1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 /* Operation Mode Strap Override */ 38 #define MII_KSZPHY_OMSO 0x16 39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 44 45 /* general Interrupt control/status reg in vendor specific block. */ 46 #define MII_KSZPHY_INTCS 0x1B 47 #define KSZPHY_INTCS_JABBER BIT(15) 48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 50 #define KSZPHY_INTCS_PARELLEL BIT(12) 51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 52 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 54 #define KSZPHY_INTCS_LINK_UP BIT(8) 55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 56 KSZPHY_INTCS_LINK_DOWN) 57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 60 KSZPHY_INTCS_LINK_UP_STATUS) 61 62 /* LinkMD Control/Status */ 63 #define KSZ8081_LMD 0x1d 64 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 65 #define KSZ8081_LMD_STAT_NORMAL 0 66 #define KSZ8081_LMD_STAT_OPEN 1 67 #define KSZ8081_LMD_STAT_SHORT 2 68 #define KSZ8081_LMD_STAT_FAIL 3 69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 70 /* Short cable (<10 meter) has been detected by LinkMD */ 71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 73 74 #define KSZ9x31_LMD 0x12 75 #define KSZ9x31_LMD_VCT_EN BIT(15) 76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 83 #define KSZ9x31_LMD_VCT_ST_OPEN 1 84 #define KSZ9x31_LMD_VCT_ST_SHORT 2 85 #define KSZ9x31_LMD_VCT_ST_FAIL 3 86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 94 95 #define KSZPHY_WIRE_PAIR_MASK 0x3 96 97 #define LAN8814_CABLE_DIAG 0x12 98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 100 #define LAN8814_PAIR_BIT_SHIFT 12 101 102 #define LAN8814_WIRE_PAIR_MASK 0xF 103 104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 105 #define LAN8814_INTC 0x18 106 #define LAN8814_INTS 0x1B 107 108 #define LAN8814_INT_LINK_DOWN BIT(2) 109 #define LAN8814_INT_LINK_UP BIT(0) 110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 111 LAN8814_INT_LINK_DOWN) 112 113 #define LAN8814_INTR_CTRL_REG 0x34 114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 116 117 /* Represents 1ppm adjustment in 2^32 format with 118 * each nsec contains 4 clock cycles. 119 * The value is calculated as following: (1/1000000)/((2^-32)/4) 120 */ 121 #define LAN8814_1PPM_FORMAT 17179 122 123 #define PTP_RX_MOD 0x024F 124 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 125 #define PTP_RX_TIMESTAMP_EN 0x024D 126 #define PTP_TX_TIMESTAMP_EN 0x028D 127 128 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 129 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 130 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 131 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 132 133 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 134 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 135 136 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 137 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 138 #define LTC_HARD_RESET 0x023F 139 #define LTC_HARD_RESET_ BIT(0) 140 141 #define TSU_HARD_RESET 0x02C1 142 #define TSU_HARD_RESET_ BIT(0) 143 144 #define PTP_CMD_CTL 0x0200 145 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 146 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 147 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 148 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 149 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 150 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 151 152 #define PTP_CLOCK_SET_SEC_MID 0x0206 153 #define PTP_CLOCK_SET_SEC_LO 0x0207 154 #define PTP_CLOCK_SET_NS_HI 0x0208 155 #define PTP_CLOCK_SET_NS_LO 0x0209 156 157 #define PTP_CLOCK_READ_SEC_MID 0x022A 158 #define PTP_CLOCK_READ_SEC_LO 0x022B 159 #define PTP_CLOCK_READ_NS_HI 0x022C 160 #define PTP_CLOCK_READ_NS_LO 0x022D 161 162 #define PTP_OPERATING_MODE 0x0241 163 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 164 165 #define PTP_TX_MOD 0x028F 166 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 167 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 168 169 #define PTP_RX_PARSE_CONFIG 0x0242 170 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 171 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 172 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 173 174 #define PTP_TX_PARSE_CONFIG 0x0282 175 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 176 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 177 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 178 179 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 180 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 181 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 182 183 #define PTP_LTC_STEP_ADJ_HI 0x0212 184 #define PTP_LTC_STEP_ADJ_LO 0x0213 185 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 186 187 #define LAN8814_INTR_STS_REG 0x0033 188 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 189 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 190 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 191 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 192 193 #define PTP_CAP_INFO 0x022A 194 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 195 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 196 197 #define PTP_TX_EGRESS_SEC_HI 0x0296 198 #define PTP_TX_EGRESS_SEC_LO 0x0297 199 #define PTP_TX_EGRESS_NS_HI 0x0294 200 #define PTP_TX_EGRESS_NS_LO 0x0295 201 #define PTP_TX_MSG_HEADER2 0x0299 202 203 #define PTP_RX_INGRESS_SEC_HI 0x0256 204 #define PTP_RX_INGRESS_SEC_LO 0x0257 205 #define PTP_RX_INGRESS_NS_HI 0x0254 206 #define PTP_RX_INGRESS_NS_LO 0x0255 207 #define PTP_RX_MSG_HEADER2 0x0259 208 209 #define PTP_TSU_INT_EN 0x0200 210 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 211 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 212 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 213 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 214 215 #define PTP_TSU_INT_STS 0x0201 216 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 217 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 218 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 219 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 220 221 #define LAN8814_LED_CTRL_1 0x0 222 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 223 224 /* PHY Control 1 */ 225 #define MII_KSZPHY_CTRL_1 0x1e 226 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 227 228 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 229 #define MII_KSZPHY_CTRL_2 0x1f 230 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 231 /* bitmap of PHY register to set interrupt mode */ 232 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 233 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 234 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 235 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 236 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 237 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 238 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 239 240 /* Write/read to/from extended registers */ 241 #define MII_KSZPHY_EXTREG 0x0b 242 #define KSZPHY_EXTREG_WRITE 0x8000 243 244 #define MII_KSZPHY_EXTREG_WRITE 0x0c 245 #define MII_KSZPHY_EXTREG_READ 0x0d 246 247 /* Extended registers */ 248 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 249 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 250 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 251 252 #define PS_TO_REG 200 253 #define FIFO_SIZE 8 254 255 /* Delay used to get the second part from the LTC */ 256 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 257 258 struct kszphy_hw_stat { 259 const char *string; 260 u8 reg; 261 u8 bits; 262 }; 263 264 static struct kszphy_hw_stat kszphy_hw_stats[] = { 265 { "phy_receive_errors", 21, 16}, 266 { "phy_idle_errors", 10, 8 }, 267 }; 268 269 struct kszphy_type { 270 u32 led_mode_reg; 271 u16 interrupt_level_mask; 272 u16 cable_diag_reg; 273 unsigned long pair_mask; 274 u16 disable_dll_tx_bit; 275 u16 disable_dll_rx_bit; 276 u16 disable_dll_mask; 277 bool has_broadcast_disable; 278 bool has_nand_tree_disable; 279 bool has_rmii_ref_clk_sel; 280 }; 281 282 /* Shared structure between the PHYs of the same package. */ 283 struct lan8814_shared_priv { 284 struct phy_device *phydev; 285 struct ptp_clock *ptp_clock; 286 struct ptp_clock_info ptp_clock_info; 287 288 /* Reference counter to how many ports in the package are enabling the 289 * timestamping 290 */ 291 u8 ref; 292 293 /* Lock for ptp_clock and ref */ 294 struct mutex shared_lock; 295 }; 296 297 struct lan8814_ptp_rx_ts { 298 struct list_head list; 299 u32 seconds; 300 u32 nsec; 301 u16 seq_id; 302 }; 303 304 struct kszphy_ptp_priv { 305 struct mii_timestamper mii_ts; 306 struct phy_device *phydev; 307 308 struct sk_buff_head tx_queue; 309 struct sk_buff_head rx_queue; 310 311 struct list_head rx_ts_list; 312 /* Lock for Rx ts fifo */ 313 spinlock_t rx_ts_lock; 314 315 int hwts_tx_type; 316 enum hwtstamp_rx_filters rx_filter; 317 int layer; 318 int version; 319 320 struct ptp_clock *ptp_clock; 321 struct ptp_clock_info ptp_clock_info; 322 /* Lock for ptp_clock */ 323 struct mutex ptp_lock; 324 struct ptp_pin_desc *pin_config; 325 326 s64 seconds; 327 /* Lock for accessing seconds */ 328 spinlock_t seconds_lock; 329 }; 330 331 struct kszphy_priv { 332 struct kszphy_ptp_priv ptp_priv; 333 const struct kszphy_type *type; 334 int led_mode; 335 u16 vct_ctrl1000; 336 bool rmii_ref_clk_sel; 337 bool rmii_ref_clk_sel_val; 338 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 339 }; 340 341 static const struct kszphy_type lan8814_type = { 342 .led_mode_reg = ~LAN8814_LED_CTRL_1, 343 .cable_diag_reg = LAN8814_CABLE_DIAG, 344 .pair_mask = LAN8814_WIRE_PAIR_MASK, 345 }; 346 347 static const struct kszphy_type ksz886x_type = { 348 .cable_diag_reg = KSZ8081_LMD, 349 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 350 }; 351 352 static const struct kszphy_type ksz8021_type = { 353 .led_mode_reg = MII_KSZPHY_CTRL_2, 354 .has_broadcast_disable = true, 355 .has_nand_tree_disable = true, 356 .has_rmii_ref_clk_sel = true, 357 }; 358 359 static const struct kszphy_type ksz8041_type = { 360 .led_mode_reg = MII_KSZPHY_CTRL_1, 361 }; 362 363 static const struct kszphy_type ksz8051_type = { 364 .led_mode_reg = MII_KSZPHY_CTRL_2, 365 .has_nand_tree_disable = true, 366 }; 367 368 static const struct kszphy_type ksz8081_type = { 369 .led_mode_reg = MII_KSZPHY_CTRL_2, 370 .has_broadcast_disable = true, 371 .has_nand_tree_disable = true, 372 .has_rmii_ref_clk_sel = true, 373 }; 374 375 static const struct kszphy_type ks8737_type = { 376 .interrupt_level_mask = BIT(14), 377 }; 378 379 static const struct kszphy_type ksz9021_type = { 380 .interrupt_level_mask = BIT(14), 381 }; 382 383 static const struct kszphy_type ksz9131_type = { 384 .interrupt_level_mask = BIT(14), 385 .disable_dll_tx_bit = BIT(12), 386 .disable_dll_rx_bit = BIT(12), 387 .disable_dll_mask = BIT_MASK(12), 388 }; 389 390 static const struct kszphy_type lan8841_type = { 391 .disable_dll_tx_bit = BIT(14), 392 .disable_dll_rx_bit = BIT(14), 393 .disable_dll_mask = BIT_MASK(14), 394 .cable_diag_reg = LAN8814_CABLE_DIAG, 395 .pair_mask = LAN8814_WIRE_PAIR_MASK, 396 }; 397 398 static int kszphy_extended_write(struct phy_device *phydev, 399 u32 regnum, u16 val) 400 { 401 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 402 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 403 } 404 405 static int kszphy_extended_read(struct phy_device *phydev, 406 u32 regnum) 407 { 408 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 409 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 410 } 411 412 static int kszphy_ack_interrupt(struct phy_device *phydev) 413 { 414 /* bit[7..0] int status, which is a read and clear register. */ 415 int rc; 416 417 rc = phy_read(phydev, MII_KSZPHY_INTCS); 418 419 return (rc < 0) ? rc : 0; 420 } 421 422 static int kszphy_config_intr(struct phy_device *phydev) 423 { 424 const struct kszphy_type *type = phydev->drv->driver_data; 425 int temp, err; 426 u16 mask; 427 428 if (type && type->interrupt_level_mask) 429 mask = type->interrupt_level_mask; 430 else 431 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 432 433 /* set the interrupt pin active low */ 434 temp = phy_read(phydev, MII_KSZPHY_CTRL); 435 if (temp < 0) 436 return temp; 437 temp &= ~mask; 438 phy_write(phydev, MII_KSZPHY_CTRL, temp); 439 440 /* enable / disable interrupts */ 441 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 442 err = kszphy_ack_interrupt(phydev); 443 if (err) 444 return err; 445 446 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 447 } else { 448 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 449 if (err) 450 return err; 451 452 err = kszphy_ack_interrupt(phydev); 453 } 454 455 return err; 456 } 457 458 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 459 { 460 int irq_status; 461 462 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 463 if (irq_status < 0) { 464 phy_error(phydev); 465 return IRQ_NONE; 466 } 467 468 if (!(irq_status & KSZPHY_INTCS_STATUS)) 469 return IRQ_NONE; 470 471 phy_trigger_machine(phydev); 472 473 return IRQ_HANDLED; 474 } 475 476 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 477 { 478 int ctrl; 479 480 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 481 if (ctrl < 0) 482 return ctrl; 483 484 if (val) 485 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 486 else 487 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 488 489 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 490 } 491 492 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 493 { 494 int rc, temp, shift; 495 496 switch (reg) { 497 case MII_KSZPHY_CTRL_1: 498 shift = 14; 499 break; 500 case MII_KSZPHY_CTRL_2: 501 shift = 4; 502 break; 503 default: 504 return -EINVAL; 505 } 506 507 temp = phy_read(phydev, reg); 508 if (temp < 0) { 509 rc = temp; 510 goto out; 511 } 512 513 temp &= ~(3 << shift); 514 temp |= val << shift; 515 rc = phy_write(phydev, reg, temp); 516 out: 517 if (rc < 0) 518 phydev_err(phydev, "failed to set led mode\n"); 519 520 return rc; 521 } 522 523 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 524 * unique (non-broadcast) address on a shared bus. 525 */ 526 static int kszphy_broadcast_disable(struct phy_device *phydev) 527 { 528 int ret; 529 530 ret = phy_read(phydev, MII_KSZPHY_OMSO); 531 if (ret < 0) 532 goto out; 533 534 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 535 out: 536 if (ret) 537 phydev_err(phydev, "failed to disable broadcast address\n"); 538 539 return ret; 540 } 541 542 static int kszphy_nand_tree_disable(struct phy_device *phydev) 543 { 544 int ret; 545 546 ret = phy_read(phydev, MII_KSZPHY_OMSO); 547 if (ret < 0) 548 goto out; 549 550 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 551 return 0; 552 553 ret = phy_write(phydev, MII_KSZPHY_OMSO, 554 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 555 out: 556 if (ret) 557 phydev_err(phydev, "failed to disable NAND tree mode\n"); 558 559 return ret; 560 } 561 562 /* Some config bits need to be set again on resume, handle them here. */ 563 static int kszphy_config_reset(struct phy_device *phydev) 564 { 565 struct kszphy_priv *priv = phydev->priv; 566 int ret; 567 568 if (priv->rmii_ref_clk_sel) { 569 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 570 if (ret) { 571 phydev_err(phydev, 572 "failed to set rmii reference clock\n"); 573 return ret; 574 } 575 } 576 577 if (priv->type && priv->led_mode >= 0) 578 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 579 580 return 0; 581 } 582 583 static int kszphy_config_init(struct phy_device *phydev) 584 { 585 struct kszphy_priv *priv = phydev->priv; 586 const struct kszphy_type *type; 587 588 if (!priv) 589 return 0; 590 591 type = priv->type; 592 593 if (type && type->has_broadcast_disable) 594 kszphy_broadcast_disable(phydev); 595 596 if (type && type->has_nand_tree_disable) 597 kszphy_nand_tree_disable(phydev); 598 599 return kszphy_config_reset(phydev); 600 } 601 602 static int ksz8041_fiber_mode(struct phy_device *phydev) 603 { 604 struct device_node *of_node = phydev->mdio.dev.of_node; 605 606 return of_property_read_bool(of_node, "micrel,fiber-mode"); 607 } 608 609 static int ksz8041_config_init(struct phy_device *phydev) 610 { 611 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 612 613 /* Limit supported and advertised modes in fiber mode */ 614 if (ksz8041_fiber_mode(phydev)) { 615 phydev->dev_flags |= MICREL_PHY_FXEN; 616 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 617 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 618 619 linkmode_and(phydev->supported, phydev->supported, mask); 620 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 621 phydev->supported); 622 linkmode_and(phydev->advertising, phydev->advertising, mask); 623 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 624 phydev->advertising); 625 phydev->autoneg = AUTONEG_DISABLE; 626 } 627 628 return kszphy_config_init(phydev); 629 } 630 631 static int ksz8041_config_aneg(struct phy_device *phydev) 632 { 633 /* Skip auto-negotiation in fiber mode */ 634 if (phydev->dev_flags & MICREL_PHY_FXEN) { 635 phydev->speed = SPEED_100; 636 return 0; 637 } 638 639 return genphy_config_aneg(phydev); 640 } 641 642 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 643 const bool ksz_8051) 644 { 645 int ret; 646 647 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 648 return 0; 649 650 ret = phy_read(phydev, MII_BMSR); 651 if (ret < 0) 652 return ret; 653 654 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 655 * exact PHY ID. However, they can be told apart by the extended 656 * capability registers presence. The KSZ8051 PHY has them while 657 * the switch does not. 658 */ 659 ret &= BMSR_ERCAP; 660 if (ksz_8051) 661 return ret; 662 else 663 return !ret; 664 } 665 666 static int ksz8051_match_phy_device(struct phy_device *phydev) 667 { 668 return ksz8051_ksz8795_match_phy_device(phydev, true); 669 } 670 671 static int ksz8081_config_init(struct phy_device *phydev) 672 { 673 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 674 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 675 * pull-down is missing, the factory test mode should be cleared by 676 * manually writing a 0. 677 */ 678 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 679 680 return kszphy_config_init(phydev); 681 } 682 683 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 684 { 685 u16 val; 686 687 switch (ctrl) { 688 case ETH_TP_MDI: 689 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 690 break; 691 case ETH_TP_MDI_X: 692 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 693 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 694 break; 695 case ETH_TP_MDI_AUTO: 696 val = 0; 697 break; 698 default: 699 return 0; 700 } 701 702 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 703 KSZ8081_CTRL2_HP_MDIX | 704 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 705 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 706 KSZ8081_CTRL2_HP_MDIX | val); 707 } 708 709 static int ksz8081_config_aneg(struct phy_device *phydev) 710 { 711 int ret; 712 713 ret = genphy_config_aneg(phydev); 714 if (ret) 715 return ret; 716 717 /* The MDI-X configuration is automatically changed by the PHY after 718 * switching from autoneg off to on. So, take MDI-X configuration under 719 * own control and set it after autoneg configuration was done. 720 */ 721 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 722 } 723 724 static int ksz8081_mdix_update(struct phy_device *phydev) 725 { 726 int ret; 727 728 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 729 if (ret < 0) 730 return ret; 731 732 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 733 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 734 phydev->mdix_ctrl = ETH_TP_MDI_X; 735 else 736 phydev->mdix_ctrl = ETH_TP_MDI; 737 } else { 738 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 739 } 740 741 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 742 if (ret < 0) 743 return ret; 744 745 if (ret & KSZ8081_CTRL1_MDIX_STAT) 746 phydev->mdix = ETH_TP_MDI; 747 else 748 phydev->mdix = ETH_TP_MDI_X; 749 750 return 0; 751 } 752 753 static int ksz8081_read_status(struct phy_device *phydev) 754 { 755 int ret; 756 757 ret = ksz8081_mdix_update(phydev); 758 if (ret < 0) 759 return ret; 760 761 return genphy_read_status(phydev); 762 } 763 764 static int ksz8061_config_init(struct phy_device *phydev) 765 { 766 int ret; 767 768 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 769 if (ret) 770 return ret; 771 772 return kszphy_config_init(phydev); 773 } 774 775 static int ksz8795_match_phy_device(struct phy_device *phydev) 776 { 777 return ksz8051_ksz8795_match_phy_device(phydev, false); 778 } 779 780 static int ksz9021_load_values_from_of(struct phy_device *phydev, 781 const struct device_node *of_node, 782 u16 reg, 783 const char *field1, const char *field2, 784 const char *field3, const char *field4) 785 { 786 int val1 = -1; 787 int val2 = -2; 788 int val3 = -3; 789 int val4 = -4; 790 int newval; 791 int matches = 0; 792 793 if (!of_property_read_u32(of_node, field1, &val1)) 794 matches++; 795 796 if (!of_property_read_u32(of_node, field2, &val2)) 797 matches++; 798 799 if (!of_property_read_u32(of_node, field3, &val3)) 800 matches++; 801 802 if (!of_property_read_u32(of_node, field4, &val4)) 803 matches++; 804 805 if (!matches) 806 return 0; 807 808 if (matches < 4) 809 newval = kszphy_extended_read(phydev, reg); 810 else 811 newval = 0; 812 813 if (val1 != -1) 814 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 815 816 if (val2 != -2) 817 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 818 819 if (val3 != -3) 820 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 821 822 if (val4 != -4) 823 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 824 825 return kszphy_extended_write(phydev, reg, newval); 826 } 827 828 static int ksz9021_config_init(struct phy_device *phydev) 829 { 830 const struct device_node *of_node; 831 const struct device *dev_walker; 832 833 /* The Micrel driver has a deprecated option to place phy OF 834 * properties in the MAC node. Walk up the tree of devices to 835 * find a device with an OF node. 836 */ 837 dev_walker = &phydev->mdio.dev; 838 do { 839 of_node = dev_walker->of_node; 840 dev_walker = dev_walker->parent; 841 842 } while (!of_node && dev_walker); 843 844 if (of_node) { 845 ksz9021_load_values_from_of(phydev, of_node, 846 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 847 "txen-skew-ps", "txc-skew-ps", 848 "rxdv-skew-ps", "rxc-skew-ps"); 849 ksz9021_load_values_from_of(phydev, of_node, 850 MII_KSZPHY_RX_DATA_PAD_SKEW, 851 "rxd0-skew-ps", "rxd1-skew-ps", 852 "rxd2-skew-ps", "rxd3-skew-ps"); 853 ksz9021_load_values_from_of(phydev, of_node, 854 MII_KSZPHY_TX_DATA_PAD_SKEW, 855 "txd0-skew-ps", "txd1-skew-ps", 856 "txd2-skew-ps", "txd3-skew-ps"); 857 } 858 return 0; 859 } 860 861 #define KSZ9031_PS_TO_REG 60 862 863 /* Extended registers */ 864 /* MMD Address 0x0 */ 865 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 866 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 867 868 /* MMD Address 0x2 */ 869 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 870 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 871 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 872 873 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 874 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 875 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 876 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 877 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 878 879 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 880 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 881 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 882 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 883 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 884 885 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 886 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 887 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 888 889 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 890 * provide different RGMII options we need to configure delay offset 891 * for each pad relative to build in delay. 892 */ 893 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 894 * 1.80ns 895 */ 896 #define RX_ID 0x7 897 #define RX_CLK_ID 0x19 898 899 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 900 * internal 1.2ns delay. 901 */ 902 #define RX_ND 0xc 903 #define RX_CLK_ND 0x0 904 905 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 906 #define TX_ID 0x0 907 #define TX_CLK_ID 0x1f 908 909 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 910 * dealy 911 */ 912 #define TX_ND 0x7 913 #define TX_CLK_ND 0xf 914 915 /* MMD Address 0x1C */ 916 #define MII_KSZ9031RN_EDPD 0x23 917 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 918 919 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 920 const struct device_node *of_node, 921 u16 reg, size_t field_sz, 922 const char *field[], u8 numfields, 923 bool *update) 924 { 925 int val[4] = {-1, -2, -3, -4}; 926 int matches = 0; 927 u16 mask; 928 u16 maxval; 929 u16 newval; 930 int i; 931 932 for (i = 0; i < numfields; i++) 933 if (!of_property_read_u32(of_node, field[i], val + i)) 934 matches++; 935 936 if (!matches) 937 return 0; 938 939 *update |= true; 940 941 if (matches < numfields) 942 newval = phy_read_mmd(phydev, 2, reg); 943 else 944 newval = 0; 945 946 maxval = (field_sz == 4) ? 0xf : 0x1f; 947 for (i = 0; i < numfields; i++) 948 if (val[i] != -(i + 1)) { 949 mask = 0xffff; 950 mask ^= maxval << (field_sz * i); 951 newval = (newval & mask) | 952 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 953 << (field_sz * i)); 954 } 955 956 return phy_write_mmd(phydev, 2, reg, newval); 957 } 958 959 /* Center KSZ9031RNX FLP timing at 16ms. */ 960 static int ksz9031_center_flp_timing(struct phy_device *phydev) 961 { 962 int result; 963 964 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 965 0x0006); 966 if (result) 967 return result; 968 969 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 970 0x1A80); 971 if (result) 972 return result; 973 974 return genphy_restart_aneg(phydev); 975 } 976 977 /* Enable energy-detect power-down mode */ 978 static int ksz9031_enable_edpd(struct phy_device *phydev) 979 { 980 int reg; 981 982 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 983 if (reg < 0) 984 return reg; 985 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 986 reg | MII_KSZ9031RN_EDPD_ENABLE); 987 } 988 989 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 990 { 991 u16 rx, tx, rx_clk, tx_clk; 992 int ret; 993 994 switch (phydev->interface) { 995 case PHY_INTERFACE_MODE_RGMII: 996 tx = TX_ND; 997 tx_clk = TX_CLK_ND; 998 rx = RX_ND; 999 rx_clk = RX_CLK_ND; 1000 break; 1001 case PHY_INTERFACE_MODE_RGMII_ID: 1002 tx = TX_ID; 1003 tx_clk = TX_CLK_ID; 1004 rx = RX_ID; 1005 rx_clk = RX_CLK_ID; 1006 break; 1007 case PHY_INTERFACE_MODE_RGMII_RXID: 1008 tx = TX_ND; 1009 tx_clk = TX_CLK_ND; 1010 rx = RX_ID; 1011 rx_clk = RX_CLK_ID; 1012 break; 1013 case PHY_INTERFACE_MODE_RGMII_TXID: 1014 tx = TX_ID; 1015 tx_clk = TX_CLK_ID; 1016 rx = RX_ND; 1017 rx_clk = RX_CLK_ND; 1018 break; 1019 default: 1020 return 0; 1021 } 1022 1023 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1024 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1025 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1026 if (ret < 0) 1027 return ret; 1028 1029 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1030 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1031 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1032 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1033 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1034 if (ret < 0) 1035 return ret; 1036 1037 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1038 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1039 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1040 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1041 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1042 if (ret < 0) 1043 return ret; 1044 1045 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1046 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1047 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1048 } 1049 1050 static int ksz9031_config_init(struct phy_device *phydev) 1051 { 1052 const struct device_node *of_node; 1053 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1054 static const char *rx_data_skews[4] = { 1055 "rxd0-skew-ps", "rxd1-skew-ps", 1056 "rxd2-skew-ps", "rxd3-skew-ps" 1057 }; 1058 static const char *tx_data_skews[4] = { 1059 "txd0-skew-ps", "txd1-skew-ps", 1060 "txd2-skew-ps", "txd3-skew-ps" 1061 }; 1062 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1063 const struct device *dev_walker; 1064 int result; 1065 1066 result = ksz9031_enable_edpd(phydev); 1067 if (result < 0) 1068 return result; 1069 1070 /* The Micrel driver has a deprecated option to place phy OF 1071 * properties in the MAC node. Walk up the tree of devices to 1072 * find a device with an OF node. 1073 */ 1074 dev_walker = &phydev->mdio.dev; 1075 do { 1076 of_node = dev_walker->of_node; 1077 dev_walker = dev_walker->parent; 1078 } while (!of_node && dev_walker); 1079 1080 if (of_node) { 1081 bool update = false; 1082 1083 if (phy_interface_is_rgmii(phydev)) { 1084 result = ksz9031_config_rgmii_delay(phydev); 1085 if (result < 0) 1086 return result; 1087 } 1088 1089 ksz9031_of_load_skew_values(phydev, of_node, 1090 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1091 clk_skews, 2, &update); 1092 1093 ksz9031_of_load_skew_values(phydev, of_node, 1094 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1095 control_skews, 2, &update); 1096 1097 ksz9031_of_load_skew_values(phydev, of_node, 1098 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1099 rx_data_skews, 4, &update); 1100 1101 ksz9031_of_load_skew_values(phydev, of_node, 1102 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1103 tx_data_skews, 4, &update); 1104 1105 if (update && !phy_interface_is_rgmii(phydev)) 1106 phydev_warn(phydev, 1107 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1108 1109 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1110 * When the device links in the 1000BASE-T slave mode only, 1111 * the optional 125MHz reference output clock (CLK125_NDO) 1112 * has wide duty cycle variation. 1113 * 1114 * The optional CLK125_NDO clock does not meet the RGMII 1115 * 45/55 percent (min/max) duty cycle requirement and therefore 1116 * cannot be used directly by the MAC side for clocking 1117 * applications that have setup/hold time requirements on 1118 * rising and falling clock edges. 1119 * 1120 * Workaround: 1121 * Force the phy to be the master to receive a stable clock 1122 * which meets the duty cycle requirement. 1123 */ 1124 if (of_property_read_bool(of_node, "micrel,force-master")) { 1125 result = phy_read(phydev, MII_CTRL1000); 1126 if (result < 0) 1127 goto err_force_master; 1128 1129 /* enable master mode, config & prefer master */ 1130 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1131 result = phy_write(phydev, MII_CTRL1000, result); 1132 if (result < 0) 1133 goto err_force_master; 1134 } 1135 } 1136 1137 return ksz9031_center_flp_timing(phydev); 1138 1139 err_force_master: 1140 phydev_err(phydev, "failed to force the phy to master mode\n"); 1141 return result; 1142 } 1143 1144 #define KSZ9131_SKEW_5BIT_MAX 2400 1145 #define KSZ9131_SKEW_4BIT_MAX 800 1146 #define KSZ9131_OFFSET 700 1147 #define KSZ9131_STEP 100 1148 1149 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1150 struct device_node *of_node, 1151 u16 reg, size_t field_sz, 1152 char *field[], u8 numfields) 1153 { 1154 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1155 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1156 int skewval, skewmax = 0; 1157 int matches = 0; 1158 u16 maxval; 1159 u16 newval; 1160 u16 mask; 1161 int i; 1162 1163 /* psec properties in dts should mean x pico seconds */ 1164 if (field_sz == 5) 1165 skewmax = KSZ9131_SKEW_5BIT_MAX; 1166 else 1167 skewmax = KSZ9131_SKEW_4BIT_MAX; 1168 1169 for (i = 0; i < numfields; i++) 1170 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1171 if (skewval < -KSZ9131_OFFSET) 1172 skewval = -KSZ9131_OFFSET; 1173 else if (skewval > skewmax) 1174 skewval = skewmax; 1175 1176 val[i] = skewval + KSZ9131_OFFSET; 1177 matches++; 1178 } 1179 1180 if (!matches) 1181 return 0; 1182 1183 if (matches < numfields) 1184 newval = phy_read_mmd(phydev, 2, reg); 1185 else 1186 newval = 0; 1187 1188 maxval = (field_sz == 4) ? 0xf : 0x1f; 1189 for (i = 0; i < numfields; i++) 1190 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1191 mask = 0xffff; 1192 mask ^= maxval << (field_sz * i); 1193 newval = (newval & mask) | 1194 (((val[i] / KSZ9131_STEP) & maxval) 1195 << (field_sz * i)); 1196 } 1197 1198 return phy_write_mmd(phydev, 2, reg, newval); 1199 } 1200 1201 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1202 #define KSZ9131RN_RXC_DLL_CTRL 76 1203 #define KSZ9131RN_TXC_DLL_CTRL 77 1204 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1205 1206 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1207 { 1208 const struct kszphy_type *type = phydev->drv->driver_data; 1209 u16 rxcdll_val, txcdll_val; 1210 int ret; 1211 1212 switch (phydev->interface) { 1213 case PHY_INTERFACE_MODE_RGMII: 1214 rxcdll_val = type->disable_dll_rx_bit; 1215 txcdll_val = type->disable_dll_tx_bit; 1216 break; 1217 case PHY_INTERFACE_MODE_RGMII_ID: 1218 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1219 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1220 break; 1221 case PHY_INTERFACE_MODE_RGMII_RXID: 1222 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1223 txcdll_val = type->disable_dll_tx_bit; 1224 break; 1225 case PHY_INTERFACE_MODE_RGMII_TXID: 1226 rxcdll_val = type->disable_dll_rx_bit; 1227 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1228 break; 1229 default: 1230 return 0; 1231 } 1232 1233 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1234 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1235 rxcdll_val); 1236 if (ret < 0) 1237 return ret; 1238 1239 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1240 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1241 txcdll_val); 1242 } 1243 1244 /* Silicon Errata DS80000693B 1245 * 1246 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1247 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1248 * according to the datasheet (off if there is no link). 1249 */ 1250 static int ksz9131_led_errata(struct phy_device *phydev) 1251 { 1252 int reg; 1253 1254 reg = phy_read_mmd(phydev, 2, 0); 1255 if (reg < 0) 1256 return reg; 1257 1258 if (!(reg & BIT(4))) 1259 return 0; 1260 1261 return phy_set_bits(phydev, 0x1e, BIT(9)); 1262 } 1263 1264 static int ksz9131_config_init(struct phy_device *phydev) 1265 { 1266 struct device_node *of_node; 1267 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1268 char *rx_data_skews[4] = { 1269 "rxd0-skew-psec", "rxd1-skew-psec", 1270 "rxd2-skew-psec", "rxd3-skew-psec" 1271 }; 1272 char *tx_data_skews[4] = { 1273 "txd0-skew-psec", "txd1-skew-psec", 1274 "txd2-skew-psec", "txd3-skew-psec" 1275 }; 1276 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1277 const struct device *dev_walker; 1278 int ret; 1279 1280 dev_walker = &phydev->mdio.dev; 1281 do { 1282 of_node = dev_walker->of_node; 1283 dev_walker = dev_walker->parent; 1284 } while (!of_node && dev_walker); 1285 1286 if (!of_node) 1287 return 0; 1288 1289 if (phy_interface_is_rgmii(phydev)) { 1290 ret = ksz9131_config_rgmii_delay(phydev); 1291 if (ret < 0) 1292 return ret; 1293 } 1294 1295 ret = ksz9131_of_load_skew_values(phydev, of_node, 1296 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1297 clk_skews, 2); 1298 if (ret < 0) 1299 return ret; 1300 1301 ret = ksz9131_of_load_skew_values(phydev, of_node, 1302 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1303 control_skews, 2); 1304 if (ret < 0) 1305 return ret; 1306 1307 ret = ksz9131_of_load_skew_values(phydev, of_node, 1308 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1309 rx_data_skews, 4); 1310 if (ret < 0) 1311 return ret; 1312 1313 ret = ksz9131_of_load_skew_values(phydev, of_node, 1314 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1315 tx_data_skews, 4); 1316 if (ret < 0) 1317 return ret; 1318 1319 ret = ksz9131_led_errata(phydev); 1320 if (ret < 0) 1321 return ret; 1322 1323 return 0; 1324 } 1325 1326 #define MII_KSZ9131_AUTO_MDIX 0x1C 1327 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1328 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1329 1330 static int ksz9131_mdix_update(struct phy_device *phydev) 1331 { 1332 int ret; 1333 1334 ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 1335 if (ret < 0) 1336 return ret; 1337 1338 if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) { 1339 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1340 phydev->mdix_ctrl = ETH_TP_MDI; 1341 else 1342 phydev->mdix_ctrl = ETH_TP_MDI_X; 1343 } else { 1344 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1345 } 1346 1347 if (ret & MII_KSZ9131_AUTO_MDI_SET) 1348 phydev->mdix = ETH_TP_MDI; 1349 else 1350 phydev->mdix = ETH_TP_MDI_X; 1351 1352 return 0; 1353 } 1354 1355 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1356 { 1357 u16 val; 1358 1359 switch (ctrl) { 1360 case ETH_TP_MDI: 1361 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1362 MII_KSZ9131_AUTO_MDI_SET; 1363 break; 1364 case ETH_TP_MDI_X: 1365 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1366 break; 1367 case ETH_TP_MDI_AUTO: 1368 val = 0; 1369 break; 1370 default: 1371 return 0; 1372 } 1373 1374 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1375 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1376 MII_KSZ9131_AUTO_MDI_SET, val); 1377 } 1378 1379 static int ksz9131_read_status(struct phy_device *phydev) 1380 { 1381 int ret; 1382 1383 ret = ksz9131_mdix_update(phydev); 1384 if (ret < 0) 1385 return ret; 1386 1387 return genphy_read_status(phydev); 1388 } 1389 1390 static int ksz9131_config_aneg(struct phy_device *phydev) 1391 { 1392 int ret; 1393 1394 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1395 if (ret) 1396 return ret; 1397 1398 return genphy_config_aneg(phydev); 1399 } 1400 1401 static int ksz9477_get_features(struct phy_device *phydev) 1402 { 1403 int ret; 1404 1405 ret = genphy_read_abilities(phydev); 1406 if (ret) 1407 return ret; 1408 1409 /* The "EEE control and capability 1" (Register 3.20) seems to be 1410 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1411 * on the 7.60 will affect 3.20. So, we need to construct our own list 1412 * of caps. 1413 * KSZ8563R should have 100BaseTX/Full only. 1414 */ 1415 linkmode_and(phydev->supported_eee, phydev->supported, 1416 PHY_EEE_CAP1_FEATURES); 1417 1418 return 0; 1419 } 1420 1421 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1422 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1423 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1424 static int ksz8873mll_read_status(struct phy_device *phydev) 1425 { 1426 int regval; 1427 1428 /* dummy read */ 1429 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1430 1431 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1432 1433 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1434 phydev->duplex = DUPLEX_HALF; 1435 else 1436 phydev->duplex = DUPLEX_FULL; 1437 1438 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1439 phydev->speed = SPEED_10; 1440 else 1441 phydev->speed = SPEED_100; 1442 1443 phydev->link = 1; 1444 phydev->pause = phydev->asym_pause = 0; 1445 1446 return 0; 1447 } 1448 1449 static int ksz9031_get_features(struct phy_device *phydev) 1450 { 1451 int ret; 1452 1453 ret = genphy_read_abilities(phydev); 1454 if (ret < 0) 1455 return ret; 1456 1457 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1458 * Whenever the device's Asymmetric Pause capability is set to 1, 1459 * link-up may fail after a link-up to link-down transition. 1460 * 1461 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1462 * 1463 * Workaround: 1464 * Do not enable the Asymmetric Pause capability bit. 1465 */ 1466 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1467 1468 /* We force setting the Pause capability as the core will force the 1469 * Asymmetric Pause capability to 1 otherwise. 1470 */ 1471 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1472 1473 return 0; 1474 } 1475 1476 static int ksz9031_read_status(struct phy_device *phydev) 1477 { 1478 int err; 1479 int regval; 1480 1481 err = genphy_read_status(phydev); 1482 if (err) 1483 return err; 1484 1485 /* Make sure the PHY is not broken. Read idle error count, 1486 * and reset the PHY if it is maxed out. 1487 */ 1488 regval = phy_read(phydev, MII_STAT1000); 1489 if ((regval & 0xFF) == 0xFF) { 1490 phy_init_hw(phydev); 1491 phydev->link = 0; 1492 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1493 phydev->drv->config_intr(phydev); 1494 return genphy_config_aneg(phydev); 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1501 { 1502 struct kszphy_priv *priv = phydev->priv; 1503 int ret; 1504 1505 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1506 * Prior to running the cable diagnostics, Auto-negotiation should 1507 * be disabled, full duplex set and the link speed set to 1000Mbps 1508 * via the Basic Control Register. 1509 */ 1510 ret = phy_modify(phydev, MII_BMCR, 1511 BMCR_SPEED1000 | BMCR_FULLDPLX | 1512 BMCR_ANENABLE | BMCR_SPEED100, 1513 BMCR_SPEED1000 | BMCR_FULLDPLX); 1514 if (ret) 1515 return ret; 1516 1517 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1518 * The Master-Slave configuration should be set to Slave by writing 1519 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1520 * Register. 1521 */ 1522 ret = phy_read(phydev, MII_CTRL1000); 1523 if (ret < 0) 1524 return ret; 1525 1526 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1527 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1528 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1529 ret |= CTL1000_ENABLE_MASTER; 1530 1531 return phy_write(phydev, MII_CTRL1000, ret); 1532 } 1533 1534 static int ksz9x31_cable_test_result_trans(u16 status) 1535 { 1536 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1537 case KSZ9x31_LMD_VCT_ST_NORMAL: 1538 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1539 case KSZ9x31_LMD_VCT_ST_OPEN: 1540 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1541 case KSZ9x31_LMD_VCT_ST_SHORT: 1542 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1543 case KSZ9x31_LMD_VCT_ST_FAIL: 1544 fallthrough; 1545 default: 1546 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1547 } 1548 } 1549 1550 static bool ksz9x31_cable_test_failed(u16 status) 1551 { 1552 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1553 1554 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1555 } 1556 1557 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1558 { 1559 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1560 case KSZ9x31_LMD_VCT_ST_OPEN: 1561 fallthrough; 1562 case KSZ9x31_LMD_VCT_ST_SHORT: 1563 return true; 1564 } 1565 return false; 1566 } 1567 1568 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1569 { 1570 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1571 1572 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1573 * 1574 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1575 */ 1576 if (phydev_id_compare(phydev, PHY_ID_KSZ9131)) 1577 dt = clamp(dt - 22, 0, 255); 1578 1579 return (dt * 400) / 10; 1580 } 1581 1582 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1583 { 1584 int val, ret; 1585 1586 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1587 !(val & KSZ9x31_LMD_VCT_EN), 1588 30000, 100000, true); 1589 1590 return ret < 0 ? ret : 0; 1591 } 1592 1593 static int ksz9x31_cable_test_get_pair(int pair) 1594 { 1595 static const int ethtool_pair[] = { 1596 ETHTOOL_A_CABLE_PAIR_A, 1597 ETHTOOL_A_CABLE_PAIR_B, 1598 ETHTOOL_A_CABLE_PAIR_C, 1599 ETHTOOL_A_CABLE_PAIR_D, 1600 }; 1601 1602 return ethtool_pair[pair]; 1603 } 1604 1605 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1606 { 1607 int ret, val; 1608 1609 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1610 * To test each individual cable pair, set the cable pair in the Cable 1611 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1612 * Diagnostic Register, along with setting the Cable Diagnostics Test 1613 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1614 * will self clear when the test is concluded. 1615 */ 1616 ret = phy_write(phydev, KSZ9x31_LMD, 1617 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1618 if (ret) 1619 return ret; 1620 1621 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1622 if (ret) 1623 return ret; 1624 1625 val = phy_read(phydev, KSZ9x31_LMD); 1626 if (val < 0) 1627 return val; 1628 1629 if (ksz9x31_cable_test_failed(val)) 1630 return -EAGAIN; 1631 1632 ret = ethnl_cable_test_result(phydev, 1633 ksz9x31_cable_test_get_pair(pair), 1634 ksz9x31_cable_test_result_trans(val)); 1635 if (ret) 1636 return ret; 1637 1638 if (!ksz9x31_cable_test_fault_length_valid(val)) 1639 return 0; 1640 1641 return ethnl_cable_test_fault_length(phydev, 1642 ksz9x31_cable_test_get_pair(pair), 1643 ksz9x31_cable_test_fault_length(phydev, val)); 1644 } 1645 1646 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1647 bool *finished) 1648 { 1649 struct kszphy_priv *priv = phydev->priv; 1650 unsigned long pair_mask = 0xf; 1651 int retries = 20; 1652 int pair, ret, rv; 1653 1654 *finished = false; 1655 1656 /* Try harder if link partner is active */ 1657 while (pair_mask && retries--) { 1658 for_each_set_bit(pair, &pair_mask, 4) { 1659 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1660 if (ret == -EAGAIN) 1661 continue; 1662 if (ret < 0) 1663 return ret; 1664 clear_bit(pair, &pair_mask); 1665 } 1666 /* If link partner is in autonegotiation mode it will send 2ms 1667 * of FLPs with at least 6ms of silence. 1668 * Add 2ms sleep to have better chances to hit this silence. 1669 */ 1670 if (pair_mask) 1671 usleep_range(2000, 3000); 1672 } 1673 1674 /* Report remaining unfinished pair result as unknown. */ 1675 for_each_set_bit(pair, &pair_mask, 4) { 1676 ret = ethnl_cable_test_result(phydev, 1677 ksz9x31_cable_test_get_pair(pair), 1678 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1679 } 1680 1681 *finished = true; 1682 1683 /* Restore cached bits from before LinkMD got started. */ 1684 rv = phy_modify(phydev, MII_CTRL1000, 1685 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1686 priv->vct_ctrl1000); 1687 if (rv) 1688 return rv; 1689 1690 return ret; 1691 } 1692 1693 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1694 { 1695 return 0; 1696 } 1697 1698 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1699 { 1700 u16 val; 1701 1702 switch (ctrl) { 1703 case ETH_TP_MDI: 1704 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1705 break; 1706 case ETH_TP_MDI_X: 1707 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1708 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1709 * sheet seems to be missing: 1710 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1711 * 0 = Normal operation (transmit on TX+/TX- pins) 1712 */ 1713 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1714 break; 1715 case ETH_TP_MDI_AUTO: 1716 val = 0; 1717 break; 1718 default: 1719 return 0; 1720 } 1721 1722 return phy_modify(phydev, MII_BMCR, 1723 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1724 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1725 KSZ886X_BMCR_HP_MDIX | val); 1726 } 1727 1728 static int ksz886x_config_aneg(struct phy_device *phydev) 1729 { 1730 int ret; 1731 1732 ret = genphy_config_aneg(phydev); 1733 if (ret) 1734 return ret; 1735 1736 if (phydev->autoneg != AUTONEG_ENABLE) { 1737 /* When autonegotation is disabled, we need to manually force 1738 * the link state. If we don't do this, the PHY will keep 1739 * sending Fast Link Pulses (FLPs) which are part of the 1740 * autonegotiation process. This is not desired when 1741 * autonegotiation is off. 1742 */ 1743 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1744 KSZ886X_CTRL_FORCE_LINK); 1745 if (ret) 1746 return ret; 1747 } else { 1748 /* If we had previously forced the link state, we need to 1749 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1750 * will not perform autonegotiation. 1751 */ 1752 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1753 KSZ886X_CTRL_FORCE_LINK); 1754 if (ret) 1755 return ret; 1756 } 1757 1758 /* The MDI-X configuration is automatically changed by the PHY after 1759 * switching from autoneg off to on. So, take MDI-X configuration under 1760 * own control and set it after autoneg configuration was done. 1761 */ 1762 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1763 } 1764 1765 static int ksz886x_mdix_update(struct phy_device *phydev) 1766 { 1767 int ret; 1768 1769 ret = phy_read(phydev, MII_BMCR); 1770 if (ret < 0) 1771 return ret; 1772 1773 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1774 if (ret & KSZ886X_BMCR_FORCE_MDI) 1775 phydev->mdix_ctrl = ETH_TP_MDI_X; 1776 else 1777 phydev->mdix_ctrl = ETH_TP_MDI; 1778 } else { 1779 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1780 } 1781 1782 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1783 if (ret < 0) 1784 return ret; 1785 1786 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1787 if (ret & KSZ886X_CTRL_MDIX_STAT) 1788 phydev->mdix = ETH_TP_MDI_X; 1789 else 1790 phydev->mdix = ETH_TP_MDI; 1791 1792 return 0; 1793 } 1794 1795 static int ksz886x_read_status(struct phy_device *phydev) 1796 { 1797 int ret; 1798 1799 ret = ksz886x_mdix_update(phydev); 1800 if (ret < 0) 1801 return ret; 1802 1803 return genphy_read_status(phydev); 1804 } 1805 1806 struct ksz9477_errata_write { 1807 u8 dev_addr; 1808 u8 reg_addr; 1809 u16 val; 1810 }; 1811 1812 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 1813 /* Register settings are needed to improve PHY receive performance */ 1814 {0x01, 0x6f, 0xdd0b}, 1815 {0x01, 0x8f, 0x6032}, 1816 {0x01, 0x9d, 0x248c}, 1817 {0x01, 0x75, 0x0060}, 1818 {0x01, 0xd3, 0x7777}, 1819 {0x1c, 0x06, 0x3008}, 1820 {0x1c, 0x08, 0x2000}, 1821 1822 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 1823 {0x1c, 0x04, 0x00d0}, 1824 1825 /* Register settings are required to meet data sheet supply current specifications */ 1826 {0x1c, 0x13, 0x6eff}, 1827 {0x1c, 0x14, 0xe6ff}, 1828 {0x1c, 0x15, 0x6eff}, 1829 {0x1c, 0x16, 0xe6ff}, 1830 {0x1c, 0x17, 0x00ff}, 1831 {0x1c, 0x18, 0x43ff}, 1832 {0x1c, 0x19, 0xc3ff}, 1833 {0x1c, 0x1a, 0x6fff}, 1834 {0x1c, 0x1b, 0x07ff}, 1835 {0x1c, 0x1c, 0x0fff}, 1836 {0x1c, 0x1d, 0xe7ff}, 1837 {0x1c, 0x1e, 0xefff}, 1838 {0x1c, 0x20, 0xeeee}, 1839 }; 1840 1841 static int ksz9477_config_init(struct phy_device *phydev) 1842 { 1843 int err; 1844 int i; 1845 1846 /* Apply PHY settings to address errata listed in 1847 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 1848 * Silicon Errata and Data Sheet Clarification documents. 1849 * 1850 * Document notes: Before configuring the PHY MMD registers, it is 1851 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 1852 * disabled by writing to register 0xN100-0xN101. After writing the 1853 * MMD registers, and after all errata workarounds that involve PHY 1854 * register settings, write register 0xN100-0xN101 again to enable 1855 * and restart auto-negotiation. 1856 */ 1857 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 1858 if (err) 1859 return err; 1860 1861 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 1862 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 1863 1864 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 1865 if (err) 1866 return err; 1867 } 1868 1869 /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes 1870 * in this switch shall be regarded as broken. 1871 */ 1872 if (phydev->dev_flags & MICREL_NO_EEE) 1873 phydev->eee_broken_modes = -1; 1874 1875 err = genphy_restart_aneg(phydev); 1876 if (err) 1877 return err; 1878 1879 return kszphy_config_init(phydev); 1880 } 1881 1882 static int kszphy_get_sset_count(struct phy_device *phydev) 1883 { 1884 return ARRAY_SIZE(kszphy_hw_stats); 1885 } 1886 1887 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 1888 { 1889 int i; 1890 1891 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) { 1892 strscpy(data + i * ETH_GSTRING_LEN, 1893 kszphy_hw_stats[i].string, ETH_GSTRING_LEN); 1894 } 1895 } 1896 1897 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 1898 { 1899 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 1900 struct kszphy_priv *priv = phydev->priv; 1901 int val; 1902 u64 ret; 1903 1904 val = phy_read(phydev, stat.reg); 1905 if (val < 0) { 1906 ret = U64_MAX; 1907 } else { 1908 val = val & ((1 << stat.bits) - 1); 1909 priv->stats[i] += val; 1910 ret = priv->stats[i]; 1911 } 1912 1913 return ret; 1914 } 1915 1916 static void kszphy_get_stats(struct phy_device *phydev, 1917 struct ethtool_stats *stats, u64 *data) 1918 { 1919 int i; 1920 1921 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 1922 data[i] = kszphy_get_stat(phydev, i); 1923 } 1924 1925 static int kszphy_suspend(struct phy_device *phydev) 1926 { 1927 /* Disable PHY Interrupts */ 1928 if (phy_interrupt_is_valid(phydev)) { 1929 phydev->interrupts = PHY_INTERRUPT_DISABLED; 1930 if (phydev->drv->config_intr) 1931 phydev->drv->config_intr(phydev); 1932 } 1933 1934 return genphy_suspend(phydev); 1935 } 1936 1937 static void kszphy_parse_led_mode(struct phy_device *phydev) 1938 { 1939 const struct kszphy_type *type = phydev->drv->driver_data; 1940 const struct device_node *np = phydev->mdio.dev.of_node; 1941 struct kszphy_priv *priv = phydev->priv; 1942 int ret; 1943 1944 if (type && type->led_mode_reg) { 1945 ret = of_property_read_u32(np, "micrel,led-mode", 1946 &priv->led_mode); 1947 1948 if (ret) 1949 priv->led_mode = -1; 1950 1951 if (priv->led_mode > 3) { 1952 phydev_err(phydev, "invalid led mode: 0x%02x\n", 1953 priv->led_mode); 1954 priv->led_mode = -1; 1955 } 1956 } else { 1957 priv->led_mode = -1; 1958 } 1959 } 1960 1961 static int kszphy_resume(struct phy_device *phydev) 1962 { 1963 int ret; 1964 1965 genphy_resume(phydev); 1966 1967 /* After switching from power-down to normal mode, an internal global 1968 * reset is automatically generated. Wait a minimum of 1 ms before 1969 * read/write access to the PHY registers. 1970 */ 1971 usleep_range(1000, 2000); 1972 1973 ret = kszphy_config_reset(phydev); 1974 if (ret) 1975 return ret; 1976 1977 /* Enable PHY Interrupts */ 1978 if (phy_interrupt_is_valid(phydev)) { 1979 phydev->interrupts = PHY_INTERRUPT_ENABLED; 1980 if (phydev->drv->config_intr) 1981 phydev->drv->config_intr(phydev); 1982 } 1983 1984 return 0; 1985 } 1986 1987 static int kszphy_probe(struct phy_device *phydev) 1988 { 1989 const struct kszphy_type *type = phydev->drv->driver_data; 1990 const struct device_node *np = phydev->mdio.dev.of_node; 1991 struct kszphy_priv *priv; 1992 struct clk *clk; 1993 1994 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 1995 if (!priv) 1996 return -ENOMEM; 1997 1998 phydev->priv = priv; 1999 2000 priv->type = type; 2001 2002 kszphy_parse_led_mode(phydev); 2003 2004 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2005 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2006 if (!IS_ERR_OR_NULL(clk)) { 2007 unsigned long rate = clk_get_rate(clk); 2008 bool rmii_ref_clk_sel_25_mhz; 2009 2010 if (type) 2011 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2012 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2013 "micrel,rmii-reference-clock-select-25-mhz"); 2014 2015 if (rate > 24500000 && rate < 25500000) { 2016 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2017 } else if (rate > 49500000 && rate < 50500000) { 2018 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2019 } else { 2020 phydev_err(phydev, "Clock rate out of range: %ld\n", 2021 rate); 2022 return -EINVAL; 2023 } 2024 } else if (!clk) { 2025 /* unnamed clock from the generic ethernet-phy binding */ 2026 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2027 if (IS_ERR(clk)) 2028 return PTR_ERR(clk); 2029 } 2030 2031 if (ksz8041_fiber_mode(phydev)) 2032 phydev->port = PORT_FIBRE; 2033 2034 /* Support legacy board-file configuration */ 2035 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2036 priv->rmii_ref_clk_sel = true; 2037 priv->rmii_ref_clk_sel_val = true; 2038 } 2039 2040 return 0; 2041 } 2042 2043 static int lan8814_cable_test_start(struct phy_device *phydev) 2044 { 2045 /* If autoneg is enabled, we won't be able to test cross pair 2046 * short. In this case, the PHY will "detect" a link and 2047 * confuse the internal state machine - disable auto neg here. 2048 * Set the speed to 1000mbit and full duplex. 2049 */ 2050 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2051 BMCR_SPEED1000 | BMCR_FULLDPLX); 2052 } 2053 2054 static int ksz886x_cable_test_start(struct phy_device *phydev) 2055 { 2056 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2057 return -EOPNOTSUPP; 2058 2059 /* If autoneg is enabled, we won't be able to test cross pair 2060 * short. In this case, the PHY will "detect" a link and 2061 * confuse the internal state machine - disable auto neg here. 2062 * If autoneg is disabled, we should set the speed to 10mbit. 2063 */ 2064 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2065 } 2066 2067 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2068 { 2069 switch (FIELD_GET(mask, status)) { 2070 case KSZ8081_LMD_STAT_NORMAL: 2071 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2072 case KSZ8081_LMD_STAT_SHORT: 2073 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2074 case KSZ8081_LMD_STAT_OPEN: 2075 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2076 case KSZ8081_LMD_STAT_FAIL: 2077 fallthrough; 2078 default: 2079 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2080 } 2081 } 2082 2083 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2084 { 2085 return FIELD_GET(mask, status) == 2086 KSZ8081_LMD_STAT_FAIL; 2087 } 2088 2089 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2090 { 2091 switch (FIELD_GET(mask, status)) { 2092 case KSZ8081_LMD_STAT_OPEN: 2093 fallthrough; 2094 case KSZ8081_LMD_STAT_SHORT: 2095 return true; 2096 } 2097 return false; 2098 } 2099 2100 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2101 u16 status, u16 data_mask) 2102 { 2103 int dt; 2104 2105 /* According to the data sheet the distance to the fault is 2106 * DELTA_TIME * 0.4 meters for ksz phys. 2107 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2108 */ 2109 dt = FIELD_GET(data_mask, status); 2110 2111 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2112 return ((dt - 22) * 800) / 10; 2113 else 2114 return (dt * 400) / 10; 2115 } 2116 2117 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2118 { 2119 const struct kszphy_type *type = phydev->drv->driver_data; 2120 int val, ret; 2121 2122 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2123 !(val & KSZ8081_LMD_ENABLE_TEST), 2124 30000, 100000, true); 2125 2126 return ret < 0 ? ret : 0; 2127 } 2128 2129 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2130 { 2131 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2132 ETHTOOL_A_CABLE_PAIR_B, 2133 ETHTOOL_A_CABLE_PAIR_C, 2134 ETHTOOL_A_CABLE_PAIR_D, 2135 }; 2136 u32 fault_length; 2137 int ret; 2138 int val; 2139 2140 val = KSZ8081_LMD_ENABLE_TEST; 2141 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2142 2143 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2144 if (ret < 0) 2145 return ret; 2146 2147 ret = ksz886x_cable_test_wait_for_completion(phydev); 2148 if (ret) 2149 return ret; 2150 2151 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2152 if (val < 0) 2153 return val; 2154 2155 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2156 return -EAGAIN; 2157 2158 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2159 ksz886x_cable_test_result_trans(val, 2160 LAN8814_CABLE_DIAG_STAT_MASK 2161 )); 2162 if (ret) 2163 return ret; 2164 2165 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2166 return 0; 2167 2168 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2169 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2170 2171 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2172 } 2173 2174 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2175 { 2176 static const int ethtool_pair[] = { 2177 ETHTOOL_A_CABLE_PAIR_A, 2178 ETHTOOL_A_CABLE_PAIR_B, 2179 }; 2180 int ret, val, mdix; 2181 u32 fault_length; 2182 2183 /* There is no way to choice the pair, like we do one ksz9031. 2184 * We can workaround this limitation by using the MDI-X functionality. 2185 */ 2186 if (pair == 0) 2187 mdix = ETH_TP_MDI; 2188 else 2189 mdix = ETH_TP_MDI_X; 2190 2191 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2192 case PHY_ID_KSZ8081: 2193 ret = ksz8081_config_mdix(phydev, mdix); 2194 break; 2195 case PHY_ID_KSZ886X: 2196 ret = ksz886x_config_mdix(phydev, mdix); 2197 break; 2198 default: 2199 ret = -ENODEV; 2200 } 2201 2202 if (ret) 2203 return ret; 2204 2205 /* Now we are ready to fire. This command will send a 100ns pulse 2206 * to the pair. 2207 */ 2208 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2209 if (ret) 2210 return ret; 2211 2212 ret = ksz886x_cable_test_wait_for_completion(phydev); 2213 if (ret) 2214 return ret; 2215 2216 val = phy_read(phydev, KSZ8081_LMD); 2217 if (val < 0) 2218 return val; 2219 2220 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2221 return -EAGAIN; 2222 2223 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2224 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2225 if (ret) 2226 return ret; 2227 2228 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2229 return 0; 2230 2231 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2232 2233 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2234 } 2235 2236 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2237 bool *finished) 2238 { 2239 const struct kszphy_type *type = phydev->drv->driver_data; 2240 unsigned long pair_mask = type->pair_mask; 2241 int retries = 20; 2242 int ret = 0; 2243 int pair; 2244 2245 *finished = false; 2246 2247 /* Try harder if link partner is active */ 2248 while (pair_mask && retries--) { 2249 for_each_set_bit(pair, &pair_mask, 4) { 2250 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2251 ret = lan8814_cable_test_one_pair(phydev, pair); 2252 else 2253 ret = ksz886x_cable_test_one_pair(phydev, pair); 2254 if (ret == -EAGAIN) 2255 continue; 2256 if (ret < 0) 2257 return ret; 2258 clear_bit(pair, &pair_mask); 2259 } 2260 /* If link partner is in autonegotiation mode it will send 2ms 2261 * of FLPs with at least 6ms of silence. 2262 * Add 2ms sleep to have better chances to hit this silence. 2263 */ 2264 if (pair_mask) 2265 msleep(2); 2266 } 2267 2268 *finished = true; 2269 2270 return ret; 2271 } 2272 2273 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2274 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2275 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2276 2277 #define LAN8814_QSGMII_SOFT_RESET 0x43 2278 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2279 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2280 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2281 #define LAN8814_ALIGN_SWAP 0x4a 2282 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2283 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2284 2285 #define LAN8804_ALIGN_SWAP 0x4a 2286 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2287 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2288 #define LAN8814_CLOCK_MANAGEMENT 0xd 2289 #define LAN8814_LINK_QUALITY 0x8e 2290 2291 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2292 { 2293 int data; 2294 2295 phy_lock_mdio_bus(phydev); 2296 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2297 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2298 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2299 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2300 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2301 phy_unlock_mdio_bus(phydev); 2302 2303 return data; 2304 } 2305 2306 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2307 u16 val) 2308 { 2309 phy_lock_mdio_bus(phydev); 2310 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2311 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2312 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2313 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2314 2315 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2316 if (val != 0) 2317 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2318 val); 2319 phy_unlock_mdio_bus(phydev); 2320 return val; 2321 } 2322 2323 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2324 { 2325 u16 val = 0; 2326 2327 if (enable) 2328 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2329 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2330 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2331 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2332 2333 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2334 } 2335 2336 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2337 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2338 { 2339 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2340 *seconds = (*seconds << 16) | 2341 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2342 2343 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2344 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2345 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2346 2347 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2348 } 2349 2350 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2351 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2352 { 2353 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2354 *seconds = *seconds << 16 | 2355 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2356 2357 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2358 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2359 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2360 2361 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2362 } 2363 2364 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) 2365 { 2366 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2367 struct phy_device *phydev = ptp_priv->phydev; 2368 struct lan8814_shared_priv *shared = phydev->shared->priv; 2369 2370 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2371 SOF_TIMESTAMPING_RX_HARDWARE | 2372 SOF_TIMESTAMPING_RAW_HARDWARE; 2373 2374 info->phc_index = ptp_clock_index(shared->ptp_clock); 2375 2376 info->tx_types = 2377 (1 << HWTSTAMP_TX_OFF) | 2378 (1 << HWTSTAMP_TX_ON) | 2379 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2380 2381 info->rx_filters = 2382 (1 << HWTSTAMP_FILTER_NONE) | 2383 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2384 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2385 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2386 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2387 2388 return 0; 2389 } 2390 2391 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2392 { 2393 int i; 2394 2395 for (i = 0; i < FIFO_SIZE; ++i) 2396 lanphy_read_page_reg(phydev, 5, 2397 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2398 2399 /* Read to clear overflow status bit */ 2400 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2401 } 2402 2403 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 2404 struct kernel_hwtstamp_config *config, 2405 struct netlink_ext_ack *extack) 2406 { 2407 struct kszphy_ptp_priv *ptp_priv = 2408 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2409 struct phy_device *phydev = ptp_priv->phydev; 2410 struct lan8814_shared_priv *shared = phydev->shared->priv; 2411 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2412 int txcfg = 0, rxcfg = 0; 2413 int pkt_ts_enable; 2414 2415 ptp_priv->hwts_tx_type = config->tx_type; 2416 ptp_priv->rx_filter = config->rx_filter; 2417 2418 switch (config->rx_filter) { 2419 case HWTSTAMP_FILTER_NONE: 2420 ptp_priv->layer = 0; 2421 ptp_priv->version = 0; 2422 break; 2423 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2424 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2425 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2426 ptp_priv->layer = PTP_CLASS_L4; 2427 ptp_priv->version = PTP_CLASS_V2; 2428 break; 2429 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2430 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2431 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2432 ptp_priv->layer = PTP_CLASS_L2; 2433 ptp_priv->version = PTP_CLASS_V2; 2434 break; 2435 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2436 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2437 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2438 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2439 ptp_priv->version = PTP_CLASS_V2; 2440 break; 2441 default: 2442 return -ERANGE; 2443 } 2444 2445 if (ptp_priv->layer & PTP_CLASS_L2) { 2446 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2447 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2448 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2449 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2450 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2451 } 2452 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2453 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2454 2455 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2456 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2457 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2458 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2459 2460 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) 2461 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2462 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2463 2464 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 2465 lan8814_config_ts_intr(ptp_priv->phydev, true); 2466 else 2467 lan8814_config_ts_intr(ptp_priv->phydev, false); 2468 2469 mutex_lock(&shared->shared_lock); 2470 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 2471 shared->ref++; 2472 else 2473 shared->ref--; 2474 2475 if (shared->ref) 2476 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2477 PTP_CMD_CTL_PTP_ENABLE_); 2478 else 2479 lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL, 2480 PTP_CMD_CTL_PTP_DISABLE_); 2481 mutex_unlock(&shared->shared_lock); 2482 2483 /* In case of multiple starts and stops, these needs to be cleared */ 2484 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2485 list_del(&rx_ts->list); 2486 kfree(rx_ts); 2487 } 2488 skb_queue_purge(&ptp_priv->rx_queue); 2489 skb_queue_purge(&ptp_priv->tx_queue); 2490 2491 lan8814_flush_fifo(ptp_priv->phydev, false); 2492 lan8814_flush_fifo(ptp_priv->phydev, true); 2493 2494 return 0; 2495 } 2496 2497 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 2498 struct sk_buff *skb, int type) 2499 { 2500 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2501 2502 switch (ptp_priv->hwts_tx_type) { 2503 case HWTSTAMP_TX_ONESTEP_SYNC: 2504 if (ptp_msg_is_sync(skb, type)) { 2505 kfree_skb(skb); 2506 return; 2507 } 2508 fallthrough; 2509 case HWTSTAMP_TX_ON: 2510 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2511 skb_queue_tail(&ptp_priv->tx_queue, skb); 2512 break; 2513 case HWTSTAMP_TX_OFF: 2514 default: 2515 kfree_skb(skb); 2516 break; 2517 } 2518 } 2519 2520 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 2521 { 2522 struct ptp_header *ptp_header; 2523 u32 type; 2524 2525 skb_push(skb, ETH_HLEN); 2526 type = ptp_classify_raw(skb); 2527 ptp_header = ptp_parse_header(skb, type); 2528 skb_pull_inline(skb, ETH_HLEN); 2529 2530 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2531 } 2532 2533 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 2534 struct sk_buff *skb) 2535 { 2536 struct skb_shared_hwtstamps *shhwtstamps; 2537 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2538 unsigned long flags; 2539 bool ret = false; 2540 u16 skb_sig; 2541 2542 lan8814_get_sig_rx(skb, &skb_sig); 2543 2544 /* Iterate over all RX timestamps and match it with the received skbs */ 2545 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2546 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2547 /* Check if we found the signature we were looking for. */ 2548 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2549 continue; 2550 2551 shhwtstamps = skb_hwtstamps(skb); 2552 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2553 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 2554 rx_ts->nsec); 2555 list_del(&rx_ts->list); 2556 kfree(rx_ts); 2557 2558 ret = true; 2559 break; 2560 } 2561 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2562 2563 if (ret) 2564 netif_rx(skb); 2565 return ret; 2566 } 2567 2568 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 2569 { 2570 struct kszphy_ptp_priv *ptp_priv = 2571 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2572 2573 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 2574 type == PTP_CLASS_NONE) 2575 return false; 2576 2577 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 2578 return false; 2579 2580 /* If we failed to match then add it to the queue for when the timestamp 2581 * will come 2582 */ 2583 if (!lan8814_match_rx_skb(ptp_priv, skb)) 2584 skb_queue_tail(&ptp_priv->rx_queue, skb); 2585 2586 return true; 2587 } 2588 2589 static void lan8814_ptp_clock_set(struct phy_device *phydev, 2590 u32 seconds, u32 nano_seconds) 2591 { 2592 u32 sec_low, sec_high, nsec_low, nsec_high; 2593 2594 sec_low = seconds & 0xffff; 2595 sec_high = (seconds >> 16) & 0xffff; 2596 nsec_low = nano_seconds & 0xffff; 2597 nsec_high = (nano_seconds >> 16) & 0x3fff; 2598 2599 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, sec_low); 2600 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, sec_high); 2601 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, nsec_low); 2602 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, nsec_high); 2603 2604 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 2605 } 2606 2607 static void lan8814_ptp_clock_get(struct phy_device *phydev, 2608 u32 *seconds, u32 *nano_seconds) 2609 { 2610 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 2611 2612 *seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 2613 *seconds = (*seconds << 16) | 2614 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 2615 2616 *nano_seconds = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 2617 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2618 lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 2619 } 2620 2621 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 2622 struct timespec64 *ts) 2623 { 2624 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2625 ptp_clock_info); 2626 struct phy_device *phydev = shared->phydev; 2627 u32 nano_seconds; 2628 u32 seconds; 2629 2630 mutex_lock(&shared->shared_lock); 2631 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 2632 mutex_unlock(&shared->shared_lock); 2633 ts->tv_sec = seconds; 2634 ts->tv_nsec = nano_seconds; 2635 2636 return 0; 2637 } 2638 2639 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 2640 const struct timespec64 *ts) 2641 { 2642 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2643 ptp_clock_info); 2644 struct phy_device *phydev = shared->phydev; 2645 2646 mutex_lock(&shared->shared_lock); 2647 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 2648 mutex_unlock(&shared->shared_lock); 2649 2650 return 0; 2651 } 2652 2653 static void lan8814_ptp_clock_step(struct phy_device *phydev, 2654 s64 time_step_ns) 2655 { 2656 u32 nano_seconds_step; 2657 u64 abs_time_step_ns; 2658 u32 unsigned_seconds; 2659 u32 nano_seconds; 2660 u32 remainder; 2661 s32 seconds; 2662 2663 if (time_step_ns > 15000000000LL) { 2664 /* convert to clock set */ 2665 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2666 unsigned_seconds += div_u64_rem(time_step_ns, 1000000000LL, 2667 &remainder); 2668 nano_seconds += remainder; 2669 if (nano_seconds >= 1000000000) { 2670 unsigned_seconds++; 2671 nano_seconds -= 1000000000; 2672 } 2673 lan8814_ptp_clock_set(phydev, unsigned_seconds, nano_seconds); 2674 return; 2675 } else if (time_step_ns < -15000000000LL) { 2676 /* convert to clock set */ 2677 time_step_ns = -time_step_ns; 2678 2679 lan8814_ptp_clock_get(phydev, &unsigned_seconds, &nano_seconds); 2680 unsigned_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 2681 &remainder); 2682 nano_seconds_step = remainder; 2683 if (nano_seconds < nano_seconds_step) { 2684 unsigned_seconds--; 2685 nano_seconds += 1000000000; 2686 } 2687 nano_seconds -= nano_seconds_step; 2688 lan8814_ptp_clock_set(phydev, unsigned_seconds, 2689 nano_seconds); 2690 return; 2691 } 2692 2693 /* do clock step */ 2694 if (time_step_ns >= 0) { 2695 abs_time_step_ns = (u64)time_step_ns; 2696 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 2697 &remainder); 2698 nano_seconds = remainder; 2699 } else { 2700 abs_time_step_ns = (u64)(-time_step_ns); 2701 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 2702 &remainder)); 2703 nano_seconds = remainder; 2704 if (nano_seconds > 0) { 2705 /* subtracting nano seconds is not allowed 2706 * convert to subtracting from seconds, 2707 * and adding to nanoseconds 2708 */ 2709 seconds--; 2710 nano_seconds = (1000000000 - nano_seconds); 2711 } 2712 } 2713 2714 if (nano_seconds > 0) { 2715 /* add 8 ns to cover the likely normal increment */ 2716 nano_seconds += 8; 2717 } 2718 2719 if (nano_seconds >= 1000000000) { 2720 /* carry into seconds */ 2721 seconds++; 2722 nano_seconds -= 1000000000; 2723 } 2724 2725 while (seconds) { 2726 if (seconds > 0) { 2727 u32 adjustment_value = (u32)seconds; 2728 u16 adjustment_value_lo, adjustment_value_hi; 2729 2730 if (adjustment_value > 0xF) 2731 adjustment_value = 0xF; 2732 2733 adjustment_value_lo = adjustment_value & 0xffff; 2734 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2735 2736 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2737 adjustment_value_lo); 2738 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2739 PTP_LTC_STEP_ADJ_DIR_ | 2740 adjustment_value_hi); 2741 seconds -= ((s32)adjustment_value); 2742 } else { 2743 u32 adjustment_value = (u32)(-seconds); 2744 u16 adjustment_value_lo, adjustment_value_hi; 2745 2746 if (adjustment_value > 0xF) 2747 adjustment_value = 0xF; 2748 2749 adjustment_value_lo = adjustment_value & 0xffff; 2750 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 2751 2752 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2753 adjustment_value_lo); 2754 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2755 adjustment_value_hi); 2756 seconds += ((s32)adjustment_value); 2757 } 2758 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2759 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 2760 } 2761 if (nano_seconds) { 2762 u16 nano_seconds_lo; 2763 u16 nano_seconds_hi; 2764 2765 nano_seconds_lo = nano_seconds & 0xffff; 2766 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 2767 2768 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 2769 nano_seconds_lo); 2770 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 2771 PTP_LTC_STEP_ADJ_DIR_ | 2772 nano_seconds_hi); 2773 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 2774 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 2775 } 2776 } 2777 2778 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 2779 { 2780 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2781 ptp_clock_info); 2782 struct phy_device *phydev = shared->phydev; 2783 2784 mutex_lock(&shared->shared_lock); 2785 lan8814_ptp_clock_step(phydev, delta); 2786 mutex_unlock(&shared->shared_lock); 2787 2788 return 0; 2789 } 2790 2791 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 2792 { 2793 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 2794 ptp_clock_info); 2795 struct phy_device *phydev = shared->phydev; 2796 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 2797 bool positive = true; 2798 u32 kszphy_rate_adj; 2799 2800 if (scaled_ppm < 0) { 2801 scaled_ppm = -scaled_ppm; 2802 positive = false; 2803 } 2804 2805 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 2806 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 2807 2808 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 2809 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 2810 2811 if (positive) 2812 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 2813 2814 mutex_lock(&shared->shared_lock); 2815 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 2816 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 2817 mutex_unlock(&shared->shared_lock); 2818 2819 return 0; 2820 } 2821 2822 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 2823 { 2824 struct ptp_header *ptp_header; 2825 u32 type; 2826 2827 type = ptp_classify_raw(skb); 2828 ptp_header = ptp_parse_header(skb, type); 2829 2830 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 2831 } 2832 2833 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 2834 u32 seconds, u32 nsec, u16 seq_id) 2835 { 2836 struct skb_shared_hwtstamps shhwtstamps; 2837 struct sk_buff *skb, *skb_tmp; 2838 unsigned long flags; 2839 bool ret = false; 2840 u16 skb_sig; 2841 2842 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 2843 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 2844 lan8814_get_sig_tx(skb, &skb_sig); 2845 2846 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 2847 continue; 2848 2849 __skb_unlink(skb, &ptp_priv->tx_queue); 2850 ret = true; 2851 break; 2852 } 2853 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 2854 2855 if (ret) { 2856 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2857 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 2858 skb_complete_tx_timestamp(skb, &shhwtstamps); 2859 } 2860 } 2861 2862 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 2863 { 2864 struct phy_device *phydev = ptp_priv->phydev; 2865 u32 seconds, nsec; 2866 u16 seq_id; 2867 2868 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 2869 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 2870 } 2871 2872 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 2873 { 2874 struct phy_device *phydev = ptp_priv->phydev; 2875 u32 reg; 2876 2877 do { 2878 lan8814_dequeue_tx_skb(ptp_priv); 2879 2880 /* If other timestamps are available in the FIFO, 2881 * process them. 2882 */ 2883 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2884 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 2885 } 2886 2887 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 2888 struct lan8814_ptp_rx_ts *rx_ts) 2889 { 2890 struct skb_shared_hwtstamps *shhwtstamps; 2891 struct sk_buff *skb, *skb_tmp; 2892 unsigned long flags; 2893 bool ret = false; 2894 u16 skb_sig; 2895 2896 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 2897 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 2898 lan8814_get_sig_rx(skb, &skb_sig); 2899 2900 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 2901 continue; 2902 2903 __skb_unlink(skb, &ptp_priv->rx_queue); 2904 2905 ret = true; 2906 break; 2907 } 2908 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 2909 2910 if (ret) { 2911 shhwtstamps = skb_hwtstamps(skb); 2912 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2913 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 2914 netif_rx(skb); 2915 } 2916 2917 return ret; 2918 } 2919 2920 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 2921 struct lan8814_ptp_rx_ts *rx_ts) 2922 { 2923 unsigned long flags; 2924 2925 /* If we failed to match the skb add it to the queue for when 2926 * the frame will come 2927 */ 2928 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 2929 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 2930 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 2931 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 2932 } else { 2933 kfree(rx_ts); 2934 } 2935 } 2936 2937 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 2938 { 2939 struct phy_device *phydev = ptp_priv->phydev; 2940 struct lan8814_ptp_rx_ts *rx_ts; 2941 u32 reg; 2942 2943 do { 2944 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 2945 if (!rx_ts) 2946 return; 2947 2948 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 2949 &rx_ts->seq_id); 2950 lan8814_match_rx_ts(ptp_priv, rx_ts); 2951 2952 /* If other timestamps are available in the FIFO, 2953 * process them. 2954 */ 2955 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 2956 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 2957 } 2958 2959 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 2960 { 2961 struct kszphy_priv *priv = phydev->priv; 2962 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 2963 2964 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 2965 lan8814_get_tx_ts(ptp_priv); 2966 2967 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 2968 lan8814_get_rx_ts(ptp_priv); 2969 2970 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 2971 lan8814_flush_fifo(phydev, true); 2972 skb_queue_purge(&ptp_priv->tx_queue); 2973 } 2974 2975 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 2976 lan8814_flush_fifo(phydev, false); 2977 skb_queue_purge(&ptp_priv->rx_queue); 2978 } 2979 } 2980 2981 static int lan8804_config_init(struct phy_device *phydev) 2982 { 2983 int val; 2984 2985 /* MDI-X setting for swap A,B transmit */ 2986 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 2987 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 2988 val |= LAN8804_ALIGN_TX_A_B_SWAP; 2989 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 2990 2991 /* Make sure that the PHY will not stop generating the clock when the 2992 * link partner goes down 2993 */ 2994 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 2995 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 2996 2997 return 0; 2998 } 2999 3000 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 3001 { 3002 int status; 3003 3004 status = phy_read(phydev, LAN8814_INTS); 3005 if (status < 0) { 3006 phy_error(phydev); 3007 return IRQ_NONE; 3008 } 3009 3010 if (status > 0) 3011 phy_trigger_machine(phydev); 3012 3013 return IRQ_HANDLED; 3014 } 3015 3016 #define LAN8804_OUTPUT_CONTROL 25 3017 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 3018 #define LAN8804_CONTROL 31 3019 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 3020 3021 static int lan8804_config_intr(struct phy_device *phydev) 3022 { 3023 int err; 3024 3025 /* This is an internal PHY of lan966x and is not possible to change the 3026 * polarity on the GIC found in lan966x, therefore change the polarity 3027 * of the interrupt in the PHY from being active low instead of active 3028 * high. 3029 */ 3030 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3031 3032 /* By default interrupt buffer is open-drain in which case the interrupt 3033 * can be active only low. Therefore change the interrupt buffer to be 3034 * push-pull to be able to change interrupt polarity 3035 */ 3036 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3037 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3038 3039 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3040 err = phy_read(phydev, LAN8814_INTS); 3041 if (err < 0) 3042 return err; 3043 3044 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3045 if (err) 3046 return err; 3047 } else { 3048 err = phy_write(phydev, LAN8814_INTC, 0); 3049 if (err) 3050 return err; 3051 3052 err = phy_read(phydev, LAN8814_INTS); 3053 if (err < 0) 3054 return err; 3055 } 3056 3057 return 0; 3058 } 3059 3060 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3061 { 3062 int ret = IRQ_NONE; 3063 int irq_status; 3064 3065 irq_status = phy_read(phydev, LAN8814_INTS); 3066 if (irq_status < 0) { 3067 phy_error(phydev); 3068 return IRQ_NONE; 3069 } 3070 3071 if (irq_status & LAN8814_INT_LINK) { 3072 phy_trigger_machine(phydev); 3073 ret = IRQ_HANDLED; 3074 } 3075 3076 while (true) { 3077 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 3078 if (!irq_status) 3079 break; 3080 3081 lan8814_handle_ptp_interrupt(phydev, irq_status); 3082 ret = IRQ_HANDLED; 3083 } 3084 3085 return ret; 3086 } 3087 3088 static int lan8814_ack_interrupt(struct phy_device *phydev) 3089 { 3090 /* bit[12..0] int status, which is a read and clear register. */ 3091 int rc; 3092 3093 rc = phy_read(phydev, LAN8814_INTS); 3094 3095 return (rc < 0) ? rc : 0; 3096 } 3097 3098 static int lan8814_config_intr(struct phy_device *phydev) 3099 { 3100 int err; 3101 3102 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 3103 LAN8814_INTR_CTRL_REG_POLARITY | 3104 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 3105 3106 /* enable / disable interrupts */ 3107 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3108 err = lan8814_ack_interrupt(phydev); 3109 if (err) 3110 return err; 3111 3112 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3113 } else { 3114 err = phy_write(phydev, LAN8814_INTC, 0); 3115 if (err) 3116 return err; 3117 3118 err = lan8814_ack_interrupt(phydev); 3119 } 3120 3121 return err; 3122 } 3123 3124 static void lan8814_ptp_init(struct phy_device *phydev) 3125 { 3126 struct kszphy_priv *priv = phydev->priv; 3127 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3128 u32 temp; 3129 3130 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 3131 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 3132 return; 3133 3134 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 3135 3136 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 3137 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3138 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 3139 3140 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 3141 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 3142 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 3143 3144 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 3145 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 3146 3147 /* Removing default registers configs related to L2 and IP */ 3148 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 3149 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 3150 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 3151 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 3152 3153 skb_queue_head_init(&ptp_priv->tx_queue); 3154 skb_queue_head_init(&ptp_priv->rx_queue); 3155 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 3156 spin_lock_init(&ptp_priv->rx_ts_lock); 3157 3158 ptp_priv->phydev = phydev; 3159 3160 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 3161 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 3162 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 3163 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 3164 3165 phydev->mii_ts = &ptp_priv->mii_ts; 3166 } 3167 3168 static int lan8814_ptp_probe_once(struct phy_device *phydev) 3169 { 3170 struct lan8814_shared_priv *shared = phydev->shared->priv; 3171 3172 /* Initialise shared lock for clock*/ 3173 mutex_init(&shared->shared_lock); 3174 3175 shared->ptp_clock_info.owner = THIS_MODULE; 3176 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 3177 shared->ptp_clock_info.max_adj = 31249999; 3178 shared->ptp_clock_info.n_alarm = 0; 3179 shared->ptp_clock_info.n_ext_ts = 0; 3180 shared->ptp_clock_info.n_pins = 0; 3181 shared->ptp_clock_info.pps = 0; 3182 shared->ptp_clock_info.pin_config = NULL; 3183 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 3184 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 3185 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 3186 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 3187 shared->ptp_clock_info.getcrosststamp = NULL; 3188 3189 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 3190 &phydev->mdio.dev); 3191 if (IS_ERR(shared->ptp_clock)) { 3192 phydev_err(phydev, "ptp_clock_register failed %lu\n", 3193 PTR_ERR(shared->ptp_clock)); 3194 return -EINVAL; 3195 } 3196 3197 /* Check if PHC support is missing at the configuration level */ 3198 if (!shared->ptp_clock) 3199 return 0; 3200 3201 phydev_dbg(phydev, "successfully registered ptp clock\n"); 3202 3203 shared->phydev = phydev; 3204 3205 /* The EP.4 is shared between all the PHYs in the package and also it 3206 * can be accessed by any of the PHYs 3207 */ 3208 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 3209 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 3210 PTP_OPERATING_MODE_STANDALONE_); 3211 3212 return 0; 3213 } 3214 3215 static void lan8814_setup_led(struct phy_device *phydev, int val) 3216 { 3217 int temp; 3218 3219 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 3220 3221 if (val) 3222 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3223 else 3224 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 3225 3226 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 3227 } 3228 3229 static int lan8814_config_init(struct phy_device *phydev) 3230 { 3231 struct kszphy_priv *lan8814 = phydev->priv; 3232 int val; 3233 3234 /* Reset the PHY */ 3235 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 3236 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 3237 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 3238 3239 /* Disable ANEG with QSGMII PCS Host side */ 3240 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 3241 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 3242 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 3243 3244 /* MDI-X setting for swap A,B transmit */ 3245 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 3246 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 3247 val |= LAN8814_ALIGN_TX_A_B_SWAP; 3248 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 3249 3250 if (lan8814->led_mode >= 0) 3251 lan8814_setup_led(phydev, lan8814->led_mode); 3252 3253 return 0; 3254 } 3255 3256 /* It is expected that there will not be any 'lan8814_take_coma_mode' 3257 * function called in suspend. Because the GPIO line can be shared, so if one of 3258 * the phys goes back in coma mode, then all the other PHYs will go, which is 3259 * wrong. 3260 */ 3261 static int lan8814_release_coma_mode(struct phy_device *phydev) 3262 { 3263 struct gpio_desc *gpiod; 3264 3265 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 3266 GPIOD_OUT_HIGH_OPEN_DRAIN | 3267 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 3268 if (IS_ERR(gpiod)) 3269 return PTR_ERR(gpiod); 3270 3271 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 3272 gpiod_set_value_cansleep(gpiod, 0); 3273 3274 return 0; 3275 } 3276 3277 static int lan8814_probe(struct phy_device *phydev) 3278 { 3279 const struct kszphy_type *type = phydev->drv->driver_data; 3280 struct kszphy_priv *priv; 3281 u16 addr; 3282 int err; 3283 3284 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 3285 if (!priv) 3286 return -ENOMEM; 3287 3288 phydev->priv = priv; 3289 3290 priv->type = type; 3291 3292 kszphy_parse_led_mode(phydev); 3293 3294 /* Strap-in value for PHY address, below register read gives starting 3295 * phy address value 3296 */ 3297 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 3298 devm_phy_package_join(&phydev->mdio.dev, phydev, 3299 addr, sizeof(struct lan8814_shared_priv)); 3300 3301 if (phy_package_init_once(phydev)) { 3302 err = lan8814_release_coma_mode(phydev); 3303 if (err) 3304 return err; 3305 3306 err = lan8814_ptp_probe_once(phydev); 3307 if (err) 3308 return err; 3309 } 3310 3311 lan8814_ptp_init(phydev); 3312 3313 return 0; 3314 } 3315 3316 #define LAN8841_MMD_TIMER_REG 0 3317 #define LAN8841_MMD0_REGISTER_17 17 3318 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 3319 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 3320 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 3321 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 3322 #define LAN8841_MMD_ANALOG_REG 28 3323 #define LAN8841_ANALOG_CONTROL_1 1 3324 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 3325 #define LAN8841_ANALOG_CONTROL_10 13 3326 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 3327 #define LAN8841_ANALOG_CONTROL_11 14 3328 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 3329 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 3330 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 3331 #define LAN8841_BTRX_POWER_DOWN 70 3332 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 3333 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 3334 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 3335 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 3336 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 3337 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 3338 #define LAN8841_ADC_CHANNEL_MASK 198 3339 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 3340 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 3341 #define LAN8841_PTP_RX_VERSION 374 3342 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 3343 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 3344 #define LAN8841_PTP_TX_VERSION 438 3345 #define LAN8841_PTP_CMD_CTL 256 3346 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 3347 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 3348 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 3349 #define LAN8841_PTP_RX_PARSE_CONFIG 368 3350 #define LAN8841_PTP_TX_PARSE_CONFIG 432 3351 #define LAN8841_PTP_RX_MODE 381 3352 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 3353 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 3354 3355 static int lan8841_config_init(struct phy_device *phydev) 3356 { 3357 int ret; 3358 3359 ret = ksz9131_config_init(phydev); 3360 if (ret) 3361 return ret; 3362 3363 /* Initialize the HW by resetting everything */ 3364 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3365 LAN8841_PTP_CMD_CTL, 3366 LAN8841_PTP_CMD_CTL_PTP_RESET, 3367 LAN8841_PTP_CMD_CTL_PTP_RESET); 3368 3369 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3370 LAN8841_PTP_CMD_CTL, 3371 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 3372 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 3373 3374 /* Don't process any frames */ 3375 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3376 LAN8841_PTP_RX_PARSE_CONFIG, 0); 3377 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3378 LAN8841_PTP_TX_PARSE_CONFIG, 0); 3379 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3380 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 3381 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3382 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 3383 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3384 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 3385 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3386 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 3387 3388 /* Disable checking for minorVersionPTP field */ 3389 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3390 LAN8841_PTP_RX_VERSION, 0xff00); 3391 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3392 LAN8841_PTP_TX_VERSION, 0xff00); 3393 3394 /* 100BT Clause 40 improvenent errata */ 3395 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3396 LAN8841_ANALOG_CONTROL_1, 3397 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 3398 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3399 LAN8841_ANALOG_CONTROL_10, 3400 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 3401 3402 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 3403 * Magnetics 3404 */ 3405 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3406 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 3407 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 3408 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3409 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 3410 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 3411 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3412 LAN8841_BTRX_POWER_DOWN, 3413 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 3414 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 3415 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 3416 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 3417 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 3418 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 3419 } 3420 3421 /* LDO Adjustment errata */ 3422 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 3423 LAN8841_ANALOG_CONTROL_11, 3424 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 3425 3426 /* 100BT RGMII latency tuning errata */ 3427 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 3428 LAN8841_ADC_CHANNEL_MASK, 0x0); 3429 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 3430 LAN8841_MMD0_REGISTER_17, 3431 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 3432 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 3433 3434 return 0; 3435 } 3436 3437 #define LAN8841_OUTPUT_CTRL 25 3438 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 3439 #define LAN8841_INT_PTP BIT(9) 3440 3441 static int lan8841_config_intr(struct phy_device *phydev) 3442 { 3443 int err; 3444 3445 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 3446 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 3447 3448 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3449 err = phy_read(phydev, LAN8814_INTS); 3450 if (err) 3451 return err; 3452 3453 /* Enable / disable interrupts. It is OK to enable PTP interrupt 3454 * even if it PTP is not enabled. Because the underneath blocks 3455 * will not enable the PTP so we will never get the PTP 3456 * interrupt. 3457 */ 3458 err = phy_write(phydev, LAN8814_INTC, 3459 LAN8814_INT_LINK | LAN8841_INT_PTP); 3460 } else { 3461 err = phy_write(phydev, LAN8814_INTC, 0); 3462 if (err) 3463 return err; 3464 3465 err = phy_read(phydev, LAN8814_INTS); 3466 } 3467 3468 return err; 3469 } 3470 3471 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 3472 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 3473 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 3474 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 3475 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 3476 #define LAN8841_PTP_TX_MSG_HEADER2 455 3477 3478 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 3479 u32 *sec, u32 *nsec, u16 *seq) 3480 { 3481 struct phy_device *phydev = ptp_priv->phydev; 3482 3483 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 3484 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 3485 return false; 3486 3487 *nsec = ((*nsec & 0x3fff) << 16); 3488 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 3489 3490 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 3491 *sec = *sec << 16; 3492 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 3493 3494 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3495 3496 return true; 3497 } 3498 3499 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3500 { 3501 u32 sec, nsec; 3502 u16 seq; 3503 3504 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 3505 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 3506 } 3507 3508 #define LAN8841_PTP_INT_STS 259 3509 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 3510 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 3511 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 3512 3513 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 3514 { 3515 struct phy_device *phydev = ptp_priv->phydev; 3516 int i; 3517 3518 for (i = 0; i < FIFO_SIZE; ++i) 3519 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 3520 3521 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3522 } 3523 3524 #define LAN8841_PTP_GPIO_CAP_STS 506 3525 #define LAN8841_PTP_GPIO_SEL 327 3526 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 3527 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 3528 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 3529 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 3530 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 3531 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 3532 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 3533 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 3534 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 3535 3536 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 3537 { 3538 struct phy_device *phydev = ptp_priv->phydev; 3539 struct ptp_clock_event ptp_event = {0}; 3540 int pin, ret, tmp; 3541 s32 sec, nsec; 3542 3543 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 3544 if (pin == -1) 3545 return; 3546 3547 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 3548 if (tmp < 0) 3549 return; 3550 3551 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 3552 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 3553 if (ret) 3554 return; 3555 3556 mutex_lock(&ptp_priv->ptp_lock); 3557 if (tmp & BIT(pin)) { 3558 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 3559 sec <<= 16; 3560 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 3561 3562 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3563 nsec <<= 16; 3564 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 3565 } else { 3566 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 3567 sec <<= 16; 3568 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 3569 3570 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3571 nsec <<= 16; 3572 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 3573 } 3574 mutex_unlock(&ptp_priv->ptp_lock); 3575 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 3576 if (ret) 3577 return; 3578 3579 ptp_event.index = 0; 3580 ptp_event.timestamp = ktime_set(sec, nsec); 3581 ptp_event.type = PTP_CLOCK_EXTTS; 3582 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 3583 } 3584 3585 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 3586 { 3587 struct kszphy_priv *priv = phydev->priv; 3588 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3589 u16 status; 3590 3591 do { 3592 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 3593 3594 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 3595 lan8841_ptp_process_tx_ts(ptp_priv); 3596 3597 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 3598 lan8841_gpio_process_cap(ptp_priv); 3599 3600 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 3601 lan8841_ptp_flush_fifo(ptp_priv); 3602 skb_queue_purge(&ptp_priv->tx_queue); 3603 } 3604 3605 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 3606 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 3607 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 3608 } 3609 3610 #define LAN8841_INTS_PTP BIT(9) 3611 3612 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 3613 { 3614 irqreturn_t ret = IRQ_NONE; 3615 int irq_status; 3616 3617 irq_status = phy_read(phydev, LAN8814_INTS); 3618 if (irq_status < 0) { 3619 phy_error(phydev); 3620 return IRQ_NONE; 3621 } 3622 3623 if (irq_status & LAN8814_INT_LINK) { 3624 phy_trigger_machine(phydev); 3625 ret = IRQ_HANDLED; 3626 } 3627 3628 if (irq_status & LAN8841_INTS_PTP) { 3629 lan8841_handle_ptp_interrupt(phydev); 3630 ret = IRQ_HANDLED; 3631 } 3632 3633 return ret; 3634 } 3635 3636 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 3637 struct ethtool_ts_info *info) 3638 { 3639 struct kszphy_ptp_priv *ptp_priv; 3640 3641 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3642 3643 info->phc_index = ptp_priv->ptp_clock ? 3644 ptp_clock_index(ptp_priv->ptp_clock) : -1; 3645 if (info->phc_index == -1) 3646 return 0; 3647 3648 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 3649 SOF_TIMESTAMPING_RX_HARDWARE | 3650 SOF_TIMESTAMPING_RAW_HARDWARE; 3651 3652 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 3653 (1 << HWTSTAMP_TX_ON) | 3654 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 3655 3656 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 3657 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 3658 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 3659 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 3660 3661 return 0; 3662 } 3663 3664 #define LAN8841_PTP_INT_EN 260 3665 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 3666 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 3667 3668 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 3669 bool enable) 3670 { 3671 struct phy_device *phydev = ptp_priv->phydev; 3672 3673 if (enable) { 3674 /* Enable interrupts on the TX side */ 3675 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3676 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3677 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 3678 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3679 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 3680 3681 /* Enable the modification of the frame on RX side, 3682 * this will add the ns and 2 bits of sec in the reserved field 3683 * of the PTP header 3684 */ 3685 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3686 LAN8841_PTP_RX_MODE, 3687 LAN8841_PTP_INSERT_TS_EN | 3688 LAN8841_PTP_INSERT_TS_32BIT, 3689 LAN8841_PTP_INSERT_TS_EN | 3690 LAN8841_PTP_INSERT_TS_32BIT); 3691 3692 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 3693 } else { 3694 /* Disable interrupts on the TX side */ 3695 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 3696 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 3697 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 3698 3699 /* Disable modification of the RX frames */ 3700 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 3701 LAN8841_PTP_RX_MODE, 3702 LAN8841_PTP_INSERT_TS_EN | 3703 LAN8841_PTP_INSERT_TS_32BIT, 0); 3704 3705 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 3706 } 3707 } 3708 3709 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 3710 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 3711 #define LAN8841_PTP_TX_MOD 445 3712 3713 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 3714 struct kernel_hwtstamp_config *config, 3715 struct netlink_ext_ack *extack) 3716 { 3717 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3718 struct phy_device *phydev = ptp_priv->phydev; 3719 int txcfg = 0, rxcfg = 0; 3720 int pkt_ts_enable; 3721 3722 ptp_priv->hwts_tx_type = config->tx_type; 3723 ptp_priv->rx_filter = config->rx_filter; 3724 3725 switch (config->rx_filter) { 3726 case HWTSTAMP_FILTER_NONE: 3727 ptp_priv->layer = 0; 3728 ptp_priv->version = 0; 3729 break; 3730 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3731 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3732 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3733 ptp_priv->layer = PTP_CLASS_L4; 3734 ptp_priv->version = PTP_CLASS_V2; 3735 break; 3736 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3737 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3738 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3739 ptp_priv->layer = PTP_CLASS_L2; 3740 ptp_priv->version = PTP_CLASS_V2; 3741 break; 3742 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3743 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3744 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3745 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3746 ptp_priv->version = PTP_CLASS_V2; 3747 break; 3748 default: 3749 return -ERANGE; 3750 } 3751 3752 /* Setup parsing of the frames and enable the timestamping for ptp 3753 * frames 3754 */ 3755 if (ptp_priv->layer & PTP_CLASS_L2) { 3756 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3757 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3758 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3759 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3760 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3761 } 3762 3763 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 3764 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 3765 3766 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3767 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3768 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3769 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3770 3771 /* Enable / disable of the TX timestamp in the SYNC frames */ 3772 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 3773 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3774 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 3775 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 3776 3777 /* Now enable/disable the timestamping */ 3778 lan8841_ptp_enable_processing(ptp_priv, 3779 config->rx_filter != HWTSTAMP_FILTER_NONE); 3780 3781 skb_queue_purge(&ptp_priv->tx_queue); 3782 3783 lan8841_ptp_flush_fifo(ptp_priv); 3784 3785 return 0; 3786 } 3787 3788 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 3789 struct sk_buff *skb, int type) 3790 { 3791 struct kszphy_ptp_priv *ptp_priv = 3792 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3793 struct ptp_header *header = ptp_parse_header(skb, type); 3794 struct skb_shared_hwtstamps *shhwtstamps; 3795 struct timespec64 ts; 3796 unsigned long flags; 3797 u32 ts_header; 3798 3799 if (!header) 3800 return false; 3801 3802 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3803 type == PTP_CLASS_NONE) 3804 return false; 3805 3806 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3807 return false; 3808 3809 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 3810 ts.tv_sec = ptp_priv->seconds; 3811 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 3812 ts_header = __be32_to_cpu(header->reserved2); 3813 3814 shhwtstamps = skb_hwtstamps(skb); 3815 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3816 3817 /* Check for any wrap arounds for the second part */ 3818 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 3819 ts.tv_sec -= GENMASK(1, 0) + 1; 3820 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 3821 ts.tv_sec += 1; 3822 3823 shhwtstamps->hwtstamp = 3824 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 3825 ts_header & GENMASK(29, 0)); 3826 header->reserved2 = 0; 3827 3828 netif_rx(skb); 3829 3830 return true; 3831 } 3832 3833 #define LAN8841_EVENT_A 0 3834 #define LAN8841_EVENT_B 1 3835 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 3836 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 3837 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 3838 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 3839 3840 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 3841 s64 sec, u32 nsec) 3842 { 3843 struct phy_device *phydev = ptp_priv->phydev; 3844 int ret; 3845 3846 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 3847 upper_16_bits(sec)); 3848 if (ret) 3849 return ret; 3850 3851 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 3852 lower_16_bits(sec)); 3853 if (ret) 3854 return ret; 3855 3856 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 3857 upper_16_bits(nsec)); 3858 if (ret) 3859 return ret; 3860 3861 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 3862 lower_16_bits(nsec)); 3863 } 3864 3865 #define LAN8841_BUFFER_TIME 2 3866 3867 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 3868 const struct timespec64 *ts) 3869 { 3870 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 3871 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 3872 } 3873 3874 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 3875 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 3876 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 3877 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 3878 3879 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 3880 s64 sec, u32 nsec) 3881 { 3882 struct phy_device *phydev = ptp_priv->phydev; 3883 int ret; 3884 3885 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 3886 upper_16_bits(sec)); 3887 if (ret) 3888 return ret; 3889 3890 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 3891 lower_16_bits(sec)); 3892 if (ret) 3893 return ret; 3894 3895 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 3896 upper_16_bits(nsec)); 3897 if (ret) 3898 return ret; 3899 3900 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 3901 lower_16_bits(nsec)); 3902 } 3903 3904 #define LAN8841_PTP_LTC_SET_SEC_HI 262 3905 #define LAN8841_PTP_LTC_SET_SEC_MID 263 3906 #define LAN8841_PTP_LTC_SET_SEC_LO 264 3907 #define LAN8841_PTP_LTC_SET_NS_HI 265 3908 #define LAN8841_PTP_LTC_SET_NS_LO 266 3909 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 3910 3911 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 3912 const struct timespec64 *ts) 3913 { 3914 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3915 ptp_clock_info); 3916 struct phy_device *phydev = ptp_priv->phydev; 3917 unsigned long flags; 3918 int ret; 3919 3920 /* Set the value to be stored */ 3921 mutex_lock(&ptp_priv->ptp_lock); 3922 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 3923 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 3924 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 3925 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 3926 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 3927 3928 /* Set the command to load the LTC */ 3929 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3930 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 3931 ret = lan8841_ptp_update_target(ptp_priv, ts); 3932 mutex_unlock(&ptp_priv->ptp_lock); 3933 3934 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 3935 ptp_priv->seconds = ts->tv_sec; 3936 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 3937 3938 return ret; 3939 } 3940 3941 #define LAN8841_PTP_LTC_RD_SEC_HI 358 3942 #define LAN8841_PTP_LTC_RD_SEC_MID 359 3943 #define LAN8841_PTP_LTC_RD_SEC_LO 360 3944 #define LAN8841_PTP_LTC_RD_NS_HI 361 3945 #define LAN8841_PTP_LTC_RD_NS_LO 362 3946 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 3947 3948 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 3949 struct timespec64 *ts) 3950 { 3951 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3952 ptp_clock_info); 3953 struct phy_device *phydev = ptp_priv->phydev; 3954 time64_t s; 3955 s64 ns; 3956 3957 mutex_lock(&ptp_priv->ptp_lock); 3958 /* Issue the command to read the LTC */ 3959 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3960 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 3961 3962 /* Read the LTC */ 3963 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 3964 s <<= 16; 3965 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 3966 s <<= 16; 3967 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 3968 3969 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 3970 ns <<= 16; 3971 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 3972 mutex_unlock(&ptp_priv->ptp_lock); 3973 3974 set_normalized_timespec64(ts, s, ns); 3975 return 0; 3976 } 3977 3978 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 3979 struct timespec64 *ts) 3980 { 3981 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 3982 ptp_clock_info); 3983 struct phy_device *phydev = ptp_priv->phydev; 3984 time64_t s; 3985 3986 mutex_lock(&ptp_priv->ptp_lock); 3987 /* Issue the command to read the LTC */ 3988 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 3989 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 3990 3991 /* Read the LTC */ 3992 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 3993 s <<= 16; 3994 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 3995 s <<= 16; 3996 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 3997 mutex_unlock(&ptp_priv->ptp_lock); 3998 3999 set_normalized_timespec64(ts, s, 0); 4000 } 4001 4002 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 4003 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 4004 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 4005 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 4006 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 4007 4008 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 4009 { 4010 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4011 ptp_clock_info); 4012 struct phy_device *phydev = ptp_priv->phydev; 4013 struct timespec64 ts; 4014 bool add = true; 4015 u32 nsec; 4016 s32 sec; 4017 int ret; 4018 4019 /* The HW allows up to 15 sec to adjust the time, but here we limit to 4020 * 10 sec the adjustment. The reason is, in case the adjustment is 14 4021 * sec and 999999999 nsec, then we add 8ns to compansate the actual 4022 * increment so the value can be bigger than 15 sec. Therefore limit the 4023 * possible adjustments so we will not have these corner cases 4024 */ 4025 if (delta > 10000000000LL || delta < -10000000000LL) { 4026 /* The timeadjustment is too big, so fall back using set time */ 4027 u64 now; 4028 4029 ptp->gettime64(ptp, &ts); 4030 4031 now = ktime_to_ns(timespec64_to_ktime(ts)); 4032 ts = ns_to_timespec64(now + delta); 4033 4034 ptp->settime64(ptp, &ts); 4035 return 0; 4036 } 4037 4038 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 4039 if (delta < 0 && nsec != 0) { 4040 /* It is not allowed to adjust low the nsec part, therefore 4041 * subtract more from second part and add to nanosecond such 4042 * that would roll over, so the second part will increase 4043 */ 4044 sec--; 4045 nsec = NSEC_PER_SEC - nsec; 4046 } 4047 4048 /* Calculate the adjustments and the direction */ 4049 if (delta < 0) 4050 add = false; 4051 4052 if (nsec > 0) 4053 /* add 8 ns to cover the likely normal increment */ 4054 nsec += 8; 4055 4056 if (nsec >= NSEC_PER_SEC) { 4057 /* carry into seconds */ 4058 sec++; 4059 nsec -= NSEC_PER_SEC; 4060 } 4061 4062 mutex_lock(&ptp_priv->ptp_lock); 4063 if (sec) { 4064 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 4065 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4066 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 4067 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4068 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 4069 } 4070 4071 if (nsec) { 4072 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 4073 nsec & 0xffff); 4074 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 4075 (nsec >> 16) & 0x3fff); 4076 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4077 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 4078 } 4079 mutex_unlock(&ptp_priv->ptp_lock); 4080 4081 /* Update the target clock */ 4082 ptp->gettime64(ptp, &ts); 4083 mutex_lock(&ptp_priv->ptp_lock); 4084 ret = lan8841_ptp_update_target(ptp_priv, &ts); 4085 mutex_unlock(&ptp_priv->ptp_lock); 4086 4087 return ret; 4088 } 4089 4090 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 4091 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 4092 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 4093 4094 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 4095 { 4096 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4097 ptp_clock_info); 4098 struct phy_device *phydev = ptp_priv->phydev; 4099 bool faster = true; 4100 u32 rate; 4101 4102 if (!scaled_ppm) 4103 return 0; 4104 4105 if (scaled_ppm < 0) { 4106 scaled_ppm = -scaled_ppm; 4107 faster = false; 4108 } 4109 4110 rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 4111 rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 4112 4113 mutex_lock(&ptp_priv->ptp_lock); 4114 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 4115 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 4116 : upper_16_bits(rate) & 0x3fff); 4117 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 4118 mutex_unlock(&ptp_priv->ptp_lock); 4119 4120 return 0; 4121 } 4122 4123 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 4124 enum ptp_pin_function func, unsigned int chan) 4125 { 4126 switch (func) { 4127 case PTP_PF_NONE: 4128 case PTP_PF_PEROUT: 4129 case PTP_PF_EXTTS: 4130 break; 4131 default: 4132 return -1; 4133 } 4134 4135 return 0; 4136 } 4137 4138 #define LAN8841_PTP_GPIO_NUM 10 4139 #define LAN8841_GPIO_EN 128 4140 #define LAN8841_GPIO_DIR 129 4141 #define LAN8841_GPIO_BUF 130 4142 4143 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4144 { 4145 struct phy_device *phydev = ptp_priv->phydev; 4146 int ret; 4147 4148 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4149 if (ret) 4150 return ret; 4151 4152 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4153 if (ret) 4154 return ret; 4155 4156 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4157 } 4158 4159 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 4160 { 4161 struct phy_device *phydev = ptp_priv->phydev; 4162 int ret; 4163 4164 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4165 if (ret) 4166 return ret; 4167 4168 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 4169 if (ret) 4170 return ret; 4171 4172 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4173 } 4174 4175 #define LAN8841_GPIO_DATA_SEL1 131 4176 #define LAN8841_GPIO_DATA_SEL2 132 4177 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 4178 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 4179 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 4180 #define LAN8841_PTP_GENERAL_CONFIG 257 4181 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 4182 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 4183 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 4184 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 4185 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 4186 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 4187 4188 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4189 u8 event) 4190 { 4191 struct phy_device *phydev = ptp_priv->phydev; 4192 u16 tmp; 4193 int ret; 4194 4195 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 4196 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4197 * depending on the pin, it requires to read a different register 4198 */ 4199 if (pin < 5) { 4200 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 4201 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 4202 } else { 4203 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 4204 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 4205 } 4206 if (ret) 4207 return ret; 4208 4209 /* Disable the event */ 4210 if (event == LAN8841_EVENT_A) 4211 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4212 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 4213 else 4214 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4215 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 4216 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 4217 } 4218 4219 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 4220 u8 event, int pulse_width) 4221 { 4222 struct phy_device *phydev = ptp_priv->phydev; 4223 u16 tmp; 4224 int ret; 4225 4226 /* Enable the event */ 4227 if (event == LAN8841_EVENT_A) 4228 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4229 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4230 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 4231 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 4232 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 4233 else 4234 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 4235 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4236 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 4237 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 4238 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 4239 if (ret) 4240 return ret; 4241 4242 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 4243 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 4244 * depending on the pin, it requires to read a different register 4245 */ 4246 if (event == LAN8841_EVENT_A) 4247 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 4248 else 4249 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 4250 4251 if (pin < 5) 4252 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 4253 tmp << (3 * pin)); 4254 else 4255 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 4256 tmp << (3 * (pin - 5))); 4257 4258 return ret; 4259 } 4260 4261 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 4262 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 4263 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 4264 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 4265 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 4266 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 4267 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 4268 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 4269 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 4270 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 4271 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 4272 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 4273 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 4274 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 4275 4276 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 4277 struct ptp_clock_request *rq, int on) 4278 { 4279 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4280 ptp_clock_info); 4281 struct phy_device *phydev = ptp_priv->phydev; 4282 struct timespec64 ts_on, ts_period; 4283 s64 on_nsec, period_nsec; 4284 int pulse_width; 4285 int pin; 4286 int ret; 4287 4288 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) 4289 return -EOPNOTSUPP; 4290 4291 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 4292 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4293 return -EINVAL; 4294 4295 if (!on) { 4296 ret = lan8841_ptp_perout_off(ptp_priv, pin); 4297 if (ret) 4298 return ret; 4299 4300 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 4301 } 4302 4303 ts_on.tv_sec = rq->perout.on.sec; 4304 ts_on.tv_nsec = rq->perout.on.nsec; 4305 on_nsec = timespec64_to_ns(&ts_on); 4306 4307 ts_period.tv_sec = rq->perout.period.sec; 4308 ts_period.tv_nsec = rq->perout.period.nsec; 4309 period_nsec = timespec64_to_ns(&ts_period); 4310 4311 if (period_nsec < 200) { 4312 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 4313 phydev_name(phydev)); 4314 return -EOPNOTSUPP; 4315 } 4316 4317 if (on_nsec >= period_nsec) { 4318 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 4319 phydev_name(phydev)); 4320 return -EINVAL; 4321 } 4322 4323 switch (on_nsec) { 4324 case 200000000: 4325 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 4326 break; 4327 case 100000000: 4328 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 4329 break; 4330 case 50000000: 4331 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 4332 break; 4333 case 10000000: 4334 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 4335 break; 4336 case 5000000: 4337 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 4338 break; 4339 case 1000000: 4340 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 4341 break; 4342 case 500000: 4343 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 4344 break; 4345 case 100000: 4346 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 4347 break; 4348 case 50000: 4349 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 4350 break; 4351 case 10000: 4352 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 4353 break; 4354 case 5000: 4355 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 4356 break; 4357 case 1000: 4358 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 4359 break; 4360 case 500: 4361 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 4362 break; 4363 case 100: 4364 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4365 break; 4366 default: 4367 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 4368 phydev_name(phydev)); 4369 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 4370 break; 4371 } 4372 4373 mutex_lock(&ptp_priv->ptp_lock); 4374 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 4375 rq->perout.start.nsec); 4376 mutex_unlock(&ptp_priv->ptp_lock); 4377 if (ret) 4378 return ret; 4379 4380 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 4381 rq->perout.period.nsec); 4382 if (ret) 4383 return ret; 4384 4385 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 4386 pulse_width); 4387 if (ret) 4388 return ret; 4389 4390 ret = lan8841_ptp_perout_on(ptp_priv, pin); 4391 if (ret) 4392 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 4393 4394 return ret; 4395 } 4396 4397 #define LAN8841_PTP_GPIO_CAP_EN 496 4398 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 4399 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 4400 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 4401 4402 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 4403 u32 flags) 4404 { 4405 struct phy_device *phydev = ptp_priv->phydev; 4406 u16 tmp = 0; 4407 int ret; 4408 4409 /* Set GPIO to be intput */ 4410 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4411 if (ret) 4412 return ret; 4413 4414 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4415 if (ret) 4416 return ret; 4417 4418 /* Enable capture on the edges of the pin */ 4419 if (flags & PTP_RISING_EDGE) 4420 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 4421 if (flags & PTP_FALLING_EDGE) 4422 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 4423 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 4424 if (ret) 4425 return ret; 4426 4427 /* Enable interrupt */ 4428 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4429 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4430 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 4431 } 4432 4433 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 4434 { 4435 struct phy_device *phydev = ptp_priv->phydev; 4436 int ret; 4437 4438 /* Set GPIO to be output */ 4439 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 4440 if (ret) 4441 return ret; 4442 4443 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 4444 if (ret) 4445 return ret; 4446 4447 /* Disable capture on both of the edges */ 4448 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 4449 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 4450 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 4451 0); 4452 if (ret) 4453 return ret; 4454 4455 /* Disable interrupt */ 4456 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4457 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 4458 0); 4459 } 4460 4461 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 4462 struct ptp_clock_request *rq, int on) 4463 { 4464 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4465 ptp_clock_info); 4466 int pin; 4467 int ret; 4468 4469 /* Reject requests with unsupported flags */ 4470 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 4471 PTP_EXTTS_EDGES | 4472 PTP_STRICT_FLAGS)) 4473 return -EOPNOTSUPP; 4474 4475 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 4476 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 4477 return -EINVAL; 4478 4479 mutex_lock(&ptp_priv->ptp_lock); 4480 if (on) 4481 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 4482 else 4483 ret = lan8841_ptp_extts_off(ptp_priv, pin); 4484 mutex_unlock(&ptp_priv->ptp_lock); 4485 4486 return ret; 4487 } 4488 4489 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 4490 struct ptp_clock_request *rq, int on) 4491 { 4492 switch (rq->type) { 4493 case PTP_CLK_REQ_EXTTS: 4494 return lan8841_ptp_extts(ptp, rq, on); 4495 case PTP_CLK_REQ_PEROUT: 4496 return lan8841_ptp_perout(ptp, rq, on); 4497 default: 4498 return -EOPNOTSUPP; 4499 } 4500 4501 return 0; 4502 } 4503 4504 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 4505 { 4506 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4507 ptp_clock_info); 4508 struct timespec64 ts; 4509 unsigned long flags; 4510 4511 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 4512 4513 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4514 ptp_priv->seconds = ts.tv_sec; 4515 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4516 4517 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 4518 } 4519 4520 static struct ptp_clock_info lan8841_ptp_clock_info = { 4521 .owner = THIS_MODULE, 4522 .name = "lan8841 ptp", 4523 .max_adj = 31249999, 4524 .gettime64 = lan8841_ptp_gettime64, 4525 .settime64 = lan8841_ptp_settime64, 4526 .adjtime = lan8841_ptp_adjtime, 4527 .adjfine = lan8841_ptp_adjfine, 4528 .verify = lan8841_ptp_verify, 4529 .enable = lan8841_ptp_enable, 4530 .do_aux_work = lan8841_ptp_do_aux_work, 4531 .n_per_out = LAN8841_PTP_GPIO_NUM, 4532 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 4533 .n_pins = LAN8841_PTP_GPIO_NUM, 4534 }; 4535 4536 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 4537 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 4538 4539 static int lan8841_probe(struct phy_device *phydev) 4540 { 4541 struct kszphy_ptp_priv *ptp_priv; 4542 struct kszphy_priv *priv; 4543 int err; 4544 4545 err = kszphy_probe(phydev); 4546 if (err) 4547 return err; 4548 4549 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4550 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 4551 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 4552 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 4553 4554 /* Register the clock */ 4555 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4556 return 0; 4557 4558 priv = phydev->priv; 4559 ptp_priv = &priv->ptp_priv; 4560 4561 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 4562 LAN8841_PTP_GPIO_NUM, 4563 sizeof(*ptp_priv->pin_config), 4564 GFP_KERNEL); 4565 if (!ptp_priv->pin_config) 4566 return -ENOMEM; 4567 4568 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 4569 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 4570 4571 snprintf(p->name, sizeof(p->name), "pin%d", i); 4572 p->index = i; 4573 p->func = PTP_PF_NONE; 4574 } 4575 4576 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 4577 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 4578 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 4579 &phydev->mdio.dev); 4580 if (IS_ERR(ptp_priv->ptp_clock)) { 4581 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 4582 PTR_ERR(ptp_priv->ptp_clock)); 4583 return -EINVAL; 4584 } 4585 4586 if (!ptp_priv->ptp_clock) 4587 return 0; 4588 4589 /* Initialize the SW */ 4590 skb_queue_head_init(&ptp_priv->tx_queue); 4591 ptp_priv->phydev = phydev; 4592 mutex_init(&ptp_priv->ptp_lock); 4593 spin_lock_init(&ptp_priv->seconds_lock); 4594 4595 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 4596 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4597 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 4598 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 4599 4600 phydev->mii_ts = &ptp_priv->mii_ts; 4601 4602 return 0; 4603 } 4604 4605 static int lan8841_suspend(struct phy_device *phydev) 4606 { 4607 struct kszphy_priv *priv = phydev->priv; 4608 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4609 4610 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4611 4612 return genphy_suspend(phydev); 4613 } 4614 4615 static struct phy_driver ksphy_driver[] = { 4616 { 4617 .phy_id = PHY_ID_KS8737, 4618 .phy_id_mask = MICREL_PHY_ID_MASK, 4619 .name = "Micrel KS8737", 4620 /* PHY_BASIC_FEATURES */ 4621 .driver_data = &ks8737_type, 4622 .probe = kszphy_probe, 4623 .config_init = kszphy_config_init, 4624 .config_intr = kszphy_config_intr, 4625 .handle_interrupt = kszphy_handle_interrupt, 4626 .suspend = kszphy_suspend, 4627 .resume = kszphy_resume, 4628 }, { 4629 .phy_id = PHY_ID_KSZ8021, 4630 .phy_id_mask = 0x00ffffff, 4631 .name = "Micrel KSZ8021 or KSZ8031", 4632 /* PHY_BASIC_FEATURES */ 4633 .driver_data = &ksz8021_type, 4634 .probe = kszphy_probe, 4635 .config_init = kszphy_config_init, 4636 .config_intr = kszphy_config_intr, 4637 .handle_interrupt = kszphy_handle_interrupt, 4638 .get_sset_count = kszphy_get_sset_count, 4639 .get_strings = kszphy_get_strings, 4640 .get_stats = kszphy_get_stats, 4641 .suspend = kszphy_suspend, 4642 .resume = kszphy_resume, 4643 }, { 4644 .phy_id = PHY_ID_KSZ8031, 4645 .phy_id_mask = 0x00ffffff, 4646 .name = "Micrel KSZ8031", 4647 /* PHY_BASIC_FEATURES */ 4648 .driver_data = &ksz8021_type, 4649 .probe = kszphy_probe, 4650 .config_init = kszphy_config_init, 4651 .config_intr = kszphy_config_intr, 4652 .handle_interrupt = kszphy_handle_interrupt, 4653 .get_sset_count = kszphy_get_sset_count, 4654 .get_strings = kszphy_get_strings, 4655 .get_stats = kszphy_get_stats, 4656 .suspend = kszphy_suspend, 4657 .resume = kszphy_resume, 4658 }, { 4659 .phy_id = PHY_ID_KSZ8041, 4660 .phy_id_mask = MICREL_PHY_ID_MASK, 4661 .name = "Micrel KSZ8041", 4662 /* PHY_BASIC_FEATURES */ 4663 .driver_data = &ksz8041_type, 4664 .probe = kszphy_probe, 4665 .config_init = ksz8041_config_init, 4666 .config_aneg = ksz8041_config_aneg, 4667 .config_intr = kszphy_config_intr, 4668 .handle_interrupt = kszphy_handle_interrupt, 4669 .get_sset_count = kszphy_get_sset_count, 4670 .get_strings = kszphy_get_strings, 4671 .get_stats = kszphy_get_stats, 4672 /* No suspend/resume callbacks because of errata DS80000700A, 4673 * receiver error following software power down. 4674 */ 4675 }, { 4676 .phy_id = PHY_ID_KSZ8041RNLI, 4677 .phy_id_mask = MICREL_PHY_ID_MASK, 4678 .name = "Micrel KSZ8041RNLI", 4679 /* PHY_BASIC_FEATURES */ 4680 .driver_data = &ksz8041_type, 4681 .probe = kszphy_probe, 4682 .config_init = kszphy_config_init, 4683 .config_intr = kszphy_config_intr, 4684 .handle_interrupt = kszphy_handle_interrupt, 4685 .get_sset_count = kszphy_get_sset_count, 4686 .get_strings = kszphy_get_strings, 4687 .get_stats = kszphy_get_stats, 4688 .suspend = kszphy_suspend, 4689 .resume = kszphy_resume, 4690 }, { 4691 .name = "Micrel KSZ8051", 4692 /* PHY_BASIC_FEATURES */ 4693 .driver_data = &ksz8051_type, 4694 .probe = kszphy_probe, 4695 .config_init = kszphy_config_init, 4696 .config_intr = kszphy_config_intr, 4697 .handle_interrupt = kszphy_handle_interrupt, 4698 .get_sset_count = kszphy_get_sset_count, 4699 .get_strings = kszphy_get_strings, 4700 .get_stats = kszphy_get_stats, 4701 .match_phy_device = ksz8051_match_phy_device, 4702 .suspend = kszphy_suspend, 4703 .resume = kszphy_resume, 4704 }, { 4705 .phy_id = PHY_ID_KSZ8001, 4706 .name = "Micrel KSZ8001 or KS8721", 4707 .phy_id_mask = 0x00fffffc, 4708 /* PHY_BASIC_FEATURES */ 4709 .driver_data = &ksz8041_type, 4710 .probe = kszphy_probe, 4711 .config_init = kszphy_config_init, 4712 .config_intr = kszphy_config_intr, 4713 .handle_interrupt = kszphy_handle_interrupt, 4714 .get_sset_count = kszphy_get_sset_count, 4715 .get_strings = kszphy_get_strings, 4716 .get_stats = kszphy_get_stats, 4717 .suspend = kszphy_suspend, 4718 .resume = kszphy_resume, 4719 }, { 4720 .phy_id = PHY_ID_KSZ8081, 4721 .name = "Micrel KSZ8081 or KSZ8091", 4722 .phy_id_mask = MICREL_PHY_ID_MASK, 4723 .flags = PHY_POLL_CABLE_TEST, 4724 /* PHY_BASIC_FEATURES */ 4725 .driver_data = &ksz8081_type, 4726 .probe = kszphy_probe, 4727 .config_init = ksz8081_config_init, 4728 .soft_reset = genphy_soft_reset, 4729 .config_aneg = ksz8081_config_aneg, 4730 .read_status = ksz8081_read_status, 4731 .config_intr = kszphy_config_intr, 4732 .handle_interrupt = kszphy_handle_interrupt, 4733 .get_sset_count = kszphy_get_sset_count, 4734 .get_strings = kszphy_get_strings, 4735 .get_stats = kszphy_get_stats, 4736 .suspend = kszphy_suspend, 4737 .resume = kszphy_resume, 4738 .cable_test_start = ksz886x_cable_test_start, 4739 .cable_test_get_status = ksz886x_cable_test_get_status, 4740 }, { 4741 .phy_id = PHY_ID_KSZ8061, 4742 .name = "Micrel KSZ8061", 4743 .phy_id_mask = MICREL_PHY_ID_MASK, 4744 /* PHY_BASIC_FEATURES */ 4745 .probe = kszphy_probe, 4746 .config_init = ksz8061_config_init, 4747 .config_intr = kszphy_config_intr, 4748 .handle_interrupt = kszphy_handle_interrupt, 4749 .suspend = kszphy_suspend, 4750 .resume = kszphy_resume, 4751 }, { 4752 .phy_id = PHY_ID_KSZ9021, 4753 .phy_id_mask = 0x000ffffe, 4754 .name = "Micrel KSZ9021 Gigabit PHY", 4755 /* PHY_GBIT_FEATURES */ 4756 .driver_data = &ksz9021_type, 4757 .probe = kszphy_probe, 4758 .get_features = ksz9031_get_features, 4759 .config_init = ksz9021_config_init, 4760 .config_intr = kszphy_config_intr, 4761 .handle_interrupt = kszphy_handle_interrupt, 4762 .get_sset_count = kszphy_get_sset_count, 4763 .get_strings = kszphy_get_strings, 4764 .get_stats = kszphy_get_stats, 4765 .suspend = kszphy_suspend, 4766 .resume = kszphy_resume, 4767 .read_mmd = genphy_read_mmd_unsupported, 4768 .write_mmd = genphy_write_mmd_unsupported, 4769 }, { 4770 .phy_id = PHY_ID_KSZ9031, 4771 .phy_id_mask = MICREL_PHY_ID_MASK, 4772 .name = "Micrel KSZ9031 Gigabit PHY", 4773 .flags = PHY_POLL_CABLE_TEST, 4774 .driver_data = &ksz9021_type, 4775 .probe = kszphy_probe, 4776 .get_features = ksz9031_get_features, 4777 .config_init = ksz9031_config_init, 4778 .soft_reset = genphy_soft_reset, 4779 .read_status = ksz9031_read_status, 4780 .config_intr = kszphy_config_intr, 4781 .handle_interrupt = kszphy_handle_interrupt, 4782 .get_sset_count = kszphy_get_sset_count, 4783 .get_strings = kszphy_get_strings, 4784 .get_stats = kszphy_get_stats, 4785 .suspend = kszphy_suspend, 4786 .resume = kszphy_resume, 4787 .cable_test_start = ksz9x31_cable_test_start, 4788 .cable_test_get_status = ksz9x31_cable_test_get_status, 4789 }, { 4790 .phy_id = PHY_ID_LAN8814, 4791 .phy_id_mask = MICREL_PHY_ID_MASK, 4792 .name = "Microchip INDY Gigabit Quad PHY", 4793 .flags = PHY_POLL_CABLE_TEST, 4794 .config_init = lan8814_config_init, 4795 .driver_data = &lan8814_type, 4796 .probe = lan8814_probe, 4797 .soft_reset = genphy_soft_reset, 4798 .read_status = ksz9031_read_status, 4799 .get_sset_count = kszphy_get_sset_count, 4800 .get_strings = kszphy_get_strings, 4801 .get_stats = kszphy_get_stats, 4802 .suspend = genphy_suspend, 4803 .resume = kszphy_resume, 4804 .config_intr = lan8814_config_intr, 4805 .handle_interrupt = lan8814_handle_interrupt, 4806 .cable_test_start = lan8814_cable_test_start, 4807 .cable_test_get_status = ksz886x_cable_test_get_status, 4808 }, { 4809 .phy_id = PHY_ID_LAN8804, 4810 .phy_id_mask = MICREL_PHY_ID_MASK, 4811 .name = "Microchip LAN966X Gigabit PHY", 4812 .config_init = lan8804_config_init, 4813 .driver_data = &ksz9021_type, 4814 .probe = kszphy_probe, 4815 .soft_reset = genphy_soft_reset, 4816 .read_status = ksz9031_read_status, 4817 .get_sset_count = kszphy_get_sset_count, 4818 .get_strings = kszphy_get_strings, 4819 .get_stats = kszphy_get_stats, 4820 .suspend = genphy_suspend, 4821 .resume = kszphy_resume, 4822 .config_intr = lan8804_config_intr, 4823 .handle_interrupt = lan8804_handle_interrupt, 4824 }, { 4825 .phy_id = PHY_ID_LAN8841, 4826 .phy_id_mask = MICREL_PHY_ID_MASK, 4827 .name = "Microchip LAN8841 Gigabit PHY", 4828 .flags = PHY_POLL_CABLE_TEST, 4829 .driver_data = &lan8841_type, 4830 .config_init = lan8841_config_init, 4831 .probe = lan8841_probe, 4832 .soft_reset = genphy_soft_reset, 4833 .config_intr = lan8841_config_intr, 4834 .handle_interrupt = lan8841_handle_interrupt, 4835 .get_sset_count = kszphy_get_sset_count, 4836 .get_strings = kszphy_get_strings, 4837 .get_stats = kszphy_get_stats, 4838 .suspend = lan8841_suspend, 4839 .resume = genphy_resume, 4840 .cable_test_start = lan8814_cable_test_start, 4841 .cable_test_get_status = ksz886x_cable_test_get_status, 4842 }, { 4843 .phy_id = PHY_ID_KSZ9131, 4844 .phy_id_mask = MICREL_PHY_ID_MASK, 4845 .name = "Microchip KSZ9131 Gigabit PHY", 4846 /* PHY_GBIT_FEATURES */ 4847 .flags = PHY_POLL_CABLE_TEST, 4848 .driver_data = &ksz9131_type, 4849 .probe = kszphy_probe, 4850 .soft_reset = genphy_soft_reset, 4851 .config_init = ksz9131_config_init, 4852 .config_intr = kszphy_config_intr, 4853 .config_aneg = ksz9131_config_aneg, 4854 .read_status = ksz9131_read_status, 4855 .handle_interrupt = kszphy_handle_interrupt, 4856 .get_sset_count = kszphy_get_sset_count, 4857 .get_strings = kszphy_get_strings, 4858 .get_stats = kszphy_get_stats, 4859 .suspend = kszphy_suspend, 4860 .resume = kszphy_resume, 4861 .cable_test_start = ksz9x31_cable_test_start, 4862 .cable_test_get_status = ksz9x31_cable_test_get_status, 4863 .get_features = ksz9477_get_features, 4864 }, { 4865 .phy_id = PHY_ID_KSZ8873MLL, 4866 .phy_id_mask = MICREL_PHY_ID_MASK, 4867 .name = "Micrel KSZ8873MLL Switch", 4868 /* PHY_BASIC_FEATURES */ 4869 .config_init = kszphy_config_init, 4870 .config_aneg = ksz8873mll_config_aneg, 4871 .read_status = ksz8873mll_read_status, 4872 .suspend = genphy_suspend, 4873 .resume = genphy_resume, 4874 }, { 4875 .phy_id = PHY_ID_KSZ886X, 4876 .phy_id_mask = MICREL_PHY_ID_MASK, 4877 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 4878 .driver_data = &ksz886x_type, 4879 /* PHY_BASIC_FEATURES */ 4880 .flags = PHY_POLL_CABLE_TEST, 4881 .config_init = kszphy_config_init, 4882 .config_aneg = ksz886x_config_aneg, 4883 .read_status = ksz886x_read_status, 4884 .suspend = genphy_suspend, 4885 .resume = genphy_resume, 4886 .cable_test_start = ksz886x_cable_test_start, 4887 .cable_test_get_status = ksz886x_cable_test_get_status, 4888 }, { 4889 .name = "Micrel KSZ87XX Switch", 4890 /* PHY_BASIC_FEATURES */ 4891 .config_init = kszphy_config_init, 4892 .match_phy_device = ksz8795_match_phy_device, 4893 .suspend = genphy_suspend, 4894 .resume = genphy_resume, 4895 }, { 4896 .phy_id = PHY_ID_KSZ9477, 4897 .phy_id_mask = MICREL_PHY_ID_MASK, 4898 .name = "Microchip KSZ9477", 4899 /* PHY_GBIT_FEATURES */ 4900 .config_init = ksz9477_config_init, 4901 .config_intr = kszphy_config_intr, 4902 .handle_interrupt = kszphy_handle_interrupt, 4903 .suspend = genphy_suspend, 4904 .resume = genphy_resume, 4905 .get_features = ksz9477_get_features, 4906 } }; 4907 4908 module_phy_driver(ksphy_driver); 4909 4910 MODULE_DESCRIPTION("Micrel PHY driver"); 4911 MODULE_AUTHOR("David J. Choi"); 4912 MODULE_LICENSE("GPL"); 4913 4914 static struct mdio_device_id __maybe_unused micrel_tbl[] = { 4915 { PHY_ID_KSZ9021, 0x000ffffe }, 4916 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 4917 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 4918 { PHY_ID_KSZ8001, 0x00fffffc }, 4919 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 4920 { PHY_ID_KSZ8021, 0x00ffffff }, 4921 { PHY_ID_KSZ8031, 0x00ffffff }, 4922 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 4923 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 4924 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 4925 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 4926 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 4927 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 4928 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 4929 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 4930 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 4931 { } 4932 }; 4933 4934 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 4935