xref: /linux/drivers/net/phy/micrel.c (revision c99ebb6132595b4b288a413981197eb076547c5a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 #include "phylib.h"
38 
39 /* Operation Mode Strap Override */
40 #define MII_KSZPHY_OMSO				0x16
41 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
42 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
43 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
44 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
45 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
46 
47 /* general Interrupt control/status reg in vendor specific block. */
48 #define MII_KSZPHY_INTCS			0x1B
49 #define KSZPHY_INTCS_JABBER			BIT(15)
50 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
51 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
52 #define KSZPHY_INTCS_PARELLEL			BIT(12)
53 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
54 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
55 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
56 #define KSZPHY_INTCS_LINK_UP			BIT(8)
57 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
58 						KSZPHY_INTCS_LINK_DOWN)
59 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
60 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
61 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
62 						 KSZPHY_INTCS_LINK_UP_STATUS)
63 
64 /* LinkMD Control/Status */
65 #define KSZ8081_LMD				0x1d
66 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
67 #define KSZ8081_LMD_STAT_NORMAL			0
68 #define KSZ8081_LMD_STAT_OPEN			1
69 #define KSZ8081_LMD_STAT_SHORT			2
70 #define KSZ8081_LMD_STAT_FAIL			3
71 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
72 /* Short cable (<10 meter) has been detected by LinkMD */
73 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
74 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
75 
76 #define KSZ9x31_LMD				0x12
77 #define KSZ9x31_LMD_VCT_EN			BIT(15)
78 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
79 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
80 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
83 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
84 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
85 #define KSZ9x31_LMD_VCT_ST_OPEN			1
86 #define KSZ9x31_LMD_VCT_ST_SHORT		2
87 #define KSZ9x31_LMD_VCT_ST_FAIL			3
88 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
91 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
95 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
96 
97 #define KSZPHY_WIRE_PAIR_MASK			0x3
98 
99 #define LAN8814_CABLE_DIAG			0x12
100 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
102 #define LAN8814_PAIR_BIT_SHIFT			12
103 
104 #define LAN8814_SKUS				0xB
105 
106 #define LAN8814_WIRE_PAIR_MASK			0xF
107 
108 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
109 #define LAN8814_INTC				0x18
110 #define LAN8814_INTS				0x1B
111 
112 #define LAN8814_INT_FLF				BIT(15)
113 #define LAN8814_INT_LINK_DOWN			BIT(2)
114 #define LAN8814_INT_LINK_UP			BIT(0)
115 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
116 						 LAN8814_INT_LINK_DOWN)
117 
118 #define LAN8814_INTR_CTRL_REG			0x34
119 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
120 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
121 
122 #define LAN8814_EEE_STATE			0x38
123 #define LAN8814_EEE_STATE_MASK2P5P		BIT(10)
124 
125 #define LAN8814_PD_CONTROLS			0x9d
126 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK	GENMASK(3, 0)
127 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL	0xb
128 
129 /* Represents 1ppm adjustment in 2^32 format with
130  * each nsec contains 4 clock cycles.
131  * The value is calculated as following: (1/1000000)/((2^-32)/4)
132  */
133 #define LAN8814_1PPM_FORMAT			17179
134 
135 /* Represents 1ppm adjustment in 2^32 format with
136  * each nsec contains 8 clock cycles.
137  * The value is calculated as following: (1/1000000)/((2^-32)/8)
138  */
139 #define LAN8841_1PPM_FORMAT			34360
140 
141 #define PTP_RX_VERSION				0x0248
142 #define PTP_TX_VERSION				0x0288
143 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
144 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
145 
146 #define PTP_RX_MOD				0x024F
147 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
148 #define PTP_RX_TIMESTAMP_EN			0x024D
149 #define PTP_TX_TIMESTAMP_EN			0x028D
150 
151 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
152 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
153 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
154 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
155 
156 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
157 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
158 
159 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
160 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
161 #define LTC_HARD_RESET				0x023F
162 #define LTC_HARD_RESET_				BIT(0)
163 
164 #define TSU_HARD_RESET				0x02C1
165 #define TSU_HARD_RESET_				BIT(0)
166 
167 #define PTP_CMD_CTL				0x0200
168 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
169 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
170 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
171 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
172 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
173 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
174 
175 #define PTP_COMMON_INT_ENA			0x0204
176 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN		BIT(2)
177 
178 #define PTP_CLOCK_SET_SEC_HI			0x0205
179 #define PTP_CLOCK_SET_SEC_MID			0x0206
180 #define PTP_CLOCK_SET_SEC_LO			0x0207
181 #define PTP_CLOCK_SET_NS_HI			0x0208
182 #define PTP_CLOCK_SET_NS_LO			0x0209
183 
184 #define PTP_CLOCK_READ_SEC_HI			0x0229
185 #define PTP_CLOCK_READ_SEC_MID			0x022A
186 #define PTP_CLOCK_READ_SEC_LO			0x022B
187 #define PTP_CLOCK_READ_NS_HI			0x022C
188 #define PTP_CLOCK_READ_NS_LO			0x022D
189 
190 #define PTP_GPIO_SEL				0x0230
191 #define PTP_GPIO_SEL_GPIO_SEL(pin)		((pin) << 8)
192 #define PTP_GPIO_CAP_MAP_LO			0x0232
193 
194 #define PTP_GPIO_CAP_EN				0x0233
195 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	BIT(gpio)
196 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
197 
198 #define PTP_GPIO_RE_LTC_SEC_HI_CAP		0x0235
199 #define PTP_GPIO_RE_LTC_SEC_LO_CAP		0x0236
200 #define PTP_GPIO_RE_LTC_NS_HI_CAP		0x0237
201 #define PTP_GPIO_RE_LTC_NS_LO_CAP		0x0238
202 #define PTP_GPIO_FE_LTC_SEC_HI_CAP		0x0239
203 #define PTP_GPIO_FE_LTC_SEC_LO_CAP		0x023A
204 #define PTP_GPIO_FE_LTC_NS_HI_CAP		0x023B
205 #define PTP_GPIO_FE_LTC_NS_LO_CAP		0x023C
206 
207 #define PTP_GPIO_CAP_STS			0x023D
208 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio)	BIT(gpio)
209 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio)	(BIT(gpio) << 8)
210 
211 #define PTP_OPERATING_MODE			0x0241
212 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
213 
214 #define PTP_TX_MOD				0x028F
215 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
216 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
217 
218 #define PTP_RX_PARSE_CONFIG			0x0242
219 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
220 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
221 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
222 
223 #define PTP_TX_PARSE_CONFIG			0x0282
224 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
225 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
226 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
227 
228 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
229 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
230 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
231 
232 #define PTP_LTC_STEP_ADJ_HI			0x0212
233 #define PTP_LTC_STEP_ADJ_LO			0x0213
234 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
235 
236 #define LAN8814_INTR_STS_REG			0x0033
237 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
238 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
239 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
240 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
241 
242 #define PTP_CAP_INFO				0x022A
243 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
244 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
245 
246 #define PTP_TX_EGRESS_SEC_HI			0x0296
247 #define PTP_TX_EGRESS_SEC_LO			0x0297
248 #define PTP_TX_EGRESS_NS_HI			0x0294
249 #define PTP_TX_EGRESS_NS_LO			0x0295
250 #define PTP_TX_MSG_HEADER2			0x0299
251 
252 #define PTP_RX_INGRESS_SEC_HI			0x0256
253 #define PTP_RX_INGRESS_SEC_LO			0x0257
254 #define PTP_RX_INGRESS_NS_HI			0x0254
255 #define PTP_RX_INGRESS_NS_LO			0x0255
256 #define PTP_RX_MSG_HEADER2			0x0259
257 
258 #define PTP_TSU_INT_EN				0x0200
259 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
260 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
261 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
262 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
263 
264 #define PTP_TSU_INT_STS				0x0201
265 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
266 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
267 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
268 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
269 
270 #define LAN8814_LED_CTRL_1			0x0
271 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
272 #define LAN8814_LED_CTRL_2			0x1
273 #define LAN8814_LED_CTRL_2_LED1_COM_DIS		BIT(8)
274 
275 /* PHY Control 1 */
276 #define MII_KSZPHY_CTRL_1			0x1e
277 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
278 
279 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
280 #define MII_KSZPHY_CTRL_2			0x1f
281 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
282 /* bitmap of PHY register to set interrupt mode */
283 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
284 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
285 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
286 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
287 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
288 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
289 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
290 
291 /* Write/read to/from extended registers */
292 #define MII_KSZPHY_EXTREG			0x0b
293 #define KSZPHY_EXTREG_WRITE			0x8000
294 
295 #define MII_KSZPHY_EXTREG_WRITE			0x0c
296 #define MII_KSZPHY_EXTREG_READ			0x0d
297 
298 /* Extended registers */
299 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
300 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
301 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
302 
303 #define PS_TO_REG				200
304 #define FIFO_SIZE				8
305 
306 #define LAN8814_PTP_GPIO_NUM			24
307 #define LAN8814_PTP_PEROUT_NUM			2
308 #define LAN8814_PTP_EXTTS_NUM			3
309 
310 #define LAN8814_BUFFER_TIME			2
311 
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
321 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
322 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
323 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
324 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
325 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
326 
327 #define LAN8814_GPIO_EN1			0x20
328 #define LAN8814_GPIO_EN2			0x21
329 #define LAN8814_GPIO_DIR1			0x22
330 #define LAN8814_GPIO_DIR2			0x23
331 #define LAN8814_GPIO_BUF1			0x24
332 #define LAN8814_GPIO_BUF2			0x25
333 
334 #define LAN8814_GPIO_EN_ADDR(pin) \
335 	((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
336 #define LAN8814_GPIO_EN_BIT(pin)		BIT(pin)
337 #define LAN8814_GPIO_DIR_ADDR(pin) \
338 	((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
339 #define LAN8814_GPIO_DIR_BIT(pin)		BIT(pin)
340 #define LAN8814_GPIO_BUF_ADDR(pin) \
341 	((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
342 #define LAN8814_GPIO_BUF_BIT(pin)		BIT(pin)
343 
344 #define LAN8814_EVENT_A				0
345 #define LAN8814_EVENT_B				1
346 
347 #define LAN8814_PTP_GENERAL_CONFIG		0x0201
348 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
349 	((event) ? GENMASK(11, 8) : GENMASK(7, 4))
350 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
351 	(((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
352 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
353 	((event) ? BIT(2) : BIT(0))
354 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
355 	((event) ? BIT(3) : BIT(1))
356 
357 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event)	((event) ? 0x21F : 0x215)
358 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event)	((event) ? 0x220 : 0x216)
359 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event)	((event) ? 0x221 : 0x217)
360 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event)	((event) ? 0x222 : 0x218)
361 
362 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event)	((event) ? 0x223 : 0x219)
363 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event)	((event) ? 0x224 : 0x21A)
364 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event)	((event) ? 0x225 : 0x21B)
365 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event)	((event) ? 0x226 : 0x21C)
366 
367 /* Delay used to get the second part from the LTC */
368 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
369 
370 #define LAN8842_REV_8832			0x8832
371 
372 #define LAN8814_REV_LAN8814			0x8814
373 #define LAN8814_REV_LAN8818			0x8818
374 
375 struct kszphy_hw_stat {
376 	const char *string;
377 	u8 reg;
378 	u8 bits;
379 };
380 
381 static struct kszphy_hw_stat kszphy_hw_stats[] = {
382 	{ "phy_receive_errors", 21, 16},
383 	{ "phy_idle_errors", 10, 8 },
384 };
385 
386 struct kszphy_type {
387 	u32 led_mode_reg;
388 	u16 interrupt_level_mask;
389 	u16 cable_diag_reg;
390 	unsigned long pair_mask;
391 	u16 disable_dll_tx_bit;
392 	u16 disable_dll_rx_bit;
393 	u16 disable_dll_mask;
394 	bool has_broadcast_disable;
395 	bool has_nand_tree_disable;
396 	bool has_rmii_ref_clk_sel;
397 };
398 
399 /* Shared structure between the PHYs of the same package. */
400 struct lan8814_shared_priv {
401 	struct phy_device *phydev;
402 	struct ptp_clock *ptp_clock;
403 	struct ptp_clock_info ptp_clock_info;
404 	struct ptp_pin_desc *pin_config;
405 
406 	/* Lock for ptp_clock */
407 	struct mutex shared_lock;
408 };
409 
410 struct lan8814_ptp_rx_ts {
411 	struct list_head list;
412 	u32 seconds;
413 	u32 nsec;
414 	u16 seq_id;
415 };
416 
417 struct kszphy_ptp_priv {
418 	struct mii_timestamper mii_ts;
419 	struct phy_device *phydev;
420 
421 	struct sk_buff_head tx_queue;
422 	struct sk_buff_head rx_queue;
423 
424 	struct list_head rx_ts_list;
425 	/* Lock for Rx ts fifo */
426 	spinlock_t rx_ts_lock;
427 
428 	int hwts_tx_type;
429 	enum hwtstamp_rx_filters rx_filter;
430 	int layer;
431 	int version;
432 
433 	struct ptp_clock *ptp_clock;
434 	struct ptp_clock_info ptp_clock_info;
435 	/* Lock for ptp_clock */
436 	struct mutex ptp_lock;
437 	struct ptp_pin_desc *pin_config;
438 
439 	s64 seconds;
440 	/* Lock for accessing seconds */
441 	spinlock_t seconds_lock;
442 };
443 
444 struct kszphy_phy_stats {
445 	u64 rx_err_pkt_cnt;
446 };
447 
448 struct kszphy_priv {
449 	struct kszphy_ptp_priv ptp_priv;
450 	const struct kszphy_type *type;
451 	struct clk *clk;
452 	int led_mode;
453 	u16 vct_ctrl1000;
454 	bool rmii_ref_clk_sel;
455 	bool rmii_ref_clk_sel_val;
456 	bool clk_enable;
457 	bool is_ptp_available;
458 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
459 	struct kszphy_phy_stats phy_stats;
460 };
461 
462 struct lan8842_phy_stats {
463 	u64 rx_packets;
464 	u64 rx_errors;
465 	u64 tx_packets;
466 	u64 tx_errors;
467 };
468 
469 struct lan8842_priv {
470 	struct lan8842_phy_stats phy_stats;
471 	struct kszphy_ptp_priv ptp_priv;
472 	u16 rev;
473 };
474 
475 struct lanphy_reg_data {
476 	int page;
477 	u16 addr;
478 	u16 val;
479 };
480 
481 static const struct kszphy_type lan8814_type = {
482 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
483 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
484 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
485 };
486 
487 static const struct kszphy_type ksz886x_type = {
488 	.cable_diag_reg		= KSZ8081_LMD,
489 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
490 };
491 
492 static const struct kszphy_type ksz8021_type = {
493 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
494 	.has_broadcast_disable	= true,
495 	.has_nand_tree_disable	= true,
496 	.has_rmii_ref_clk_sel	= true,
497 };
498 
499 static const struct kszphy_type ksz8041_type = {
500 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
501 };
502 
503 static const struct kszphy_type ksz8051_type = {
504 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
505 	.has_nand_tree_disable	= true,
506 };
507 
508 static const struct kszphy_type ksz8081_type = {
509 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
510 	.cable_diag_reg		= KSZ8081_LMD,
511 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
512 	.has_broadcast_disable	= true,
513 	.has_nand_tree_disable	= true,
514 	.has_rmii_ref_clk_sel	= true,
515 };
516 
517 static const struct kszphy_type ks8737_type = {
518 	.interrupt_level_mask	= BIT(14),
519 };
520 
521 static const struct kszphy_type ksz9021_type = {
522 	.interrupt_level_mask	= BIT(14),
523 };
524 
525 static const struct kszphy_type ksz9131_type = {
526 	.interrupt_level_mask	= BIT(14),
527 	.disable_dll_tx_bit	= BIT(12),
528 	.disable_dll_rx_bit	= BIT(12),
529 	.disable_dll_mask	= BIT_MASK(12),
530 };
531 
532 static const struct kszphy_type lan8841_type = {
533 	.disable_dll_tx_bit	= BIT(14),
534 	.disable_dll_rx_bit	= BIT(14),
535 	.disable_dll_mask	= BIT_MASK(14),
536 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
537 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
538 };
539 
540 static int kszphy_extended_write(struct phy_device *phydev,
541 				u32 regnum, u16 val)
542 {
543 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
544 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
545 }
546 
547 static int kszphy_extended_read(struct phy_device *phydev,
548 				u32 regnum)
549 {
550 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
551 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
552 }
553 
554 static int kszphy_ack_interrupt(struct phy_device *phydev)
555 {
556 	/* bit[7..0] int status, which is a read and clear register. */
557 	int rc;
558 
559 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
560 
561 	return (rc < 0) ? rc : 0;
562 }
563 
564 static int kszphy_config_intr(struct phy_device *phydev)
565 {
566 	const struct kszphy_type *type = phydev->drv->driver_data;
567 	int temp, err;
568 	u16 mask;
569 
570 	if (type && type->interrupt_level_mask)
571 		mask = type->interrupt_level_mask;
572 	else
573 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
574 
575 	/* set the interrupt pin active low */
576 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
577 	if (temp < 0)
578 		return temp;
579 	temp &= ~mask;
580 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
581 
582 	/* enable / disable interrupts */
583 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
584 		err = kszphy_ack_interrupt(phydev);
585 		if (err)
586 			return err;
587 
588 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
589 	} else {
590 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
591 		if (err)
592 			return err;
593 
594 		err = kszphy_ack_interrupt(phydev);
595 	}
596 
597 	return err;
598 }
599 
600 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
601 {
602 	int irq_status;
603 
604 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
605 	if (irq_status < 0) {
606 		phy_error(phydev);
607 		return IRQ_NONE;
608 	}
609 
610 	if (!(irq_status & KSZPHY_INTCS_STATUS))
611 		return IRQ_NONE;
612 
613 	phy_trigger_machine(phydev);
614 
615 	return IRQ_HANDLED;
616 }
617 
618 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
619 {
620 	int ctrl;
621 
622 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
623 	if (ctrl < 0)
624 		return ctrl;
625 
626 	if (val)
627 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
628 	else
629 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
630 
631 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
632 }
633 
634 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
635 {
636 	int rc, temp, shift;
637 
638 	switch (reg) {
639 	case MII_KSZPHY_CTRL_1:
640 		shift = 14;
641 		break;
642 	case MII_KSZPHY_CTRL_2:
643 		shift = 4;
644 		break;
645 	default:
646 		return -EINVAL;
647 	}
648 
649 	temp = phy_read(phydev, reg);
650 	if (temp < 0) {
651 		rc = temp;
652 		goto out;
653 	}
654 
655 	temp &= ~(3 << shift);
656 	temp |= val << shift;
657 	rc = phy_write(phydev, reg, temp);
658 out:
659 	if (rc < 0)
660 		phydev_err(phydev, "failed to set led mode\n");
661 
662 	return rc;
663 }
664 
665 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
666  * unique (non-broadcast) address on a shared bus.
667  */
668 static int kszphy_broadcast_disable(struct phy_device *phydev)
669 {
670 	int ret;
671 
672 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
673 	if (ret < 0)
674 		goto out;
675 
676 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
677 out:
678 	if (ret)
679 		phydev_err(phydev, "failed to disable broadcast address\n");
680 
681 	return ret;
682 }
683 
684 static int kszphy_nand_tree_disable(struct phy_device *phydev)
685 {
686 	int ret;
687 
688 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
689 	if (ret < 0)
690 		goto out;
691 
692 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
693 		return 0;
694 
695 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
696 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
697 out:
698 	if (ret)
699 		phydev_err(phydev, "failed to disable NAND tree mode\n");
700 
701 	return ret;
702 }
703 
704 /* Some config bits need to be set again on resume, handle them here. */
705 static int kszphy_config_reset(struct phy_device *phydev)
706 {
707 	struct kszphy_priv *priv = phydev->priv;
708 	int ret;
709 
710 	if (priv->rmii_ref_clk_sel) {
711 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
712 		if (ret) {
713 			phydev_err(phydev,
714 				   "failed to set rmii reference clock\n");
715 			return ret;
716 		}
717 	}
718 
719 	if (priv->type && priv->led_mode >= 0)
720 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
721 
722 	return 0;
723 }
724 
725 static int kszphy_config_init(struct phy_device *phydev)
726 {
727 	struct kszphy_priv *priv = phydev->priv;
728 	const struct kszphy_type *type;
729 
730 	if (!priv)
731 		return 0;
732 
733 	type = priv->type;
734 
735 	if (type && type->has_broadcast_disable)
736 		kszphy_broadcast_disable(phydev);
737 
738 	if (type && type->has_nand_tree_disable)
739 		kszphy_nand_tree_disable(phydev);
740 
741 	return kszphy_config_reset(phydev);
742 }
743 
744 static int ksz8041_fiber_mode(struct phy_device *phydev)
745 {
746 	struct device_node *of_node = phydev->mdio.dev.of_node;
747 
748 	return of_property_read_bool(of_node, "micrel,fiber-mode");
749 }
750 
751 static int ksz8041_config_init(struct phy_device *phydev)
752 {
753 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
754 
755 	/* Limit supported and advertised modes in fiber mode */
756 	if (ksz8041_fiber_mode(phydev)) {
757 		phydev->dev_flags |= MICREL_PHY_FXEN;
758 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
759 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
760 
761 		linkmode_and(phydev->supported, phydev->supported, mask);
762 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
763 				 phydev->supported);
764 		linkmode_and(phydev->advertising, phydev->advertising, mask);
765 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
766 				 phydev->advertising);
767 		phydev->autoneg = AUTONEG_DISABLE;
768 	}
769 
770 	return kszphy_config_init(phydev);
771 }
772 
773 static int ksz8041_config_aneg(struct phy_device *phydev)
774 {
775 	/* Skip auto-negotiation in fiber mode */
776 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
777 		phydev->speed = SPEED_100;
778 		return 0;
779 	}
780 
781 	return genphy_config_aneg(phydev);
782 }
783 
784 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
785 					    const bool ksz_8051)
786 {
787 	int ret;
788 
789 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
790 		return 0;
791 
792 	ret = phy_read(phydev, MII_BMSR);
793 	if (ret < 0)
794 		return ret;
795 
796 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
797 	 * exact PHY ID. However, they can be told apart by the extended
798 	 * capability registers presence. The KSZ8051 PHY has them while
799 	 * the switch does not.
800 	 */
801 	ret &= BMSR_ERCAP;
802 	if (ksz_8051)
803 		return ret;
804 	else
805 		return !ret;
806 }
807 
808 static int ksz8051_match_phy_device(struct phy_device *phydev,
809 				    const struct phy_driver *phydrv)
810 {
811 	return ksz8051_ksz8795_match_phy_device(phydev, true);
812 }
813 
814 static int ksz8081_config_init(struct phy_device *phydev)
815 {
816 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
817 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
818 	 * pull-down is missing, the factory test mode should be cleared by
819 	 * manually writing a 0.
820 	 */
821 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
822 
823 	return kszphy_config_init(phydev);
824 }
825 
826 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
827 {
828 	u16 val;
829 
830 	switch (ctrl) {
831 	case ETH_TP_MDI:
832 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
833 		break;
834 	case ETH_TP_MDI_X:
835 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
836 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
837 		break;
838 	case ETH_TP_MDI_AUTO:
839 		val = 0;
840 		break;
841 	default:
842 		return 0;
843 	}
844 
845 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
846 			  KSZ8081_CTRL2_HP_MDIX |
847 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
848 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
849 			  KSZ8081_CTRL2_HP_MDIX | val);
850 }
851 
852 static int ksz8081_config_aneg(struct phy_device *phydev)
853 {
854 	int ret;
855 
856 	ret = genphy_config_aneg(phydev);
857 	if (ret)
858 		return ret;
859 
860 	/* The MDI-X configuration is automatically changed by the PHY after
861 	 * switching from autoneg off to on. So, take MDI-X configuration under
862 	 * own control and set it after autoneg configuration was done.
863 	 */
864 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
865 }
866 
867 static int ksz8081_mdix_update(struct phy_device *phydev)
868 {
869 	int ret;
870 
871 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
872 	if (ret < 0)
873 		return ret;
874 
875 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
876 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
877 			phydev->mdix_ctrl = ETH_TP_MDI_X;
878 		else
879 			phydev->mdix_ctrl = ETH_TP_MDI;
880 	} else {
881 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
882 	}
883 
884 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
885 	if (ret < 0)
886 		return ret;
887 
888 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
889 		phydev->mdix = ETH_TP_MDI;
890 	else
891 		phydev->mdix = ETH_TP_MDI_X;
892 
893 	return 0;
894 }
895 
896 static int ksz8081_read_status(struct phy_device *phydev)
897 {
898 	int ret;
899 
900 	ret = ksz8081_mdix_update(phydev);
901 	if (ret < 0)
902 		return ret;
903 
904 	return genphy_read_status(phydev);
905 }
906 
907 static int ksz8061_config_init(struct phy_device *phydev)
908 {
909 	int ret;
910 
911 	/* Chip can be powered down by the bootstrap code. */
912 	ret = phy_read(phydev, MII_BMCR);
913 	if (ret < 0)
914 		return ret;
915 	if (ret & BMCR_PDOWN) {
916 		ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
917 		if (ret < 0)
918 			return ret;
919 		usleep_range(1000, 2000);
920 	}
921 
922 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
923 	if (ret)
924 		return ret;
925 
926 	return kszphy_config_init(phydev);
927 }
928 
929 static int ksz8795_match_phy_device(struct phy_device *phydev,
930 				    const struct phy_driver *phydrv)
931 {
932 	return ksz8051_ksz8795_match_phy_device(phydev, false);
933 }
934 
935 static int ksz9021_load_values_from_of(struct phy_device *phydev,
936 				       const struct device_node *of_node,
937 				       u16 reg,
938 				       const char *field1, const char *field2,
939 				       const char *field3, const char *field4)
940 {
941 	int val1 = -1;
942 	int val2 = -2;
943 	int val3 = -3;
944 	int val4 = -4;
945 	int newval;
946 	int matches = 0;
947 
948 	if (!of_property_read_u32(of_node, field1, &val1))
949 		matches++;
950 
951 	if (!of_property_read_u32(of_node, field2, &val2))
952 		matches++;
953 
954 	if (!of_property_read_u32(of_node, field3, &val3))
955 		matches++;
956 
957 	if (!of_property_read_u32(of_node, field4, &val4))
958 		matches++;
959 
960 	if (!matches)
961 		return 0;
962 
963 	if (matches < 4)
964 		newval = kszphy_extended_read(phydev, reg);
965 	else
966 		newval = 0;
967 
968 	if (val1 != -1)
969 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
970 
971 	if (val2 != -2)
972 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
973 
974 	if (val3 != -3)
975 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
976 
977 	if (val4 != -4)
978 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
979 
980 	return kszphy_extended_write(phydev, reg, newval);
981 }
982 
983 static int ksz9021_config_init(struct phy_device *phydev)
984 {
985 	const struct device_node *of_node;
986 	const struct device *dev_walker;
987 
988 	/* The Micrel driver has a deprecated option to place phy OF
989 	 * properties in the MAC node. Walk up the tree of devices to
990 	 * find a device with an OF node.
991 	 */
992 	dev_walker = &phydev->mdio.dev;
993 	do {
994 		of_node = dev_walker->of_node;
995 		dev_walker = dev_walker->parent;
996 
997 	} while (!of_node && dev_walker);
998 
999 	if (of_node) {
1000 		ksz9021_load_values_from_of(phydev, of_node,
1001 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
1002 				    "txen-skew-ps", "txc-skew-ps",
1003 				    "rxdv-skew-ps", "rxc-skew-ps");
1004 		ksz9021_load_values_from_of(phydev, of_node,
1005 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
1006 				    "rxd0-skew-ps", "rxd1-skew-ps",
1007 				    "rxd2-skew-ps", "rxd3-skew-ps");
1008 		ksz9021_load_values_from_of(phydev, of_node,
1009 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
1010 				    "txd0-skew-ps", "txd1-skew-ps",
1011 				    "txd2-skew-ps", "txd3-skew-ps");
1012 	}
1013 	return 0;
1014 }
1015 
1016 #define KSZ9031_PS_TO_REG		60
1017 
1018 /* Extended registers */
1019 /* MMD Address 0x0 */
1020 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
1021 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
1022 
1023 /* MMD Address 0x2 */
1024 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
1025 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
1026 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
1027 
1028 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
1029 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
1030 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
1031 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
1032 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
1033 
1034 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
1035 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
1036 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
1037 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
1038 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
1039 
1040 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
1041 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
1042 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
1043 
1044 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
1045  * provide different RGMII options we need to configure delay offset
1046  * for each pad relative to build in delay.
1047  */
1048 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
1049  * 1.80ns
1050  */
1051 #define RX_ID				0x7
1052 #define RX_CLK_ID			0x19
1053 
1054 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1055  * internal 1.2ns delay.
1056  */
1057 #define RX_ND				0xc
1058 #define RX_CLK_ND			0x0
1059 
1060 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1061 #define TX_ID				0x0
1062 #define TX_CLK_ID			0x1f
1063 
1064 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1065  * delay
1066  */
1067 #define TX_ND				0x7
1068 #define TX_CLK_ND			0xf
1069 
1070 /* MMD Address 0x1C */
1071 #define MII_KSZ9031RN_EDPD		0x23
1072 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
1073 
1074 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable,
1075 				int speed)
1076 {
1077 	u16 ctl = BMCR_LOOPBACK;
1078 	int val;
1079 
1080 	if (!enable)
1081 		return genphy_loopback(phydev, enable, 0);
1082 
1083 	if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000)
1084 		phydev->speed = speed;
1085 	else if (speed)
1086 		return -EINVAL;
1087 	phydev->duplex = DUPLEX_FULL;
1088 
1089 	ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
1090 
1091 	phy_write(phydev, MII_BMCR, ctl);
1092 
1093 	return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS,
1094 				     5000, 500000, true);
1095 }
1096 
1097 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1098 				       const struct device_node *of_node,
1099 				       u16 reg, size_t field_sz,
1100 				       const char *field[], u8 numfields,
1101 				       bool *update)
1102 {
1103 	int val[4] = {-1, -2, -3, -4};
1104 	int matches = 0;
1105 	u16 mask;
1106 	u16 maxval;
1107 	u16 newval;
1108 	int i;
1109 
1110 	for (i = 0; i < numfields; i++)
1111 		if (!of_property_read_u32(of_node, field[i], val + i))
1112 			matches++;
1113 
1114 	if (!matches)
1115 		return 0;
1116 
1117 	*update |= true;
1118 
1119 	if (matches < numfields)
1120 		newval = phy_read_mmd(phydev, 2, reg);
1121 	else
1122 		newval = 0;
1123 
1124 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1125 	for (i = 0; i < numfields; i++)
1126 		if (val[i] != -(i + 1)) {
1127 			mask = 0xffff;
1128 			mask ^= maxval << (field_sz * i);
1129 			newval = (newval & mask) |
1130 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
1131 					<< (field_sz * i));
1132 		}
1133 
1134 	return phy_write_mmd(phydev, 2, reg, newval);
1135 }
1136 
1137 /* Center KSZ9031RNX FLP timing at 16ms. */
1138 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1139 {
1140 	int result;
1141 
1142 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1143 			       0x0006);
1144 	if (result)
1145 		return result;
1146 
1147 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1148 			       0x1A80);
1149 	if (result)
1150 		return result;
1151 
1152 	return genphy_restart_aneg(phydev);
1153 }
1154 
1155 /* Enable energy-detect power-down mode */
1156 static int ksz9031_enable_edpd(struct phy_device *phydev)
1157 {
1158 	int reg;
1159 
1160 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1161 	if (reg < 0)
1162 		return reg;
1163 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1164 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
1165 }
1166 
1167 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1168 {
1169 	u16 rx, tx, rx_clk, tx_clk;
1170 	int ret;
1171 
1172 	switch (phydev->interface) {
1173 	case PHY_INTERFACE_MODE_RGMII:
1174 		tx = TX_ND;
1175 		tx_clk = TX_CLK_ND;
1176 		rx = RX_ND;
1177 		rx_clk = RX_CLK_ND;
1178 		break;
1179 	case PHY_INTERFACE_MODE_RGMII_ID:
1180 		tx = TX_ID;
1181 		tx_clk = TX_CLK_ID;
1182 		rx = RX_ID;
1183 		rx_clk = RX_CLK_ID;
1184 		break;
1185 	case PHY_INTERFACE_MODE_RGMII_RXID:
1186 		tx = TX_ND;
1187 		tx_clk = TX_CLK_ND;
1188 		rx = RX_ID;
1189 		rx_clk = RX_CLK_ID;
1190 		break;
1191 	case PHY_INTERFACE_MODE_RGMII_TXID:
1192 		tx = TX_ID;
1193 		tx_clk = TX_CLK_ID;
1194 		rx = RX_ND;
1195 		rx_clk = RX_CLK_ND;
1196 		break;
1197 	default:
1198 		return 0;
1199 	}
1200 
1201 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1202 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1203 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1204 	if (ret < 0)
1205 		return ret;
1206 
1207 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1208 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1209 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1210 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1211 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1212 	if (ret < 0)
1213 		return ret;
1214 
1215 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1216 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1217 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1218 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1219 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1220 	if (ret < 0)
1221 		return ret;
1222 
1223 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1224 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1225 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1226 }
1227 
1228 static int ksz9031_config_init(struct phy_device *phydev)
1229 {
1230 	const struct device_node *of_node;
1231 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1232 	static const char *rx_data_skews[4] = {
1233 		"rxd0-skew-ps", "rxd1-skew-ps",
1234 		"rxd2-skew-ps", "rxd3-skew-ps"
1235 	};
1236 	static const char *tx_data_skews[4] = {
1237 		"txd0-skew-ps", "txd1-skew-ps",
1238 		"txd2-skew-ps", "txd3-skew-ps"
1239 	};
1240 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1241 	const struct device *dev_walker;
1242 	int result;
1243 
1244 	result = ksz9031_enable_edpd(phydev);
1245 	if (result < 0)
1246 		return result;
1247 
1248 	/* The Micrel driver has a deprecated option to place phy OF
1249 	 * properties in the MAC node. Walk up the tree of devices to
1250 	 * find a device with an OF node.
1251 	 */
1252 	dev_walker = &phydev->mdio.dev;
1253 	do {
1254 		of_node = dev_walker->of_node;
1255 		dev_walker = dev_walker->parent;
1256 	} while (!of_node && dev_walker);
1257 
1258 	if (of_node) {
1259 		bool update = false;
1260 
1261 		if (phy_interface_is_rgmii(phydev)) {
1262 			result = ksz9031_config_rgmii_delay(phydev);
1263 			if (result < 0)
1264 				return result;
1265 		}
1266 
1267 		ksz9031_of_load_skew_values(phydev, of_node,
1268 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1269 				clk_skews, 2, &update);
1270 
1271 		ksz9031_of_load_skew_values(phydev, of_node,
1272 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1273 				control_skews, 2, &update);
1274 
1275 		ksz9031_of_load_skew_values(phydev, of_node,
1276 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1277 				rx_data_skews, 4, &update);
1278 
1279 		ksz9031_of_load_skew_values(phydev, of_node,
1280 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1281 				tx_data_skews, 4, &update);
1282 
1283 		if (update && !phy_interface_is_rgmii(phydev))
1284 			phydev_warn(phydev,
1285 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1286 
1287 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1288 		 * When the device links in the 1000BASE-T slave mode only,
1289 		 * the optional 125MHz reference output clock (CLK125_NDO)
1290 		 * has wide duty cycle variation.
1291 		 *
1292 		 * The optional CLK125_NDO clock does not meet the RGMII
1293 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1294 		 * cannot be used directly by the MAC side for clocking
1295 		 * applications that have setup/hold time requirements on
1296 		 * rising and falling clock edges.
1297 		 *
1298 		 * Workaround:
1299 		 * Force the phy to be the master to receive a stable clock
1300 		 * which meets the duty cycle requirement.
1301 		 */
1302 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1303 			result = phy_read(phydev, MII_CTRL1000);
1304 			if (result < 0)
1305 				goto err_force_master;
1306 
1307 			/* enable master mode, config & prefer master */
1308 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1309 			result = phy_write(phydev, MII_CTRL1000, result);
1310 			if (result < 0)
1311 				goto err_force_master;
1312 		}
1313 	}
1314 
1315 	return ksz9031_center_flp_timing(phydev);
1316 
1317 err_force_master:
1318 	phydev_err(phydev, "failed to force the phy to master mode\n");
1319 	return result;
1320 }
1321 
1322 #define KSZ9131_SKEW_5BIT_MAX	2400
1323 #define KSZ9131_SKEW_4BIT_MAX	800
1324 #define KSZ9131_OFFSET		700
1325 #define KSZ9131_STEP		100
1326 
1327 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1328 				       struct device_node *of_node,
1329 				       u16 reg, size_t field_sz,
1330 				       char *field[], u8 numfields)
1331 {
1332 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1333 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1334 	int skewval, skewmax = 0;
1335 	int matches = 0;
1336 	u16 maxval;
1337 	u16 newval;
1338 	u16 mask;
1339 	int i;
1340 
1341 	/* psec properties in dts should mean x pico seconds */
1342 	if (field_sz == 5)
1343 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1344 	else
1345 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1346 
1347 	for (i = 0; i < numfields; i++)
1348 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1349 			if (skewval < -KSZ9131_OFFSET)
1350 				skewval = -KSZ9131_OFFSET;
1351 			else if (skewval > skewmax)
1352 				skewval = skewmax;
1353 
1354 			val[i] = skewval + KSZ9131_OFFSET;
1355 			matches++;
1356 		}
1357 
1358 	if (!matches)
1359 		return 0;
1360 
1361 	if (matches < numfields)
1362 		newval = phy_read_mmd(phydev, 2, reg);
1363 	else
1364 		newval = 0;
1365 
1366 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1367 	for (i = 0; i < numfields; i++)
1368 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1369 			mask = 0xffff;
1370 			mask ^= maxval << (field_sz * i);
1371 			newval = (newval & mask) |
1372 				(((val[i] / KSZ9131_STEP) & maxval)
1373 					<< (field_sz * i));
1374 		}
1375 
1376 	return phy_write_mmd(phydev, 2, reg, newval);
1377 }
1378 
1379 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1380 #define KSZ9131RN_RXC_DLL_CTRL		76
1381 #define KSZ9131RN_TXC_DLL_CTRL		77
1382 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1383 
1384 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1385 {
1386 	const struct kszphy_type *type = phydev->drv->driver_data;
1387 	u16 rxcdll_val, txcdll_val;
1388 	int ret;
1389 
1390 	switch (phydev->interface) {
1391 	case PHY_INTERFACE_MODE_RGMII:
1392 		rxcdll_val = type->disable_dll_rx_bit;
1393 		txcdll_val = type->disable_dll_tx_bit;
1394 		break;
1395 	case PHY_INTERFACE_MODE_RGMII_ID:
1396 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1397 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1398 		break;
1399 	case PHY_INTERFACE_MODE_RGMII_RXID:
1400 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1401 		txcdll_val = type->disable_dll_tx_bit;
1402 		break;
1403 	case PHY_INTERFACE_MODE_RGMII_TXID:
1404 		rxcdll_val = type->disable_dll_rx_bit;
1405 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1406 		break;
1407 	default:
1408 		return 0;
1409 	}
1410 
1411 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1412 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1413 			     rxcdll_val);
1414 	if (ret < 0)
1415 		return ret;
1416 
1417 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1418 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1419 			      txcdll_val);
1420 }
1421 
1422 /* Silicon Errata DS80000693B
1423  *
1424  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1425  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1426  * according to the datasheet (off if there is no link).
1427  */
1428 static int ksz9131_led_errata(struct phy_device *phydev)
1429 {
1430 	int reg;
1431 
1432 	reg = phy_read_mmd(phydev, 2, 0);
1433 	if (reg < 0)
1434 		return reg;
1435 
1436 	if (!(reg & BIT(4)))
1437 		return 0;
1438 
1439 	return phy_set_bits(phydev, 0x1e, BIT(9));
1440 }
1441 
1442 static int ksz9131_config_init(struct phy_device *phydev)
1443 {
1444 	struct device_node *of_node;
1445 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1446 	char *rx_data_skews[4] = {
1447 		"rxd0-skew-psec", "rxd1-skew-psec",
1448 		"rxd2-skew-psec", "rxd3-skew-psec"
1449 	};
1450 	char *tx_data_skews[4] = {
1451 		"txd0-skew-psec", "txd1-skew-psec",
1452 		"txd2-skew-psec", "txd3-skew-psec"
1453 	};
1454 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1455 	const struct device *dev_walker;
1456 	int ret;
1457 
1458 	phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1459 
1460 	dev_walker = &phydev->mdio.dev;
1461 	do {
1462 		of_node = dev_walker->of_node;
1463 		dev_walker = dev_walker->parent;
1464 	} while (!of_node && dev_walker);
1465 
1466 	if (!of_node)
1467 		return 0;
1468 
1469 	if (phy_interface_is_rgmii(phydev)) {
1470 		ret = ksz9131_config_rgmii_delay(phydev);
1471 		if (ret < 0)
1472 			return ret;
1473 	}
1474 
1475 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1476 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1477 					  clk_skews, 2);
1478 	if (ret < 0)
1479 		return ret;
1480 
1481 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1482 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1483 					  control_skews, 2);
1484 	if (ret < 0)
1485 		return ret;
1486 
1487 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1488 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1489 					  rx_data_skews, 4);
1490 	if (ret < 0)
1491 		return ret;
1492 
1493 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1494 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1495 					  tx_data_skews, 4);
1496 	if (ret < 0)
1497 		return ret;
1498 
1499 	ret = ksz9131_led_errata(phydev);
1500 	if (ret < 0)
1501 		return ret;
1502 
1503 	return 0;
1504 }
1505 
1506 #define MII_KSZ9131_AUTO_MDIX		0x1C
1507 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1508 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1509 #define MII_KSZ9131_DIG_AXAN_STS	0x14
1510 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET	BIT(14)
1511 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT	BIT(12)
1512 
1513 static int ksz9131_mdix_update(struct phy_device *phydev)
1514 {
1515 	int ret;
1516 
1517 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1518 		phydev->mdix = phydev->mdix_ctrl;
1519 	} else {
1520 		ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1521 		if (ret < 0)
1522 			return ret;
1523 
1524 		if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1525 			if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1526 				phydev->mdix = ETH_TP_MDI;
1527 			else
1528 				phydev->mdix = ETH_TP_MDI_X;
1529 		} else {
1530 			phydev->mdix = ETH_TP_MDI_INVALID;
1531 		}
1532 	}
1533 
1534 	return 0;
1535 }
1536 
1537 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1538 {
1539 	u16 val;
1540 
1541 	switch (ctrl) {
1542 	case ETH_TP_MDI:
1543 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1544 		      MII_KSZ9131_AUTO_MDI_SET;
1545 		break;
1546 	case ETH_TP_MDI_X:
1547 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1548 		break;
1549 	case ETH_TP_MDI_AUTO:
1550 		val = 0;
1551 		break;
1552 	default:
1553 		return 0;
1554 	}
1555 
1556 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1557 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1558 			  MII_KSZ9131_AUTO_MDI_SET, val);
1559 }
1560 
1561 static int ksz9131_read_status(struct phy_device *phydev)
1562 {
1563 	int ret;
1564 
1565 	ret = ksz9131_mdix_update(phydev);
1566 	if (ret < 0)
1567 		return ret;
1568 
1569 	return genphy_read_status(phydev);
1570 }
1571 
1572 static int ksz9131_config_aneg(struct phy_device *phydev)
1573 {
1574 	int ret;
1575 
1576 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1577 	if (ret)
1578 		return ret;
1579 
1580 	return genphy_config_aneg(phydev);
1581 }
1582 
1583 static int ksz9477_get_features(struct phy_device *phydev)
1584 {
1585 	int ret;
1586 
1587 	ret = genphy_read_abilities(phydev);
1588 	if (ret)
1589 		return ret;
1590 
1591 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1592 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1593 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1594 	 * of caps.
1595 	 * KSZ8563R should have 100BaseTX/Full only.
1596 	 */
1597 	linkmode_and(phydev->supported_eee, phydev->supported,
1598 		     PHY_EEE_CAP1_FEATURES);
1599 
1600 	return 0;
1601 }
1602 
1603 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1604 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1605 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1606 static int ksz8873mll_read_status(struct phy_device *phydev)
1607 {
1608 	int regval;
1609 
1610 	/* dummy read */
1611 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1612 
1613 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1614 
1615 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1616 		phydev->duplex = DUPLEX_HALF;
1617 	else
1618 		phydev->duplex = DUPLEX_FULL;
1619 
1620 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1621 		phydev->speed = SPEED_10;
1622 	else
1623 		phydev->speed = SPEED_100;
1624 
1625 	phydev->link = 1;
1626 	phydev->pause = phydev->asym_pause = 0;
1627 
1628 	return 0;
1629 }
1630 
1631 static int ksz9031_get_features(struct phy_device *phydev)
1632 {
1633 	int ret;
1634 
1635 	ret = genphy_read_abilities(phydev);
1636 	if (ret < 0)
1637 		return ret;
1638 
1639 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1640 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1641 	 * link-up may fail after a link-up to link-down transition.
1642 	 *
1643 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1644 	 *
1645 	 * Workaround:
1646 	 * Do not enable the Asymmetric Pause capability bit.
1647 	 */
1648 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1649 
1650 	/* We force setting the Pause capability as the core will force the
1651 	 * Asymmetric Pause capability to 1 otherwise.
1652 	 */
1653 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1654 
1655 	return 0;
1656 }
1657 
1658 static int ksz9031_read_status(struct phy_device *phydev)
1659 {
1660 	int err;
1661 	int regval;
1662 
1663 	err = genphy_read_status(phydev);
1664 	if (err)
1665 		return err;
1666 
1667 	/* Make sure the PHY is not broken. Read idle error count,
1668 	 * and reset the PHY if it is maxed out.
1669 	 */
1670 	regval = phy_read(phydev, MII_STAT1000);
1671 	if ((regval & 0xFF) == 0xFF) {
1672 		phy_init_hw(phydev);
1673 		phydev->link = 0;
1674 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1675 			phydev->drv->config_intr(phydev);
1676 		return genphy_config_aneg(phydev);
1677 	}
1678 
1679 	return 0;
1680 }
1681 
1682 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1683 {
1684 	struct kszphy_priv *priv = phydev->priv;
1685 	int ret;
1686 
1687 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1688 	 * Prior to running the cable diagnostics, Auto-negotiation should
1689 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1690 	 * via the Basic Control Register.
1691 	 */
1692 	ret = phy_modify(phydev, MII_BMCR,
1693 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1694 			 BMCR_ANENABLE | BMCR_SPEED100,
1695 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1696 	if (ret)
1697 		return ret;
1698 
1699 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1700 	 * The Master-Slave configuration should be set to Slave by writing
1701 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1702 	 * Register.
1703 	 */
1704 	ret = phy_read(phydev, MII_CTRL1000);
1705 	if (ret < 0)
1706 		return ret;
1707 
1708 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1709 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1710 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1711 	ret |= CTL1000_ENABLE_MASTER;
1712 
1713 	return phy_write(phydev, MII_CTRL1000, ret);
1714 }
1715 
1716 static int ksz9x31_cable_test_result_trans(u16 status)
1717 {
1718 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1719 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1720 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1721 	case KSZ9x31_LMD_VCT_ST_OPEN:
1722 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1723 	case KSZ9x31_LMD_VCT_ST_SHORT:
1724 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1725 	case KSZ9x31_LMD_VCT_ST_FAIL:
1726 		fallthrough;
1727 	default:
1728 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1729 	}
1730 }
1731 
1732 static bool ksz9x31_cable_test_failed(u16 status)
1733 {
1734 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1735 
1736 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1737 }
1738 
1739 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1740 {
1741 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1742 	case KSZ9x31_LMD_VCT_ST_OPEN:
1743 		fallthrough;
1744 	case KSZ9x31_LMD_VCT_ST_SHORT:
1745 		return true;
1746 	}
1747 	return false;
1748 }
1749 
1750 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1751 {
1752 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1753 
1754 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1755 	 *
1756 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1757 	 */
1758 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131) ||
1759 	    phydev_id_compare(phydev, PHY_ID_KSZ9477))
1760 		dt = clamp(dt - 22, 0, 255);
1761 
1762 	return (dt * 400) / 10;
1763 }
1764 
1765 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1766 {
1767 	int val, ret;
1768 
1769 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1770 				    !(val & KSZ9x31_LMD_VCT_EN),
1771 				    30000, 100000, true);
1772 
1773 	return ret < 0 ? ret : 0;
1774 }
1775 
1776 static int ksz9x31_cable_test_get_pair(int pair)
1777 {
1778 	static const int ethtool_pair[] = {
1779 		ETHTOOL_A_CABLE_PAIR_A,
1780 		ETHTOOL_A_CABLE_PAIR_B,
1781 		ETHTOOL_A_CABLE_PAIR_C,
1782 		ETHTOOL_A_CABLE_PAIR_D,
1783 	};
1784 
1785 	return ethtool_pair[pair];
1786 }
1787 
1788 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1789 {
1790 	int ret, val;
1791 
1792 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1793 	 * To test each individual cable pair, set the cable pair in the Cable
1794 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1795 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1796 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1797 	 * will self clear when the test is concluded.
1798 	 */
1799 	ret = phy_write(phydev, KSZ9x31_LMD,
1800 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1801 	if (ret)
1802 		return ret;
1803 
1804 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1805 	if (ret)
1806 		return ret;
1807 
1808 	val = phy_read(phydev, KSZ9x31_LMD);
1809 	if (val < 0)
1810 		return val;
1811 
1812 	if (ksz9x31_cable_test_failed(val))
1813 		return -EAGAIN;
1814 
1815 	ret = ethnl_cable_test_result(phydev,
1816 				      ksz9x31_cable_test_get_pair(pair),
1817 				      ksz9x31_cable_test_result_trans(val));
1818 	if (ret)
1819 		return ret;
1820 
1821 	if (!ksz9x31_cable_test_fault_length_valid(val))
1822 		return 0;
1823 
1824 	return ethnl_cable_test_fault_length(phydev,
1825 					     ksz9x31_cable_test_get_pair(pair),
1826 					     ksz9x31_cable_test_fault_length(phydev, val));
1827 }
1828 
1829 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1830 					 bool *finished)
1831 {
1832 	struct kszphy_priv *priv = phydev->priv;
1833 	unsigned long pair_mask;
1834 	int retries = 20;
1835 	int pair, ret, rv;
1836 
1837 	*finished = false;
1838 
1839 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1840 			      phydev->supported) ||
1841 	    linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
1842 			      phydev->supported))
1843 		pair_mask = 0xf; /* All pairs */
1844 	else
1845 		pair_mask = 0x3; /* Pairs A and B only */
1846 
1847 	/* Try harder if link partner is active */
1848 	while (pair_mask && retries--) {
1849 		for_each_set_bit(pair, &pair_mask, 4) {
1850 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1851 			if (ret == -EAGAIN)
1852 				continue;
1853 			if (ret < 0)
1854 				return ret;
1855 			clear_bit(pair, &pair_mask);
1856 		}
1857 		/* If link partner is in autonegotiation mode it will send 2ms
1858 		 * of FLPs with at least 6ms of silence.
1859 		 * Add 2ms sleep to have better chances to hit this silence.
1860 		 */
1861 		if (pair_mask)
1862 			usleep_range(2000, 3000);
1863 	}
1864 
1865 	/* Report remaining unfinished pair result as unknown. */
1866 	for_each_set_bit(pair, &pair_mask, 4) {
1867 		ret = ethnl_cable_test_result(phydev,
1868 					      ksz9x31_cable_test_get_pair(pair),
1869 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1870 	}
1871 
1872 	*finished = true;
1873 
1874 	/* Restore cached bits from before LinkMD got started. */
1875 	rv = phy_modify(phydev, MII_CTRL1000,
1876 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1877 			priv->vct_ctrl1000);
1878 	if (rv)
1879 		return rv;
1880 
1881 	return ret;
1882 }
1883 
1884 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1885 {
1886 	return 0;
1887 }
1888 
1889 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1890 {
1891 	u16 val;
1892 
1893 	switch (ctrl) {
1894 	case ETH_TP_MDI:
1895 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1896 		break;
1897 	case ETH_TP_MDI_X:
1898 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1899 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1900 		 * sheet seems to be missing:
1901 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1902 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1903 		 */
1904 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1905 		break;
1906 	case ETH_TP_MDI_AUTO:
1907 		val = 0;
1908 		break;
1909 	default:
1910 		return 0;
1911 	}
1912 
1913 	return phy_modify(phydev, MII_BMCR,
1914 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1915 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1916 			  KSZ886X_BMCR_HP_MDIX | val);
1917 }
1918 
1919 static int ksz886x_config_aneg(struct phy_device *phydev)
1920 {
1921 	int ret;
1922 
1923 	ret = genphy_config_aneg(phydev);
1924 	if (ret)
1925 		return ret;
1926 
1927 	if (phydev->autoneg != AUTONEG_ENABLE) {
1928 		/* When autonegotiation is disabled, we need to manually force
1929 		 * the link state. If we don't do this, the PHY will keep
1930 		 * sending Fast Link Pulses (FLPs) which are part of the
1931 		 * autonegotiation process. This is not desired when
1932 		 * autonegotiation is off.
1933 		 */
1934 		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1935 				   KSZ886X_CTRL_FORCE_LINK);
1936 		if (ret)
1937 			return ret;
1938 	} else {
1939 		/* If we had previously forced the link state, we need to
1940 		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1941 		 * will not perform autonegotiation.
1942 		 */
1943 		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1944 				     KSZ886X_CTRL_FORCE_LINK);
1945 		if (ret)
1946 			return ret;
1947 	}
1948 
1949 	/* The MDI-X configuration is automatically changed by the PHY after
1950 	 * switching from autoneg off to on. So, take MDI-X configuration under
1951 	 * own control and set it after autoneg configuration was done.
1952 	 */
1953 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1954 }
1955 
1956 static int ksz886x_mdix_update(struct phy_device *phydev)
1957 {
1958 	int ret;
1959 
1960 	ret = phy_read(phydev, MII_BMCR);
1961 	if (ret < 0)
1962 		return ret;
1963 
1964 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1965 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1966 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1967 		else
1968 			phydev->mdix_ctrl = ETH_TP_MDI;
1969 	} else {
1970 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1971 	}
1972 
1973 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1974 	if (ret < 0)
1975 		return ret;
1976 
1977 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1978 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1979 		phydev->mdix = ETH_TP_MDI_X;
1980 	else
1981 		phydev->mdix = ETH_TP_MDI;
1982 
1983 	return 0;
1984 }
1985 
1986 static int ksz886x_read_status(struct phy_device *phydev)
1987 {
1988 	int ret;
1989 
1990 	ret = ksz886x_mdix_update(phydev);
1991 	if (ret < 0)
1992 		return ret;
1993 
1994 	return genphy_read_status(phydev);
1995 }
1996 
1997 static int ksz9477_mdix_update(struct phy_device *phydev)
1998 {
1999 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO)
2000 		phydev->mdix = phydev->mdix_ctrl;
2001 	else
2002 		phydev->mdix = ETH_TP_MDI_INVALID;
2003 
2004 	return 0;
2005 }
2006 
2007 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev)
2008 {
2009 	int val;
2010 
2011 	val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
2012 	if (val < 0)
2013 		return val;
2014 
2015 	if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF))
2016 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
2017 	else if (val & MII_KSZ9131_AUTO_MDI_SET)
2018 		phydev->mdix_ctrl = ETH_TP_MDI;
2019 	else
2020 		phydev->mdix_ctrl = ETH_TP_MDI_X;
2021 
2022 	return 0;
2023 }
2024 
2025 static int ksz9477_read_status(struct phy_device *phydev)
2026 {
2027 	int ret;
2028 
2029 	ret = ksz9477_mdix_update(phydev);
2030 	if (ret)
2031 		return ret;
2032 
2033 	return genphy_read_status(phydev);
2034 }
2035 
2036 static int ksz9477_config_aneg(struct phy_device *phydev)
2037 {
2038 	int ret;
2039 
2040 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
2041 	if (ret)
2042 		return ret;
2043 
2044 	return genphy_config_aneg(phydev);
2045 }
2046 
2047 struct ksz9477_errata_write {
2048 	u8 dev_addr;
2049 	u8 reg_addr;
2050 	u16 val;
2051 };
2052 
2053 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
2054 	 /* Register settings are needed to improve PHY receive performance */
2055 	{0x01, 0x6f, 0xdd0b},
2056 	{0x01, 0x8f, 0x6032},
2057 	{0x01, 0x9d, 0x248c},
2058 	{0x01, 0x75, 0x0060},
2059 	{0x01, 0xd3, 0x7777},
2060 	{0x1c, 0x06, 0x3008},
2061 	{0x1c, 0x08, 0x2000},
2062 
2063 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
2064 	{0x1c, 0x04, 0x00d0},
2065 
2066 	/* Register settings are required to meet data sheet supply current specifications */
2067 	{0x1c, 0x13, 0x6eff},
2068 	{0x1c, 0x14, 0xe6ff},
2069 	{0x1c, 0x15, 0x6eff},
2070 	{0x1c, 0x16, 0xe6ff},
2071 	{0x1c, 0x17, 0x00ff},
2072 	{0x1c, 0x18, 0x43ff},
2073 	{0x1c, 0x19, 0xc3ff},
2074 	{0x1c, 0x1a, 0x6fff},
2075 	{0x1c, 0x1b, 0x07ff},
2076 	{0x1c, 0x1c, 0x0fff},
2077 	{0x1c, 0x1d, 0xe7ff},
2078 	{0x1c, 0x1e, 0xefff},
2079 	{0x1c, 0x20, 0xeeee},
2080 };
2081 
2082 static int ksz9477_phy_errata(struct phy_device *phydev)
2083 {
2084 	int err;
2085 	int i;
2086 
2087 	/* Apply PHY settings to address errata listed in
2088 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
2089 	 * Silicon Errata and Data Sheet Clarification documents.
2090 	 *
2091 	 * Document notes: Before configuring the PHY MMD registers, it is
2092 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
2093 	 * disabled by writing to register 0xN100-0xN101. After writing the
2094 	 * MMD registers, and after all errata workarounds that involve PHY
2095 	 * register settings, write register 0xN100-0xN101 again to enable
2096 	 * and restart auto-negotiation.
2097 	 */
2098 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
2099 	if (err)
2100 		return err;
2101 
2102 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
2103 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
2104 
2105 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
2106 		if (err)
2107 			return err;
2108 	}
2109 
2110 	return genphy_restart_aneg(phydev);
2111 }
2112 
2113 static int ksz9477_config_init(struct phy_device *phydev)
2114 {
2115 	int err;
2116 
2117 	/* Only KSZ9897 family of switches needs this fix. */
2118 	if ((phydev->phy_id & 0xf) == 1) {
2119 		err = ksz9477_phy_errata(phydev);
2120 		if (err)
2121 			return err;
2122 	}
2123 
2124 	/* Read initial MDI-X config state. So, we do not need to poll it
2125 	 * later on.
2126 	 */
2127 	err = ksz9477_read_mdix_ctrl(phydev);
2128 	if (err)
2129 		return err;
2130 
2131 	return kszphy_config_init(phydev);
2132 }
2133 
2134 static int kszphy_get_sset_count(struct phy_device *phydev)
2135 {
2136 	return ARRAY_SIZE(kszphy_hw_stats);
2137 }
2138 
2139 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
2140 {
2141 	int i;
2142 
2143 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2144 		ethtool_puts(&data, kszphy_hw_stats[i].string);
2145 }
2146 
2147 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
2148 {
2149 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2150 	struct kszphy_priv *priv = phydev->priv;
2151 	int val;
2152 	u64 ret;
2153 
2154 	val = phy_read(phydev, stat.reg);
2155 	if (val < 0) {
2156 		ret = U64_MAX;
2157 	} else {
2158 		val = val & ((1 << stat.bits) - 1);
2159 		priv->stats[i] += val;
2160 		ret = priv->stats[i];
2161 	}
2162 
2163 	return ret;
2164 }
2165 
2166 static void kszphy_get_stats(struct phy_device *phydev,
2167 			     struct ethtool_stats *stats, u64 *data)
2168 {
2169 	int i;
2170 
2171 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2172 		data[i] = kszphy_get_stat(phydev, i);
2173 }
2174 
2175 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313,
2176  * etc. The counter is incremented when the PHY receives a frame with one or
2177  * more symbol errors. The counter is cleared when the register is read.
2178  */
2179 #define MII_KSZ9477_PHY_RXER_COUNTER	0x15
2180 
2181 static int kszphy_update_stats(struct phy_device *phydev)
2182 {
2183 	struct kszphy_priv *priv = phydev->priv;
2184 	int ret;
2185 
2186 	ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER);
2187 	if (ret < 0)
2188 		return ret;
2189 
2190 	priv->phy_stats.rx_err_pkt_cnt += ret;
2191 
2192 	return 0;
2193 }
2194 
2195 static void kszphy_get_phy_stats(struct phy_device *phydev,
2196 				 struct ethtool_eth_phy_stats *eth_stats,
2197 				 struct ethtool_phy_stats *stats)
2198 {
2199 	struct kszphy_priv *priv = phydev->priv;
2200 
2201 	stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt;
2202 }
2203 
2204 /* Base register for Signal Quality Indicator (SQI) - Channel A
2205  *
2206  * MMD Address: MDIO_MMD_PMAPMD (0x01)
2207  * Register:    0xAC (Channel A)
2208  * Each channel (pair) has its own register:
2209  *   Channel A: 0xAC
2210  *   Channel B: 0xAD
2211  *   Channel C: 0xAE
2212  *   Channel D: 0xAF
2213  */
2214 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A	0xac
2215 
2216 /* SQI field mask for bits [14:8]
2217  *
2218  * SQI indicates relative quality of the signal.
2219  * A lower value indicates better signal quality.
2220  */
2221 #define KSZ9477_MMD_SQI_MASK			GENMASK(14, 8)
2222 
2223 #define KSZ9477_MAX_CHANNELS			4
2224 #define KSZ9477_SQI_MAX				7
2225 
2226 /* Number of SQI samples to average for a stable result.
2227  *
2228  * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26)
2229  * For noisy environments, a minimum of 30–50 readings is recommended.
2230  */
2231 #define KSZ9477_SQI_SAMPLE_COUNT		40
2232 
2233 /* The hardware SQI register provides a raw value from 0-127, where a lower
2234  * value indicates better signal quality. However, empirical testing has
2235  * shown that only the 0-7 range is relevant for a functional link. A raw
2236  * value of 8 or higher was measured directly before link drop. This aligns
2237  * with the OPEN Alliance recommendation that SQI=0 should represent the
2238  * pre-failure state.
2239  *
2240  * This table provides a non-linear mapping from the useful raw hardware
2241  * values (0-7) to the standard 0-7 SQI scale, where higher is better.
2242  */
2243 static const u8 ksz_sqi_mapping[] = {
2244 	7, /* raw 0 -> SQI 7 */
2245 	7, /* raw 1 -> SQI 7 */
2246 	6, /* raw 2 -> SQI 6 */
2247 	5, /* raw 3 -> SQI 5 */
2248 	4, /* raw 4 -> SQI 4 */
2249 	3, /* raw 5 -> SQI 3 */
2250 	2, /* raw 6 -> SQI 2 */
2251 	1, /* raw 7 -> SQI 1 */
2252 };
2253 
2254 /**
2255  * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI)
2256  * @phydev: the PHY device
2257  *
2258  * This function reads and processes the raw Signal Quality Index from the
2259  * PHY. Based on empirical testing, a raw value of 8 or higher indicates a
2260  * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are
2261  * mapped to the standard 0-7 SQI scale via a lookup table.
2262  *
2263  * Return: SQI value (0–7), or a negative errno on failure.
2264  */
2265 static int kszphy_get_sqi(struct phy_device *phydev)
2266 {
2267 	int sum[KSZ9477_MAX_CHANNELS] = { 0 };
2268 	int worst_sqi = KSZ9477_SQI_MAX;
2269 	int i, val, raw_sqi, ch;
2270 	u8 channels;
2271 
2272 	/* Determine applicable channels based on link speed */
2273 	if (phydev->speed == SPEED_1000)
2274 		channels = 4;
2275 	else if (phydev->speed == SPEED_100)
2276 		channels = 1;
2277 	else
2278 		return -EOPNOTSUPP;
2279 
2280 	/* Sample and accumulate SQI readings for each pair (currently only one).
2281 	 *
2282 	 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26)
2283 	 * - The SQI register is updated every 2 µs.
2284 	 * - Values may fluctuate significantly, even in low-noise environments.
2285 	 * - For reliable estimation, average a minimum of 30–50 samples
2286 	 *   (recommended for noisy environments)
2287 	 * - In noisy environments, individual readings are highly unreliable.
2288 	 *
2289 	 * We use 40 samples per pair with a delay of 3 µs between each
2290 	 * read to ensure new values are captured (2 µs update interval).
2291 	 */
2292 	for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) {
2293 		for (ch = 0; ch < channels; ch++) {
2294 			val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD,
2295 					   KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch);
2296 			if (val < 0)
2297 				return val;
2298 
2299 			raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val);
2300 			sum[ch] += raw_sqi;
2301 
2302 			/* We communicate with the PHY via MDIO via SPI or
2303 			 * I2C, which is relatively slow. At least slower than
2304 			 * the update interval of the SQI register.
2305 			 * So, we can skip the delay between reads.
2306 			 */
2307 		}
2308 	}
2309 
2310 	/* Calculate average for each channel and find the worst SQI */
2311 	for (ch = 0; ch < channels; ch++) {
2312 		int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT;
2313 		int mapped_sqi;
2314 
2315 		/* Handle the pre-fail/failed state first. */
2316 		if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping))
2317 			mapped_sqi = 0;
2318 		else
2319 			/* Use the lookup table for the good signal range. */
2320 			mapped_sqi = ksz_sqi_mapping[avg_raw_sqi];
2321 
2322 		if (mapped_sqi < worst_sqi)
2323 			worst_sqi = mapped_sqi;
2324 	}
2325 
2326 	return worst_sqi;
2327 }
2328 
2329 static int kszphy_get_sqi_max(struct phy_device *phydev)
2330 {
2331 	return KSZ9477_SQI_MAX;
2332 }
2333 
2334 static int kszphy_get_mse_capability(struct phy_device *phydev,
2335 				     struct phy_mse_capability *cap)
2336 {
2337 	/* Capabilities depend on link mode:
2338 	 * - 1000BASE-T: per-pair SQI registers exist => expose A..D
2339 	 *   and a WORST selector.
2340 	 * - 100BASE-TX: HW provides a single MSE/SQI reading in the "channel A"
2341 	 *   register, but with auto MDI-X there is no MDI-X resolution bit,
2342 	 *   so we cannot map that register to a specific wire pair reliably.
2343 	 *   To avoid misleading per-channel data, advertise only LINK.
2344 	 * Other speeds: no MSE exposure via this driver.
2345 	 *
2346 	 * Note: WORST is *not* a hardware selector on this family.
2347 	 * We expose it because the driver computes it in software
2348 	 * by scanning per-channel readouts (A..D) and picking the
2349 	 * maximum average MSE.
2350 	 */
2351 	if (phydev->speed == SPEED_1000)
2352 		cap->supported_caps = PHY_MSE_CAP_CHANNEL_A |
2353 				      PHY_MSE_CAP_CHANNEL_B |
2354 				      PHY_MSE_CAP_CHANNEL_C |
2355 				      PHY_MSE_CAP_CHANNEL_D |
2356 				      PHY_MSE_CAP_WORST_CHANNEL;
2357 	else if (phydev->speed == SPEED_100)
2358 		cap->supported_caps = PHY_MSE_CAP_LINK;
2359 	else
2360 		return -EOPNOTSUPP;
2361 
2362 	cap->max_average_mse = FIELD_MAX(KSZ9477_MMD_SQI_MASK);
2363 	cap->refresh_rate_ps = 2000000; /* 2 us */
2364 	/* Estimated from link modulation (125 MBd per channel) and documented
2365 	 * refresh rate of 2 us
2366 	 */
2367 	cap->num_symbols = 250;
2368 
2369 	cap->supported_caps |= PHY_MSE_CAP_AVG;
2370 
2371 	return 0;
2372 }
2373 
2374 static int kszphy_get_mse_snapshot(struct phy_device *phydev,
2375 				   enum phy_mse_channel channel,
2376 				   struct phy_mse_snapshot *snapshot)
2377 {
2378 	u8 num_channels;
2379 	int ret;
2380 
2381 	if (phydev->speed == SPEED_1000)
2382 		num_channels = 4;
2383 	else if (phydev->speed == SPEED_100)
2384 		num_channels = 1;
2385 	else
2386 		return -EOPNOTSUPP;
2387 
2388 	if (channel == PHY_MSE_CHANNEL_WORST) {
2389 		u32 worst_val = 0;
2390 		int i;
2391 
2392 		/* WORST is implemented in software: select the maximum
2393 		 * average MSE across the available per-channel registers.
2394 		 * Only defined when multiple channels exist (1000BASE-T).
2395 		 */
2396 		if (num_channels < 2)
2397 			return -EOPNOTSUPP;
2398 
2399 		for (i = 0; i < num_channels; i++) {
2400 			ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD,
2401 					KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + i);
2402 			if (ret < 0)
2403 				return ret;
2404 
2405 			ret = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret);
2406 			if (ret > worst_val)
2407 				worst_val = ret;
2408 		}
2409 		snapshot->average_mse = worst_val;
2410 	} else if (channel == PHY_MSE_CHANNEL_LINK && num_channels == 1) {
2411 		ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD,
2412 				   KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A);
2413 		if (ret < 0)
2414 			return ret;
2415 		snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret);
2416 	} else if (channel >= PHY_MSE_CHANNEL_A &&
2417 		   channel <= PHY_MSE_CHANNEL_D) {
2418 		/* Per-channel readouts are valid only for 1000BASE-T. */
2419 		if (phydev->speed != SPEED_1000)
2420 			return -EOPNOTSUPP;
2421 
2422 		ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD,
2423 				   KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + channel);
2424 		if (ret < 0)
2425 			return ret;
2426 		snapshot->average_mse = FIELD_GET(KSZ9477_MMD_SQI_MASK, ret);
2427 	} else {
2428 		return -EOPNOTSUPP;
2429 	}
2430 
2431 	return 0;
2432 }
2433 
2434 static void kszphy_enable_clk(struct phy_device *phydev)
2435 {
2436 	struct kszphy_priv *priv = phydev->priv;
2437 
2438 	if (!priv->clk_enable && priv->clk) {
2439 		clk_prepare_enable(priv->clk);
2440 		priv->clk_enable = true;
2441 	}
2442 }
2443 
2444 static void kszphy_disable_clk(struct phy_device *phydev)
2445 {
2446 	struct kszphy_priv *priv = phydev->priv;
2447 
2448 	if (priv->clk_enable && priv->clk) {
2449 		clk_disable_unprepare(priv->clk);
2450 		priv->clk_enable = false;
2451 	}
2452 }
2453 
2454 static int kszphy_generic_resume(struct phy_device *phydev)
2455 {
2456 	kszphy_enable_clk(phydev);
2457 
2458 	return genphy_resume(phydev);
2459 }
2460 
2461 static int kszphy_generic_suspend(struct phy_device *phydev)
2462 {
2463 	int ret;
2464 
2465 	ret = genphy_suspend(phydev);
2466 	if (ret)
2467 		return ret;
2468 
2469 	kszphy_disable_clk(phydev);
2470 
2471 	return 0;
2472 }
2473 
2474 static int kszphy_suspend(struct phy_device *phydev)
2475 {
2476 	/* Disable PHY Interrupts */
2477 	if (phy_interrupt_is_valid(phydev)) {
2478 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
2479 		if (phydev->drv->config_intr)
2480 			phydev->drv->config_intr(phydev);
2481 	}
2482 
2483 	return kszphy_generic_suspend(phydev);
2484 }
2485 
2486 static void kszphy_parse_led_mode(struct phy_device *phydev)
2487 {
2488 	const struct kszphy_type *type = phydev->drv->driver_data;
2489 	const struct device_node *np = phydev->mdio.dev.of_node;
2490 	struct kszphy_priv *priv = phydev->priv;
2491 	int ret;
2492 
2493 	if (type && type->led_mode_reg) {
2494 		ret = of_property_read_u32(np, "micrel,led-mode",
2495 					   &priv->led_mode);
2496 
2497 		if (ret)
2498 			priv->led_mode = -1;
2499 
2500 		if (priv->led_mode > 3) {
2501 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
2502 				   priv->led_mode);
2503 			priv->led_mode = -1;
2504 		}
2505 	} else {
2506 		priv->led_mode = -1;
2507 	}
2508 }
2509 
2510 static int kszphy_resume(struct phy_device *phydev)
2511 {
2512 	int ret;
2513 
2514 	ret = kszphy_generic_resume(phydev);
2515 	if (ret)
2516 		return ret;
2517 
2518 	/* After switching from power-down to normal mode, an internal global
2519 	 * reset is automatically generated. Wait a minimum of 1 ms before
2520 	 * read/write access to the PHY registers.
2521 	 */
2522 	usleep_range(1000, 2000);
2523 
2524 	ret = kszphy_config_reset(phydev);
2525 	if (ret)
2526 		return ret;
2527 
2528 	/* Enable PHY Interrupts */
2529 	if (phy_interrupt_is_valid(phydev)) {
2530 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2531 		if (phydev->drv->config_intr)
2532 			phydev->drv->config_intr(phydev);
2533 	}
2534 
2535 	return 0;
2536 }
2537 
2538 /* Because of errata DS80000700A, receiver error following software
2539  * power down. Suspend and resume callbacks only disable and enable
2540  * external rmii reference clock.
2541  */
2542 static int ksz8041_resume(struct phy_device *phydev)
2543 {
2544 	kszphy_enable_clk(phydev);
2545 
2546 	return 0;
2547 }
2548 
2549 static int ksz8041_suspend(struct phy_device *phydev)
2550 {
2551 	kszphy_disable_clk(phydev);
2552 
2553 	return 0;
2554 }
2555 
2556 static int ksz9477_resume(struct phy_device *phydev)
2557 {
2558 	int ret;
2559 
2560 	/* No need to initialize registers if not powered down. */
2561 	ret = phy_read(phydev, MII_BMCR);
2562 	if (ret < 0)
2563 		return ret;
2564 	if (!(ret & BMCR_PDOWN))
2565 		return 0;
2566 
2567 	genphy_resume(phydev);
2568 
2569 	/* After switching from power-down to normal mode, an internal global
2570 	 * reset is automatically generated. Wait a minimum of 1 ms before
2571 	 * read/write access to the PHY registers.
2572 	 */
2573 	usleep_range(1000, 2000);
2574 
2575 	/* Only KSZ9897 family of switches needs this fix. */
2576 	if ((phydev->phy_id & 0xf) == 1) {
2577 		ret = ksz9477_phy_errata(phydev);
2578 		if (ret)
2579 			return ret;
2580 	}
2581 
2582 	/* Enable PHY Interrupts */
2583 	if (phy_interrupt_is_valid(phydev)) {
2584 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2585 		if (phydev->drv->config_intr)
2586 			phydev->drv->config_intr(phydev);
2587 	}
2588 
2589 	return 0;
2590 }
2591 
2592 static int ksz8061_resume(struct phy_device *phydev)
2593 {
2594 	int ret;
2595 
2596 	/* This function can be called twice when the Ethernet device is on. */
2597 	ret = phy_read(phydev, MII_BMCR);
2598 	if (ret < 0)
2599 		return ret;
2600 	if (!(ret & BMCR_PDOWN))
2601 		return 0;
2602 
2603 	ret = kszphy_generic_resume(phydev);
2604 	if (ret)
2605 		return ret;
2606 
2607 	usleep_range(1000, 2000);
2608 
2609 	/* Re-program the value after chip is reset. */
2610 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2611 	if (ret)
2612 		return ret;
2613 
2614 	/* Enable PHY Interrupts */
2615 	if (phy_interrupt_is_valid(phydev)) {
2616 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2617 		if (phydev->drv->config_intr)
2618 			phydev->drv->config_intr(phydev);
2619 	}
2620 
2621 	return 0;
2622 }
2623 
2624 static int ksz8061_suspend(struct phy_device *phydev)
2625 {
2626 	return kszphy_suspend(phydev);
2627 }
2628 
2629 static int kszphy_probe(struct phy_device *phydev)
2630 {
2631 	const struct kszphy_type *type = phydev->drv->driver_data;
2632 	const struct device_node *np = phydev->mdio.dev.of_node;
2633 	struct kszphy_priv *priv;
2634 	struct clk *clk;
2635 
2636 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2637 	if (!priv)
2638 		return -ENOMEM;
2639 
2640 	phydev->priv = priv;
2641 
2642 	priv->type = type;
2643 
2644 	kszphy_parse_led_mode(phydev);
2645 
2646 	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2647 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2648 	if (!IS_ERR_OR_NULL(clk)) {
2649 		unsigned long rate = clk_get_rate(clk);
2650 		bool rmii_ref_clk_sel_25_mhz;
2651 
2652 		if (type)
2653 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2654 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2655 				"micrel,rmii-reference-clock-select-25-mhz");
2656 
2657 		if (rate > 24500000 && rate < 25500000) {
2658 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2659 		} else if (rate > 49500000 && rate < 50500000) {
2660 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2661 		} else {
2662 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2663 				   rate);
2664 			return -EINVAL;
2665 		}
2666 	} else if (!clk) {
2667 		/* unnamed clock from the generic ethernet-phy binding */
2668 		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2669 	}
2670 
2671 	if (IS_ERR(clk))
2672 		return PTR_ERR(clk);
2673 
2674 	clk_disable_unprepare(clk);
2675 	priv->clk = clk;
2676 
2677 	if (ksz8041_fiber_mode(phydev))
2678 		phydev->port = PORT_FIBRE;
2679 
2680 	/* Support legacy board-file configuration */
2681 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2682 		priv->rmii_ref_clk_sel = true;
2683 		priv->rmii_ref_clk_sel_val = true;
2684 	}
2685 
2686 	return 0;
2687 }
2688 
2689 static int lan8814_cable_test_start(struct phy_device *phydev)
2690 {
2691 	/* If autoneg is enabled, we won't be able to test cross pair
2692 	 * short. In this case, the PHY will "detect" a link and
2693 	 * confuse the internal state machine - disable auto neg here.
2694 	 * Set the speed to 1000mbit and full duplex.
2695 	 */
2696 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2697 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2698 }
2699 
2700 static int ksz886x_cable_test_start(struct phy_device *phydev)
2701 {
2702 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2703 		return -EOPNOTSUPP;
2704 
2705 	/* If autoneg is enabled, we won't be able to test cross pair
2706 	 * short. In this case, the PHY will "detect" a link and
2707 	 * confuse the internal state machine - disable auto neg here.
2708 	 * If autoneg is disabled, we should set the speed to 10mbit.
2709 	 */
2710 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2711 }
2712 
2713 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2714 {
2715 	switch (FIELD_GET(mask, status)) {
2716 	case KSZ8081_LMD_STAT_NORMAL:
2717 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2718 	case KSZ8081_LMD_STAT_SHORT:
2719 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2720 	case KSZ8081_LMD_STAT_OPEN:
2721 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2722 	case KSZ8081_LMD_STAT_FAIL:
2723 		fallthrough;
2724 	default:
2725 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2726 	}
2727 }
2728 
2729 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2730 {
2731 	return FIELD_GET(mask, status) ==
2732 		KSZ8081_LMD_STAT_FAIL;
2733 }
2734 
2735 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2736 {
2737 	switch (FIELD_GET(mask, status)) {
2738 	case KSZ8081_LMD_STAT_OPEN:
2739 		fallthrough;
2740 	case KSZ8081_LMD_STAT_SHORT:
2741 		return true;
2742 	}
2743 	return false;
2744 }
2745 
2746 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2747 							   u16 status, u16 data_mask)
2748 {
2749 	int dt;
2750 
2751 	/* According to the data sheet the distance to the fault is
2752 	 * DELTA_TIME * 0.4 meters for ksz phys.
2753 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2754 	 */
2755 	dt = FIELD_GET(data_mask, status);
2756 
2757 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2758 		return ((dt - 22) * 800) / 10;
2759 	else
2760 		return (dt * 400) / 10;
2761 }
2762 
2763 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2764 {
2765 	const struct kszphy_type *type = phydev->drv->driver_data;
2766 	int val, ret;
2767 
2768 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2769 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2770 				    30000, 100000, true);
2771 
2772 	return ret < 0 ? ret : 0;
2773 }
2774 
2775 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2776 {
2777 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2778 					    ETHTOOL_A_CABLE_PAIR_B,
2779 					    ETHTOOL_A_CABLE_PAIR_C,
2780 					    ETHTOOL_A_CABLE_PAIR_D,
2781 					  };
2782 	u32 fault_length;
2783 	int ret;
2784 	int val;
2785 
2786 	val = KSZ8081_LMD_ENABLE_TEST;
2787 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2788 
2789 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2790 	if (ret < 0)
2791 		return ret;
2792 
2793 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2794 	if (ret)
2795 		return ret;
2796 
2797 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2798 	if (val < 0)
2799 		return val;
2800 
2801 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2802 		return -EAGAIN;
2803 
2804 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2805 				      ksz886x_cable_test_result_trans(val,
2806 								      LAN8814_CABLE_DIAG_STAT_MASK
2807 								      ));
2808 	if (ret)
2809 		return ret;
2810 
2811 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2812 		return 0;
2813 
2814 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2815 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2816 
2817 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2818 }
2819 
2820 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2821 {
2822 	static const int ethtool_pair[] = {
2823 		ETHTOOL_A_CABLE_PAIR_A,
2824 		ETHTOOL_A_CABLE_PAIR_B,
2825 	};
2826 	int ret, val, mdix;
2827 	u32 fault_length;
2828 
2829 	/* There is no way to choice the pair, like we do one ksz9031.
2830 	 * We can workaround this limitation by using the MDI-X functionality.
2831 	 */
2832 	if (pair == 0)
2833 		mdix = ETH_TP_MDI;
2834 	else
2835 		mdix = ETH_TP_MDI_X;
2836 
2837 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2838 	case PHY_ID_KSZ8081:
2839 		ret = ksz8081_config_mdix(phydev, mdix);
2840 		break;
2841 	case PHY_ID_KSZ886X:
2842 		ret = ksz886x_config_mdix(phydev, mdix);
2843 		break;
2844 	default:
2845 		ret = -ENODEV;
2846 	}
2847 
2848 	if (ret)
2849 		return ret;
2850 
2851 	/* Now we are ready to fire. This command will send a 100ns pulse
2852 	 * to the pair.
2853 	 */
2854 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2855 	if (ret)
2856 		return ret;
2857 
2858 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2859 	if (ret)
2860 		return ret;
2861 
2862 	val = phy_read(phydev, KSZ8081_LMD);
2863 	if (val < 0)
2864 		return val;
2865 
2866 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2867 		return -EAGAIN;
2868 
2869 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2870 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2871 	if (ret)
2872 		return ret;
2873 
2874 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2875 		return 0;
2876 
2877 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2878 
2879 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2880 }
2881 
2882 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2883 					 bool *finished)
2884 {
2885 	const struct kszphy_type *type = phydev->drv->driver_data;
2886 	unsigned long pair_mask = type->pair_mask;
2887 	int retries = 20;
2888 	int ret = 0;
2889 	int pair;
2890 
2891 	*finished = false;
2892 
2893 	/* Try harder if link partner is active */
2894 	while (pair_mask && retries--) {
2895 		for_each_set_bit(pair, &pair_mask, 4) {
2896 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2897 				ret = lan8814_cable_test_one_pair(phydev, pair);
2898 			else
2899 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2900 			if (ret == -EAGAIN)
2901 				continue;
2902 			if (ret < 0)
2903 				return ret;
2904 			clear_bit(pair, &pair_mask);
2905 		}
2906 		/* If link partner is in autonegotiation mode it will send 2ms
2907 		 * of FLPs with at least 6ms of silence.
2908 		 * Add 2ms sleep to have better chances to hit this silence.
2909 		 */
2910 		if (pair_mask)
2911 			msleep(2);
2912 	}
2913 
2914 	*finished = true;
2915 
2916 	return ret;
2917 }
2918 
2919 /**
2920  * LAN8814_PAGE_PCS - Selects Extended Page 0.
2921  *
2922  * This page contains timers used for auto-negotiation, debug registers and
2923  * register to configure fast link failure.
2924  */
2925 #define LAN8814_PAGE_PCS 0
2926 
2927 /**
2928  * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1.
2929  *
2930  * This page appears to control the Analog Front-End (AFE) and Physical
2931  * Medium Attachment (PMA) layers. It is used to access registers like
2932  * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY.
2933  */
2934 #define LAN8814_PAGE_AFE_PMA 1
2935 
2936 /**
2937  * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2.
2938  *
2939  * This page seems dedicated to the Physical Coding Sublayer (PCS) and other
2940  * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE
2941  * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics
2942  * and self-test counters in the LAN8842.
2943  */
2944 #define LAN8814_PAGE_PCS_DIGITAL 2
2945 
2946 /**
2947  * LAN8814_PAGE_EEE - Selects Extended Page 3.
2948  *
2949  * This page contains EEE registers
2950  */
2951 #define LAN8814_PAGE_EEE 3
2952 
2953 /**
2954  * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4.
2955  *
2956  * This page contains device-common registers that affect the entire chip.
2957  * It includes controls for chip-level resets, strap status, GPIO,
2958  * QSGMII, the shared 1588 PTP block, and the PVT monitor.
2959  */
2960 #define LAN8814_PAGE_COMMON_REGS 4
2961 
2962 /**
2963  * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5.
2964  *
2965  * This page contains port-specific registers that must be accessed
2966  * on a per-port basis. It includes controls for port LEDs, QSGMII PCS,
2967  * rate adaptation FIFOs, and the per-port 1588 TSU block.
2968  */
2969 #define LAN8814_PAGE_PORT_REGS 5
2970 
2971 /**
2972  * LAN8814_PAGE_POWER_REGS - Selects Extended Page 28.
2973  *
2974  * This page contains analog control registers and power mode registers.
2975  */
2976 #define LAN8814_PAGE_POWER_REGS 28
2977 
2978 /**
2979  * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31.
2980  *
2981  * This page appears to hold fundamental system or global controls. In the
2982  * driver, it is used by the related LAN8804 to access the
2983  * LAN8814_CLOCK_MANAGEMENT register.
2984  */
2985 #define LAN8814_PAGE_SYSTEM_CTRL 31
2986 
2987 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2988 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2989 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2990 
2991 #define LAN8814_QSGMII_SOFT_RESET			0x43
2992 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2993 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2994 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2995 #define LAN8814_ALIGN_SWAP				0x4a
2996 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2997 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2998 
2999 #define LAN8804_ALIGN_SWAP				0x4a
3000 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
3001 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
3002 #define LAN8814_CLOCK_MANAGEMENT			0xd
3003 #define LAN8814_LINK_QUALITY				0x8e
3004 
3005 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
3006 {
3007 	int data;
3008 
3009 	phy_lock_mdio_bus(phydev);
3010 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
3011 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
3012 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
3013 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
3014 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
3015 	phy_unlock_mdio_bus(phydev);
3016 
3017 	return data;
3018 }
3019 
3020 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
3021 				 u16 val)
3022 {
3023 	phy_lock_mdio_bus(phydev);
3024 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
3025 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
3026 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
3027 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
3028 
3029 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
3030 	if (val != 0)
3031 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
3032 			   val);
3033 	phy_unlock_mdio_bus(phydev);
3034 	return val;
3035 }
3036 
3037 static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr,
3038 				  u16 mask, u16 set)
3039 {
3040 	int ret;
3041 
3042 	phy_lock_mdio_bus(phydev);
3043 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
3044 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
3045 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
3046 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
3047 	ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA,
3048 				   mask, set);
3049 	phy_unlock_mdio_bus(phydev);
3050 
3051 	if (ret < 0)
3052 		phydev_err(phydev, "__phy_modify_changed() failed: %pe\n",
3053 			   ERR_PTR(ret));
3054 
3055 	return ret;
3056 }
3057 
3058 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
3059 {
3060 	u16 val = 0;
3061 
3062 	if (enable)
3063 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
3064 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
3065 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
3066 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
3067 
3068 	return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3069 				     PTP_TSU_INT_EN, val);
3070 }
3071 
3072 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
3073 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
3074 {
3075 	*seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3076 					PTP_RX_INGRESS_SEC_HI);
3077 	*seconds = (*seconds << 16) |
3078 		   lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3079 					PTP_RX_INGRESS_SEC_LO);
3080 
3081 	*nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3082 					     PTP_RX_INGRESS_NS_HI);
3083 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
3084 			lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3085 					     PTP_RX_INGRESS_NS_LO);
3086 
3087 	*seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3088 				       PTP_RX_MSG_HEADER2);
3089 }
3090 
3091 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
3092 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
3093 {
3094 	*seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3095 					PTP_TX_EGRESS_SEC_HI);
3096 	*seconds = *seconds << 16 |
3097 		   lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3098 					PTP_TX_EGRESS_SEC_LO);
3099 
3100 	*nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3101 					     PTP_TX_EGRESS_NS_HI);
3102 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
3103 			lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3104 					     PTP_TX_EGRESS_NS_LO);
3105 
3106 	*seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3107 				       PTP_TX_MSG_HEADER2);
3108 }
3109 
3110 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
3111 {
3112 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3113 	struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev);
3114 
3115 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3116 				SOF_TIMESTAMPING_RX_HARDWARE |
3117 				SOF_TIMESTAMPING_RAW_HARDWARE;
3118 
3119 	info->phc_index = ptp_clock_index(shared->ptp_clock);
3120 
3121 	info->tx_types =
3122 		(1 << HWTSTAMP_TX_OFF) |
3123 		(1 << HWTSTAMP_TX_ON) |
3124 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
3125 
3126 	info->rx_filters =
3127 		(1 << HWTSTAMP_FILTER_NONE) |
3128 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
3129 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3130 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3131 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3132 
3133 	return 0;
3134 }
3135 
3136 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
3137 {
3138 	int i;
3139 
3140 	for (i = 0; i < FIFO_SIZE; ++i)
3141 		lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
3142 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
3143 
3144 	/* Read to clear overflow status bit */
3145 	lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS);
3146 }
3147 
3148 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
3149 			    struct kernel_hwtstamp_config *config,
3150 			    struct netlink_ext_ack *extack)
3151 {
3152 	struct kszphy_ptp_priv *ptp_priv =
3153 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3154 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
3155 	int txcfg = 0, rxcfg = 0;
3156 	int pkt_ts_enable;
3157 
3158 	ptp_priv->hwts_tx_type = config->tx_type;
3159 	ptp_priv->rx_filter = config->rx_filter;
3160 
3161 	switch (config->rx_filter) {
3162 	case HWTSTAMP_FILTER_NONE:
3163 		ptp_priv->layer = 0;
3164 		ptp_priv->version = 0;
3165 		break;
3166 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3167 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3168 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3169 		ptp_priv->layer = PTP_CLASS_L4;
3170 		ptp_priv->version = PTP_CLASS_V2;
3171 		break;
3172 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3173 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3174 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3175 		ptp_priv->layer = PTP_CLASS_L2;
3176 		ptp_priv->version = PTP_CLASS_V2;
3177 		break;
3178 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3179 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3180 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3181 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3182 		ptp_priv->version = PTP_CLASS_V2;
3183 		break;
3184 	default:
3185 		return -ERANGE;
3186 	}
3187 
3188 	if (ptp_priv->layer & PTP_CLASS_L2) {
3189 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3190 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3191 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3192 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3193 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3194 	}
3195 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3196 			      PTP_RX_PARSE_CONFIG, rxcfg);
3197 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3198 			      PTP_TX_PARSE_CONFIG, txcfg);
3199 
3200 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3201 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3202 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3203 			      PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3204 	lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3205 			      PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3206 
3207 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
3208 		lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3209 				       PTP_TX_MOD,
3210 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3211 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
3212 	} else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
3213 		lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS,
3214 				       PTP_TX_MOD,
3215 				       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3216 				       0);
3217 	}
3218 
3219 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
3220 		lan8814_config_ts_intr(ptp_priv->phydev, true);
3221 	else
3222 		lan8814_config_ts_intr(ptp_priv->phydev, false);
3223 
3224 	/* In case of multiple starts and stops, these needs to be cleared */
3225 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
3226 		list_del(&rx_ts->list);
3227 		kfree(rx_ts);
3228 	}
3229 	skb_queue_purge(&ptp_priv->rx_queue);
3230 	skb_queue_purge(&ptp_priv->tx_queue);
3231 
3232 	lan8814_flush_fifo(ptp_priv->phydev, false);
3233 	lan8814_flush_fifo(ptp_priv->phydev, true);
3234 
3235 	return 0;
3236 }
3237 
3238 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
3239 			     struct sk_buff *skb, int type)
3240 {
3241 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3242 
3243 	switch (ptp_priv->hwts_tx_type) {
3244 	case HWTSTAMP_TX_ONESTEP_SYNC:
3245 		if (ptp_msg_is_sync(skb, type)) {
3246 			kfree_skb(skb);
3247 			return;
3248 		}
3249 		fallthrough;
3250 	case HWTSTAMP_TX_ON:
3251 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3252 		skb_queue_tail(&ptp_priv->tx_queue, skb);
3253 		break;
3254 	case HWTSTAMP_TX_OFF:
3255 	default:
3256 		kfree_skb(skb);
3257 		break;
3258 	}
3259 }
3260 
3261 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
3262 {
3263 	struct ptp_header *ptp_header;
3264 	u32 type;
3265 
3266 	skb_push(skb, ETH_HLEN);
3267 	type = ptp_classify_raw(skb);
3268 	ptp_header = ptp_parse_header(skb, type);
3269 	skb_pull_inline(skb, ETH_HLEN);
3270 
3271 	if (!ptp_header)
3272 		return false;
3273 
3274 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3275 	return true;
3276 }
3277 
3278 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
3279 				 struct sk_buff *skb)
3280 {
3281 	struct skb_shared_hwtstamps *shhwtstamps;
3282 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
3283 	unsigned long flags;
3284 	bool ret = false;
3285 	u16 skb_sig;
3286 
3287 	if (!lan8814_get_sig_rx(skb, &skb_sig))
3288 		return ret;
3289 
3290 	/* Iterate over all RX timestamps and match it with the received skbs */
3291 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3292 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
3293 		/* Check if we found the signature we were looking for. */
3294 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3295 			continue;
3296 
3297 		shhwtstamps = skb_hwtstamps(skb);
3298 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3299 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
3300 						  rx_ts->nsec);
3301 		list_del(&rx_ts->list);
3302 		kfree(rx_ts);
3303 
3304 		ret = true;
3305 		break;
3306 	}
3307 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3308 
3309 	if (ret)
3310 		netif_rx(skb);
3311 	return ret;
3312 }
3313 
3314 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
3315 {
3316 	struct kszphy_ptp_priv *ptp_priv =
3317 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3318 
3319 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3320 	    type == PTP_CLASS_NONE)
3321 		return false;
3322 
3323 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3324 		return false;
3325 
3326 	/* If we failed to match then add it to the queue for when the timestamp
3327 	 * will come
3328 	 */
3329 	if (!lan8814_match_rx_skb(ptp_priv, skb))
3330 		skb_queue_tail(&ptp_priv->rx_queue, skb);
3331 
3332 	return true;
3333 }
3334 
3335 static void lan8814_ptp_clock_set(struct phy_device *phydev,
3336 				  time64_t sec, u32 nsec)
3337 {
3338 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3339 			      PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
3340 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3341 			      PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
3342 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3343 			      PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
3344 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3345 			      PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
3346 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3347 			      PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
3348 
3349 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3350 			      PTP_CMD_CTL_PTP_CLOCK_LOAD_);
3351 }
3352 
3353 static void lan8814_ptp_clock_get(struct phy_device *phydev,
3354 				  time64_t *sec, u32 *nsec)
3355 {
3356 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3357 			      PTP_CMD_CTL_PTP_CLOCK_READ_);
3358 
3359 	*sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3360 				    PTP_CLOCK_READ_SEC_HI);
3361 	*sec <<= 16;
3362 	*sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3363 				     PTP_CLOCK_READ_SEC_MID);
3364 	*sec <<= 16;
3365 	*sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3366 				     PTP_CLOCK_READ_SEC_LO);
3367 
3368 	*nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3369 				     PTP_CLOCK_READ_NS_HI);
3370 	*nsec <<= 16;
3371 	*nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3372 				      PTP_CLOCK_READ_NS_LO);
3373 }
3374 
3375 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
3376 				   struct timespec64 *ts)
3377 {
3378 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3379 							  ptp_clock_info);
3380 	struct phy_device *phydev = shared->phydev;
3381 	u32 nano_seconds;
3382 	time64_t seconds;
3383 
3384 	mutex_lock(&shared->shared_lock);
3385 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
3386 	mutex_unlock(&shared->shared_lock);
3387 	ts->tv_sec = seconds;
3388 	ts->tv_nsec = nano_seconds;
3389 
3390 	return 0;
3391 }
3392 
3393 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
3394 				   const struct timespec64 *ts)
3395 {
3396 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3397 							  ptp_clock_info);
3398 	struct phy_device *phydev = shared->phydev;
3399 
3400 	mutex_lock(&shared->shared_lock);
3401 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
3402 	mutex_unlock(&shared->shared_lock);
3403 
3404 	return 0;
3405 }
3406 
3407 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
3408 				   s64 start_sec, u32 start_nsec)
3409 {
3410 	/* Set the start time */
3411 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3412 			      LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
3413 			      lower_16_bits(start_sec));
3414 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3415 			      LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
3416 			      upper_16_bits(start_sec));
3417 
3418 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3419 			      LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
3420 			      lower_16_bits(start_nsec));
3421 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3422 			      LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
3423 			      upper_16_bits(start_nsec) & 0x3fff);
3424 }
3425 
3426 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
3427 {
3428 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
3429 			       sec + LAN8814_BUFFER_TIME, 0);
3430 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
3431 			       sec + LAN8814_BUFFER_TIME, 0);
3432 }
3433 
3434 static void lan8814_ptp_clock_step(struct phy_device *phydev,
3435 				   s64 time_step_ns)
3436 {
3437 	u32 nano_seconds_step;
3438 	u64 abs_time_step_ns;
3439 	time64_t set_seconds;
3440 	u32 nano_seconds;
3441 	u32 remainder;
3442 	s32 seconds;
3443 
3444 	if (time_step_ns >  15000000000LL) {
3445 		/* convert to clock set */
3446 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
3447 		set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
3448 					   &remainder);
3449 		nano_seconds += remainder;
3450 		if (nano_seconds >= 1000000000) {
3451 			set_seconds++;
3452 			nano_seconds -= 1000000000;
3453 		}
3454 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
3455 		lan8814_ptp_update_target(phydev, set_seconds);
3456 		return;
3457 	} else if (time_step_ns < -15000000000LL) {
3458 		/* convert to clock set */
3459 		time_step_ns = -time_step_ns;
3460 
3461 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
3462 		set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
3463 					   &remainder);
3464 		nano_seconds_step = remainder;
3465 		if (nano_seconds < nano_seconds_step) {
3466 			set_seconds--;
3467 			nano_seconds += 1000000000;
3468 		}
3469 		nano_seconds -= nano_seconds_step;
3470 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
3471 		lan8814_ptp_update_target(phydev, set_seconds);
3472 		return;
3473 	}
3474 
3475 	/* do clock step */
3476 	if (time_step_ns >= 0) {
3477 		abs_time_step_ns = (u64)time_step_ns;
3478 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
3479 					   &remainder);
3480 		nano_seconds = remainder;
3481 	} else {
3482 		abs_time_step_ns = (u64)(-time_step_ns);
3483 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
3484 			    &remainder));
3485 		nano_seconds = remainder;
3486 		if (nano_seconds > 0) {
3487 			/* subtracting nano seconds is not allowed
3488 			 * convert to subtracting from seconds,
3489 			 * and adding to nanoseconds
3490 			 */
3491 			seconds--;
3492 			nano_seconds = (1000000000 - nano_seconds);
3493 		}
3494 	}
3495 
3496 	if (nano_seconds > 0) {
3497 		/* add 8 ns to cover the likely normal increment */
3498 		nano_seconds += 8;
3499 	}
3500 
3501 	if (nano_seconds >= 1000000000) {
3502 		/* carry into seconds */
3503 		seconds++;
3504 		nano_seconds -= 1000000000;
3505 	}
3506 
3507 	while (seconds) {
3508 		u32 nsec;
3509 
3510 		if (seconds > 0) {
3511 			u32 adjustment_value = (u32)seconds;
3512 			u16 adjustment_value_lo, adjustment_value_hi;
3513 
3514 			if (adjustment_value > 0xF)
3515 				adjustment_value = 0xF;
3516 
3517 			adjustment_value_lo = adjustment_value & 0xffff;
3518 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3519 
3520 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3521 					      PTP_LTC_STEP_ADJ_LO,
3522 					      adjustment_value_lo);
3523 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3524 					      PTP_LTC_STEP_ADJ_HI,
3525 					      PTP_LTC_STEP_ADJ_DIR_ |
3526 					      adjustment_value_hi);
3527 			seconds -= ((s32)adjustment_value);
3528 
3529 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3530 			set_seconds -= adjustment_value;
3531 			lan8814_ptp_update_target(phydev, set_seconds);
3532 		} else {
3533 			u32 adjustment_value = (u32)(-seconds);
3534 			u16 adjustment_value_lo, adjustment_value_hi;
3535 
3536 			if (adjustment_value > 0xF)
3537 				adjustment_value = 0xF;
3538 
3539 			adjustment_value_lo = adjustment_value & 0xffff;
3540 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3541 
3542 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3543 					      PTP_LTC_STEP_ADJ_LO,
3544 					      adjustment_value_lo);
3545 			lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3546 					      PTP_LTC_STEP_ADJ_HI,
3547 					      adjustment_value_hi);
3548 			seconds += ((s32)adjustment_value);
3549 
3550 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3551 			set_seconds += adjustment_value;
3552 			lan8814_ptp_update_target(phydev, set_seconds);
3553 		}
3554 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3555 				      PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
3556 	}
3557 	if (nano_seconds) {
3558 		u16 nano_seconds_lo;
3559 		u16 nano_seconds_hi;
3560 
3561 		nano_seconds_lo = nano_seconds & 0xffff;
3562 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
3563 
3564 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3565 				      PTP_LTC_STEP_ADJ_LO,
3566 				      nano_seconds_lo);
3567 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3568 				      PTP_LTC_STEP_ADJ_HI,
3569 				      PTP_LTC_STEP_ADJ_DIR_ |
3570 				      nano_seconds_hi);
3571 		lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
3572 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
3573 	}
3574 }
3575 
3576 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
3577 {
3578 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3579 							  ptp_clock_info);
3580 	struct phy_device *phydev = shared->phydev;
3581 
3582 	mutex_lock(&shared->shared_lock);
3583 	lan8814_ptp_clock_step(phydev, delta);
3584 	mutex_unlock(&shared->shared_lock);
3585 
3586 	return 0;
3587 }
3588 
3589 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
3590 {
3591 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3592 							  ptp_clock_info);
3593 	struct phy_device *phydev = shared->phydev;
3594 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
3595 	bool positive = true;
3596 	u32 kszphy_rate_adj;
3597 
3598 	if (scaled_ppm < 0) {
3599 		scaled_ppm = -scaled_ppm;
3600 		positive = false;
3601 	}
3602 
3603 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
3604 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
3605 
3606 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
3607 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
3608 
3609 	if (positive)
3610 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
3611 
3612 	mutex_lock(&shared->shared_lock);
3613 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI,
3614 			      kszphy_rate_adj_hi);
3615 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO,
3616 			      kszphy_rate_adj_lo);
3617 	mutex_unlock(&shared->shared_lock);
3618 
3619 	return 0;
3620 }
3621 
3622 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
3623 				   s64 period_sec, u32 period_nsec)
3624 {
3625 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3626 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
3627 			      lower_16_bits(period_sec));
3628 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3629 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
3630 			      upper_16_bits(period_sec));
3631 
3632 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3633 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
3634 			      lower_16_bits(period_nsec));
3635 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3636 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
3637 			      upper_16_bits(period_nsec) & 0x3fff);
3638 }
3639 
3640 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
3641 				     int pulse_width)
3642 {
3643 	/* Set the pulse width of the event,
3644 	 * Make sure that the target clock will be incremented each time when
3645 	 * local time reaches or pass it
3646 	 * Set the polarity high
3647 	 */
3648 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG,
3649 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) |
3650 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) |
3651 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) |
3652 			       LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event),
3653 			       LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) |
3654 			       LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event));
3655 }
3656 
3657 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
3658 {
3659 	/* Set target to too far in the future, effectively disabling it */
3660 	lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
3661 
3662 	/* And then reload once it reaches the target */
3663 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG,
3664 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event),
3665 			       LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
3666 }
3667 
3668 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
3669 {
3670 	/* Disable gpio alternate function,
3671 	 * 1: select as gpio,
3672 	 * 0: select alt func
3673 	 */
3674 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3675 			       LAN8814_GPIO_EN_ADDR(pin),
3676 			       LAN8814_GPIO_EN_BIT(pin),
3677 			       LAN8814_GPIO_EN_BIT(pin));
3678 
3679 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3680 			       LAN8814_GPIO_DIR_ADDR(pin),
3681 			       LAN8814_GPIO_DIR_BIT(pin),
3682 			       0);
3683 
3684 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3685 			       LAN8814_GPIO_BUF_ADDR(pin),
3686 			       LAN8814_GPIO_BUF_BIT(pin),
3687 			       0);
3688 }
3689 
3690 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3691 {
3692 	/* Set as gpio output */
3693 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3694 			       LAN8814_GPIO_DIR_ADDR(pin),
3695 			       LAN8814_GPIO_DIR_BIT(pin),
3696 			       LAN8814_GPIO_DIR_BIT(pin));
3697 
3698 	/* Enable gpio 0:for alternate function, 1:gpio */
3699 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3700 			       LAN8814_GPIO_EN_ADDR(pin),
3701 			       LAN8814_GPIO_EN_BIT(pin),
3702 			       0);
3703 
3704 	/* Set buffer type to push pull */
3705 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3706 			       LAN8814_GPIO_BUF_ADDR(pin),
3707 			       LAN8814_GPIO_BUF_BIT(pin),
3708 			       LAN8814_GPIO_BUF_BIT(pin));
3709 }
3710 
3711 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3712 			      struct ptp_clock_request *rq, int on)
3713 {
3714 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3715 							  ptp_clock_info);
3716 	struct phy_device *phydev = shared->phydev;
3717 	struct timespec64 ts_on, ts_period;
3718 	s64 on_nsec, period_nsec;
3719 	int pulse_width;
3720 	int pin, event;
3721 
3722 	mutex_lock(&shared->shared_lock);
3723 	event = rq->perout.index;
3724 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3725 	if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3726 		mutex_unlock(&shared->shared_lock);
3727 		return -EBUSY;
3728 	}
3729 
3730 	if (!on) {
3731 		lan8814_ptp_perout_off(phydev, pin);
3732 		lan8814_ptp_disable_event(phydev, event);
3733 		mutex_unlock(&shared->shared_lock);
3734 		return 0;
3735 	}
3736 
3737 	ts_on.tv_sec = rq->perout.on.sec;
3738 	ts_on.tv_nsec = rq->perout.on.nsec;
3739 	on_nsec = timespec64_to_ns(&ts_on);
3740 
3741 	ts_period.tv_sec = rq->perout.period.sec;
3742 	ts_period.tv_nsec = rq->perout.period.nsec;
3743 	period_nsec = timespec64_to_ns(&ts_period);
3744 
3745 	if (period_nsec < 200) {
3746 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3747 				    phydev_name(phydev));
3748 		mutex_unlock(&shared->shared_lock);
3749 		return -EOPNOTSUPP;
3750 	}
3751 
3752 	if (on_nsec >= period_nsec) {
3753 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3754 				    phydev_name(phydev));
3755 		mutex_unlock(&shared->shared_lock);
3756 		return -EINVAL;
3757 	}
3758 
3759 	switch (on_nsec) {
3760 	case 200000000:
3761 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3762 		break;
3763 	case 100000000:
3764 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3765 		break;
3766 	case 50000000:
3767 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3768 		break;
3769 	case 10000000:
3770 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3771 		break;
3772 	case 5000000:
3773 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3774 		break;
3775 	case 1000000:
3776 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3777 		break;
3778 	case 500000:
3779 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3780 		break;
3781 	case 100000:
3782 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3783 		break;
3784 	case 50000:
3785 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3786 		break;
3787 	case 10000:
3788 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3789 		break;
3790 	case 5000:
3791 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3792 		break;
3793 	case 1000:
3794 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3795 		break;
3796 	case 500:
3797 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3798 		break;
3799 	case 100:
3800 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3801 		break;
3802 	default:
3803 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3804 				    phydev_name(phydev));
3805 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3806 		break;
3807 	}
3808 
3809 	/* Configure to pulse every period */
3810 	lan8814_ptp_enable_event(phydev, event, pulse_width);
3811 	lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3812 			       rq->perout.start.nsec);
3813 	lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3814 			       rq->perout.period.nsec);
3815 	lan8814_ptp_perout_on(phydev, pin);
3816 	mutex_unlock(&shared->shared_lock);
3817 
3818 	return 0;
3819 }
3820 
3821 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3822 {
3823 	/* Set as gpio input */
3824 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3825 			       LAN8814_GPIO_DIR_ADDR(pin),
3826 			       LAN8814_GPIO_DIR_BIT(pin),
3827 			       0);
3828 
3829 	/* Map the pin to ltc pin 0 of the capture map registers */
3830 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3831 			       PTP_GPIO_CAP_MAP_LO, pin, pin);
3832 
3833 	/* Enable capture on the edges of the ltc pin */
3834 	if (flags & PTP_RISING_EDGE)
3835 		lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3836 				       PTP_GPIO_CAP_EN,
3837 				       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0),
3838 				       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0));
3839 	if (flags & PTP_FALLING_EDGE)
3840 		lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3841 				       PTP_GPIO_CAP_EN,
3842 				       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0),
3843 				       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0));
3844 
3845 	/* Enable interrupt top interrupt */
3846 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA,
3847 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN,
3848 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN);
3849 }
3850 
3851 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3852 {
3853 	/* Set as gpio out */
3854 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3855 			       LAN8814_GPIO_DIR_ADDR(pin),
3856 			       LAN8814_GPIO_DIR_BIT(pin),
3857 			       LAN8814_GPIO_DIR_BIT(pin));
3858 
3859 	/* Enable alternate, 0:for alternate function, 1:gpio */
3860 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3861 			       LAN8814_GPIO_EN_ADDR(pin),
3862 			       LAN8814_GPIO_EN_BIT(pin),
3863 			       0);
3864 
3865 	/* Clear the mapping of pin to registers 0 of the capture registers */
3866 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
3867 			       PTP_GPIO_CAP_MAP_LO,
3868 			       GENMASK(3, 0),
3869 			       0);
3870 
3871 	/* Disable capture on both of the edges */
3872 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN,
3873 			       PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
3874 			       PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
3875 			       0);
3876 
3877 	/* Disable interrupt top interrupt */
3878 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA,
3879 			       PTP_COMMON_INT_ENA_GPIO_CAP_EN,
3880 			       0);
3881 }
3882 
3883 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3884 			     struct ptp_clock_request *rq, int on)
3885 {
3886 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3887 							  ptp_clock_info);
3888 	struct phy_device *phydev = shared->phydev;
3889 	int pin;
3890 
3891 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3892 			   rq->extts.index);
3893 	if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3894 		return -EINVAL;
3895 
3896 	mutex_lock(&shared->shared_lock);
3897 	if (on)
3898 		lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3899 	else
3900 		lan8814_ptp_extts_off(phydev, pin);
3901 
3902 	mutex_unlock(&shared->shared_lock);
3903 
3904 	return 0;
3905 }
3906 
3907 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3908 				struct ptp_clock_request *rq, int on)
3909 {
3910 	switch (rq->type) {
3911 	case PTP_CLK_REQ_PEROUT:
3912 		return lan8814_ptp_perout(ptpci, rq, on);
3913 	case PTP_CLK_REQ_EXTTS:
3914 		return lan8814_ptp_extts(ptpci, rq, on);
3915 	default:
3916 		return -EINVAL;
3917 	}
3918 }
3919 
3920 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3921 				enum ptp_pin_function func, unsigned int chan)
3922 {
3923 	switch (func) {
3924 	case PTP_PF_NONE:
3925 	case PTP_PF_PEROUT:
3926 		/* Only pins 0 and 1 can generate perout signals. And for pin 0
3927 		 * there is only chan 0 (event A) and for pin 1 there is only
3928 		 * chan 1 (event B)
3929 		 */
3930 		if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3931 			return -1;
3932 		break;
3933 	case PTP_PF_EXTTS:
3934 		if (pin != LAN8814_PTP_EXTTS_NUM)
3935 			return -1;
3936 		break;
3937 	default:
3938 		return -1;
3939 	}
3940 
3941 	return 0;
3942 }
3943 
3944 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3945 {
3946 	struct ptp_header *ptp_header;
3947 	u32 type;
3948 
3949 	type = ptp_classify_raw(skb);
3950 	ptp_header = ptp_parse_header(skb, type);
3951 
3952 	if (!ptp_header)
3953 		return false;
3954 
3955 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3956 	return true;
3957 }
3958 
3959 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3960 				 u32 seconds, u32 nsec, u16 seq_id)
3961 {
3962 	struct skb_shared_hwtstamps shhwtstamps;
3963 	struct sk_buff *skb, *skb_tmp;
3964 	unsigned long flags;
3965 	bool ret = false;
3966 	u16 skb_sig;
3967 
3968 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3969 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3970 		if (!lan8814_get_sig_tx(skb, &skb_sig))
3971 			continue;
3972 
3973 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3974 			continue;
3975 
3976 		__skb_unlink(skb, &ptp_priv->tx_queue);
3977 		ret = true;
3978 		break;
3979 	}
3980 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3981 
3982 	if (ret) {
3983 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3984 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3985 		skb_complete_tx_timestamp(skb, &shhwtstamps);
3986 	}
3987 }
3988 
3989 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3990 {
3991 	struct phy_device *phydev = ptp_priv->phydev;
3992 	u32 seconds, nsec;
3993 	u16 seq_id;
3994 
3995 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3996 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3997 }
3998 
3999 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4000 {
4001 	struct phy_device *phydev = ptp_priv->phydev;
4002 	u32 reg;
4003 
4004 	do {
4005 		lan8814_dequeue_tx_skb(ptp_priv);
4006 
4007 		/* If other timestamps are available in the FIFO,
4008 		 * process them.
4009 		 */
4010 		reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4011 					   PTP_CAP_INFO);
4012 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
4013 }
4014 
4015 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
4016 			      struct lan8814_ptp_rx_ts *rx_ts)
4017 {
4018 	struct skb_shared_hwtstamps *shhwtstamps;
4019 	struct sk_buff *skb, *skb_tmp;
4020 	unsigned long flags;
4021 	bool ret = false;
4022 	u16 skb_sig;
4023 
4024 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
4025 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
4026 		if (!lan8814_get_sig_rx(skb, &skb_sig))
4027 			continue;
4028 
4029 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
4030 			continue;
4031 
4032 		__skb_unlink(skb, &ptp_priv->rx_queue);
4033 
4034 		ret = true;
4035 		break;
4036 	}
4037 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
4038 
4039 	if (ret) {
4040 		shhwtstamps = skb_hwtstamps(skb);
4041 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4042 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
4043 		netif_rx(skb);
4044 	}
4045 
4046 	return ret;
4047 }
4048 
4049 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
4050 				struct lan8814_ptp_rx_ts *rx_ts)
4051 {
4052 	unsigned long flags;
4053 
4054 	/* If we failed to match the skb add it to the queue for when
4055 	 * the frame will come
4056 	 */
4057 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
4058 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
4059 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
4060 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
4061 	} else {
4062 		kfree(rx_ts);
4063 	}
4064 }
4065 
4066 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
4067 {
4068 	struct phy_device *phydev = ptp_priv->phydev;
4069 	struct lan8814_ptp_rx_ts *rx_ts;
4070 	u32 reg;
4071 
4072 	do {
4073 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
4074 		if (!rx_ts)
4075 			return;
4076 
4077 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
4078 				      &rx_ts->seq_id);
4079 		lan8814_match_rx_ts(ptp_priv, rx_ts);
4080 
4081 		/* If other timestamps are available in the FIFO,
4082 		 * process them.
4083 		 */
4084 		reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4085 					   PTP_CAP_INFO);
4086 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
4087 }
4088 
4089 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
4090 {
4091 	struct kszphy_priv *priv = phydev->priv;
4092 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4093 
4094 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
4095 		lan8814_get_tx_ts(ptp_priv);
4096 
4097 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
4098 		lan8814_get_rx_ts(ptp_priv);
4099 
4100 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
4101 		lan8814_flush_fifo(phydev, true);
4102 		skb_queue_purge(&ptp_priv->tx_queue);
4103 	}
4104 
4105 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
4106 		lan8814_flush_fifo(phydev, false);
4107 		skb_queue_purge(&ptp_priv->rx_queue);
4108 	}
4109 }
4110 
4111 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
4112 {
4113 	struct phy_device *phydev = shared->phydev;
4114 	struct ptp_clock_event ptp_event = {0};
4115 	unsigned long nsec;
4116 	s64 sec;
4117 	u16 tmp;
4118 
4119 	/* This is 0 because whatever was the input pin it was mapped it to
4120 	 * ltc gpio pin 0
4121 	 */
4122 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL,
4123 			       PTP_GPIO_SEL_GPIO_SEL(0),
4124 			       PTP_GPIO_SEL_GPIO_SEL(0));
4125 
4126 	tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4127 				   PTP_GPIO_CAP_STS);
4128 	if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
4129 	    !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
4130 		return -1;
4131 
4132 	if (tmp & BIT(0)) {
4133 		sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4134 					   PTP_GPIO_RE_LTC_SEC_HI_CAP);
4135 		sec <<= 16;
4136 		sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4137 					    PTP_GPIO_RE_LTC_SEC_LO_CAP);
4138 
4139 		nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4140 					    PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4141 		nsec <<= 16;
4142 		nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4143 					     PTP_GPIO_RE_LTC_NS_LO_CAP);
4144 	} else {
4145 		sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4146 					   PTP_GPIO_FE_LTC_SEC_HI_CAP);
4147 		sec <<= 16;
4148 		sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4149 					    PTP_GPIO_FE_LTC_SEC_LO_CAP);
4150 
4151 		nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4152 					    PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4153 		nsec <<= 16;
4154 		nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4155 					     PTP_GPIO_RE_LTC_NS_LO_CAP);
4156 	}
4157 
4158 	ptp_event.index = 0;
4159 	ptp_event.timestamp = ktime_set(sec, nsec);
4160 	ptp_event.type = PTP_CLOCK_EXTTS;
4161 	ptp_clock_event(shared->ptp_clock, &ptp_event);
4162 
4163 	return 0;
4164 }
4165 
4166 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
4167 {
4168 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
4169 	int ret;
4170 
4171 	mutex_lock(&shared->shared_lock);
4172 	ret = lan8814_gpio_process_cap(shared);
4173 	mutex_unlock(&shared->shared_lock);
4174 
4175 	return ret;
4176 }
4177 
4178 static int lan8804_config_init(struct phy_device *phydev)
4179 {
4180 	/* MDI-X setting for swap A,B transmit */
4181 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP,
4182 			       LAN8804_ALIGN_TX_A_B_SWAP_MASK,
4183 			       LAN8804_ALIGN_TX_A_B_SWAP);
4184 
4185 	/* Make sure that the PHY will not stop generating the clock when the
4186 	 * link partner goes down
4187 	 */
4188 	lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL,
4189 			      LAN8814_CLOCK_MANAGEMENT, 0x27e);
4190 	lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY);
4191 
4192 	return 0;
4193 }
4194 
4195 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
4196 {
4197 	int status;
4198 
4199 	status = phy_read(phydev, LAN8814_INTS);
4200 	if (status < 0) {
4201 		phy_error(phydev);
4202 		return IRQ_NONE;
4203 	}
4204 
4205 	if (status > 0)
4206 		phy_trigger_machine(phydev);
4207 
4208 	return IRQ_HANDLED;
4209 }
4210 
4211 #define LAN8804_OUTPUT_CONTROL			25
4212 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
4213 #define LAN8804_CONTROL				31
4214 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
4215 
4216 static int lan8804_config_intr(struct phy_device *phydev)
4217 {
4218 	int err;
4219 
4220 	/* This is an internal PHY of lan966x and is not possible to change the
4221 	 * polarity on the GIC found in lan966x, therefore change the polarity
4222 	 * of the interrupt in the PHY from being active low instead of active
4223 	 * high.
4224 	 */
4225 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
4226 
4227 	/* By default interrupt buffer is open-drain in which case the interrupt
4228 	 * can be active only low. Therefore change the interrupt buffer to be
4229 	 * push-pull to be able to change interrupt polarity
4230 	 */
4231 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
4232 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
4233 
4234 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4235 		err = phy_read(phydev, LAN8814_INTS);
4236 		if (err < 0)
4237 			return err;
4238 
4239 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
4240 		if (err)
4241 			return err;
4242 	} else {
4243 		err = phy_write(phydev, LAN8814_INTC, 0);
4244 		if (err)
4245 			return err;
4246 
4247 		err = phy_read(phydev, LAN8814_INTS);
4248 		if (err < 0)
4249 			return err;
4250 	}
4251 
4252 	return 0;
4253 }
4254 
4255 /* Check if the PHY has 1588 support. There are multiple skus of the PHY and
4256  * some of them support PTP while others don't support it. This function will
4257  * return true is the sku supports it, otherwise will return false.
4258  */
4259 static bool lan8814_has_ptp(struct phy_device *phydev)
4260 {
4261 	struct kszphy_priv *priv = phydev->priv;
4262 
4263 	return priv->is_ptp_available;
4264 }
4265 
4266 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
4267 {
4268 	int ret = IRQ_NONE;
4269 	int irq_status;
4270 
4271 	irq_status = phy_read(phydev, LAN8814_INTS);
4272 	if (irq_status < 0) {
4273 		phy_error(phydev);
4274 		return IRQ_NONE;
4275 	}
4276 
4277 	if (irq_status & LAN8814_INT_LINK) {
4278 		phy_trigger_machine(phydev);
4279 		ret = IRQ_HANDLED;
4280 	}
4281 
4282 	if (!lan8814_has_ptp(phydev))
4283 		return ret;
4284 
4285 	while (true) {
4286 		irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4287 						  PTP_TSU_INT_STS);
4288 		if (!irq_status)
4289 			break;
4290 
4291 		lan8814_handle_ptp_interrupt(phydev, irq_status);
4292 		ret = IRQ_HANDLED;
4293 	}
4294 
4295 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
4296 		ret = IRQ_HANDLED;
4297 
4298 	return ret;
4299 }
4300 
4301 static int lan8814_ack_interrupt(struct phy_device *phydev)
4302 {
4303 	/* bit[12..0] int status, which is a read and clear register. */
4304 	int rc;
4305 
4306 	rc = phy_read(phydev, LAN8814_INTS);
4307 
4308 	return (rc < 0) ? rc : 0;
4309 }
4310 
4311 static int lan8814_config_intr(struct phy_device *phydev)
4312 {
4313 	int err;
4314 
4315 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG,
4316 			      LAN8814_INTR_CTRL_REG_POLARITY |
4317 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
4318 
4319 	/* enable / disable interrupts */
4320 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4321 		err = lan8814_ack_interrupt(phydev);
4322 		if (err)
4323 			return err;
4324 
4325 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
4326 	} else {
4327 		err = phy_write(phydev, LAN8814_INTC, 0);
4328 		if (err)
4329 			return err;
4330 
4331 		err = lan8814_ack_interrupt(phydev);
4332 	}
4333 
4334 	return err;
4335 }
4336 
4337 static void lan8814_ptp_init(struct phy_device *phydev)
4338 {
4339 	struct kszphy_priv *priv = phydev->priv;
4340 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4341 
4342 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
4343 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4344 		return;
4345 
4346 	if (!lan8814_has_ptp(phydev))
4347 		return;
4348 
4349 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4350 			      TSU_HARD_RESET, TSU_HARD_RESET_);
4351 
4352 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD,
4353 			       PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_,
4354 			       PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_);
4355 
4356 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD,
4357 			       PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_,
4358 			       PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_);
4359 
4360 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4361 			      PTP_RX_PARSE_CONFIG, 0);
4362 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4363 			      PTP_TX_PARSE_CONFIG, 0);
4364 
4365 	/* Removing default registers configs related to L2 and IP */
4366 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4367 			      PTP_TX_PARSE_L2_ADDR_EN, 0);
4368 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4369 			      PTP_RX_PARSE_L2_ADDR_EN, 0);
4370 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4371 			      PTP_TX_PARSE_IP_ADDR_EN, 0);
4372 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4373 			      PTP_RX_PARSE_IP_ADDR_EN, 0);
4374 
4375 	/* Disable checking for minorVersionPTP field */
4376 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION,
4377 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
4378 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION,
4379 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
4380 
4381 	skb_queue_head_init(&ptp_priv->tx_queue);
4382 	skb_queue_head_init(&ptp_priv->rx_queue);
4383 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
4384 	spin_lock_init(&ptp_priv->rx_ts_lock);
4385 
4386 	ptp_priv->phydev = phydev;
4387 
4388 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
4389 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4390 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
4391 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
4392 
4393 	phydev->mii_ts = &ptp_priv->mii_ts;
4394 
4395 	/* Timestamp selected by default to keep legacy API */
4396 	phydev->default_timestamp = true;
4397 }
4398 
4399 static int __lan8814_ptp_probe_once(struct phy_device *phydev, char *pin_name,
4400 				    int gpios)
4401 {
4402 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
4403 
4404 	shared->phydev = phydev;
4405 
4406 	/* Initialise shared lock for clock*/
4407 	mutex_init(&shared->shared_lock);
4408 
4409 	shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
4410 						gpios,
4411 						sizeof(*shared->pin_config),
4412 						GFP_KERNEL);
4413 	if (!shared->pin_config)
4414 		return -ENOMEM;
4415 
4416 	for (int i = 0; i < gpios; i++) {
4417 		struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
4418 
4419 		memset(ptp_pin, 0, sizeof(*ptp_pin));
4420 		snprintf(ptp_pin->name,
4421 			 sizeof(ptp_pin->name), "%s_%02d", pin_name, i);
4422 		ptp_pin->index = i;
4423 		ptp_pin->func =  PTP_PF_NONE;
4424 	}
4425 
4426 	shared->ptp_clock_info.owner = THIS_MODULE;
4427 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
4428 	shared->ptp_clock_info.max_adj = 31249999;
4429 	shared->ptp_clock_info.n_alarm = 0;
4430 	shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
4431 	shared->ptp_clock_info.n_pins = gpios;
4432 	shared->ptp_clock_info.pps = 0;
4433 	shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE |
4434 						       PTP_FALLING_EDGE |
4435 						       PTP_STRICT_FLAGS;
4436 	shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE;
4437 	shared->ptp_clock_info.pin_config = shared->pin_config;
4438 	shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
4439 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
4440 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
4441 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
4442 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
4443 	shared->ptp_clock_info.getcrosststamp = NULL;
4444 	shared->ptp_clock_info.enable = lan8814_ptpci_enable;
4445 	shared->ptp_clock_info.verify = lan8814_ptpci_verify;
4446 
4447 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
4448 					       &phydev->mdio.dev);
4449 	if (IS_ERR(shared->ptp_clock)) {
4450 		phydev_err(phydev, "ptp_clock_register failed %pe\n",
4451 			   shared->ptp_clock);
4452 		return -EINVAL;
4453 	}
4454 
4455 	/* Check if PHC support is missing at the configuration level */
4456 	if (!shared->ptp_clock)
4457 		return 0;
4458 
4459 	phydev_dbg(phydev, "successfully registered ptp clock\n");
4460 
4461 	/* The EP.4 is shared between all the PHYs in the package and also it
4462 	 * can be accessed by any of the PHYs
4463 	 */
4464 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4465 			      LTC_HARD_RESET, LTC_HARD_RESET_);
4466 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE,
4467 			      PTP_OPERATING_MODE_STANDALONE_);
4468 
4469 	/* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
4470 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL,
4471 			      PTP_CMD_CTL_PTP_ENABLE_);
4472 
4473 	return 0;
4474 }
4475 
4476 static int lan8814_ptp_probe_once(struct phy_device *phydev)
4477 {
4478 	if (!lan8814_has_ptp(phydev))
4479 		return 0;
4480 
4481 	return __lan8814_ptp_probe_once(phydev, "lan8814_ptp_pin",
4482 					LAN8814_PTP_GPIO_NUM);
4483 }
4484 
4485 static void lan8814_setup_led(struct phy_device *phydev, int val)
4486 {
4487 	int temp;
4488 
4489 	temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4490 				    LAN8814_LED_CTRL_1);
4491 
4492 	if (val)
4493 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
4494 	else
4495 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
4496 
4497 	lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4498 			      LAN8814_LED_CTRL_1, temp);
4499 }
4500 
4501 static int lan8814_config_init(struct phy_device *phydev)
4502 {
4503 	struct kszphy_priv *lan8814 = phydev->priv;
4504 
4505 	/* Disable ANEG with QSGMII PCS Host side */
4506 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
4507 			       LAN8814_QSGMII_PCS1G_ANEG_CONFIG,
4508 			       LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA,
4509 			       0);
4510 
4511 	/* MDI-X setting for swap A,B transmit */
4512 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP,
4513 			       LAN8814_ALIGN_TX_A_B_SWAP_MASK,
4514 			       LAN8814_ALIGN_TX_A_B_SWAP);
4515 
4516 	if (lan8814->led_mode >= 0)
4517 		lan8814_setup_led(phydev, lan8814->led_mode);
4518 
4519 	return 0;
4520 }
4521 
4522 /* It is expected that there will not be any 'lan8814_take_coma_mode'
4523  * function called in suspend. Because the GPIO line can be shared, so if one of
4524  * the phys goes back in coma mode, then all the other PHYs will go, which is
4525  * wrong.
4526  */
4527 static int lan8814_release_coma_mode(struct phy_device *phydev)
4528 {
4529 	struct gpio_desc *gpiod;
4530 
4531 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
4532 					GPIOD_OUT_HIGH_OPEN_DRAIN |
4533 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
4534 	if (IS_ERR(gpiod))
4535 		return PTR_ERR(gpiod);
4536 
4537 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
4538 	gpiod_set_value_cansleep(gpiod, 0);
4539 
4540 	return 0;
4541 }
4542 
4543 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
4544 {
4545 	/* It was noticed that when traffic is passing through the PHY and the
4546 	 * cable is removed then the LED was still on even though there is no
4547 	 * link
4548 	 */
4549 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE,
4550 			       LAN8814_EEE_STATE_MASK2P5P,
4551 			       0);
4552 }
4553 
4554 static void lan8814_update_meas_time(struct phy_device *phydev)
4555 {
4556 	/* By setting the measure time to a value of 0xb this will allow cables
4557 	 * longer than 100m to be used. This configuration can be used
4558 	 * regardless of the mode of operation of the PHY
4559 	 */
4560 	lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS,
4561 			       LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK,
4562 			       LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL);
4563 }
4564 
4565 static int lan8814_probe(struct phy_device *phydev)
4566 {
4567 	const struct kszphy_type *type = phydev->drv->driver_data;
4568 	struct kszphy_priv *priv;
4569 	u16 addr;
4570 	int err;
4571 
4572 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
4573 	if (!priv)
4574 		return -ENOMEM;
4575 
4576 	phydev->priv = priv;
4577 
4578 	priv->type = type;
4579 
4580 	kszphy_parse_led_mode(phydev);
4581 
4582 	/* Strap-in value for PHY address, below register read gives starting
4583 	 * phy address value
4584 	 */
4585 	addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F;
4586 	devm_phy_package_join(&phydev->mdio.dev, phydev,
4587 			      addr, sizeof(struct lan8814_shared_priv));
4588 
4589 	/* There are lan8814 SKUs that don't support PTP. Make sure that for
4590 	 * those skus no PTP device is created. Here we check if the SKU
4591 	 * supports PTP.
4592 	 */
4593 	err = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4594 				   LAN8814_SKUS);
4595 	if (err < 0)
4596 		return err;
4597 
4598 	priv->is_ptp_available = err == LAN8814_REV_LAN8814 ||
4599 				 err == LAN8814_REV_LAN8818;
4600 
4601 	if (phy_package_init_once(phydev)) {
4602 		/* Reset the PHY */
4603 		lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
4604 				       LAN8814_QSGMII_SOFT_RESET,
4605 				       LAN8814_QSGMII_SOFT_RESET_BIT,
4606 				       LAN8814_QSGMII_SOFT_RESET_BIT);
4607 
4608 		err = lan8814_release_coma_mode(phydev);
4609 		if (err)
4610 			return err;
4611 
4612 		err = lan8814_ptp_probe_once(phydev);
4613 		if (err)
4614 			return err;
4615 	}
4616 
4617 	lan8814_ptp_init(phydev);
4618 
4619 	/* Errata workarounds */
4620 	lan8814_clear_2psp_bit(phydev);
4621 	lan8814_update_meas_time(phydev);
4622 
4623 	return 0;
4624 }
4625 
4626 #define LAN8841_MMD_TIMER_REG			0
4627 #define LAN8841_MMD0_REGISTER_17		17
4628 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
4629 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
4630 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
4631 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
4632 #define LAN8841_MMD_ANALOG_REG			28
4633 #define LAN8841_ANALOG_CONTROL_1		1
4634 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
4635 #define LAN8841_ANALOG_CONTROL_10		13
4636 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
4637 #define LAN8841_ANALOG_CONTROL_11		14
4638 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
4639 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
4640 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
4641 #define LAN8841_BTRX_POWER_DOWN			70
4642 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
4643 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
4644 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
4645 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
4646 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
4647 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
4648 #define LAN8841_ADC_CHANNEL_MASK		198
4649 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
4650 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
4651 #define LAN8841_PTP_RX_VERSION			374
4652 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
4653 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
4654 #define LAN8841_PTP_TX_VERSION			438
4655 #define LAN8841_PTP_CMD_CTL			256
4656 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
4657 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
4658 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
4659 #define LAN8841_PTP_RX_PARSE_CONFIG		368
4660 #define LAN8841_PTP_TX_PARSE_CONFIG		432
4661 #define LAN8841_PTP_RX_MODE			381
4662 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
4663 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
4664 
4665 static int lan8841_config_init(struct phy_device *phydev)
4666 {
4667 	int ret;
4668 
4669 	ret = ksz9131_config_init(phydev);
4670 	if (ret)
4671 		return ret;
4672 
4673 	/* Initialize the HW by resetting everything */
4674 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4675 		       LAN8841_PTP_CMD_CTL,
4676 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
4677 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
4678 
4679 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4680 		       LAN8841_PTP_CMD_CTL,
4681 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
4682 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
4683 
4684 	/* Don't process any frames */
4685 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4686 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
4687 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4688 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
4689 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4690 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
4691 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4692 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
4693 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4694 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
4695 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4696 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
4697 
4698 	/* Disable checking for minorVersionPTP field */
4699 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4700 		      LAN8841_PTP_RX_VERSION, 0xff00);
4701 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4702 		      LAN8841_PTP_TX_VERSION, 0xff00);
4703 
4704 	/* 100BT Clause 40 improvement errata */
4705 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4706 		      LAN8841_ANALOG_CONTROL_1,
4707 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
4708 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4709 		      LAN8841_ANALOG_CONTROL_10,
4710 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
4711 
4712 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
4713 	 * Magnetics
4714 	 */
4715 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4716 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
4717 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
4718 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4719 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
4720 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
4721 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4722 			      LAN8841_BTRX_POWER_DOWN,
4723 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
4724 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
4725 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
4726 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
4727 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4728 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4729 	}
4730 
4731 	/* LDO Adjustment errata */
4732 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4733 		      LAN8841_ANALOG_CONTROL_11,
4734 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4735 
4736 	/* 100BT RGMII latency tuning errata */
4737 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4738 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
4739 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4740 		      LAN8841_MMD0_REGISTER_17,
4741 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4742 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4743 
4744 	return 0;
4745 }
4746 
4747 #define LAN8841_OUTPUT_CTRL			25
4748 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
4749 #define LAN8841_INT_PTP				BIT(9)
4750 
4751 static int lan8841_config_intr(struct phy_device *phydev)
4752 {
4753 	int err;
4754 
4755 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4756 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4757 
4758 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4759 		err = phy_read(phydev, LAN8814_INTS);
4760 		if (err < 0)
4761 			return err;
4762 
4763 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
4764 		 * even if it PTP is not enabled. Because the underneath blocks
4765 		 * will not enable the PTP so we will never get the PTP
4766 		 * interrupt.
4767 		 */
4768 		err = phy_write(phydev, LAN8814_INTC,
4769 				LAN8814_INT_LINK | LAN8841_INT_PTP);
4770 	} else {
4771 		err = phy_write(phydev, LAN8814_INTC, 0);
4772 		if (err)
4773 			return err;
4774 
4775 		err = phy_read(phydev, LAN8814_INTS);
4776 		if (err < 0)
4777 			return err;
4778 
4779 		/* Getting a positive value doesn't mean that is an error, it
4780 		 * just indicates what was the status. Therefore make sure to
4781 		 * clear the value and say that there is no error.
4782 		 */
4783 		err = 0;
4784 	}
4785 
4786 	return err;
4787 }
4788 
4789 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
4790 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
4791 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
4792 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
4793 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
4794 #define LAN8841_PTP_TX_MSG_HEADER2			455
4795 
4796 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4797 				  u32 *sec, u32 *nsec, u16 *seq)
4798 {
4799 	struct phy_device *phydev = ptp_priv->phydev;
4800 
4801 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4802 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4803 		return false;
4804 
4805 	*nsec = ((*nsec & 0x3fff) << 16);
4806 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4807 
4808 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4809 	*sec = *sec << 16;
4810 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4811 
4812 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4813 
4814 	return true;
4815 }
4816 
4817 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4818 {
4819 	u32 sec, nsec;
4820 	u16 seq;
4821 
4822 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4823 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4824 }
4825 
4826 #define LAN8841_PTP_INT_STS			259
4827 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
4828 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
4829 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
4830 
4831 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4832 {
4833 	struct phy_device *phydev = ptp_priv->phydev;
4834 	int i;
4835 
4836 	for (i = 0; i < FIFO_SIZE; ++i)
4837 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4838 
4839 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4840 }
4841 
4842 #define LAN8841_PTP_GPIO_CAP_STS			506
4843 #define LAN8841_PTP_GPIO_SEL				327
4844 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
4845 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
4846 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
4847 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
4848 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
4849 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
4850 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
4851 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
4852 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
4853 
4854 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4855 {
4856 	struct phy_device *phydev = ptp_priv->phydev;
4857 	struct ptp_clock_event ptp_event = {0};
4858 	int pin, ret, tmp;
4859 	s32 sec, nsec;
4860 
4861 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4862 	if (pin == -1)
4863 		return;
4864 
4865 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4866 	if (tmp < 0)
4867 		return;
4868 
4869 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4870 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4871 	if (ret)
4872 		return;
4873 
4874 	mutex_lock(&ptp_priv->ptp_lock);
4875 	if (tmp & BIT(pin)) {
4876 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4877 		sec <<= 16;
4878 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4879 
4880 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4881 		nsec <<= 16;
4882 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4883 	} else {
4884 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4885 		sec <<= 16;
4886 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4887 
4888 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4889 		nsec <<= 16;
4890 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4891 	}
4892 	mutex_unlock(&ptp_priv->ptp_lock);
4893 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4894 	if (ret)
4895 		return;
4896 
4897 	ptp_event.index = 0;
4898 	ptp_event.timestamp = ktime_set(sec, nsec);
4899 	ptp_event.type = PTP_CLOCK_EXTTS;
4900 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4901 }
4902 
4903 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4904 {
4905 	struct kszphy_priv *priv = phydev->priv;
4906 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4907 	u16 status;
4908 
4909 	do {
4910 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4911 
4912 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4913 			lan8841_ptp_process_tx_ts(ptp_priv);
4914 
4915 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4916 			lan8841_gpio_process_cap(ptp_priv);
4917 
4918 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4919 			lan8841_ptp_flush_fifo(ptp_priv);
4920 			skb_queue_purge(&ptp_priv->tx_queue);
4921 		}
4922 
4923 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4924 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4925 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4926 }
4927 
4928 #define LAN8841_INTS_PTP		BIT(9)
4929 
4930 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4931 {
4932 	irqreturn_t ret = IRQ_NONE;
4933 	int irq_status;
4934 
4935 	irq_status = phy_read(phydev, LAN8814_INTS);
4936 	if (irq_status < 0) {
4937 		phy_error(phydev);
4938 		return IRQ_NONE;
4939 	}
4940 
4941 	if (irq_status & LAN8814_INT_LINK) {
4942 		phy_trigger_machine(phydev);
4943 		ret = IRQ_HANDLED;
4944 	}
4945 
4946 	if (irq_status & LAN8841_INTS_PTP) {
4947 		lan8841_handle_ptp_interrupt(phydev);
4948 		ret = IRQ_HANDLED;
4949 	}
4950 
4951 	return ret;
4952 }
4953 
4954 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4955 			   struct kernel_ethtool_ts_info *info)
4956 {
4957 	struct kszphy_ptp_priv *ptp_priv;
4958 
4959 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4960 
4961 	info->phc_index = ptp_priv->ptp_clock ?
4962 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
4963 	if (info->phc_index == -1)
4964 		return 0;
4965 
4966 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4967 				SOF_TIMESTAMPING_RX_HARDWARE |
4968 				SOF_TIMESTAMPING_RAW_HARDWARE;
4969 
4970 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4971 			 (1 << HWTSTAMP_TX_ON) |
4972 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4973 
4974 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4975 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4976 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4977 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4978 
4979 	return 0;
4980 }
4981 
4982 #define LAN8841_PTP_INT_EN			260
4983 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
4984 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
4985 
4986 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4987 					  bool enable)
4988 {
4989 	struct phy_device *phydev = ptp_priv->phydev;
4990 
4991 	if (enable) {
4992 		/* Enable interrupts on the TX side */
4993 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4994 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4995 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4996 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4997 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4998 
4999 		/* Enable the modification of the frame on RX side,
5000 		 * this will add the ns and 2 bits of sec in the reserved field
5001 		 * of the PTP header
5002 		 */
5003 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5004 			       LAN8841_PTP_RX_MODE,
5005 			       LAN8841_PTP_INSERT_TS_EN |
5006 			       LAN8841_PTP_INSERT_TS_32BIT,
5007 			       LAN8841_PTP_INSERT_TS_EN |
5008 			       LAN8841_PTP_INSERT_TS_32BIT);
5009 
5010 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
5011 	} else {
5012 		/* Disable interrupts on the TX side */
5013 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5014 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
5015 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
5016 
5017 		/* Disable modification of the RX frames */
5018 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5019 			       LAN8841_PTP_RX_MODE,
5020 			       LAN8841_PTP_INSERT_TS_EN |
5021 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
5022 
5023 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5024 	}
5025 }
5026 
5027 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
5028 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
5029 #define LAN8841_PTP_TX_MOD			445
5030 
5031 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
5032 			    struct kernel_hwtstamp_config *config,
5033 			    struct netlink_ext_ack *extack)
5034 {
5035 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
5036 	struct phy_device *phydev = ptp_priv->phydev;
5037 	int txcfg = 0, rxcfg = 0;
5038 	int pkt_ts_enable;
5039 
5040 	ptp_priv->hwts_tx_type = config->tx_type;
5041 	ptp_priv->rx_filter = config->rx_filter;
5042 
5043 	switch (config->rx_filter) {
5044 	case HWTSTAMP_FILTER_NONE:
5045 		ptp_priv->layer = 0;
5046 		ptp_priv->version = 0;
5047 		break;
5048 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5049 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5050 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5051 		ptp_priv->layer = PTP_CLASS_L4;
5052 		ptp_priv->version = PTP_CLASS_V2;
5053 		break;
5054 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5055 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5056 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5057 		ptp_priv->layer = PTP_CLASS_L2;
5058 		ptp_priv->version = PTP_CLASS_V2;
5059 		break;
5060 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
5061 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
5062 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5063 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
5064 		ptp_priv->version = PTP_CLASS_V2;
5065 		break;
5066 	default:
5067 		return -ERANGE;
5068 	}
5069 
5070 	/* Setup parsing of the frames and enable the timestamping for ptp
5071 	 * frames
5072 	 */
5073 	if (ptp_priv->layer & PTP_CLASS_L2) {
5074 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
5075 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
5076 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
5077 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
5078 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
5079 	}
5080 
5081 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
5082 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
5083 
5084 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
5085 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
5086 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
5087 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
5088 
5089 	/* Enable / disable of the TX timestamp in the SYNC frames */
5090 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
5091 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
5092 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
5093 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
5094 
5095 	/* Now enable/disable the timestamping */
5096 	lan8841_ptp_enable_processing(ptp_priv,
5097 				      config->rx_filter != HWTSTAMP_FILTER_NONE);
5098 
5099 	skb_queue_purge(&ptp_priv->tx_queue);
5100 
5101 	lan8841_ptp_flush_fifo(ptp_priv);
5102 
5103 	return 0;
5104 }
5105 
5106 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
5107 			     struct sk_buff *skb, int type)
5108 {
5109 	struct kszphy_ptp_priv *ptp_priv =
5110 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
5111 	struct ptp_header *header = ptp_parse_header(skb, type);
5112 	struct skb_shared_hwtstamps *shhwtstamps;
5113 	struct timespec64 ts;
5114 	unsigned long flags;
5115 	u32 ts_header;
5116 
5117 	if (!header)
5118 		return false;
5119 
5120 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
5121 	    type == PTP_CLASS_NONE)
5122 		return false;
5123 
5124 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
5125 		return false;
5126 
5127 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5128 	ts.tv_sec = ptp_priv->seconds;
5129 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5130 	ts_header = __be32_to_cpu(header->reserved2);
5131 
5132 	shhwtstamps = skb_hwtstamps(skb);
5133 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
5134 
5135 	/* Check for any wrap arounds for the second part */
5136 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
5137 		ts.tv_sec -= GENMASK(1, 0) + 1;
5138 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
5139 		ts.tv_sec += 1;
5140 
5141 	shhwtstamps->hwtstamp =
5142 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
5143 			  ts_header & GENMASK(29, 0));
5144 	header->reserved2 = 0;
5145 
5146 	netif_rx(skb);
5147 
5148 	return true;
5149 }
5150 
5151 #define LAN8841_EVENT_A		0
5152 #define LAN8841_EVENT_B		1
5153 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
5154 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
5155 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
5156 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
5157 
5158 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
5159 				  s64 sec, u32 nsec)
5160 {
5161 	struct phy_device *phydev = ptp_priv->phydev;
5162 	int ret;
5163 
5164 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
5165 			    upper_16_bits(sec));
5166 	if (ret)
5167 		return ret;
5168 
5169 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
5170 			    lower_16_bits(sec));
5171 	if (ret)
5172 		return ret;
5173 
5174 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
5175 			    upper_16_bits(nsec));
5176 	if (ret)
5177 		return ret;
5178 
5179 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
5180 			    lower_16_bits(nsec));
5181 }
5182 
5183 #define LAN8841_BUFFER_TIME	2
5184 
5185 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
5186 				     const struct timespec64 *ts)
5187 {
5188 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
5189 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
5190 }
5191 
5192 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
5193 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
5194 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
5195 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
5196 
5197 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
5198 				  s64 sec, u32 nsec)
5199 {
5200 	struct phy_device *phydev = ptp_priv->phydev;
5201 	int ret;
5202 
5203 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
5204 			    upper_16_bits(sec));
5205 	if (ret)
5206 		return ret;
5207 
5208 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
5209 			    lower_16_bits(sec));
5210 	if (ret)
5211 		return ret;
5212 
5213 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
5214 			    upper_16_bits(nsec));
5215 	if (ret)
5216 		return ret;
5217 
5218 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
5219 			     lower_16_bits(nsec));
5220 }
5221 
5222 #define LAN8841_PTP_LTC_SET_SEC_HI	262
5223 #define LAN8841_PTP_LTC_SET_SEC_MID	263
5224 #define LAN8841_PTP_LTC_SET_SEC_LO	264
5225 #define LAN8841_PTP_LTC_SET_NS_HI	265
5226 #define LAN8841_PTP_LTC_SET_NS_LO	266
5227 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
5228 
5229 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
5230 				 const struct timespec64 *ts)
5231 {
5232 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5233 							ptp_clock_info);
5234 	struct phy_device *phydev = ptp_priv->phydev;
5235 	unsigned long flags;
5236 	int ret;
5237 
5238 	/* Set the value to be stored */
5239 	mutex_lock(&ptp_priv->ptp_lock);
5240 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
5241 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
5242 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
5243 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
5244 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
5245 
5246 	/* Set the command to load the LTC */
5247 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5248 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
5249 	ret = lan8841_ptp_update_target(ptp_priv, ts);
5250 	mutex_unlock(&ptp_priv->ptp_lock);
5251 
5252 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5253 	ptp_priv->seconds = ts->tv_sec;
5254 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5255 
5256 	return ret;
5257 }
5258 
5259 #define LAN8841_PTP_LTC_RD_SEC_HI	358
5260 #define LAN8841_PTP_LTC_RD_SEC_MID	359
5261 #define LAN8841_PTP_LTC_RD_SEC_LO	360
5262 #define LAN8841_PTP_LTC_RD_NS_HI	361
5263 #define LAN8841_PTP_LTC_RD_NS_LO	362
5264 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
5265 
5266 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
5267 				 struct timespec64 *ts)
5268 {
5269 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5270 							ptp_clock_info);
5271 	struct phy_device *phydev = ptp_priv->phydev;
5272 	time64_t s;
5273 	s64 ns;
5274 
5275 	mutex_lock(&ptp_priv->ptp_lock);
5276 	/* Issue the command to read the LTC */
5277 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5278 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
5279 
5280 	/* Read the LTC */
5281 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
5282 	s <<= 16;
5283 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
5284 	s <<= 16;
5285 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
5286 
5287 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
5288 	ns <<= 16;
5289 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
5290 	mutex_unlock(&ptp_priv->ptp_lock);
5291 
5292 	set_normalized_timespec64(ts, s, ns);
5293 	return 0;
5294 }
5295 
5296 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
5297 				   struct timespec64 *ts)
5298 {
5299 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5300 							ptp_clock_info);
5301 	struct phy_device *phydev = ptp_priv->phydev;
5302 	time64_t s;
5303 
5304 	mutex_lock(&ptp_priv->ptp_lock);
5305 	/* Issue the command to read the LTC */
5306 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5307 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
5308 
5309 	/* Read the LTC */
5310 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
5311 	s <<= 16;
5312 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
5313 	s <<= 16;
5314 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
5315 	mutex_unlock(&ptp_priv->ptp_lock);
5316 
5317 	set_normalized_timespec64(ts, s, 0);
5318 }
5319 
5320 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
5321 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
5322 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
5323 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
5324 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
5325 
5326 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
5327 {
5328 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5329 							ptp_clock_info);
5330 	struct phy_device *phydev = ptp_priv->phydev;
5331 	struct timespec64 ts;
5332 	bool add = true;
5333 	u32 nsec;
5334 	s32 sec;
5335 	int ret;
5336 
5337 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
5338 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
5339 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
5340 	 * increment so the value can be bigger than 15 sec. Therefore limit the
5341 	 * possible adjustments so we will not have these corner cases
5342 	 */
5343 	if (delta > 10000000000LL || delta < -10000000000LL) {
5344 		/* The timeadjustment is too big, so fall back using set time */
5345 		u64 now;
5346 
5347 		ptp->gettime64(ptp, &ts);
5348 
5349 		now = ktime_to_ns(timespec64_to_ktime(ts));
5350 		ts = ns_to_timespec64(now + delta);
5351 
5352 		ptp->settime64(ptp, &ts);
5353 		return 0;
5354 	}
5355 
5356 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
5357 	if (delta < 0 && nsec != 0) {
5358 		/* It is not allowed to adjust low the nsec part, therefore
5359 		 * subtract more from second part and add to nanosecond such
5360 		 * that would roll over, so the second part will increase
5361 		 */
5362 		sec--;
5363 		nsec = NSEC_PER_SEC - nsec;
5364 	}
5365 
5366 	/* Calculate the adjustments and the direction */
5367 	if (delta < 0)
5368 		add = false;
5369 
5370 	if (nsec > 0)
5371 		/* add 8 ns to cover the likely normal increment */
5372 		nsec += 8;
5373 
5374 	if (nsec >= NSEC_PER_SEC) {
5375 		/* carry into seconds */
5376 		sec++;
5377 		nsec -= NSEC_PER_SEC;
5378 	}
5379 
5380 	mutex_lock(&ptp_priv->ptp_lock);
5381 	if (sec) {
5382 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
5383 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
5384 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
5385 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5386 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
5387 	}
5388 
5389 	if (nsec) {
5390 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
5391 			      nsec & 0xffff);
5392 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
5393 			      (nsec >> 16) & 0x3fff);
5394 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5395 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
5396 	}
5397 	mutex_unlock(&ptp_priv->ptp_lock);
5398 
5399 	/* Update the target clock */
5400 	ptp->gettime64(ptp, &ts);
5401 	mutex_lock(&ptp_priv->ptp_lock);
5402 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
5403 	mutex_unlock(&ptp_priv->ptp_lock);
5404 
5405 	return ret;
5406 }
5407 
5408 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
5409 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
5410 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
5411 
5412 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
5413 {
5414 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5415 							ptp_clock_info);
5416 	struct phy_device *phydev = ptp_priv->phydev;
5417 	bool faster = true;
5418 	u32 rate;
5419 
5420 	if (!scaled_ppm)
5421 		return 0;
5422 
5423 	if (scaled_ppm < 0) {
5424 		scaled_ppm = -scaled_ppm;
5425 		faster = false;
5426 	}
5427 
5428 	rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
5429 	rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
5430 
5431 	mutex_lock(&ptp_priv->ptp_lock);
5432 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
5433 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
5434 			     : upper_16_bits(rate) & 0x3fff);
5435 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
5436 	mutex_unlock(&ptp_priv->ptp_lock);
5437 
5438 	return 0;
5439 }
5440 
5441 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
5442 			      enum ptp_pin_function func, unsigned int chan)
5443 {
5444 	switch (func) {
5445 	case PTP_PF_NONE:
5446 	case PTP_PF_PEROUT:
5447 	case PTP_PF_EXTTS:
5448 		break;
5449 	default:
5450 		return -1;
5451 	}
5452 
5453 	return 0;
5454 }
5455 
5456 #define LAN8841_PTP_GPIO_NUM	10
5457 #define LAN8841_GPIO_EN		128
5458 #define LAN8841_GPIO_DIR	129
5459 #define LAN8841_GPIO_BUF	130
5460 
5461 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5462 {
5463 	struct phy_device *phydev = ptp_priv->phydev;
5464 	int ret;
5465 
5466 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5467 	if (ret)
5468 		return ret;
5469 
5470 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
5471 	if (ret)
5472 		return ret;
5473 
5474 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5475 }
5476 
5477 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
5478 {
5479 	struct phy_device *phydev = ptp_priv->phydev;
5480 	int ret;
5481 
5482 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5483 	if (ret)
5484 		return ret;
5485 
5486 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
5487 	if (ret)
5488 		return ret;
5489 
5490 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5491 }
5492 
5493 #define LAN8841_GPIO_DATA_SEL1				131
5494 #define LAN8841_GPIO_DATA_SEL2				132
5495 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
5496 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
5497 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
5498 #define LAN8841_PTP_GENERAL_CONFIG			257
5499 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
5500 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
5501 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
5502 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
5503 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
5504 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
5505 
5506 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
5507 				    u8 event)
5508 {
5509 	struct phy_device *phydev = ptp_priv->phydev;
5510 	u16 tmp;
5511 	int ret;
5512 
5513 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
5514 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5515 	 * depending on the pin, it requires to read a different register
5516 	 */
5517 	if (pin < 5) {
5518 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
5519 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
5520 	} else {
5521 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
5522 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
5523 	}
5524 	if (ret)
5525 		return ret;
5526 
5527 	/* Disable the event */
5528 	if (event == LAN8841_EVENT_A)
5529 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5530 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
5531 	else
5532 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5533 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
5534 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
5535 }
5536 
5537 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
5538 				    u8 event, int pulse_width)
5539 {
5540 	struct phy_device *phydev = ptp_priv->phydev;
5541 	u16 tmp;
5542 	int ret;
5543 
5544 	/* Enable the event */
5545 	if (event == LAN8841_EVENT_A)
5546 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5547 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5548 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
5549 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5550 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
5551 	else
5552 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5553 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5554 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
5555 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5556 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
5557 	if (ret)
5558 		return ret;
5559 
5560 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
5561 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5562 	 * depending on the pin, it requires to read a different register
5563 	 */
5564 	if (event == LAN8841_EVENT_A)
5565 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
5566 	else
5567 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
5568 
5569 	if (pin < 5)
5570 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
5571 				       tmp << (3 * pin));
5572 	else
5573 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
5574 				       tmp << (3 * (pin - 5)));
5575 
5576 	return ret;
5577 }
5578 
5579 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
5580 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
5581 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
5582 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
5583 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
5584 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
5585 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
5586 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
5587 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
5588 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
5589 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
5590 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
5591 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
5592 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
5593 
5594 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
5595 			      struct ptp_clock_request *rq, int on)
5596 {
5597 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5598 							ptp_clock_info);
5599 	struct phy_device *phydev = ptp_priv->phydev;
5600 	struct timespec64 ts_on, ts_period;
5601 	s64 on_nsec, period_nsec;
5602 	int pulse_width;
5603 	int pin;
5604 	int ret;
5605 
5606 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
5607 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5608 		return -EINVAL;
5609 
5610 	if (!on) {
5611 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
5612 		if (ret)
5613 			return ret;
5614 
5615 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
5616 	}
5617 
5618 	ts_on.tv_sec = rq->perout.on.sec;
5619 	ts_on.tv_nsec = rq->perout.on.nsec;
5620 	on_nsec = timespec64_to_ns(&ts_on);
5621 
5622 	ts_period.tv_sec = rq->perout.period.sec;
5623 	ts_period.tv_nsec = rq->perout.period.nsec;
5624 	period_nsec = timespec64_to_ns(&ts_period);
5625 
5626 	if (period_nsec < 200) {
5627 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
5628 				    phydev_name(phydev));
5629 		return -EOPNOTSUPP;
5630 	}
5631 
5632 	if (on_nsec >= period_nsec) {
5633 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
5634 				    phydev_name(phydev));
5635 		return -EINVAL;
5636 	}
5637 
5638 	switch (on_nsec) {
5639 	case 200000000:
5640 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
5641 		break;
5642 	case 100000000:
5643 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
5644 		break;
5645 	case 50000000:
5646 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
5647 		break;
5648 	case 10000000:
5649 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
5650 		break;
5651 	case 5000000:
5652 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
5653 		break;
5654 	case 1000000:
5655 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
5656 		break;
5657 	case 500000:
5658 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
5659 		break;
5660 	case 100000:
5661 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
5662 		break;
5663 	case 50000:
5664 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
5665 		break;
5666 	case 10000:
5667 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
5668 		break;
5669 	case 5000:
5670 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
5671 		break;
5672 	case 1000:
5673 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
5674 		break;
5675 	case 500:
5676 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
5677 		break;
5678 	case 100:
5679 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5680 		break;
5681 	default:
5682 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
5683 				    phydev_name(phydev));
5684 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5685 		break;
5686 	}
5687 
5688 	mutex_lock(&ptp_priv->ptp_lock);
5689 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
5690 				     rq->perout.start.nsec);
5691 	mutex_unlock(&ptp_priv->ptp_lock);
5692 	if (ret)
5693 		return ret;
5694 
5695 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
5696 				     rq->perout.period.nsec);
5697 	if (ret)
5698 		return ret;
5699 
5700 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
5701 				       pulse_width);
5702 	if (ret)
5703 		return ret;
5704 
5705 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
5706 	if (ret)
5707 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
5708 
5709 	return ret;
5710 }
5711 
5712 #define LAN8841_PTP_GPIO_CAP_EN			496
5713 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
5714 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
5715 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
5716 
5717 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
5718 				u32 flags)
5719 {
5720 	struct phy_device *phydev = ptp_priv->phydev;
5721 	u16 tmp = 0;
5722 	int ret;
5723 
5724 	/* Set GPIO to be input */
5725 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5726 	if (ret)
5727 		return ret;
5728 
5729 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5730 	if (ret)
5731 		return ret;
5732 
5733 	/* Enable capture on the edges of the pin */
5734 	if (flags & PTP_RISING_EDGE)
5735 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5736 	if (flags & PTP_FALLING_EDGE)
5737 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5738 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5739 	if (ret)
5740 		return ret;
5741 
5742 	/* Enable interrupt */
5743 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5744 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5745 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5746 }
5747 
5748 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5749 {
5750 	struct phy_device *phydev = ptp_priv->phydev;
5751 	int ret;
5752 
5753 	/* Set GPIO to be output */
5754 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5755 	if (ret)
5756 		return ret;
5757 
5758 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5759 	if (ret)
5760 		return ret;
5761 
5762 	/* Disable capture on both of the edges */
5763 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5764 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5765 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5766 			     0);
5767 	if (ret)
5768 		return ret;
5769 
5770 	/* Disable interrupt */
5771 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5772 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5773 			      0);
5774 }
5775 
5776 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5777 			     struct ptp_clock_request *rq, int on)
5778 {
5779 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5780 							ptp_clock_info);
5781 	int pin;
5782 	int ret;
5783 
5784 	/* Reject requests with unsupported flags */
5785 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5786 				PTP_EXTTS_EDGES |
5787 				PTP_STRICT_FLAGS))
5788 		return -EOPNOTSUPP;
5789 
5790 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5791 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5792 		return -EINVAL;
5793 
5794 	mutex_lock(&ptp_priv->ptp_lock);
5795 	if (on)
5796 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5797 	else
5798 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
5799 	mutex_unlock(&ptp_priv->ptp_lock);
5800 
5801 	return ret;
5802 }
5803 
5804 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5805 			      struct ptp_clock_request *rq, int on)
5806 {
5807 	switch (rq->type) {
5808 	case PTP_CLK_REQ_EXTTS:
5809 		return lan8841_ptp_extts(ptp, rq, on);
5810 	case PTP_CLK_REQ_PEROUT:
5811 		return lan8841_ptp_perout(ptp, rq, on);
5812 	default:
5813 		return -EOPNOTSUPP;
5814 	}
5815 
5816 	return 0;
5817 }
5818 
5819 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5820 {
5821 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5822 							ptp_clock_info);
5823 	struct timespec64 ts;
5824 	unsigned long flags;
5825 
5826 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5827 
5828 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5829 	ptp_priv->seconds = ts.tv_sec;
5830 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5831 
5832 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5833 }
5834 
5835 static struct ptp_clock_info lan8841_ptp_clock_info = {
5836 	.owner		= THIS_MODULE,
5837 	.name		= "lan8841 ptp",
5838 	.max_adj	= 31249999,
5839 	.gettime64	= lan8841_ptp_gettime64,
5840 	.settime64	= lan8841_ptp_settime64,
5841 	.adjtime	= lan8841_ptp_adjtime,
5842 	.adjfine	= lan8841_ptp_adjfine,
5843 	.verify         = lan8841_ptp_verify,
5844 	.enable         = lan8841_ptp_enable,
5845 	.do_aux_work	= lan8841_ptp_do_aux_work,
5846 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
5847 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
5848 	.n_pins         = LAN8841_PTP_GPIO_NUM,
5849 	.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE,
5850 };
5851 
5852 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5853 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5854 
5855 static int lan8841_probe(struct phy_device *phydev)
5856 {
5857 	struct kszphy_ptp_priv *ptp_priv;
5858 	struct kszphy_priv *priv;
5859 	int err;
5860 
5861 	err = kszphy_probe(phydev);
5862 	if (err)
5863 		return err;
5864 
5865 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5866 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5867 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5868 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5869 
5870 	/* Register the clock */
5871 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5872 		return 0;
5873 
5874 	priv = phydev->priv;
5875 	ptp_priv = &priv->ptp_priv;
5876 
5877 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5878 					    LAN8841_PTP_GPIO_NUM,
5879 					    sizeof(*ptp_priv->pin_config),
5880 					    GFP_KERNEL);
5881 	if (!ptp_priv->pin_config)
5882 		return -ENOMEM;
5883 
5884 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5885 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5886 
5887 		snprintf(p->name, sizeof(p->name), "pin%d", i);
5888 		p->index = i;
5889 		p->func = PTP_PF_NONE;
5890 	}
5891 
5892 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5893 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5894 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5895 						 &phydev->mdio.dev);
5896 	if (IS_ERR(ptp_priv->ptp_clock)) {
5897 		phydev_err(phydev, "ptp_clock_register failed: %pe\n",
5898 			   ptp_priv->ptp_clock);
5899 		return -EINVAL;
5900 	}
5901 
5902 	if (!ptp_priv->ptp_clock)
5903 		return 0;
5904 
5905 	/* Initialize the SW */
5906 	skb_queue_head_init(&ptp_priv->tx_queue);
5907 	ptp_priv->phydev = phydev;
5908 	mutex_init(&ptp_priv->ptp_lock);
5909 	spin_lock_init(&ptp_priv->seconds_lock);
5910 
5911 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5912 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5913 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5914 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5915 
5916 	phydev->mii_ts = &ptp_priv->mii_ts;
5917 
5918 	/* Timestamp selected by default to keep legacy API */
5919 	phydev->default_timestamp = true;
5920 
5921 	return 0;
5922 }
5923 
5924 static int lan8804_resume(struct phy_device *phydev)
5925 {
5926 	return kszphy_resume(phydev);
5927 }
5928 
5929 static int lan8804_suspend(struct phy_device *phydev)
5930 {
5931 	return kszphy_generic_suspend(phydev);
5932 }
5933 
5934 static int lan8841_resume(struct phy_device *phydev)
5935 {
5936 	return kszphy_generic_resume(phydev);
5937 }
5938 
5939 static int lan8841_suspend(struct phy_device *phydev)
5940 {
5941 	struct kszphy_priv *priv = phydev->priv;
5942 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5943 
5944 	if (ptp_priv->ptp_clock)
5945 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5946 
5947 	return kszphy_generic_suspend(phydev);
5948 }
5949 
5950 static int ksz9131_resume(struct phy_device *phydev)
5951 {
5952 	if (phydev->suspended && phy_interface_is_rgmii(phydev))
5953 		ksz9131_config_rgmii_delay(phydev);
5954 
5955 	return kszphy_resume(phydev);
5956 }
5957 
5958 #define LAN8842_PTP_GPIO_NUM 16
5959 
5960 static int lan8842_ptp_probe_once(struct phy_device *phydev)
5961 {
5962 	return __lan8814_ptp_probe_once(phydev, "lan8842_ptp_pin",
5963 					LAN8842_PTP_GPIO_NUM);
5964 }
5965 
5966 #define LAN8842_STRAP_REG			0 /* 0x0 */
5967 #define LAN8842_STRAP_REG_PHYADDR_MASK		GENMASK(4, 0)
5968 #define LAN8842_SKU_REG				11 /* 0x0b */
5969 #define LAN8842_SELF_TEST			14 /* 0x0e */
5970 #define LAN8842_SELF_TEST_RX_CNT_ENA		BIT(8)
5971 #define LAN8842_SELF_TEST_TX_CNT_ENA		BIT(4)
5972 
5973 static int lan8842_probe(struct phy_device *phydev)
5974 {
5975 	struct lan8842_priv *priv;
5976 	int addr;
5977 	int ret;
5978 
5979 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
5980 	if (!priv)
5981 		return -ENOMEM;
5982 
5983 	phydev->priv = priv;
5984 
5985 	/* Similar to lan8814 this PHY has a pin which needs to be pulled down
5986 	 * to enable to pass any traffic through it. Therefore use the same
5987 	 * function as lan8814
5988 	 */
5989 	ret = lan8814_release_coma_mode(phydev);
5990 	if (ret)
5991 		return ret;
5992 
5993 	/* Enable to count the RX and TX packets */
5994 	ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL,
5995 				    LAN8842_SELF_TEST,
5996 				    LAN8842_SELF_TEST_RX_CNT_ENA |
5997 				    LAN8842_SELF_TEST_TX_CNT_ENA);
5998 	if (ret < 0)
5999 		return ret;
6000 
6001 	/* Revision lan8832 doesn't have support for PTP, therefore don't add
6002 	 * any PTP clocks
6003 	 */
6004 	ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6005 				   LAN8842_SKU_REG);
6006 	if (ret < 0)
6007 		return ret;
6008 
6009 	priv->rev = ret;
6010 	if (priv->rev == LAN8842_REV_8832)
6011 		return 0;
6012 
6013 	/* As the lan8814 and lan8842 has the same IP for the PTP block, the
6014 	 * only difference is the number of the GPIOs, then make sure that the
6015 	 * lan8842 initialized also the shared data pointer as this is used in
6016 	 * all the PTP functions for lan8814. The lan8842 doesn't have multiple
6017 	 * PHYs in the same package.
6018 	 */
6019 	addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6020 				    LAN8842_STRAP_REG);
6021 	if (addr < 0)
6022 		return addr;
6023 	addr &= LAN8842_STRAP_REG_PHYADDR_MASK;
6024 
6025 	ret = devm_phy_package_join(&phydev->mdio.dev, phydev, addr,
6026 				    sizeof(struct lan8814_shared_priv));
6027 	if (ret)
6028 		return ret;
6029 
6030 	if (phy_package_init_once(phydev)) {
6031 		ret = lan8842_ptp_probe_once(phydev);
6032 		if (ret)
6033 			return ret;
6034 	}
6035 
6036 	lan8814_ptp_init(phydev);
6037 
6038 	return 0;
6039 }
6040 
6041 #define LAN8814_POWER_MGMT_MODE_3_ANEG_MDI		0x13
6042 #define LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX		0x14
6043 #define LAN8814_POWER_MGMT_MODE_5_10BT_MDI		0x15
6044 #define LAN8814_POWER_MGMT_MODE_6_10BT_MDIX		0x16
6045 #define LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN		0x17
6046 #define LAN8814_POWER_MGMT_MODE_8_100BT_MDI		0x18
6047 #define LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX	0x19
6048 #define LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX	0x1a
6049 #define LAN8814_POWER_MGMT_MODE_11_100BT_MDIX		0x1b
6050 #define LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX	0x1c
6051 #define LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX	0x1d
6052 #define LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX	0x1e
6053 
6054 #define LAN8814_POWER_MGMT_DLLPD_D			BIT(0)
6055 #define LAN8814_POWER_MGMT_ADCPD_D			BIT(1)
6056 #define LAN8814_POWER_MGMT_PGAPD_D			BIT(2)
6057 #define LAN8814_POWER_MGMT_TXPD_D			BIT(3)
6058 #define LAN8814_POWER_MGMT_DLLPD_C			BIT(4)
6059 #define LAN8814_POWER_MGMT_ADCPD_C			BIT(5)
6060 #define LAN8814_POWER_MGMT_PGAPD_C			BIT(6)
6061 #define LAN8814_POWER_MGMT_TXPD_C			BIT(7)
6062 #define LAN8814_POWER_MGMT_DLLPD_B			BIT(8)
6063 #define LAN8814_POWER_MGMT_ADCPD_B			BIT(9)
6064 #define LAN8814_POWER_MGMT_PGAPD_B			BIT(10)
6065 #define LAN8814_POWER_MGMT_TXPD_B			BIT(11)
6066 #define LAN8814_POWER_MGMT_DLLPD_A			BIT(12)
6067 #define LAN8814_POWER_MGMT_ADCPD_A			BIT(13)
6068 #define LAN8814_POWER_MGMT_PGAPD_A			BIT(14)
6069 #define LAN8814_POWER_MGMT_TXPD_A			BIT(15)
6070 
6071 #define LAN8814_POWER_MGMT_C_D		(LAN8814_POWER_MGMT_DLLPD_D | \
6072 					 LAN8814_POWER_MGMT_ADCPD_D | \
6073 					 LAN8814_POWER_MGMT_PGAPD_D | \
6074 					 LAN8814_POWER_MGMT_DLLPD_C | \
6075 					 LAN8814_POWER_MGMT_ADCPD_C | \
6076 					 LAN8814_POWER_MGMT_PGAPD_C)
6077 
6078 #define LAN8814_POWER_MGMT_B_C_D	(LAN8814_POWER_MGMT_C_D | \
6079 					 LAN8814_POWER_MGMT_DLLPD_B | \
6080 					 LAN8814_POWER_MGMT_ADCPD_B | \
6081 					 LAN8814_POWER_MGMT_PGAPD_B)
6082 
6083 #define LAN8814_POWER_MGMT_VAL1		(LAN8814_POWER_MGMT_C_D | \
6084 					 LAN8814_POWER_MGMT_ADCPD_B | \
6085 					 LAN8814_POWER_MGMT_PGAPD_B | \
6086 					 LAN8814_POWER_MGMT_ADCPD_A | \
6087 					 LAN8814_POWER_MGMT_PGAPD_A)
6088 
6089 #define LAN8814_POWER_MGMT_VAL2		LAN8814_POWER_MGMT_C_D
6090 
6091 #define LAN8814_POWER_MGMT_VAL3		(LAN8814_POWER_MGMT_C_D | \
6092 					 LAN8814_POWER_MGMT_DLLPD_B | \
6093 					 LAN8814_POWER_MGMT_ADCPD_B | \
6094 					 LAN8814_POWER_MGMT_PGAPD_A)
6095 
6096 #define LAN8814_POWER_MGMT_VAL4		(LAN8814_POWER_MGMT_B_C_D | \
6097 					 LAN8814_POWER_MGMT_ADCPD_A | \
6098 					 LAN8814_POWER_MGMT_PGAPD_A)
6099 
6100 #define LAN8814_POWER_MGMT_VAL5		LAN8814_POWER_MGMT_B_C_D
6101 
6102 #define LAN8814_EEE_WAKE_TX_TIMER			0x0e
6103 #define LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL		0x1f
6104 
6105 static const struct lanphy_reg_data short_center_tap_errata[] = {
6106 	{ LAN8814_PAGE_POWER_REGS,
6107 	  LAN8814_POWER_MGMT_MODE_3_ANEG_MDI,
6108 	  LAN8814_POWER_MGMT_VAL1 },
6109 	{ LAN8814_PAGE_POWER_REGS,
6110 	  LAN8814_POWER_MGMT_MODE_4_ANEG_MDIX,
6111 	  LAN8814_POWER_MGMT_VAL1 },
6112 	{ LAN8814_PAGE_POWER_REGS,
6113 	  LAN8814_POWER_MGMT_MODE_5_10BT_MDI,
6114 	  LAN8814_POWER_MGMT_VAL1 },
6115 	{ LAN8814_PAGE_POWER_REGS,
6116 	  LAN8814_POWER_MGMT_MODE_6_10BT_MDIX,
6117 	  LAN8814_POWER_MGMT_VAL1 },
6118 	{ LAN8814_PAGE_POWER_REGS,
6119 	  LAN8814_POWER_MGMT_MODE_7_100BT_TRAIN,
6120 	  LAN8814_POWER_MGMT_VAL2 },
6121 	{ LAN8814_PAGE_POWER_REGS,
6122 	  LAN8814_POWER_MGMT_MODE_8_100BT_MDI,
6123 	  LAN8814_POWER_MGMT_VAL3 },
6124 	{ LAN8814_PAGE_POWER_REGS,
6125 	  LAN8814_POWER_MGMT_MODE_9_100BT_EEE_MDI_TX,
6126 	  LAN8814_POWER_MGMT_VAL3 },
6127 	{ LAN8814_PAGE_POWER_REGS,
6128 	  LAN8814_POWER_MGMT_MODE_10_100BT_EEE_MDI_RX,
6129 	  LAN8814_POWER_MGMT_VAL4 },
6130 	{ LAN8814_PAGE_POWER_REGS,
6131 	  LAN8814_POWER_MGMT_MODE_11_100BT_MDIX,
6132 	  LAN8814_POWER_MGMT_VAL5 },
6133 	{ LAN8814_PAGE_POWER_REGS,
6134 	  LAN8814_POWER_MGMT_MODE_12_100BT_EEE_MDIX_TX,
6135 	  LAN8814_POWER_MGMT_VAL5 },
6136 	{ LAN8814_PAGE_POWER_REGS,
6137 	  LAN8814_POWER_MGMT_MODE_13_100BT_EEE_MDIX_RX,
6138 	  LAN8814_POWER_MGMT_VAL4 },
6139 	{ LAN8814_PAGE_POWER_REGS,
6140 	  LAN8814_POWER_MGMT_MODE_14_100BTX_EEE_TX_RX,
6141 	  LAN8814_POWER_MGMT_VAL4 },
6142 };
6143 
6144 static const struct lanphy_reg_data waketx_timer_errata[] = {
6145 	{ LAN8814_PAGE_EEE,
6146 	  LAN8814_EEE_WAKE_TX_TIMER,
6147 	  LAN8814_EEE_WAKE_TX_TIMER_MAX_VAL },
6148 };
6149 
6150 static int lanphy_write_reg_data(struct phy_device *phydev,
6151 				 const struct lanphy_reg_data *data,
6152 				 size_t num)
6153 {
6154 	int ret = 0;
6155 
6156 	while (num--) {
6157 		ret = lanphy_write_page_reg(phydev, data->page, data->addr,
6158 					    data->val);
6159 		if (ret)
6160 			break;
6161 	}
6162 
6163 	return ret;
6164 }
6165 
6166 static int lan8842_erratas(struct phy_device *phydev)
6167 {
6168 	int ret;
6169 
6170 	ret = lanphy_write_reg_data(phydev, short_center_tap_errata,
6171 				    ARRAY_SIZE(short_center_tap_errata));
6172 	if (ret)
6173 		return ret;
6174 
6175 	return lanphy_write_reg_data(phydev, waketx_timer_errata,
6176 				     ARRAY_SIZE(waketx_timer_errata));
6177 }
6178 
6179 static int lan8842_config_init(struct phy_device *phydev)
6180 {
6181 	int ret;
6182 
6183 	/* Reset the PHY */
6184 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6185 				     LAN8814_QSGMII_SOFT_RESET,
6186 				     LAN8814_QSGMII_SOFT_RESET_BIT,
6187 				     LAN8814_QSGMII_SOFT_RESET_BIT);
6188 	if (ret < 0)
6189 		return ret;
6190 
6191 	/* Apply the erratas for this device */
6192 	ret = lan8842_erratas(phydev);
6193 	if (ret < 0)
6194 		return ret;
6195 
6196 	/* Even if the GPIOs are set to control the LEDs the behaviour of the
6197 	 * LEDs is wrong, they are not blinking when there is traffic.
6198 	 * To fix this it is required to set extended LED mode
6199 	 */
6200 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6201 				     LAN8814_LED_CTRL_1,
6202 				     LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_, 0);
6203 	if (ret < 0)
6204 		return ret;
6205 
6206 	ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6207 				     LAN8814_LED_CTRL_2,
6208 				     LAN8814_LED_CTRL_2_LED1_COM_DIS,
6209 				     LAN8814_LED_CTRL_2_LED1_COM_DIS);
6210 	if (ret < 0)
6211 		return ret;
6212 
6213 	/* To allow the PHY to control the LEDs the GPIOs of the PHY should have
6214 	 * a function mode and not the GPIO. Apparently by default the value is
6215 	 * GPIO and not function even though the datasheet it says that it is
6216 	 * function. Therefore set this value.
6217 	 */
6218 	return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6219 				     LAN8814_GPIO_EN2, 0);
6220 }
6221 
6222 #define LAN8842_INTR_CTRL_REG			52 /* 0x34 */
6223 
6224 static int lan8842_config_intr(struct phy_device *phydev)
6225 {
6226 	int err;
6227 
6228 	lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS,
6229 			      LAN8842_INTR_CTRL_REG,
6230 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
6231 
6232 	/* enable / disable interrupts */
6233 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
6234 		err = lan8814_ack_interrupt(phydev);
6235 		if (err)
6236 			return err;
6237 
6238 		err = phy_write(phydev, LAN8814_INTC,
6239 				LAN8814_INT_LINK | LAN8814_INT_FLF);
6240 	} else {
6241 		err = phy_write(phydev, LAN8814_INTC, 0);
6242 		if (err)
6243 			return err;
6244 
6245 		err = lan8814_ack_interrupt(phydev);
6246 	}
6247 
6248 	return err;
6249 }
6250 
6251 static unsigned int lan8842_inband_caps(struct phy_device *phydev,
6252 					phy_interface_t interface)
6253 {
6254 	/* Inband configuration can be enabled or disabled using the registers
6255 	 * PCS1G_ANEG_CONFIG.
6256 	 */
6257 	return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE;
6258 }
6259 
6260 static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes)
6261 {
6262 	bool enable;
6263 
6264 	if (modes == LINK_INBAND_DISABLE)
6265 		enable = false;
6266 	else
6267 		enable = true;
6268 
6269 	/* Disable or enable in-band autoneg with PCS Host side
6270 	 * It has the same address as lan8814
6271 	 */
6272 	return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6273 				      LAN8814_QSGMII_PCS1G_ANEG_CONFIG,
6274 				      LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA,
6275 				      enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0);
6276 }
6277 
6278 static void lan8842_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
6279 {
6280 	struct kszphy_ptp_priv *ptp_priv;
6281 	struct lan8842_priv *priv;
6282 
6283 	priv = phydev->priv;
6284 	ptp_priv = &priv->ptp_priv;
6285 
6286 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
6287 		lan8814_get_tx_ts(ptp_priv);
6288 
6289 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
6290 		lan8814_get_rx_ts(ptp_priv);
6291 
6292 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
6293 		lan8814_flush_fifo(phydev, true);
6294 		skb_queue_purge(&ptp_priv->tx_queue);
6295 	}
6296 
6297 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
6298 		lan8814_flush_fifo(phydev, false);
6299 		skb_queue_purge(&ptp_priv->rx_queue);
6300 	}
6301 }
6302 
6303 static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev)
6304 {
6305 	struct lan8842_priv *priv = phydev->priv;
6306 	int ret = IRQ_NONE;
6307 	int irq_status;
6308 
6309 	irq_status = phy_read(phydev, LAN8814_INTS);
6310 	if (irq_status < 0) {
6311 		phy_error(phydev);
6312 		return IRQ_NONE;
6313 	}
6314 
6315 	if (irq_status & (LAN8814_INT_LINK | LAN8814_INT_FLF)) {
6316 		phy_trigger_machine(phydev);
6317 		ret = IRQ_HANDLED;
6318 	}
6319 
6320 	/* Phy revision lan8832 doesn't have support for PTP therefore there is
6321 	 * not need to check the PTP and GPIO interrupts
6322 	 */
6323 	if (priv->rev == LAN8842_REV_8832)
6324 		goto out;
6325 
6326 	while (true) {
6327 		irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS,
6328 						  PTP_TSU_INT_STS);
6329 		if (!irq_status)
6330 			break;
6331 
6332 		lan8842_handle_ptp_interrupt(phydev, irq_status);
6333 		ret = IRQ_HANDLED;
6334 	}
6335 
6336 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
6337 		ret = IRQ_HANDLED;
6338 
6339 out:
6340 	return ret;
6341 }
6342 
6343 static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs)
6344 {
6345 	u64 ret = 0;
6346 	int val;
6347 
6348 	for (int j = 0; j < count; ++j) {
6349 		val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL,
6350 					   regs[j]);
6351 		if (val < 0)
6352 			return U64_MAX;
6353 
6354 		ret <<= 16;
6355 		ret += val;
6356 	}
6357 	return ret;
6358 }
6359 
6360 static int lan8842_update_stats(struct phy_device *phydev)
6361 {
6362 	struct lan8842_priv *priv = phydev->priv;
6363 	int rx_packets_regs[] = {88, 61, 60};
6364 	int rx_errors_regs[] = {63, 62};
6365 	int tx_packets_regs[] = {89, 85, 84};
6366 	int tx_errors_regs[] = {87, 86};
6367 
6368 	priv->phy_stats.rx_packets = lan8842_get_stat(phydev,
6369 						      ARRAY_SIZE(rx_packets_regs),
6370 						      rx_packets_regs);
6371 	priv->phy_stats.rx_errors = lan8842_get_stat(phydev,
6372 						     ARRAY_SIZE(rx_errors_regs),
6373 						     rx_errors_regs);
6374 	priv->phy_stats.tx_packets = lan8842_get_stat(phydev,
6375 						      ARRAY_SIZE(tx_packets_regs),
6376 						      tx_packets_regs);
6377 	priv->phy_stats.tx_errors = lan8842_get_stat(phydev,
6378 						     ARRAY_SIZE(tx_errors_regs),
6379 						     tx_errors_regs);
6380 
6381 	return 0;
6382 }
6383 
6384 #define LAN8842_FLF				15 /* 0x0e */
6385 #define LAN8842_FLF_ENA				BIT(1)
6386 #define LAN8842_FLF_ENA_LINK_DOWN		BIT(0)
6387 
6388 static int lan8842_get_fast_down(struct phy_device *phydev, u8 *msecs)
6389 {
6390 	int ret;
6391 
6392 	ret = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS, LAN8842_FLF);
6393 	if (ret < 0)
6394 		return ret;
6395 
6396 	if (ret & LAN8842_FLF_ENA)
6397 		*msecs = ETHTOOL_PHY_FAST_LINK_DOWN_ON;
6398 	else
6399 		*msecs = ETHTOOL_PHY_FAST_LINK_DOWN_OFF;
6400 
6401 	return 0;
6402 }
6403 
6404 static int lan8842_set_fast_down(struct phy_device *phydev, const u8 *msecs)
6405 {
6406 	u16 flf;
6407 
6408 	switch (*msecs) {
6409 	case ETHTOOL_PHY_FAST_LINK_DOWN_OFF:
6410 		flf = 0;
6411 		break;
6412 	case ETHTOOL_PHY_FAST_LINK_DOWN_ON:
6413 		flf = LAN8842_FLF_ENA | LAN8842_FLF_ENA_LINK_DOWN;
6414 		break;
6415 	default:
6416 		return -EINVAL;
6417 	}
6418 
6419 	return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS,
6420 				      LAN8842_FLF,
6421 				      LAN8842_FLF_ENA |
6422 				      LAN8842_FLF_ENA_LINK_DOWN, flf);
6423 }
6424 
6425 static int lan8842_get_tunable(struct phy_device *phydev,
6426 			       struct ethtool_tunable *tuna, void *data)
6427 {
6428 	switch (tuna->id) {
6429 	case ETHTOOL_PHY_FAST_LINK_DOWN:
6430 		return lan8842_get_fast_down(phydev, data);
6431 	default:
6432 		return -EOPNOTSUPP;
6433 	}
6434 }
6435 
6436 static int lan8842_set_tunable(struct phy_device *phydev,
6437 			       struct ethtool_tunable *tuna, const void *data)
6438 {
6439 	switch (tuna->id) {
6440 	case ETHTOOL_PHY_FAST_LINK_DOWN:
6441 		return lan8842_set_fast_down(phydev, data);
6442 	default:
6443 		return -EOPNOTSUPP;
6444 	}
6445 }
6446 
6447 static void lan8842_get_phy_stats(struct phy_device *phydev,
6448 				  struct ethtool_eth_phy_stats *eth_stats,
6449 				  struct ethtool_phy_stats *stats)
6450 {
6451 	struct lan8842_priv *priv = phydev->priv;
6452 
6453 	stats->rx_packets = priv->phy_stats.rx_packets;
6454 	stats->rx_errors = priv->phy_stats.rx_errors;
6455 	stats->tx_packets = priv->phy_stats.tx_packets;
6456 	stats->tx_errors = priv->phy_stats.tx_errors;
6457 }
6458 
6459 static struct phy_driver ksphy_driver[] = {
6460 {
6461 	PHY_ID_MATCH_MODEL(PHY_ID_KS8737),
6462 	.name		= "Micrel KS8737",
6463 	/* PHY_BASIC_FEATURES */
6464 	.driver_data	= &ks8737_type,
6465 	.probe		= kszphy_probe,
6466 	.config_init	= kszphy_config_init,
6467 	.config_intr	= kszphy_config_intr,
6468 	.handle_interrupt = kszphy_handle_interrupt,
6469 	.suspend	= kszphy_suspend,
6470 	.resume		= kszphy_resume,
6471 }, {
6472 	.phy_id		= PHY_ID_KSZ8021,
6473 	.phy_id_mask	= 0x00ffffff,
6474 	.name		= "Micrel KSZ8021 or KSZ8031",
6475 	/* PHY_BASIC_FEATURES */
6476 	.driver_data	= &ksz8021_type,
6477 	.probe		= kszphy_probe,
6478 	.config_init	= kszphy_config_init,
6479 	.config_intr	= kszphy_config_intr,
6480 	.handle_interrupt = kszphy_handle_interrupt,
6481 	.get_sset_count = kszphy_get_sset_count,
6482 	.get_strings	= kszphy_get_strings,
6483 	.get_stats	= kszphy_get_stats,
6484 	.suspend	= kszphy_suspend,
6485 	.resume		= kszphy_resume,
6486 }, {
6487 	.phy_id		= PHY_ID_KSZ8031,
6488 	.phy_id_mask	= 0x00ffffff,
6489 	.name		= "Micrel KSZ8031",
6490 	/* PHY_BASIC_FEATURES */
6491 	.driver_data	= &ksz8021_type,
6492 	.probe		= kszphy_probe,
6493 	.config_init	= kszphy_config_init,
6494 	.config_intr	= kszphy_config_intr,
6495 	.handle_interrupt = kszphy_handle_interrupt,
6496 	.get_sset_count = kszphy_get_sset_count,
6497 	.get_strings	= kszphy_get_strings,
6498 	.get_stats	= kszphy_get_stats,
6499 	.suspend	= kszphy_suspend,
6500 	.resume		= kszphy_resume,
6501 }, {
6502 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041),
6503 	.name		= "Micrel KSZ8041",
6504 	/* PHY_BASIC_FEATURES */
6505 	.driver_data	= &ksz8041_type,
6506 	.probe		= kszphy_probe,
6507 	.config_init	= ksz8041_config_init,
6508 	.config_aneg	= ksz8041_config_aneg,
6509 	.config_intr	= kszphy_config_intr,
6510 	.handle_interrupt = kszphy_handle_interrupt,
6511 	.get_sset_count = kszphy_get_sset_count,
6512 	.get_strings	= kszphy_get_strings,
6513 	.get_stats	= kszphy_get_stats,
6514 	.suspend	= ksz8041_suspend,
6515 	.resume		= ksz8041_resume,
6516 }, {
6517 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI),
6518 	.name		= "Micrel KSZ8041RNLI",
6519 	/* PHY_BASIC_FEATURES */
6520 	.driver_data	= &ksz8041_type,
6521 	.probe		= kszphy_probe,
6522 	.config_init	= kszphy_config_init,
6523 	.config_intr	= kszphy_config_intr,
6524 	.handle_interrupt = kszphy_handle_interrupt,
6525 	.get_sset_count = kszphy_get_sset_count,
6526 	.get_strings	= kszphy_get_strings,
6527 	.get_stats	= kszphy_get_stats,
6528 	.suspend	= kszphy_suspend,
6529 	.resume		= kszphy_resume,
6530 }, {
6531 	.name		= "Micrel KSZ8051",
6532 	/* PHY_BASIC_FEATURES */
6533 	.driver_data	= &ksz8051_type,
6534 	.probe		= kszphy_probe,
6535 	.config_init	= kszphy_config_init,
6536 	.config_intr	= kszphy_config_intr,
6537 	.handle_interrupt = kszphy_handle_interrupt,
6538 	.get_sset_count = kszphy_get_sset_count,
6539 	.get_strings	= kszphy_get_strings,
6540 	.get_stats	= kszphy_get_stats,
6541 	.match_phy_device = ksz8051_match_phy_device,
6542 	.suspend	= kszphy_suspend,
6543 	.resume		= kszphy_resume,
6544 }, {
6545 	.phy_id		= PHY_ID_KSZ8001,
6546 	.name		= "Micrel KSZ8001 or KS8721",
6547 	.phy_id_mask	= 0x00fffffc,
6548 	/* PHY_BASIC_FEATURES */
6549 	.driver_data	= &ksz8041_type,
6550 	.probe		= kszphy_probe,
6551 	.config_init	= kszphy_config_init,
6552 	.config_intr	= kszphy_config_intr,
6553 	.handle_interrupt = kszphy_handle_interrupt,
6554 	.get_sset_count = kszphy_get_sset_count,
6555 	.get_strings	= kszphy_get_strings,
6556 	.get_stats	= kszphy_get_stats,
6557 	.suspend	= kszphy_suspend,
6558 	.resume		= kszphy_resume,
6559 }, {
6560 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081),
6561 	.name		= "Micrel KSZ8081 or KSZ8091",
6562 	.flags		= PHY_POLL_CABLE_TEST,
6563 	/* PHY_BASIC_FEATURES */
6564 	.driver_data	= &ksz8081_type,
6565 	.probe		= kszphy_probe,
6566 	.config_init	= ksz8081_config_init,
6567 	.soft_reset	= genphy_soft_reset,
6568 	.config_aneg	= ksz8081_config_aneg,
6569 	.read_status	= ksz8081_read_status,
6570 	.config_intr	= kszphy_config_intr,
6571 	.handle_interrupt = kszphy_handle_interrupt,
6572 	.get_sset_count = kszphy_get_sset_count,
6573 	.get_strings	= kszphy_get_strings,
6574 	.get_stats	= kszphy_get_stats,
6575 	.suspend	= kszphy_suspend,
6576 	.resume		= kszphy_resume,
6577 	.cable_test_start	= ksz886x_cable_test_start,
6578 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6579 }, {
6580 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061),
6581 	.name		= "Micrel KSZ8061",
6582 	/* PHY_BASIC_FEATURES */
6583 	.probe		= kszphy_probe,
6584 	.config_init	= ksz8061_config_init,
6585 	.soft_reset	= genphy_soft_reset,
6586 	.config_intr	= kszphy_config_intr,
6587 	.handle_interrupt = kszphy_handle_interrupt,
6588 	.suspend	= ksz8061_suspend,
6589 	.resume		= ksz8061_resume,
6590 }, {
6591 	.phy_id		= PHY_ID_KSZ9021,
6592 	.phy_id_mask	= 0x000ffffe,
6593 	.name		= "Micrel KSZ9021 Gigabit PHY",
6594 	/* PHY_GBIT_FEATURES */
6595 	.driver_data	= &ksz9021_type,
6596 	.probe		= kszphy_probe,
6597 	.get_features	= ksz9031_get_features,
6598 	.config_init	= ksz9021_config_init,
6599 	.config_intr	= kszphy_config_intr,
6600 	.handle_interrupt = kszphy_handle_interrupt,
6601 	.get_sset_count = kszphy_get_sset_count,
6602 	.get_strings	= kszphy_get_strings,
6603 	.get_stats	= kszphy_get_stats,
6604 	.suspend	= kszphy_suspend,
6605 	.resume		= kszphy_resume,
6606 	.read_mmd	= genphy_read_mmd_unsupported,
6607 	.write_mmd	= genphy_write_mmd_unsupported,
6608 }, {
6609 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031),
6610 	.name		= "Micrel KSZ9031 Gigabit PHY",
6611 	.flags		= PHY_POLL_CABLE_TEST,
6612 	.driver_data	= &ksz9021_type,
6613 	.probe		= kszphy_probe,
6614 	.get_features	= ksz9031_get_features,
6615 	.config_init	= ksz9031_config_init,
6616 	.soft_reset	= genphy_soft_reset,
6617 	.read_status	= ksz9031_read_status,
6618 	.config_intr	= kszphy_config_intr,
6619 	.handle_interrupt = kszphy_handle_interrupt,
6620 	.get_sset_count = kszphy_get_sset_count,
6621 	.get_strings	= kszphy_get_strings,
6622 	.get_stats	= kszphy_get_stats,
6623 	.suspend	= kszphy_suspend,
6624 	.resume		= kszphy_resume,
6625 	.cable_test_start	= ksz9x31_cable_test_start,
6626 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6627 	.set_loopback	= ksz9031_set_loopback,
6628 }, {
6629 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8814),
6630 	.name		= "Microchip INDY Gigabit Quad PHY",
6631 	.flags          = PHY_POLL_CABLE_TEST,
6632 	.config_init	= lan8814_config_init,
6633 	.driver_data	= &lan8814_type,
6634 	.probe		= lan8814_probe,
6635 	.soft_reset	= genphy_soft_reset,
6636 	.read_status	= ksz9031_read_status,
6637 	.get_sset_count	= kszphy_get_sset_count,
6638 	.get_strings	= kszphy_get_strings,
6639 	.get_stats	= kszphy_get_stats,
6640 	.suspend	= genphy_suspend,
6641 	.resume		= kszphy_resume,
6642 	.config_intr	= lan8814_config_intr,
6643 	.handle_interrupt = lan8814_handle_interrupt,
6644 	.cable_test_start	= lan8814_cable_test_start,
6645 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6646 }, {
6647 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8804),
6648 	.name		= "Microchip LAN966X Gigabit PHY",
6649 	.config_init	= lan8804_config_init,
6650 	.driver_data	= &ksz9021_type,
6651 	.probe		= kszphy_probe,
6652 	.soft_reset	= genphy_soft_reset,
6653 	.read_status	= ksz9031_read_status,
6654 	.get_sset_count	= kszphy_get_sset_count,
6655 	.get_strings	= kszphy_get_strings,
6656 	.get_stats	= kszphy_get_stats,
6657 	.suspend	= lan8804_suspend,
6658 	.resume		= lan8804_resume,
6659 	.config_intr	= lan8804_config_intr,
6660 	.handle_interrupt = lan8804_handle_interrupt,
6661 }, {
6662 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8841),
6663 	.name		= "Microchip LAN8841 Gigabit PHY",
6664 	.flags		= PHY_POLL_CABLE_TEST,
6665 	.driver_data	= &lan8841_type,
6666 	.config_init	= lan8841_config_init,
6667 	.probe		= lan8841_probe,
6668 	.soft_reset	= genphy_soft_reset,
6669 	.config_intr	= lan8841_config_intr,
6670 	.handle_interrupt = lan8841_handle_interrupt,
6671 	.get_sset_count = kszphy_get_sset_count,
6672 	.get_strings	= kszphy_get_strings,
6673 	.get_stats	= kszphy_get_stats,
6674 	.suspend	= lan8841_suspend,
6675 	.resume		= lan8841_resume,
6676 	.cable_test_start	= lan8814_cable_test_start,
6677 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6678 }, {
6679 	PHY_ID_MATCH_MODEL(PHY_ID_LAN8842),
6680 	.name		= "Microchip LAN8842 Gigabit PHY",
6681 	.flags		= PHY_POLL_CABLE_TEST,
6682 	.driver_data	= &lan8814_type,
6683 	.probe		= lan8842_probe,
6684 	.config_init	= lan8842_config_init,
6685 	.config_intr	= lan8842_config_intr,
6686 	.inband_caps	= lan8842_inband_caps,
6687 	.config_inband	= lan8842_config_inband,
6688 	.handle_interrupt = lan8842_handle_interrupt,
6689 	.get_phy_stats	= lan8842_get_phy_stats,
6690 	.update_stats	= lan8842_update_stats,
6691 	.get_tunable	= lan8842_get_tunable,
6692 	.set_tunable	= lan8842_set_tunable,
6693 	.cable_test_start	= lan8814_cable_test_start,
6694 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6695 }, {
6696 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131),
6697 	.name		= "Microchip KSZ9131 Gigabit PHY",
6698 	/* PHY_GBIT_FEATURES */
6699 	.flags		= PHY_POLL_CABLE_TEST,
6700 	.driver_data	= &ksz9131_type,
6701 	.probe		= kszphy_probe,
6702 	.soft_reset	= genphy_soft_reset,
6703 	.config_init	= ksz9131_config_init,
6704 	.config_intr	= kszphy_config_intr,
6705 	.config_aneg	= ksz9131_config_aneg,
6706 	.read_status	= ksz9131_read_status,
6707 	.handle_interrupt = kszphy_handle_interrupt,
6708 	.get_sset_count = kszphy_get_sset_count,
6709 	.get_strings	= kszphy_get_strings,
6710 	.get_stats	= kszphy_get_stats,
6711 	.suspend	= kszphy_suspend,
6712 	.resume		= ksz9131_resume,
6713 	.cable_test_start	= ksz9x31_cable_test_start,
6714 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6715 	.get_features	= ksz9477_get_features,
6716 }, {
6717 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL),
6718 	.name		= "Micrel KSZ8873MLL Switch",
6719 	/* PHY_BASIC_FEATURES */
6720 	.config_init	= kszphy_config_init,
6721 	.config_aneg	= ksz8873mll_config_aneg,
6722 	.read_status	= ksz8873mll_read_status,
6723 	.suspend	= genphy_suspend,
6724 	.resume		= genphy_resume,
6725 }, {
6726 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X),
6727 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
6728 	.driver_data	= &ksz886x_type,
6729 	/* PHY_BASIC_FEATURES */
6730 	.flags		= PHY_POLL_CABLE_TEST,
6731 	.config_init	= kszphy_config_init,
6732 	.config_aneg	= ksz886x_config_aneg,
6733 	.read_status	= ksz886x_read_status,
6734 	.suspend	= genphy_suspend,
6735 	.resume		= genphy_resume,
6736 	.cable_test_start	= ksz886x_cable_test_start,
6737 	.cable_test_get_status	= ksz886x_cable_test_get_status,
6738 }, {
6739 	.name		= "Micrel KSZ87XX Switch",
6740 	/* PHY_BASIC_FEATURES */
6741 	.config_init	= kszphy_config_init,
6742 	.match_phy_device = ksz8795_match_phy_device,
6743 	.suspend	= genphy_suspend,
6744 	.resume		= genphy_resume,
6745 }, {
6746 	PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477),
6747 	.name		= "Microchip KSZ9477",
6748 	.probe		= kszphy_probe,
6749 	/* PHY_GBIT_FEATURES */
6750 	.config_init	= ksz9477_config_init,
6751 	.config_intr	= kszphy_config_intr,
6752 	.config_aneg	= ksz9477_config_aneg,
6753 	.read_status	= ksz9477_read_status,
6754 	.handle_interrupt = kszphy_handle_interrupt,
6755 	.suspend	= genphy_suspend,
6756 	.resume		= ksz9477_resume,
6757 	.get_phy_stats	= kszphy_get_phy_stats,
6758 	.update_stats	= kszphy_update_stats,
6759 	.cable_test_start	= ksz9x31_cable_test_start,
6760 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
6761 	.get_sqi	= kszphy_get_sqi,
6762 	.get_sqi_max	= kszphy_get_sqi_max,
6763 	.get_mse_capability = kszphy_get_mse_capability,
6764 	.get_mse_snapshot = kszphy_get_mse_snapshot,
6765 } };
6766 
6767 module_phy_driver(ksphy_driver);
6768 
6769 MODULE_DESCRIPTION("Micrel PHY driver");
6770 MODULE_AUTHOR("David J. Choi");
6771 MODULE_LICENSE("GPL");
6772 
6773 static const struct mdio_device_id __maybe_unused micrel_tbl[] = {
6774 	{ PHY_ID_KSZ9021, 0x000ffffe },
6775 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) },
6776 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) },
6777 	{ PHY_ID_KSZ8001, 0x00fffffc },
6778 	{ PHY_ID_MATCH_MODEL(PHY_ID_KS8737) },
6779 	{ PHY_ID_KSZ8021, 0x00ffffff },
6780 	{ PHY_ID_KSZ8031, 0x00ffffff },
6781 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) },
6782 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) },
6783 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) },
6784 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) },
6785 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) },
6786 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) },
6787 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) },
6788 	{ PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) },
6789 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) },
6790 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) },
6791 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) },
6792 	{ PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) },
6793 	{ }
6794 };
6795 
6796 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
6797