1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_SKUS 0xB 105 106 #define LAN8814_WIRE_PAIR_MASK 0xF 107 108 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 109 #define LAN8814_INTC 0x18 110 #define LAN8814_INTS 0x1B 111 112 #define LAN8814_INT_FLF BIT(15) 113 #define LAN8814_INT_LINK_DOWN BIT(2) 114 #define LAN8814_INT_LINK_UP BIT(0) 115 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 116 LAN8814_INT_LINK_DOWN) 117 118 #define LAN8814_INTR_CTRL_REG 0x34 119 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 120 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 121 122 #define LAN8814_EEE_STATE 0x38 123 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 124 125 #define LAN8814_PD_CONTROLS 0x9d 126 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 127 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 128 129 /* Represents 1ppm adjustment in 2^32 format with 130 * each nsec contains 4 clock cycles. 131 * The value is calculated as following: (1/1000000)/((2^-32)/4) 132 */ 133 #define LAN8814_1PPM_FORMAT 17179 134 135 /* Represents 1ppm adjustment in 2^32 format with 136 * each nsec contains 8 clock cycles. 137 * The value is calculated as following: (1/1000000)/((2^-32)/8) 138 */ 139 #define LAN8841_1PPM_FORMAT 34360 140 141 #define PTP_RX_VERSION 0x0248 142 #define PTP_TX_VERSION 0x0288 143 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 144 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 145 146 #define PTP_RX_MOD 0x024F 147 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 148 #define PTP_RX_TIMESTAMP_EN 0x024D 149 #define PTP_TX_TIMESTAMP_EN 0x028D 150 151 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 152 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 153 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 154 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 155 156 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 157 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 158 159 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 160 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 161 #define LTC_HARD_RESET 0x023F 162 #define LTC_HARD_RESET_ BIT(0) 163 164 #define TSU_HARD_RESET 0x02C1 165 #define TSU_HARD_RESET_ BIT(0) 166 167 #define PTP_CMD_CTL 0x0200 168 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 169 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 170 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 171 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 172 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 173 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 174 175 #define PTP_COMMON_INT_ENA 0x0204 176 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 177 178 #define PTP_CLOCK_SET_SEC_HI 0x0205 179 #define PTP_CLOCK_SET_SEC_MID 0x0206 180 #define PTP_CLOCK_SET_SEC_LO 0x0207 181 #define PTP_CLOCK_SET_NS_HI 0x0208 182 #define PTP_CLOCK_SET_NS_LO 0x0209 183 184 #define PTP_CLOCK_READ_SEC_HI 0x0229 185 #define PTP_CLOCK_READ_SEC_MID 0x022A 186 #define PTP_CLOCK_READ_SEC_LO 0x022B 187 #define PTP_CLOCK_READ_NS_HI 0x022C 188 #define PTP_CLOCK_READ_NS_LO 0x022D 189 190 #define PTP_GPIO_SEL 0x0230 191 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 192 #define PTP_GPIO_CAP_MAP_LO 0x0232 193 194 #define PTP_GPIO_CAP_EN 0x0233 195 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 196 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 197 198 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 199 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 200 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 201 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 202 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 203 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 204 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 205 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 206 207 #define PTP_GPIO_CAP_STS 0x023D 208 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 209 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 210 211 #define PTP_OPERATING_MODE 0x0241 212 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 213 214 #define PTP_TX_MOD 0x028F 215 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 216 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 217 218 #define PTP_RX_PARSE_CONFIG 0x0242 219 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 220 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 221 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 222 223 #define PTP_TX_PARSE_CONFIG 0x0282 224 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 225 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 226 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 227 228 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 229 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 230 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 231 232 #define PTP_LTC_STEP_ADJ_HI 0x0212 233 #define PTP_LTC_STEP_ADJ_LO 0x0213 234 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 235 236 #define LAN8814_INTR_STS_REG 0x0033 237 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 238 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 239 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 240 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 241 242 #define PTP_CAP_INFO 0x022A 243 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 244 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 245 246 #define PTP_TX_EGRESS_SEC_HI 0x0296 247 #define PTP_TX_EGRESS_SEC_LO 0x0297 248 #define PTP_TX_EGRESS_NS_HI 0x0294 249 #define PTP_TX_EGRESS_NS_LO 0x0295 250 #define PTP_TX_MSG_HEADER2 0x0299 251 252 #define PTP_RX_INGRESS_SEC_HI 0x0256 253 #define PTP_RX_INGRESS_SEC_LO 0x0257 254 #define PTP_RX_INGRESS_NS_HI 0x0254 255 #define PTP_RX_INGRESS_NS_LO 0x0255 256 #define PTP_RX_MSG_HEADER2 0x0259 257 258 #define PTP_TSU_INT_EN 0x0200 259 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 260 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 261 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 262 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 263 264 #define PTP_TSU_INT_STS 0x0201 265 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 266 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 267 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 268 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 269 270 #define LAN8814_LED_CTRL_1 0x0 271 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 272 #define LAN8814_LED_CTRL_2 0x1 273 #define LAN8814_LED_CTRL_2_LED1_COM_DIS BIT(8) 274 275 /* PHY Control 1 */ 276 #define MII_KSZPHY_CTRL_1 0x1e 277 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 278 279 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 280 #define MII_KSZPHY_CTRL_2 0x1f 281 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 282 /* bitmap of PHY register to set interrupt mode */ 283 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 284 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 285 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 286 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 287 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 288 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 289 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 290 291 /* Write/read to/from extended registers */ 292 #define MII_KSZPHY_EXTREG 0x0b 293 #define KSZPHY_EXTREG_WRITE 0x8000 294 295 #define MII_KSZPHY_EXTREG_WRITE 0x0c 296 #define MII_KSZPHY_EXTREG_READ 0x0d 297 298 /* Extended registers */ 299 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 300 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 301 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 302 303 #define PS_TO_REG 200 304 #define FIFO_SIZE 8 305 306 #define LAN8814_PTP_GPIO_NUM 24 307 #define LAN8814_PTP_PEROUT_NUM 2 308 #define LAN8814_PTP_EXTTS_NUM 3 309 310 #define LAN8814_BUFFER_TIME 2 311 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 321 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 322 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 323 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 324 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 325 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 326 327 #define LAN8814_GPIO_EN1 0x20 328 #define LAN8814_GPIO_EN2 0x21 329 #define LAN8814_GPIO_DIR1 0x22 330 #define LAN8814_GPIO_DIR2 0x23 331 #define LAN8814_GPIO_BUF1 0x24 332 #define LAN8814_GPIO_BUF2 0x25 333 334 #define LAN8814_GPIO_EN_ADDR(pin) \ 335 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 336 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 337 #define LAN8814_GPIO_DIR_ADDR(pin) \ 338 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 339 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 340 #define LAN8814_GPIO_BUF_ADDR(pin) \ 341 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 342 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 343 344 #define LAN8814_EVENT_A 0 345 #define LAN8814_EVENT_B 1 346 347 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 348 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 349 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 350 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 351 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 352 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 353 ((event) ? BIT(2) : BIT(0)) 354 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 355 ((event) ? BIT(3) : BIT(1)) 356 357 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 358 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 359 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 360 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 361 362 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 363 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 364 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 365 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 366 367 /* Delay used to get the second part from the LTC */ 368 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 369 370 #define LAN8842_REV_8832 0x8832 371 372 #define LAN8814_REV_LAN8814 0x8814 373 #define LAN8814_REV_LAN8818 0x8818 374 375 struct kszphy_hw_stat { 376 const char *string; 377 u8 reg; 378 u8 bits; 379 }; 380 381 static struct kszphy_hw_stat kszphy_hw_stats[] = { 382 { "phy_receive_errors", 21, 16}, 383 { "phy_idle_errors", 10, 8 }, 384 }; 385 386 struct kszphy_type { 387 u32 led_mode_reg; 388 u16 interrupt_level_mask; 389 u16 cable_diag_reg; 390 unsigned long pair_mask; 391 u16 disable_dll_tx_bit; 392 u16 disable_dll_rx_bit; 393 u16 disable_dll_mask; 394 bool has_broadcast_disable; 395 bool has_nand_tree_disable; 396 bool has_rmii_ref_clk_sel; 397 }; 398 399 /* Shared structure between the PHYs of the same package. */ 400 struct lan8814_shared_priv { 401 struct phy_device *phydev; 402 struct ptp_clock *ptp_clock; 403 struct ptp_clock_info ptp_clock_info; 404 struct ptp_pin_desc *pin_config; 405 406 /* Lock for ptp_clock */ 407 struct mutex shared_lock; 408 }; 409 410 struct lan8814_ptp_rx_ts { 411 struct list_head list; 412 u32 seconds; 413 u32 nsec; 414 u16 seq_id; 415 }; 416 417 struct kszphy_ptp_priv { 418 struct mii_timestamper mii_ts; 419 struct phy_device *phydev; 420 421 struct sk_buff_head tx_queue; 422 struct sk_buff_head rx_queue; 423 424 struct list_head rx_ts_list; 425 /* Lock for Rx ts fifo */ 426 spinlock_t rx_ts_lock; 427 428 int hwts_tx_type; 429 enum hwtstamp_rx_filters rx_filter; 430 int layer; 431 int version; 432 433 struct ptp_clock *ptp_clock; 434 struct ptp_clock_info ptp_clock_info; 435 /* Lock for ptp_clock */ 436 struct mutex ptp_lock; 437 struct ptp_pin_desc *pin_config; 438 439 s64 seconds; 440 /* Lock for accessing seconds */ 441 spinlock_t seconds_lock; 442 }; 443 444 struct kszphy_phy_stats { 445 u64 rx_err_pkt_cnt; 446 }; 447 448 struct kszphy_priv { 449 struct kszphy_ptp_priv ptp_priv; 450 const struct kszphy_type *type; 451 struct clk *clk; 452 int led_mode; 453 u16 vct_ctrl1000; 454 bool rmii_ref_clk_sel; 455 bool rmii_ref_clk_sel_val; 456 bool clk_enable; 457 bool is_ptp_available; 458 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 459 struct kszphy_phy_stats phy_stats; 460 }; 461 462 struct lan8842_phy_stats { 463 u64 rx_packets; 464 u64 rx_errors; 465 u64 tx_packets; 466 u64 tx_errors; 467 }; 468 469 struct lan8842_priv { 470 struct lan8842_phy_stats phy_stats; 471 struct kszphy_ptp_priv ptp_priv; 472 u16 rev; 473 }; 474 475 static const struct kszphy_type lan8814_type = { 476 .led_mode_reg = ~LAN8814_LED_CTRL_1, 477 .cable_diag_reg = LAN8814_CABLE_DIAG, 478 .pair_mask = LAN8814_WIRE_PAIR_MASK, 479 }; 480 481 static const struct kszphy_type ksz886x_type = { 482 .cable_diag_reg = KSZ8081_LMD, 483 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 484 }; 485 486 static const struct kszphy_type ksz8021_type = { 487 .led_mode_reg = MII_KSZPHY_CTRL_2, 488 .has_broadcast_disable = true, 489 .has_nand_tree_disable = true, 490 .has_rmii_ref_clk_sel = true, 491 }; 492 493 static const struct kszphy_type ksz8041_type = { 494 .led_mode_reg = MII_KSZPHY_CTRL_1, 495 }; 496 497 static const struct kszphy_type ksz8051_type = { 498 .led_mode_reg = MII_KSZPHY_CTRL_2, 499 .has_nand_tree_disable = true, 500 }; 501 502 static const struct kszphy_type ksz8081_type = { 503 .led_mode_reg = MII_KSZPHY_CTRL_2, 504 .cable_diag_reg = KSZ8081_LMD, 505 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 506 .has_broadcast_disable = true, 507 .has_nand_tree_disable = true, 508 .has_rmii_ref_clk_sel = true, 509 }; 510 511 static const struct kszphy_type ks8737_type = { 512 .interrupt_level_mask = BIT(14), 513 }; 514 515 static const struct kszphy_type ksz9021_type = { 516 .interrupt_level_mask = BIT(14), 517 }; 518 519 static const struct kszphy_type ksz9131_type = { 520 .interrupt_level_mask = BIT(14), 521 .disable_dll_tx_bit = BIT(12), 522 .disable_dll_rx_bit = BIT(12), 523 .disable_dll_mask = BIT_MASK(12), 524 }; 525 526 static const struct kszphy_type lan8841_type = { 527 .disable_dll_tx_bit = BIT(14), 528 .disable_dll_rx_bit = BIT(14), 529 .disable_dll_mask = BIT_MASK(14), 530 .cable_diag_reg = LAN8814_CABLE_DIAG, 531 .pair_mask = LAN8814_WIRE_PAIR_MASK, 532 }; 533 534 static int kszphy_extended_write(struct phy_device *phydev, 535 u32 regnum, u16 val) 536 { 537 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 538 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 539 } 540 541 static int kszphy_extended_read(struct phy_device *phydev, 542 u32 regnum) 543 { 544 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 545 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 546 } 547 548 static int kszphy_ack_interrupt(struct phy_device *phydev) 549 { 550 /* bit[7..0] int status, which is a read and clear register. */ 551 int rc; 552 553 rc = phy_read(phydev, MII_KSZPHY_INTCS); 554 555 return (rc < 0) ? rc : 0; 556 } 557 558 static int kszphy_config_intr(struct phy_device *phydev) 559 { 560 const struct kszphy_type *type = phydev->drv->driver_data; 561 int temp, err; 562 u16 mask; 563 564 if (type && type->interrupt_level_mask) 565 mask = type->interrupt_level_mask; 566 else 567 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 568 569 /* set the interrupt pin active low */ 570 temp = phy_read(phydev, MII_KSZPHY_CTRL); 571 if (temp < 0) 572 return temp; 573 temp &= ~mask; 574 phy_write(phydev, MII_KSZPHY_CTRL, temp); 575 576 /* enable / disable interrupts */ 577 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 578 err = kszphy_ack_interrupt(phydev); 579 if (err) 580 return err; 581 582 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 583 } else { 584 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 585 if (err) 586 return err; 587 588 err = kszphy_ack_interrupt(phydev); 589 } 590 591 return err; 592 } 593 594 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 595 { 596 int irq_status; 597 598 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 599 if (irq_status < 0) { 600 phy_error(phydev); 601 return IRQ_NONE; 602 } 603 604 if (!(irq_status & KSZPHY_INTCS_STATUS)) 605 return IRQ_NONE; 606 607 phy_trigger_machine(phydev); 608 609 return IRQ_HANDLED; 610 } 611 612 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 613 { 614 int ctrl; 615 616 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 617 if (ctrl < 0) 618 return ctrl; 619 620 if (val) 621 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 622 else 623 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 624 625 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 626 } 627 628 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 629 { 630 int rc, temp, shift; 631 632 switch (reg) { 633 case MII_KSZPHY_CTRL_1: 634 shift = 14; 635 break; 636 case MII_KSZPHY_CTRL_2: 637 shift = 4; 638 break; 639 default: 640 return -EINVAL; 641 } 642 643 temp = phy_read(phydev, reg); 644 if (temp < 0) { 645 rc = temp; 646 goto out; 647 } 648 649 temp &= ~(3 << shift); 650 temp |= val << shift; 651 rc = phy_write(phydev, reg, temp); 652 out: 653 if (rc < 0) 654 phydev_err(phydev, "failed to set led mode\n"); 655 656 return rc; 657 } 658 659 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 660 * unique (non-broadcast) address on a shared bus. 661 */ 662 static int kszphy_broadcast_disable(struct phy_device *phydev) 663 { 664 int ret; 665 666 ret = phy_read(phydev, MII_KSZPHY_OMSO); 667 if (ret < 0) 668 goto out; 669 670 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 671 out: 672 if (ret) 673 phydev_err(phydev, "failed to disable broadcast address\n"); 674 675 return ret; 676 } 677 678 static int kszphy_nand_tree_disable(struct phy_device *phydev) 679 { 680 int ret; 681 682 ret = phy_read(phydev, MII_KSZPHY_OMSO); 683 if (ret < 0) 684 goto out; 685 686 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 687 return 0; 688 689 ret = phy_write(phydev, MII_KSZPHY_OMSO, 690 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 691 out: 692 if (ret) 693 phydev_err(phydev, "failed to disable NAND tree mode\n"); 694 695 return ret; 696 } 697 698 /* Some config bits need to be set again on resume, handle them here. */ 699 static int kszphy_config_reset(struct phy_device *phydev) 700 { 701 struct kszphy_priv *priv = phydev->priv; 702 int ret; 703 704 if (priv->rmii_ref_clk_sel) { 705 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 706 if (ret) { 707 phydev_err(phydev, 708 "failed to set rmii reference clock\n"); 709 return ret; 710 } 711 } 712 713 if (priv->type && priv->led_mode >= 0) 714 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 715 716 return 0; 717 } 718 719 static int kszphy_config_init(struct phy_device *phydev) 720 { 721 struct kszphy_priv *priv = phydev->priv; 722 const struct kszphy_type *type; 723 724 if (!priv) 725 return 0; 726 727 type = priv->type; 728 729 if (type && type->has_broadcast_disable) 730 kszphy_broadcast_disable(phydev); 731 732 if (type && type->has_nand_tree_disable) 733 kszphy_nand_tree_disable(phydev); 734 735 return kszphy_config_reset(phydev); 736 } 737 738 static int ksz8041_fiber_mode(struct phy_device *phydev) 739 { 740 struct device_node *of_node = phydev->mdio.dev.of_node; 741 742 return of_property_read_bool(of_node, "micrel,fiber-mode"); 743 } 744 745 static int ksz8041_config_init(struct phy_device *phydev) 746 { 747 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 748 749 /* Limit supported and advertised modes in fiber mode */ 750 if (ksz8041_fiber_mode(phydev)) { 751 phydev->dev_flags |= MICREL_PHY_FXEN; 752 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 753 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 754 755 linkmode_and(phydev->supported, phydev->supported, mask); 756 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 757 phydev->supported); 758 linkmode_and(phydev->advertising, phydev->advertising, mask); 759 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 760 phydev->advertising); 761 phydev->autoneg = AUTONEG_DISABLE; 762 } 763 764 return kszphy_config_init(phydev); 765 } 766 767 static int ksz8041_config_aneg(struct phy_device *phydev) 768 { 769 /* Skip auto-negotiation in fiber mode */ 770 if (phydev->dev_flags & MICREL_PHY_FXEN) { 771 phydev->speed = SPEED_100; 772 return 0; 773 } 774 775 return genphy_config_aneg(phydev); 776 } 777 778 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 779 const bool ksz_8051) 780 { 781 int ret; 782 783 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 784 return 0; 785 786 ret = phy_read(phydev, MII_BMSR); 787 if (ret < 0) 788 return ret; 789 790 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 791 * exact PHY ID. However, they can be told apart by the extended 792 * capability registers presence. The KSZ8051 PHY has them while 793 * the switch does not. 794 */ 795 ret &= BMSR_ERCAP; 796 if (ksz_8051) 797 return ret; 798 else 799 return !ret; 800 } 801 802 static int ksz8051_match_phy_device(struct phy_device *phydev, 803 const struct phy_driver *phydrv) 804 { 805 return ksz8051_ksz8795_match_phy_device(phydev, true); 806 } 807 808 static int ksz8081_config_init(struct phy_device *phydev) 809 { 810 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 811 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 812 * pull-down is missing, the factory test mode should be cleared by 813 * manually writing a 0. 814 */ 815 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 816 817 return kszphy_config_init(phydev); 818 } 819 820 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 821 { 822 u16 val; 823 824 switch (ctrl) { 825 case ETH_TP_MDI: 826 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 827 break; 828 case ETH_TP_MDI_X: 829 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 830 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 831 break; 832 case ETH_TP_MDI_AUTO: 833 val = 0; 834 break; 835 default: 836 return 0; 837 } 838 839 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 840 KSZ8081_CTRL2_HP_MDIX | 841 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 842 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 843 KSZ8081_CTRL2_HP_MDIX | val); 844 } 845 846 static int ksz8081_config_aneg(struct phy_device *phydev) 847 { 848 int ret; 849 850 ret = genphy_config_aneg(phydev); 851 if (ret) 852 return ret; 853 854 /* The MDI-X configuration is automatically changed by the PHY after 855 * switching from autoneg off to on. So, take MDI-X configuration under 856 * own control and set it after autoneg configuration was done. 857 */ 858 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 859 } 860 861 static int ksz8081_mdix_update(struct phy_device *phydev) 862 { 863 int ret; 864 865 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 866 if (ret < 0) 867 return ret; 868 869 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 870 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 871 phydev->mdix_ctrl = ETH_TP_MDI_X; 872 else 873 phydev->mdix_ctrl = ETH_TP_MDI; 874 } else { 875 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 876 } 877 878 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 879 if (ret < 0) 880 return ret; 881 882 if (ret & KSZ8081_CTRL1_MDIX_STAT) 883 phydev->mdix = ETH_TP_MDI; 884 else 885 phydev->mdix = ETH_TP_MDI_X; 886 887 return 0; 888 } 889 890 static int ksz8081_read_status(struct phy_device *phydev) 891 { 892 int ret; 893 894 ret = ksz8081_mdix_update(phydev); 895 if (ret < 0) 896 return ret; 897 898 return genphy_read_status(phydev); 899 } 900 901 static int ksz8061_config_init(struct phy_device *phydev) 902 { 903 int ret; 904 905 /* Chip can be powered down by the bootstrap code. */ 906 ret = phy_read(phydev, MII_BMCR); 907 if (ret < 0) 908 return ret; 909 if (ret & BMCR_PDOWN) { 910 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 911 if (ret < 0) 912 return ret; 913 usleep_range(1000, 2000); 914 } 915 916 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 917 if (ret) 918 return ret; 919 920 return kszphy_config_init(phydev); 921 } 922 923 static int ksz8795_match_phy_device(struct phy_device *phydev, 924 const struct phy_driver *phydrv) 925 { 926 return ksz8051_ksz8795_match_phy_device(phydev, false); 927 } 928 929 static int ksz9021_load_values_from_of(struct phy_device *phydev, 930 const struct device_node *of_node, 931 u16 reg, 932 const char *field1, const char *field2, 933 const char *field3, const char *field4) 934 { 935 int val1 = -1; 936 int val2 = -2; 937 int val3 = -3; 938 int val4 = -4; 939 int newval; 940 int matches = 0; 941 942 if (!of_property_read_u32(of_node, field1, &val1)) 943 matches++; 944 945 if (!of_property_read_u32(of_node, field2, &val2)) 946 matches++; 947 948 if (!of_property_read_u32(of_node, field3, &val3)) 949 matches++; 950 951 if (!of_property_read_u32(of_node, field4, &val4)) 952 matches++; 953 954 if (!matches) 955 return 0; 956 957 if (matches < 4) 958 newval = kszphy_extended_read(phydev, reg); 959 else 960 newval = 0; 961 962 if (val1 != -1) 963 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 964 965 if (val2 != -2) 966 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 967 968 if (val3 != -3) 969 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 970 971 if (val4 != -4) 972 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 973 974 return kszphy_extended_write(phydev, reg, newval); 975 } 976 977 static int ksz9021_config_init(struct phy_device *phydev) 978 { 979 const struct device_node *of_node; 980 const struct device *dev_walker; 981 982 /* The Micrel driver has a deprecated option to place phy OF 983 * properties in the MAC node. Walk up the tree of devices to 984 * find a device with an OF node. 985 */ 986 dev_walker = &phydev->mdio.dev; 987 do { 988 of_node = dev_walker->of_node; 989 dev_walker = dev_walker->parent; 990 991 } while (!of_node && dev_walker); 992 993 if (of_node) { 994 ksz9021_load_values_from_of(phydev, of_node, 995 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 996 "txen-skew-ps", "txc-skew-ps", 997 "rxdv-skew-ps", "rxc-skew-ps"); 998 ksz9021_load_values_from_of(phydev, of_node, 999 MII_KSZPHY_RX_DATA_PAD_SKEW, 1000 "rxd0-skew-ps", "rxd1-skew-ps", 1001 "rxd2-skew-ps", "rxd3-skew-ps"); 1002 ksz9021_load_values_from_of(phydev, of_node, 1003 MII_KSZPHY_TX_DATA_PAD_SKEW, 1004 "txd0-skew-ps", "txd1-skew-ps", 1005 "txd2-skew-ps", "txd3-skew-ps"); 1006 } 1007 return 0; 1008 } 1009 1010 #define KSZ9031_PS_TO_REG 60 1011 1012 /* Extended registers */ 1013 /* MMD Address 0x0 */ 1014 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 1015 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 1016 1017 /* MMD Address 0x2 */ 1018 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 1019 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 1020 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 1021 1022 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 1023 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 1024 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 1025 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 1026 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 1027 1028 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 1029 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 1030 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1031 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1032 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1033 1034 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1035 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1036 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1037 1038 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1039 * provide different RGMII options we need to configure delay offset 1040 * for each pad relative to build in delay. 1041 */ 1042 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1043 * 1.80ns 1044 */ 1045 #define RX_ID 0x7 1046 #define RX_CLK_ID 0x19 1047 1048 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1049 * internal 1.2ns delay. 1050 */ 1051 #define RX_ND 0xc 1052 #define RX_CLK_ND 0x0 1053 1054 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1055 #define TX_ID 0x0 1056 #define TX_CLK_ID 0x1f 1057 1058 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1059 * delay 1060 */ 1061 #define TX_ND 0x7 1062 #define TX_CLK_ND 0xf 1063 1064 /* MMD Address 0x1C */ 1065 #define MII_KSZ9031RN_EDPD 0x23 1066 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1067 1068 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1069 int speed) 1070 { 1071 u16 ctl = BMCR_LOOPBACK; 1072 int val; 1073 1074 if (!enable) 1075 return genphy_loopback(phydev, enable, 0); 1076 1077 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1078 phydev->speed = speed; 1079 else if (speed) 1080 return -EINVAL; 1081 phydev->duplex = DUPLEX_FULL; 1082 1083 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1084 1085 phy_write(phydev, MII_BMCR, ctl); 1086 1087 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1088 5000, 500000, true); 1089 } 1090 1091 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1092 const struct device_node *of_node, 1093 u16 reg, size_t field_sz, 1094 const char *field[], u8 numfields, 1095 bool *update) 1096 { 1097 int val[4] = {-1, -2, -3, -4}; 1098 int matches = 0; 1099 u16 mask; 1100 u16 maxval; 1101 u16 newval; 1102 int i; 1103 1104 for (i = 0; i < numfields; i++) 1105 if (!of_property_read_u32(of_node, field[i], val + i)) 1106 matches++; 1107 1108 if (!matches) 1109 return 0; 1110 1111 *update |= true; 1112 1113 if (matches < numfields) 1114 newval = phy_read_mmd(phydev, 2, reg); 1115 else 1116 newval = 0; 1117 1118 maxval = (field_sz == 4) ? 0xf : 0x1f; 1119 for (i = 0; i < numfields; i++) 1120 if (val[i] != -(i + 1)) { 1121 mask = 0xffff; 1122 mask ^= maxval << (field_sz * i); 1123 newval = (newval & mask) | 1124 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1125 << (field_sz * i)); 1126 } 1127 1128 return phy_write_mmd(phydev, 2, reg, newval); 1129 } 1130 1131 /* Center KSZ9031RNX FLP timing at 16ms. */ 1132 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1133 { 1134 int result; 1135 1136 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1137 0x0006); 1138 if (result) 1139 return result; 1140 1141 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1142 0x1A80); 1143 if (result) 1144 return result; 1145 1146 return genphy_restart_aneg(phydev); 1147 } 1148 1149 /* Enable energy-detect power-down mode */ 1150 static int ksz9031_enable_edpd(struct phy_device *phydev) 1151 { 1152 int reg; 1153 1154 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1155 if (reg < 0) 1156 return reg; 1157 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1158 reg | MII_KSZ9031RN_EDPD_ENABLE); 1159 } 1160 1161 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1162 { 1163 u16 rx, tx, rx_clk, tx_clk; 1164 int ret; 1165 1166 switch (phydev->interface) { 1167 case PHY_INTERFACE_MODE_RGMII: 1168 tx = TX_ND; 1169 tx_clk = TX_CLK_ND; 1170 rx = RX_ND; 1171 rx_clk = RX_CLK_ND; 1172 break; 1173 case PHY_INTERFACE_MODE_RGMII_ID: 1174 tx = TX_ID; 1175 tx_clk = TX_CLK_ID; 1176 rx = RX_ID; 1177 rx_clk = RX_CLK_ID; 1178 break; 1179 case PHY_INTERFACE_MODE_RGMII_RXID: 1180 tx = TX_ND; 1181 tx_clk = TX_CLK_ND; 1182 rx = RX_ID; 1183 rx_clk = RX_CLK_ID; 1184 break; 1185 case PHY_INTERFACE_MODE_RGMII_TXID: 1186 tx = TX_ID; 1187 tx_clk = TX_CLK_ID; 1188 rx = RX_ND; 1189 rx_clk = RX_CLK_ND; 1190 break; 1191 default: 1192 return 0; 1193 } 1194 1195 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1196 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1197 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1198 if (ret < 0) 1199 return ret; 1200 1201 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1202 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1203 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1204 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1205 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1206 if (ret < 0) 1207 return ret; 1208 1209 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1210 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1211 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1212 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1213 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1214 if (ret < 0) 1215 return ret; 1216 1217 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1218 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1219 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1220 } 1221 1222 static int ksz9031_config_init(struct phy_device *phydev) 1223 { 1224 const struct device_node *of_node; 1225 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1226 static const char *rx_data_skews[4] = { 1227 "rxd0-skew-ps", "rxd1-skew-ps", 1228 "rxd2-skew-ps", "rxd3-skew-ps" 1229 }; 1230 static const char *tx_data_skews[4] = { 1231 "txd0-skew-ps", "txd1-skew-ps", 1232 "txd2-skew-ps", "txd3-skew-ps" 1233 }; 1234 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1235 const struct device *dev_walker; 1236 int result; 1237 1238 result = ksz9031_enable_edpd(phydev); 1239 if (result < 0) 1240 return result; 1241 1242 /* The Micrel driver has a deprecated option to place phy OF 1243 * properties in the MAC node. Walk up the tree of devices to 1244 * find a device with an OF node. 1245 */ 1246 dev_walker = &phydev->mdio.dev; 1247 do { 1248 of_node = dev_walker->of_node; 1249 dev_walker = dev_walker->parent; 1250 } while (!of_node && dev_walker); 1251 1252 if (of_node) { 1253 bool update = false; 1254 1255 if (phy_interface_is_rgmii(phydev)) { 1256 result = ksz9031_config_rgmii_delay(phydev); 1257 if (result < 0) 1258 return result; 1259 } 1260 1261 ksz9031_of_load_skew_values(phydev, of_node, 1262 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1263 clk_skews, 2, &update); 1264 1265 ksz9031_of_load_skew_values(phydev, of_node, 1266 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1267 control_skews, 2, &update); 1268 1269 ksz9031_of_load_skew_values(phydev, of_node, 1270 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1271 rx_data_skews, 4, &update); 1272 1273 ksz9031_of_load_skew_values(phydev, of_node, 1274 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1275 tx_data_skews, 4, &update); 1276 1277 if (update && !phy_interface_is_rgmii(phydev)) 1278 phydev_warn(phydev, 1279 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1280 1281 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1282 * When the device links in the 1000BASE-T slave mode only, 1283 * the optional 125MHz reference output clock (CLK125_NDO) 1284 * has wide duty cycle variation. 1285 * 1286 * The optional CLK125_NDO clock does not meet the RGMII 1287 * 45/55 percent (min/max) duty cycle requirement and therefore 1288 * cannot be used directly by the MAC side for clocking 1289 * applications that have setup/hold time requirements on 1290 * rising and falling clock edges. 1291 * 1292 * Workaround: 1293 * Force the phy to be the master to receive a stable clock 1294 * which meets the duty cycle requirement. 1295 */ 1296 if (of_property_read_bool(of_node, "micrel,force-master")) { 1297 result = phy_read(phydev, MII_CTRL1000); 1298 if (result < 0) 1299 goto err_force_master; 1300 1301 /* enable master mode, config & prefer master */ 1302 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1303 result = phy_write(phydev, MII_CTRL1000, result); 1304 if (result < 0) 1305 goto err_force_master; 1306 } 1307 } 1308 1309 return ksz9031_center_flp_timing(phydev); 1310 1311 err_force_master: 1312 phydev_err(phydev, "failed to force the phy to master mode\n"); 1313 return result; 1314 } 1315 1316 #define KSZ9131_SKEW_5BIT_MAX 2400 1317 #define KSZ9131_SKEW_4BIT_MAX 800 1318 #define KSZ9131_OFFSET 700 1319 #define KSZ9131_STEP 100 1320 1321 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1322 struct device_node *of_node, 1323 u16 reg, size_t field_sz, 1324 char *field[], u8 numfields) 1325 { 1326 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1327 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1328 int skewval, skewmax = 0; 1329 int matches = 0; 1330 u16 maxval; 1331 u16 newval; 1332 u16 mask; 1333 int i; 1334 1335 /* psec properties in dts should mean x pico seconds */ 1336 if (field_sz == 5) 1337 skewmax = KSZ9131_SKEW_5BIT_MAX; 1338 else 1339 skewmax = KSZ9131_SKEW_4BIT_MAX; 1340 1341 for (i = 0; i < numfields; i++) 1342 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1343 if (skewval < -KSZ9131_OFFSET) 1344 skewval = -KSZ9131_OFFSET; 1345 else if (skewval > skewmax) 1346 skewval = skewmax; 1347 1348 val[i] = skewval + KSZ9131_OFFSET; 1349 matches++; 1350 } 1351 1352 if (!matches) 1353 return 0; 1354 1355 if (matches < numfields) 1356 newval = phy_read_mmd(phydev, 2, reg); 1357 else 1358 newval = 0; 1359 1360 maxval = (field_sz == 4) ? 0xf : 0x1f; 1361 for (i = 0; i < numfields; i++) 1362 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1363 mask = 0xffff; 1364 mask ^= maxval << (field_sz * i); 1365 newval = (newval & mask) | 1366 (((val[i] / KSZ9131_STEP) & maxval) 1367 << (field_sz * i)); 1368 } 1369 1370 return phy_write_mmd(phydev, 2, reg, newval); 1371 } 1372 1373 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1374 #define KSZ9131RN_RXC_DLL_CTRL 76 1375 #define KSZ9131RN_TXC_DLL_CTRL 77 1376 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1377 1378 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1379 { 1380 const struct kszphy_type *type = phydev->drv->driver_data; 1381 u16 rxcdll_val, txcdll_val; 1382 int ret; 1383 1384 switch (phydev->interface) { 1385 case PHY_INTERFACE_MODE_RGMII: 1386 rxcdll_val = type->disable_dll_rx_bit; 1387 txcdll_val = type->disable_dll_tx_bit; 1388 break; 1389 case PHY_INTERFACE_MODE_RGMII_ID: 1390 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1391 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1392 break; 1393 case PHY_INTERFACE_MODE_RGMII_RXID: 1394 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1395 txcdll_val = type->disable_dll_tx_bit; 1396 break; 1397 case PHY_INTERFACE_MODE_RGMII_TXID: 1398 rxcdll_val = type->disable_dll_rx_bit; 1399 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1400 break; 1401 default: 1402 return 0; 1403 } 1404 1405 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1406 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1407 rxcdll_val); 1408 if (ret < 0) 1409 return ret; 1410 1411 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1412 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1413 txcdll_val); 1414 } 1415 1416 /* Silicon Errata DS80000693B 1417 * 1418 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1419 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1420 * according to the datasheet (off if there is no link). 1421 */ 1422 static int ksz9131_led_errata(struct phy_device *phydev) 1423 { 1424 int reg; 1425 1426 reg = phy_read_mmd(phydev, 2, 0); 1427 if (reg < 0) 1428 return reg; 1429 1430 if (!(reg & BIT(4))) 1431 return 0; 1432 1433 return phy_set_bits(phydev, 0x1e, BIT(9)); 1434 } 1435 1436 static int ksz9131_config_init(struct phy_device *phydev) 1437 { 1438 struct device_node *of_node; 1439 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1440 char *rx_data_skews[4] = { 1441 "rxd0-skew-psec", "rxd1-skew-psec", 1442 "rxd2-skew-psec", "rxd3-skew-psec" 1443 }; 1444 char *tx_data_skews[4] = { 1445 "txd0-skew-psec", "txd1-skew-psec", 1446 "txd2-skew-psec", "txd3-skew-psec" 1447 }; 1448 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1449 const struct device *dev_walker; 1450 int ret; 1451 1452 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1453 1454 dev_walker = &phydev->mdio.dev; 1455 do { 1456 of_node = dev_walker->of_node; 1457 dev_walker = dev_walker->parent; 1458 } while (!of_node && dev_walker); 1459 1460 if (!of_node) 1461 return 0; 1462 1463 if (phy_interface_is_rgmii(phydev)) { 1464 ret = ksz9131_config_rgmii_delay(phydev); 1465 if (ret < 0) 1466 return ret; 1467 } 1468 1469 ret = ksz9131_of_load_skew_values(phydev, of_node, 1470 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1471 clk_skews, 2); 1472 if (ret < 0) 1473 return ret; 1474 1475 ret = ksz9131_of_load_skew_values(phydev, of_node, 1476 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1477 control_skews, 2); 1478 if (ret < 0) 1479 return ret; 1480 1481 ret = ksz9131_of_load_skew_values(phydev, of_node, 1482 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1483 rx_data_skews, 4); 1484 if (ret < 0) 1485 return ret; 1486 1487 ret = ksz9131_of_load_skew_values(phydev, of_node, 1488 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1489 tx_data_skews, 4); 1490 if (ret < 0) 1491 return ret; 1492 1493 ret = ksz9131_led_errata(phydev); 1494 if (ret < 0) 1495 return ret; 1496 1497 return 0; 1498 } 1499 1500 #define MII_KSZ9131_AUTO_MDIX 0x1C 1501 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1502 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1503 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1504 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1505 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1506 1507 static int ksz9131_mdix_update(struct phy_device *phydev) 1508 { 1509 int ret; 1510 1511 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1512 phydev->mdix = phydev->mdix_ctrl; 1513 } else { 1514 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1515 if (ret < 0) 1516 return ret; 1517 1518 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1519 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1520 phydev->mdix = ETH_TP_MDI; 1521 else 1522 phydev->mdix = ETH_TP_MDI_X; 1523 } else { 1524 phydev->mdix = ETH_TP_MDI_INVALID; 1525 } 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1532 { 1533 u16 val; 1534 1535 switch (ctrl) { 1536 case ETH_TP_MDI: 1537 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1538 MII_KSZ9131_AUTO_MDI_SET; 1539 break; 1540 case ETH_TP_MDI_X: 1541 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1542 break; 1543 case ETH_TP_MDI_AUTO: 1544 val = 0; 1545 break; 1546 default: 1547 return 0; 1548 } 1549 1550 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1551 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1552 MII_KSZ9131_AUTO_MDI_SET, val); 1553 } 1554 1555 static int ksz9131_read_status(struct phy_device *phydev) 1556 { 1557 int ret; 1558 1559 ret = ksz9131_mdix_update(phydev); 1560 if (ret < 0) 1561 return ret; 1562 1563 return genphy_read_status(phydev); 1564 } 1565 1566 static int ksz9131_config_aneg(struct phy_device *phydev) 1567 { 1568 int ret; 1569 1570 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1571 if (ret) 1572 return ret; 1573 1574 return genphy_config_aneg(phydev); 1575 } 1576 1577 static int ksz9477_get_features(struct phy_device *phydev) 1578 { 1579 int ret; 1580 1581 ret = genphy_read_abilities(phydev); 1582 if (ret) 1583 return ret; 1584 1585 /* The "EEE control and capability 1" (Register 3.20) seems to be 1586 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1587 * on the 7.60 will affect 3.20. So, we need to construct our own list 1588 * of caps. 1589 * KSZ8563R should have 100BaseTX/Full only. 1590 */ 1591 linkmode_and(phydev->supported_eee, phydev->supported, 1592 PHY_EEE_CAP1_FEATURES); 1593 1594 return 0; 1595 } 1596 1597 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1598 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1599 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1600 static int ksz8873mll_read_status(struct phy_device *phydev) 1601 { 1602 int regval; 1603 1604 /* dummy read */ 1605 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1606 1607 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1608 1609 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1610 phydev->duplex = DUPLEX_HALF; 1611 else 1612 phydev->duplex = DUPLEX_FULL; 1613 1614 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1615 phydev->speed = SPEED_10; 1616 else 1617 phydev->speed = SPEED_100; 1618 1619 phydev->link = 1; 1620 phydev->pause = phydev->asym_pause = 0; 1621 1622 return 0; 1623 } 1624 1625 static int ksz9031_get_features(struct phy_device *phydev) 1626 { 1627 int ret; 1628 1629 ret = genphy_read_abilities(phydev); 1630 if (ret < 0) 1631 return ret; 1632 1633 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1634 * Whenever the device's Asymmetric Pause capability is set to 1, 1635 * link-up may fail after a link-up to link-down transition. 1636 * 1637 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1638 * 1639 * Workaround: 1640 * Do not enable the Asymmetric Pause capability bit. 1641 */ 1642 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1643 1644 /* We force setting the Pause capability as the core will force the 1645 * Asymmetric Pause capability to 1 otherwise. 1646 */ 1647 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1648 1649 return 0; 1650 } 1651 1652 static int ksz9031_read_status(struct phy_device *phydev) 1653 { 1654 int err; 1655 int regval; 1656 1657 err = genphy_read_status(phydev); 1658 if (err) 1659 return err; 1660 1661 /* Make sure the PHY is not broken. Read idle error count, 1662 * and reset the PHY if it is maxed out. 1663 */ 1664 regval = phy_read(phydev, MII_STAT1000); 1665 if ((regval & 0xFF) == 0xFF) { 1666 phy_init_hw(phydev); 1667 phydev->link = 0; 1668 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1669 phydev->drv->config_intr(phydev); 1670 return genphy_config_aneg(phydev); 1671 } 1672 1673 return 0; 1674 } 1675 1676 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1677 { 1678 struct kszphy_priv *priv = phydev->priv; 1679 int ret; 1680 1681 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1682 * Prior to running the cable diagnostics, Auto-negotiation should 1683 * be disabled, full duplex set and the link speed set to 1000Mbps 1684 * via the Basic Control Register. 1685 */ 1686 ret = phy_modify(phydev, MII_BMCR, 1687 BMCR_SPEED1000 | BMCR_FULLDPLX | 1688 BMCR_ANENABLE | BMCR_SPEED100, 1689 BMCR_SPEED1000 | BMCR_FULLDPLX); 1690 if (ret) 1691 return ret; 1692 1693 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1694 * The Master-Slave configuration should be set to Slave by writing 1695 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1696 * Register. 1697 */ 1698 ret = phy_read(phydev, MII_CTRL1000); 1699 if (ret < 0) 1700 return ret; 1701 1702 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1703 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1704 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1705 ret |= CTL1000_ENABLE_MASTER; 1706 1707 return phy_write(phydev, MII_CTRL1000, ret); 1708 } 1709 1710 static int ksz9x31_cable_test_result_trans(u16 status) 1711 { 1712 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1713 case KSZ9x31_LMD_VCT_ST_NORMAL: 1714 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1715 case KSZ9x31_LMD_VCT_ST_OPEN: 1716 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1717 case KSZ9x31_LMD_VCT_ST_SHORT: 1718 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1719 case KSZ9x31_LMD_VCT_ST_FAIL: 1720 fallthrough; 1721 default: 1722 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1723 } 1724 } 1725 1726 static bool ksz9x31_cable_test_failed(u16 status) 1727 { 1728 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1729 1730 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1731 } 1732 1733 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1734 { 1735 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1736 case KSZ9x31_LMD_VCT_ST_OPEN: 1737 fallthrough; 1738 case KSZ9x31_LMD_VCT_ST_SHORT: 1739 return true; 1740 } 1741 return false; 1742 } 1743 1744 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1745 { 1746 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1747 1748 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1749 * 1750 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1751 */ 1752 if (phydev_id_compare(phydev, PHY_ID_KSZ9131) || 1753 phydev_id_compare(phydev, PHY_ID_KSZ9477)) 1754 dt = clamp(dt - 22, 0, 255); 1755 1756 return (dt * 400) / 10; 1757 } 1758 1759 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1760 { 1761 int val, ret; 1762 1763 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1764 !(val & KSZ9x31_LMD_VCT_EN), 1765 30000, 100000, true); 1766 1767 return ret < 0 ? ret : 0; 1768 } 1769 1770 static int ksz9x31_cable_test_get_pair(int pair) 1771 { 1772 static const int ethtool_pair[] = { 1773 ETHTOOL_A_CABLE_PAIR_A, 1774 ETHTOOL_A_CABLE_PAIR_B, 1775 ETHTOOL_A_CABLE_PAIR_C, 1776 ETHTOOL_A_CABLE_PAIR_D, 1777 }; 1778 1779 return ethtool_pair[pair]; 1780 } 1781 1782 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1783 { 1784 int ret, val; 1785 1786 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1787 * To test each individual cable pair, set the cable pair in the Cable 1788 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1789 * Diagnostic Register, along with setting the Cable Diagnostics Test 1790 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1791 * will self clear when the test is concluded. 1792 */ 1793 ret = phy_write(phydev, KSZ9x31_LMD, 1794 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1795 if (ret) 1796 return ret; 1797 1798 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1799 if (ret) 1800 return ret; 1801 1802 val = phy_read(phydev, KSZ9x31_LMD); 1803 if (val < 0) 1804 return val; 1805 1806 if (ksz9x31_cable_test_failed(val)) 1807 return -EAGAIN; 1808 1809 ret = ethnl_cable_test_result(phydev, 1810 ksz9x31_cable_test_get_pair(pair), 1811 ksz9x31_cable_test_result_trans(val)); 1812 if (ret) 1813 return ret; 1814 1815 if (!ksz9x31_cable_test_fault_length_valid(val)) 1816 return 0; 1817 1818 return ethnl_cable_test_fault_length(phydev, 1819 ksz9x31_cable_test_get_pair(pair), 1820 ksz9x31_cable_test_fault_length(phydev, val)); 1821 } 1822 1823 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1824 bool *finished) 1825 { 1826 struct kszphy_priv *priv = phydev->priv; 1827 unsigned long pair_mask; 1828 int retries = 20; 1829 int pair, ret, rv; 1830 1831 *finished = false; 1832 1833 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1834 phydev->supported) || 1835 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1836 phydev->supported)) 1837 pair_mask = 0xf; /* All pairs */ 1838 else 1839 pair_mask = 0x3; /* Pairs A and B only */ 1840 1841 /* Try harder if link partner is active */ 1842 while (pair_mask && retries--) { 1843 for_each_set_bit(pair, &pair_mask, 4) { 1844 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1845 if (ret == -EAGAIN) 1846 continue; 1847 if (ret < 0) 1848 return ret; 1849 clear_bit(pair, &pair_mask); 1850 } 1851 /* If link partner is in autonegotiation mode it will send 2ms 1852 * of FLPs with at least 6ms of silence. 1853 * Add 2ms sleep to have better chances to hit this silence. 1854 */ 1855 if (pair_mask) 1856 usleep_range(2000, 3000); 1857 } 1858 1859 /* Report remaining unfinished pair result as unknown. */ 1860 for_each_set_bit(pair, &pair_mask, 4) { 1861 ret = ethnl_cable_test_result(phydev, 1862 ksz9x31_cable_test_get_pair(pair), 1863 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1864 } 1865 1866 *finished = true; 1867 1868 /* Restore cached bits from before LinkMD got started. */ 1869 rv = phy_modify(phydev, MII_CTRL1000, 1870 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1871 priv->vct_ctrl1000); 1872 if (rv) 1873 return rv; 1874 1875 return ret; 1876 } 1877 1878 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1879 { 1880 return 0; 1881 } 1882 1883 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1884 { 1885 u16 val; 1886 1887 switch (ctrl) { 1888 case ETH_TP_MDI: 1889 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1890 break; 1891 case ETH_TP_MDI_X: 1892 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1893 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1894 * sheet seems to be missing: 1895 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1896 * 0 = Normal operation (transmit on TX+/TX- pins) 1897 */ 1898 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1899 break; 1900 case ETH_TP_MDI_AUTO: 1901 val = 0; 1902 break; 1903 default: 1904 return 0; 1905 } 1906 1907 return phy_modify(phydev, MII_BMCR, 1908 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1909 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1910 KSZ886X_BMCR_HP_MDIX | val); 1911 } 1912 1913 static int ksz886x_config_aneg(struct phy_device *phydev) 1914 { 1915 int ret; 1916 1917 ret = genphy_config_aneg(phydev); 1918 if (ret) 1919 return ret; 1920 1921 if (phydev->autoneg != AUTONEG_ENABLE) { 1922 /* When autonegotiation is disabled, we need to manually force 1923 * the link state. If we don't do this, the PHY will keep 1924 * sending Fast Link Pulses (FLPs) which are part of the 1925 * autonegotiation process. This is not desired when 1926 * autonegotiation is off. 1927 */ 1928 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1929 KSZ886X_CTRL_FORCE_LINK); 1930 if (ret) 1931 return ret; 1932 } else { 1933 /* If we had previously forced the link state, we need to 1934 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1935 * will not perform autonegotiation. 1936 */ 1937 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1938 KSZ886X_CTRL_FORCE_LINK); 1939 if (ret) 1940 return ret; 1941 } 1942 1943 /* The MDI-X configuration is automatically changed by the PHY after 1944 * switching from autoneg off to on. So, take MDI-X configuration under 1945 * own control and set it after autoneg configuration was done. 1946 */ 1947 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1948 } 1949 1950 static int ksz886x_mdix_update(struct phy_device *phydev) 1951 { 1952 int ret; 1953 1954 ret = phy_read(phydev, MII_BMCR); 1955 if (ret < 0) 1956 return ret; 1957 1958 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1959 if (ret & KSZ886X_BMCR_FORCE_MDI) 1960 phydev->mdix_ctrl = ETH_TP_MDI_X; 1961 else 1962 phydev->mdix_ctrl = ETH_TP_MDI; 1963 } else { 1964 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1965 } 1966 1967 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1968 if (ret < 0) 1969 return ret; 1970 1971 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1972 if (ret & KSZ886X_CTRL_MDIX_STAT) 1973 phydev->mdix = ETH_TP_MDI_X; 1974 else 1975 phydev->mdix = ETH_TP_MDI; 1976 1977 return 0; 1978 } 1979 1980 static int ksz886x_read_status(struct phy_device *phydev) 1981 { 1982 int ret; 1983 1984 ret = ksz886x_mdix_update(phydev); 1985 if (ret < 0) 1986 return ret; 1987 1988 return genphy_read_status(phydev); 1989 } 1990 1991 static int ksz9477_mdix_update(struct phy_device *phydev) 1992 { 1993 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) 1994 phydev->mdix = phydev->mdix_ctrl; 1995 else 1996 phydev->mdix = ETH_TP_MDI_INVALID; 1997 1998 return 0; 1999 } 2000 2001 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev) 2002 { 2003 int val; 2004 2005 val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 2006 if (val < 0) 2007 return val; 2008 2009 if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF)) 2010 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 2011 else if (val & MII_KSZ9131_AUTO_MDI_SET) 2012 phydev->mdix_ctrl = ETH_TP_MDI; 2013 else 2014 phydev->mdix_ctrl = ETH_TP_MDI_X; 2015 2016 return 0; 2017 } 2018 2019 static int ksz9477_read_status(struct phy_device *phydev) 2020 { 2021 int ret; 2022 2023 ret = ksz9477_mdix_update(phydev); 2024 if (ret) 2025 return ret; 2026 2027 return genphy_read_status(phydev); 2028 } 2029 2030 static int ksz9477_config_aneg(struct phy_device *phydev) 2031 { 2032 int ret; 2033 2034 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 2035 if (ret) 2036 return ret; 2037 2038 return genphy_config_aneg(phydev); 2039 } 2040 2041 struct ksz9477_errata_write { 2042 u8 dev_addr; 2043 u8 reg_addr; 2044 u16 val; 2045 }; 2046 2047 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 2048 /* Register settings are needed to improve PHY receive performance */ 2049 {0x01, 0x6f, 0xdd0b}, 2050 {0x01, 0x8f, 0x6032}, 2051 {0x01, 0x9d, 0x248c}, 2052 {0x01, 0x75, 0x0060}, 2053 {0x01, 0xd3, 0x7777}, 2054 {0x1c, 0x06, 0x3008}, 2055 {0x1c, 0x08, 0x2000}, 2056 2057 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 2058 {0x1c, 0x04, 0x00d0}, 2059 2060 /* Register settings are required to meet data sheet supply current specifications */ 2061 {0x1c, 0x13, 0x6eff}, 2062 {0x1c, 0x14, 0xe6ff}, 2063 {0x1c, 0x15, 0x6eff}, 2064 {0x1c, 0x16, 0xe6ff}, 2065 {0x1c, 0x17, 0x00ff}, 2066 {0x1c, 0x18, 0x43ff}, 2067 {0x1c, 0x19, 0xc3ff}, 2068 {0x1c, 0x1a, 0x6fff}, 2069 {0x1c, 0x1b, 0x07ff}, 2070 {0x1c, 0x1c, 0x0fff}, 2071 {0x1c, 0x1d, 0xe7ff}, 2072 {0x1c, 0x1e, 0xefff}, 2073 {0x1c, 0x20, 0xeeee}, 2074 }; 2075 2076 static int ksz9477_phy_errata(struct phy_device *phydev) 2077 { 2078 int err; 2079 int i; 2080 2081 /* Apply PHY settings to address errata listed in 2082 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 2083 * Silicon Errata and Data Sheet Clarification documents. 2084 * 2085 * Document notes: Before configuring the PHY MMD registers, it is 2086 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 2087 * disabled by writing to register 0xN100-0xN101. After writing the 2088 * MMD registers, and after all errata workarounds that involve PHY 2089 * register settings, write register 0xN100-0xN101 again to enable 2090 * and restart auto-negotiation. 2091 */ 2092 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2093 if (err) 2094 return err; 2095 2096 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2097 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2098 2099 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2100 if (err) 2101 return err; 2102 } 2103 2104 return genphy_restart_aneg(phydev); 2105 } 2106 2107 static int ksz9477_config_init(struct phy_device *phydev) 2108 { 2109 int err; 2110 2111 /* Only KSZ9897 family of switches needs this fix. */ 2112 if ((phydev->phy_id & 0xf) == 1) { 2113 err = ksz9477_phy_errata(phydev); 2114 if (err) 2115 return err; 2116 } 2117 2118 /* Read initial MDI-X config state. So, we do not need to poll it 2119 * later on. 2120 */ 2121 err = ksz9477_read_mdix_ctrl(phydev); 2122 if (err) 2123 return err; 2124 2125 return kszphy_config_init(phydev); 2126 } 2127 2128 static int kszphy_get_sset_count(struct phy_device *phydev) 2129 { 2130 return ARRAY_SIZE(kszphy_hw_stats); 2131 } 2132 2133 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2134 { 2135 int i; 2136 2137 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2138 ethtool_puts(&data, kszphy_hw_stats[i].string); 2139 } 2140 2141 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2142 { 2143 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2144 struct kszphy_priv *priv = phydev->priv; 2145 int val; 2146 u64 ret; 2147 2148 val = phy_read(phydev, stat.reg); 2149 if (val < 0) { 2150 ret = U64_MAX; 2151 } else { 2152 val = val & ((1 << stat.bits) - 1); 2153 priv->stats[i] += val; 2154 ret = priv->stats[i]; 2155 } 2156 2157 return ret; 2158 } 2159 2160 static void kszphy_get_stats(struct phy_device *phydev, 2161 struct ethtool_stats *stats, u64 *data) 2162 { 2163 int i; 2164 2165 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2166 data[i] = kszphy_get_stat(phydev, i); 2167 } 2168 2169 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313, 2170 * etc. The counter is incremented when the PHY receives a frame with one or 2171 * more symbol errors. The counter is cleared when the register is read. 2172 */ 2173 #define MII_KSZ9477_PHY_RXER_COUNTER 0x15 2174 2175 static int kszphy_update_stats(struct phy_device *phydev) 2176 { 2177 struct kszphy_priv *priv = phydev->priv; 2178 int ret; 2179 2180 ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER); 2181 if (ret < 0) 2182 return ret; 2183 2184 priv->phy_stats.rx_err_pkt_cnt += ret; 2185 2186 return 0; 2187 } 2188 2189 static void kszphy_get_phy_stats(struct phy_device *phydev, 2190 struct ethtool_eth_phy_stats *eth_stats, 2191 struct ethtool_phy_stats *stats) 2192 { 2193 struct kszphy_priv *priv = phydev->priv; 2194 2195 stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt; 2196 } 2197 2198 /* Base register for Signal Quality Indicator (SQI) - Channel A 2199 * 2200 * MMD Address: MDIO_MMD_PMAPMD (0x01) 2201 * Register: 0xAC (Channel A) 2202 * Each channel (pair) has its own register: 2203 * Channel A: 0xAC 2204 * Channel B: 0xAD 2205 * Channel C: 0xAE 2206 * Channel D: 0xAF 2207 */ 2208 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A 0xac 2209 2210 /* SQI field mask for bits [14:8] 2211 * 2212 * SQI indicates relative quality of the signal. 2213 * A lower value indicates better signal quality. 2214 */ 2215 #define KSZ9477_MMD_SQI_MASK GENMASK(14, 8) 2216 2217 #define KSZ9477_MAX_CHANNELS 4 2218 #define KSZ9477_SQI_MAX 7 2219 2220 /* Number of SQI samples to average for a stable result. 2221 * 2222 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2223 * For noisy environments, a minimum of 30–50 readings is recommended. 2224 */ 2225 #define KSZ9477_SQI_SAMPLE_COUNT 40 2226 2227 /* The hardware SQI register provides a raw value from 0-127, where a lower 2228 * value indicates better signal quality. However, empirical testing has 2229 * shown that only the 0-7 range is relevant for a functional link. A raw 2230 * value of 8 or higher was measured directly before link drop. This aligns 2231 * with the OPEN Alliance recommendation that SQI=0 should represent the 2232 * pre-failure state. 2233 * 2234 * This table provides a non-linear mapping from the useful raw hardware 2235 * values (0-7) to the standard 0-7 SQI scale, where higher is better. 2236 */ 2237 static const u8 ksz_sqi_mapping[] = { 2238 7, /* raw 0 -> SQI 7 */ 2239 7, /* raw 1 -> SQI 7 */ 2240 6, /* raw 2 -> SQI 6 */ 2241 5, /* raw 3 -> SQI 5 */ 2242 4, /* raw 4 -> SQI 4 */ 2243 3, /* raw 5 -> SQI 3 */ 2244 2, /* raw 6 -> SQI 2 */ 2245 1, /* raw 7 -> SQI 1 */ 2246 }; 2247 2248 /** 2249 * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI) 2250 * @phydev: the PHY device 2251 * 2252 * This function reads and processes the raw Signal Quality Index from the 2253 * PHY. Based on empirical testing, a raw value of 8 or higher indicates a 2254 * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are 2255 * mapped to the standard 0-7 SQI scale via a lookup table. 2256 * 2257 * Return: SQI value (0–7), or a negative errno on failure. 2258 */ 2259 static int kszphy_get_sqi(struct phy_device *phydev) 2260 { 2261 int sum[KSZ9477_MAX_CHANNELS] = { 0 }; 2262 int worst_sqi = KSZ9477_SQI_MAX; 2263 int i, val, raw_sqi, ch; 2264 u8 channels; 2265 2266 /* Determine applicable channels based on link speed */ 2267 if (phydev->speed == SPEED_1000) 2268 channels = 4; 2269 else if (phydev->speed == SPEED_100) 2270 channels = 1; 2271 else 2272 return -EOPNOTSUPP; 2273 2274 /* Sample and accumulate SQI readings for each pair (currently only one). 2275 * 2276 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2277 * - The SQI register is updated every 2 µs. 2278 * - Values may fluctuate significantly, even in low-noise environments. 2279 * - For reliable estimation, average a minimum of 30–50 samples 2280 * (recommended for noisy environments) 2281 * - In noisy environments, individual readings are highly unreliable. 2282 * 2283 * We use 40 samples per pair with a delay of 3 µs between each 2284 * read to ensure new values are captured (2 µs update interval). 2285 */ 2286 for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) { 2287 for (ch = 0; ch < channels; ch++) { 2288 val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2289 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch); 2290 if (val < 0) 2291 return val; 2292 2293 raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val); 2294 sum[ch] += raw_sqi; 2295 2296 /* We communicate with the PHY via MDIO via SPI or 2297 * I2C, which is relatively slow. At least slower than 2298 * the update interval of the SQI register. 2299 * So, we can skip the delay between reads. 2300 */ 2301 } 2302 } 2303 2304 /* Calculate average for each channel and find the worst SQI */ 2305 for (ch = 0; ch < channels; ch++) { 2306 int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT; 2307 int mapped_sqi; 2308 2309 /* Handle the pre-fail/failed state first. */ 2310 if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping)) 2311 mapped_sqi = 0; 2312 else 2313 /* Use the lookup table for the good signal range. */ 2314 mapped_sqi = ksz_sqi_mapping[avg_raw_sqi]; 2315 2316 if (mapped_sqi < worst_sqi) 2317 worst_sqi = mapped_sqi; 2318 } 2319 2320 return worst_sqi; 2321 } 2322 2323 static int kszphy_get_sqi_max(struct phy_device *phydev) 2324 { 2325 return KSZ9477_SQI_MAX; 2326 } 2327 2328 static void kszphy_enable_clk(struct phy_device *phydev) 2329 { 2330 struct kszphy_priv *priv = phydev->priv; 2331 2332 if (!priv->clk_enable && priv->clk) { 2333 clk_prepare_enable(priv->clk); 2334 priv->clk_enable = true; 2335 } 2336 } 2337 2338 static void kszphy_disable_clk(struct phy_device *phydev) 2339 { 2340 struct kszphy_priv *priv = phydev->priv; 2341 2342 if (priv->clk_enable && priv->clk) { 2343 clk_disable_unprepare(priv->clk); 2344 priv->clk_enable = false; 2345 } 2346 } 2347 2348 static int kszphy_generic_resume(struct phy_device *phydev) 2349 { 2350 kszphy_enable_clk(phydev); 2351 2352 return genphy_resume(phydev); 2353 } 2354 2355 static int kszphy_generic_suspend(struct phy_device *phydev) 2356 { 2357 int ret; 2358 2359 ret = genphy_suspend(phydev); 2360 if (ret) 2361 return ret; 2362 2363 kszphy_disable_clk(phydev); 2364 2365 return 0; 2366 } 2367 2368 static int kszphy_suspend(struct phy_device *phydev) 2369 { 2370 /* Disable PHY Interrupts */ 2371 if (phy_interrupt_is_valid(phydev)) { 2372 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2373 if (phydev->drv->config_intr) 2374 phydev->drv->config_intr(phydev); 2375 } 2376 2377 return kszphy_generic_suspend(phydev); 2378 } 2379 2380 static void kszphy_parse_led_mode(struct phy_device *phydev) 2381 { 2382 const struct kszphy_type *type = phydev->drv->driver_data; 2383 const struct device_node *np = phydev->mdio.dev.of_node; 2384 struct kszphy_priv *priv = phydev->priv; 2385 int ret; 2386 2387 if (type && type->led_mode_reg) { 2388 ret = of_property_read_u32(np, "micrel,led-mode", 2389 &priv->led_mode); 2390 2391 if (ret) 2392 priv->led_mode = -1; 2393 2394 if (priv->led_mode > 3) { 2395 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2396 priv->led_mode); 2397 priv->led_mode = -1; 2398 } 2399 } else { 2400 priv->led_mode = -1; 2401 } 2402 } 2403 2404 static int kszphy_resume(struct phy_device *phydev) 2405 { 2406 int ret; 2407 2408 ret = kszphy_generic_resume(phydev); 2409 if (ret) 2410 return ret; 2411 2412 /* After switching from power-down to normal mode, an internal global 2413 * reset is automatically generated. Wait a minimum of 1 ms before 2414 * read/write access to the PHY registers. 2415 */ 2416 usleep_range(1000, 2000); 2417 2418 ret = kszphy_config_reset(phydev); 2419 if (ret) 2420 return ret; 2421 2422 /* Enable PHY Interrupts */ 2423 if (phy_interrupt_is_valid(phydev)) { 2424 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2425 if (phydev->drv->config_intr) 2426 phydev->drv->config_intr(phydev); 2427 } 2428 2429 return 0; 2430 } 2431 2432 /* Because of errata DS80000700A, receiver error following software 2433 * power down. Suspend and resume callbacks only disable and enable 2434 * external rmii reference clock. 2435 */ 2436 static int ksz8041_resume(struct phy_device *phydev) 2437 { 2438 kszphy_enable_clk(phydev); 2439 2440 return 0; 2441 } 2442 2443 static int ksz8041_suspend(struct phy_device *phydev) 2444 { 2445 kszphy_disable_clk(phydev); 2446 2447 return 0; 2448 } 2449 2450 static int ksz9477_resume(struct phy_device *phydev) 2451 { 2452 int ret; 2453 2454 /* No need to initialize registers if not powered down. */ 2455 ret = phy_read(phydev, MII_BMCR); 2456 if (ret < 0) 2457 return ret; 2458 if (!(ret & BMCR_PDOWN)) 2459 return 0; 2460 2461 genphy_resume(phydev); 2462 2463 /* After switching from power-down to normal mode, an internal global 2464 * reset is automatically generated. Wait a minimum of 1 ms before 2465 * read/write access to the PHY registers. 2466 */ 2467 usleep_range(1000, 2000); 2468 2469 /* Only KSZ9897 family of switches needs this fix. */ 2470 if ((phydev->phy_id & 0xf) == 1) { 2471 ret = ksz9477_phy_errata(phydev); 2472 if (ret) 2473 return ret; 2474 } 2475 2476 /* Enable PHY Interrupts */ 2477 if (phy_interrupt_is_valid(phydev)) { 2478 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2479 if (phydev->drv->config_intr) 2480 phydev->drv->config_intr(phydev); 2481 } 2482 2483 return 0; 2484 } 2485 2486 static int ksz8061_resume(struct phy_device *phydev) 2487 { 2488 int ret; 2489 2490 /* This function can be called twice when the Ethernet device is on. */ 2491 ret = phy_read(phydev, MII_BMCR); 2492 if (ret < 0) 2493 return ret; 2494 if (!(ret & BMCR_PDOWN)) 2495 return 0; 2496 2497 ret = kszphy_generic_resume(phydev); 2498 if (ret) 2499 return ret; 2500 2501 usleep_range(1000, 2000); 2502 2503 /* Re-program the value after chip is reset. */ 2504 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2505 if (ret) 2506 return ret; 2507 2508 /* Enable PHY Interrupts */ 2509 if (phy_interrupt_is_valid(phydev)) { 2510 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2511 if (phydev->drv->config_intr) 2512 phydev->drv->config_intr(phydev); 2513 } 2514 2515 return 0; 2516 } 2517 2518 static int ksz8061_suspend(struct phy_device *phydev) 2519 { 2520 return kszphy_suspend(phydev); 2521 } 2522 2523 static int kszphy_probe(struct phy_device *phydev) 2524 { 2525 const struct kszphy_type *type = phydev->drv->driver_data; 2526 const struct device_node *np = phydev->mdio.dev.of_node; 2527 struct kszphy_priv *priv; 2528 struct clk *clk; 2529 2530 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2531 if (!priv) 2532 return -ENOMEM; 2533 2534 phydev->priv = priv; 2535 2536 priv->type = type; 2537 2538 kszphy_parse_led_mode(phydev); 2539 2540 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2541 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2542 if (!IS_ERR_OR_NULL(clk)) { 2543 unsigned long rate = clk_get_rate(clk); 2544 bool rmii_ref_clk_sel_25_mhz; 2545 2546 if (type) 2547 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2548 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2549 "micrel,rmii-reference-clock-select-25-mhz"); 2550 2551 if (rate > 24500000 && rate < 25500000) { 2552 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2553 } else if (rate > 49500000 && rate < 50500000) { 2554 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2555 } else { 2556 phydev_err(phydev, "Clock rate out of range: %ld\n", 2557 rate); 2558 return -EINVAL; 2559 } 2560 } else if (!clk) { 2561 /* unnamed clock from the generic ethernet-phy binding */ 2562 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2563 } 2564 2565 if (IS_ERR(clk)) 2566 return PTR_ERR(clk); 2567 2568 clk_disable_unprepare(clk); 2569 priv->clk = clk; 2570 2571 if (ksz8041_fiber_mode(phydev)) 2572 phydev->port = PORT_FIBRE; 2573 2574 /* Support legacy board-file configuration */ 2575 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2576 priv->rmii_ref_clk_sel = true; 2577 priv->rmii_ref_clk_sel_val = true; 2578 } 2579 2580 return 0; 2581 } 2582 2583 static int lan8814_cable_test_start(struct phy_device *phydev) 2584 { 2585 /* If autoneg is enabled, we won't be able to test cross pair 2586 * short. In this case, the PHY will "detect" a link and 2587 * confuse the internal state machine - disable auto neg here. 2588 * Set the speed to 1000mbit and full duplex. 2589 */ 2590 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2591 BMCR_SPEED1000 | BMCR_FULLDPLX); 2592 } 2593 2594 static int ksz886x_cable_test_start(struct phy_device *phydev) 2595 { 2596 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2597 return -EOPNOTSUPP; 2598 2599 /* If autoneg is enabled, we won't be able to test cross pair 2600 * short. In this case, the PHY will "detect" a link and 2601 * confuse the internal state machine - disable auto neg here. 2602 * If autoneg is disabled, we should set the speed to 10mbit. 2603 */ 2604 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2605 } 2606 2607 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2608 { 2609 switch (FIELD_GET(mask, status)) { 2610 case KSZ8081_LMD_STAT_NORMAL: 2611 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2612 case KSZ8081_LMD_STAT_SHORT: 2613 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2614 case KSZ8081_LMD_STAT_OPEN: 2615 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2616 case KSZ8081_LMD_STAT_FAIL: 2617 fallthrough; 2618 default: 2619 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2620 } 2621 } 2622 2623 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2624 { 2625 return FIELD_GET(mask, status) == 2626 KSZ8081_LMD_STAT_FAIL; 2627 } 2628 2629 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2630 { 2631 switch (FIELD_GET(mask, status)) { 2632 case KSZ8081_LMD_STAT_OPEN: 2633 fallthrough; 2634 case KSZ8081_LMD_STAT_SHORT: 2635 return true; 2636 } 2637 return false; 2638 } 2639 2640 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2641 u16 status, u16 data_mask) 2642 { 2643 int dt; 2644 2645 /* According to the data sheet the distance to the fault is 2646 * DELTA_TIME * 0.4 meters for ksz phys. 2647 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2648 */ 2649 dt = FIELD_GET(data_mask, status); 2650 2651 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2652 return ((dt - 22) * 800) / 10; 2653 else 2654 return (dt * 400) / 10; 2655 } 2656 2657 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2658 { 2659 const struct kszphy_type *type = phydev->drv->driver_data; 2660 int val, ret; 2661 2662 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2663 !(val & KSZ8081_LMD_ENABLE_TEST), 2664 30000, 100000, true); 2665 2666 return ret < 0 ? ret : 0; 2667 } 2668 2669 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2670 { 2671 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2672 ETHTOOL_A_CABLE_PAIR_B, 2673 ETHTOOL_A_CABLE_PAIR_C, 2674 ETHTOOL_A_CABLE_PAIR_D, 2675 }; 2676 u32 fault_length; 2677 int ret; 2678 int val; 2679 2680 val = KSZ8081_LMD_ENABLE_TEST; 2681 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2682 2683 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2684 if (ret < 0) 2685 return ret; 2686 2687 ret = ksz886x_cable_test_wait_for_completion(phydev); 2688 if (ret) 2689 return ret; 2690 2691 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2692 if (val < 0) 2693 return val; 2694 2695 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2696 return -EAGAIN; 2697 2698 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2699 ksz886x_cable_test_result_trans(val, 2700 LAN8814_CABLE_DIAG_STAT_MASK 2701 )); 2702 if (ret) 2703 return ret; 2704 2705 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2706 return 0; 2707 2708 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2709 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2710 2711 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2712 } 2713 2714 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2715 { 2716 static const int ethtool_pair[] = { 2717 ETHTOOL_A_CABLE_PAIR_A, 2718 ETHTOOL_A_CABLE_PAIR_B, 2719 }; 2720 int ret, val, mdix; 2721 u32 fault_length; 2722 2723 /* There is no way to choice the pair, like we do one ksz9031. 2724 * We can workaround this limitation by using the MDI-X functionality. 2725 */ 2726 if (pair == 0) 2727 mdix = ETH_TP_MDI; 2728 else 2729 mdix = ETH_TP_MDI_X; 2730 2731 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2732 case PHY_ID_KSZ8081: 2733 ret = ksz8081_config_mdix(phydev, mdix); 2734 break; 2735 case PHY_ID_KSZ886X: 2736 ret = ksz886x_config_mdix(phydev, mdix); 2737 break; 2738 default: 2739 ret = -ENODEV; 2740 } 2741 2742 if (ret) 2743 return ret; 2744 2745 /* Now we are ready to fire. This command will send a 100ns pulse 2746 * to the pair. 2747 */ 2748 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2749 if (ret) 2750 return ret; 2751 2752 ret = ksz886x_cable_test_wait_for_completion(phydev); 2753 if (ret) 2754 return ret; 2755 2756 val = phy_read(phydev, KSZ8081_LMD); 2757 if (val < 0) 2758 return val; 2759 2760 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2761 return -EAGAIN; 2762 2763 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2764 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2765 if (ret) 2766 return ret; 2767 2768 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2769 return 0; 2770 2771 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2772 2773 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2774 } 2775 2776 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2777 bool *finished) 2778 { 2779 const struct kszphy_type *type = phydev->drv->driver_data; 2780 unsigned long pair_mask = type->pair_mask; 2781 int retries = 20; 2782 int ret = 0; 2783 int pair; 2784 2785 *finished = false; 2786 2787 /* Try harder if link partner is active */ 2788 while (pair_mask && retries--) { 2789 for_each_set_bit(pair, &pair_mask, 4) { 2790 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2791 ret = lan8814_cable_test_one_pair(phydev, pair); 2792 else 2793 ret = ksz886x_cable_test_one_pair(phydev, pair); 2794 if (ret == -EAGAIN) 2795 continue; 2796 if (ret < 0) 2797 return ret; 2798 clear_bit(pair, &pair_mask); 2799 } 2800 /* If link partner is in autonegotiation mode it will send 2ms 2801 * of FLPs with at least 6ms of silence. 2802 * Add 2ms sleep to have better chances to hit this silence. 2803 */ 2804 if (pair_mask) 2805 msleep(2); 2806 } 2807 2808 *finished = true; 2809 2810 return ret; 2811 } 2812 2813 /** 2814 * LAN8814_PAGE_PCS - Selects Extended Page 0. 2815 * 2816 * This page contains timers used for auto-negotiation, debug registers and 2817 * register to configure fast link failure. 2818 */ 2819 #define LAN8814_PAGE_PCS 0 2820 2821 /** 2822 * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1. 2823 * 2824 * This page appears to control the Analog Front-End (AFE) and Physical 2825 * Medium Attachment (PMA) layers. It is used to access registers like 2826 * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY. 2827 */ 2828 #define LAN8814_PAGE_AFE_PMA 1 2829 2830 /** 2831 * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2. 2832 * 2833 * This page seems dedicated to the Physical Coding Sublayer (PCS) and other 2834 * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE 2835 * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics 2836 * and self-test counters in the LAN8842. 2837 */ 2838 #define LAN8814_PAGE_PCS_DIGITAL 2 2839 2840 /** 2841 * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4. 2842 * 2843 * This page contains device-common registers that affect the entire chip. 2844 * It includes controls for chip-level resets, strap status, GPIO, 2845 * QSGMII, the shared 1588 PTP block, and the PVT monitor. 2846 */ 2847 #define LAN8814_PAGE_COMMON_REGS 4 2848 2849 /** 2850 * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5. 2851 * 2852 * This page contains port-specific registers that must be accessed 2853 * on a per-port basis. It includes controls for port LEDs, QSGMII PCS, 2854 * rate adaptation FIFOs, and the per-port 1588 TSU block. 2855 */ 2856 #define LAN8814_PAGE_PORT_REGS 5 2857 2858 /** 2859 * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31. 2860 * 2861 * This page appears to hold fundamental system or global controls. In the 2862 * driver, it is used by the related LAN8804 to access the 2863 * LAN8814_CLOCK_MANAGEMENT register. 2864 */ 2865 #define LAN8814_PAGE_SYSTEM_CTRL 31 2866 2867 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2868 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2869 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2870 2871 #define LAN8814_QSGMII_SOFT_RESET 0x43 2872 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2873 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2874 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2875 #define LAN8814_ALIGN_SWAP 0x4a 2876 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2877 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2878 2879 #define LAN8804_ALIGN_SWAP 0x4a 2880 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2881 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2882 #define LAN8814_CLOCK_MANAGEMENT 0xd 2883 #define LAN8814_LINK_QUALITY 0x8e 2884 2885 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2886 { 2887 int data; 2888 2889 phy_lock_mdio_bus(phydev); 2890 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2891 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2892 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2893 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2894 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2895 phy_unlock_mdio_bus(phydev); 2896 2897 return data; 2898 } 2899 2900 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2901 u16 val) 2902 { 2903 phy_lock_mdio_bus(phydev); 2904 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2905 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2906 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2907 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2908 2909 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2910 if (val != 0) 2911 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2912 val); 2913 phy_unlock_mdio_bus(phydev); 2914 return val; 2915 } 2916 2917 static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr, 2918 u16 mask, u16 set) 2919 { 2920 int ret; 2921 2922 phy_lock_mdio_bus(phydev); 2923 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2924 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2925 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2926 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2927 ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, 2928 mask, set); 2929 phy_unlock_mdio_bus(phydev); 2930 2931 if (ret < 0) 2932 phydev_err(phydev, "__phy_modify_changed() failed: %pe\n", 2933 ERR_PTR(ret)); 2934 2935 return ret; 2936 } 2937 2938 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2939 { 2940 u16 val = 0; 2941 2942 if (enable) 2943 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2944 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2945 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2946 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2947 2948 return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2949 PTP_TSU_INT_EN, val); 2950 } 2951 2952 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2953 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2954 { 2955 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2956 PTP_RX_INGRESS_SEC_HI); 2957 *seconds = (*seconds << 16) | 2958 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2959 PTP_RX_INGRESS_SEC_LO); 2960 2961 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2962 PTP_RX_INGRESS_NS_HI); 2963 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2964 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2965 PTP_RX_INGRESS_NS_LO); 2966 2967 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2968 PTP_RX_MSG_HEADER2); 2969 } 2970 2971 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2972 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2973 { 2974 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2975 PTP_TX_EGRESS_SEC_HI); 2976 *seconds = *seconds << 16 | 2977 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2978 PTP_TX_EGRESS_SEC_LO); 2979 2980 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2981 PTP_TX_EGRESS_NS_HI); 2982 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2983 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2984 PTP_TX_EGRESS_NS_LO); 2985 2986 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2987 PTP_TX_MSG_HEADER2); 2988 } 2989 2990 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 2991 { 2992 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2993 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 2994 2995 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2996 SOF_TIMESTAMPING_RX_HARDWARE | 2997 SOF_TIMESTAMPING_RAW_HARDWARE; 2998 2999 info->phc_index = ptp_clock_index(shared->ptp_clock); 3000 3001 info->tx_types = 3002 (1 << HWTSTAMP_TX_OFF) | 3003 (1 << HWTSTAMP_TX_ON) | 3004 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3005 3006 info->rx_filters = 3007 (1 << HWTSTAMP_FILTER_NONE) | 3008 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 3009 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3010 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3011 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3012 3013 return 0; 3014 } 3015 3016 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 3017 { 3018 int i; 3019 3020 for (i = 0; i < FIFO_SIZE; ++i) 3021 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3022 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 3023 3024 /* Read to clear overflow status bit */ 3025 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS); 3026 } 3027 3028 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 3029 struct kernel_hwtstamp_config *config, 3030 struct netlink_ext_ack *extack) 3031 { 3032 struct kszphy_ptp_priv *ptp_priv = 3033 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3034 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3035 int txcfg = 0, rxcfg = 0; 3036 int pkt_ts_enable; 3037 3038 ptp_priv->hwts_tx_type = config->tx_type; 3039 ptp_priv->rx_filter = config->rx_filter; 3040 3041 switch (config->rx_filter) { 3042 case HWTSTAMP_FILTER_NONE: 3043 ptp_priv->layer = 0; 3044 ptp_priv->version = 0; 3045 break; 3046 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3047 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3048 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3049 ptp_priv->layer = PTP_CLASS_L4; 3050 ptp_priv->version = PTP_CLASS_V2; 3051 break; 3052 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3053 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3054 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3055 ptp_priv->layer = PTP_CLASS_L2; 3056 ptp_priv->version = PTP_CLASS_V2; 3057 break; 3058 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3059 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3060 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3061 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3062 ptp_priv->version = PTP_CLASS_V2; 3063 break; 3064 default: 3065 return -ERANGE; 3066 } 3067 3068 if (ptp_priv->layer & PTP_CLASS_L2) { 3069 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3070 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3071 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3072 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3073 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3074 } 3075 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3076 PTP_RX_PARSE_CONFIG, rxcfg); 3077 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3078 PTP_TX_PARSE_CONFIG, txcfg); 3079 3080 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3081 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3082 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3083 PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3084 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3085 PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3086 3087 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 3088 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3089 PTP_TX_MOD, 3090 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3091 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 3092 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 3093 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3094 PTP_TX_MOD, 3095 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3096 0); 3097 } 3098 3099 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 3100 lan8814_config_ts_intr(ptp_priv->phydev, true); 3101 else 3102 lan8814_config_ts_intr(ptp_priv->phydev, false); 3103 3104 /* In case of multiple starts and stops, these needs to be cleared */ 3105 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3106 list_del(&rx_ts->list); 3107 kfree(rx_ts); 3108 } 3109 skb_queue_purge(&ptp_priv->rx_queue); 3110 skb_queue_purge(&ptp_priv->tx_queue); 3111 3112 lan8814_flush_fifo(ptp_priv->phydev, false); 3113 lan8814_flush_fifo(ptp_priv->phydev, true); 3114 3115 return 0; 3116 } 3117 3118 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 3119 struct sk_buff *skb, int type) 3120 { 3121 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3122 3123 switch (ptp_priv->hwts_tx_type) { 3124 case HWTSTAMP_TX_ONESTEP_SYNC: 3125 if (ptp_msg_is_sync(skb, type)) { 3126 kfree_skb(skb); 3127 return; 3128 } 3129 fallthrough; 3130 case HWTSTAMP_TX_ON: 3131 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3132 skb_queue_tail(&ptp_priv->tx_queue, skb); 3133 break; 3134 case HWTSTAMP_TX_OFF: 3135 default: 3136 kfree_skb(skb); 3137 break; 3138 } 3139 } 3140 3141 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 3142 { 3143 struct ptp_header *ptp_header; 3144 u32 type; 3145 3146 skb_push(skb, ETH_HLEN); 3147 type = ptp_classify_raw(skb); 3148 ptp_header = ptp_parse_header(skb, type); 3149 skb_pull_inline(skb, ETH_HLEN); 3150 3151 if (!ptp_header) 3152 return false; 3153 3154 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3155 return true; 3156 } 3157 3158 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 3159 struct sk_buff *skb) 3160 { 3161 struct skb_shared_hwtstamps *shhwtstamps; 3162 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3163 unsigned long flags; 3164 bool ret = false; 3165 u16 skb_sig; 3166 3167 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3168 return ret; 3169 3170 /* Iterate over all RX timestamps and match it with the received skbs */ 3171 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3172 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3173 /* Check if we found the signature we were looking for. */ 3174 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3175 continue; 3176 3177 shhwtstamps = skb_hwtstamps(skb); 3178 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3179 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 3180 rx_ts->nsec); 3181 list_del(&rx_ts->list); 3182 kfree(rx_ts); 3183 3184 ret = true; 3185 break; 3186 } 3187 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3188 3189 if (ret) 3190 netif_rx(skb); 3191 return ret; 3192 } 3193 3194 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 3195 { 3196 struct kszphy_ptp_priv *ptp_priv = 3197 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3198 3199 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3200 type == PTP_CLASS_NONE) 3201 return false; 3202 3203 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3204 return false; 3205 3206 /* If we failed to match then add it to the queue for when the timestamp 3207 * will come 3208 */ 3209 if (!lan8814_match_rx_skb(ptp_priv, skb)) 3210 skb_queue_tail(&ptp_priv->rx_queue, skb); 3211 3212 return true; 3213 } 3214 3215 static void lan8814_ptp_clock_set(struct phy_device *phydev, 3216 time64_t sec, u32 nsec) 3217 { 3218 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3219 PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 3220 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3221 PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 3222 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3223 PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 3224 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3225 PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 3226 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3227 PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 3228 3229 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3230 PTP_CMD_CTL_PTP_CLOCK_LOAD_); 3231 } 3232 3233 static void lan8814_ptp_clock_get(struct phy_device *phydev, 3234 time64_t *sec, u32 *nsec) 3235 { 3236 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3237 PTP_CMD_CTL_PTP_CLOCK_READ_); 3238 3239 *sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3240 PTP_CLOCK_READ_SEC_HI); 3241 *sec <<= 16; 3242 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3243 PTP_CLOCK_READ_SEC_MID); 3244 *sec <<= 16; 3245 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3246 PTP_CLOCK_READ_SEC_LO); 3247 3248 *nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3249 PTP_CLOCK_READ_NS_HI); 3250 *nsec <<= 16; 3251 *nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3252 PTP_CLOCK_READ_NS_LO); 3253 } 3254 3255 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 3256 struct timespec64 *ts) 3257 { 3258 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3259 ptp_clock_info); 3260 struct phy_device *phydev = shared->phydev; 3261 u32 nano_seconds; 3262 time64_t seconds; 3263 3264 mutex_lock(&shared->shared_lock); 3265 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 3266 mutex_unlock(&shared->shared_lock); 3267 ts->tv_sec = seconds; 3268 ts->tv_nsec = nano_seconds; 3269 3270 return 0; 3271 } 3272 3273 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 3274 const struct timespec64 *ts) 3275 { 3276 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3277 ptp_clock_info); 3278 struct phy_device *phydev = shared->phydev; 3279 3280 mutex_lock(&shared->shared_lock); 3281 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 3282 mutex_unlock(&shared->shared_lock); 3283 3284 return 0; 3285 } 3286 3287 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 3288 s64 start_sec, u32 start_nsec) 3289 { 3290 /* Set the start time */ 3291 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3292 LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 3293 lower_16_bits(start_sec)); 3294 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3295 LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 3296 upper_16_bits(start_sec)); 3297 3298 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3299 LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 3300 lower_16_bits(start_nsec)); 3301 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3302 LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 3303 upper_16_bits(start_nsec) & 0x3fff); 3304 } 3305 3306 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 3307 { 3308 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 3309 sec + LAN8814_BUFFER_TIME, 0); 3310 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 3311 sec + LAN8814_BUFFER_TIME, 0); 3312 } 3313 3314 static void lan8814_ptp_clock_step(struct phy_device *phydev, 3315 s64 time_step_ns) 3316 { 3317 u32 nano_seconds_step; 3318 u64 abs_time_step_ns; 3319 time64_t set_seconds; 3320 u32 nano_seconds; 3321 u32 remainder; 3322 s32 seconds; 3323 3324 if (time_step_ns > 15000000000LL) { 3325 /* convert to clock set */ 3326 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3327 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 3328 &remainder); 3329 nano_seconds += remainder; 3330 if (nano_seconds >= 1000000000) { 3331 set_seconds++; 3332 nano_seconds -= 1000000000; 3333 } 3334 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3335 lan8814_ptp_update_target(phydev, set_seconds); 3336 return; 3337 } else if (time_step_ns < -15000000000LL) { 3338 /* convert to clock set */ 3339 time_step_ns = -time_step_ns; 3340 3341 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3342 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 3343 &remainder); 3344 nano_seconds_step = remainder; 3345 if (nano_seconds < nano_seconds_step) { 3346 set_seconds--; 3347 nano_seconds += 1000000000; 3348 } 3349 nano_seconds -= nano_seconds_step; 3350 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3351 lan8814_ptp_update_target(phydev, set_seconds); 3352 return; 3353 } 3354 3355 /* do clock step */ 3356 if (time_step_ns >= 0) { 3357 abs_time_step_ns = (u64)time_step_ns; 3358 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3359 &remainder); 3360 nano_seconds = remainder; 3361 } else { 3362 abs_time_step_ns = (u64)(-time_step_ns); 3363 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3364 &remainder)); 3365 nano_seconds = remainder; 3366 if (nano_seconds > 0) { 3367 /* subtracting nano seconds is not allowed 3368 * convert to subtracting from seconds, 3369 * and adding to nanoseconds 3370 */ 3371 seconds--; 3372 nano_seconds = (1000000000 - nano_seconds); 3373 } 3374 } 3375 3376 if (nano_seconds > 0) { 3377 /* add 8 ns to cover the likely normal increment */ 3378 nano_seconds += 8; 3379 } 3380 3381 if (nano_seconds >= 1000000000) { 3382 /* carry into seconds */ 3383 seconds++; 3384 nano_seconds -= 1000000000; 3385 } 3386 3387 while (seconds) { 3388 u32 nsec; 3389 3390 if (seconds > 0) { 3391 u32 adjustment_value = (u32)seconds; 3392 u16 adjustment_value_lo, adjustment_value_hi; 3393 3394 if (adjustment_value > 0xF) 3395 adjustment_value = 0xF; 3396 3397 adjustment_value_lo = adjustment_value & 0xffff; 3398 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3399 3400 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3401 PTP_LTC_STEP_ADJ_LO, 3402 adjustment_value_lo); 3403 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3404 PTP_LTC_STEP_ADJ_HI, 3405 PTP_LTC_STEP_ADJ_DIR_ | 3406 adjustment_value_hi); 3407 seconds -= ((s32)adjustment_value); 3408 3409 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3410 set_seconds -= adjustment_value; 3411 lan8814_ptp_update_target(phydev, set_seconds); 3412 } else { 3413 u32 adjustment_value = (u32)(-seconds); 3414 u16 adjustment_value_lo, adjustment_value_hi; 3415 3416 if (adjustment_value > 0xF) 3417 adjustment_value = 0xF; 3418 3419 adjustment_value_lo = adjustment_value & 0xffff; 3420 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3421 3422 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3423 PTP_LTC_STEP_ADJ_LO, 3424 adjustment_value_lo); 3425 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3426 PTP_LTC_STEP_ADJ_HI, 3427 adjustment_value_hi); 3428 seconds += ((s32)adjustment_value); 3429 3430 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3431 set_seconds += adjustment_value; 3432 lan8814_ptp_update_target(phydev, set_seconds); 3433 } 3434 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3435 PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3436 } 3437 if (nano_seconds) { 3438 u16 nano_seconds_lo; 3439 u16 nano_seconds_hi; 3440 3441 nano_seconds_lo = nano_seconds & 0xffff; 3442 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3443 3444 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3445 PTP_LTC_STEP_ADJ_LO, 3446 nano_seconds_lo); 3447 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3448 PTP_LTC_STEP_ADJ_HI, 3449 PTP_LTC_STEP_ADJ_DIR_ | 3450 nano_seconds_hi); 3451 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3452 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3453 } 3454 } 3455 3456 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3457 { 3458 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3459 ptp_clock_info); 3460 struct phy_device *phydev = shared->phydev; 3461 3462 mutex_lock(&shared->shared_lock); 3463 lan8814_ptp_clock_step(phydev, delta); 3464 mutex_unlock(&shared->shared_lock); 3465 3466 return 0; 3467 } 3468 3469 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3470 { 3471 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3472 ptp_clock_info); 3473 struct phy_device *phydev = shared->phydev; 3474 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3475 bool positive = true; 3476 u32 kszphy_rate_adj; 3477 3478 if (scaled_ppm < 0) { 3479 scaled_ppm = -scaled_ppm; 3480 positive = false; 3481 } 3482 3483 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3484 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3485 3486 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3487 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3488 3489 if (positive) 3490 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3491 3492 mutex_lock(&shared->shared_lock); 3493 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI, 3494 kszphy_rate_adj_hi); 3495 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO, 3496 kszphy_rate_adj_lo); 3497 mutex_unlock(&shared->shared_lock); 3498 3499 return 0; 3500 } 3501 3502 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3503 s64 period_sec, u32 period_nsec) 3504 { 3505 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3506 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3507 lower_16_bits(period_sec)); 3508 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3509 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3510 upper_16_bits(period_sec)); 3511 3512 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3513 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3514 lower_16_bits(period_nsec)); 3515 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3516 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3517 upper_16_bits(period_nsec) & 0x3fff); 3518 } 3519 3520 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3521 int pulse_width) 3522 { 3523 /* Set the pulse width of the event, 3524 * Make sure that the target clock will be incremented each time when 3525 * local time reaches or pass it 3526 * Set the polarity high 3527 */ 3528 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3529 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) | 3530 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3531 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) | 3532 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event), 3533 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3534 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event)); 3535 } 3536 3537 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3538 { 3539 /* Set target to too far in the future, effectively disabling it */ 3540 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3541 3542 /* And then reload once it reaches the target */ 3543 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3544 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event), 3545 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3546 } 3547 3548 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3549 { 3550 /* Disable gpio alternate function, 3551 * 1: select as gpio, 3552 * 0: select alt func 3553 */ 3554 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3555 LAN8814_GPIO_EN_ADDR(pin), 3556 LAN8814_GPIO_EN_BIT(pin), 3557 LAN8814_GPIO_EN_BIT(pin)); 3558 3559 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3560 LAN8814_GPIO_DIR_ADDR(pin), 3561 LAN8814_GPIO_DIR_BIT(pin), 3562 0); 3563 3564 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3565 LAN8814_GPIO_BUF_ADDR(pin), 3566 LAN8814_GPIO_BUF_BIT(pin), 3567 0); 3568 } 3569 3570 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3571 { 3572 /* Set as gpio output */ 3573 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3574 LAN8814_GPIO_DIR_ADDR(pin), 3575 LAN8814_GPIO_DIR_BIT(pin), 3576 LAN8814_GPIO_DIR_BIT(pin)); 3577 3578 /* Enable gpio 0:for alternate function, 1:gpio */ 3579 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3580 LAN8814_GPIO_EN_ADDR(pin), 3581 LAN8814_GPIO_EN_BIT(pin), 3582 0); 3583 3584 /* Set buffer type to push pull */ 3585 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3586 LAN8814_GPIO_BUF_ADDR(pin), 3587 LAN8814_GPIO_BUF_BIT(pin), 3588 LAN8814_GPIO_BUF_BIT(pin)); 3589 } 3590 3591 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3592 struct ptp_clock_request *rq, int on) 3593 { 3594 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3595 ptp_clock_info); 3596 struct phy_device *phydev = shared->phydev; 3597 struct timespec64 ts_on, ts_period; 3598 s64 on_nsec, period_nsec; 3599 int pulse_width; 3600 int pin, event; 3601 3602 mutex_lock(&shared->shared_lock); 3603 event = rq->perout.index; 3604 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3605 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3606 mutex_unlock(&shared->shared_lock); 3607 return -EBUSY; 3608 } 3609 3610 if (!on) { 3611 lan8814_ptp_perout_off(phydev, pin); 3612 lan8814_ptp_disable_event(phydev, event); 3613 mutex_unlock(&shared->shared_lock); 3614 return 0; 3615 } 3616 3617 ts_on.tv_sec = rq->perout.on.sec; 3618 ts_on.tv_nsec = rq->perout.on.nsec; 3619 on_nsec = timespec64_to_ns(&ts_on); 3620 3621 ts_period.tv_sec = rq->perout.period.sec; 3622 ts_period.tv_nsec = rq->perout.period.nsec; 3623 period_nsec = timespec64_to_ns(&ts_period); 3624 3625 if (period_nsec < 200) { 3626 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3627 phydev_name(phydev)); 3628 mutex_unlock(&shared->shared_lock); 3629 return -EOPNOTSUPP; 3630 } 3631 3632 if (on_nsec >= period_nsec) { 3633 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3634 phydev_name(phydev)); 3635 mutex_unlock(&shared->shared_lock); 3636 return -EINVAL; 3637 } 3638 3639 switch (on_nsec) { 3640 case 200000000: 3641 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3642 break; 3643 case 100000000: 3644 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3645 break; 3646 case 50000000: 3647 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3648 break; 3649 case 10000000: 3650 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3651 break; 3652 case 5000000: 3653 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3654 break; 3655 case 1000000: 3656 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3657 break; 3658 case 500000: 3659 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3660 break; 3661 case 100000: 3662 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3663 break; 3664 case 50000: 3665 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3666 break; 3667 case 10000: 3668 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3669 break; 3670 case 5000: 3671 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3672 break; 3673 case 1000: 3674 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3675 break; 3676 case 500: 3677 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3678 break; 3679 case 100: 3680 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3681 break; 3682 default: 3683 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3684 phydev_name(phydev)); 3685 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3686 break; 3687 } 3688 3689 /* Configure to pulse every period */ 3690 lan8814_ptp_enable_event(phydev, event, pulse_width); 3691 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3692 rq->perout.start.nsec); 3693 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3694 rq->perout.period.nsec); 3695 lan8814_ptp_perout_on(phydev, pin); 3696 mutex_unlock(&shared->shared_lock); 3697 3698 return 0; 3699 } 3700 3701 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3702 { 3703 /* Set as gpio input */ 3704 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3705 LAN8814_GPIO_DIR_ADDR(pin), 3706 LAN8814_GPIO_DIR_BIT(pin), 3707 0); 3708 3709 /* Map the pin to ltc pin 0 of the capture map registers */ 3710 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3711 PTP_GPIO_CAP_MAP_LO, pin, pin); 3712 3713 /* Enable capture on the edges of the ltc pin */ 3714 if (flags & PTP_RISING_EDGE) 3715 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3716 PTP_GPIO_CAP_EN, 3717 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0), 3718 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0)); 3719 if (flags & PTP_FALLING_EDGE) 3720 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3721 PTP_GPIO_CAP_EN, 3722 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0), 3723 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0)); 3724 3725 /* Enable interrupt top interrupt */ 3726 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3727 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3728 PTP_COMMON_INT_ENA_GPIO_CAP_EN); 3729 } 3730 3731 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3732 { 3733 /* Set as gpio out */ 3734 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3735 LAN8814_GPIO_DIR_ADDR(pin), 3736 LAN8814_GPIO_DIR_BIT(pin), 3737 LAN8814_GPIO_DIR_BIT(pin)); 3738 3739 /* Enable alternate, 0:for alternate function, 1:gpio */ 3740 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3741 LAN8814_GPIO_EN_ADDR(pin), 3742 LAN8814_GPIO_EN_BIT(pin), 3743 0); 3744 3745 /* Clear the mapping of pin to registers 0 of the capture registers */ 3746 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3747 PTP_GPIO_CAP_MAP_LO, 3748 GENMASK(3, 0), 3749 0); 3750 3751 /* Disable capture on both of the edges */ 3752 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN, 3753 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 3754 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 3755 0); 3756 3757 /* Disable interrupt top interrupt */ 3758 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3759 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3760 0); 3761 } 3762 3763 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3764 struct ptp_clock_request *rq, int on) 3765 { 3766 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3767 ptp_clock_info); 3768 struct phy_device *phydev = shared->phydev; 3769 int pin; 3770 3771 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3772 rq->extts.index); 3773 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3774 return -EINVAL; 3775 3776 mutex_lock(&shared->shared_lock); 3777 if (on) 3778 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3779 else 3780 lan8814_ptp_extts_off(phydev, pin); 3781 3782 mutex_unlock(&shared->shared_lock); 3783 3784 return 0; 3785 } 3786 3787 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3788 struct ptp_clock_request *rq, int on) 3789 { 3790 switch (rq->type) { 3791 case PTP_CLK_REQ_PEROUT: 3792 return lan8814_ptp_perout(ptpci, rq, on); 3793 case PTP_CLK_REQ_EXTTS: 3794 return lan8814_ptp_extts(ptpci, rq, on); 3795 default: 3796 return -EINVAL; 3797 } 3798 } 3799 3800 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3801 enum ptp_pin_function func, unsigned int chan) 3802 { 3803 switch (func) { 3804 case PTP_PF_NONE: 3805 case PTP_PF_PEROUT: 3806 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3807 * there is only chan 0 (event A) and for pin 1 there is only 3808 * chan 1 (event B) 3809 */ 3810 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3811 return -1; 3812 break; 3813 case PTP_PF_EXTTS: 3814 if (pin != LAN8814_PTP_EXTTS_NUM) 3815 return -1; 3816 break; 3817 default: 3818 return -1; 3819 } 3820 3821 return 0; 3822 } 3823 3824 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3825 { 3826 struct ptp_header *ptp_header; 3827 u32 type; 3828 3829 type = ptp_classify_raw(skb); 3830 ptp_header = ptp_parse_header(skb, type); 3831 3832 if (!ptp_header) 3833 return false; 3834 3835 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3836 return true; 3837 } 3838 3839 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3840 u32 seconds, u32 nsec, u16 seq_id) 3841 { 3842 struct skb_shared_hwtstamps shhwtstamps; 3843 struct sk_buff *skb, *skb_tmp; 3844 unsigned long flags; 3845 bool ret = false; 3846 u16 skb_sig; 3847 3848 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3849 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3850 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3851 continue; 3852 3853 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3854 continue; 3855 3856 __skb_unlink(skb, &ptp_priv->tx_queue); 3857 ret = true; 3858 break; 3859 } 3860 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3861 3862 if (ret) { 3863 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3864 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3865 skb_complete_tx_timestamp(skb, &shhwtstamps); 3866 } 3867 } 3868 3869 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3870 { 3871 struct phy_device *phydev = ptp_priv->phydev; 3872 u32 seconds, nsec; 3873 u16 seq_id; 3874 3875 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3876 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3877 } 3878 3879 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3880 { 3881 struct phy_device *phydev = ptp_priv->phydev; 3882 u32 reg; 3883 3884 do { 3885 lan8814_dequeue_tx_skb(ptp_priv); 3886 3887 /* If other timestamps are available in the FIFO, 3888 * process them. 3889 */ 3890 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3891 PTP_CAP_INFO); 3892 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 3893 } 3894 3895 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 3896 struct lan8814_ptp_rx_ts *rx_ts) 3897 { 3898 struct skb_shared_hwtstamps *shhwtstamps; 3899 struct sk_buff *skb, *skb_tmp; 3900 unsigned long flags; 3901 bool ret = false; 3902 u16 skb_sig; 3903 3904 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 3905 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 3906 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3907 continue; 3908 3909 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3910 continue; 3911 3912 __skb_unlink(skb, &ptp_priv->rx_queue); 3913 3914 ret = true; 3915 break; 3916 } 3917 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 3918 3919 if (ret) { 3920 shhwtstamps = skb_hwtstamps(skb); 3921 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3922 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 3923 netif_rx(skb); 3924 } 3925 3926 return ret; 3927 } 3928 3929 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 3930 struct lan8814_ptp_rx_ts *rx_ts) 3931 { 3932 unsigned long flags; 3933 3934 /* If we failed to match the skb add it to the queue for when 3935 * the frame will come 3936 */ 3937 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 3938 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3939 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 3940 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3941 } else { 3942 kfree(rx_ts); 3943 } 3944 } 3945 3946 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 3947 { 3948 struct phy_device *phydev = ptp_priv->phydev; 3949 struct lan8814_ptp_rx_ts *rx_ts; 3950 u32 reg; 3951 3952 do { 3953 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 3954 if (!rx_ts) 3955 return; 3956 3957 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 3958 &rx_ts->seq_id); 3959 lan8814_match_rx_ts(ptp_priv, rx_ts); 3960 3961 /* If other timestamps are available in the FIFO, 3962 * process them. 3963 */ 3964 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3965 PTP_CAP_INFO); 3966 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 3967 } 3968 3969 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 3970 { 3971 struct kszphy_priv *priv = phydev->priv; 3972 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3973 3974 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 3975 lan8814_get_tx_ts(ptp_priv); 3976 3977 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 3978 lan8814_get_rx_ts(ptp_priv); 3979 3980 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 3981 lan8814_flush_fifo(phydev, true); 3982 skb_queue_purge(&ptp_priv->tx_queue); 3983 } 3984 3985 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 3986 lan8814_flush_fifo(phydev, false); 3987 skb_queue_purge(&ptp_priv->rx_queue); 3988 } 3989 } 3990 3991 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 3992 { 3993 struct phy_device *phydev = shared->phydev; 3994 struct ptp_clock_event ptp_event = {0}; 3995 unsigned long nsec; 3996 s64 sec; 3997 u16 tmp; 3998 3999 /* This is 0 because whatever was the input pin it was mapped it to 4000 * ltc gpio pin 0 4001 */ 4002 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL, 4003 PTP_GPIO_SEL_GPIO_SEL(0), 4004 PTP_GPIO_SEL_GPIO_SEL(0)); 4005 4006 tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4007 PTP_GPIO_CAP_STS); 4008 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 4009 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 4010 return -1; 4011 4012 if (tmp & BIT(0)) { 4013 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4014 PTP_GPIO_RE_LTC_SEC_HI_CAP); 4015 sec <<= 16; 4016 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4017 PTP_GPIO_RE_LTC_SEC_LO_CAP); 4018 4019 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4020 PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4021 nsec <<= 16; 4022 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4023 PTP_GPIO_RE_LTC_NS_LO_CAP); 4024 } else { 4025 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4026 PTP_GPIO_FE_LTC_SEC_HI_CAP); 4027 sec <<= 16; 4028 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4029 PTP_GPIO_FE_LTC_SEC_LO_CAP); 4030 4031 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4032 PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4033 nsec <<= 16; 4034 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4035 PTP_GPIO_RE_LTC_NS_LO_CAP); 4036 } 4037 4038 ptp_event.index = 0; 4039 ptp_event.timestamp = ktime_set(sec, nsec); 4040 ptp_event.type = PTP_CLOCK_EXTTS; 4041 ptp_clock_event(shared->ptp_clock, &ptp_event); 4042 4043 return 0; 4044 } 4045 4046 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 4047 { 4048 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4049 int ret; 4050 4051 mutex_lock(&shared->shared_lock); 4052 ret = lan8814_gpio_process_cap(shared); 4053 mutex_unlock(&shared->shared_lock); 4054 4055 return ret; 4056 } 4057 4058 static int lan8804_config_init(struct phy_device *phydev) 4059 { 4060 /* MDI-X setting for swap A,B transmit */ 4061 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP, 4062 LAN8804_ALIGN_TX_A_B_SWAP_MASK, 4063 LAN8804_ALIGN_TX_A_B_SWAP); 4064 4065 /* Make sure that the PHY will not stop generating the clock when the 4066 * link partner goes down 4067 */ 4068 lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL, 4069 LAN8814_CLOCK_MANAGEMENT, 0x27e); 4070 lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY); 4071 4072 return 0; 4073 } 4074 4075 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 4076 { 4077 int status; 4078 4079 status = phy_read(phydev, LAN8814_INTS); 4080 if (status < 0) { 4081 phy_error(phydev); 4082 return IRQ_NONE; 4083 } 4084 4085 if (status > 0) 4086 phy_trigger_machine(phydev); 4087 4088 return IRQ_HANDLED; 4089 } 4090 4091 #define LAN8804_OUTPUT_CONTROL 25 4092 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 4093 #define LAN8804_CONTROL 31 4094 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 4095 4096 static int lan8804_config_intr(struct phy_device *phydev) 4097 { 4098 int err; 4099 4100 /* This is an internal PHY of lan966x and is not possible to change the 4101 * polarity on the GIC found in lan966x, therefore change the polarity 4102 * of the interrupt in the PHY from being active low instead of active 4103 * high. 4104 */ 4105 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 4106 4107 /* By default interrupt buffer is open-drain in which case the interrupt 4108 * can be active only low. Therefore change the interrupt buffer to be 4109 * push-pull to be able to change interrupt polarity 4110 */ 4111 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 4112 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 4113 4114 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4115 err = phy_read(phydev, LAN8814_INTS); 4116 if (err < 0) 4117 return err; 4118 4119 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4120 if (err) 4121 return err; 4122 } else { 4123 err = phy_write(phydev, LAN8814_INTC, 0); 4124 if (err) 4125 return err; 4126 4127 err = phy_read(phydev, LAN8814_INTS); 4128 if (err < 0) 4129 return err; 4130 } 4131 4132 return 0; 4133 } 4134 4135 /* Check if the PHY has 1588 support. There are multiple skus of the PHY and 4136 * some of them support PTP while others don't support it. This function will 4137 * return true is the sku supports it, otherwise will return false. 4138 */ 4139 static bool lan8814_has_ptp(struct phy_device *phydev) 4140 { 4141 struct kszphy_priv *priv = phydev->priv; 4142 4143 return priv->is_ptp_available; 4144 } 4145 4146 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 4147 { 4148 int ret = IRQ_NONE; 4149 int irq_status; 4150 4151 irq_status = phy_read(phydev, LAN8814_INTS); 4152 if (irq_status < 0) { 4153 phy_error(phydev); 4154 return IRQ_NONE; 4155 } 4156 4157 if (irq_status & LAN8814_INT_LINK) { 4158 phy_trigger_machine(phydev); 4159 ret = IRQ_HANDLED; 4160 } 4161 4162 if (!lan8814_has_ptp(phydev)) 4163 return ret; 4164 4165 while (true) { 4166 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4167 PTP_TSU_INT_STS); 4168 if (!irq_status) 4169 break; 4170 4171 lan8814_handle_ptp_interrupt(phydev, irq_status); 4172 ret = IRQ_HANDLED; 4173 } 4174 4175 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 4176 ret = IRQ_HANDLED; 4177 4178 return ret; 4179 } 4180 4181 static int lan8814_ack_interrupt(struct phy_device *phydev) 4182 { 4183 /* bit[12..0] int status, which is a read and clear register. */ 4184 int rc; 4185 4186 rc = phy_read(phydev, LAN8814_INTS); 4187 4188 return (rc < 0) ? rc : 0; 4189 } 4190 4191 static int lan8814_config_intr(struct phy_device *phydev) 4192 { 4193 int err; 4194 4195 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG, 4196 LAN8814_INTR_CTRL_REG_POLARITY | 4197 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 4198 4199 /* enable / disable interrupts */ 4200 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4201 err = lan8814_ack_interrupt(phydev); 4202 if (err) 4203 return err; 4204 4205 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4206 } else { 4207 err = phy_write(phydev, LAN8814_INTC, 0); 4208 if (err) 4209 return err; 4210 4211 err = lan8814_ack_interrupt(phydev); 4212 } 4213 4214 return err; 4215 } 4216 4217 static void lan8814_ptp_init(struct phy_device *phydev) 4218 { 4219 struct kszphy_priv *priv = phydev->priv; 4220 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4221 4222 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 4223 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4224 return; 4225 4226 if (!lan8814_has_ptp(phydev)) 4227 return; 4228 4229 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4230 TSU_HARD_RESET, TSU_HARD_RESET_); 4231 4232 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD, 4233 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4234 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4235 4236 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD, 4237 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4238 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4239 4240 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4241 PTP_RX_PARSE_CONFIG, 0); 4242 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4243 PTP_TX_PARSE_CONFIG, 0); 4244 4245 /* Removing default registers configs related to L2 and IP */ 4246 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4247 PTP_TX_PARSE_L2_ADDR_EN, 0); 4248 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4249 PTP_RX_PARSE_L2_ADDR_EN, 0); 4250 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4251 PTP_TX_PARSE_IP_ADDR_EN, 0); 4252 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4253 PTP_RX_PARSE_IP_ADDR_EN, 0); 4254 4255 /* Disable checking for minorVersionPTP field */ 4256 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION, 4257 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4258 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION, 4259 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4260 4261 skb_queue_head_init(&ptp_priv->tx_queue); 4262 skb_queue_head_init(&ptp_priv->rx_queue); 4263 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 4264 spin_lock_init(&ptp_priv->rx_ts_lock); 4265 4266 ptp_priv->phydev = phydev; 4267 4268 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 4269 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4270 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 4271 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 4272 4273 phydev->mii_ts = &ptp_priv->mii_ts; 4274 4275 /* Timestamp selected by default to keep legacy API */ 4276 phydev->default_timestamp = true; 4277 } 4278 4279 static int __lan8814_ptp_probe_once(struct phy_device *phydev, char *pin_name, 4280 int gpios) 4281 { 4282 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4283 4284 shared->phydev = phydev; 4285 4286 /* Initialise shared lock for clock*/ 4287 mutex_init(&shared->shared_lock); 4288 4289 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 4290 gpios, 4291 sizeof(*shared->pin_config), 4292 GFP_KERNEL); 4293 if (!shared->pin_config) 4294 return -ENOMEM; 4295 4296 for (int i = 0; i < gpios; i++) { 4297 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 4298 4299 memset(ptp_pin, 0, sizeof(*ptp_pin)); 4300 snprintf(ptp_pin->name, 4301 sizeof(ptp_pin->name), "%s_%02d", pin_name, i); 4302 ptp_pin->index = i; 4303 ptp_pin->func = PTP_PF_NONE; 4304 } 4305 4306 shared->ptp_clock_info.owner = THIS_MODULE; 4307 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 4308 shared->ptp_clock_info.max_adj = 31249999; 4309 shared->ptp_clock_info.n_alarm = 0; 4310 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 4311 shared->ptp_clock_info.n_pins = gpios; 4312 shared->ptp_clock_info.pps = 0; 4313 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 4314 PTP_FALLING_EDGE | 4315 PTP_STRICT_FLAGS; 4316 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 4317 shared->ptp_clock_info.pin_config = shared->pin_config; 4318 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 4319 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 4320 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 4321 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 4322 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 4323 shared->ptp_clock_info.getcrosststamp = NULL; 4324 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 4325 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 4326 4327 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 4328 &phydev->mdio.dev); 4329 if (IS_ERR(shared->ptp_clock)) { 4330 phydev_err(phydev, "ptp_clock_register failed %pe\n", 4331 shared->ptp_clock); 4332 return -EINVAL; 4333 } 4334 4335 /* Check if PHC support is missing at the configuration level */ 4336 if (!shared->ptp_clock) 4337 return 0; 4338 4339 phydev_dbg(phydev, "successfully registered ptp clock\n"); 4340 4341 /* The EP.4 is shared between all the PHYs in the package and also it 4342 * can be accessed by any of the PHYs 4343 */ 4344 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4345 LTC_HARD_RESET, LTC_HARD_RESET_); 4346 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE, 4347 PTP_OPERATING_MODE_STANDALONE_); 4348 4349 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 4350 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 4351 PTP_CMD_CTL_PTP_ENABLE_); 4352 4353 return 0; 4354 } 4355 4356 static int lan8814_ptp_probe_once(struct phy_device *phydev) 4357 { 4358 if (!lan8814_has_ptp(phydev)) 4359 return 0; 4360 4361 return __lan8814_ptp_probe_once(phydev, "lan8814_ptp_pin", 4362 LAN8814_PTP_GPIO_NUM); 4363 } 4364 4365 static void lan8814_setup_led(struct phy_device *phydev, int val) 4366 { 4367 int temp; 4368 4369 temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4370 LAN8814_LED_CTRL_1); 4371 4372 if (val) 4373 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4374 else 4375 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4376 4377 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4378 LAN8814_LED_CTRL_1, temp); 4379 } 4380 4381 static int lan8814_config_init(struct phy_device *phydev) 4382 { 4383 struct kszphy_priv *lan8814 = phydev->priv; 4384 4385 /* Reset the PHY */ 4386 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4387 LAN8814_QSGMII_SOFT_RESET, 4388 LAN8814_QSGMII_SOFT_RESET_BIT, 4389 LAN8814_QSGMII_SOFT_RESET_BIT); 4390 4391 /* Disable ANEG with QSGMII PCS Host side */ 4392 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4393 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 4394 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 4395 0); 4396 4397 /* MDI-X setting for swap A,B transmit */ 4398 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP, 4399 LAN8814_ALIGN_TX_A_B_SWAP_MASK, 4400 LAN8814_ALIGN_TX_A_B_SWAP); 4401 4402 if (lan8814->led_mode >= 0) 4403 lan8814_setup_led(phydev, lan8814->led_mode); 4404 4405 return 0; 4406 } 4407 4408 /* It is expected that there will not be any 'lan8814_take_coma_mode' 4409 * function called in suspend. Because the GPIO line can be shared, so if one of 4410 * the phys goes back in coma mode, then all the other PHYs will go, which is 4411 * wrong. 4412 */ 4413 static int lan8814_release_coma_mode(struct phy_device *phydev) 4414 { 4415 struct gpio_desc *gpiod; 4416 4417 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4418 GPIOD_OUT_HIGH_OPEN_DRAIN | 4419 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4420 if (IS_ERR(gpiod)) 4421 return PTR_ERR(gpiod); 4422 4423 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4424 gpiod_set_value_cansleep(gpiod, 0); 4425 4426 return 0; 4427 } 4428 4429 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4430 { 4431 /* It was noticed that when traffic is passing through the PHY and the 4432 * cable is removed then the LED was still on even though there is no 4433 * link 4434 */ 4435 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE, 4436 LAN8814_EEE_STATE_MASK2P5P, 4437 0); 4438 } 4439 4440 static void lan8814_update_meas_time(struct phy_device *phydev) 4441 { 4442 /* By setting the measure time to a value of 0xb this will allow cables 4443 * longer than 100m to be used. This configuration can be used 4444 * regardless of the mode of operation of the PHY 4445 */ 4446 lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS, 4447 LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK, 4448 LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL); 4449 } 4450 4451 static int lan8814_probe(struct phy_device *phydev) 4452 { 4453 const struct kszphy_type *type = phydev->drv->driver_data; 4454 struct kszphy_priv *priv; 4455 u16 addr; 4456 int err; 4457 4458 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4459 if (!priv) 4460 return -ENOMEM; 4461 4462 phydev->priv = priv; 4463 4464 priv->type = type; 4465 4466 kszphy_parse_led_mode(phydev); 4467 4468 /* Strap-in value for PHY address, below register read gives starting 4469 * phy address value 4470 */ 4471 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F; 4472 devm_phy_package_join(&phydev->mdio.dev, phydev, 4473 addr, sizeof(struct lan8814_shared_priv)); 4474 4475 /* There are lan8814 SKUs that don't support PTP. Make sure that for 4476 * those skus no PTP device is created. Here we check if the SKU 4477 * supports PTP. 4478 */ 4479 err = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4480 LAN8814_SKUS); 4481 if (err < 0) 4482 return err; 4483 4484 priv->is_ptp_available = err == LAN8814_REV_LAN8814 || 4485 err == LAN8814_REV_LAN8818; 4486 4487 if (phy_package_init_once(phydev)) { 4488 err = lan8814_release_coma_mode(phydev); 4489 if (err) 4490 return err; 4491 4492 err = lan8814_ptp_probe_once(phydev); 4493 if (err) 4494 return err; 4495 } 4496 4497 lan8814_ptp_init(phydev); 4498 4499 /* Errata workarounds */ 4500 lan8814_clear_2psp_bit(phydev); 4501 lan8814_update_meas_time(phydev); 4502 4503 return 0; 4504 } 4505 4506 #define LAN8841_MMD_TIMER_REG 0 4507 #define LAN8841_MMD0_REGISTER_17 17 4508 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4509 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4510 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4511 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4512 #define LAN8841_MMD_ANALOG_REG 28 4513 #define LAN8841_ANALOG_CONTROL_1 1 4514 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4515 #define LAN8841_ANALOG_CONTROL_10 13 4516 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4517 #define LAN8841_ANALOG_CONTROL_11 14 4518 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4519 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4520 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4521 #define LAN8841_BTRX_POWER_DOWN 70 4522 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4523 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4524 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4525 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4526 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4527 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4528 #define LAN8841_ADC_CHANNEL_MASK 198 4529 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4530 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4531 #define LAN8841_PTP_RX_VERSION 374 4532 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4533 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4534 #define LAN8841_PTP_TX_VERSION 438 4535 #define LAN8841_PTP_CMD_CTL 256 4536 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4537 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4538 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4539 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4540 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4541 #define LAN8841_PTP_RX_MODE 381 4542 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4543 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4544 4545 static int lan8841_config_init(struct phy_device *phydev) 4546 { 4547 int ret; 4548 4549 ret = ksz9131_config_init(phydev); 4550 if (ret) 4551 return ret; 4552 4553 /* Initialize the HW by resetting everything */ 4554 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4555 LAN8841_PTP_CMD_CTL, 4556 LAN8841_PTP_CMD_CTL_PTP_RESET, 4557 LAN8841_PTP_CMD_CTL_PTP_RESET); 4558 4559 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4560 LAN8841_PTP_CMD_CTL, 4561 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4562 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4563 4564 /* Don't process any frames */ 4565 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4566 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4567 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4568 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4569 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4570 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4571 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4572 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4573 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4574 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4575 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4576 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4577 4578 /* Disable checking for minorVersionPTP field */ 4579 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4580 LAN8841_PTP_RX_VERSION, 0xff00); 4581 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4582 LAN8841_PTP_TX_VERSION, 0xff00); 4583 4584 /* 100BT Clause 40 improvement errata */ 4585 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4586 LAN8841_ANALOG_CONTROL_1, 4587 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4588 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4589 LAN8841_ANALOG_CONTROL_10, 4590 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4591 4592 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4593 * Magnetics 4594 */ 4595 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4596 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4597 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4598 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4599 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4600 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4601 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4602 LAN8841_BTRX_POWER_DOWN, 4603 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4604 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4605 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4606 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4607 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4608 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4609 } 4610 4611 /* LDO Adjustment errata */ 4612 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4613 LAN8841_ANALOG_CONTROL_11, 4614 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4615 4616 /* 100BT RGMII latency tuning errata */ 4617 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4618 LAN8841_ADC_CHANNEL_MASK, 0x0); 4619 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4620 LAN8841_MMD0_REGISTER_17, 4621 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4622 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4623 4624 return 0; 4625 } 4626 4627 #define LAN8841_OUTPUT_CTRL 25 4628 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4629 #define LAN8841_INT_PTP BIT(9) 4630 4631 static int lan8841_config_intr(struct phy_device *phydev) 4632 { 4633 int err; 4634 4635 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4636 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4637 4638 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4639 err = phy_read(phydev, LAN8814_INTS); 4640 if (err < 0) 4641 return err; 4642 4643 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4644 * even if it PTP is not enabled. Because the underneath blocks 4645 * will not enable the PTP so we will never get the PTP 4646 * interrupt. 4647 */ 4648 err = phy_write(phydev, LAN8814_INTC, 4649 LAN8814_INT_LINK | LAN8841_INT_PTP); 4650 } else { 4651 err = phy_write(phydev, LAN8814_INTC, 0); 4652 if (err) 4653 return err; 4654 4655 err = phy_read(phydev, LAN8814_INTS); 4656 if (err < 0) 4657 return err; 4658 4659 /* Getting a positive value doesn't mean that is an error, it 4660 * just indicates what was the status. Therefore make sure to 4661 * clear the value and say that there is no error. 4662 */ 4663 err = 0; 4664 } 4665 4666 return err; 4667 } 4668 4669 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4670 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4671 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4672 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4673 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4674 #define LAN8841_PTP_TX_MSG_HEADER2 455 4675 4676 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4677 u32 *sec, u32 *nsec, u16 *seq) 4678 { 4679 struct phy_device *phydev = ptp_priv->phydev; 4680 4681 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4682 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4683 return false; 4684 4685 *nsec = ((*nsec & 0x3fff) << 16); 4686 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4687 4688 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4689 *sec = *sec << 16; 4690 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4691 4692 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4693 4694 return true; 4695 } 4696 4697 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4698 { 4699 u32 sec, nsec; 4700 u16 seq; 4701 4702 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4703 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4704 } 4705 4706 #define LAN8841_PTP_INT_STS 259 4707 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4708 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4709 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4710 4711 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4712 { 4713 struct phy_device *phydev = ptp_priv->phydev; 4714 int i; 4715 4716 for (i = 0; i < FIFO_SIZE; ++i) 4717 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4718 4719 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4720 } 4721 4722 #define LAN8841_PTP_GPIO_CAP_STS 506 4723 #define LAN8841_PTP_GPIO_SEL 327 4724 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4725 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4726 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4727 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4728 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4729 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4730 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4731 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4732 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4733 4734 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4735 { 4736 struct phy_device *phydev = ptp_priv->phydev; 4737 struct ptp_clock_event ptp_event = {0}; 4738 int pin, ret, tmp; 4739 s32 sec, nsec; 4740 4741 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4742 if (pin == -1) 4743 return; 4744 4745 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4746 if (tmp < 0) 4747 return; 4748 4749 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4750 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4751 if (ret) 4752 return; 4753 4754 mutex_lock(&ptp_priv->ptp_lock); 4755 if (tmp & BIT(pin)) { 4756 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4757 sec <<= 16; 4758 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4759 4760 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4761 nsec <<= 16; 4762 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4763 } else { 4764 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4765 sec <<= 16; 4766 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4767 4768 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4769 nsec <<= 16; 4770 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4771 } 4772 mutex_unlock(&ptp_priv->ptp_lock); 4773 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4774 if (ret) 4775 return; 4776 4777 ptp_event.index = 0; 4778 ptp_event.timestamp = ktime_set(sec, nsec); 4779 ptp_event.type = PTP_CLOCK_EXTTS; 4780 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4781 } 4782 4783 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4784 { 4785 struct kszphy_priv *priv = phydev->priv; 4786 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4787 u16 status; 4788 4789 do { 4790 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4791 4792 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4793 lan8841_ptp_process_tx_ts(ptp_priv); 4794 4795 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4796 lan8841_gpio_process_cap(ptp_priv); 4797 4798 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4799 lan8841_ptp_flush_fifo(ptp_priv); 4800 skb_queue_purge(&ptp_priv->tx_queue); 4801 } 4802 4803 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4804 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4805 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4806 } 4807 4808 #define LAN8841_INTS_PTP BIT(9) 4809 4810 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4811 { 4812 irqreturn_t ret = IRQ_NONE; 4813 int irq_status; 4814 4815 irq_status = phy_read(phydev, LAN8814_INTS); 4816 if (irq_status < 0) { 4817 phy_error(phydev); 4818 return IRQ_NONE; 4819 } 4820 4821 if (irq_status & LAN8814_INT_LINK) { 4822 phy_trigger_machine(phydev); 4823 ret = IRQ_HANDLED; 4824 } 4825 4826 if (irq_status & LAN8841_INTS_PTP) { 4827 lan8841_handle_ptp_interrupt(phydev); 4828 ret = IRQ_HANDLED; 4829 } 4830 4831 return ret; 4832 } 4833 4834 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4835 struct kernel_ethtool_ts_info *info) 4836 { 4837 struct kszphy_ptp_priv *ptp_priv; 4838 4839 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4840 4841 info->phc_index = ptp_priv->ptp_clock ? 4842 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4843 if (info->phc_index == -1) 4844 return 0; 4845 4846 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4847 SOF_TIMESTAMPING_RX_HARDWARE | 4848 SOF_TIMESTAMPING_RAW_HARDWARE; 4849 4850 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4851 (1 << HWTSTAMP_TX_ON) | 4852 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4853 4854 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4855 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4856 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4857 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4858 4859 return 0; 4860 } 4861 4862 #define LAN8841_PTP_INT_EN 260 4863 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4864 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4865 4866 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 4867 bool enable) 4868 { 4869 struct phy_device *phydev = ptp_priv->phydev; 4870 4871 if (enable) { 4872 /* Enable interrupts on the TX side */ 4873 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4874 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4875 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 4876 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4877 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 4878 4879 /* Enable the modification of the frame on RX side, 4880 * this will add the ns and 2 bits of sec in the reserved field 4881 * of the PTP header 4882 */ 4883 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4884 LAN8841_PTP_RX_MODE, 4885 LAN8841_PTP_INSERT_TS_EN | 4886 LAN8841_PTP_INSERT_TS_32BIT, 4887 LAN8841_PTP_INSERT_TS_EN | 4888 LAN8841_PTP_INSERT_TS_32BIT); 4889 4890 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 4891 } else { 4892 /* Disable interrupts on the TX side */ 4893 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4894 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4895 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 4896 4897 /* Disable modification of the RX frames */ 4898 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4899 LAN8841_PTP_RX_MODE, 4900 LAN8841_PTP_INSERT_TS_EN | 4901 LAN8841_PTP_INSERT_TS_32BIT, 0); 4902 4903 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4904 } 4905 } 4906 4907 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 4908 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 4909 #define LAN8841_PTP_TX_MOD 445 4910 4911 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 4912 struct kernel_hwtstamp_config *config, 4913 struct netlink_ext_ack *extack) 4914 { 4915 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4916 struct phy_device *phydev = ptp_priv->phydev; 4917 int txcfg = 0, rxcfg = 0; 4918 int pkt_ts_enable; 4919 4920 ptp_priv->hwts_tx_type = config->tx_type; 4921 ptp_priv->rx_filter = config->rx_filter; 4922 4923 switch (config->rx_filter) { 4924 case HWTSTAMP_FILTER_NONE: 4925 ptp_priv->layer = 0; 4926 ptp_priv->version = 0; 4927 break; 4928 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 4929 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 4930 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 4931 ptp_priv->layer = PTP_CLASS_L4; 4932 ptp_priv->version = PTP_CLASS_V2; 4933 break; 4934 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 4935 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 4936 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 4937 ptp_priv->layer = PTP_CLASS_L2; 4938 ptp_priv->version = PTP_CLASS_V2; 4939 break; 4940 case HWTSTAMP_FILTER_PTP_V2_EVENT: 4941 case HWTSTAMP_FILTER_PTP_V2_SYNC: 4942 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 4943 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 4944 ptp_priv->version = PTP_CLASS_V2; 4945 break; 4946 default: 4947 return -ERANGE; 4948 } 4949 4950 /* Setup parsing of the frames and enable the timestamping for ptp 4951 * frames 4952 */ 4953 if (ptp_priv->layer & PTP_CLASS_L2) { 4954 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 4955 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 4956 } else if (ptp_priv->layer & PTP_CLASS_L4) { 4957 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 4958 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 4959 } 4960 4961 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 4962 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 4963 4964 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 4965 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 4966 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 4967 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 4968 4969 /* Enable / disable of the TX timestamp in the SYNC frames */ 4970 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 4971 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 4972 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 4973 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 4974 4975 /* Now enable/disable the timestamping */ 4976 lan8841_ptp_enable_processing(ptp_priv, 4977 config->rx_filter != HWTSTAMP_FILTER_NONE); 4978 4979 skb_queue_purge(&ptp_priv->tx_queue); 4980 4981 lan8841_ptp_flush_fifo(ptp_priv); 4982 4983 return 0; 4984 } 4985 4986 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 4987 struct sk_buff *skb, int type) 4988 { 4989 struct kszphy_ptp_priv *ptp_priv = 4990 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4991 struct ptp_header *header = ptp_parse_header(skb, type); 4992 struct skb_shared_hwtstamps *shhwtstamps; 4993 struct timespec64 ts; 4994 unsigned long flags; 4995 u32 ts_header; 4996 4997 if (!header) 4998 return false; 4999 5000 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 5001 type == PTP_CLASS_NONE) 5002 return false; 5003 5004 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 5005 return false; 5006 5007 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5008 ts.tv_sec = ptp_priv->seconds; 5009 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5010 ts_header = __be32_to_cpu(header->reserved2); 5011 5012 shhwtstamps = skb_hwtstamps(skb); 5013 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 5014 5015 /* Check for any wrap arounds for the second part */ 5016 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 5017 ts.tv_sec -= GENMASK(1, 0) + 1; 5018 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 5019 ts.tv_sec += 1; 5020 5021 shhwtstamps->hwtstamp = 5022 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 5023 ts_header & GENMASK(29, 0)); 5024 header->reserved2 = 0; 5025 5026 netif_rx(skb); 5027 5028 return true; 5029 } 5030 5031 #define LAN8841_EVENT_A 0 5032 #define LAN8841_EVENT_B 1 5033 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 5034 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 5035 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 5036 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 5037 5038 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 5039 s64 sec, u32 nsec) 5040 { 5041 struct phy_device *phydev = ptp_priv->phydev; 5042 int ret; 5043 5044 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 5045 upper_16_bits(sec)); 5046 if (ret) 5047 return ret; 5048 5049 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 5050 lower_16_bits(sec)); 5051 if (ret) 5052 return ret; 5053 5054 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 5055 upper_16_bits(nsec)); 5056 if (ret) 5057 return ret; 5058 5059 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 5060 lower_16_bits(nsec)); 5061 } 5062 5063 #define LAN8841_BUFFER_TIME 2 5064 5065 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 5066 const struct timespec64 *ts) 5067 { 5068 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 5069 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 5070 } 5071 5072 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 5073 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 5074 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 5075 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 5076 5077 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 5078 s64 sec, u32 nsec) 5079 { 5080 struct phy_device *phydev = ptp_priv->phydev; 5081 int ret; 5082 5083 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 5084 upper_16_bits(sec)); 5085 if (ret) 5086 return ret; 5087 5088 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 5089 lower_16_bits(sec)); 5090 if (ret) 5091 return ret; 5092 5093 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 5094 upper_16_bits(nsec)); 5095 if (ret) 5096 return ret; 5097 5098 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 5099 lower_16_bits(nsec)); 5100 } 5101 5102 #define LAN8841_PTP_LTC_SET_SEC_HI 262 5103 #define LAN8841_PTP_LTC_SET_SEC_MID 263 5104 #define LAN8841_PTP_LTC_SET_SEC_LO 264 5105 #define LAN8841_PTP_LTC_SET_NS_HI 265 5106 #define LAN8841_PTP_LTC_SET_NS_LO 266 5107 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 5108 5109 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 5110 const struct timespec64 *ts) 5111 { 5112 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5113 ptp_clock_info); 5114 struct phy_device *phydev = ptp_priv->phydev; 5115 unsigned long flags; 5116 int ret; 5117 5118 /* Set the value to be stored */ 5119 mutex_lock(&ptp_priv->ptp_lock); 5120 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 5121 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 5122 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 5123 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 5124 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 5125 5126 /* Set the command to load the LTC */ 5127 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5128 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 5129 ret = lan8841_ptp_update_target(ptp_priv, ts); 5130 mutex_unlock(&ptp_priv->ptp_lock); 5131 5132 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5133 ptp_priv->seconds = ts->tv_sec; 5134 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5135 5136 return ret; 5137 } 5138 5139 #define LAN8841_PTP_LTC_RD_SEC_HI 358 5140 #define LAN8841_PTP_LTC_RD_SEC_MID 359 5141 #define LAN8841_PTP_LTC_RD_SEC_LO 360 5142 #define LAN8841_PTP_LTC_RD_NS_HI 361 5143 #define LAN8841_PTP_LTC_RD_NS_LO 362 5144 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 5145 5146 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 5147 struct timespec64 *ts) 5148 { 5149 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5150 ptp_clock_info); 5151 struct phy_device *phydev = ptp_priv->phydev; 5152 time64_t s; 5153 s64 ns; 5154 5155 mutex_lock(&ptp_priv->ptp_lock); 5156 /* Issue the command to read the LTC */ 5157 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5158 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5159 5160 /* Read the LTC */ 5161 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5162 s <<= 16; 5163 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5164 s <<= 16; 5165 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5166 5167 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 5168 ns <<= 16; 5169 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 5170 mutex_unlock(&ptp_priv->ptp_lock); 5171 5172 set_normalized_timespec64(ts, s, ns); 5173 return 0; 5174 } 5175 5176 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 5177 struct timespec64 *ts) 5178 { 5179 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5180 ptp_clock_info); 5181 struct phy_device *phydev = ptp_priv->phydev; 5182 time64_t s; 5183 5184 mutex_lock(&ptp_priv->ptp_lock); 5185 /* Issue the command to read the LTC */ 5186 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5187 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5188 5189 /* Read the LTC */ 5190 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5191 s <<= 16; 5192 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5193 s <<= 16; 5194 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5195 mutex_unlock(&ptp_priv->ptp_lock); 5196 5197 set_normalized_timespec64(ts, s, 0); 5198 } 5199 5200 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 5201 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 5202 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 5203 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 5204 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 5205 5206 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 5207 { 5208 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5209 ptp_clock_info); 5210 struct phy_device *phydev = ptp_priv->phydev; 5211 struct timespec64 ts; 5212 bool add = true; 5213 u32 nsec; 5214 s32 sec; 5215 int ret; 5216 5217 /* The HW allows up to 15 sec to adjust the time, but here we limit to 5218 * 10 sec the adjustment. The reason is, in case the adjustment is 14 5219 * sec and 999999999 nsec, then we add 8ns to compansate the actual 5220 * increment so the value can be bigger than 15 sec. Therefore limit the 5221 * possible adjustments so we will not have these corner cases 5222 */ 5223 if (delta > 10000000000LL || delta < -10000000000LL) { 5224 /* The timeadjustment is too big, so fall back using set time */ 5225 u64 now; 5226 5227 ptp->gettime64(ptp, &ts); 5228 5229 now = ktime_to_ns(timespec64_to_ktime(ts)); 5230 ts = ns_to_timespec64(now + delta); 5231 5232 ptp->settime64(ptp, &ts); 5233 return 0; 5234 } 5235 5236 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 5237 if (delta < 0 && nsec != 0) { 5238 /* It is not allowed to adjust low the nsec part, therefore 5239 * subtract more from second part and add to nanosecond such 5240 * that would roll over, so the second part will increase 5241 */ 5242 sec--; 5243 nsec = NSEC_PER_SEC - nsec; 5244 } 5245 5246 /* Calculate the adjustments and the direction */ 5247 if (delta < 0) 5248 add = false; 5249 5250 if (nsec > 0) 5251 /* add 8 ns to cover the likely normal increment */ 5252 nsec += 8; 5253 5254 if (nsec >= NSEC_PER_SEC) { 5255 /* carry into seconds */ 5256 sec++; 5257 nsec -= NSEC_PER_SEC; 5258 } 5259 5260 mutex_lock(&ptp_priv->ptp_lock); 5261 if (sec) { 5262 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 5263 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5264 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 5265 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5266 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 5267 } 5268 5269 if (nsec) { 5270 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 5271 nsec & 0xffff); 5272 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5273 (nsec >> 16) & 0x3fff); 5274 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5275 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 5276 } 5277 mutex_unlock(&ptp_priv->ptp_lock); 5278 5279 /* Update the target clock */ 5280 ptp->gettime64(ptp, &ts); 5281 mutex_lock(&ptp_priv->ptp_lock); 5282 ret = lan8841_ptp_update_target(ptp_priv, &ts); 5283 mutex_unlock(&ptp_priv->ptp_lock); 5284 5285 return ret; 5286 } 5287 5288 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 5289 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 5290 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 5291 5292 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 5293 { 5294 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5295 ptp_clock_info); 5296 struct phy_device *phydev = ptp_priv->phydev; 5297 bool faster = true; 5298 u32 rate; 5299 5300 if (!scaled_ppm) 5301 return 0; 5302 5303 if (scaled_ppm < 0) { 5304 scaled_ppm = -scaled_ppm; 5305 faster = false; 5306 } 5307 5308 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 5309 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 5310 5311 mutex_lock(&ptp_priv->ptp_lock); 5312 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 5313 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 5314 : upper_16_bits(rate) & 0x3fff); 5315 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 5316 mutex_unlock(&ptp_priv->ptp_lock); 5317 5318 return 0; 5319 } 5320 5321 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 5322 enum ptp_pin_function func, unsigned int chan) 5323 { 5324 switch (func) { 5325 case PTP_PF_NONE: 5326 case PTP_PF_PEROUT: 5327 case PTP_PF_EXTTS: 5328 break; 5329 default: 5330 return -1; 5331 } 5332 5333 return 0; 5334 } 5335 5336 #define LAN8841_PTP_GPIO_NUM 10 5337 #define LAN8841_GPIO_EN 128 5338 #define LAN8841_GPIO_DIR 129 5339 #define LAN8841_GPIO_BUF 130 5340 5341 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5342 { 5343 struct phy_device *phydev = ptp_priv->phydev; 5344 int ret; 5345 5346 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5347 if (ret) 5348 return ret; 5349 5350 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5351 if (ret) 5352 return ret; 5353 5354 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5355 } 5356 5357 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 5358 { 5359 struct phy_device *phydev = ptp_priv->phydev; 5360 int ret; 5361 5362 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5363 if (ret) 5364 return ret; 5365 5366 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5367 if (ret) 5368 return ret; 5369 5370 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5371 } 5372 5373 #define LAN8841_GPIO_DATA_SEL1 131 5374 #define LAN8841_GPIO_DATA_SEL2 132 5375 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 5376 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 5377 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 5378 #define LAN8841_PTP_GENERAL_CONFIG 257 5379 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 5380 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 5381 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 5382 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 5383 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 5384 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 5385 5386 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5387 u8 event) 5388 { 5389 struct phy_device *phydev = ptp_priv->phydev; 5390 u16 tmp; 5391 int ret; 5392 5393 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 5394 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5395 * depending on the pin, it requires to read a different register 5396 */ 5397 if (pin < 5) { 5398 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 5399 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 5400 } else { 5401 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 5402 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 5403 } 5404 if (ret) 5405 return ret; 5406 5407 /* Disable the event */ 5408 if (event == LAN8841_EVENT_A) 5409 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5410 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 5411 else 5412 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5413 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 5414 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5415 } 5416 5417 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5418 u8 event, int pulse_width) 5419 { 5420 struct phy_device *phydev = ptp_priv->phydev; 5421 u16 tmp; 5422 int ret; 5423 5424 /* Enable the event */ 5425 if (event == LAN8841_EVENT_A) 5426 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5427 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5428 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5429 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5430 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5431 else 5432 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5433 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5434 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5435 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5436 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5437 if (ret) 5438 return ret; 5439 5440 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5441 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5442 * depending on the pin, it requires to read a different register 5443 */ 5444 if (event == LAN8841_EVENT_A) 5445 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5446 else 5447 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5448 5449 if (pin < 5) 5450 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5451 tmp << (3 * pin)); 5452 else 5453 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5454 tmp << (3 * (pin - 5))); 5455 5456 return ret; 5457 } 5458 5459 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5460 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5461 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5462 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5463 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5464 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5465 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5466 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5467 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5468 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5469 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5470 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5471 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5472 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5473 5474 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5475 struct ptp_clock_request *rq, int on) 5476 { 5477 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5478 ptp_clock_info); 5479 struct phy_device *phydev = ptp_priv->phydev; 5480 struct timespec64 ts_on, ts_period; 5481 s64 on_nsec, period_nsec; 5482 int pulse_width; 5483 int pin; 5484 int ret; 5485 5486 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5487 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5488 return -EINVAL; 5489 5490 if (!on) { 5491 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5492 if (ret) 5493 return ret; 5494 5495 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5496 } 5497 5498 ts_on.tv_sec = rq->perout.on.sec; 5499 ts_on.tv_nsec = rq->perout.on.nsec; 5500 on_nsec = timespec64_to_ns(&ts_on); 5501 5502 ts_period.tv_sec = rq->perout.period.sec; 5503 ts_period.tv_nsec = rq->perout.period.nsec; 5504 period_nsec = timespec64_to_ns(&ts_period); 5505 5506 if (period_nsec < 200) { 5507 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5508 phydev_name(phydev)); 5509 return -EOPNOTSUPP; 5510 } 5511 5512 if (on_nsec >= period_nsec) { 5513 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5514 phydev_name(phydev)); 5515 return -EINVAL; 5516 } 5517 5518 switch (on_nsec) { 5519 case 200000000: 5520 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5521 break; 5522 case 100000000: 5523 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5524 break; 5525 case 50000000: 5526 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5527 break; 5528 case 10000000: 5529 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5530 break; 5531 case 5000000: 5532 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5533 break; 5534 case 1000000: 5535 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5536 break; 5537 case 500000: 5538 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5539 break; 5540 case 100000: 5541 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5542 break; 5543 case 50000: 5544 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5545 break; 5546 case 10000: 5547 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5548 break; 5549 case 5000: 5550 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5551 break; 5552 case 1000: 5553 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5554 break; 5555 case 500: 5556 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5557 break; 5558 case 100: 5559 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5560 break; 5561 default: 5562 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5563 phydev_name(phydev)); 5564 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5565 break; 5566 } 5567 5568 mutex_lock(&ptp_priv->ptp_lock); 5569 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5570 rq->perout.start.nsec); 5571 mutex_unlock(&ptp_priv->ptp_lock); 5572 if (ret) 5573 return ret; 5574 5575 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5576 rq->perout.period.nsec); 5577 if (ret) 5578 return ret; 5579 5580 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5581 pulse_width); 5582 if (ret) 5583 return ret; 5584 5585 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5586 if (ret) 5587 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5588 5589 return ret; 5590 } 5591 5592 #define LAN8841_PTP_GPIO_CAP_EN 496 5593 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5594 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5595 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5596 5597 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5598 u32 flags) 5599 { 5600 struct phy_device *phydev = ptp_priv->phydev; 5601 u16 tmp = 0; 5602 int ret; 5603 5604 /* Set GPIO to be input */ 5605 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5606 if (ret) 5607 return ret; 5608 5609 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5610 if (ret) 5611 return ret; 5612 5613 /* Enable capture on the edges of the pin */ 5614 if (flags & PTP_RISING_EDGE) 5615 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5616 if (flags & PTP_FALLING_EDGE) 5617 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5618 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5619 if (ret) 5620 return ret; 5621 5622 /* Enable interrupt */ 5623 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5624 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5625 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5626 } 5627 5628 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5629 { 5630 struct phy_device *phydev = ptp_priv->phydev; 5631 int ret; 5632 5633 /* Set GPIO to be output */ 5634 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5635 if (ret) 5636 return ret; 5637 5638 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5639 if (ret) 5640 return ret; 5641 5642 /* Disable capture on both of the edges */ 5643 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5644 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5645 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5646 0); 5647 if (ret) 5648 return ret; 5649 5650 /* Disable interrupt */ 5651 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5652 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5653 0); 5654 } 5655 5656 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5657 struct ptp_clock_request *rq, int on) 5658 { 5659 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5660 ptp_clock_info); 5661 int pin; 5662 int ret; 5663 5664 /* Reject requests with unsupported flags */ 5665 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5666 PTP_EXTTS_EDGES | 5667 PTP_STRICT_FLAGS)) 5668 return -EOPNOTSUPP; 5669 5670 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5671 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5672 return -EINVAL; 5673 5674 mutex_lock(&ptp_priv->ptp_lock); 5675 if (on) 5676 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5677 else 5678 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5679 mutex_unlock(&ptp_priv->ptp_lock); 5680 5681 return ret; 5682 } 5683 5684 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5685 struct ptp_clock_request *rq, int on) 5686 { 5687 switch (rq->type) { 5688 case PTP_CLK_REQ_EXTTS: 5689 return lan8841_ptp_extts(ptp, rq, on); 5690 case PTP_CLK_REQ_PEROUT: 5691 return lan8841_ptp_perout(ptp, rq, on); 5692 default: 5693 return -EOPNOTSUPP; 5694 } 5695 5696 return 0; 5697 } 5698 5699 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5700 { 5701 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5702 ptp_clock_info); 5703 struct timespec64 ts; 5704 unsigned long flags; 5705 5706 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5707 5708 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5709 ptp_priv->seconds = ts.tv_sec; 5710 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5711 5712 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5713 } 5714 5715 static struct ptp_clock_info lan8841_ptp_clock_info = { 5716 .owner = THIS_MODULE, 5717 .name = "lan8841 ptp", 5718 .max_adj = 31249999, 5719 .gettime64 = lan8841_ptp_gettime64, 5720 .settime64 = lan8841_ptp_settime64, 5721 .adjtime = lan8841_ptp_adjtime, 5722 .adjfine = lan8841_ptp_adjfine, 5723 .verify = lan8841_ptp_verify, 5724 .enable = lan8841_ptp_enable, 5725 .do_aux_work = lan8841_ptp_do_aux_work, 5726 .n_per_out = LAN8841_PTP_GPIO_NUM, 5727 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5728 .n_pins = LAN8841_PTP_GPIO_NUM, 5729 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5730 }; 5731 5732 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5733 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5734 5735 static int lan8841_probe(struct phy_device *phydev) 5736 { 5737 struct kszphy_ptp_priv *ptp_priv; 5738 struct kszphy_priv *priv; 5739 int err; 5740 5741 err = kszphy_probe(phydev); 5742 if (err) 5743 return err; 5744 5745 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5746 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5747 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5748 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5749 5750 /* Register the clock */ 5751 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5752 return 0; 5753 5754 priv = phydev->priv; 5755 ptp_priv = &priv->ptp_priv; 5756 5757 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5758 LAN8841_PTP_GPIO_NUM, 5759 sizeof(*ptp_priv->pin_config), 5760 GFP_KERNEL); 5761 if (!ptp_priv->pin_config) 5762 return -ENOMEM; 5763 5764 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5765 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5766 5767 snprintf(p->name, sizeof(p->name), "pin%d", i); 5768 p->index = i; 5769 p->func = PTP_PF_NONE; 5770 } 5771 5772 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5773 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5774 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5775 &phydev->mdio.dev); 5776 if (IS_ERR(ptp_priv->ptp_clock)) { 5777 phydev_err(phydev, "ptp_clock_register failed: %pe\n", 5778 ptp_priv->ptp_clock); 5779 return -EINVAL; 5780 } 5781 5782 if (!ptp_priv->ptp_clock) 5783 return 0; 5784 5785 /* Initialize the SW */ 5786 skb_queue_head_init(&ptp_priv->tx_queue); 5787 ptp_priv->phydev = phydev; 5788 mutex_init(&ptp_priv->ptp_lock); 5789 spin_lock_init(&ptp_priv->seconds_lock); 5790 5791 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5792 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5793 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 5794 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5795 5796 phydev->mii_ts = &ptp_priv->mii_ts; 5797 5798 /* Timestamp selected by default to keep legacy API */ 5799 phydev->default_timestamp = true; 5800 5801 return 0; 5802 } 5803 5804 static int lan8804_resume(struct phy_device *phydev) 5805 { 5806 return kszphy_resume(phydev); 5807 } 5808 5809 static int lan8804_suspend(struct phy_device *phydev) 5810 { 5811 return kszphy_generic_suspend(phydev); 5812 } 5813 5814 static int lan8841_resume(struct phy_device *phydev) 5815 { 5816 return kszphy_generic_resume(phydev); 5817 } 5818 5819 static int lan8841_suspend(struct phy_device *phydev) 5820 { 5821 struct kszphy_priv *priv = phydev->priv; 5822 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5823 5824 if (ptp_priv->ptp_clock) 5825 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5826 5827 return kszphy_generic_suspend(phydev); 5828 } 5829 5830 static int ksz9131_resume(struct phy_device *phydev) 5831 { 5832 if (phydev->suspended && phy_interface_is_rgmii(phydev)) 5833 ksz9131_config_rgmii_delay(phydev); 5834 5835 return kszphy_resume(phydev); 5836 } 5837 5838 #define LAN8842_PTP_GPIO_NUM 16 5839 5840 static int lan8842_ptp_probe_once(struct phy_device *phydev) 5841 { 5842 return __lan8814_ptp_probe_once(phydev, "lan8842_ptp_pin", 5843 LAN8842_PTP_GPIO_NUM); 5844 } 5845 5846 #define LAN8842_STRAP_REG 0 /* 0x0 */ 5847 #define LAN8842_STRAP_REG_PHYADDR_MASK GENMASK(4, 0) 5848 #define LAN8842_SKU_REG 11 /* 0x0b */ 5849 #define LAN8842_SELF_TEST 14 /* 0x0e */ 5850 #define LAN8842_SELF_TEST_RX_CNT_ENA BIT(8) 5851 #define LAN8842_SELF_TEST_TX_CNT_ENA BIT(4) 5852 5853 static int lan8842_probe(struct phy_device *phydev) 5854 { 5855 struct lan8842_priv *priv; 5856 int addr; 5857 int ret; 5858 5859 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 5860 if (!priv) 5861 return -ENOMEM; 5862 5863 phydev->priv = priv; 5864 5865 /* Similar to lan8814 this PHY has a pin which needs to be pulled down 5866 * to enable to pass any traffic through it. Therefore use the same 5867 * function as lan8814 5868 */ 5869 ret = lan8814_release_coma_mode(phydev); 5870 if (ret) 5871 return ret; 5872 5873 /* Enable to count the RX and TX packets */ 5874 ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 5875 LAN8842_SELF_TEST, 5876 LAN8842_SELF_TEST_RX_CNT_ENA | 5877 LAN8842_SELF_TEST_TX_CNT_ENA); 5878 if (ret < 0) 5879 return ret; 5880 5881 /* Revision lan8832 doesn't have support for PTP, therefore don't add 5882 * any PTP clocks 5883 */ 5884 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5885 LAN8842_SKU_REG); 5886 if (ret < 0) 5887 return ret; 5888 5889 priv->rev = ret; 5890 if (priv->rev == LAN8842_REV_8832) 5891 return 0; 5892 5893 /* As the lan8814 and lan8842 has the same IP for the PTP block, the 5894 * only difference is the number of the GPIOs, then make sure that the 5895 * lan8842 initialized also the shared data pointer as this is used in 5896 * all the PTP functions for lan8814. The lan8842 doesn't have multiple 5897 * PHYs in the same package. 5898 */ 5899 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5900 LAN8842_STRAP_REG); 5901 if (addr < 0) 5902 return addr; 5903 addr &= LAN8842_STRAP_REG_PHYADDR_MASK; 5904 5905 ret = devm_phy_package_join(&phydev->mdio.dev, phydev, addr, 5906 sizeof(struct lan8814_shared_priv)); 5907 if (ret) 5908 return ret; 5909 5910 if (phy_package_init_once(phydev)) { 5911 ret = lan8842_ptp_probe_once(phydev); 5912 if (ret) 5913 return ret; 5914 } 5915 5916 lan8814_ptp_init(phydev); 5917 5918 return 0; 5919 } 5920 5921 static int lan8842_config_init(struct phy_device *phydev) 5922 { 5923 int ret; 5924 5925 /* Reset the PHY */ 5926 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5927 LAN8814_QSGMII_SOFT_RESET, 5928 LAN8814_QSGMII_SOFT_RESET_BIT, 5929 LAN8814_QSGMII_SOFT_RESET_BIT); 5930 if (ret < 0) 5931 return ret; 5932 5933 /* Even if the GPIOs are set to control the LEDs the behaviour of the 5934 * LEDs is wrong, they are not blinking when there is traffic. 5935 * To fix this it is required to set extended LED mode 5936 */ 5937 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 5938 LAN8814_LED_CTRL_1, 5939 LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_, 0); 5940 if (ret < 0) 5941 return ret; 5942 5943 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 5944 LAN8814_LED_CTRL_2, 5945 LAN8814_LED_CTRL_2_LED1_COM_DIS, 5946 LAN8814_LED_CTRL_2_LED1_COM_DIS); 5947 if (ret < 0) 5948 return ret; 5949 5950 /* To allow the PHY to control the LEDs the GPIOs of the PHY should have 5951 * a function mode and not the GPIO. Apparently by default the value is 5952 * GPIO and not function even though the datasheet it says that it is 5953 * function. Therefore set this value. 5954 */ 5955 return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5956 LAN8814_GPIO_EN2, 0); 5957 } 5958 5959 #define LAN8842_INTR_CTRL_REG 52 /* 0x34 */ 5960 5961 static int lan8842_config_intr(struct phy_device *phydev) 5962 { 5963 int err; 5964 5965 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5966 LAN8842_INTR_CTRL_REG, 5967 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 5968 5969 /* enable / disable interrupts */ 5970 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 5971 err = lan8814_ack_interrupt(phydev); 5972 if (err) 5973 return err; 5974 5975 err = phy_write(phydev, LAN8814_INTC, 5976 LAN8814_INT_LINK | LAN8814_INT_FLF); 5977 } else { 5978 err = phy_write(phydev, LAN8814_INTC, 0); 5979 if (err) 5980 return err; 5981 5982 err = lan8814_ack_interrupt(phydev); 5983 } 5984 5985 return err; 5986 } 5987 5988 static unsigned int lan8842_inband_caps(struct phy_device *phydev, 5989 phy_interface_t interface) 5990 { 5991 /* Inband configuration can be enabled or disabled using the registers 5992 * PCS1G_ANEG_CONFIG. 5993 */ 5994 return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE; 5995 } 5996 5997 static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes) 5998 { 5999 bool enable; 6000 6001 if (modes == LINK_INBAND_DISABLE) 6002 enable = false; 6003 else 6004 enable = true; 6005 6006 /* Disable or enable in-band autoneg with PCS Host side 6007 * It has the same address as lan8814 6008 */ 6009 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6010 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 6011 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 6012 enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0); 6013 } 6014 6015 static void lan8842_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 6016 { 6017 struct kszphy_ptp_priv *ptp_priv; 6018 struct lan8842_priv *priv; 6019 6020 priv = phydev->priv; 6021 ptp_priv = &priv->ptp_priv; 6022 6023 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 6024 lan8814_get_tx_ts(ptp_priv); 6025 6026 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 6027 lan8814_get_rx_ts(ptp_priv); 6028 6029 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 6030 lan8814_flush_fifo(phydev, true); 6031 skb_queue_purge(&ptp_priv->tx_queue); 6032 } 6033 6034 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 6035 lan8814_flush_fifo(phydev, false); 6036 skb_queue_purge(&ptp_priv->rx_queue); 6037 } 6038 } 6039 6040 static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev) 6041 { 6042 struct lan8842_priv *priv = phydev->priv; 6043 int ret = IRQ_NONE; 6044 int irq_status; 6045 6046 irq_status = phy_read(phydev, LAN8814_INTS); 6047 if (irq_status < 0) { 6048 phy_error(phydev); 6049 return IRQ_NONE; 6050 } 6051 6052 if (irq_status & (LAN8814_INT_LINK | LAN8814_INT_FLF)) { 6053 phy_trigger_machine(phydev); 6054 ret = IRQ_HANDLED; 6055 } 6056 6057 /* Phy revision lan8832 doesn't have support for PTP therefore there is 6058 * not need to check the PTP and GPIO interrupts 6059 */ 6060 if (priv->rev == LAN8842_REV_8832) 6061 goto out; 6062 6063 while (true) { 6064 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 6065 PTP_TSU_INT_STS); 6066 if (!irq_status) 6067 break; 6068 6069 lan8842_handle_ptp_interrupt(phydev, irq_status); 6070 ret = IRQ_HANDLED; 6071 } 6072 6073 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 6074 ret = IRQ_HANDLED; 6075 6076 out: 6077 return ret; 6078 } 6079 6080 static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs) 6081 { 6082 u64 ret = 0; 6083 int val; 6084 6085 for (int j = 0; j < count; ++j) { 6086 val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 6087 regs[j]); 6088 if (val < 0) 6089 return U64_MAX; 6090 6091 ret <<= 16; 6092 ret += val; 6093 } 6094 return ret; 6095 } 6096 6097 static int lan8842_update_stats(struct phy_device *phydev) 6098 { 6099 struct lan8842_priv *priv = phydev->priv; 6100 int rx_packets_regs[] = {88, 61, 60}; 6101 int rx_errors_regs[] = {63, 62}; 6102 int tx_packets_regs[] = {89, 85, 84}; 6103 int tx_errors_regs[] = {87, 86}; 6104 6105 priv->phy_stats.rx_packets = lan8842_get_stat(phydev, 6106 ARRAY_SIZE(rx_packets_regs), 6107 rx_packets_regs); 6108 priv->phy_stats.rx_errors = lan8842_get_stat(phydev, 6109 ARRAY_SIZE(rx_errors_regs), 6110 rx_errors_regs); 6111 priv->phy_stats.tx_packets = lan8842_get_stat(phydev, 6112 ARRAY_SIZE(tx_packets_regs), 6113 tx_packets_regs); 6114 priv->phy_stats.tx_errors = lan8842_get_stat(phydev, 6115 ARRAY_SIZE(tx_errors_regs), 6116 tx_errors_regs); 6117 6118 return 0; 6119 } 6120 6121 #define LAN8842_FLF 15 /* 0x0e */ 6122 #define LAN8842_FLF_ENA BIT(1) 6123 #define LAN8842_FLF_ENA_LINK_DOWN BIT(0) 6124 6125 static int lan8842_get_fast_down(struct phy_device *phydev, u8 *msecs) 6126 { 6127 int ret; 6128 6129 ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS, LAN8842_FLF); 6130 if (ret < 0) 6131 return ret; 6132 6133 if (ret & LAN8842_FLF_ENA) 6134 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON; 6135 else 6136 *msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF; 6137 6138 return 0; 6139 } 6140 6141 static int lan8842_set_fast_down(struct phy_device *phydev, const u8 *msecs) 6142 { 6143 u16 flf; 6144 6145 switch (*msecs) { 6146 case ETHTOOL_PHY_FAST_LINK_DOWN_OFF: 6147 flf = 0; 6148 break; 6149 case ETHTOOL_PHY_FAST_LINK_DOWN_ON: 6150 flf = LAN8842_FLF_ENA | LAN8842_FLF_ENA_LINK_DOWN; 6151 break; 6152 default: 6153 return -EINVAL; 6154 } 6155 6156 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS, 6157 LAN8842_FLF, 6158 LAN8842_FLF_ENA | 6159 LAN8842_FLF_ENA_LINK_DOWN, flf); 6160 } 6161 6162 static int lan8842_get_tunable(struct phy_device *phydev, 6163 struct ethtool_tunable *tuna, void *data) 6164 { 6165 switch (tuna->id) { 6166 case ETHTOOL_PHY_FAST_LINK_DOWN: 6167 return lan8842_get_fast_down(phydev, data); 6168 default: 6169 return -EOPNOTSUPP; 6170 } 6171 } 6172 6173 static int lan8842_set_tunable(struct phy_device *phydev, 6174 struct ethtool_tunable *tuna, const void *data) 6175 { 6176 switch (tuna->id) { 6177 case ETHTOOL_PHY_FAST_LINK_DOWN: 6178 return lan8842_set_fast_down(phydev, data); 6179 default: 6180 return -EOPNOTSUPP; 6181 } 6182 } 6183 6184 static void lan8842_get_phy_stats(struct phy_device *phydev, 6185 struct ethtool_eth_phy_stats *eth_stats, 6186 struct ethtool_phy_stats *stats) 6187 { 6188 struct lan8842_priv *priv = phydev->priv; 6189 6190 stats->rx_packets = priv->phy_stats.rx_packets; 6191 stats->rx_errors = priv->phy_stats.rx_errors; 6192 stats->tx_packets = priv->phy_stats.tx_packets; 6193 stats->tx_errors = priv->phy_stats.tx_errors; 6194 } 6195 6196 static struct phy_driver ksphy_driver[] = { 6197 { 6198 PHY_ID_MATCH_MODEL(PHY_ID_KS8737), 6199 .name = "Micrel KS8737", 6200 /* PHY_BASIC_FEATURES */ 6201 .driver_data = &ks8737_type, 6202 .probe = kszphy_probe, 6203 .config_init = kszphy_config_init, 6204 .config_intr = kszphy_config_intr, 6205 .handle_interrupt = kszphy_handle_interrupt, 6206 .suspend = kszphy_suspend, 6207 .resume = kszphy_resume, 6208 }, { 6209 .phy_id = PHY_ID_KSZ8021, 6210 .phy_id_mask = 0x00ffffff, 6211 .name = "Micrel KSZ8021 or KSZ8031", 6212 /* PHY_BASIC_FEATURES */ 6213 .driver_data = &ksz8021_type, 6214 .probe = kszphy_probe, 6215 .config_init = kszphy_config_init, 6216 .config_intr = kszphy_config_intr, 6217 .handle_interrupt = kszphy_handle_interrupt, 6218 .get_sset_count = kszphy_get_sset_count, 6219 .get_strings = kszphy_get_strings, 6220 .get_stats = kszphy_get_stats, 6221 .suspend = kszphy_suspend, 6222 .resume = kszphy_resume, 6223 }, { 6224 .phy_id = PHY_ID_KSZ8031, 6225 .phy_id_mask = 0x00ffffff, 6226 .name = "Micrel KSZ8031", 6227 /* PHY_BASIC_FEATURES */ 6228 .driver_data = &ksz8021_type, 6229 .probe = kszphy_probe, 6230 .config_init = kszphy_config_init, 6231 .config_intr = kszphy_config_intr, 6232 .handle_interrupt = kszphy_handle_interrupt, 6233 .get_sset_count = kszphy_get_sset_count, 6234 .get_strings = kszphy_get_strings, 6235 .get_stats = kszphy_get_stats, 6236 .suspend = kszphy_suspend, 6237 .resume = kszphy_resume, 6238 }, { 6239 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041), 6240 .name = "Micrel KSZ8041", 6241 /* PHY_BASIC_FEATURES */ 6242 .driver_data = &ksz8041_type, 6243 .probe = kszphy_probe, 6244 .config_init = ksz8041_config_init, 6245 .config_aneg = ksz8041_config_aneg, 6246 .config_intr = kszphy_config_intr, 6247 .handle_interrupt = kszphy_handle_interrupt, 6248 .get_sset_count = kszphy_get_sset_count, 6249 .get_strings = kszphy_get_strings, 6250 .get_stats = kszphy_get_stats, 6251 .suspend = ksz8041_suspend, 6252 .resume = ksz8041_resume, 6253 }, { 6254 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI), 6255 .name = "Micrel KSZ8041RNLI", 6256 /* PHY_BASIC_FEATURES */ 6257 .driver_data = &ksz8041_type, 6258 .probe = kszphy_probe, 6259 .config_init = kszphy_config_init, 6260 .config_intr = kszphy_config_intr, 6261 .handle_interrupt = kszphy_handle_interrupt, 6262 .get_sset_count = kszphy_get_sset_count, 6263 .get_strings = kszphy_get_strings, 6264 .get_stats = kszphy_get_stats, 6265 .suspend = kszphy_suspend, 6266 .resume = kszphy_resume, 6267 }, { 6268 .name = "Micrel KSZ8051", 6269 /* PHY_BASIC_FEATURES */ 6270 .driver_data = &ksz8051_type, 6271 .probe = kszphy_probe, 6272 .config_init = kszphy_config_init, 6273 .config_intr = kszphy_config_intr, 6274 .handle_interrupt = kszphy_handle_interrupt, 6275 .get_sset_count = kszphy_get_sset_count, 6276 .get_strings = kszphy_get_strings, 6277 .get_stats = kszphy_get_stats, 6278 .match_phy_device = ksz8051_match_phy_device, 6279 .suspend = kszphy_suspend, 6280 .resume = kszphy_resume, 6281 }, { 6282 .phy_id = PHY_ID_KSZ8001, 6283 .name = "Micrel KSZ8001 or KS8721", 6284 .phy_id_mask = 0x00fffffc, 6285 /* PHY_BASIC_FEATURES */ 6286 .driver_data = &ksz8041_type, 6287 .probe = kszphy_probe, 6288 .config_init = kszphy_config_init, 6289 .config_intr = kszphy_config_intr, 6290 .handle_interrupt = kszphy_handle_interrupt, 6291 .get_sset_count = kszphy_get_sset_count, 6292 .get_strings = kszphy_get_strings, 6293 .get_stats = kszphy_get_stats, 6294 .suspend = kszphy_suspend, 6295 .resume = kszphy_resume, 6296 }, { 6297 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081), 6298 .name = "Micrel KSZ8081 or KSZ8091", 6299 .flags = PHY_POLL_CABLE_TEST, 6300 /* PHY_BASIC_FEATURES */ 6301 .driver_data = &ksz8081_type, 6302 .probe = kszphy_probe, 6303 .config_init = ksz8081_config_init, 6304 .soft_reset = genphy_soft_reset, 6305 .config_aneg = ksz8081_config_aneg, 6306 .read_status = ksz8081_read_status, 6307 .config_intr = kszphy_config_intr, 6308 .handle_interrupt = kszphy_handle_interrupt, 6309 .get_sset_count = kszphy_get_sset_count, 6310 .get_strings = kszphy_get_strings, 6311 .get_stats = kszphy_get_stats, 6312 .suspend = kszphy_suspend, 6313 .resume = kszphy_resume, 6314 .cable_test_start = ksz886x_cable_test_start, 6315 .cable_test_get_status = ksz886x_cable_test_get_status, 6316 }, { 6317 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061), 6318 .name = "Micrel KSZ8061", 6319 /* PHY_BASIC_FEATURES */ 6320 .probe = kszphy_probe, 6321 .config_init = ksz8061_config_init, 6322 .soft_reset = genphy_soft_reset, 6323 .config_intr = kszphy_config_intr, 6324 .handle_interrupt = kszphy_handle_interrupt, 6325 .suspend = ksz8061_suspend, 6326 .resume = ksz8061_resume, 6327 }, { 6328 .phy_id = PHY_ID_KSZ9021, 6329 .phy_id_mask = 0x000ffffe, 6330 .name = "Micrel KSZ9021 Gigabit PHY", 6331 /* PHY_GBIT_FEATURES */ 6332 .driver_data = &ksz9021_type, 6333 .probe = kszphy_probe, 6334 .get_features = ksz9031_get_features, 6335 .config_init = ksz9021_config_init, 6336 .config_intr = kszphy_config_intr, 6337 .handle_interrupt = kszphy_handle_interrupt, 6338 .get_sset_count = kszphy_get_sset_count, 6339 .get_strings = kszphy_get_strings, 6340 .get_stats = kszphy_get_stats, 6341 .suspend = kszphy_suspend, 6342 .resume = kszphy_resume, 6343 .read_mmd = genphy_read_mmd_unsupported, 6344 .write_mmd = genphy_write_mmd_unsupported, 6345 }, { 6346 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031), 6347 .name = "Micrel KSZ9031 Gigabit PHY", 6348 .flags = PHY_POLL_CABLE_TEST, 6349 .driver_data = &ksz9021_type, 6350 .probe = kszphy_probe, 6351 .get_features = ksz9031_get_features, 6352 .config_init = ksz9031_config_init, 6353 .soft_reset = genphy_soft_reset, 6354 .read_status = ksz9031_read_status, 6355 .config_intr = kszphy_config_intr, 6356 .handle_interrupt = kszphy_handle_interrupt, 6357 .get_sset_count = kszphy_get_sset_count, 6358 .get_strings = kszphy_get_strings, 6359 .get_stats = kszphy_get_stats, 6360 .suspend = kszphy_suspend, 6361 .resume = kszphy_resume, 6362 .cable_test_start = ksz9x31_cable_test_start, 6363 .cable_test_get_status = ksz9x31_cable_test_get_status, 6364 .set_loopback = ksz9031_set_loopback, 6365 }, { 6366 PHY_ID_MATCH_MODEL(PHY_ID_LAN8814), 6367 .name = "Microchip INDY Gigabit Quad PHY", 6368 .flags = PHY_POLL_CABLE_TEST, 6369 .config_init = lan8814_config_init, 6370 .driver_data = &lan8814_type, 6371 .probe = lan8814_probe, 6372 .soft_reset = genphy_soft_reset, 6373 .read_status = ksz9031_read_status, 6374 .get_sset_count = kszphy_get_sset_count, 6375 .get_strings = kszphy_get_strings, 6376 .get_stats = kszphy_get_stats, 6377 .suspend = genphy_suspend, 6378 .resume = kszphy_resume, 6379 .config_intr = lan8814_config_intr, 6380 .handle_interrupt = lan8814_handle_interrupt, 6381 .cable_test_start = lan8814_cable_test_start, 6382 .cable_test_get_status = ksz886x_cable_test_get_status, 6383 }, { 6384 PHY_ID_MATCH_MODEL(PHY_ID_LAN8804), 6385 .name = "Microchip LAN966X Gigabit PHY", 6386 .config_init = lan8804_config_init, 6387 .driver_data = &ksz9021_type, 6388 .probe = kszphy_probe, 6389 .soft_reset = genphy_soft_reset, 6390 .read_status = ksz9031_read_status, 6391 .get_sset_count = kszphy_get_sset_count, 6392 .get_strings = kszphy_get_strings, 6393 .get_stats = kszphy_get_stats, 6394 .suspend = lan8804_suspend, 6395 .resume = lan8804_resume, 6396 .config_intr = lan8804_config_intr, 6397 .handle_interrupt = lan8804_handle_interrupt, 6398 }, { 6399 PHY_ID_MATCH_MODEL(PHY_ID_LAN8841), 6400 .name = "Microchip LAN8841 Gigabit PHY", 6401 .flags = PHY_POLL_CABLE_TEST, 6402 .driver_data = &lan8841_type, 6403 .config_init = lan8841_config_init, 6404 .probe = lan8841_probe, 6405 .soft_reset = genphy_soft_reset, 6406 .config_intr = lan8841_config_intr, 6407 .handle_interrupt = lan8841_handle_interrupt, 6408 .get_sset_count = kszphy_get_sset_count, 6409 .get_strings = kszphy_get_strings, 6410 .get_stats = kszphy_get_stats, 6411 .suspend = lan8841_suspend, 6412 .resume = lan8841_resume, 6413 .cable_test_start = lan8814_cable_test_start, 6414 .cable_test_get_status = ksz886x_cable_test_get_status, 6415 }, { 6416 PHY_ID_MATCH_MODEL(PHY_ID_LAN8842), 6417 .name = "Microchip LAN8842 Gigabit PHY", 6418 .flags = PHY_POLL_CABLE_TEST, 6419 .driver_data = &lan8814_type, 6420 .probe = lan8842_probe, 6421 .config_init = lan8842_config_init, 6422 .config_intr = lan8842_config_intr, 6423 .inband_caps = lan8842_inband_caps, 6424 .config_inband = lan8842_config_inband, 6425 .handle_interrupt = lan8842_handle_interrupt, 6426 .get_phy_stats = lan8842_get_phy_stats, 6427 .update_stats = lan8842_update_stats, 6428 .get_tunable = lan8842_get_tunable, 6429 .set_tunable = lan8842_set_tunable, 6430 .cable_test_start = lan8814_cable_test_start, 6431 .cable_test_get_status = ksz886x_cable_test_get_status, 6432 }, { 6433 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131), 6434 .name = "Microchip KSZ9131 Gigabit PHY", 6435 /* PHY_GBIT_FEATURES */ 6436 .flags = PHY_POLL_CABLE_TEST, 6437 .driver_data = &ksz9131_type, 6438 .probe = kszphy_probe, 6439 .soft_reset = genphy_soft_reset, 6440 .config_init = ksz9131_config_init, 6441 .config_intr = kszphy_config_intr, 6442 .config_aneg = ksz9131_config_aneg, 6443 .read_status = ksz9131_read_status, 6444 .handle_interrupt = kszphy_handle_interrupt, 6445 .get_sset_count = kszphy_get_sset_count, 6446 .get_strings = kszphy_get_strings, 6447 .get_stats = kszphy_get_stats, 6448 .suspend = kszphy_suspend, 6449 .resume = ksz9131_resume, 6450 .cable_test_start = ksz9x31_cable_test_start, 6451 .cable_test_get_status = ksz9x31_cable_test_get_status, 6452 .get_features = ksz9477_get_features, 6453 }, { 6454 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL), 6455 .name = "Micrel KSZ8873MLL Switch", 6456 /* PHY_BASIC_FEATURES */ 6457 .config_init = kszphy_config_init, 6458 .config_aneg = ksz8873mll_config_aneg, 6459 .read_status = ksz8873mll_read_status, 6460 .suspend = genphy_suspend, 6461 .resume = genphy_resume, 6462 }, { 6463 PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X), 6464 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 6465 .driver_data = &ksz886x_type, 6466 /* PHY_BASIC_FEATURES */ 6467 .flags = PHY_POLL_CABLE_TEST, 6468 .config_init = kszphy_config_init, 6469 .config_aneg = ksz886x_config_aneg, 6470 .read_status = ksz886x_read_status, 6471 .suspend = genphy_suspend, 6472 .resume = genphy_resume, 6473 .cable_test_start = ksz886x_cable_test_start, 6474 .cable_test_get_status = ksz886x_cable_test_get_status, 6475 }, { 6476 .name = "Micrel KSZ87XX Switch", 6477 /* PHY_BASIC_FEATURES */ 6478 .config_init = kszphy_config_init, 6479 .match_phy_device = ksz8795_match_phy_device, 6480 .suspend = genphy_suspend, 6481 .resume = genphy_resume, 6482 }, { 6483 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477), 6484 .name = "Microchip KSZ9477", 6485 .probe = kszphy_probe, 6486 /* PHY_GBIT_FEATURES */ 6487 .config_init = ksz9477_config_init, 6488 .config_intr = kszphy_config_intr, 6489 .config_aneg = ksz9477_config_aneg, 6490 .read_status = ksz9477_read_status, 6491 .handle_interrupt = kszphy_handle_interrupt, 6492 .suspend = genphy_suspend, 6493 .resume = ksz9477_resume, 6494 .get_phy_stats = kszphy_get_phy_stats, 6495 .update_stats = kszphy_update_stats, 6496 .cable_test_start = ksz9x31_cable_test_start, 6497 .cable_test_get_status = ksz9x31_cable_test_get_status, 6498 .get_sqi = kszphy_get_sqi, 6499 .get_sqi_max = kszphy_get_sqi_max, 6500 } }; 6501 6502 module_phy_driver(ksphy_driver); 6503 6504 MODULE_DESCRIPTION("Micrel PHY driver"); 6505 MODULE_AUTHOR("David J. Choi"); 6506 MODULE_LICENSE("GPL"); 6507 6508 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 6509 { PHY_ID_KSZ9021, 0x000ffffe }, 6510 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) }, 6511 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) }, 6512 { PHY_ID_KSZ8001, 0x00fffffc }, 6513 { PHY_ID_MATCH_MODEL(PHY_ID_KS8737) }, 6514 { PHY_ID_KSZ8021, 0x00ffffff }, 6515 { PHY_ID_KSZ8031, 0x00ffffff }, 6516 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) }, 6517 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) }, 6518 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) }, 6519 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) }, 6520 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) }, 6521 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) }, 6522 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) }, 6523 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) }, 6524 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) }, 6525 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) }, 6526 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) }, 6527 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) }, 6528 { } 6529 }; 6530 6531 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 6532