1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_WIRE_PAIR_MASK 0xF 105 106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 107 #define LAN8814_INTC 0x18 108 #define LAN8814_INTS 0x1B 109 110 #define LAN8814_INT_LINK_DOWN BIT(2) 111 #define LAN8814_INT_LINK_UP BIT(0) 112 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 113 LAN8814_INT_LINK_DOWN) 114 115 #define LAN8814_INTR_CTRL_REG 0x34 116 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 117 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 118 119 #define LAN8814_EEE_STATE 0x38 120 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 121 122 #define LAN8814_PD_CONTROLS 0x9d 123 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 125 126 /* Represents 1ppm adjustment in 2^32 format with 127 * each nsec contains 4 clock cycles. 128 * The value is calculated as following: (1/1000000)/((2^-32)/4) 129 */ 130 #define LAN8814_1PPM_FORMAT 17179 131 132 /* Represents 1ppm adjustment in 2^32 format with 133 * each nsec contains 8 clock cycles. 134 * The value is calculated as following: (1/1000000)/((2^-32)/8) 135 */ 136 #define LAN8841_1PPM_FORMAT 34360 137 138 #define PTP_RX_VERSION 0x0248 139 #define PTP_TX_VERSION 0x0288 140 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 141 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 142 143 #define PTP_RX_MOD 0x024F 144 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 145 #define PTP_RX_TIMESTAMP_EN 0x024D 146 #define PTP_TX_TIMESTAMP_EN 0x028D 147 148 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 149 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 150 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 151 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 152 153 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 154 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 155 156 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 157 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 158 #define LTC_HARD_RESET 0x023F 159 #define LTC_HARD_RESET_ BIT(0) 160 161 #define TSU_HARD_RESET 0x02C1 162 #define TSU_HARD_RESET_ BIT(0) 163 164 #define PTP_CMD_CTL 0x0200 165 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 166 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 167 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 168 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 169 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 170 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 171 172 #define PTP_COMMON_INT_ENA 0x0204 173 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 174 175 #define PTP_CLOCK_SET_SEC_HI 0x0205 176 #define PTP_CLOCK_SET_SEC_MID 0x0206 177 #define PTP_CLOCK_SET_SEC_LO 0x0207 178 #define PTP_CLOCK_SET_NS_HI 0x0208 179 #define PTP_CLOCK_SET_NS_LO 0x0209 180 181 #define PTP_CLOCK_READ_SEC_HI 0x0229 182 #define PTP_CLOCK_READ_SEC_MID 0x022A 183 #define PTP_CLOCK_READ_SEC_LO 0x022B 184 #define PTP_CLOCK_READ_NS_HI 0x022C 185 #define PTP_CLOCK_READ_NS_LO 0x022D 186 187 #define PTP_GPIO_SEL 0x0230 188 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 189 #define PTP_GPIO_CAP_MAP_LO 0x0232 190 191 #define PTP_GPIO_CAP_EN 0x0233 192 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 193 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 194 195 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 196 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 197 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 198 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 199 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 200 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 201 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 202 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 203 204 #define PTP_GPIO_CAP_STS 0x023D 205 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 206 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 207 208 #define PTP_OPERATING_MODE 0x0241 209 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 210 211 #define PTP_TX_MOD 0x028F 212 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 213 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 214 215 #define PTP_RX_PARSE_CONFIG 0x0242 216 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 217 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 218 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 219 220 #define PTP_TX_PARSE_CONFIG 0x0282 221 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 222 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 223 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 224 225 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 226 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 227 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 228 229 #define PTP_LTC_STEP_ADJ_HI 0x0212 230 #define PTP_LTC_STEP_ADJ_LO 0x0213 231 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 232 233 #define LAN8814_INTR_STS_REG 0x0033 234 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 235 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 236 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 237 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 238 239 #define PTP_CAP_INFO 0x022A 240 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 241 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 242 243 #define PTP_TX_EGRESS_SEC_HI 0x0296 244 #define PTP_TX_EGRESS_SEC_LO 0x0297 245 #define PTP_TX_EGRESS_NS_HI 0x0294 246 #define PTP_TX_EGRESS_NS_LO 0x0295 247 #define PTP_TX_MSG_HEADER2 0x0299 248 249 #define PTP_RX_INGRESS_SEC_HI 0x0256 250 #define PTP_RX_INGRESS_SEC_LO 0x0257 251 #define PTP_RX_INGRESS_NS_HI 0x0254 252 #define PTP_RX_INGRESS_NS_LO 0x0255 253 #define PTP_RX_MSG_HEADER2 0x0259 254 255 #define PTP_TSU_INT_EN 0x0200 256 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 257 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 258 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 259 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 260 261 #define PTP_TSU_INT_STS 0x0201 262 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 263 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 264 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 265 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 266 267 #define LAN8814_LED_CTRL_1 0x0 268 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 269 270 /* PHY Control 1 */ 271 #define MII_KSZPHY_CTRL_1 0x1e 272 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 273 274 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 275 #define MII_KSZPHY_CTRL_2 0x1f 276 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 277 /* bitmap of PHY register to set interrupt mode */ 278 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 279 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 280 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 281 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 282 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 283 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 284 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 285 286 /* Write/read to/from extended registers */ 287 #define MII_KSZPHY_EXTREG 0x0b 288 #define KSZPHY_EXTREG_WRITE 0x8000 289 290 #define MII_KSZPHY_EXTREG_WRITE 0x0c 291 #define MII_KSZPHY_EXTREG_READ 0x0d 292 293 /* Extended registers */ 294 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 295 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 296 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 297 298 #define PS_TO_REG 200 299 #define FIFO_SIZE 8 300 301 #define LAN8814_PTP_GPIO_NUM 24 302 #define LAN8814_PTP_PEROUT_NUM 2 303 #define LAN8814_PTP_EXTTS_NUM 3 304 305 #define LAN8814_BUFFER_TIME 2 306 307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 321 322 #define LAN8814_GPIO_EN1 0x20 323 #define LAN8814_GPIO_EN2 0x21 324 #define LAN8814_GPIO_DIR1 0x22 325 #define LAN8814_GPIO_DIR2 0x23 326 #define LAN8814_GPIO_BUF1 0x24 327 #define LAN8814_GPIO_BUF2 0x25 328 329 #define LAN8814_GPIO_EN_ADDR(pin) \ 330 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 331 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 332 #define LAN8814_GPIO_DIR_ADDR(pin) \ 333 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 334 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 335 #define LAN8814_GPIO_BUF_ADDR(pin) \ 336 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 337 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 338 339 #define LAN8814_EVENT_A 0 340 #define LAN8814_EVENT_B 1 341 342 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 344 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 345 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 346 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 347 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 348 ((event) ? BIT(2) : BIT(0)) 349 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 350 ((event) ? BIT(3) : BIT(1)) 351 352 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 353 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 354 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 355 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 356 357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 359 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 361 362 /* Delay used to get the second part from the LTC */ 363 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 364 365 struct kszphy_hw_stat { 366 const char *string; 367 u8 reg; 368 u8 bits; 369 }; 370 371 static struct kszphy_hw_stat kszphy_hw_stats[] = { 372 { "phy_receive_errors", 21, 16}, 373 { "phy_idle_errors", 10, 8 }, 374 }; 375 376 struct kszphy_type { 377 u32 led_mode_reg; 378 u16 interrupt_level_mask; 379 u16 cable_diag_reg; 380 unsigned long pair_mask; 381 u16 disable_dll_tx_bit; 382 u16 disable_dll_rx_bit; 383 u16 disable_dll_mask; 384 bool has_broadcast_disable; 385 bool has_nand_tree_disable; 386 bool has_rmii_ref_clk_sel; 387 }; 388 389 /* Shared structure between the PHYs of the same package. */ 390 struct lan8814_shared_priv { 391 struct phy_device *phydev; 392 struct ptp_clock *ptp_clock; 393 struct ptp_clock_info ptp_clock_info; 394 struct ptp_pin_desc *pin_config; 395 396 /* Lock for ptp_clock */ 397 struct mutex shared_lock; 398 }; 399 400 struct lan8814_ptp_rx_ts { 401 struct list_head list; 402 u32 seconds; 403 u32 nsec; 404 u16 seq_id; 405 }; 406 407 struct kszphy_ptp_priv { 408 struct mii_timestamper mii_ts; 409 struct phy_device *phydev; 410 411 struct sk_buff_head tx_queue; 412 struct sk_buff_head rx_queue; 413 414 struct list_head rx_ts_list; 415 /* Lock for Rx ts fifo */ 416 spinlock_t rx_ts_lock; 417 418 int hwts_tx_type; 419 enum hwtstamp_rx_filters rx_filter; 420 int layer; 421 int version; 422 423 struct ptp_clock *ptp_clock; 424 struct ptp_clock_info ptp_clock_info; 425 /* Lock for ptp_clock */ 426 struct mutex ptp_lock; 427 struct ptp_pin_desc *pin_config; 428 429 s64 seconds; 430 /* Lock for accessing seconds */ 431 spinlock_t seconds_lock; 432 }; 433 434 struct kszphy_phy_stats { 435 u64 rx_err_pkt_cnt; 436 }; 437 438 struct kszphy_priv { 439 struct kszphy_ptp_priv ptp_priv; 440 const struct kszphy_type *type; 441 struct clk *clk; 442 int led_mode; 443 u16 vct_ctrl1000; 444 bool rmii_ref_clk_sel; 445 bool rmii_ref_clk_sel_val; 446 bool clk_enable; 447 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 448 struct kszphy_phy_stats phy_stats; 449 }; 450 451 static const struct kszphy_type lan8814_type = { 452 .led_mode_reg = ~LAN8814_LED_CTRL_1, 453 .cable_diag_reg = LAN8814_CABLE_DIAG, 454 .pair_mask = LAN8814_WIRE_PAIR_MASK, 455 }; 456 457 static const struct kszphy_type ksz886x_type = { 458 .cable_diag_reg = KSZ8081_LMD, 459 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 460 }; 461 462 static const struct kszphy_type ksz8021_type = { 463 .led_mode_reg = MII_KSZPHY_CTRL_2, 464 .has_broadcast_disable = true, 465 .has_nand_tree_disable = true, 466 .has_rmii_ref_clk_sel = true, 467 }; 468 469 static const struct kszphy_type ksz8041_type = { 470 .led_mode_reg = MII_KSZPHY_CTRL_1, 471 }; 472 473 static const struct kszphy_type ksz8051_type = { 474 .led_mode_reg = MII_KSZPHY_CTRL_2, 475 .has_nand_tree_disable = true, 476 }; 477 478 static const struct kszphy_type ksz8081_type = { 479 .led_mode_reg = MII_KSZPHY_CTRL_2, 480 .has_broadcast_disable = true, 481 .has_nand_tree_disable = true, 482 .has_rmii_ref_clk_sel = true, 483 }; 484 485 static const struct kszphy_type ks8737_type = { 486 .interrupt_level_mask = BIT(14), 487 }; 488 489 static const struct kszphy_type ksz9021_type = { 490 .interrupt_level_mask = BIT(14), 491 }; 492 493 static const struct kszphy_type ksz9131_type = { 494 .interrupt_level_mask = BIT(14), 495 .disable_dll_tx_bit = BIT(12), 496 .disable_dll_rx_bit = BIT(12), 497 .disable_dll_mask = BIT_MASK(12), 498 }; 499 500 static const struct kszphy_type lan8841_type = { 501 .disable_dll_tx_bit = BIT(14), 502 .disable_dll_rx_bit = BIT(14), 503 .disable_dll_mask = BIT_MASK(14), 504 .cable_diag_reg = LAN8814_CABLE_DIAG, 505 .pair_mask = LAN8814_WIRE_PAIR_MASK, 506 }; 507 508 static int kszphy_extended_write(struct phy_device *phydev, 509 u32 regnum, u16 val) 510 { 511 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 512 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 513 } 514 515 static int kszphy_extended_read(struct phy_device *phydev, 516 u32 regnum) 517 { 518 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 519 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 520 } 521 522 static int kszphy_ack_interrupt(struct phy_device *phydev) 523 { 524 /* bit[7..0] int status, which is a read and clear register. */ 525 int rc; 526 527 rc = phy_read(phydev, MII_KSZPHY_INTCS); 528 529 return (rc < 0) ? rc : 0; 530 } 531 532 static int kszphy_config_intr(struct phy_device *phydev) 533 { 534 const struct kszphy_type *type = phydev->drv->driver_data; 535 int temp, err; 536 u16 mask; 537 538 if (type && type->interrupt_level_mask) 539 mask = type->interrupt_level_mask; 540 else 541 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 542 543 /* set the interrupt pin active low */ 544 temp = phy_read(phydev, MII_KSZPHY_CTRL); 545 if (temp < 0) 546 return temp; 547 temp &= ~mask; 548 phy_write(phydev, MII_KSZPHY_CTRL, temp); 549 550 /* enable / disable interrupts */ 551 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 552 err = kszphy_ack_interrupt(phydev); 553 if (err) 554 return err; 555 556 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 557 } else { 558 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 559 if (err) 560 return err; 561 562 err = kszphy_ack_interrupt(phydev); 563 } 564 565 return err; 566 } 567 568 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 569 { 570 int irq_status; 571 572 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 573 if (irq_status < 0) { 574 phy_error(phydev); 575 return IRQ_NONE; 576 } 577 578 if (!(irq_status & KSZPHY_INTCS_STATUS)) 579 return IRQ_NONE; 580 581 phy_trigger_machine(phydev); 582 583 return IRQ_HANDLED; 584 } 585 586 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 587 { 588 int ctrl; 589 590 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 591 if (ctrl < 0) 592 return ctrl; 593 594 if (val) 595 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 596 else 597 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 598 599 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 600 } 601 602 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 603 { 604 int rc, temp, shift; 605 606 switch (reg) { 607 case MII_KSZPHY_CTRL_1: 608 shift = 14; 609 break; 610 case MII_KSZPHY_CTRL_2: 611 shift = 4; 612 break; 613 default: 614 return -EINVAL; 615 } 616 617 temp = phy_read(phydev, reg); 618 if (temp < 0) { 619 rc = temp; 620 goto out; 621 } 622 623 temp &= ~(3 << shift); 624 temp |= val << shift; 625 rc = phy_write(phydev, reg, temp); 626 out: 627 if (rc < 0) 628 phydev_err(phydev, "failed to set led mode\n"); 629 630 return rc; 631 } 632 633 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 634 * unique (non-broadcast) address on a shared bus. 635 */ 636 static int kszphy_broadcast_disable(struct phy_device *phydev) 637 { 638 int ret; 639 640 ret = phy_read(phydev, MII_KSZPHY_OMSO); 641 if (ret < 0) 642 goto out; 643 644 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 645 out: 646 if (ret) 647 phydev_err(phydev, "failed to disable broadcast address\n"); 648 649 return ret; 650 } 651 652 static int kszphy_nand_tree_disable(struct phy_device *phydev) 653 { 654 int ret; 655 656 ret = phy_read(phydev, MII_KSZPHY_OMSO); 657 if (ret < 0) 658 goto out; 659 660 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 661 return 0; 662 663 ret = phy_write(phydev, MII_KSZPHY_OMSO, 664 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 665 out: 666 if (ret) 667 phydev_err(phydev, "failed to disable NAND tree mode\n"); 668 669 return ret; 670 } 671 672 /* Some config bits need to be set again on resume, handle them here. */ 673 static int kszphy_config_reset(struct phy_device *phydev) 674 { 675 struct kszphy_priv *priv = phydev->priv; 676 int ret; 677 678 if (priv->rmii_ref_clk_sel) { 679 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 680 if (ret) { 681 phydev_err(phydev, 682 "failed to set rmii reference clock\n"); 683 return ret; 684 } 685 } 686 687 if (priv->type && priv->led_mode >= 0) 688 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 689 690 return 0; 691 } 692 693 static int kszphy_config_init(struct phy_device *phydev) 694 { 695 struct kszphy_priv *priv = phydev->priv; 696 const struct kszphy_type *type; 697 698 if (!priv) 699 return 0; 700 701 type = priv->type; 702 703 if (type && type->has_broadcast_disable) 704 kszphy_broadcast_disable(phydev); 705 706 if (type && type->has_nand_tree_disable) 707 kszphy_nand_tree_disable(phydev); 708 709 return kszphy_config_reset(phydev); 710 } 711 712 static int ksz8041_fiber_mode(struct phy_device *phydev) 713 { 714 struct device_node *of_node = phydev->mdio.dev.of_node; 715 716 return of_property_read_bool(of_node, "micrel,fiber-mode"); 717 } 718 719 static int ksz8041_config_init(struct phy_device *phydev) 720 { 721 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 722 723 /* Limit supported and advertised modes in fiber mode */ 724 if (ksz8041_fiber_mode(phydev)) { 725 phydev->dev_flags |= MICREL_PHY_FXEN; 726 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 727 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 728 729 linkmode_and(phydev->supported, phydev->supported, mask); 730 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 731 phydev->supported); 732 linkmode_and(phydev->advertising, phydev->advertising, mask); 733 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 734 phydev->advertising); 735 phydev->autoneg = AUTONEG_DISABLE; 736 } 737 738 return kszphy_config_init(phydev); 739 } 740 741 static int ksz8041_config_aneg(struct phy_device *phydev) 742 { 743 /* Skip auto-negotiation in fiber mode */ 744 if (phydev->dev_flags & MICREL_PHY_FXEN) { 745 phydev->speed = SPEED_100; 746 return 0; 747 } 748 749 return genphy_config_aneg(phydev); 750 } 751 752 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 753 const bool ksz_8051) 754 { 755 int ret; 756 757 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 758 return 0; 759 760 ret = phy_read(phydev, MII_BMSR); 761 if (ret < 0) 762 return ret; 763 764 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 765 * exact PHY ID. However, they can be told apart by the extended 766 * capability registers presence. The KSZ8051 PHY has them while 767 * the switch does not. 768 */ 769 ret &= BMSR_ERCAP; 770 if (ksz_8051) 771 return ret; 772 else 773 return !ret; 774 } 775 776 static int ksz8051_match_phy_device(struct phy_device *phydev, 777 const struct phy_driver *phydrv) 778 { 779 return ksz8051_ksz8795_match_phy_device(phydev, true); 780 } 781 782 static int ksz8081_config_init(struct phy_device *phydev) 783 { 784 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 785 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 786 * pull-down is missing, the factory test mode should be cleared by 787 * manually writing a 0. 788 */ 789 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 790 791 return kszphy_config_init(phydev); 792 } 793 794 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 795 { 796 u16 val; 797 798 switch (ctrl) { 799 case ETH_TP_MDI: 800 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 801 break; 802 case ETH_TP_MDI_X: 803 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 804 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 805 break; 806 case ETH_TP_MDI_AUTO: 807 val = 0; 808 break; 809 default: 810 return 0; 811 } 812 813 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 814 KSZ8081_CTRL2_HP_MDIX | 815 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 816 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 817 KSZ8081_CTRL2_HP_MDIX | val); 818 } 819 820 static int ksz8081_config_aneg(struct phy_device *phydev) 821 { 822 int ret; 823 824 ret = genphy_config_aneg(phydev); 825 if (ret) 826 return ret; 827 828 /* The MDI-X configuration is automatically changed by the PHY after 829 * switching from autoneg off to on. So, take MDI-X configuration under 830 * own control and set it after autoneg configuration was done. 831 */ 832 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 833 } 834 835 static int ksz8081_mdix_update(struct phy_device *phydev) 836 { 837 int ret; 838 839 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 840 if (ret < 0) 841 return ret; 842 843 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 844 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 845 phydev->mdix_ctrl = ETH_TP_MDI_X; 846 else 847 phydev->mdix_ctrl = ETH_TP_MDI; 848 } else { 849 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 850 } 851 852 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 853 if (ret < 0) 854 return ret; 855 856 if (ret & KSZ8081_CTRL1_MDIX_STAT) 857 phydev->mdix = ETH_TP_MDI; 858 else 859 phydev->mdix = ETH_TP_MDI_X; 860 861 return 0; 862 } 863 864 static int ksz8081_read_status(struct phy_device *phydev) 865 { 866 int ret; 867 868 ret = ksz8081_mdix_update(phydev); 869 if (ret < 0) 870 return ret; 871 872 return genphy_read_status(phydev); 873 } 874 875 static int ksz8061_config_init(struct phy_device *phydev) 876 { 877 int ret; 878 879 /* Chip can be powered down by the bootstrap code. */ 880 ret = phy_read(phydev, MII_BMCR); 881 if (ret < 0) 882 return ret; 883 if (ret & BMCR_PDOWN) { 884 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 885 if (ret < 0) 886 return ret; 887 usleep_range(1000, 2000); 888 } 889 890 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 891 if (ret) 892 return ret; 893 894 return kszphy_config_init(phydev); 895 } 896 897 static int ksz8795_match_phy_device(struct phy_device *phydev, 898 const struct phy_driver *phydrv) 899 { 900 return ksz8051_ksz8795_match_phy_device(phydev, false); 901 } 902 903 static int ksz9021_load_values_from_of(struct phy_device *phydev, 904 const struct device_node *of_node, 905 u16 reg, 906 const char *field1, const char *field2, 907 const char *field3, const char *field4) 908 { 909 int val1 = -1; 910 int val2 = -2; 911 int val3 = -3; 912 int val4 = -4; 913 int newval; 914 int matches = 0; 915 916 if (!of_property_read_u32(of_node, field1, &val1)) 917 matches++; 918 919 if (!of_property_read_u32(of_node, field2, &val2)) 920 matches++; 921 922 if (!of_property_read_u32(of_node, field3, &val3)) 923 matches++; 924 925 if (!of_property_read_u32(of_node, field4, &val4)) 926 matches++; 927 928 if (!matches) 929 return 0; 930 931 if (matches < 4) 932 newval = kszphy_extended_read(phydev, reg); 933 else 934 newval = 0; 935 936 if (val1 != -1) 937 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 938 939 if (val2 != -2) 940 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 941 942 if (val3 != -3) 943 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 944 945 if (val4 != -4) 946 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 947 948 return kszphy_extended_write(phydev, reg, newval); 949 } 950 951 static int ksz9021_config_init(struct phy_device *phydev) 952 { 953 const struct device_node *of_node; 954 const struct device *dev_walker; 955 956 /* The Micrel driver has a deprecated option to place phy OF 957 * properties in the MAC node. Walk up the tree of devices to 958 * find a device with an OF node. 959 */ 960 dev_walker = &phydev->mdio.dev; 961 do { 962 of_node = dev_walker->of_node; 963 dev_walker = dev_walker->parent; 964 965 } while (!of_node && dev_walker); 966 967 if (of_node) { 968 ksz9021_load_values_from_of(phydev, of_node, 969 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 970 "txen-skew-ps", "txc-skew-ps", 971 "rxdv-skew-ps", "rxc-skew-ps"); 972 ksz9021_load_values_from_of(phydev, of_node, 973 MII_KSZPHY_RX_DATA_PAD_SKEW, 974 "rxd0-skew-ps", "rxd1-skew-ps", 975 "rxd2-skew-ps", "rxd3-skew-ps"); 976 ksz9021_load_values_from_of(phydev, of_node, 977 MII_KSZPHY_TX_DATA_PAD_SKEW, 978 "txd0-skew-ps", "txd1-skew-ps", 979 "txd2-skew-ps", "txd3-skew-ps"); 980 } 981 return 0; 982 } 983 984 #define KSZ9031_PS_TO_REG 60 985 986 /* Extended registers */ 987 /* MMD Address 0x0 */ 988 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 989 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 990 991 /* MMD Address 0x2 */ 992 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 993 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 994 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 995 996 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 997 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 998 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 999 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 1000 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 1001 1002 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 1003 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 1004 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1005 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1006 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1007 1008 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1009 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1010 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1011 1012 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1013 * provide different RGMII options we need to configure delay offset 1014 * for each pad relative to build in delay. 1015 */ 1016 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1017 * 1.80ns 1018 */ 1019 #define RX_ID 0x7 1020 #define RX_CLK_ID 0x19 1021 1022 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1023 * internal 1.2ns delay. 1024 */ 1025 #define RX_ND 0xc 1026 #define RX_CLK_ND 0x0 1027 1028 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1029 #define TX_ID 0x0 1030 #define TX_CLK_ID 0x1f 1031 1032 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1033 * dealy 1034 */ 1035 #define TX_ND 0x7 1036 #define TX_CLK_ND 0xf 1037 1038 /* MMD Address 0x1C */ 1039 #define MII_KSZ9031RN_EDPD 0x23 1040 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1041 1042 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1043 int speed) 1044 { 1045 u16 ctl = BMCR_LOOPBACK; 1046 int val; 1047 1048 if (!enable) 1049 return genphy_loopback(phydev, enable, 0); 1050 1051 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1052 phydev->speed = speed; 1053 else if (speed) 1054 return -EINVAL; 1055 phydev->duplex = DUPLEX_FULL; 1056 1057 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1058 1059 phy_write(phydev, MII_BMCR, ctl); 1060 1061 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1062 5000, 500000, true); 1063 } 1064 1065 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1066 const struct device_node *of_node, 1067 u16 reg, size_t field_sz, 1068 const char *field[], u8 numfields, 1069 bool *update) 1070 { 1071 int val[4] = {-1, -2, -3, -4}; 1072 int matches = 0; 1073 u16 mask; 1074 u16 maxval; 1075 u16 newval; 1076 int i; 1077 1078 for (i = 0; i < numfields; i++) 1079 if (!of_property_read_u32(of_node, field[i], val + i)) 1080 matches++; 1081 1082 if (!matches) 1083 return 0; 1084 1085 *update |= true; 1086 1087 if (matches < numfields) 1088 newval = phy_read_mmd(phydev, 2, reg); 1089 else 1090 newval = 0; 1091 1092 maxval = (field_sz == 4) ? 0xf : 0x1f; 1093 for (i = 0; i < numfields; i++) 1094 if (val[i] != -(i + 1)) { 1095 mask = 0xffff; 1096 mask ^= maxval << (field_sz * i); 1097 newval = (newval & mask) | 1098 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1099 << (field_sz * i)); 1100 } 1101 1102 return phy_write_mmd(phydev, 2, reg, newval); 1103 } 1104 1105 /* Center KSZ9031RNX FLP timing at 16ms. */ 1106 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1107 { 1108 int result; 1109 1110 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1111 0x0006); 1112 if (result) 1113 return result; 1114 1115 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1116 0x1A80); 1117 if (result) 1118 return result; 1119 1120 return genphy_restart_aneg(phydev); 1121 } 1122 1123 /* Enable energy-detect power-down mode */ 1124 static int ksz9031_enable_edpd(struct phy_device *phydev) 1125 { 1126 int reg; 1127 1128 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1129 if (reg < 0) 1130 return reg; 1131 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1132 reg | MII_KSZ9031RN_EDPD_ENABLE); 1133 } 1134 1135 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1136 { 1137 u16 rx, tx, rx_clk, tx_clk; 1138 int ret; 1139 1140 switch (phydev->interface) { 1141 case PHY_INTERFACE_MODE_RGMII: 1142 tx = TX_ND; 1143 tx_clk = TX_CLK_ND; 1144 rx = RX_ND; 1145 rx_clk = RX_CLK_ND; 1146 break; 1147 case PHY_INTERFACE_MODE_RGMII_ID: 1148 tx = TX_ID; 1149 tx_clk = TX_CLK_ID; 1150 rx = RX_ID; 1151 rx_clk = RX_CLK_ID; 1152 break; 1153 case PHY_INTERFACE_MODE_RGMII_RXID: 1154 tx = TX_ND; 1155 tx_clk = TX_CLK_ND; 1156 rx = RX_ID; 1157 rx_clk = RX_CLK_ID; 1158 break; 1159 case PHY_INTERFACE_MODE_RGMII_TXID: 1160 tx = TX_ID; 1161 tx_clk = TX_CLK_ID; 1162 rx = RX_ND; 1163 rx_clk = RX_CLK_ND; 1164 break; 1165 default: 1166 return 0; 1167 } 1168 1169 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1170 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1171 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1172 if (ret < 0) 1173 return ret; 1174 1175 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1176 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1177 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1178 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1179 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1180 if (ret < 0) 1181 return ret; 1182 1183 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1184 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1185 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1186 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1187 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1188 if (ret < 0) 1189 return ret; 1190 1191 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1192 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1193 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1194 } 1195 1196 static int ksz9031_config_init(struct phy_device *phydev) 1197 { 1198 const struct device_node *of_node; 1199 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1200 static const char *rx_data_skews[4] = { 1201 "rxd0-skew-ps", "rxd1-skew-ps", 1202 "rxd2-skew-ps", "rxd3-skew-ps" 1203 }; 1204 static const char *tx_data_skews[4] = { 1205 "txd0-skew-ps", "txd1-skew-ps", 1206 "txd2-skew-ps", "txd3-skew-ps" 1207 }; 1208 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1209 const struct device *dev_walker; 1210 int result; 1211 1212 result = ksz9031_enable_edpd(phydev); 1213 if (result < 0) 1214 return result; 1215 1216 /* The Micrel driver has a deprecated option to place phy OF 1217 * properties in the MAC node. Walk up the tree of devices to 1218 * find a device with an OF node. 1219 */ 1220 dev_walker = &phydev->mdio.dev; 1221 do { 1222 of_node = dev_walker->of_node; 1223 dev_walker = dev_walker->parent; 1224 } while (!of_node && dev_walker); 1225 1226 if (of_node) { 1227 bool update = false; 1228 1229 if (phy_interface_is_rgmii(phydev)) { 1230 result = ksz9031_config_rgmii_delay(phydev); 1231 if (result < 0) 1232 return result; 1233 } 1234 1235 ksz9031_of_load_skew_values(phydev, of_node, 1236 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1237 clk_skews, 2, &update); 1238 1239 ksz9031_of_load_skew_values(phydev, of_node, 1240 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1241 control_skews, 2, &update); 1242 1243 ksz9031_of_load_skew_values(phydev, of_node, 1244 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1245 rx_data_skews, 4, &update); 1246 1247 ksz9031_of_load_skew_values(phydev, of_node, 1248 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1249 tx_data_skews, 4, &update); 1250 1251 if (update && !phy_interface_is_rgmii(phydev)) 1252 phydev_warn(phydev, 1253 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1254 1255 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1256 * When the device links in the 1000BASE-T slave mode only, 1257 * the optional 125MHz reference output clock (CLK125_NDO) 1258 * has wide duty cycle variation. 1259 * 1260 * The optional CLK125_NDO clock does not meet the RGMII 1261 * 45/55 percent (min/max) duty cycle requirement and therefore 1262 * cannot be used directly by the MAC side for clocking 1263 * applications that have setup/hold time requirements on 1264 * rising and falling clock edges. 1265 * 1266 * Workaround: 1267 * Force the phy to be the master to receive a stable clock 1268 * which meets the duty cycle requirement. 1269 */ 1270 if (of_property_read_bool(of_node, "micrel,force-master")) { 1271 result = phy_read(phydev, MII_CTRL1000); 1272 if (result < 0) 1273 goto err_force_master; 1274 1275 /* enable master mode, config & prefer master */ 1276 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1277 result = phy_write(phydev, MII_CTRL1000, result); 1278 if (result < 0) 1279 goto err_force_master; 1280 } 1281 } 1282 1283 return ksz9031_center_flp_timing(phydev); 1284 1285 err_force_master: 1286 phydev_err(phydev, "failed to force the phy to master mode\n"); 1287 return result; 1288 } 1289 1290 #define KSZ9131_SKEW_5BIT_MAX 2400 1291 #define KSZ9131_SKEW_4BIT_MAX 800 1292 #define KSZ9131_OFFSET 700 1293 #define KSZ9131_STEP 100 1294 1295 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1296 struct device_node *of_node, 1297 u16 reg, size_t field_sz, 1298 char *field[], u8 numfields) 1299 { 1300 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1301 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1302 int skewval, skewmax = 0; 1303 int matches = 0; 1304 u16 maxval; 1305 u16 newval; 1306 u16 mask; 1307 int i; 1308 1309 /* psec properties in dts should mean x pico seconds */ 1310 if (field_sz == 5) 1311 skewmax = KSZ9131_SKEW_5BIT_MAX; 1312 else 1313 skewmax = KSZ9131_SKEW_4BIT_MAX; 1314 1315 for (i = 0; i < numfields; i++) 1316 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1317 if (skewval < -KSZ9131_OFFSET) 1318 skewval = -KSZ9131_OFFSET; 1319 else if (skewval > skewmax) 1320 skewval = skewmax; 1321 1322 val[i] = skewval + KSZ9131_OFFSET; 1323 matches++; 1324 } 1325 1326 if (!matches) 1327 return 0; 1328 1329 if (matches < numfields) 1330 newval = phy_read_mmd(phydev, 2, reg); 1331 else 1332 newval = 0; 1333 1334 maxval = (field_sz == 4) ? 0xf : 0x1f; 1335 for (i = 0; i < numfields; i++) 1336 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1337 mask = 0xffff; 1338 mask ^= maxval << (field_sz * i); 1339 newval = (newval & mask) | 1340 (((val[i] / KSZ9131_STEP) & maxval) 1341 << (field_sz * i)); 1342 } 1343 1344 return phy_write_mmd(phydev, 2, reg, newval); 1345 } 1346 1347 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1348 #define KSZ9131RN_RXC_DLL_CTRL 76 1349 #define KSZ9131RN_TXC_DLL_CTRL 77 1350 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1351 1352 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1353 { 1354 const struct kszphy_type *type = phydev->drv->driver_data; 1355 u16 rxcdll_val, txcdll_val; 1356 int ret; 1357 1358 switch (phydev->interface) { 1359 case PHY_INTERFACE_MODE_RGMII: 1360 rxcdll_val = type->disable_dll_rx_bit; 1361 txcdll_val = type->disable_dll_tx_bit; 1362 break; 1363 case PHY_INTERFACE_MODE_RGMII_ID: 1364 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1365 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1366 break; 1367 case PHY_INTERFACE_MODE_RGMII_RXID: 1368 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1369 txcdll_val = type->disable_dll_tx_bit; 1370 break; 1371 case PHY_INTERFACE_MODE_RGMII_TXID: 1372 rxcdll_val = type->disable_dll_rx_bit; 1373 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1374 break; 1375 default: 1376 return 0; 1377 } 1378 1379 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1380 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1381 rxcdll_val); 1382 if (ret < 0) 1383 return ret; 1384 1385 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1386 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1387 txcdll_val); 1388 } 1389 1390 /* Silicon Errata DS80000693B 1391 * 1392 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1393 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1394 * according to the datasheet (off if there is no link). 1395 */ 1396 static int ksz9131_led_errata(struct phy_device *phydev) 1397 { 1398 int reg; 1399 1400 reg = phy_read_mmd(phydev, 2, 0); 1401 if (reg < 0) 1402 return reg; 1403 1404 if (!(reg & BIT(4))) 1405 return 0; 1406 1407 return phy_set_bits(phydev, 0x1e, BIT(9)); 1408 } 1409 1410 static int ksz9131_config_init(struct phy_device *phydev) 1411 { 1412 struct device_node *of_node; 1413 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1414 char *rx_data_skews[4] = { 1415 "rxd0-skew-psec", "rxd1-skew-psec", 1416 "rxd2-skew-psec", "rxd3-skew-psec" 1417 }; 1418 char *tx_data_skews[4] = { 1419 "txd0-skew-psec", "txd1-skew-psec", 1420 "txd2-skew-psec", "txd3-skew-psec" 1421 }; 1422 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1423 const struct device *dev_walker; 1424 int ret; 1425 1426 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1427 1428 dev_walker = &phydev->mdio.dev; 1429 do { 1430 of_node = dev_walker->of_node; 1431 dev_walker = dev_walker->parent; 1432 } while (!of_node && dev_walker); 1433 1434 if (!of_node) 1435 return 0; 1436 1437 if (phy_interface_is_rgmii(phydev)) { 1438 ret = ksz9131_config_rgmii_delay(phydev); 1439 if (ret < 0) 1440 return ret; 1441 } 1442 1443 ret = ksz9131_of_load_skew_values(phydev, of_node, 1444 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1445 clk_skews, 2); 1446 if (ret < 0) 1447 return ret; 1448 1449 ret = ksz9131_of_load_skew_values(phydev, of_node, 1450 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1451 control_skews, 2); 1452 if (ret < 0) 1453 return ret; 1454 1455 ret = ksz9131_of_load_skew_values(phydev, of_node, 1456 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1457 rx_data_skews, 4); 1458 if (ret < 0) 1459 return ret; 1460 1461 ret = ksz9131_of_load_skew_values(phydev, of_node, 1462 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1463 tx_data_skews, 4); 1464 if (ret < 0) 1465 return ret; 1466 1467 ret = ksz9131_led_errata(phydev); 1468 if (ret < 0) 1469 return ret; 1470 1471 return 0; 1472 } 1473 1474 #define MII_KSZ9131_AUTO_MDIX 0x1C 1475 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1476 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1477 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1478 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1479 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1480 1481 static int ksz9131_mdix_update(struct phy_device *phydev) 1482 { 1483 int ret; 1484 1485 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1486 phydev->mdix = phydev->mdix_ctrl; 1487 } else { 1488 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1489 if (ret < 0) 1490 return ret; 1491 1492 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1493 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1494 phydev->mdix = ETH_TP_MDI; 1495 else 1496 phydev->mdix = ETH_TP_MDI_X; 1497 } else { 1498 phydev->mdix = ETH_TP_MDI_INVALID; 1499 } 1500 } 1501 1502 return 0; 1503 } 1504 1505 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1506 { 1507 u16 val; 1508 1509 switch (ctrl) { 1510 case ETH_TP_MDI: 1511 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1512 MII_KSZ9131_AUTO_MDI_SET; 1513 break; 1514 case ETH_TP_MDI_X: 1515 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1516 break; 1517 case ETH_TP_MDI_AUTO: 1518 val = 0; 1519 break; 1520 default: 1521 return 0; 1522 } 1523 1524 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1525 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1526 MII_KSZ9131_AUTO_MDI_SET, val); 1527 } 1528 1529 static int ksz9131_read_status(struct phy_device *phydev) 1530 { 1531 int ret; 1532 1533 ret = ksz9131_mdix_update(phydev); 1534 if (ret < 0) 1535 return ret; 1536 1537 return genphy_read_status(phydev); 1538 } 1539 1540 static int ksz9131_config_aneg(struct phy_device *phydev) 1541 { 1542 int ret; 1543 1544 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1545 if (ret) 1546 return ret; 1547 1548 return genphy_config_aneg(phydev); 1549 } 1550 1551 static int ksz9477_get_features(struct phy_device *phydev) 1552 { 1553 int ret; 1554 1555 ret = genphy_read_abilities(phydev); 1556 if (ret) 1557 return ret; 1558 1559 /* The "EEE control and capability 1" (Register 3.20) seems to be 1560 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1561 * on the 7.60 will affect 3.20. So, we need to construct our own list 1562 * of caps. 1563 * KSZ8563R should have 100BaseTX/Full only. 1564 */ 1565 linkmode_and(phydev->supported_eee, phydev->supported, 1566 PHY_EEE_CAP1_FEATURES); 1567 1568 return 0; 1569 } 1570 1571 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1572 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1573 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1574 static int ksz8873mll_read_status(struct phy_device *phydev) 1575 { 1576 int regval; 1577 1578 /* dummy read */ 1579 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1580 1581 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1582 1583 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1584 phydev->duplex = DUPLEX_HALF; 1585 else 1586 phydev->duplex = DUPLEX_FULL; 1587 1588 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1589 phydev->speed = SPEED_10; 1590 else 1591 phydev->speed = SPEED_100; 1592 1593 phydev->link = 1; 1594 phydev->pause = phydev->asym_pause = 0; 1595 1596 return 0; 1597 } 1598 1599 static int ksz9031_get_features(struct phy_device *phydev) 1600 { 1601 int ret; 1602 1603 ret = genphy_read_abilities(phydev); 1604 if (ret < 0) 1605 return ret; 1606 1607 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1608 * Whenever the device's Asymmetric Pause capability is set to 1, 1609 * link-up may fail after a link-up to link-down transition. 1610 * 1611 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1612 * 1613 * Workaround: 1614 * Do not enable the Asymmetric Pause capability bit. 1615 */ 1616 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1617 1618 /* We force setting the Pause capability as the core will force the 1619 * Asymmetric Pause capability to 1 otherwise. 1620 */ 1621 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1622 1623 return 0; 1624 } 1625 1626 static int ksz9031_read_status(struct phy_device *phydev) 1627 { 1628 int err; 1629 int regval; 1630 1631 err = genphy_read_status(phydev); 1632 if (err) 1633 return err; 1634 1635 /* Make sure the PHY is not broken. Read idle error count, 1636 * and reset the PHY if it is maxed out. 1637 */ 1638 regval = phy_read(phydev, MII_STAT1000); 1639 if ((regval & 0xFF) == 0xFF) { 1640 phy_init_hw(phydev); 1641 phydev->link = 0; 1642 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1643 phydev->drv->config_intr(phydev); 1644 return genphy_config_aneg(phydev); 1645 } 1646 1647 return 0; 1648 } 1649 1650 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1651 { 1652 struct kszphy_priv *priv = phydev->priv; 1653 int ret; 1654 1655 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1656 * Prior to running the cable diagnostics, Auto-negotiation should 1657 * be disabled, full duplex set and the link speed set to 1000Mbps 1658 * via the Basic Control Register. 1659 */ 1660 ret = phy_modify(phydev, MII_BMCR, 1661 BMCR_SPEED1000 | BMCR_FULLDPLX | 1662 BMCR_ANENABLE | BMCR_SPEED100, 1663 BMCR_SPEED1000 | BMCR_FULLDPLX); 1664 if (ret) 1665 return ret; 1666 1667 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1668 * The Master-Slave configuration should be set to Slave by writing 1669 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1670 * Register. 1671 */ 1672 ret = phy_read(phydev, MII_CTRL1000); 1673 if (ret < 0) 1674 return ret; 1675 1676 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1677 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1678 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1679 ret |= CTL1000_ENABLE_MASTER; 1680 1681 return phy_write(phydev, MII_CTRL1000, ret); 1682 } 1683 1684 static int ksz9x31_cable_test_result_trans(u16 status) 1685 { 1686 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1687 case KSZ9x31_LMD_VCT_ST_NORMAL: 1688 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1689 case KSZ9x31_LMD_VCT_ST_OPEN: 1690 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1691 case KSZ9x31_LMD_VCT_ST_SHORT: 1692 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1693 case KSZ9x31_LMD_VCT_ST_FAIL: 1694 fallthrough; 1695 default: 1696 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1697 } 1698 } 1699 1700 static bool ksz9x31_cable_test_failed(u16 status) 1701 { 1702 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1703 1704 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1705 } 1706 1707 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1708 { 1709 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1710 case KSZ9x31_LMD_VCT_ST_OPEN: 1711 fallthrough; 1712 case KSZ9x31_LMD_VCT_ST_SHORT: 1713 return true; 1714 } 1715 return false; 1716 } 1717 1718 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1719 { 1720 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1721 1722 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1723 * 1724 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1725 */ 1726 if (phydev_id_compare(phydev, PHY_ID_KSZ9131) || 1727 phydev_id_compare(phydev, PHY_ID_KSZ9477)) 1728 dt = clamp(dt - 22, 0, 255); 1729 1730 return (dt * 400) / 10; 1731 } 1732 1733 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1734 { 1735 int val, ret; 1736 1737 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1738 !(val & KSZ9x31_LMD_VCT_EN), 1739 30000, 100000, true); 1740 1741 return ret < 0 ? ret : 0; 1742 } 1743 1744 static int ksz9x31_cable_test_get_pair(int pair) 1745 { 1746 static const int ethtool_pair[] = { 1747 ETHTOOL_A_CABLE_PAIR_A, 1748 ETHTOOL_A_CABLE_PAIR_B, 1749 ETHTOOL_A_CABLE_PAIR_C, 1750 ETHTOOL_A_CABLE_PAIR_D, 1751 }; 1752 1753 return ethtool_pair[pair]; 1754 } 1755 1756 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1757 { 1758 int ret, val; 1759 1760 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1761 * To test each individual cable pair, set the cable pair in the Cable 1762 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1763 * Diagnostic Register, along with setting the Cable Diagnostics Test 1764 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1765 * will self clear when the test is concluded. 1766 */ 1767 ret = phy_write(phydev, KSZ9x31_LMD, 1768 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1769 if (ret) 1770 return ret; 1771 1772 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1773 if (ret) 1774 return ret; 1775 1776 val = phy_read(phydev, KSZ9x31_LMD); 1777 if (val < 0) 1778 return val; 1779 1780 if (ksz9x31_cable_test_failed(val)) 1781 return -EAGAIN; 1782 1783 ret = ethnl_cable_test_result(phydev, 1784 ksz9x31_cable_test_get_pair(pair), 1785 ksz9x31_cable_test_result_trans(val)); 1786 if (ret) 1787 return ret; 1788 1789 if (!ksz9x31_cable_test_fault_length_valid(val)) 1790 return 0; 1791 1792 return ethnl_cable_test_fault_length(phydev, 1793 ksz9x31_cable_test_get_pair(pair), 1794 ksz9x31_cable_test_fault_length(phydev, val)); 1795 } 1796 1797 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1798 bool *finished) 1799 { 1800 struct kszphy_priv *priv = phydev->priv; 1801 unsigned long pair_mask; 1802 int retries = 20; 1803 int pair, ret, rv; 1804 1805 *finished = false; 1806 1807 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1808 phydev->supported) || 1809 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1810 phydev->supported)) 1811 pair_mask = 0xf; /* All pairs */ 1812 else 1813 pair_mask = 0x3; /* Pairs A and B only */ 1814 1815 /* Try harder if link partner is active */ 1816 while (pair_mask && retries--) { 1817 for_each_set_bit(pair, &pair_mask, 4) { 1818 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1819 if (ret == -EAGAIN) 1820 continue; 1821 if (ret < 0) 1822 return ret; 1823 clear_bit(pair, &pair_mask); 1824 } 1825 /* If link partner is in autonegotiation mode it will send 2ms 1826 * of FLPs with at least 6ms of silence. 1827 * Add 2ms sleep to have better chances to hit this silence. 1828 */ 1829 if (pair_mask) 1830 usleep_range(2000, 3000); 1831 } 1832 1833 /* Report remaining unfinished pair result as unknown. */ 1834 for_each_set_bit(pair, &pair_mask, 4) { 1835 ret = ethnl_cable_test_result(phydev, 1836 ksz9x31_cable_test_get_pair(pair), 1837 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1838 } 1839 1840 *finished = true; 1841 1842 /* Restore cached bits from before LinkMD got started. */ 1843 rv = phy_modify(phydev, MII_CTRL1000, 1844 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1845 priv->vct_ctrl1000); 1846 if (rv) 1847 return rv; 1848 1849 return ret; 1850 } 1851 1852 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1853 { 1854 return 0; 1855 } 1856 1857 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1858 { 1859 u16 val; 1860 1861 switch (ctrl) { 1862 case ETH_TP_MDI: 1863 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1864 break; 1865 case ETH_TP_MDI_X: 1866 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1867 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1868 * sheet seems to be missing: 1869 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1870 * 0 = Normal operation (transmit on TX+/TX- pins) 1871 */ 1872 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1873 break; 1874 case ETH_TP_MDI_AUTO: 1875 val = 0; 1876 break; 1877 default: 1878 return 0; 1879 } 1880 1881 return phy_modify(phydev, MII_BMCR, 1882 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1883 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1884 KSZ886X_BMCR_HP_MDIX | val); 1885 } 1886 1887 static int ksz886x_config_aneg(struct phy_device *phydev) 1888 { 1889 int ret; 1890 1891 ret = genphy_config_aneg(phydev); 1892 if (ret) 1893 return ret; 1894 1895 if (phydev->autoneg != AUTONEG_ENABLE) { 1896 /* When autonegotation is disabled, we need to manually force 1897 * the link state. If we don't do this, the PHY will keep 1898 * sending Fast Link Pulses (FLPs) which are part of the 1899 * autonegotiation process. This is not desired when 1900 * autonegotiation is off. 1901 */ 1902 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1903 KSZ886X_CTRL_FORCE_LINK); 1904 if (ret) 1905 return ret; 1906 } else { 1907 /* If we had previously forced the link state, we need to 1908 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1909 * will not perform autonegotiation. 1910 */ 1911 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1912 KSZ886X_CTRL_FORCE_LINK); 1913 if (ret) 1914 return ret; 1915 } 1916 1917 /* The MDI-X configuration is automatically changed by the PHY after 1918 * switching from autoneg off to on. So, take MDI-X configuration under 1919 * own control and set it after autoneg configuration was done. 1920 */ 1921 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1922 } 1923 1924 static int ksz886x_mdix_update(struct phy_device *phydev) 1925 { 1926 int ret; 1927 1928 ret = phy_read(phydev, MII_BMCR); 1929 if (ret < 0) 1930 return ret; 1931 1932 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1933 if (ret & KSZ886X_BMCR_FORCE_MDI) 1934 phydev->mdix_ctrl = ETH_TP_MDI_X; 1935 else 1936 phydev->mdix_ctrl = ETH_TP_MDI; 1937 } else { 1938 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1939 } 1940 1941 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1942 if (ret < 0) 1943 return ret; 1944 1945 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1946 if (ret & KSZ886X_CTRL_MDIX_STAT) 1947 phydev->mdix = ETH_TP_MDI_X; 1948 else 1949 phydev->mdix = ETH_TP_MDI; 1950 1951 return 0; 1952 } 1953 1954 static int ksz886x_read_status(struct phy_device *phydev) 1955 { 1956 int ret; 1957 1958 ret = ksz886x_mdix_update(phydev); 1959 if (ret < 0) 1960 return ret; 1961 1962 return genphy_read_status(phydev); 1963 } 1964 1965 static int ksz9477_mdix_update(struct phy_device *phydev) 1966 { 1967 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) 1968 phydev->mdix = phydev->mdix_ctrl; 1969 else 1970 phydev->mdix = ETH_TP_MDI_INVALID; 1971 1972 return 0; 1973 } 1974 1975 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev) 1976 { 1977 int val; 1978 1979 val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 1980 if (val < 0) 1981 return val; 1982 1983 if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF)) 1984 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1985 else if (val & MII_KSZ9131_AUTO_MDI_SET) 1986 phydev->mdix_ctrl = ETH_TP_MDI; 1987 else 1988 phydev->mdix_ctrl = ETH_TP_MDI_X; 1989 1990 return 0; 1991 } 1992 1993 static int ksz9477_read_status(struct phy_device *phydev) 1994 { 1995 int ret; 1996 1997 ret = ksz9477_mdix_update(phydev); 1998 if (ret) 1999 return ret; 2000 2001 return genphy_read_status(phydev); 2002 } 2003 2004 static int ksz9477_config_aneg(struct phy_device *phydev) 2005 { 2006 int ret; 2007 2008 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 2009 if (ret) 2010 return ret; 2011 2012 return genphy_config_aneg(phydev); 2013 } 2014 2015 struct ksz9477_errata_write { 2016 u8 dev_addr; 2017 u8 reg_addr; 2018 u16 val; 2019 }; 2020 2021 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 2022 /* Register settings are needed to improve PHY receive performance */ 2023 {0x01, 0x6f, 0xdd0b}, 2024 {0x01, 0x8f, 0x6032}, 2025 {0x01, 0x9d, 0x248c}, 2026 {0x01, 0x75, 0x0060}, 2027 {0x01, 0xd3, 0x7777}, 2028 {0x1c, 0x06, 0x3008}, 2029 {0x1c, 0x08, 0x2000}, 2030 2031 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 2032 {0x1c, 0x04, 0x00d0}, 2033 2034 /* Register settings are required to meet data sheet supply current specifications */ 2035 {0x1c, 0x13, 0x6eff}, 2036 {0x1c, 0x14, 0xe6ff}, 2037 {0x1c, 0x15, 0x6eff}, 2038 {0x1c, 0x16, 0xe6ff}, 2039 {0x1c, 0x17, 0x00ff}, 2040 {0x1c, 0x18, 0x43ff}, 2041 {0x1c, 0x19, 0xc3ff}, 2042 {0x1c, 0x1a, 0x6fff}, 2043 {0x1c, 0x1b, 0x07ff}, 2044 {0x1c, 0x1c, 0x0fff}, 2045 {0x1c, 0x1d, 0xe7ff}, 2046 {0x1c, 0x1e, 0xefff}, 2047 {0x1c, 0x20, 0xeeee}, 2048 }; 2049 2050 static int ksz9477_phy_errata(struct phy_device *phydev) 2051 { 2052 int err; 2053 int i; 2054 2055 /* Apply PHY settings to address errata listed in 2056 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 2057 * Silicon Errata and Data Sheet Clarification documents. 2058 * 2059 * Document notes: Before configuring the PHY MMD registers, it is 2060 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 2061 * disabled by writing to register 0xN100-0xN101. After writing the 2062 * MMD registers, and after all errata workarounds that involve PHY 2063 * register settings, write register 0xN100-0xN101 again to enable 2064 * and restart auto-negotiation. 2065 */ 2066 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2067 if (err) 2068 return err; 2069 2070 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2071 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2072 2073 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2074 if (err) 2075 return err; 2076 } 2077 2078 err = genphy_restart_aneg(phydev); 2079 if (err) 2080 return err; 2081 2082 return err; 2083 } 2084 2085 static int ksz9477_config_init(struct phy_device *phydev) 2086 { 2087 int err; 2088 2089 /* Only KSZ9897 family of switches needs this fix. */ 2090 if ((phydev->phy_id & 0xf) == 1) { 2091 err = ksz9477_phy_errata(phydev); 2092 if (err) 2093 return err; 2094 } 2095 2096 /* Read initial MDI-X config state. So, we do not need to poll it 2097 * later on. 2098 */ 2099 err = ksz9477_read_mdix_ctrl(phydev); 2100 if (err) 2101 return err; 2102 2103 return kszphy_config_init(phydev); 2104 } 2105 2106 static int kszphy_get_sset_count(struct phy_device *phydev) 2107 { 2108 return ARRAY_SIZE(kszphy_hw_stats); 2109 } 2110 2111 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2112 { 2113 int i; 2114 2115 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2116 ethtool_puts(&data, kszphy_hw_stats[i].string); 2117 } 2118 2119 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2120 { 2121 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2122 struct kszphy_priv *priv = phydev->priv; 2123 int val; 2124 u64 ret; 2125 2126 val = phy_read(phydev, stat.reg); 2127 if (val < 0) { 2128 ret = U64_MAX; 2129 } else { 2130 val = val & ((1 << stat.bits) - 1); 2131 priv->stats[i] += val; 2132 ret = priv->stats[i]; 2133 } 2134 2135 return ret; 2136 } 2137 2138 static void kszphy_get_stats(struct phy_device *phydev, 2139 struct ethtool_stats *stats, u64 *data) 2140 { 2141 int i; 2142 2143 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2144 data[i] = kszphy_get_stat(phydev, i); 2145 } 2146 2147 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313, 2148 * etc. The counter is incremented when the PHY receives a frame with one or 2149 * more symbol errors. The counter is cleared when the register is read. 2150 */ 2151 #define MII_KSZ9477_PHY_RXER_COUNTER 0x15 2152 2153 static int kszphy_update_stats(struct phy_device *phydev) 2154 { 2155 struct kszphy_priv *priv = phydev->priv; 2156 int ret; 2157 2158 ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER); 2159 if (ret < 0) 2160 return ret; 2161 2162 priv->phy_stats.rx_err_pkt_cnt += ret; 2163 2164 return 0; 2165 } 2166 2167 static void kszphy_get_phy_stats(struct phy_device *phydev, 2168 struct ethtool_eth_phy_stats *eth_stats, 2169 struct ethtool_phy_stats *stats) 2170 { 2171 struct kszphy_priv *priv = phydev->priv; 2172 2173 stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt; 2174 } 2175 2176 static void kszphy_enable_clk(struct phy_device *phydev) 2177 { 2178 struct kszphy_priv *priv = phydev->priv; 2179 2180 if (!priv->clk_enable && priv->clk) { 2181 clk_prepare_enable(priv->clk); 2182 priv->clk_enable = true; 2183 } 2184 } 2185 2186 static void kszphy_disable_clk(struct phy_device *phydev) 2187 { 2188 struct kszphy_priv *priv = phydev->priv; 2189 2190 if (priv->clk_enable && priv->clk) { 2191 clk_disable_unprepare(priv->clk); 2192 priv->clk_enable = false; 2193 } 2194 } 2195 2196 static int kszphy_generic_resume(struct phy_device *phydev) 2197 { 2198 kszphy_enable_clk(phydev); 2199 2200 return genphy_resume(phydev); 2201 } 2202 2203 static int kszphy_generic_suspend(struct phy_device *phydev) 2204 { 2205 int ret; 2206 2207 ret = genphy_suspend(phydev); 2208 if (ret) 2209 return ret; 2210 2211 kszphy_disable_clk(phydev); 2212 2213 return 0; 2214 } 2215 2216 static int kszphy_suspend(struct phy_device *phydev) 2217 { 2218 /* Disable PHY Interrupts */ 2219 if (phy_interrupt_is_valid(phydev)) { 2220 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2221 if (phydev->drv->config_intr) 2222 phydev->drv->config_intr(phydev); 2223 } 2224 2225 return kszphy_generic_suspend(phydev); 2226 } 2227 2228 static void kszphy_parse_led_mode(struct phy_device *phydev) 2229 { 2230 const struct kszphy_type *type = phydev->drv->driver_data; 2231 const struct device_node *np = phydev->mdio.dev.of_node; 2232 struct kszphy_priv *priv = phydev->priv; 2233 int ret; 2234 2235 if (type && type->led_mode_reg) { 2236 ret = of_property_read_u32(np, "micrel,led-mode", 2237 &priv->led_mode); 2238 2239 if (ret) 2240 priv->led_mode = -1; 2241 2242 if (priv->led_mode > 3) { 2243 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2244 priv->led_mode); 2245 priv->led_mode = -1; 2246 } 2247 } else { 2248 priv->led_mode = -1; 2249 } 2250 } 2251 2252 static int kszphy_resume(struct phy_device *phydev) 2253 { 2254 int ret; 2255 2256 ret = kszphy_generic_resume(phydev); 2257 if (ret) 2258 return ret; 2259 2260 /* After switching from power-down to normal mode, an internal global 2261 * reset is automatically generated. Wait a minimum of 1 ms before 2262 * read/write access to the PHY registers. 2263 */ 2264 usleep_range(1000, 2000); 2265 2266 ret = kszphy_config_reset(phydev); 2267 if (ret) 2268 return ret; 2269 2270 /* Enable PHY Interrupts */ 2271 if (phy_interrupt_is_valid(phydev)) { 2272 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2273 if (phydev->drv->config_intr) 2274 phydev->drv->config_intr(phydev); 2275 } 2276 2277 return 0; 2278 } 2279 2280 /* Because of errata DS80000700A, receiver error following software 2281 * power down. Suspend and resume callbacks only disable and enable 2282 * external rmii reference clock. 2283 */ 2284 static int ksz8041_resume(struct phy_device *phydev) 2285 { 2286 kszphy_enable_clk(phydev); 2287 2288 return 0; 2289 } 2290 2291 static int ksz8041_suspend(struct phy_device *phydev) 2292 { 2293 kszphy_disable_clk(phydev); 2294 2295 return 0; 2296 } 2297 2298 static int ksz9477_resume(struct phy_device *phydev) 2299 { 2300 int ret; 2301 2302 /* No need to initialize registers if not powered down. */ 2303 ret = phy_read(phydev, MII_BMCR); 2304 if (ret < 0) 2305 return ret; 2306 if (!(ret & BMCR_PDOWN)) 2307 return 0; 2308 2309 genphy_resume(phydev); 2310 2311 /* After switching from power-down to normal mode, an internal global 2312 * reset is automatically generated. Wait a minimum of 1 ms before 2313 * read/write access to the PHY registers. 2314 */ 2315 usleep_range(1000, 2000); 2316 2317 /* Only KSZ9897 family of switches needs this fix. */ 2318 if ((phydev->phy_id & 0xf) == 1) { 2319 ret = ksz9477_phy_errata(phydev); 2320 if (ret) 2321 return ret; 2322 } 2323 2324 /* Enable PHY Interrupts */ 2325 if (phy_interrupt_is_valid(phydev)) { 2326 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2327 if (phydev->drv->config_intr) 2328 phydev->drv->config_intr(phydev); 2329 } 2330 2331 return 0; 2332 } 2333 2334 static int ksz8061_resume(struct phy_device *phydev) 2335 { 2336 int ret; 2337 2338 /* This function can be called twice when the Ethernet device is on. */ 2339 ret = phy_read(phydev, MII_BMCR); 2340 if (ret < 0) 2341 return ret; 2342 if (!(ret & BMCR_PDOWN)) 2343 return 0; 2344 2345 ret = kszphy_generic_resume(phydev); 2346 if (ret) 2347 return ret; 2348 2349 usleep_range(1000, 2000); 2350 2351 /* Re-program the value after chip is reset. */ 2352 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2353 if (ret) 2354 return ret; 2355 2356 /* Enable PHY Interrupts */ 2357 if (phy_interrupt_is_valid(phydev)) { 2358 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2359 if (phydev->drv->config_intr) 2360 phydev->drv->config_intr(phydev); 2361 } 2362 2363 return 0; 2364 } 2365 2366 static int ksz8061_suspend(struct phy_device *phydev) 2367 { 2368 return kszphy_suspend(phydev); 2369 } 2370 2371 static int kszphy_probe(struct phy_device *phydev) 2372 { 2373 const struct kszphy_type *type = phydev->drv->driver_data; 2374 const struct device_node *np = phydev->mdio.dev.of_node; 2375 struct kszphy_priv *priv; 2376 struct clk *clk; 2377 2378 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2379 if (!priv) 2380 return -ENOMEM; 2381 2382 phydev->priv = priv; 2383 2384 priv->type = type; 2385 2386 kszphy_parse_led_mode(phydev); 2387 2388 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2389 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2390 if (!IS_ERR_OR_NULL(clk)) { 2391 unsigned long rate = clk_get_rate(clk); 2392 bool rmii_ref_clk_sel_25_mhz; 2393 2394 if (type) 2395 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2396 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2397 "micrel,rmii-reference-clock-select-25-mhz"); 2398 2399 if (rate > 24500000 && rate < 25500000) { 2400 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2401 } else if (rate > 49500000 && rate < 50500000) { 2402 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2403 } else { 2404 phydev_err(phydev, "Clock rate out of range: %ld\n", 2405 rate); 2406 return -EINVAL; 2407 } 2408 } else if (!clk) { 2409 /* unnamed clock from the generic ethernet-phy binding */ 2410 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2411 } 2412 2413 if (IS_ERR(clk)) 2414 return PTR_ERR(clk); 2415 2416 clk_disable_unprepare(clk); 2417 priv->clk = clk; 2418 2419 if (ksz8041_fiber_mode(phydev)) 2420 phydev->port = PORT_FIBRE; 2421 2422 /* Support legacy board-file configuration */ 2423 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2424 priv->rmii_ref_clk_sel = true; 2425 priv->rmii_ref_clk_sel_val = true; 2426 } 2427 2428 return 0; 2429 } 2430 2431 static int lan8814_cable_test_start(struct phy_device *phydev) 2432 { 2433 /* If autoneg is enabled, we won't be able to test cross pair 2434 * short. In this case, the PHY will "detect" a link and 2435 * confuse the internal state machine - disable auto neg here. 2436 * Set the speed to 1000mbit and full duplex. 2437 */ 2438 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2439 BMCR_SPEED1000 | BMCR_FULLDPLX); 2440 } 2441 2442 static int ksz886x_cable_test_start(struct phy_device *phydev) 2443 { 2444 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2445 return -EOPNOTSUPP; 2446 2447 /* If autoneg is enabled, we won't be able to test cross pair 2448 * short. In this case, the PHY will "detect" a link and 2449 * confuse the internal state machine - disable auto neg here. 2450 * If autoneg is disabled, we should set the speed to 10mbit. 2451 */ 2452 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2453 } 2454 2455 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2456 { 2457 switch (FIELD_GET(mask, status)) { 2458 case KSZ8081_LMD_STAT_NORMAL: 2459 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2460 case KSZ8081_LMD_STAT_SHORT: 2461 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2462 case KSZ8081_LMD_STAT_OPEN: 2463 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2464 case KSZ8081_LMD_STAT_FAIL: 2465 fallthrough; 2466 default: 2467 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2468 } 2469 } 2470 2471 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2472 { 2473 return FIELD_GET(mask, status) == 2474 KSZ8081_LMD_STAT_FAIL; 2475 } 2476 2477 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2478 { 2479 switch (FIELD_GET(mask, status)) { 2480 case KSZ8081_LMD_STAT_OPEN: 2481 fallthrough; 2482 case KSZ8081_LMD_STAT_SHORT: 2483 return true; 2484 } 2485 return false; 2486 } 2487 2488 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2489 u16 status, u16 data_mask) 2490 { 2491 int dt; 2492 2493 /* According to the data sheet the distance to the fault is 2494 * DELTA_TIME * 0.4 meters for ksz phys. 2495 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2496 */ 2497 dt = FIELD_GET(data_mask, status); 2498 2499 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2500 return ((dt - 22) * 800) / 10; 2501 else 2502 return (dt * 400) / 10; 2503 } 2504 2505 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2506 { 2507 const struct kszphy_type *type = phydev->drv->driver_data; 2508 int val, ret; 2509 2510 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2511 !(val & KSZ8081_LMD_ENABLE_TEST), 2512 30000, 100000, true); 2513 2514 return ret < 0 ? ret : 0; 2515 } 2516 2517 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2518 { 2519 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2520 ETHTOOL_A_CABLE_PAIR_B, 2521 ETHTOOL_A_CABLE_PAIR_C, 2522 ETHTOOL_A_CABLE_PAIR_D, 2523 }; 2524 u32 fault_length; 2525 int ret; 2526 int val; 2527 2528 val = KSZ8081_LMD_ENABLE_TEST; 2529 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2530 2531 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2532 if (ret < 0) 2533 return ret; 2534 2535 ret = ksz886x_cable_test_wait_for_completion(phydev); 2536 if (ret) 2537 return ret; 2538 2539 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2540 if (val < 0) 2541 return val; 2542 2543 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2544 return -EAGAIN; 2545 2546 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2547 ksz886x_cable_test_result_trans(val, 2548 LAN8814_CABLE_DIAG_STAT_MASK 2549 )); 2550 if (ret) 2551 return ret; 2552 2553 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2554 return 0; 2555 2556 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2557 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2558 2559 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2560 } 2561 2562 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2563 { 2564 static const int ethtool_pair[] = { 2565 ETHTOOL_A_CABLE_PAIR_A, 2566 ETHTOOL_A_CABLE_PAIR_B, 2567 }; 2568 int ret, val, mdix; 2569 u32 fault_length; 2570 2571 /* There is no way to choice the pair, like we do one ksz9031. 2572 * We can workaround this limitation by using the MDI-X functionality. 2573 */ 2574 if (pair == 0) 2575 mdix = ETH_TP_MDI; 2576 else 2577 mdix = ETH_TP_MDI_X; 2578 2579 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2580 case PHY_ID_KSZ8081: 2581 ret = ksz8081_config_mdix(phydev, mdix); 2582 break; 2583 case PHY_ID_KSZ886X: 2584 ret = ksz886x_config_mdix(phydev, mdix); 2585 break; 2586 default: 2587 ret = -ENODEV; 2588 } 2589 2590 if (ret) 2591 return ret; 2592 2593 /* Now we are ready to fire. This command will send a 100ns pulse 2594 * to the pair. 2595 */ 2596 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2597 if (ret) 2598 return ret; 2599 2600 ret = ksz886x_cable_test_wait_for_completion(phydev); 2601 if (ret) 2602 return ret; 2603 2604 val = phy_read(phydev, KSZ8081_LMD); 2605 if (val < 0) 2606 return val; 2607 2608 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2609 return -EAGAIN; 2610 2611 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2612 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2613 if (ret) 2614 return ret; 2615 2616 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2617 return 0; 2618 2619 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2620 2621 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2622 } 2623 2624 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2625 bool *finished) 2626 { 2627 const struct kszphy_type *type = phydev->drv->driver_data; 2628 unsigned long pair_mask = type->pair_mask; 2629 int retries = 20; 2630 int ret = 0; 2631 int pair; 2632 2633 *finished = false; 2634 2635 /* Try harder if link partner is active */ 2636 while (pair_mask && retries--) { 2637 for_each_set_bit(pair, &pair_mask, 4) { 2638 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2639 ret = lan8814_cable_test_one_pair(phydev, pair); 2640 else 2641 ret = ksz886x_cable_test_one_pair(phydev, pair); 2642 if (ret == -EAGAIN) 2643 continue; 2644 if (ret < 0) 2645 return ret; 2646 clear_bit(pair, &pair_mask); 2647 } 2648 /* If link partner is in autonegotiation mode it will send 2ms 2649 * of FLPs with at least 6ms of silence. 2650 * Add 2ms sleep to have better chances to hit this silence. 2651 */ 2652 if (pair_mask) 2653 msleep(2); 2654 } 2655 2656 *finished = true; 2657 2658 return ret; 2659 } 2660 2661 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2662 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2663 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2664 2665 #define LAN8814_QSGMII_SOFT_RESET 0x43 2666 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2667 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2668 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2669 #define LAN8814_ALIGN_SWAP 0x4a 2670 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2671 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2672 2673 #define LAN8804_ALIGN_SWAP 0x4a 2674 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2675 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2676 #define LAN8814_CLOCK_MANAGEMENT 0xd 2677 #define LAN8814_LINK_QUALITY 0x8e 2678 2679 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2680 { 2681 int data; 2682 2683 phy_lock_mdio_bus(phydev); 2684 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2685 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2686 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2687 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2688 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2689 phy_unlock_mdio_bus(phydev); 2690 2691 return data; 2692 } 2693 2694 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2695 u16 val) 2696 { 2697 phy_lock_mdio_bus(phydev); 2698 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2699 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2700 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2701 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2702 2703 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2704 if (val != 0) 2705 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2706 val); 2707 phy_unlock_mdio_bus(phydev); 2708 return val; 2709 } 2710 2711 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2712 { 2713 u16 val = 0; 2714 2715 if (enable) 2716 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2717 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2718 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2719 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2720 2721 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2722 } 2723 2724 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2725 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2726 { 2727 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2728 *seconds = (*seconds << 16) | 2729 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2730 2731 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2732 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2733 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2734 2735 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2736 } 2737 2738 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2739 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2740 { 2741 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2742 *seconds = *seconds << 16 | 2743 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2744 2745 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2746 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2747 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2748 2749 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2750 } 2751 2752 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 2753 { 2754 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2755 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 2756 2757 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2758 SOF_TIMESTAMPING_RX_HARDWARE | 2759 SOF_TIMESTAMPING_RAW_HARDWARE; 2760 2761 info->phc_index = ptp_clock_index(shared->ptp_clock); 2762 2763 info->tx_types = 2764 (1 << HWTSTAMP_TX_OFF) | 2765 (1 << HWTSTAMP_TX_ON) | 2766 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2767 2768 info->rx_filters = 2769 (1 << HWTSTAMP_FILTER_NONE) | 2770 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2771 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2772 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2773 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2774 2775 return 0; 2776 } 2777 2778 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2779 { 2780 int i; 2781 2782 for (i = 0; i < FIFO_SIZE; ++i) 2783 lanphy_read_page_reg(phydev, 5, 2784 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2785 2786 /* Read to clear overflow status bit */ 2787 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2788 } 2789 2790 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 2791 struct kernel_hwtstamp_config *config, 2792 struct netlink_ext_ack *extack) 2793 { 2794 struct kszphy_ptp_priv *ptp_priv = 2795 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2796 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2797 int txcfg = 0, rxcfg = 0; 2798 int pkt_ts_enable; 2799 int tx_mod; 2800 2801 ptp_priv->hwts_tx_type = config->tx_type; 2802 ptp_priv->rx_filter = config->rx_filter; 2803 2804 switch (config->rx_filter) { 2805 case HWTSTAMP_FILTER_NONE: 2806 ptp_priv->layer = 0; 2807 ptp_priv->version = 0; 2808 break; 2809 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2810 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2811 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2812 ptp_priv->layer = PTP_CLASS_L4; 2813 ptp_priv->version = PTP_CLASS_V2; 2814 break; 2815 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2816 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2817 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2818 ptp_priv->layer = PTP_CLASS_L2; 2819 ptp_priv->version = PTP_CLASS_V2; 2820 break; 2821 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2822 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2823 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2824 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2825 ptp_priv->version = PTP_CLASS_V2; 2826 break; 2827 default: 2828 return -ERANGE; 2829 } 2830 2831 if (ptp_priv->layer & PTP_CLASS_L2) { 2832 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2833 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2834 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2835 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2836 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2837 } 2838 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2839 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2840 2841 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2842 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2843 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2844 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2845 2846 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD); 2847 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 2848 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2849 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2850 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 2851 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2852 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2853 } 2854 2855 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 2856 lan8814_config_ts_intr(ptp_priv->phydev, true); 2857 else 2858 lan8814_config_ts_intr(ptp_priv->phydev, false); 2859 2860 /* In case of multiple starts and stops, these needs to be cleared */ 2861 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2862 list_del(&rx_ts->list); 2863 kfree(rx_ts); 2864 } 2865 skb_queue_purge(&ptp_priv->rx_queue); 2866 skb_queue_purge(&ptp_priv->tx_queue); 2867 2868 lan8814_flush_fifo(ptp_priv->phydev, false); 2869 lan8814_flush_fifo(ptp_priv->phydev, true); 2870 2871 return 0; 2872 } 2873 2874 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2875 struct sk_buff *skb, int type) 2876 { 2877 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2878 2879 switch (ptp_priv->hwts_tx_type) { 2880 case HWTSTAMP_TX_ONESTEP_SYNC: 2881 if (ptp_msg_is_sync(skb, type)) { 2882 kfree_skb(skb); 2883 return; 2884 } 2885 fallthrough; 2886 case HWTSTAMP_TX_ON: 2887 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2888 skb_queue_tail(&ptp_priv->tx_queue, skb); 2889 break; 2890 case HWTSTAMP_TX_OFF: 2891 default: 2892 kfree_skb(skb); 2893 break; 2894 } 2895 } 2896 2897 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2898 { 2899 struct ptp_header *ptp_header; 2900 u32 type; 2901 2902 skb_push(skb, ETH_HLEN); 2903 type = ptp_classify_raw(skb); 2904 ptp_header = ptp_parse_header(skb, type); 2905 skb_pull_inline(skb, ETH_HLEN); 2906 2907 if (!ptp_header) 2908 return false; 2909 2910 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2911 return true; 2912 } 2913 2914 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 2915 struct sk_buff *skb) 2916 { 2917 struct skb_shared_hwtstamps *shhwtstamps; 2918 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2919 unsigned long flags; 2920 bool ret = false; 2921 u16 skb_sig; 2922 2923 if (!lan8814_get_sig_rx(skb, &skb_sig)) 2924 return ret; 2925 2926 /* Iterate over all RX timestamps and match it with the received skbs */ 2927 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2928 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2929 /* Check if we found the signature we were looking for. */ 2930 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2931 continue; 2932 2933 shhwtstamps = skb_hwtstamps(skb); 2934 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2935 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2936 rx_ts->nsec); 2937 list_del(&rx_ts->list); 2938 kfree(rx_ts); 2939 2940 ret = true; 2941 break; 2942 } 2943 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2944 2945 if (ret) 2946 netif_rx(skb); 2947 return ret; 2948 } 2949 2950 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2951 { 2952 struct kszphy_ptp_priv *ptp_priv = 2953 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2954 2955 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2956 type == PTP_CLASS_NONE) 2957 return false; 2958 2959 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2960 return false; 2961 2962 /* If we failed to match then add it to the queue for when the timestamp 2963 * will come 2964 */ 2965 if (!lan8814_match_rx_skb(ptp_priv, skb)) 2966 skb_queue_tail(&ptp_priv->rx_queue, skb); 2967 2968 return true; 2969 } 2970 2971 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2972 time64_t sec, u32 nsec) 2973 { 2974 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 2975 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 2976 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 2977 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 2978 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 2979 2980 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2981 } 2982 2983 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2984 time64_t *sec, u32 *nsec) 2985 { 2986 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2987 2988 *sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI); 2989 *sec <<= 16; 2990 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2991 *sec <<= 16; 2992 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2993 2994 *nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2995 *nsec <<= 16; 2996 *nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2997 } 2998 2999 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 3000 struct timespec64 *ts) 3001 { 3002 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3003 ptp_clock_info); 3004 struct phy_device *phydev = shared->phydev; 3005 u32 nano_seconds; 3006 time64_t seconds; 3007 3008 mutex_lock(&shared->shared_lock); 3009 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 3010 mutex_unlock(&shared->shared_lock); 3011 ts->tv_sec = seconds; 3012 ts->tv_nsec = nano_seconds; 3013 3014 return 0; 3015 } 3016 3017 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 3018 const struct timespec64 *ts) 3019 { 3020 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3021 ptp_clock_info); 3022 struct phy_device *phydev = shared->phydev; 3023 3024 mutex_lock(&shared->shared_lock); 3025 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 3026 mutex_unlock(&shared->shared_lock); 3027 3028 return 0; 3029 } 3030 3031 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 3032 s64 start_sec, u32 start_nsec) 3033 { 3034 /* Set the start time */ 3035 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 3036 lower_16_bits(start_sec)); 3037 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 3038 upper_16_bits(start_sec)); 3039 3040 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 3041 lower_16_bits(start_nsec)); 3042 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 3043 upper_16_bits(start_nsec) & 0x3fff); 3044 } 3045 3046 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 3047 { 3048 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 3049 sec + LAN8814_BUFFER_TIME, 0); 3050 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 3051 sec + LAN8814_BUFFER_TIME, 0); 3052 } 3053 3054 static void lan8814_ptp_clock_step(struct phy_device *phydev, 3055 s64 time_step_ns) 3056 { 3057 u32 nano_seconds_step; 3058 u64 abs_time_step_ns; 3059 time64_t set_seconds; 3060 u32 nano_seconds; 3061 u32 remainder; 3062 s32 seconds; 3063 3064 if (time_step_ns > 15000000000LL) { 3065 /* convert to clock set */ 3066 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3067 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 3068 &remainder); 3069 nano_seconds += remainder; 3070 if (nano_seconds >= 1000000000) { 3071 set_seconds++; 3072 nano_seconds -= 1000000000; 3073 } 3074 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3075 lan8814_ptp_update_target(phydev, set_seconds); 3076 return; 3077 } else if (time_step_ns < -15000000000LL) { 3078 /* convert to clock set */ 3079 time_step_ns = -time_step_ns; 3080 3081 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3082 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 3083 &remainder); 3084 nano_seconds_step = remainder; 3085 if (nano_seconds < nano_seconds_step) { 3086 set_seconds--; 3087 nano_seconds += 1000000000; 3088 } 3089 nano_seconds -= nano_seconds_step; 3090 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3091 lan8814_ptp_update_target(phydev, set_seconds); 3092 return; 3093 } 3094 3095 /* do clock step */ 3096 if (time_step_ns >= 0) { 3097 abs_time_step_ns = (u64)time_step_ns; 3098 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3099 &remainder); 3100 nano_seconds = remainder; 3101 } else { 3102 abs_time_step_ns = (u64)(-time_step_ns); 3103 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3104 &remainder)); 3105 nano_seconds = remainder; 3106 if (nano_seconds > 0) { 3107 /* subtracting nano seconds is not allowed 3108 * convert to subtracting from seconds, 3109 * and adding to nanoseconds 3110 */ 3111 seconds--; 3112 nano_seconds = (1000000000 - nano_seconds); 3113 } 3114 } 3115 3116 if (nano_seconds > 0) { 3117 /* add 8 ns to cover the likely normal increment */ 3118 nano_seconds += 8; 3119 } 3120 3121 if (nano_seconds >= 1000000000) { 3122 /* carry into seconds */ 3123 seconds++; 3124 nano_seconds -= 1000000000; 3125 } 3126 3127 while (seconds) { 3128 u32 nsec; 3129 3130 if (seconds > 0) { 3131 u32 adjustment_value = (u32)seconds; 3132 u16 adjustment_value_lo, adjustment_value_hi; 3133 3134 if (adjustment_value > 0xF) 3135 adjustment_value = 0xF; 3136 3137 adjustment_value_lo = adjustment_value & 0xffff; 3138 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3139 3140 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3141 adjustment_value_lo); 3142 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3143 PTP_LTC_STEP_ADJ_DIR_ | 3144 adjustment_value_hi); 3145 seconds -= ((s32)adjustment_value); 3146 3147 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3148 set_seconds -= adjustment_value; 3149 lan8814_ptp_update_target(phydev, set_seconds); 3150 } else { 3151 u32 adjustment_value = (u32)(-seconds); 3152 u16 adjustment_value_lo, adjustment_value_hi; 3153 3154 if (adjustment_value > 0xF) 3155 adjustment_value = 0xF; 3156 3157 adjustment_value_lo = adjustment_value & 0xffff; 3158 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3159 3160 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3161 adjustment_value_lo); 3162 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3163 adjustment_value_hi); 3164 seconds += ((s32)adjustment_value); 3165 3166 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3167 set_seconds += adjustment_value; 3168 lan8814_ptp_update_target(phydev, set_seconds); 3169 } 3170 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3171 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3172 } 3173 if (nano_seconds) { 3174 u16 nano_seconds_lo; 3175 u16 nano_seconds_hi; 3176 3177 nano_seconds_lo = nano_seconds & 0xffff; 3178 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3179 3180 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3181 nano_seconds_lo); 3182 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3183 PTP_LTC_STEP_ADJ_DIR_ | 3184 nano_seconds_hi); 3185 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3186 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3187 } 3188 } 3189 3190 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3191 { 3192 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3193 ptp_clock_info); 3194 struct phy_device *phydev = shared->phydev; 3195 3196 mutex_lock(&shared->shared_lock); 3197 lan8814_ptp_clock_step(phydev, delta); 3198 mutex_unlock(&shared->shared_lock); 3199 3200 return 0; 3201 } 3202 3203 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3204 { 3205 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3206 ptp_clock_info); 3207 struct phy_device *phydev = shared->phydev; 3208 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3209 bool positive = true; 3210 u32 kszphy_rate_adj; 3211 3212 if (scaled_ppm < 0) { 3213 scaled_ppm = -scaled_ppm; 3214 positive = false; 3215 } 3216 3217 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3218 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3219 3220 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3221 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3222 3223 if (positive) 3224 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3225 3226 mutex_lock(&shared->shared_lock); 3227 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 3228 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 3229 mutex_unlock(&shared->shared_lock); 3230 3231 return 0; 3232 } 3233 3234 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3235 s64 period_sec, u32 period_nsec) 3236 { 3237 lanphy_write_page_reg(phydev, 4, 3238 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3239 lower_16_bits(period_sec)); 3240 lanphy_write_page_reg(phydev, 4, 3241 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3242 upper_16_bits(period_sec)); 3243 3244 lanphy_write_page_reg(phydev, 4, 3245 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3246 lower_16_bits(period_nsec)); 3247 lanphy_write_page_reg(phydev, 4, 3248 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3249 upper_16_bits(period_nsec) & 0x3fff); 3250 } 3251 3252 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3253 int pulse_width) 3254 { 3255 u16 val; 3256 3257 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3258 /* Set the pulse width of the event */ 3259 val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event)); 3260 /* Make sure that the target clock will be incremented each time when 3261 * local time reaches or pass it 3262 */ 3263 val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width); 3264 val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3265 /* Set the polarity high */ 3266 val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event); 3267 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3268 } 3269 3270 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3271 { 3272 u16 val; 3273 3274 /* Set target to too far in the future, effectively disabling it */ 3275 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3276 3277 /* And then reload once it recheas the target */ 3278 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3279 val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event); 3280 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3281 } 3282 3283 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3284 { 3285 u16 val; 3286 3287 /* Disable gpio alternate function, 3288 * 1: select as gpio, 3289 * 0: select alt func 3290 */ 3291 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3292 val |= LAN8814_GPIO_EN_BIT(pin); 3293 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3294 3295 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3296 val &= ~LAN8814_GPIO_DIR_BIT(pin); 3297 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3298 3299 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3300 val &= ~LAN8814_GPIO_BUF_BIT(pin); 3301 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3302 } 3303 3304 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3305 { 3306 int val; 3307 3308 /* Set as gpio output */ 3309 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3310 val |= LAN8814_GPIO_DIR_BIT(pin); 3311 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3312 3313 /* Enable gpio 0:for alternate function, 1:gpio */ 3314 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3315 val &= ~LAN8814_GPIO_EN_BIT(pin); 3316 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3317 3318 /* Set buffer type to push pull */ 3319 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3320 val |= LAN8814_GPIO_BUF_BIT(pin); 3321 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3322 } 3323 3324 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3325 struct ptp_clock_request *rq, int on) 3326 { 3327 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3328 ptp_clock_info); 3329 struct phy_device *phydev = shared->phydev; 3330 struct timespec64 ts_on, ts_period; 3331 s64 on_nsec, period_nsec; 3332 int pulse_width; 3333 int pin, event; 3334 3335 mutex_lock(&shared->shared_lock); 3336 event = rq->perout.index; 3337 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3338 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3339 mutex_unlock(&shared->shared_lock); 3340 return -EBUSY; 3341 } 3342 3343 if (!on) { 3344 lan8814_ptp_perout_off(phydev, pin); 3345 lan8814_ptp_disable_event(phydev, event); 3346 mutex_unlock(&shared->shared_lock); 3347 return 0; 3348 } 3349 3350 ts_on.tv_sec = rq->perout.on.sec; 3351 ts_on.tv_nsec = rq->perout.on.nsec; 3352 on_nsec = timespec64_to_ns(&ts_on); 3353 3354 ts_period.tv_sec = rq->perout.period.sec; 3355 ts_period.tv_nsec = rq->perout.period.nsec; 3356 period_nsec = timespec64_to_ns(&ts_period); 3357 3358 if (period_nsec < 200) { 3359 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3360 phydev_name(phydev)); 3361 mutex_unlock(&shared->shared_lock); 3362 return -EOPNOTSUPP; 3363 } 3364 3365 if (on_nsec >= period_nsec) { 3366 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3367 phydev_name(phydev)); 3368 mutex_unlock(&shared->shared_lock); 3369 return -EINVAL; 3370 } 3371 3372 switch (on_nsec) { 3373 case 200000000: 3374 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3375 break; 3376 case 100000000: 3377 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3378 break; 3379 case 50000000: 3380 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3381 break; 3382 case 10000000: 3383 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3384 break; 3385 case 5000000: 3386 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3387 break; 3388 case 1000000: 3389 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3390 break; 3391 case 500000: 3392 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3393 break; 3394 case 100000: 3395 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3396 break; 3397 case 50000: 3398 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3399 break; 3400 case 10000: 3401 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3402 break; 3403 case 5000: 3404 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3405 break; 3406 case 1000: 3407 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3408 break; 3409 case 500: 3410 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3411 break; 3412 case 100: 3413 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3414 break; 3415 default: 3416 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3417 phydev_name(phydev)); 3418 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3419 break; 3420 } 3421 3422 /* Configure to pulse every period */ 3423 lan8814_ptp_enable_event(phydev, event, pulse_width); 3424 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3425 rq->perout.start.nsec); 3426 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3427 rq->perout.period.nsec); 3428 lan8814_ptp_perout_on(phydev, pin); 3429 mutex_unlock(&shared->shared_lock); 3430 3431 return 0; 3432 } 3433 3434 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3435 { 3436 u16 tmp; 3437 3438 /* Set as gpio input */ 3439 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3440 tmp &= ~LAN8814_GPIO_DIR_BIT(pin); 3441 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3442 3443 /* Map the pin to ltc pin 0 of the capture map registers */ 3444 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3445 tmp |= pin; 3446 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3447 3448 /* Enable capture on the edges of the ltc pin */ 3449 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3450 if (flags & PTP_RISING_EDGE) 3451 tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0); 3452 if (flags & PTP_FALLING_EDGE) 3453 tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0); 3454 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3455 3456 /* Enable interrupt top interrupt */ 3457 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3458 tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3459 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3460 } 3461 3462 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3463 { 3464 u16 tmp; 3465 3466 /* Set as gpio out */ 3467 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3468 tmp |= LAN8814_GPIO_DIR_BIT(pin); 3469 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3470 3471 /* Enable alternate, 0:for alternate function, 1:gpio */ 3472 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3473 tmp &= ~LAN8814_GPIO_EN_BIT(pin); 3474 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp); 3475 3476 /* Clear the mapping of pin to registers 0 of the capture registers */ 3477 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3478 tmp &= ~GENMASK(3, 0); 3479 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3480 3481 /* Disable capture on both of the edges */ 3482 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3483 tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 3484 tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 3485 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3486 3487 /* Disable interrupt top interrupt */ 3488 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3489 tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3490 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3491 } 3492 3493 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3494 struct ptp_clock_request *rq, int on) 3495 { 3496 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3497 ptp_clock_info); 3498 struct phy_device *phydev = shared->phydev; 3499 int pin; 3500 3501 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3502 rq->extts.index); 3503 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3504 return -EINVAL; 3505 3506 mutex_lock(&shared->shared_lock); 3507 if (on) 3508 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3509 else 3510 lan8814_ptp_extts_off(phydev, pin); 3511 3512 mutex_unlock(&shared->shared_lock); 3513 3514 return 0; 3515 } 3516 3517 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3518 struct ptp_clock_request *rq, int on) 3519 { 3520 switch (rq->type) { 3521 case PTP_CLK_REQ_PEROUT: 3522 return lan8814_ptp_perout(ptpci, rq, on); 3523 case PTP_CLK_REQ_EXTTS: 3524 return lan8814_ptp_extts(ptpci, rq, on); 3525 default: 3526 return -EINVAL; 3527 } 3528 } 3529 3530 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3531 enum ptp_pin_function func, unsigned int chan) 3532 { 3533 switch (func) { 3534 case PTP_PF_NONE: 3535 case PTP_PF_PEROUT: 3536 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3537 * there is only chan 0 (event A) and for pin 1 there is only 3538 * chan 1 (event B) 3539 */ 3540 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3541 return -1; 3542 break; 3543 case PTP_PF_EXTTS: 3544 if (pin != LAN8814_PTP_EXTTS_NUM) 3545 return -1; 3546 break; 3547 default: 3548 return -1; 3549 } 3550 3551 return 0; 3552 } 3553 3554 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3555 { 3556 struct ptp_header *ptp_header; 3557 u32 type; 3558 3559 type = ptp_classify_raw(skb); 3560 ptp_header = ptp_parse_header(skb, type); 3561 3562 if (!ptp_header) 3563 return false; 3564 3565 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3566 return true; 3567 } 3568 3569 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3570 u32 seconds, u32 nsec, u16 seq_id) 3571 { 3572 struct skb_shared_hwtstamps shhwtstamps; 3573 struct sk_buff *skb, *skb_tmp; 3574 unsigned long flags; 3575 bool ret = false; 3576 u16 skb_sig; 3577 3578 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3579 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3580 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3581 continue; 3582 3583 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3584 continue; 3585 3586 __skb_unlink(skb, &ptp_priv->tx_queue); 3587 ret = true; 3588 break; 3589 } 3590 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3591 3592 if (ret) { 3593 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3594 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3595 skb_complete_tx_timestamp(skb, &shhwtstamps); 3596 } 3597 } 3598 3599 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3600 { 3601 struct phy_device *phydev = ptp_priv->phydev; 3602 u32 seconds, nsec; 3603 u16 seq_id; 3604 3605 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3606 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3607 } 3608 3609 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3610 { 3611 struct phy_device *phydev = ptp_priv->phydev; 3612 u32 reg; 3613 3614 do { 3615 lan8814_dequeue_tx_skb(ptp_priv); 3616 3617 /* If other timestamps are available in the FIFO, 3618 * process them. 3619 */ 3620 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3621 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 3622 } 3623 3624 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 3625 struct lan8814_ptp_rx_ts *rx_ts) 3626 { 3627 struct skb_shared_hwtstamps *shhwtstamps; 3628 struct sk_buff *skb, *skb_tmp; 3629 unsigned long flags; 3630 bool ret = false; 3631 u16 skb_sig; 3632 3633 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 3634 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 3635 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3636 continue; 3637 3638 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3639 continue; 3640 3641 __skb_unlink(skb, &ptp_priv->rx_queue); 3642 3643 ret = true; 3644 break; 3645 } 3646 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 3647 3648 if (ret) { 3649 shhwtstamps = skb_hwtstamps(skb); 3650 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3651 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 3652 netif_rx(skb); 3653 } 3654 3655 return ret; 3656 } 3657 3658 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 3659 struct lan8814_ptp_rx_ts *rx_ts) 3660 { 3661 unsigned long flags; 3662 3663 /* If we failed to match the skb add it to the queue for when 3664 * the frame will come 3665 */ 3666 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 3667 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3668 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 3669 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3670 } else { 3671 kfree(rx_ts); 3672 } 3673 } 3674 3675 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 3676 { 3677 struct phy_device *phydev = ptp_priv->phydev; 3678 struct lan8814_ptp_rx_ts *rx_ts; 3679 u32 reg; 3680 3681 do { 3682 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 3683 if (!rx_ts) 3684 return; 3685 3686 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 3687 &rx_ts->seq_id); 3688 lan8814_match_rx_ts(ptp_priv, rx_ts); 3689 3690 /* If other timestamps are available in the FIFO, 3691 * process them. 3692 */ 3693 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3694 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 3695 } 3696 3697 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 3698 { 3699 struct kszphy_priv *priv = phydev->priv; 3700 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3701 3702 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 3703 lan8814_get_tx_ts(ptp_priv); 3704 3705 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 3706 lan8814_get_rx_ts(ptp_priv); 3707 3708 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 3709 lan8814_flush_fifo(phydev, true); 3710 skb_queue_purge(&ptp_priv->tx_queue); 3711 } 3712 3713 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 3714 lan8814_flush_fifo(phydev, false); 3715 skb_queue_purge(&ptp_priv->rx_queue); 3716 } 3717 } 3718 3719 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 3720 { 3721 struct phy_device *phydev = shared->phydev; 3722 struct ptp_clock_event ptp_event = {0}; 3723 unsigned long nsec; 3724 s64 sec; 3725 u16 tmp; 3726 3727 /* This is 0 because whatever was the input pin it was mapped it to 3728 * ltc gpio pin 0 3729 */ 3730 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL); 3731 tmp |= PTP_GPIO_SEL_GPIO_SEL(0); 3732 lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp); 3733 3734 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS); 3735 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 3736 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 3737 return -1; 3738 3739 if (tmp & BIT(0)) { 3740 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP); 3741 sec <<= 16; 3742 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP); 3743 3744 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3745 nsec <<= 16; 3746 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3747 } else { 3748 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP); 3749 sec <<= 16; 3750 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP); 3751 3752 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3753 nsec <<= 16; 3754 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3755 } 3756 3757 ptp_event.index = 0; 3758 ptp_event.timestamp = ktime_set(sec, nsec); 3759 ptp_event.type = PTP_CLOCK_EXTTS; 3760 ptp_clock_event(shared->ptp_clock, &ptp_event); 3761 3762 return 0; 3763 } 3764 3765 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 3766 { 3767 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 3768 int ret; 3769 3770 mutex_lock(&shared->shared_lock); 3771 ret = lan8814_gpio_process_cap(shared); 3772 mutex_unlock(&shared->shared_lock); 3773 3774 return ret; 3775 } 3776 3777 static int lan8804_config_init(struct phy_device *phydev) 3778 { 3779 int val; 3780 3781 /* MDI-X setting for swap A,B transmit */ 3782 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 3783 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 3784 val |= LAN8804_ALIGN_TX_A_B_SWAP; 3785 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 3786 3787 /* Make sure that the PHY will not stop generating the clock when the 3788 * link partner goes down 3789 */ 3790 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 3791 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 3792 3793 return 0; 3794 } 3795 3796 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 3797 { 3798 int status; 3799 3800 status = phy_read(phydev, LAN8814_INTS); 3801 if (status < 0) { 3802 phy_error(phydev); 3803 return IRQ_NONE; 3804 } 3805 3806 if (status > 0) 3807 phy_trigger_machine(phydev); 3808 3809 return IRQ_HANDLED; 3810 } 3811 3812 #define LAN8804_OUTPUT_CONTROL 25 3813 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 3814 #define LAN8804_CONTROL 31 3815 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 3816 3817 static int lan8804_config_intr(struct phy_device *phydev) 3818 { 3819 int err; 3820 3821 /* This is an internal PHY of lan966x and is not possible to change the 3822 * polarity on the GIC found in lan966x, therefore change the polarity 3823 * of the interrupt in the PHY from being active low instead of active 3824 * high. 3825 */ 3826 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3827 3828 /* By default interrupt buffer is open-drain in which case the interrupt 3829 * can be active only low. Therefore change the interrupt buffer to be 3830 * push-pull to be able to change interrupt polarity 3831 */ 3832 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3833 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3834 3835 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3836 err = phy_read(phydev, LAN8814_INTS); 3837 if (err < 0) 3838 return err; 3839 3840 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3841 if (err) 3842 return err; 3843 } else { 3844 err = phy_write(phydev, LAN8814_INTC, 0); 3845 if (err) 3846 return err; 3847 3848 err = phy_read(phydev, LAN8814_INTS); 3849 if (err < 0) 3850 return err; 3851 } 3852 3853 return 0; 3854 } 3855 3856 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3857 { 3858 int ret = IRQ_NONE; 3859 int irq_status; 3860 3861 irq_status = phy_read(phydev, LAN8814_INTS); 3862 if (irq_status < 0) { 3863 phy_error(phydev); 3864 return IRQ_NONE; 3865 } 3866 3867 if (irq_status & LAN8814_INT_LINK) { 3868 phy_trigger_machine(phydev); 3869 ret = IRQ_HANDLED; 3870 } 3871 3872 while (true) { 3873 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 3874 if (!irq_status) 3875 break; 3876 3877 lan8814_handle_ptp_interrupt(phydev, irq_status); 3878 ret = IRQ_HANDLED; 3879 } 3880 3881 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 3882 ret = IRQ_HANDLED; 3883 3884 return ret; 3885 } 3886 3887 static int lan8814_ack_interrupt(struct phy_device *phydev) 3888 { 3889 /* bit[12..0] int status, which is a read and clear register. */ 3890 int rc; 3891 3892 rc = phy_read(phydev, LAN8814_INTS); 3893 3894 return (rc < 0) ? rc : 0; 3895 } 3896 3897 static int lan8814_config_intr(struct phy_device *phydev) 3898 { 3899 int err; 3900 3901 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 3902 LAN8814_INTR_CTRL_REG_POLARITY | 3903 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 3904 3905 /* enable / disable interrupts */ 3906 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3907 err = lan8814_ack_interrupt(phydev); 3908 if (err) 3909 return err; 3910 3911 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3912 } else { 3913 err = phy_write(phydev, LAN8814_INTC, 0); 3914 if (err) 3915 return err; 3916 3917 err = lan8814_ack_interrupt(phydev); 3918 } 3919 3920 return err; 3921 } 3922 3923 static void lan8814_ptp_init(struct phy_device *phydev) 3924 { 3925 struct kszphy_priv *priv = phydev->priv; 3926 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3927 u32 temp; 3928 3929 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 3930 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 3931 return; 3932 3933 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 3934 3935 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 3936 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3937 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 3938 3939 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 3940 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3941 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 3942 3943 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 3944 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 3945 3946 /* Removing default registers configs related to L2 and IP */ 3947 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 3948 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 3949 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 3950 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 3951 3952 /* Disable checking for minorVersionPTP field */ 3953 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION, 3954 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 3955 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION, 3956 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 3957 3958 skb_queue_head_init(&ptp_priv->tx_queue); 3959 skb_queue_head_init(&ptp_priv->rx_queue); 3960 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 3961 spin_lock_init(&ptp_priv->rx_ts_lock); 3962 3963 ptp_priv->phydev = phydev; 3964 3965 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 3966 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 3967 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 3968 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 3969 3970 phydev->mii_ts = &ptp_priv->mii_ts; 3971 3972 /* Timestamp selected by default to keep legacy API */ 3973 phydev->default_timestamp = true; 3974 } 3975 3976 static int lan8814_ptp_probe_once(struct phy_device *phydev) 3977 { 3978 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 3979 3980 /* Initialise shared lock for clock*/ 3981 mutex_init(&shared->shared_lock); 3982 3983 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 3984 LAN8814_PTP_GPIO_NUM, 3985 sizeof(*shared->pin_config), 3986 GFP_KERNEL); 3987 if (!shared->pin_config) 3988 return -ENOMEM; 3989 3990 for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) { 3991 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 3992 3993 memset(ptp_pin, 0, sizeof(*ptp_pin)); 3994 snprintf(ptp_pin->name, 3995 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i); 3996 ptp_pin->index = i; 3997 ptp_pin->func = PTP_PF_NONE; 3998 } 3999 4000 shared->ptp_clock_info.owner = THIS_MODULE; 4001 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 4002 shared->ptp_clock_info.max_adj = 31249999; 4003 shared->ptp_clock_info.n_alarm = 0; 4004 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 4005 shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM; 4006 shared->ptp_clock_info.pps = 0; 4007 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 4008 PTP_FALLING_EDGE | 4009 PTP_STRICT_FLAGS; 4010 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 4011 shared->ptp_clock_info.pin_config = shared->pin_config; 4012 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 4013 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 4014 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 4015 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 4016 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 4017 shared->ptp_clock_info.getcrosststamp = NULL; 4018 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 4019 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 4020 4021 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 4022 &phydev->mdio.dev); 4023 if (IS_ERR(shared->ptp_clock)) { 4024 phydev_err(phydev, "ptp_clock_register failed %lu\n", 4025 PTR_ERR(shared->ptp_clock)); 4026 return -EINVAL; 4027 } 4028 4029 /* Check if PHC support is missing at the configuration level */ 4030 if (!shared->ptp_clock) 4031 return 0; 4032 4033 phydev_dbg(phydev, "successfully registered ptp clock\n"); 4034 4035 shared->phydev = phydev; 4036 4037 /* The EP.4 is shared between all the PHYs in the package and also it 4038 * can be accessed by any of the PHYs 4039 */ 4040 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 4041 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 4042 PTP_OPERATING_MODE_STANDALONE_); 4043 4044 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 4045 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_); 4046 4047 return 0; 4048 } 4049 4050 static void lan8814_setup_led(struct phy_device *phydev, int val) 4051 { 4052 int temp; 4053 4054 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 4055 4056 if (val) 4057 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4058 else 4059 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4060 4061 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 4062 } 4063 4064 static int lan8814_config_init(struct phy_device *phydev) 4065 { 4066 struct kszphy_priv *lan8814 = phydev->priv; 4067 int val; 4068 4069 /* Reset the PHY */ 4070 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 4071 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 4072 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 4073 4074 /* Disable ANEG with QSGMII PCS Host side */ 4075 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 4076 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 4077 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 4078 4079 /* MDI-X setting for swap A,B transmit */ 4080 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 4081 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 4082 val |= LAN8814_ALIGN_TX_A_B_SWAP; 4083 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 4084 4085 if (lan8814->led_mode >= 0) 4086 lan8814_setup_led(phydev, lan8814->led_mode); 4087 4088 return 0; 4089 } 4090 4091 /* It is expected that there will not be any 'lan8814_take_coma_mode' 4092 * function called in suspend. Because the GPIO line can be shared, so if one of 4093 * the phys goes back in coma mode, then all the other PHYs will go, which is 4094 * wrong. 4095 */ 4096 static int lan8814_release_coma_mode(struct phy_device *phydev) 4097 { 4098 struct gpio_desc *gpiod; 4099 4100 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4101 GPIOD_OUT_HIGH_OPEN_DRAIN | 4102 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4103 if (IS_ERR(gpiod)) 4104 return PTR_ERR(gpiod); 4105 4106 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4107 gpiod_set_value_cansleep(gpiod, 0); 4108 4109 return 0; 4110 } 4111 4112 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4113 { 4114 u16 val; 4115 4116 /* It was noticed that when traffic is passing through the PHY and the 4117 * cable is removed then the LED was still one even though there is no 4118 * link 4119 */ 4120 val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE); 4121 val &= ~LAN8814_EEE_STATE_MASK2P5P; 4122 lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val); 4123 } 4124 4125 static void lan8814_update_meas_time(struct phy_device *phydev) 4126 { 4127 u16 val; 4128 4129 /* By setting the measure time to a value of 0xb this will allow cables 4130 * longer than 100m to be used. This configuration can be used 4131 * regardless of the mode of operation of the PHY 4132 */ 4133 val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS); 4134 val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK; 4135 val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL; 4136 lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val); 4137 } 4138 4139 static int lan8814_probe(struct phy_device *phydev) 4140 { 4141 const struct kszphy_type *type = phydev->drv->driver_data; 4142 struct kszphy_priv *priv; 4143 u16 addr; 4144 int err; 4145 4146 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4147 if (!priv) 4148 return -ENOMEM; 4149 4150 phydev->priv = priv; 4151 4152 priv->type = type; 4153 4154 kszphy_parse_led_mode(phydev); 4155 4156 /* Strap-in value for PHY address, below register read gives starting 4157 * phy address value 4158 */ 4159 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 4160 devm_phy_package_join(&phydev->mdio.dev, phydev, 4161 addr, sizeof(struct lan8814_shared_priv)); 4162 4163 if (phy_package_init_once(phydev)) { 4164 err = lan8814_release_coma_mode(phydev); 4165 if (err) 4166 return err; 4167 4168 err = lan8814_ptp_probe_once(phydev); 4169 if (err) 4170 return err; 4171 } 4172 4173 lan8814_ptp_init(phydev); 4174 4175 /* Errata workarounds */ 4176 lan8814_clear_2psp_bit(phydev); 4177 lan8814_update_meas_time(phydev); 4178 4179 return 0; 4180 } 4181 4182 #define LAN8841_MMD_TIMER_REG 0 4183 #define LAN8841_MMD0_REGISTER_17 17 4184 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4185 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4186 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4187 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4188 #define LAN8841_MMD_ANALOG_REG 28 4189 #define LAN8841_ANALOG_CONTROL_1 1 4190 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4191 #define LAN8841_ANALOG_CONTROL_10 13 4192 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4193 #define LAN8841_ANALOG_CONTROL_11 14 4194 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4195 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4196 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4197 #define LAN8841_BTRX_POWER_DOWN 70 4198 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4199 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4200 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4201 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4202 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4203 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4204 #define LAN8841_ADC_CHANNEL_MASK 198 4205 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4206 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4207 #define LAN8841_PTP_RX_VERSION 374 4208 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4209 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4210 #define LAN8841_PTP_TX_VERSION 438 4211 #define LAN8841_PTP_CMD_CTL 256 4212 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4213 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4214 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4215 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4216 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4217 #define LAN8841_PTP_RX_MODE 381 4218 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4219 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4220 4221 static int lan8841_config_init(struct phy_device *phydev) 4222 { 4223 int ret; 4224 4225 ret = ksz9131_config_init(phydev); 4226 if (ret) 4227 return ret; 4228 4229 /* Initialize the HW by resetting everything */ 4230 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4231 LAN8841_PTP_CMD_CTL, 4232 LAN8841_PTP_CMD_CTL_PTP_RESET, 4233 LAN8841_PTP_CMD_CTL_PTP_RESET); 4234 4235 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4236 LAN8841_PTP_CMD_CTL, 4237 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4238 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4239 4240 /* Don't process any frames */ 4241 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4242 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4243 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4244 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4245 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4246 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4247 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4248 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4249 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4250 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4251 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4252 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4253 4254 /* Disable checking for minorVersionPTP field */ 4255 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4256 LAN8841_PTP_RX_VERSION, 0xff00); 4257 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4258 LAN8841_PTP_TX_VERSION, 0xff00); 4259 4260 /* 100BT Clause 40 improvenent errata */ 4261 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4262 LAN8841_ANALOG_CONTROL_1, 4263 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4264 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4265 LAN8841_ANALOG_CONTROL_10, 4266 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4267 4268 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4269 * Magnetics 4270 */ 4271 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4272 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4273 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4274 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4275 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4276 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4277 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4278 LAN8841_BTRX_POWER_DOWN, 4279 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4280 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4281 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4282 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4283 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4284 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4285 } 4286 4287 /* LDO Adjustment errata */ 4288 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4289 LAN8841_ANALOG_CONTROL_11, 4290 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4291 4292 /* 100BT RGMII latency tuning errata */ 4293 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4294 LAN8841_ADC_CHANNEL_MASK, 0x0); 4295 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4296 LAN8841_MMD0_REGISTER_17, 4297 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4298 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4299 4300 return 0; 4301 } 4302 4303 #define LAN8841_OUTPUT_CTRL 25 4304 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4305 #define LAN8841_INT_PTP BIT(9) 4306 4307 static int lan8841_config_intr(struct phy_device *phydev) 4308 { 4309 int err; 4310 4311 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4312 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4313 4314 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4315 err = phy_read(phydev, LAN8814_INTS); 4316 if (err < 0) 4317 return err; 4318 4319 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4320 * even if it PTP is not enabled. Because the underneath blocks 4321 * will not enable the PTP so we will never get the PTP 4322 * interrupt. 4323 */ 4324 err = phy_write(phydev, LAN8814_INTC, 4325 LAN8814_INT_LINK | LAN8841_INT_PTP); 4326 } else { 4327 err = phy_write(phydev, LAN8814_INTC, 0); 4328 if (err) 4329 return err; 4330 4331 err = phy_read(phydev, LAN8814_INTS); 4332 if (err < 0) 4333 return err; 4334 4335 /* Getting a positive value doesn't mean that is an error, it 4336 * just indicates what was the status. Therefore make sure to 4337 * clear the value and say that there is no error. 4338 */ 4339 err = 0; 4340 } 4341 4342 return err; 4343 } 4344 4345 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4346 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4347 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4348 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4349 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4350 #define LAN8841_PTP_TX_MSG_HEADER2 455 4351 4352 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4353 u32 *sec, u32 *nsec, u16 *seq) 4354 { 4355 struct phy_device *phydev = ptp_priv->phydev; 4356 4357 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4358 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4359 return false; 4360 4361 *nsec = ((*nsec & 0x3fff) << 16); 4362 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4363 4364 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4365 *sec = *sec << 16; 4366 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4367 4368 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4369 4370 return true; 4371 } 4372 4373 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4374 { 4375 u32 sec, nsec; 4376 u16 seq; 4377 4378 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4379 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4380 } 4381 4382 #define LAN8841_PTP_INT_STS 259 4383 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4384 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4385 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4386 4387 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4388 { 4389 struct phy_device *phydev = ptp_priv->phydev; 4390 int i; 4391 4392 for (i = 0; i < FIFO_SIZE; ++i) 4393 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4394 4395 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4396 } 4397 4398 #define LAN8841_PTP_GPIO_CAP_STS 506 4399 #define LAN8841_PTP_GPIO_SEL 327 4400 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4401 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4402 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4403 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4404 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4405 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4406 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4407 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4408 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4409 4410 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4411 { 4412 struct phy_device *phydev = ptp_priv->phydev; 4413 struct ptp_clock_event ptp_event = {0}; 4414 int pin, ret, tmp; 4415 s32 sec, nsec; 4416 4417 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4418 if (pin == -1) 4419 return; 4420 4421 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4422 if (tmp < 0) 4423 return; 4424 4425 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4426 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4427 if (ret) 4428 return; 4429 4430 mutex_lock(&ptp_priv->ptp_lock); 4431 if (tmp & BIT(pin)) { 4432 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4433 sec <<= 16; 4434 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4435 4436 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4437 nsec <<= 16; 4438 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4439 } else { 4440 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4441 sec <<= 16; 4442 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4443 4444 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4445 nsec <<= 16; 4446 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4447 } 4448 mutex_unlock(&ptp_priv->ptp_lock); 4449 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4450 if (ret) 4451 return; 4452 4453 ptp_event.index = 0; 4454 ptp_event.timestamp = ktime_set(sec, nsec); 4455 ptp_event.type = PTP_CLOCK_EXTTS; 4456 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4457 } 4458 4459 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4460 { 4461 struct kszphy_priv *priv = phydev->priv; 4462 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4463 u16 status; 4464 4465 do { 4466 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4467 4468 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4469 lan8841_ptp_process_tx_ts(ptp_priv); 4470 4471 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4472 lan8841_gpio_process_cap(ptp_priv); 4473 4474 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4475 lan8841_ptp_flush_fifo(ptp_priv); 4476 skb_queue_purge(&ptp_priv->tx_queue); 4477 } 4478 4479 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4480 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4481 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4482 } 4483 4484 #define LAN8841_INTS_PTP BIT(9) 4485 4486 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4487 { 4488 irqreturn_t ret = IRQ_NONE; 4489 int irq_status; 4490 4491 irq_status = phy_read(phydev, LAN8814_INTS); 4492 if (irq_status < 0) { 4493 phy_error(phydev); 4494 return IRQ_NONE; 4495 } 4496 4497 if (irq_status & LAN8814_INT_LINK) { 4498 phy_trigger_machine(phydev); 4499 ret = IRQ_HANDLED; 4500 } 4501 4502 if (irq_status & LAN8841_INTS_PTP) { 4503 lan8841_handle_ptp_interrupt(phydev); 4504 ret = IRQ_HANDLED; 4505 } 4506 4507 return ret; 4508 } 4509 4510 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4511 struct kernel_ethtool_ts_info *info) 4512 { 4513 struct kszphy_ptp_priv *ptp_priv; 4514 4515 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4516 4517 info->phc_index = ptp_priv->ptp_clock ? 4518 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4519 if (info->phc_index == -1) 4520 return 0; 4521 4522 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4523 SOF_TIMESTAMPING_RX_HARDWARE | 4524 SOF_TIMESTAMPING_RAW_HARDWARE; 4525 4526 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4527 (1 << HWTSTAMP_TX_ON) | 4528 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4529 4530 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4531 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4532 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4533 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4534 4535 return 0; 4536 } 4537 4538 #define LAN8841_PTP_INT_EN 260 4539 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4540 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4541 4542 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 4543 bool enable) 4544 { 4545 struct phy_device *phydev = ptp_priv->phydev; 4546 4547 if (enable) { 4548 /* Enable interrupts on the TX side */ 4549 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4550 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4551 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 4552 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4553 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 4554 4555 /* Enable the modification of the frame on RX side, 4556 * this will add the ns and 2 bits of sec in the reserved field 4557 * of the PTP header 4558 */ 4559 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4560 LAN8841_PTP_RX_MODE, 4561 LAN8841_PTP_INSERT_TS_EN | 4562 LAN8841_PTP_INSERT_TS_32BIT, 4563 LAN8841_PTP_INSERT_TS_EN | 4564 LAN8841_PTP_INSERT_TS_32BIT); 4565 4566 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 4567 } else { 4568 /* Disable interrupts on the TX side */ 4569 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4570 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4571 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 4572 4573 /* Disable modification of the RX frames */ 4574 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4575 LAN8841_PTP_RX_MODE, 4576 LAN8841_PTP_INSERT_TS_EN | 4577 LAN8841_PTP_INSERT_TS_32BIT, 0); 4578 4579 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4580 } 4581 } 4582 4583 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 4584 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 4585 #define LAN8841_PTP_TX_MOD 445 4586 4587 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 4588 struct kernel_hwtstamp_config *config, 4589 struct netlink_ext_ack *extack) 4590 { 4591 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4592 struct phy_device *phydev = ptp_priv->phydev; 4593 int txcfg = 0, rxcfg = 0; 4594 int pkt_ts_enable; 4595 4596 ptp_priv->hwts_tx_type = config->tx_type; 4597 ptp_priv->rx_filter = config->rx_filter; 4598 4599 switch (config->rx_filter) { 4600 case HWTSTAMP_FILTER_NONE: 4601 ptp_priv->layer = 0; 4602 ptp_priv->version = 0; 4603 break; 4604 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 4605 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 4606 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 4607 ptp_priv->layer = PTP_CLASS_L4; 4608 ptp_priv->version = PTP_CLASS_V2; 4609 break; 4610 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 4611 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 4612 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 4613 ptp_priv->layer = PTP_CLASS_L2; 4614 ptp_priv->version = PTP_CLASS_V2; 4615 break; 4616 case HWTSTAMP_FILTER_PTP_V2_EVENT: 4617 case HWTSTAMP_FILTER_PTP_V2_SYNC: 4618 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 4619 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 4620 ptp_priv->version = PTP_CLASS_V2; 4621 break; 4622 default: 4623 return -ERANGE; 4624 } 4625 4626 /* Setup parsing of the frames and enable the timestamping for ptp 4627 * frames 4628 */ 4629 if (ptp_priv->layer & PTP_CLASS_L2) { 4630 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 4631 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 4632 } else if (ptp_priv->layer & PTP_CLASS_L4) { 4633 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 4634 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 4635 } 4636 4637 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 4638 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 4639 4640 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 4641 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 4642 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 4643 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 4644 4645 /* Enable / disable of the TX timestamp in the SYNC frames */ 4646 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 4647 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 4648 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 4649 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 4650 4651 /* Now enable/disable the timestamping */ 4652 lan8841_ptp_enable_processing(ptp_priv, 4653 config->rx_filter != HWTSTAMP_FILTER_NONE); 4654 4655 skb_queue_purge(&ptp_priv->tx_queue); 4656 4657 lan8841_ptp_flush_fifo(ptp_priv); 4658 4659 return 0; 4660 } 4661 4662 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 4663 struct sk_buff *skb, int type) 4664 { 4665 struct kszphy_ptp_priv *ptp_priv = 4666 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4667 struct ptp_header *header = ptp_parse_header(skb, type); 4668 struct skb_shared_hwtstamps *shhwtstamps; 4669 struct timespec64 ts; 4670 unsigned long flags; 4671 u32 ts_header; 4672 4673 if (!header) 4674 return false; 4675 4676 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 4677 type == PTP_CLASS_NONE) 4678 return false; 4679 4680 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 4681 return false; 4682 4683 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4684 ts.tv_sec = ptp_priv->seconds; 4685 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4686 ts_header = __be32_to_cpu(header->reserved2); 4687 4688 shhwtstamps = skb_hwtstamps(skb); 4689 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4690 4691 /* Check for any wrap arounds for the second part */ 4692 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 4693 ts.tv_sec -= GENMASK(1, 0) + 1; 4694 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 4695 ts.tv_sec += 1; 4696 4697 shhwtstamps->hwtstamp = 4698 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 4699 ts_header & GENMASK(29, 0)); 4700 header->reserved2 = 0; 4701 4702 netif_rx(skb); 4703 4704 return true; 4705 } 4706 4707 #define LAN8841_EVENT_A 0 4708 #define LAN8841_EVENT_B 1 4709 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 4710 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 4711 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 4712 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 4713 4714 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 4715 s64 sec, u32 nsec) 4716 { 4717 struct phy_device *phydev = ptp_priv->phydev; 4718 int ret; 4719 4720 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 4721 upper_16_bits(sec)); 4722 if (ret) 4723 return ret; 4724 4725 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 4726 lower_16_bits(sec)); 4727 if (ret) 4728 return ret; 4729 4730 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 4731 upper_16_bits(nsec)); 4732 if (ret) 4733 return ret; 4734 4735 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 4736 lower_16_bits(nsec)); 4737 } 4738 4739 #define LAN8841_BUFFER_TIME 2 4740 4741 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 4742 const struct timespec64 *ts) 4743 { 4744 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 4745 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 4746 } 4747 4748 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 4749 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 4750 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 4751 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 4752 4753 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 4754 s64 sec, u32 nsec) 4755 { 4756 struct phy_device *phydev = ptp_priv->phydev; 4757 int ret; 4758 4759 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 4760 upper_16_bits(sec)); 4761 if (ret) 4762 return ret; 4763 4764 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 4765 lower_16_bits(sec)); 4766 if (ret) 4767 return ret; 4768 4769 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 4770 upper_16_bits(nsec)); 4771 if (ret) 4772 return ret; 4773 4774 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 4775 lower_16_bits(nsec)); 4776 } 4777 4778 #define LAN8841_PTP_LTC_SET_SEC_HI 262 4779 #define LAN8841_PTP_LTC_SET_SEC_MID 263 4780 #define LAN8841_PTP_LTC_SET_SEC_LO 264 4781 #define LAN8841_PTP_LTC_SET_NS_HI 265 4782 #define LAN8841_PTP_LTC_SET_NS_LO 266 4783 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 4784 4785 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 4786 const struct timespec64 *ts) 4787 { 4788 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4789 ptp_clock_info); 4790 struct phy_device *phydev = ptp_priv->phydev; 4791 unsigned long flags; 4792 int ret; 4793 4794 /* Set the value to be stored */ 4795 mutex_lock(&ptp_priv->ptp_lock); 4796 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 4797 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 4798 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 4799 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 4800 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 4801 4802 /* Set the command to load the LTC */ 4803 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4804 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 4805 ret = lan8841_ptp_update_target(ptp_priv, ts); 4806 mutex_unlock(&ptp_priv->ptp_lock); 4807 4808 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4809 ptp_priv->seconds = ts->tv_sec; 4810 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4811 4812 return ret; 4813 } 4814 4815 #define LAN8841_PTP_LTC_RD_SEC_HI 358 4816 #define LAN8841_PTP_LTC_RD_SEC_MID 359 4817 #define LAN8841_PTP_LTC_RD_SEC_LO 360 4818 #define LAN8841_PTP_LTC_RD_NS_HI 361 4819 #define LAN8841_PTP_LTC_RD_NS_LO 362 4820 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 4821 4822 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 4823 struct timespec64 *ts) 4824 { 4825 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4826 ptp_clock_info); 4827 struct phy_device *phydev = ptp_priv->phydev; 4828 time64_t s; 4829 s64 ns; 4830 4831 mutex_lock(&ptp_priv->ptp_lock); 4832 /* Issue the command to read the LTC */ 4833 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4834 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4835 4836 /* Read the LTC */ 4837 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4838 s <<= 16; 4839 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4840 s <<= 16; 4841 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4842 4843 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 4844 ns <<= 16; 4845 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 4846 mutex_unlock(&ptp_priv->ptp_lock); 4847 4848 set_normalized_timespec64(ts, s, ns); 4849 return 0; 4850 } 4851 4852 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 4853 struct timespec64 *ts) 4854 { 4855 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4856 ptp_clock_info); 4857 struct phy_device *phydev = ptp_priv->phydev; 4858 time64_t s; 4859 4860 mutex_lock(&ptp_priv->ptp_lock); 4861 /* Issue the command to read the LTC */ 4862 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4863 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4864 4865 /* Read the LTC */ 4866 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4867 s <<= 16; 4868 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4869 s <<= 16; 4870 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4871 mutex_unlock(&ptp_priv->ptp_lock); 4872 4873 set_normalized_timespec64(ts, s, 0); 4874 } 4875 4876 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 4877 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 4878 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 4879 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 4880 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 4881 4882 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 4883 { 4884 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4885 ptp_clock_info); 4886 struct phy_device *phydev = ptp_priv->phydev; 4887 struct timespec64 ts; 4888 bool add = true; 4889 u32 nsec; 4890 s32 sec; 4891 int ret; 4892 4893 /* The HW allows up to 15 sec to adjust the time, but here we limit to 4894 * 10 sec the adjustment. The reason is, in case the adjustment is 14 4895 * sec and 999999999 nsec, then we add 8ns to compansate the actual 4896 * increment so the value can be bigger than 15 sec. Therefore limit the 4897 * possible adjustments so we will not have these corner cases 4898 */ 4899 if (delta > 10000000000LL || delta < -10000000000LL) { 4900 /* The timeadjustment is too big, so fall back using set time */ 4901 u64 now; 4902 4903 ptp->gettime64(ptp, &ts); 4904 4905 now = ktime_to_ns(timespec64_to_ktime(ts)); 4906 ts = ns_to_timespec64(now + delta); 4907 4908 ptp->settime64(ptp, &ts); 4909 return 0; 4910 } 4911 4912 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 4913 if (delta < 0 && nsec != 0) { 4914 /* It is not allowed to adjust low the nsec part, therefore 4915 * subtract more from second part and add to nanosecond such 4916 * that would roll over, so the second part will increase 4917 */ 4918 sec--; 4919 nsec = NSEC_PER_SEC - nsec; 4920 } 4921 4922 /* Calculate the adjustments and the direction */ 4923 if (delta < 0) 4924 add = false; 4925 4926 if (nsec > 0) 4927 /* add 8 ns to cover the likely normal increment */ 4928 nsec += 8; 4929 4930 if (nsec >= NSEC_PER_SEC) { 4931 /* carry into seconds */ 4932 sec++; 4933 nsec -= NSEC_PER_SEC; 4934 } 4935 4936 mutex_lock(&ptp_priv->ptp_lock); 4937 if (sec) { 4938 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 4939 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4940 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 4941 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4942 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 4943 } 4944 4945 if (nsec) { 4946 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 4947 nsec & 0xffff); 4948 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4949 (nsec >> 16) & 0x3fff); 4950 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4951 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 4952 } 4953 mutex_unlock(&ptp_priv->ptp_lock); 4954 4955 /* Update the target clock */ 4956 ptp->gettime64(ptp, &ts); 4957 mutex_lock(&ptp_priv->ptp_lock); 4958 ret = lan8841_ptp_update_target(ptp_priv, &ts); 4959 mutex_unlock(&ptp_priv->ptp_lock); 4960 4961 return ret; 4962 } 4963 4964 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 4965 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 4966 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 4967 4968 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 4969 { 4970 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4971 ptp_clock_info); 4972 struct phy_device *phydev = ptp_priv->phydev; 4973 bool faster = true; 4974 u32 rate; 4975 4976 if (!scaled_ppm) 4977 return 0; 4978 4979 if (scaled_ppm < 0) { 4980 scaled_ppm = -scaled_ppm; 4981 faster = false; 4982 } 4983 4984 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 4985 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 4986 4987 mutex_lock(&ptp_priv->ptp_lock); 4988 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 4989 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 4990 : upper_16_bits(rate) & 0x3fff); 4991 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 4992 mutex_unlock(&ptp_priv->ptp_lock); 4993 4994 return 0; 4995 } 4996 4997 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 4998 enum ptp_pin_function func, unsigned int chan) 4999 { 5000 switch (func) { 5001 case PTP_PF_NONE: 5002 case PTP_PF_PEROUT: 5003 case PTP_PF_EXTTS: 5004 break; 5005 default: 5006 return -1; 5007 } 5008 5009 return 0; 5010 } 5011 5012 #define LAN8841_PTP_GPIO_NUM 10 5013 #define LAN8841_GPIO_EN 128 5014 #define LAN8841_GPIO_DIR 129 5015 #define LAN8841_GPIO_BUF 130 5016 5017 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5018 { 5019 struct phy_device *phydev = ptp_priv->phydev; 5020 int ret; 5021 5022 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5023 if (ret) 5024 return ret; 5025 5026 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5027 if (ret) 5028 return ret; 5029 5030 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5031 } 5032 5033 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 5034 { 5035 struct phy_device *phydev = ptp_priv->phydev; 5036 int ret; 5037 5038 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5039 if (ret) 5040 return ret; 5041 5042 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5043 if (ret) 5044 return ret; 5045 5046 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5047 } 5048 5049 #define LAN8841_GPIO_DATA_SEL1 131 5050 #define LAN8841_GPIO_DATA_SEL2 132 5051 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 5052 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 5053 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 5054 #define LAN8841_PTP_GENERAL_CONFIG 257 5055 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 5056 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 5057 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 5058 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 5059 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 5060 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 5061 5062 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5063 u8 event) 5064 { 5065 struct phy_device *phydev = ptp_priv->phydev; 5066 u16 tmp; 5067 int ret; 5068 5069 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 5070 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5071 * depending on the pin, it requires to read a different register 5072 */ 5073 if (pin < 5) { 5074 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 5075 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 5076 } else { 5077 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 5078 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 5079 } 5080 if (ret) 5081 return ret; 5082 5083 /* Disable the event */ 5084 if (event == LAN8841_EVENT_A) 5085 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5086 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 5087 else 5088 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5089 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 5090 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5091 } 5092 5093 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5094 u8 event, int pulse_width) 5095 { 5096 struct phy_device *phydev = ptp_priv->phydev; 5097 u16 tmp; 5098 int ret; 5099 5100 /* Enable the event */ 5101 if (event == LAN8841_EVENT_A) 5102 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5103 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5104 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5105 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5106 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5107 else 5108 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5109 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5110 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5111 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5112 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5113 if (ret) 5114 return ret; 5115 5116 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5117 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5118 * depending on the pin, it requires to read a different register 5119 */ 5120 if (event == LAN8841_EVENT_A) 5121 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5122 else 5123 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5124 5125 if (pin < 5) 5126 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5127 tmp << (3 * pin)); 5128 else 5129 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5130 tmp << (3 * (pin - 5))); 5131 5132 return ret; 5133 } 5134 5135 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5136 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5137 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5138 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5139 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5140 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5141 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5142 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5143 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5144 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5145 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5146 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5147 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5148 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5149 5150 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5151 struct ptp_clock_request *rq, int on) 5152 { 5153 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5154 ptp_clock_info); 5155 struct phy_device *phydev = ptp_priv->phydev; 5156 struct timespec64 ts_on, ts_period; 5157 s64 on_nsec, period_nsec; 5158 int pulse_width; 5159 int pin; 5160 int ret; 5161 5162 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5163 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5164 return -EINVAL; 5165 5166 if (!on) { 5167 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5168 if (ret) 5169 return ret; 5170 5171 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5172 } 5173 5174 ts_on.tv_sec = rq->perout.on.sec; 5175 ts_on.tv_nsec = rq->perout.on.nsec; 5176 on_nsec = timespec64_to_ns(&ts_on); 5177 5178 ts_period.tv_sec = rq->perout.period.sec; 5179 ts_period.tv_nsec = rq->perout.period.nsec; 5180 period_nsec = timespec64_to_ns(&ts_period); 5181 5182 if (period_nsec < 200) { 5183 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5184 phydev_name(phydev)); 5185 return -EOPNOTSUPP; 5186 } 5187 5188 if (on_nsec >= period_nsec) { 5189 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5190 phydev_name(phydev)); 5191 return -EINVAL; 5192 } 5193 5194 switch (on_nsec) { 5195 case 200000000: 5196 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5197 break; 5198 case 100000000: 5199 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5200 break; 5201 case 50000000: 5202 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5203 break; 5204 case 10000000: 5205 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5206 break; 5207 case 5000000: 5208 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5209 break; 5210 case 1000000: 5211 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5212 break; 5213 case 500000: 5214 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5215 break; 5216 case 100000: 5217 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5218 break; 5219 case 50000: 5220 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5221 break; 5222 case 10000: 5223 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5224 break; 5225 case 5000: 5226 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5227 break; 5228 case 1000: 5229 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5230 break; 5231 case 500: 5232 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5233 break; 5234 case 100: 5235 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5236 break; 5237 default: 5238 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5239 phydev_name(phydev)); 5240 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5241 break; 5242 } 5243 5244 mutex_lock(&ptp_priv->ptp_lock); 5245 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5246 rq->perout.start.nsec); 5247 mutex_unlock(&ptp_priv->ptp_lock); 5248 if (ret) 5249 return ret; 5250 5251 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5252 rq->perout.period.nsec); 5253 if (ret) 5254 return ret; 5255 5256 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5257 pulse_width); 5258 if (ret) 5259 return ret; 5260 5261 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5262 if (ret) 5263 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5264 5265 return ret; 5266 } 5267 5268 #define LAN8841_PTP_GPIO_CAP_EN 496 5269 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5270 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5271 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5272 5273 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5274 u32 flags) 5275 { 5276 struct phy_device *phydev = ptp_priv->phydev; 5277 u16 tmp = 0; 5278 int ret; 5279 5280 /* Set GPIO to be intput */ 5281 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5282 if (ret) 5283 return ret; 5284 5285 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5286 if (ret) 5287 return ret; 5288 5289 /* Enable capture on the edges of the pin */ 5290 if (flags & PTP_RISING_EDGE) 5291 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5292 if (flags & PTP_FALLING_EDGE) 5293 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5294 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5295 if (ret) 5296 return ret; 5297 5298 /* Enable interrupt */ 5299 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5300 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5301 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5302 } 5303 5304 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5305 { 5306 struct phy_device *phydev = ptp_priv->phydev; 5307 int ret; 5308 5309 /* Set GPIO to be output */ 5310 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5311 if (ret) 5312 return ret; 5313 5314 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5315 if (ret) 5316 return ret; 5317 5318 /* Disable capture on both of the edges */ 5319 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5320 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5321 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5322 0); 5323 if (ret) 5324 return ret; 5325 5326 /* Disable interrupt */ 5327 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5328 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5329 0); 5330 } 5331 5332 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5333 struct ptp_clock_request *rq, int on) 5334 { 5335 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5336 ptp_clock_info); 5337 int pin; 5338 int ret; 5339 5340 /* Reject requests with unsupported flags */ 5341 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5342 PTP_EXTTS_EDGES | 5343 PTP_STRICT_FLAGS)) 5344 return -EOPNOTSUPP; 5345 5346 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5347 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5348 return -EINVAL; 5349 5350 mutex_lock(&ptp_priv->ptp_lock); 5351 if (on) 5352 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5353 else 5354 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5355 mutex_unlock(&ptp_priv->ptp_lock); 5356 5357 return ret; 5358 } 5359 5360 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5361 struct ptp_clock_request *rq, int on) 5362 { 5363 switch (rq->type) { 5364 case PTP_CLK_REQ_EXTTS: 5365 return lan8841_ptp_extts(ptp, rq, on); 5366 case PTP_CLK_REQ_PEROUT: 5367 return lan8841_ptp_perout(ptp, rq, on); 5368 default: 5369 return -EOPNOTSUPP; 5370 } 5371 5372 return 0; 5373 } 5374 5375 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5376 { 5377 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5378 ptp_clock_info); 5379 struct timespec64 ts; 5380 unsigned long flags; 5381 5382 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5383 5384 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5385 ptp_priv->seconds = ts.tv_sec; 5386 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5387 5388 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5389 } 5390 5391 static struct ptp_clock_info lan8841_ptp_clock_info = { 5392 .owner = THIS_MODULE, 5393 .name = "lan8841 ptp", 5394 .max_adj = 31249999, 5395 .gettime64 = lan8841_ptp_gettime64, 5396 .settime64 = lan8841_ptp_settime64, 5397 .adjtime = lan8841_ptp_adjtime, 5398 .adjfine = lan8841_ptp_adjfine, 5399 .verify = lan8841_ptp_verify, 5400 .enable = lan8841_ptp_enable, 5401 .do_aux_work = lan8841_ptp_do_aux_work, 5402 .n_per_out = LAN8841_PTP_GPIO_NUM, 5403 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5404 .n_pins = LAN8841_PTP_GPIO_NUM, 5405 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5406 }; 5407 5408 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5409 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5410 5411 static int lan8841_probe(struct phy_device *phydev) 5412 { 5413 struct kszphy_ptp_priv *ptp_priv; 5414 struct kszphy_priv *priv; 5415 int err; 5416 5417 err = kszphy_probe(phydev); 5418 if (err) 5419 return err; 5420 5421 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5422 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5423 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5424 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5425 5426 /* Register the clock */ 5427 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5428 return 0; 5429 5430 priv = phydev->priv; 5431 ptp_priv = &priv->ptp_priv; 5432 5433 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5434 LAN8841_PTP_GPIO_NUM, 5435 sizeof(*ptp_priv->pin_config), 5436 GFP_KERNEL); 5437 if (!ptp_priv->pin_config) 5438 return -ENOMEM; 5439 5440 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5441 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5442 5443 snprintf(p->name, sizeof(p->name), "pin%d", i); 5444 p->index = i; 5445 p->func = PTP_PF_NONE; 5446 } 5447 5448 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5449 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5450 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5451 &phydev->mdio.dev); 5452 if (IS_ERR(ptp_priv->ptp_clock)) { 5453 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 5454 PTR_ERR(ptp_priv->ptp_clock)); 5455 return -EINVAL; 5456 } 5457 5458 if (!ptp_priv->ptp_clock) 5459 return 0; 5460 5461 /* Initialize the SW */ 5462 skb_queue_head_init(&ptp_priv->tx_queue); 5463 ptp_priv->phydev = phydev; 5464 mutex_init(&ptp_priv->ptp_lock); 5465 spin_lock_init(&ptp_priv->seconds_lock); 5466 5467 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5468 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5469 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 5470 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5471 5472 phydev->mii_ts = &ptp_priv->mii_ts; 5473 5474 /* Timestamp selected by default to keep legacy API */ 5475 phydev->default_timestamp = true; 5476 5477 return 0; 5478 } 5479 5480 static int lan8804_resume(struct phy_device *phydev) 5481 { 5482 return kszphy_resume(phydev); 5483 } 5484 5485 static int lan8804_suspend(struct phy_device *phydev) 5486 { 5487 return kszphy_generic_suspend(phydev); 5488 } 5489 5490 static int lan8841_resume(struct phy_device *phydev) 5491 { 5492 return kszphy_generic_resume(phydev); 5493 } 5494 5495 static int lan8841_suspend(struct phy_device *phydev) 5496 { 5497 struct kszphy_priv *priv = phydev->priv; 5498 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5499 5500 if (ptp_priv->ptp_clock) 5501 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5502 5503 return kszphy_generic_suspend(phydev); 5504 } 5505 5506 static struct phy_driver ksphy_driver[] = { 5507 { 5508 .phy_id = PHY_ID_KS8737, 5509 .phy_id_mask = MICREL_PHY_ID_MASK, 5510 .name = "Micrel KS8737", 5511 /* PHY_BASIC_FEATURES */ 5512 .driver_data = &ks8737_type, 5513 .probe = kszphy_probe, 5514 .config_init = kszphy_config_init, 5515 .config_intr = kszphy_config_intr, 5516 .handle_interrupt = kszphy_handle_interrupt, 5517 .suspend = kszphy_suspend, 5518 .resume = kszphy_resume, 5519 }, { 5520 .phy_id = PHY_ID_KSZ8021, 5521 .phy_id_mask = 0x00ffffff, 5522 .name = "Micrel KSZ8021 or KSZ8031", 5523 /* PHY_BASIC_FEATURES */ 5524 .driver_data = &ksz8021_type, 5525 .probe = kszphy_probe, 5526 .config_init = kszphy_config_init, 5527 .config_intr = kszphy_config_intr, 5528 .handle_interrupt = kszphy_handle_interrupt, 5529 .get_sset_count = kszphy_get_sset_count, 5530 .get_strings = kszphy_get_strings, 5531 .get_stats = kszphy_get_stats, 5532 .suspend = kszphy_suspend, 5533 .resume = kszphy_resume, 5534 }, { 5535 .phy_id = PHY_ID_KSZ8031, 5536 .phy_id_mask = 0x00ffffff, 5537 .name = "Micrel KSZ8031", 5538 /* PHY_BASIC_FEATURES */ 5539 .driver_data = &ksz8021_type, 5540 .probe = kszphy_probe, 5541 .config_init = kszphy_config_init, 5542 .config_intr = kszphy_config_intr, 5543 .handle_interrupt = kszphy_handle_interrupt, 5544 .get_sset_count = kszphy_get_sset_count, 5545 .get_strings = kszphy_get_strings, 5546 .get_stats = kszphy_get_stats, 5547 .suspend = kszphy_suspend, 5548 .resume = kszphy_resume, 5549 }, { 5550 .phy_id = PHY_ID_KSZ8041, 5551 .phy_id_mask = MICREL_PHY_ID_MASK, 5552 .name = "Micrel KSZ8041", 5553 /* PHY_BASIC_FEATURES */ 5554 .driver_data = &ksz8041_type, 5555 .probe = kszphy_probe, 5556 .config_init = ksz8041_config_init, 5557 .config_aneg = ksz8041_config_aneg, 5558 .config_intr = kszphy_config_intr, 5559 .handle_interrupt = kszphy_handle_interrupt, 5560 .get_sset_count = kszphy_get_sset_count, 5561 .get_strings = kszphy_get_strings, 5562 .get_stats = kszphy_get_stats, 5563 .suspend = ksz8041_suspend, 5564 .resume = ksz8041_resume, 5565 }, { 5566 .phy_id = PHY_ID_KSZ8041RNLI, 5567 .phy_id_mask = MICREL_PHY_ID_MASK, 5568 .name = "Micrel KSZ8041RNLI", 5569 /* PHY_BASIC_FEATURES */ 5570 .driver_data = &ksz8041_type, 5571 .probe = kszphy_probe, 5572 .config_init = kszphy_config_init, 5573 .config_intr = kszphy_config_intr, 5574 .handle_interrupt = kszphy_handle_interrupt, 5575 .get_sset_count = kszphy_get_sset_count, 5576 .get_strings = kszphy_get_strings, 5577 .get_stats = kszphy_get_stats, 5578 .suspend = kszphy_suspend, 5579 .resume = kszphy_resume, 5580 }, { 5581 .name = "Micrel KSZ8051", 5582 /* PHY_BASIC_FEATURES */ 5583 .driver_data = &ksz8051_type, 5584 .probe = kszphy_probe, 5585 .config_init = kszphy_config_init, 5586 .config_intr = kszphy_config_intr, 5587 .handle_interrupt = kszphy_handle_interrupt, 5588 .get_sset_count = kszphy_get_sset_count, 5589 .get_strings = kszphy_get_strings, 5590 .get_stats = kszphy_get_stats, 5591 .match_phy_device = ksz8051_match_phy_device, 5592 .suspend = kszphy_suspend, 5593 .resume = kszphy_resume, 5594 }, { 5595 .phy_id = PHY_ID_KSZ8001, 5596 .name = "Micrel KSZ8001 or KS8721", 5597 .phy_id_mask = 0x00fffffc, 5598 /* PHY_BASIC_FEATURES */ 5599 .driver_data = &ksz8041_type, 5600 .probe = kszphy_probe, 5601 .config_init = kszphy_config_init, 5602 .config_intr = kszphy_config_intr, 5603 .handle_interrupt = kszphy_handle_interrupt, 5604 .get_sset_count = kszphy_get_sset_count, 5605 .get_strings = kszphy_get_strings, 5606 .get_stats = kszphy_get_stats, 5607 .suspend = kszphy_suspend, 5608 .resume = kszphy_resume, 5609 }, { 5610 .phy_id = PHY_ID_KSZ8081, 5611 .name = "Micrel KSZ8081 or KSZ8091", 5612 .phy_id_mask = MICREL_PHY_ID_MASK, 5613 .flags = PHY_POLL_CABLE_TEST, 5614 /* PHY_BASIC_FEATURES */ 5615 .driver_data = &ksz8081_type, 5616 .probe = kszphy_probe, 5617 .config_init = ksz8081_config_init, 5618 .soft_reset = genphy_soft_reset, 5619 .config_aneg = ksz8081_config_aneg, 5620 .read_status = ksz8081_read_status, 5621 .config_intr = kszphy_config_intr, 5622 .handle_interrupt = kszphy_handle_interrupt, 5623 .get_sset_count = kszphy_get_sset_count, 5624 .get_strings = kszphy_get_strings, 5625 .get_stats = kszphy_get_stats, 5626 .suspend = kszphy_suspend, 5627 .resume = kszphy_resume, 5628 .cable_test_start = ksz886x_cable_test_start, 5629 .cable_test_get_status = ksz886x_cable_test_get_status, 5630 }, { 5631 .phy_id = PHY_ID_KSZ8061, 5632 .name = "Micrel KSZ8061", 5633 .phy_id_mask = MICREL_PHY_ID_MASK, 5634 /* PHY_BASIC_FEATURES */ 5635 .probe = kszphy_probe, 5636 .config_init = ksz8061_config_init, 5637 .soft_reset = genphy_soft_reset, 5638 .config_intr = kszphy_config_intr, 5639 .handle_interrupt = kszphy_handle_interrupt, 5640 .suspend = ksz8061_suspend, 5641 .resume = ksz8061_resume, 5642 }, { 5643 .phy_id = PHY_ID_KSZ9021, 5644 .phy_id_mask = 0x000ffffe, 5645 .name = "Micrel KSZ9021 Gigabit PHY", 5646 /* PHY_GBIT_FEATURES */ 5647 .driver_data = &ksz9021_type, 5648 .probe = kszphy_probe, 5649 .get_features = ksz9031_get_features, 5650 .config_init = ksz9021_config_init, 5651 .config_intr = kszphy_config_intr, 5652 .handle_interrupt = kszphy_handle_interrupt, 5653 .get_sset_count = kszphy_get_sset_count, 5654 .get_strings = kszphy_get_strings, 5655 .get_stats = kszphy_get_stats, 5656 .suspend = kszphy_suspend, 5657 .resume = kszphy_resume, 5658 .read_mmd = genphy_read_mmd_unsupported, 5659 .write_mmd = genphy_write_mmd_unsupported, 5660 }, { 5661 .phy_id = PHY_ID_KSZ9031, 5662 .phy_id_mask = MICREL_PHY_ID_MASK, 5663 .name = "Micrel KSZ9031 Gigabit PHY", 5664 .flags = PHY_POLL_CABLE_TEST, 5665 .driver_data = &ksz9021_type, 5666 .probe = kszphy_probe, 5667 .get_features = ksz9031_get_features, 5668 .config_init = ksz9031_config_init, 5669 .soft_reset = genphy_soft_reset, 5670 .read_status = ksz9031_read_status, 5671 .config_intr = kszphy_config_intr, 5672 .handle_interrupt = kszphy_handle_interrupt, 5673 .get_sset_count = kszphy_get_sset_count, 5674 .get_strings = kszphy_get_strings, 5675 .get_stats = kszphy_get_stats, 5676 .suspend = kszphy_suspend, 5677 .resume = kszphy_resume, 5678 .cable_test_start = ksz9x31_cable_test_start, 5679 .cable_test_get_status = ksz9x31_cable_test_get_status, 5680 .set_loopback = ksz9031_set_loopback, 5681 }, { 5682 .phy_id = PHY_ID_LAN8814, 5683 .phy_id_mask = MICREL_PHY_ID_MASK, 5684 .name = "Microchip INDY Gigabit Quad PHY", 5685 .flags = PHY_POLL_CABLE_TEST, 5686 .config_init = lan8814_config_init, 5687 .driver_data = &lan8814_type, 5688 .probe = lan8814_probe, 5689 .soft_reset = genphy_soft_reset, 5690 .read_status = ksz9031_read_status, 5691 .get_sset_count = kszphy_get_sset_count, 5692 .get_strings = kszphy_get_strings, 5693 .get_stats = kszphy_get_stats, 5694 .suspend = genphy_suspend, 5695 .resume = kszphy_resume, 5696 .config_intr = lan8814_config_intr, 5697 .handle_interrupt = lan8814_handle_interrupt, 5698 .cable_test_start = lan8814_cable_test_start, 5699 .cable_test_get_status = ksz886x_cable_test_get_status, 5700 }, { 5701 .phy_id = PHY_ID_LAN8804, 5702 .phy_id_mask = MICREL_PHY_ID_MASK, 5703 .name = "Microchip LAN966X Gigabit PHY", 5704 .config_init = lan8804_config_init, 5705 .driver_data = &ksz9021_type, 5706 .probe = kszphy_probe, 5707 .soft_reset = genphy_soft_reset, 5708 .read_status = ksz9031_read_status, 5709 .get_sset_count = kszphy_get_sset_count, 5710 .get_strings = kszphy_get_strings, 5711 .get_stats = kszphy_get_stats, 5712 .suspend = lan8804_suspend, 5713 .resume = lan8804_resume, 5714 .config_intr = lan8804_config_intr, 5715 .handle_interrupt = lan8804_handle_interrupt, 5716 }, { 5717 .phy_id = PHY_ID_LAN8841, 5718 .phy_id_mask = MICREL_PHY_ID_MASK, 5719 .name = "Microchip LAN8841 Gigabit PHY", 5720 .flags = PHY_POLL_CABLE_TEST, 5721 .driver_data = &lan8841_type, 5722 .config_init = lan8841_config_init, 5723 .probe = lan8841_probe, 5724 .soft_reset = genphy_soft_reset, 5725 .config_intr = lan8841_config_intr, 5726 .handle_interrupt = lan8841_handle_interrupt, 5727 .get_sset_count = kszphy_get_sset_count, 5728 .get_strings = kszphy_get_strings, 5729 .get_stats = kszphy_get_stats, 5730 .suspend = lan8841_suspend, 5731 .resume = lan8841_resume, 5732 .cable_test_start = lan8814_cable_test_start, 5733 .cable_test_get_status = ksz886x_cable_test_get_status, 5734 }, { 5735 .phy_id = PHY_ID_KSZ9131, 5736 .phy_id_mask = MICREL_PHY_ID_MASK, 5737 .name = "Microchip KSZ9131 Gigabit PHY", 5738 /* PHY_GBIT_FEATURES */ 5739 .flags = PHY_POLL_CABLE_TEST, 5740 .driver_data = &ksz9131_type, 5741 .probe = kszphy_probe, 5742 .soft_reset = genphy_soft_reset, 5743 .config_init = ksz9131_config_init, 5744 .config_intr = kszphy_config_intr, 5745 .config_aneg = ksz9131_config_aneg, 5746 .read_status = ksz9131_read_status, 5747 .handle_interrupt = kszphy_handle_interrupt, 5748 .get_sset_count = kszphy_get_sset_count, 5749 .get_strings = kszphy_get_strings, 5750 .get_stats = kszphy_get_stats, 5751 .suspend = kszphy_suspend, 5752 .resume = kszphy_resume, 5753 .cable_test_start = ksz9x31_cable_test_start, 5754 .cable_test_get_status = ksz9x31_cable_test_get_status, 5755 .get_features = ksz9477_get_features, 5756 }, { 5757 .phy_id = PHY_ID_KSZ8873MLL, 5758 .phy_id_mask = MICREL_PHY_ID_MASK, 5759 .name = "Micrel KSZ8873MLL Switch", 5760 /* PHY_BASIC_FEATURES */ 5761 .config_init = kszphy_config_init, 5762 .config_aneg = ksz8873mll_config_aneg, 5763 .read_status = ksz8873mll_read_status, 5764 .suspend = genphy_suspend, 5765 .resume = genphy_resume, 5766 }, { 5767 .phy_id = PHY_ID_KSZ886X, 5768 .phy_id_mask = MICREL_PHY_ID_MASK, 5769 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 5770 .driver_data = &ksz886x_type, 5771 /* PHY_BASIC_FEATURES */ 5772 .flags = PHY_POLL_CABLE_TEST, 5773 .config_init = kszphy_config_init, 5774 .config_aneg = ksz886x_config_aneg, 5775 .read_status = ksz886x_read_status, 5776 .suspend = genphy_suspend, 5777 .resume = genphy_resume, 5778 .cable_test_start = ksz886x_cable_test_start, 5779 .cable_test_get_status = ksz886x_cable_test_get_status, 5780 }, { 5781 .name = "Micrel KSZ87XX Switch", 5782 /* PHY_BASIC_FEATURES */ 5783 .config_init = kszphy_config_init, 5784 .match_phy_device = ksz8795_match_phy_device, 5785 .suspend = genphy_suspend, 5786 .resume = genphy_resume, 5787 }, { 5788 .phy_id = PHY_ID_KSZ9477, 5789 .phy_id_mask = MICREL_PHY_ID_MASK, 5790 .name = "Microchip KSZ9477", 5791 .probe = kszphy_probe, 5792 /* PHY_GBIT_FEATURES */ 5793 .config_init = ksz9477_config_init, 5794 .config_intr = kszphy_config_intr, 5795 .config_aneg = ksz9477_config_aneg, 5796 .read_status = ksz9477_read_status, 5797 .handle_interrupt = kszphy_handle_interrupt, 5798 .suspend = genphy_suspend, 5799 .resume = ksz9477_resume, 5800 .get_phy_stats = kszphy_get_phy_stats, 5801 .update_stats = kszphy_update_stats, 5802 .cable_test_start = ksz9x31_cable_test_start, 5803 .cable_test_get_status = ksz9x31_cable_test_get_status, 5804 } }; 5805 5806 module_phy_driver(ksphy_driver); 5807 5808 MODULE_DESCRIPTION("Micrel PHY driver"); 5809 MODULE_AUTHOR("David J. Choi"); 5810 MODULE_LICENSE("GPL"); 5811 5812 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 5813 { PHY_ID_KSZ9021, 0x000ffffe }, 5814 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 5815 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 5816 { PHY_ID_KSZ8001, 0x00fffffc }, 5817 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 5818 { PHY_ID_KSZ8021, 0x00ffffff }, 5819 { PHY_ID_KSZ8031, 0x00ffffff }, 5820 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 5821 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 5822 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 5823 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 5824 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 5825 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 5826 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK }, 5827 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 5828 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 5829 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 5830 { } 5831 }; 5832 5833 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 5834