_count	= kszphy_get_sset_count,
6392 	.get_strings	= kszphy_get_strings,
6393 	.get_stats	= kszphy_get_stats,
6394 	.suspend	= lan8804_suspend,
6395 	.resume		= lan8804_resume,
6396 	.config_intr	= lan8804_config_intr,
6397 	.handle_interrupt = lan8804_handle_interrupt,
6398 }, {
6399 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8841),
6400 	.name		= "Microchip LAN8841 Gigabit PHY",
6401 	.flags		= PHY_POLL_CABLE_TEST,
6402 	.driver_data	= &lan8841_type,
6403 	.config_init	= lan8841_config_init,
6404 	.probe		= lan8841_probe,
6405 	.soft_reset	= genphy_soft_reset,
6406 	.config_intr	= lan8841_config_intr,
6407 	.handle_interrupt = lan8841_handle_interrupt,
6408 	.get_sset_count = kszphy_get_sset_count,
6409 	.get_strings	= kszphy_get_strings,
6410 	.get_stats	= kszphy_get_stats,
6411 	.suspend	= lan8841_suspend,
6412 	.resume		= lan8841_resume,
6413 	.cable_test_start	= lan8814_cable_test_start,
6414 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6415 }, {
6416 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8842),
6417 	.name		= "Microchip LAN8842 Gigabit PHY",
6418 	.flags		= PHY_POLL_CABLE_TEST,
6419 	.driver_data	= &lan8814_type,
6420 	.probe		= lan8842_probe,
6421 	.config_init	= lan8842_config_init,
6422 	.config_intr	= lan8842_config_intr,
6423 	.inband_caps	= lan8842_inband_caps,
6424 	.config_inband	= lan8842_config_inband,
6425 	.handle_interrupt = lan8842_handle_interrupt,
6426 	.get_phy_stats	= lan8842_get_phy_stats,
6427 	.update_stats	= lan8842_update_stats,
6428 	.get_tunable	= lan8842_get_tunable,
6429 	.set_tunable	= lan8842_set_tunable,
6430 	.cable_test_start	= lan8814_cable_test_start,
6431 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6432 }, {
6433 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131),
6434 	.name		= "Microchip KSZ9131 Gigabit PHY",
6435 	/* PHY_GBIT_FEATURES */
6436 	.flags		= PHY_POLL_CABLE_TEST,
6437 	.driver_data	= &ksz9131_type,
6438 	.probe		= kszphy_probe,
6439 	.soft_reset	= genphy_soft_reset,
6440 	.config_init	= ksz9131_config_init,
6441 	.config_intr	= kszphy_config_intr,
6442 	.config_aneg	= ksz9131_config_aneg,
6443 	.read_status	= ksz9131_read_status,
6444 	.handle_interrupt = kszphy_handle_interrupt,
6445 	.get_sset_count = kszphy_get_sset_count,
6446 	.get_strings	= kszphy_get_strings,
6447 	.get_stats	= kszphy_get_stats,
6448 	.suspend	= kszphy_suspend,
6449 	.resume		= ksz9131_resume,
6450 	.cable_test_start	= ksz9x31_cable_test_start,
6451 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6452 	.get_features	= ksz9477_get_features,
6453 }, {
6454 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL),
6455 	.name		= "Micrel KSZ8873MLL Switch",
6456 	/* PHY_BASIC_FEATURES */
6457 	.config_init	= kszphy_config_init,
6458 	.config_aneg	= ksz8873mll_config_aneg,
6459 	.read_status	= ksz8873mll_read_status,
6460 	.suspend	= genphy_suspend,
6461 	.resume		= genphy_resume,
6462 }, {
6463 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X),
6464 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
6465 	.driver_data	= &ksz886x_type,
6466 	/* PHY_BASIC_FEATURES */
6467 	.flags		= PHY_POLL_CABLE_TEST,
6468 	.config_init	= kszphy_config_init,
6469 	.config_aneg	= ksz886x_config_aneg,
6470 	.read_status	= ksz886x_read_status,
6471 	.suspend	= genphy_suspend,
6472 	.resume		= genphy_resume,
6473 	.cable_test_start	= ksz886x_cable_test_start,
6474 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6475 }, {
6476 	.name		= "Micrel KSZ87XX Switch",
6477 	/* PHY_BASIC_FEATURES */
6478 	.config_init	= kszphy_config_init,
6479 	.match_phy_device = ksz8795_match_phy_device,
6480 	.suspend	= genphy_suspend,
6481 	.resume		= genphy_resume,
6482 }, {
6483 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477),
6484 	.name		= "Microchip KSZ9477",
6485 	.probe		= kszphy_probe,
6486 	/* PHY_GBIT_FEATURES */
6487 	.config_init	= ksz9477_config_init,
6488 	.config_intr	= kszphy_config_intr,
6489 	.config_aneg	= ksz9477_config_aneg,
6490 	.read_status	= ksz9477_read_status,
6491 	.handle_interrupt = kszphy_handle_interrupt,
6492 	.suspend	= genphy_suspend,
6493 	.resume		= ksz9477_resume,
6494 	.get_phy_stats	= kszphy_get_phy_stats,
6495 	.update_stats	= kszphy_update_stats,
6496 	.cable_test_start	= ksz9x31_cable_test_start,
6497 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6498 	.get_sqi	= kszphy_get_sqi,
6499 	.get_sqi_max	= kszphy_get_sqi_max,
6500 } };
6501 
6502 module_phy_driver(ksphy_driver);
6503 
6504 MODULE_DESCRIPTION("Micrel PHY driver");
6505 MODULE_AUTHOR("David J. Choi");
6506 MODULE_LICENSE("GPL");
6507 
6508 static const struct mdio_device_id __maybe_unused micrel_tbl[] = {
6509 	{ PHY_ID_KSZ9021, 0x000ffffe },
6510 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) },
6511 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) },
6512 	{ PHY_ID_KSZ8001, 0x00fffffc },
6513 	{ PHY_ID_MATCH_MODEL(PHY_ID_KS8737) },
6514 	{ PHY_ID_KSZ8021, 0x00ffffff },
6515 	{ PHY_ID_KSZ8031, 0x00ffffff },
6516 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) },
6517 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) },
6518 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) },
6519 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) },
6520 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) },
6521 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) },
6522 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) },
6523 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) },
6524 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) },
6525 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) },
6526 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) },
6527 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) },
6528 	{ }
6529 };
6530 
6531 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
6532