xref: /linux/drivers/net/phy/micrel.c (revision bdce82e960d1205d118662f575cec39379984e34)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO				0x16
39 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
44 
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS			0x1B
47 #define KSZPHY_INTCS_JABBER			BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
50 #define KSZPHY_INTCS_PARELLEL			BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
54 #define KSZPHY_INTCS_LINK_UP			BIT(8)
55 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
56 						KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
59 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 						 KSZPHY_INTCS_LINK_UP_STATUS)
61 
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD				0x1d
64 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL			0
66 #define KSZ8081_LMD_STAT_OPEN			1
67 #define KSZ8081_LMD_STAT_SHORT			2
68 #define KSZ8081_LMD_STAT_FAIL			3
69 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
73 
74 #define KSZ9x31_LMD				0x12
75 #define KSZ9x31_LMD_VCT_EN			BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
83 #define KSZ9x31_LMD_VCT_ST_OPEN			1
84 #define KSZ9x31_LMD_VCT_ST_SHORT		2
85 #define KSZ9x31_LMD_VCT_ST_FAIL			3
86 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
94 
95 #define KSZPHY_WIRE_PAIR_MASK			0x3
96 
97 #define LAN8814_CABLE_DIAG			0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT			12
101 
102 #define LAN8814_WIRE_PAIR_MASK			0xF
103 
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC				0x18
106 #define LAN8814_INTS				0x1B
107 
108 #define LAN8814_INT_LINK_DOWN			BIT(2)
109 #define LAN8814_INT_LINK_UP			BIT(0)
110 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
111 						 LAN8814_INT_LINK_DOWN)
112 
113 #define LAN8814_INTR_CTRL_REG			0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
116 
117 /* Represents 1ppm adjustment in 2^32 format with
118  * each nsec contains 4 clock cycles.
119  * The value is calculated as following: (1/1000000)/((2^-32)/4)
120  */
121 #define LAN8814_1PPM_FORMAT			17179
122 
123 #define PTP_RX_VERSION				0x0248
124 #define PTP_TX_VERSION				0x0288
125 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
126 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
127 
128 #define PTP_RX_MOD				0x024F
129 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
130 #define PTP_RX_TIMESTAMP_EN			0x024D
131 #define PTP_TX_TIMESTAMP_EN			0x028D
132 
133 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
134 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
135 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
136 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
137 
138 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
139 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
140 
141 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
142 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
143 #define LTC_HARD_RESET				0x023F
144 #define LTC_HARD_RESET_				BIT(0)
145 
146 #define TSU_HARD_RESET				0x02C1
147 #define TSU_HARD_RESET_				BIT(0)
148 
149 #define PTP_CMD_CTL				0x0200
150 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
151 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
152 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
153 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
154 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
155 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
156 
157 #define PTP_CLOCK_SET_SEC_HI			0x0205
158 #define PTP_CLOCK_SET_SEC_MID			0x0206
159 #define PTP_CLOCK_SET_SEC_LO			0x0207
160 #define PTP_CLOCK_SET_NS_HI			0x0208
161 #define PTP_CLOCK_SET_NS_LO			0x0209
162 
163 #define PTP_CLOCK_READ_SEC_HI			0x0229
164 #define PTP_CLOCK_READ_SEC_MID			0x022A
165 #define PTP_CLOCK_READ_SEC_LO			0x022B
166 #define PTP_CLOCK_READ_NS_HI			0x022C
167 #define PTP_CLOCK_READ_NS_LO			0x022D
168 
169 #define PTP_OPERATING_MODE			0x0241
170 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
171 
172 #define PTP_TX_MOD				0x028F
173 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
174 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
175 
176 #define PTP_RX_PARSE_CONFIG			0x0242
177 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
178 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
179 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
180 
181 #define PTP_TX_PARSE_CONFIG			0x0282
182 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
183 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
184 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
185 
186 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
187 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
188 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
189 
190 #define PTP_LTC_STEP_ADJ_HI			0x0212
191 #define PTP_LTC_STEP_ADJ_LO			0x0213
192 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
193 
194 #define LAN8814_INTR_STS_REG			0x0033
195 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
196 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
197 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
198 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
199 
200 #define PTP_CAP_INFO				0x022A
201 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
202 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
203 
204 #define PTP_TX_EGRESS_SEC_HI			0x0296
205 #define PTP_TX_EGRESS_SEC_LO			0x0297
206 #define PTP_TX_EGRESS_NS_HI			0x0294
207 #define PTP_TX_EGRESS_NS_LO			0x0295
208 #define PTP_TX_MSG_HEADER2			0x0299
209 
210 #define PTP_RX_INGRESS_SEC_HI			0x0256
211 #define PTP_RX_INGRESS_SEC_LO			0x0257
212 #define PTP_RX_INGRESS_NS_HI			0x0254
213 #define PTP_RX_INGRESS_NS_LO			0x0255
214 #define PTP_RX_MSG_HEADER2			0x0259
215 
216 #define PTP_TSU_INT_EN				0x0200
217 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
218 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
219 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
220 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
221 
222 #define PTP_TSU_INT_STS				0x0201
223 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
224 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
225 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
226 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
227 
228 #define LAN8814_LED_CTRL_1			0x0
229 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
230 
231 /* PHY Control 1 */
232 #define MII_KSZPHY_CTRL_1			0x1e
233 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
234 
235 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
236 #define MII_KSZPHY_CTRL_2			0x1f
237 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
238 /* bitmap of PHY register to set interrupt mode */
239 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
240 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
241 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
242 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
243 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
244 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
245 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
246 
247 /* Write/read to/from extended registers */
248 #define MII_KSZPHY_EXTREG			0x0b
249 #define KSZPHY_EXTREG_WRITE			0x8000
250 
251 #define MII_KSZPHY_EXTREG_WRITE			0x0c
252 #define MII_KSZPHY_EXTREG_READ			0x0d
253 
254 /* Extended registers */
255 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
256 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
257 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
258 
259 #define PS_TO_REG				200
260 #define FIFO_SIZE				8
261 
262 /* Delay used to get the second part from the LTC */
263 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
264 
265 struct kszphy_hw_stat {
266 	const char *string;
267 	u8 reg;
268 	u8 bits;
269 };
270 
271 static struct kszphy_hw_stat kszphy_hw_stats[] = {
272 	{ "phy_receive_errors", 21, 16},
273 	{ "phy_idle_errors", 10, 8 },
274 };
275 
276 struct kszphy_type {
277 	u32 led_mode_reg;
278 	u16 interrupt_level_mask;
279 	u16 cable_diag_reg;
280 	unsigned long pair_mask;
281 	u16 disable_dll_tx_bit;
282 	u16 disable_dll_rx_bit;
283 	u16 disable_dll_mask;
284 	bool has_broadcast_disable;
285 	bool has_nand_tree_disable;
286 	bool has_rmii_ref_clk_sel;
287 };
288 
289 /* Shared structure between the PHYs of the same package. */
290 struct lan8814_shared_priv {
291 	struct phy_device *phydev;
292 	struct ptp_clock *ptp_clock;
293 	struct ptp_clock_info ptp_clock_info;
294 
295 	/* Reference counter to how many ports in the package are enabling the
296 	 * timestamping
297 	 */
298 	u8 ref;
299 
300 	/* Lock for ptp_clock and ref */
301 	struct mutex shared_lock;
302 };
303 
304 struct lan8814_ptp_rx_ts {
305 	struct list_head list;
306 	u32 seconds;
307 	u32 nsec;
308 	u16 seq_id;
309 };
310 
311 struct kszphy_ptp_priv {
312 	struct mii_timestamper mii_ts;
313 	struct phy_device *phydev;
314 
315 	struct sk_buff_head tx_queue;
316 	struct sk_buff_head rx_queue;
317 
318 	struct list_head rx_ts_list;
319 	/* Lock for Rx ts fifo */
320 	spinlock_t rx_ts_lock;
321 
322 	int hwts_tx_type;
323 	enum hwtstamp_rx_filters rx_filter;
324 	int layer;
325 	int version;
326 
327 	struct ptp_clock *ptp_clock;
328 	struct ptp_clock_info ptp_clock_info;
329 	/* Lock for ptp_clock */
330 	struct mutex ptp_lock;
331 	struct ptp_pin_desc *pin_config;
332 
333 	s64 seconds;
334 	/* Lock for accessing seconds */
335 	spinlock_t seconds_lock;
336 };
337 
338 struct kszphy_priv {
339 	struct kszphy_ptp_priv ptp_priv;
340 	const struct kszphy_type *type;
341 	int led_mode;
342 	u16 vct_ctrl1000;
343 	bool rmii_ref_clk_sel;
344 	bool rmii_ref_clk_sel_val;
345 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
346 };
347 
348 static const struct kszphy_type lan8814_type = {
349 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
350 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
351 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
352 };
353 
354 static const struct kszphy_type ksz886x_type = {
355 	.cable_diag_reg		= KSZ8081_LMD,
356 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
357 };
358 
359 static const struct kszphy_type ksz8021_type = {
360 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
361 	.has_broadcast_disable	= true,
362 	.has_nand_tree_disable	= true,
363 	.has_rmii_ref_clk_sel	= true,
364 };
365 
366 static const struct kszphy_type ksz8041_type = {
367 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
368 };
369 
370 static const struct kszphy_type ksz8051_type = {
371 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
372 	.has_nand_tree_disable	= true,
373 };
374 
375 static const struct kszphy_type ksz8081_type = {
376 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
377 	.has_broadcast_disable	= true,
378 	.has_nand_tree_disable	= true,
379 	.has_rmii_ref_clk_sel	= true,
380 };
381 
382 static const struct kszphy_type ks8737_type = {
383 	.interrupt_level_mask	= BIT(14),
384 };
385 
386 static const struct kszphy_type ksz9021_type = {
387 	.interrupt_level_mask	= BIT(14),
388 };
389 
390 static const struct kszphy_type ksz9131_type = {
391 	.interrupt_level_mask	= BIT(14),
392 	.disable_dll_tx_bit	= BIT(12),
393 	.disable_dll_rx_bit	= BIT(12),
394 	.disable_dll_mask	= BIT_MASK(12),
395 };
396 
397 static const struct kszphy_type lan8841_type = {
398 	.disable_dll_tx_bit	= BIT(14),
399 	.disable_dll_rx_bit	= BIT(14),
400 	.disable_dll_mask	= BIT_MASK(14),
401 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
402 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
403 };
404 
405 static int kszphy_extended_write(struct phy_device *phydev,
406 				u32 regnum, u16 val)
407 {
408 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
409 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
410 }
411 
412 static int kszphy_extended_read(struct phy_device *phydev,
413 				u32 regnum)
414 {
415 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
416 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
417 }
418 
419 static int kszphy_ack_interrupt(struct phy_device *phydev)
420 {
421 	/* bit[7..0] int status, which is a read and clear register. */
422 	int rc;
423 
424 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
425 
426 	return (rc < 0) ? rc : 0;
427 }
428 
429 static int kszphy_config_intr(struct phy_device *phydev)
430 {
431 	const struct kszphy_type *type = phydev->drv->driver_data;
432 	int temp, err;
433 	u16 mask;
434 
435 	if (type && type->interrupt_level_mask)
436 		mask = type->interrupt_level_mask;
437 	else
438 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
439 
440 	/* set the interrupt pin active low */
441 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
442 	if (temp < 0)
443 		return temp;
444 	temp &= ~mask;
445 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
446 
447 	/* enable / disable interrupts */
448 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
449 		err = kszphy_ack_interrupt(phydev);
450 		if (err)
451 			return err;
452 
453 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
454 	} else {
455 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
456 		if (err)
457 			return err;
458 
459 		err = kszphy_ack_interrupt(phydev);
460 	}
461 
462 	return err;
463 }
464 
465 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
466 {
467 	int irq_status;
468 
469 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
470 	if (irq_status < 0) {
471 		phy_error(phydev);
472 		return IRQ_NONE;
473 	}
474 
475 	if (!(irq_status & KSZPHY_INTCS_STATUS))
476 		return IRQ_NONE;
477 
478 	phy_trigger_machine(phydev);
479 
480 	return IRQ_HANDLED;
481 }
482 
483 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
484 {
485 	int ctrl;
486 
487 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
488 	if (ctrl < 0)
489 		return ctrl;
490 
491 	if (val)
492 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
493 	else
494 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
495 
496 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
497 }
498 
499 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
500 {
501 	int rc, temp, shift;
502 
503 	switch (reg) {
504 	case MII_KSZPHY_CTRL_1:
505 		shift = 14;
506 		break;
507 	case MII_KSZPHY_CTRL_2:
508 		shift = 4;
509 		break;
510 	default:
511 		return -EINVAL;
512 	}
513 
514 	temp = phy_read(phydev, reg);
515 	if (temp < 0) {
516 		rc = temp;
517 		goto out;
518 	}
519 
520 	temp &= ~(3 << shift);
521 	temp |= val << shift;
522 	rc = phy_write(phydev, reg, temp);
523 out:
524 	if (rc < 0)
525 		phydev_err(phydev, "failed to set led mode\n");
526 
527 	return rc;
528 }
529 
530 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
531  * unique (non-broadcast) address on a shared bus.
532  */
533 static int kszphy_broadcast_disable(struct phy_device *phydev)
534 {
535 	int ret;
536 
537 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
538 	if (ret < 0)
539 		goto out;
540 
541 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
542 out:
543 	if (ret)
544 		phydev_err(phydev, "failed to disable broadcast address\n");
545 
546 	return ret;
547 }
548 
549 static int kszphy_nand_tree_disable(struct phy_device *phydev)
550 {
551 	int ret;
552 
553 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
554 	if (ret < 0)
555 		goto out;
556 
557 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
558 		return 0;
559 
560 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
561 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
562 out:
563 	if (ret)
564 		phydev_err(phydev, "failed to disable NAND tree mode\n");
565 
566 	return ret;
567 }
568 
569 /* Some config bits need to be set again on resume, handle them here. */
570 static int kszphy_config_reset(struct phy_device *phydev)
571 {
572 	struct kszphy_priv *priv = phydev->priv;
573 	int ret;
574 
575 	if (priv->rmii_ref_clk_sel) {
576 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
577 		if (ret) {
578 			phydev_err(phydev,
579 				   "failed to set rmii reference clock\n");
580 			return ret;
581 		}
582 	}
583 
584 	if (priv->type && priv->led_mode >= 0)
585 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
586 
587 	return 0;
588 }
589 
590 static int kszphy_config_init(struct phy_device *phydev)
591 {
592 	struct kszphy_priv *priv = phydev->priv;
593 	const struct kszphy_type *type;
594 
595 	if (!priv)
596 		return 0;
597 
598 	type = priv->type;
599 
600 	if (type && type->has_broadcast_disable)
601 		kszphy_broadcast_disable(phydev);
602 
603 	if (type && type->has_nand_tree_disable)
604 		kszphy_nand_tree_disable(phydev);
605 
606 	return kszphy_config_reset(phydev);
607 }
608 
609 static int ksz8041_fiber_mode(struct phy_device *phydev)
610 {
611 	struct device_node *of_node = phydev->mdio.dev.of_node;
612 
613 	return of_property_read_bool(of_node, "micrel,fiber-mode");
614 }
615 
616 static int ksz8041_config_init(struct phy_device *phydev)
617 {
618 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
619 
620 	/* Limit supported and advertised modes in fiber mode */
621 	if (ksz8041_fiber_mode(phydev)) {
622 		phydev->dev_flags |= MICREL_PHY_FXEN;
623 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
624 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
625 
626 		linkmode_and(phydev->supported, phydev->supported, mask);
627 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
628 				 phydev->supported);
629 		linkmode_and(phydev->advertising, phydev->advertising, mask);
630 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
631 				 phydev->advertising);
632 		phydev->autoneg = AUTONEG_DISABLE;
633 	}
634 
635 	return kszphy_config_init(phydev);
636 }
637 
638 static int ksz8041_config_aneg(struct phy_device *phydev)
639 {
640 	/* Skip auto-negotiation in fiber mode */
641 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
642 		phydev->speed = SPEED_100;
643 		return 0;
644 	}
645 
646 	return genphy_config_aneg(phydev);
647 }
648 
649 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
650 					    const bool ksz_8051)
651 {
652 	int ret;
653 
654 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
655 		return 0;
656 
657 	ret = phy_read(phydev, MII_BMSR);
658 	if (ret < 0)
659 		return ret;
660 
661 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
662 	 * exact PHY ID. However, they can be told apart by the extended
663 	 * capability registers presence. The KSZ8051 PHY has them while
664 	 * the switch does not.
665 	 */
666 	ret &= BMSR_ERCAP;
667 	if (ksz_8051)
668 		return ret;
669 	else
670 		return !ret;
671 }
672 
673 static int ksz8051_match_phy_device(struct phy_device *phydev)
674 {
675 	return ksz8051_ksz8795_match_phy_device(phydev, true);
676 }
677 
678 static int ksz8081_config_init(struct phy_device *phydev)
679 {
680 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
681 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
682 	 * pull-down is missing, the factory test mode should be cleared by
683 	 * manually writing a 0.
684 	 */
685 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
686 
687 	return kszphy_config_init(phydev);
688 }
689 
690 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
691 {
692 	u16 val;
693 
694 	switch (ctrl) {
695 	case ETH_TP_MDI:
696 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
697 		break;
698 	case ETH_TP_MDI_X:
699 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
700 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
701 		break;
702 	case ETH_TP_MDI_AUTO:
703 		val = 0;
704 		break;
705 	default:
706 		return 0;
707 	}
708 
709 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
710 			  KSZ8081_CTRL2_HP_MDIX |
711 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
712 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
713 			  KSZ8081_CTRL2_HP_MDIX | val);
714 }
715 
716 static int ksz8081_config_aneg(struct phy_device *phydev)
717 {
718 	int ret;
719 
720 	ret = genphy_config_aneg(phydev);
721 	if (ret)
722 		return ret;
723 
724 	/* The MDI-X configuration is automatically changed by the PHY after
725 	 * switching from autoneg off to on. So, take MDI-X configuration under
726 	 * own control and set it after autoneg configuration was done.
727 	 */
728 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
729 }
730 
731 static int ksz8081_mdix_update(struct phy_device *phydev)
732 {
733 	int ret;
734 
735 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
736 	if (ret < 0)
737 		return ret;
738 
739 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
740 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
741 			phydev->mdix_ctrl = ETH_TP_MDI_X;
742 		else
743 			phydev->mdix_ctrl = ETH_TP_MDI;
744 	} else {
745 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
746 	}
747 
748 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
749 	if (ret < 0)
750 		return ret;
751 
752 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
753 		phydev->mdix = ETH_TP_MDI;
754 	else
755 		phydev->mdix = ETH_TP_MDI_X;
756 
757 	return 0;
758 }
759 
760 static int ksz8081_read_status(struct phy_device *phydev)
761 {
762 	int ret;
763 
764 	ret = ksz8081_mdix_update(phydev);
765 	if (ret < 0)
766 		return ret;
767 
768 	return genphy_read_status(phydev);
769 }
770 
771 static int ksz8061_config_init(struct phy_device *phydev)
772 {
773 	int ret;
774 
775 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
776 	if (ret)
777 		return ret;
778 
779 	return kszphy_config_init(phydev);
780 }
781 
782 static int ksz8795_match_phy_device(struct phy_device *phydev)
783 {
784 	return ksz8051_ksz8795_match_phy_device(phydev, false);
785 }
786 
787 static int ksz9021_load_values_from_of(struct phy_device *phydev,
788 				       const struct device_node *of_node,
789 				       u16 reg,
790 				       const char *field1, const char *field2,
791 				       const char *field3, const char *field4)
792 {
793 	int val1 = -1;
794 	int val2 = -2;
795 	int val3 = -3;
796 	int val4 = -4;
797 	int newval;
798 	int matches = 0;
799 
800 	if (!of_property_read_u32(of_node, field1, &val1))
801 		matches++;
802 
803 	if (!of_property_read_u32(of_node, field2, &val2))
804 		matches++;
805 
806 	if (!of_property_read_u32(of_node, field3, &val3))
807 		matches++;
808 
809 	if (!of_property_read_u32(of_node, field4, &val4))
810 		matches++;
811 
812 	if (!matches)
813 		return 0;
814 
815 	if (matches < 4)
816 		newval = kszphy_extended_read(phydev, reg);
817 	else
818 		newval = 0;
819 
820 	if (val1 != -1)
821 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
822 
823 	if (val2 != -2)
824 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
825 
826 	if (val3 != -3)
827 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
828 
829 	if (val4 != -4)
830 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
831 
832 	return kszphy_extended_write(phydev, reg, newval);
833 }
834 
835 static int ksz9021_config_init(struct phy_device *phydev)
836 {
837 	const struct device_node *of_node;
838 	const struct device *dev_walker;
839 
840 	/* The Micrel driver has a deprecated option to place phy OF
841 	 * properties in the MAC node. Walk up the tree of devices to
842 	 * find a device with an OF node.
843 	 */
844 	dev_walker = &phydev->mdio.dev;
845 	do {
846 		of_node = dev_walker->of_node;
847 		dev_walker = dev_walker->parent;
848 
849 	} while (!of_node && dev_walker);
850 
851 	if (of_node) {
852 		ksz9021_load_values_from_of(phydev, of_node,
853 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
854 				    "txen-skew-ps", "txc-skew-ps",
855 				    "rxdv-skew-ps", "rxc-skew-ps");
856 		ksz9021_load_values_from_of(phydev, of_node,
857 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
858 				    "rxd0-skew-ps", "rxd1-skew-ps",
859 				    "rxd2-skew-ps", "rxd3-skew-ps");
860 		ksz9021_load_values_from_of(phydev, of_node,
861 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
862 				    "txd0-skew-ps", "txd1-skew-ps",
863 				    "txd2-skew-ps", "txd3-skew-ps");
864 	}
865 	return 0;
866 }
867 
868 #define KSZ9031_PS_TO_REG		60
869 
870 /* Extended registers */
871 /* MMD Address 0x0 */
872 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
873 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
874 
875 /* MMD Address 0x2 */
876 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
877 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
878 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
879 
880 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
881 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
882 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
883 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
884 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
885 
886 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
887 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
888 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
889 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
890 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
891 
892 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
893 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
894 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
895 
896 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
897  * provide different RGMII options we need to configure delay offset
898  * for each pad relative to build in delay.
899  */
900 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
901  * 1.80ns
902  */
903 #define RX_ID				0x7
904 #define RX_CLK_ID			0x19
905 
906 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
907  * internal 1.2ns delay.
908  */
909 #define RX_ND				0xc
910 #define RX_CLK_ND			0x0
911 
912 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
913 #define TX_ID				0x0
914 #define TX_CLK_ID			0x1f
915 
916 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
917  * dealy
918  */
919 #define TX_ND				0x7
920 #define TX_CLK_ND			0xf
921 
922 /* MMD Address 0x1C */
923 #define MII_KSZ9031RN_EDPD		0x23
924 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
925 
926 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
927 				       const struct device_node *of_node,
928 				       u16 reg, size_t field_sz,
929 				       const char *field[], u8 numfields,
930 				       bool *update)
931 {
932 	int val[4] = {-1, -2, -3, -4};
933 	int matches = 0;
934 	u16 mask;
935 	u16 maxval;
936 	u16 newval;
937 	int i;
938 
939 	for (i = 0; i < numfields; i++)
940 		if (!of_property_read_u32(of_node, field[i], val + i))
941 			matches++;
942 
943 	if (!matches)
944 		return 0;
945 
946 	*update |= true;
947 
948 	if (matches < numfields)
949 		newval = phy_read_mmd(phydev, 2, reg);
950 	else
951 		newval = 0;
952 
953 	maxval = (field_sz == 4) ? 0xf : 0x1f;
954 	for (i = 0; i < numfields; i++)
955 		if (val[i] != -(i + 1)) {
956 			mask = 0xffff;
957 			mask ^= maxval << (field_sz * i);
958 			newval = (newval & mask) |
959 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
960 					<< (field_sz * i));
961 		}
962 
963 	return phy_write_mmd(phydev, 2, reg, newval);
964 }
965 
966 /* Center KSZ9031RNX FLP timing at 16ms. */
967 static int ksz9031_center_flp_timing(struct phy_device *phydev)
968 {
969 	int result;
970 
971 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
972 			       0x0006);
973 	if (result)
974 		return result;
975 
976 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
977 			       0x1A80);
978 	if (result)
979 		return result;
980 
981 	return genphy_restart_aneg(phydev);
982 }
983 
984 /* Enable energy-detect power-down mode */
985 static int ksz9031_enable_edpd(struct phy_device *phydev)
986 {
987 	int reg;
988 
989 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
990 	if (reg < 0)
991 		return reg;
992 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
993 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
994 }
995 
996 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
997 {
998 	u16 rx, tx, rx_clk, tx_clk;
999 	int ret;
1000 
1001 	switch (phydev->interface) {
1002 	case PHY_INTERFACE_MODE_RGMII:
1003 		tx = TX_ND;
1004 		tx_clk = TX_CLK_ND;
1005 		rx = RX_ND;
1006 		rx_clk = RX_CLK_ND;
1007 		break;
1008 	case PHY_INTERFACE_MODE_RGMII_ID:
1009 		tx = TX_ID;
1010 		tx_clk = TX_CLK_ID;
1011 		rx = RX_ID;
1012 		rx_clk = RX_CLK_ID;
1013 		break;
1014 	case PHY_INTERFACE_MODE_RGMII_RXID:
1015 		tx = TX_ND;
1016 		tx_clk = TX_CLK_ND;
1017 		rx = RX_ID;
1018 		rx_clk = RX_CLK_ID;
1019 		break;
1020 	case PHY_INTERFACE_MODE_RGMII_TXID:
1021 		tx = TX_ID;
1022 		tx_clk = TX_CLK_ID;
1023 		rx = RX_ND;
1024 		rx_clk = RX_CLK_ND;
1025 		break;
1026 	default:
1027 		return 0;
1028 	}
1029 
1030 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1031 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1032 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1033 	if (ret < 0)
1034 		return ret;
1035 
1036 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1037 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1038 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1039 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1040 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1041 	if (ret < 0)
1042 		return ret;
1043 
1044 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1045 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1046 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1047 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1048 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1049 	if (ret < 0)
1050 		return ret;
1051 
1052 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1053 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1054 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1055 }
1056 
1057 static int ksz9031_config_init(struct phy_device *phydev)
1058 {
1059 	const struct device_node *of_node;
1060 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1061 	static const char *rx_data_skews[4] = {
1062 		"rxd0-skew-ps", "rxd1-skew-ps",
1063 		"rxd2-skew-ps", "rxd3-skew-ps"
1064 	};
1065 	static const char *tx_data_skews[4] = {
1066 		"txd0-skew-ps", "txd1-skew-ps",
1067 		"txd2-skew-ps", "txd3-skew-ps"
1068 	};
1069 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1070 	const struct device *dev_walker;
1071 	int result;
1072 
1073 	result = ksz9031_enable_edpd(phydev);
1074 	if (result < 0)
1075 		return result;
1076 
1077 	/* The Micrel driver has a deprecated option to place phy OF
1078 	 * properties in the MAC node. Walk up the tree of devices to
1079 	 * find a device with an OF node.
1080 	 */
1081 	dev_walker = &phydev->mdio.dev;
1082 	do {
1083 		of_node = dev_walker->of_node;
1084 		dev_walker = dev_walker->parent;
1085 	} while (!of_node && dev_walker);
1086 
1087 	if (of_node) {
1088 		bool update = false;
1089 
1090 		if (phy_interface_is_rgmii(phydev)) {
1091 			result = ksz9031_config_rgmii_delay(phydev);
1092 			if (result < 0)
1093 				return result;
1094 		}
1095 
1096 		ksz9031_of_load_skew_values(phydev, of_node,
1097 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1098 				clk_skews, 2, &update);
1099 
1100 		ksz9031_of_load_skew_values(phydev, of_node,
1101 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1102 				control_skews, 2, &update);
1103 
1104 		ksz9031_of_load_skew_values(phydev, of_node,
1105 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1106 				rx_data_skews, 4, &update);
1107 
1108 		ksz9031_of_load_skew_values(phydev, of_node,
1109 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1110 				tx_data_skews, 4, &update);
1111 
1112 		if (update && !phy_interface_is_rgmii(phydev))
1113 			phydev_warn(phydev,
1114 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1115 
1116 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1117 		 * When the device links in the 1000BASE-T slave mode only,
1118 		 * the optional 125MHz reference output clock (CLK125_NDO)
1119 		 * has wide duty cycle variation.
1120 		 *
1121 		 * The optional CLK125_NDO clock does not meet the RGMII
1122 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1123 		 * cannot be used directly by the MAC side for clocking
1124 		 * applications that have setup/hold time requirements on
1125 		 * rising and falling clock edges.
1126 		 *
1127 		 * Workaround:
1128 		 * Force the phy to be the master to receive a stable clock
1129 		 * which meets the duty cycle requirement.
1130 		 */
1131 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1132 			result = phy_read(phydev, MII_CTRL1000);
1133 			if (result < 0)
1134 				goto err_force_master;
1135 
1136 			/* enable master mode, config & prefer master */
1137 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1138 			result = phy_write(phydev, MII_CTRL1000, result);
1139 			if (result < 0)
1140 				goto err_force_master;
1141 		}
1142 	}
1143 
1144 	return ksz9031_center_flp_timing(phydev);
1145 
1146 err_force_master:
1147 	phydev_err(phydev, "failed to force the phy to master mode\n");
1148 	return result;
1149 }
1150 
1151 #define KSZ9131_SKEW_5BIT_MAX	2400
1152 #define KSZ9131_SKEW_4BIT_MAX	800
1153 #define KSZ9131_OFFSET		700
1154 #define KSZ9131_STEP		100
1155 
1156 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1157 				       struct device_node *of_node,
1158 				       u16 reg, size_t field_sz,
1159 				       char *field[], u8 numfields)
1160 {
1161 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1162 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1163 	int skewval, skewmax = 0;
1164 	int matches = 0;
1165 	u16 maxval;
1166 	u16 newval;
1167 	u16 mask;
1168 	int i;
1169 
1170 	/* psec properties in dts should mean x pico seconds */
1171 	if (field_sz == 5)
1172 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1173 	else
1174 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1175 
1176 	for (i = 0; i < numfields; i++)
1177 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1178 			if (skewval < -KSZ9131_OFFSET)
1179 				skewval = -KSZ9131_OFFSET;
1180 			else if (skewval > skewmax)
1181 				skewval = skewmax;
1182 
1183 			val[i] = skewval + KSZ9131_OFFSET;
1184 			matches++;
1185 		}
1186 
1187 	if (!matches)
1188 		return 0;
1189 
1190 	if (matches < numfields)
1191 		newval = phy_read_mmd(phydev, 2, reg);
1192 	else
1193 		newval = 0;
1194 
1195 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1196 	for (i = 0; i < numfields; i++)
1197 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1198 			mask = 0xffff;
1199 			mask ^= maxval << (field_sz * i);
1200 			newval = (newval & mask) |
1201 				(((val[i] / KSZ9131_STEP) & maxval)
1202 					<< (field_sz * i));
1203 		}
1204 
1205 	return phy_write_mmd(phydev, 2, reg, newval);
1206 }
1207 
1208 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1209 #define KSZ9131RN_RXC_DLL_CTRL		76
1210 #define KSZ9131RN_TXC_DLL_CTRL		77
1211 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1212 
1213 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1214 {
1215 	const struct kszphy_type *type = phydev->drv->driver_data;
1216 	u16 rxcdll_val, txcdll_val;
1217 	int ret;
1218 
1219 	switch (phydev->interface) {
1220 	case PHY_INTERFACE_MODE_RGMII:
1221 		rxcdll_val = type->disable_dll_rx_bit;
1222 		txcdll_val = type->disable_dll_tx_bit;
1223 		break;
1224 	case PHY_INTERFACE_MODE_RGMII_ID:
1225 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1226 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1227 		break;
1228 	case PHY_INTERFACE_MODE_RGMII_RXID:
1229 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1230 		txcdll_val = type->disable_dll_tx_bit;
1231 		break;
1232 	case PHY_INTERFACE_MODE_RGMII_TXID:
1233 		rxcdll_val = type->disable_dll_rx_bit;
1234 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1235 		break;
1236 	default:
1237 		return 0;
1238 	}
1239 
1240 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1241 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1242 			     rxcdll_val);
1243 	if (ret < 0)
1244 		return ret;
1245 
1246 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1247 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1248 			      txcdll_val);
1249 }
1250 
1251 /* Silicon Errata DS80000693B
1252  *
1253  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1254  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1255  * according to the datasheet (off if there is no link).
1256  */
1257 static int ksz9131_led_errata(struct phy_device *phydev)
1258 {
1259 	int reg;
1260 
1261 	reg = phy_read_mmd(phydev, 2, 0);
1262 	if (reg < 0)
1263 		return reg;
1264 
1265 	if (!(reg & BIT(4)))
1266 		return 0;
1267 
1268 	return phy_set_bits(phydev, 0x1e, BIT(9));
1269 }
1270 
1271 static int ksz9131_config_init(struct phy_device *phydev)
1272 {
1273 	struct device_node *of_node;
1274 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1275 	char *rx_data_skews[4] = {
1276 		"rxd0-skew-psec", "rxd1-skew-psec",
1277 		"rxd2-skew-psec", "rxd3-skew-psec"
1278 	};
1279 	char *tx_data_skews[4] = {
1280 		"txd0-skew-psec", "txd1-skew-psec",
1281 		"txd2-skew-psec", "txd3-skew-psec"
1282 	};
1283 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1284 	const struct device *dev_walker;
1285 	int ret;
1286 
1287 	dev_walker = &phydev->mdio.dev;
1288 	do {
1289 		of_node = dev_walker->of_node;
1290 		dev_walker = dev_walker->parent;
1291 	} while (!of_node && dev_walker);
1292 
1293 	if (!of_node)
1294 		return 0;
1295 
1296 	if (phy_interface_is_rgmii(phydev)) {
1297 		ret = ksz9131_config_rgmii_delay(phydev);
1298 		if (ret < 0)
1299 			return ret;
1300 	}
1301 
1302 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1303 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1304 					  clk_skews, 2);
1305 	if (ret < 0)
1306 		return ret;
1307 
1308 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1309 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1310 					  control_skews, 2);
1311 	if (ret < 0)
1312 		return ret;
1313 
1314 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1315 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1316 					  rx_data_skews, 4);
1317 	if (ret < 0)
1318 		return ret;
1319 
1320 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1321 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1322 					  tx_data_skews, 4);
1323 	if (ret < 0)
1324 		return ret;
1325 
1326 	ret = ksz9131_led_errata(phydev);
1327 	if (ret < 0)
1328 		return ret;
1329 
1330 	return 0;
1331 }
1332 
1333 #define MII_KSZ9131_AUTO_MDIX		0x1C
1334 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1335 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1336 
1337 static int ksz9131_mdix_update(struct phy_device *phydev)
1338 {
1339 	int ret;
1340 
1341 	ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1342 	if (ret < 0)
1343 		return ret;
1344 
1345 	if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1346 		if (ret & MII_KSZ9131_AUTO_MDI_SET)
1347 			phydev->mdix_ctrl = ETH_TP_MDI;
1348 		else
1349 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1350 	} else {
1351 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1352 	}
1353 
1354 	if (ret & MII_KSZ9131_AUTO_MDI_SET)
1355 		phydev->mdix = ETH_TP_MDI;
1356 	else
1357 		phydev->mdix = ETH_TP_MDI_X;
1358 
1359 	return 0;
1360 }
1361 
1362 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1363 {
1364 	u16 val;
1365 
1366 	switch (ctrl) {
1367 	case ETH_TP_MDI:
1368 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1369 		      MII_KSZ9131_AUTO_MDI_SET;
1370 		break;
1371 	case ETH_TP_MDI_X:
1372 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1373 		break;
1374 	case ETH_TP_MDI_AUTO:
1375 		val = 0;
1376 		break;
1377 	default:
1378 		return 0;
1379 	}
1380 
1381 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1382 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1383 			  MII_KSZ9131_AUTO_MDI_SET, val);
1384 }
1385 
1386 static int ksz9131_read_status(struct phy_device *phydev)
1387 {
1388 	int ret;
1389 
1390 	ret = ksz9131_mdix_update(phydev);
1391 	if (ret < 0)
1392 		return ret;
1393 
1394 	return genphy_read_status(phydev);
1395 }
1396 
1397 static int ksz9131_config_aneg(struct phy_device *phydev)
1398 {
1399 	int ret;
1400 
1401 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1402 	if (ret)
1403 		return ret;
1404 
1405 	return genphy_config_aneg(phydev);
1406 }
1407 
1408 static int ksz9477_get_features(struct phy_device *phydev)
1409 {
1410 	int ret;
1411 
1412 	ret = genphy_read_abilities(phydev);
1413 	if (ret)
1414 		return ret;
1415 
1416 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1417 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1418 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1419 	 * of caps.
1420 	 * KSZ8563R should have 100BaseTX/Full only.
1421 	 */
1422 	linkmode_and(phydev->supported_eee, phydev->supported,
1423 		     PHY_EEE_CAP1_FEATURES);
1424 
1425 	return 0;
1426 }
1427 
1428 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1429 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1430 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1431 static int ksz8873mll_read_status(struct phy_device *phydev)
1432 {
1433 	int regval;
1434 
1435 	/* dummy read */
1436 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1437 
1438 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1439 
1440 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1441 		phydev->duplex = DUPLEX_HALF;
1442 	else
1443 		phydev->duplex = DUPLEX_FULL;
1444 
1445 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1446 		phydev->speed = SPEED_10;
1447 	else
1448 		phydev->speed = SPEED_100;
1449 
1450 	phydev->link = 1;
1451 	phydev->pause = phydev->asym_pause = 0;
1452 
1453 	return 0;
1454 }
1455 
1456 static int ksz9031_get_features(struct phy_device *phydev)
1457 {
1458 	int ret;
1459 
1460 	ret = genphy_read_abilities(phydev);
1461 	if (ret < 0)
1462 		return ret;
1463 
1464 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1465 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1466 	 * link-up may fail after a link-up to link-down transition.
1467 	 *
1468 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1469 	 *
1470 	 * Workaround:
1471 	 * Do not enable the Asymmetric Pause capability bit.
1472 	 */
1473 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1474 
1475 	/* We force setting the Pause capability as the core will force the
1476 	 * Asymmetric Pause capability to 1 otherwise.
1477 	 */
1478 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1479 
1480 	return 0;
1481 }
1482 
1483 static int ksz9031_read_status(struct phy_device *phydev)
1484 {
1485 	int err;
1486 	int regval;
1487 
1488 	err = genphy_read_status(phydev);
1489 	if (err)
1490 		return err;
1491 
1492 	/* Make sure the PHY is not broken. Read idle error count,
1493 	 * and reset the PHY if it is maxed out.
1494 	 */
1495 	regval = phy_read(phydev, MII_STAT1000);
1496 	if ((regval & 0xFF) == 0xFF) {
1497 		phy_init_hw(phydev);
1498 		phydev->link = 0;
1499 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1500 			phydev->drv->config_intr(phydev);
1501 		return genphy_config_aneg(phydev);
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1508 {
1509 	struct kszphy_priv *priv = phydev->priv;
1510 	int ret;
1511 
1512 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1513 	 * Prior to running the cable diagnostics, Auto-negotiation should
1514 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1515 	 * via the Basic Control Register.
1516 	 */
1517 	ret = phy_modify(phydev, MII_BMCR,
1518 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1519 			 BMCR_ANENABLE | BMCR_SPEED100,
1520 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1521 	if (ret)
1522 		return ret;
1523 
1524 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1525 	 * The Master-Slave configuration should be set to Slave by writing
1526 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1527 	 * Register.
1528 	 */
1529 	ret = phy_read(phydev, MII_CTRL1000);
1530 	if (ret < 0)
1531 		return ret;
1532 
1533 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1534 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1535 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1536 	ret |= CTL1000_ENABLE_MASTER;
1537 
1538 	return phy_write(phydev, MII_CTRL1000, ret);
1539 }
1540 
1541 static int ksz9x31_cable_test_result_trans(u16 status)
1542 {
1543 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1544 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1545 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1546 	case KSZ9x31_LMD_VCT_ST_OPEN:
1547 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1548 	case KSZ9x31_LMD_VCT_ST_SHORT:
1549 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1550 	case KSZ9x31_LMD_VCT_ST_FAIL:
1551 		fallthrough;
1552 	default:
1553 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1554 	}
1555 }
1556 
1557 static bool ksz9x31_cable_test_failed(u16 status)
1558 {
1559 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1560 
1561 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1562 }
1563 
1564 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1565 {
1566 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1567 	case KSZ9x31_LMD_VCT_ST_OPEN:
1568 		fallthrough;
1569 	case KSZ9x31_LMD_VCT_ST_SHORT:
1570 		return true;
1571 	}
1572 	return false;
1573 }
1574 
1575 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1576 {
1577 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1578 
1579 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1580 	 *
1581 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1582 	 */
1583 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1584 		dt = clamp(dt - 22, 0, 255);
1585 
1586 	return (dt * 400) / 10;
1587 }
1588 
1589 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1590 {
1591 	int val, ret;
1592 
1593 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1594 				    !(val & KSZ9x31_LMD_VCT_EN),
1595 				    30000, 100000, true);
1596 
1597 	return ret < 0 ? ret : 0;
1598 }
1599 
1600 static int ksz9x31_cable_test_get_pair(int pair)
1601 {
1602 	static const int ethtool_pair[] = {
1603 		ETHTOOL_A_CABLE_PAIR_A,
1604 		ETHTOOL_A_CABLE_PAIR_B,
1605 		ETHTOOL_A_CABLE_PAIR_C,
1606 		ETHTOOL_A_CABLE_PAIR_D,
1607 	};
1608 
1609 	return ethtool_pair[pair];
1610 }
1611 
1612 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1613 {
1614 	int ret, val;
1615 
1616 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1617 	 * To test each individual cable pair, set the cable pair in the Cable
1618 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1619 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1620 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1621 	 * will self clear when the test is concluded.
1622 	 */
1623 	ret = phy_write(phydev, KSZ9x31_LMD,
1624 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1625 	if (ret)
1626 		return ret;
1627 
1628 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1629 	if (ret)
1630 		return ret;
1631 
1632 	val = phy_read(phydev, KSZ9x31_LMD);
1633 	if (val < 0)
1634 		return val;
1635 
1636 	if (ksz9x31_cable_test_failed(val))
1637 		return -EAGAIN;
1638 
1639 	ret = ethnl_cable_test_result(phydev,
1640 				      ksz9x31_cable_test_get_pair(pair),
1641 				      ksz9x31_cable_test_result_trans(val));
1642 	if (ret)
1643 		return ret;
1644 
1645 	if (!ksz9x31_cable_test_fault_length_valid(val))
1646 		return 0;
1647 
1648 	return ethnl_cable_test_fault_length(phydev,
1649 					     ksz9x31_cable_test_get_pair(pair),
1650 					     ksz9x31_cable_test_fault_length(phydev, val));
1651 }
1652 
1653 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1654 					 bool *finished)
1655 {
1656 	struct kszphy_priv *priv = phydev->priv;
1657 	unsigned long pair_mask = 0xf;
1658 	int retries = 20;
1659 	int pair, ret, rv;
1660 
1661 	*finished = false;
1662 
1663 	/* Try harder if link partner is active */
1664 	while (pair_mask && retries--) {
1665 		for_each_set_bit(pair, &pair_mask, 4) {
1666 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1667 			if (ret == -EAGAIN)
1668 				continue;
1669 			if (ret < 0)
1670 				return ret;
1671 			clear_bit(pair, &pair_mask);
1672 		}
1673 		/* If link partner is in autonegotiation mode it will send 2ms
1674 		 * of FLPs with at least 6ms of silence.
1675 		 * Add 2ms sleep to have better chances to hit this silence.
1676 		 */
1677 		if (pair_mask)
1678 			usleep_range(2000, 3000);
1679 	}
1680 
1681 	/* Report remaining unfinished pair result as unknown. */
1682 	for_each_set_bit(pair, &pair_mask, 4) {
1683 		ret = ethnl_cable_test_result(phydev,
1684 					      ksz9x31_cable_test_get_pair(pair),
1685 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1686 	}
1687 
1688 	*finished = true;
1689 
1690 	/* Restore cached bits from before LinkMD got started. */
1691 	rv = phy_modify(phydev, MII_CTRL1000,
1692 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1693 			priv->vct_ctrl1000);
1694 	if (rv)
1695 		return rv;
1696 
1697 	return ret;
1698 }
1699 
1700 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1701 {
1702 	return 0;
1703 }
1704 
1705 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1706 {
1707 	u16 val;
1708 
1709 	switch (ctrl) {
1710 	case ETH_TP_MDI:
1711 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1712 		break;
1713 	case ETH_TP_MDI_X:
1714 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1715 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1716 		 * sheet seems to be missing:
1717 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1718 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1719 		 */
1720 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1721 		break;
1722 	case ETH_TP_MDI_AUTO:
1723 		val = 0;
1724 		break;
1725 	default:
1726 		return 0;
1727 	}
1728 
1729 	return phy_modify(phydev, MII_BMCR,
1730 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1731 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1732 			  KSZ886X_BMCR_HP_MDIX | val);
1733 }
1734 
1735 static int ksz886x_config_aneg(struct phy_device *phydev)
1736 {
1737 	int ret;
1738 
1739 	ret = genphy_config_aneg(phydev);
1740 	if (ret)
1741 		return ret;
1742 
1743 	if (phydev->autoneg != AUTONEG_ENABLE) {
1744 		/* When autonegotation is disabled, we need to manually force
1745 		 * the link state. If we don't do this, the PHY will keep
1746 		 * sending Fast Link Pulses (FLPs) which are part of the
1747 		 * autonegotiation process. This is not desired when
1748 		 * autonegotiation is off.
1749 		 */
1750 		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1751 				   KSZ886X_CTRL_FORCE_LINK);
1752 		if (ret)
1753 			return ret;
1754 	} else {
1755 		/* If we had previously forced the link state, we need to
1756 		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1757 		 * will not perform autonegotiation.
1758 		 */
1759 		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1760 				     KSZ886X_CTRL_FORCE_LINK);
1761 		if (ret)
1762 			return ret;
1763 	}
1764 
1765 	/* The MDI-X configuration is automatically changed by the PHY after
1766 	 * switching from autoneg off to on. So, take MDI-X configuration under
1767 	 * own control and set it after autoneg configuration was done.
1768 	 */
1769 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1770 }
1771 
1772 static int ksz886x_mdix_update(struct phy_device *phydev)
1773 {
1774 	int ret;
1775 
1776 	ret = phy_read(phydev, MII_BMCR);
1777 	if (ret < 0)
1778 		return ret;
1779 
1780 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1781 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1782 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1783 		else
1784 			phydev->mdix_ctrl = ETH_TP_MDI;
1785 	} else {
1786 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1787 	}
1788 
1789 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1790 	if (ret < 0)
1791 		return ret;
1792 
1793 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1794 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1795 		phydev->mdix = ETH_TP_MDI_X;
1796 	else
1797 		phydev->mdix = ETH_TP_MDI;
1798 
1799 	return 0;
1800 }
1801 
1802 static int ksz886x_read_status(struct phy_device *phydev)
1803 {
1804 	int ret;
1805 
1806 	ret = ksz886x_mdix_update(phydev);
1807 	if (ret < 0)
1808 		return ret;
1809 
1810 	return genphy_read_status(phydev);
1811 }
1812 
1813 struct ksz9477_errata_write {
1814 	u8 dev_addr;
1815 	u8 reg_addr;
1816 	u16 val;
1817 };
1818 
1819 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1820 	 /* Register settings are needed to improve PHY receive performance */
1821 	{0x01, 0x6f, 0xdd0b},
1822 	{0x01, 0x8f, 0x6032},
1823 	{0x01, 0x9d, 0x248c},
1824 	{0x01, 0x75, 0x0060},
1825 	{0x01, 0xd3, 0x7777},
1826 	{0x1c, 0x06, 0x3008},
1827 	{0x1c, 0x08, 0x2000},
1828 
1829 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1830 	{0x1c, 0x04, 0x00d0},
1831 
1832 	/* Register settings are required to meet data sheet supply current specifications */
1833 	{0x1c, 0x13, 0x6eff},
1834 	{0x1c, 0x14, 0xe6ff},
1835 	{0x1c, 0x15, 0x6eff},
1836 	{0x1c, 0x16, 0xe6ff},
1837 	{0x1c, 0x17, 0x00ff},
1838 	{0x1c, 0x18, 0x43ff},
1839 	{0x1c, 0x19, 0xc3ff},
1840 	{0x1c, 0x1a, 0x6fff},
1841 	{0x1c, 0x1b, 0x07ff},
1842 	{0x1c, 0x1c, 0x0fff},
1843 	{0x1c, 0x1d, 0xe7ff},
1844 	{0x1c, 0x1e, 0xefff},
1845 	{0x1c, 0x20, 0xeeee},
1846 };
1847 
1848 static int ksz9477_config_init(struct phy_device *phydev)
1849 {
1850 	int err;
1851 	int i;
1852 
1853 	/* Apply PHY settings to address errata listed in
1854 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1855 	 * Silicon Errata and Data Sheet Clarification documents.
1856 	 *
1857 	 * Document notes: Before configuring the PHY MMD registers, it is
1858 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1859 	 * disabled by writing to register 0xN100-0xN101. After writing the
1860 	 * MMD registers, and after all errata workarounds that involve PHY
1861 	 * register settings, write register 0xN100-0xN101 again to enable
1862 	 * and restart auto-negotiation.
1863 	 */
1864 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1865 	if (err)
1866 		return err;
1867 
1868 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1869 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1870 
1871 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1872 		if (err)
1873 			return err;
1874 	}
1875 
1876 	/* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
1877 	 * in this switch shall be regarded as broken.
1878 	 */
1879 	if (phydev->dev_flags & MICREL_NO_EEE)
1880 		phydev->eee_broken_modes = -1;
1881 
1882 	err = genphy_restart_aneg(phydev);
1883 	if (err)
1884 		return err;
1885 
1886 	return kszphy_config_init(phydev);
1887 }
1888 
1889 static int kszphy_get_sset_count(struct phy_device *phydev)
1890 {
1891 	return ARRAY_SIZE(kszphy_hw_stats);
1892 }
1893 
1894 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1895 {
1896 	int i;
1897 
1898 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1899 		strscpy(data + i * ETH_GSTRING_LEN,
1900 			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1901 	}
1902 }
1903 
1904 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1905 {
1906 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1907 	struct kszphy_priv *priv = phydev->priv;
1908 	int val;
1909 	u64 ret;
1910 
1911 	val = phy_read(phydev, stat.reg);
1912 	if (val < 0) {
1913 		ret = U64_MAX;
1914 	} else {
1915 		val = val & ((1 << stat.bits) - 1);
1916 		priv->stats[i] += val;
1917 		ret = priv->stats[i];
1918 	}
1919 
1920 	return ret;
1921 }
1922 
1923 static void kszphy_get_stats(struct phy_device *phydev,
1924 			     struct ethtool_stats *stats, u64 *data)
1925 {
1926 	int i;
1927 
1928 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1929 		data[i] = kszphy_get_stat(phydev, i);
1930 }
1931 
1932 static int kszphy_suspend(struct phy_device *phydev)
1933 {
1934 	/* Disable PHY Interrupts */
1935 	if (phy_interrupt_is_valid(phydev)) {
1936 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
1937 		if (phydev->drv->config_intr)
1938 			phydev->drv->config_intr(phydev);
1939 	}
1940 
1941 	return genphy_suspend(phydev);
1942 }
1943 
1944 static void kszphy_parse_led_mode(struct phy_device *phydev)
1945 {
1946 	const struct kszphy_type *type = phydev->drv->driver_data;
1947 	const struct device_node *np = phydev->mdio.dev.of_node;
1948 	struct kszphy_priv *priv = phydev->priv;
1949 	int ret;
1950 
1951 	if (type && type->led_mode_reg) {
1952 		ret = of_property_read_u32(np, "micrel,led-mode",
1953 					   &priv->led_mode);
1954 
1955 		if (ret)
1956 			priv->led_mode = -1;
1957 
1958 		if (priv->led_mode > 3) {
1959 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
1960 				   priv->led_mode);
1961 			priv->led_mode = -1;
1962 		}
1963 	} else {
1964 		priv->led_mode = -1;
1965 	}
1966 }
1967 
1968 static int kszphy_resume(struct phy_device *phydev)
1969 {
1970 	int ret;
1971 
1972 	genphy_resume(phydev);
1973 
1974 	/* After switching from power-down to normal mode, an internal global
1975 	 * reset is automatically generated. Wait a minimum of 1 ms before
1976 	 * read/write access to the PHY registers.
1977 	 */
1978 	usleep_range(1000, 2000);
1979 
1980 	ret = kszphy_config_reset(phydev);
1981 	if (ret)
1982 		return ret;
1983 
1984 	/* Enable PHY Interrupts */
1985 	if (phy_interrupt_is_valid(phydev)) {
1986 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
1987 		if (phydev->drv->config_intr)
1988 			phydev->drv->config_intr(phydev);
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 static int kszphy_probe(struct phy_device *phydev)
1995 {
1996 	const struct kszphy_type *type = phydev->drv->driver_data;
1997 	const struct device_node *np = phydev->mdio.dev.of_node;
1998 	struct kszphy_priv *priv;
1999 	struct clk *clk;
2000 
2001 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2002 	if (!priv)
2003 		return -ENOMEM;
2004 
2005 	phydev->priv = priv;
2006 
2007 	priv->type = type;
2008 
2009 	kszphy_parse_led_mode(phydev);
2010 
2011 	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2012 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2013 	if (!IS_ERR_OR_NULL(clk)) {
2014 		unsigned long rate = clk_get_rate(clk);
2015 		bool rmii_ref_clk_sel_25_mhz;
2016 
2017 		if (type)
2018 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2019 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2020 				"micrel,rmii-reference-clock-select-25-mhz");
2021 
2022 		if (rate > 24500000 && rate < 25500000) {
2023 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2024 		} else if (rate > 49500000 && rate < 50500000) {
2025 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2026 		} else {
2027 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2028 				   rate);
2029 			return -EINVAL;
2030 		}
2031 	} else if (!clk) {
2032 		/* unnamed clock from the generic ethernet-phy binding */
2033 		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2034 		if (IS_ERR(clk))
2035 			return PTR_ERR(clk);
2036 	}
2037 
2038 	if (ksz8041_fiber_mode(phydev))
2039 		phydev->port = PORT_FIBRE;
2040 
2041 	/* Support legacy board-file configuration */
2042 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2043 		priv->rmii_ref_clk_sel = true;
2044 		priv->rmii_ref_clk_sel_val = true;
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 static int lan8814_cable_test_start(struct phy_device *phydev)
2051 {
2052 	/* If autoneg is enabled, we won't be able to test cross pair
2053 	 * short. In this case, the PHY will "detect" a link and
2054 	 * confuse the internal state machine - disable auto neg here.
2055 	 * Set the speed to 1000mbit and full duplex.
2056 	 */
2057 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2058 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2059 }
2060 
2061 static int ksz886x_cable_test_start(struct phy_device *phydev)
2062 {
2063 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2064 		return -EOPNOTSUPP;
2065 
2066 	/* If autoneg is enabled, we won't be able to test cross pair
2067 	 * short. In this case, the PHY will "detect" a link and
2068 	 * confuse the internal state machine - disable auto neg here.
2069 	 * If autoneg is disabled, we should set the speed to 10mbit.
2070 	 */
2071 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2072 }
2073 
2074 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2075 {
2076 	switch (FIELD_GET(mask, status)) {
2077 	case KSZ8081_LMD_STAT_NORMAL:
2078 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2079 	case KSZ8081_LMD_STAT_SHORT:
2080 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2081 	case KSZ8081_LMD_STAT_OPEN:
2082 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2083 	case KSZ8081_LMD_STAT_FAIL:
2084 		fallthrough;
2085 	default:
2086 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2087 	}
2088 }
2089 
2090 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2091 {
2092 	return FIELD_GET(mask, status) ==
2093 		KSZ8081_LMD_STAT_FAIL;
2094 }
2095 
2096 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2097 {
2098 	switch (FIELD_GET(mask, status)) {
2099 	case KSZ8081_LMD_STAT_OPEN:
2100 		fallthrough;
2101 	case KSZ8081_LMD_STAT_SHORT:
2102 		return true;
2103 	}
2104 	return false;
2105 }
2106 
2107 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2108 							   u16 status, u16 data_mask)
2109 {
2110 	int dt;
2111 
2112 	/* According to the data sheet the distance to the fault is
2113 	 * DELTA_TIME * 0.4 meters for ksz phys.
2114 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2115 	 */
2116 	dt = FIELD_GET(data_mask, status);
2117 
2118 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2119 		return ((dt - 22) * 800) / 10;
2120 	else
2121 		return (dt * 400) / 10;
2122 }
2123 
2124 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2125 {
2126 	const struct kszphy_type *type = phydev->drv->driver_data;
2127 	int val, ret;
2128 
2129 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2130 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2131 				    30000, 100000, true);
2132 
2133 	return ret < 0 ? ret : 0;
2134 }
2135 
2136 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2137 {
2138 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2139 					    ETHTOOL_A_CABLE_PAIR_B,
2140 					    ETHTOOL_A_CABLE_PAIR_C,
2141 					    ETHTOOL_A_CABLE_PAIR_D,
2142 					  };
2143 	u32 fault_length;
2144 	int ret;
2145 	int val;
2146 
2147 	val = KSZ8081_LMD_ENABLE_TEST;
2148 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2149 
2150 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2151 	if (ret < 0)
2152 		return ret;
2153 
2154 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2155 	if (ret)
2156 		return ret;
2157 
2158 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2159 	if (val < 0)
2160 		return val;
2161 
2162 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2163 		return -EAGAIN;
2164 
2165 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2166 				      ksz886x_cable_test_result_trans(val,
2167 								      LAN8814_CABLE_DIAG_STAT_MASK
2168 								      ));
2169 	if (ret)
2170 		return ret;
2171 
2172 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2173 		return 0;
2174 
2175 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2176 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2177 
2178 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2179 }
2180 
2181 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2182 {
2183 	static const int ethtool_pair[] = {
2184 		ETHTOOL_A_CABLE_PAIR_A,
2185 		ETHTOOL_A_CABLE_PAIR_B,
2186 	};
2187 	int ret, val, mdix;
2188 	u32 fault_length;
2189 
2190 	/* There is no way to choice the pair, like we do one ksz9031.
2191 	 * We can workaround this limitation by using the MDI-X functionality.
2192 	 */
2193 	if (pair == 0)
2194 		mdix = ETH_TP_MDI;
2195 	else
2196 		mdix = ETH_TP_MDI_X;
2197 
2198 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2199 	case PHY_ID_KSZ8081:
2200 		ret = ksz8081_config_mdix(phydev, mdix);
2201 		break;
2202 	case PHY_ID_KSZ886X:
2203 		ret = ksz886x_config_mdix(phydev, mdix);
2204 		break;
2205 	default:
2206 		ret = -ENODEV;
2207 	}
2208 
2209 	if (ret)
2210 		return ret;
2211 
2212 	/* Now we are ready to fire. This command will send a 100ns pulse
2213 	 * to the pair.
2214 	 */
2215 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2216 	if (ret)
2217 		return ret;
2218 
2219 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2220 	if (ret)
2221 		return ret;
2222 
2223 	val = phy_read(phydev, KSZ8081_LMD);
2224 	if (val < 0)
2225 		return val;
2226 
2227 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2228 		return -EAGAIN;
2229 
2230 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2231 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2232 	if (ret)
2233 		return ret;
2234 
2235 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2236 		return 0;
2237 
2238 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2239 
2240 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2241 }
2242 
2243 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2244 					 bool *finished)
2245 {
2246 	const struct kszphy_type *type = phydev->drv->driver_data;
2247 	unsigned long pair_mask = type->pair_mask;
2248 	int retries = 20;
2249 	int ret = 0;
2250 	int pair;
2251 
2252 	*finished = false;
2253 
2254 	/* Try harder if link partner is active */
2255 	while (pair_mask && retries--) {
2256 		for_each_set_bit(pair, &pair_mask, 4) {
2257 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2258 				ret = lan8814_cable_test_one_pair(phydev, pair);
2259 			else
2260 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2261 			if (ret == -EAGAIN)
2262 				continue;
2263 			if (ret < 0)
2264 				return ret;
2265 			clear_bit(pair, &pair_mask);
2266 		}
2267 		/* If link partner is in autonegotiation mode it will send 2ms
2268 		 * of FLPs with at least 6ms of silence.
2269 		 * Add 2ms sleep to have better chances to hit this silence.
2270 		 */
2271 		if (pair_mask)
2272 			msleep(2);
2273 	}
2274 
2275 	*finished = true;
2276 
2277 	return ret;
2278 }
2279 
2280 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2281 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2282 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2283 
2284 #define LAN8814_QSGMII_SOFT_RESET			0x43
2285 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2286 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2287 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2288 #define LAN8814_ALIGN_SWAP				0x4a
2289 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2290 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2291 
2292 #define LAN8804_ALIGN_SWAP				0x4a
2293 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2294 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2295 #define LAN8814_CLOCK_MANAGEMENT			0xd
2296 #define LAN8814_LINK_QUALITY				0x8e
2297 
2298 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2299 {
2300 	int data;
2301 
2302 	phy_lock_mdio_bus(phydev);
2303 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2304 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2305 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2306 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2307 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2308 	phy_unlock_mdio_bus(phydev);
2309 
2310 	return data;
2311 }
2312 
2313 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2314 				 u16 val)
2315 {
2316 	phy_lock_mdio_bus(phydev);
2317 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2318 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2319 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2320 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2321 
2322 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2323 	if (val != 0)
2324 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2325 			   val);
2326 	phy_unlock_mdio_bus(phydev);
2327 	return val;
2328 }
2329 
2330 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2331 {
2332 	u16 val = 0;
2333 
2334 	if (enable)
2335 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2336 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2337 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2338 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2339 
2340 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2341 }
2342 
2343 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2344 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2345 {
2346 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2347 	*seconds = (*seconds << 16) |
2348 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2349 
2350 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2351 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2352 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2353 
2354 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2355 }
2356 
2357 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2358 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2359 {
2360 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2361 	*seconds = *seconds << 16 |
2362 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2363 
2364 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2365 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2366 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2367 
2368 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2369 }
2370 
2371 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2372 {
2373 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2374 	struct phy_device *phydev = ptp_priv->phydev;
2375 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2376 
2377 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2378 				SOF_TIMESTAMPING_RX_HARDWARE |
2379 				SOF_TIMESTAMPING_RAW_HARDWARE;
2380 
2381 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2382 
2383 	info->tx_types =
2384 		(1 << HWTSTAMP_TX_OFF) |
2385 		(1 << HWTSTAMP_TX_ON) |
2386 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2387 
2388 	info->rx_filters =
2389 		(1 << HWTSTAMP_FILTER_NONE) |
2390 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2391 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2392 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2393 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2394 
2395 	return 0;
2396 }
2397 
2398 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2399 {
2400 	int i;
2401 
2402 	for (i = 0; i < FIFO_SIZE; ++i)
2403 		lanphy_read_page_reg(phydev, 5,
2404 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2405 
2406 	/* Read to clear overflow status bit */
2407 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2408 }
2409 
2410 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2411 			    struct kernel_hwtstamp_config *config,
2412 			    struct netlink_ext_ack *extack)
2413 {
2414 	struct kszphy_ptp_priv *ptp_priv =
2415 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2416 	struct phy_device *phydev = ptp_priv->phydev;
2417 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2418 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2419 	int txcfg = 0, rxcfg = 0;
2420 	int pkt_ts_enable;
2421 
2422 	ptp_priv->hwts_tx_type = config->tx_type;
2423 	ptp_priv->rx_filter = config->rx_filter;
2424 
2425 	switch (config->rx_filter) {
2426 	case HWTSTAMP_FILTER_NONE:
2427 		ptp_priv->layer = 0;
2428 		ptp_priv->version = 0;
2429 		break;
2430 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2431 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2432 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2433 		ptp_priv->layer = PTP_CLASS_L4;
2434 		ptp_priv->version = PTP_CLASS_V2;
2435 		break;
2436 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2437 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2438 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2439 		ptp_priv->layer = PTP_CLASS_L2;
2440 		ptp_priv->version = PTP_CLASS_V2;
2441 		break;
2442 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2443 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2444 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2445 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2446 		ptp_priv->version = PTP_CLASS_V2;
2447 		break;
2448 	default:
2449 		return -ERANGE;
2450 	}
2451 
2452 	if (ptp_priv->layer & PTP_CLASS_L2) {
2453 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2454 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2455 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2456 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2457 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2458 	}
2459 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2460 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2461 
2462 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2463 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2464 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2465 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2466 
2467 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC)
2468 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2469 				      PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2470 
2471 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2472 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2473 	else
2474 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2475 
2476 	mutex_lock(&shared->shared_lock);
2477 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2478 		shared->ref++;
2479 	else
2480 		shared->ref--;
2481 
2482 	if (shared->ref)
2483 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2484 				      PTP_CMD_CTL_PTP_ENABLE_);
2485 	else
2486 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2487 				      PTP_CMD_CTL_PTP_DISABLE_);
2488 	mutex_unlock(&shared->shared_lock);
2489 
2490 	/* In case of multiple starts and stops, these needs to be cleared */
2491 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2492 		list_del(&rx_ts->list);
2493 		kfree(rx_ts);
2494 	}
2495 	skb_queue_purge(&ptp_priv->rx_queue);
2496 	skb_queue_purge(&ptp_priv->tx_queue);
2497 
2498 	lan8814_flush_fifo(ptp_priv->phydev, false);
2499 	lan8814_flush_fifo(ptp_priv->phydev, true);
2500 
2501 	return 0;
2502 }
2503 
2504 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2505 			     struct sk_buff *skb, int type)
2506 {
2507 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2508 
2509 	switch (ptp_priv->hwts_tx_type) {
2510 	case HWTSTAMP_TX_ONESTEP_SYNC:
2511 		if (ptp_msg_is_sync(skb, type)) {
2512 			kfree_skb(skb);
2513 			return;
2514 		}
2515 		fallthrough;
2516 	case HWTSTAMP_TX_ON:
2517 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2518 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2519 		break;
2520 	case HWTSTAMP_TX_OFF:
2521 	default:
2522 		kfree_skb(skb);
2523 		break;
2524 	}
2525 }
2526 
2527 static void lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2528 {
2529 	struct ptp_header *ptp_header;
2530 	u32 type;
2531 
2532 	skb_push(skb, ETH_HLEN);
2533 	type = ptp_classify_raw(skb);
2534 	ptp_header = ptp_parse_header(skb, type);
2535 	skb_pull_inline(skb, ETH_HLEN);
2536 
2537 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2538 }
2539 
2540 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2541 				 struct sk_buff *skb)
2542 {
2543 	struct skb_shared_hwtstamps *shhwtstamps;
2544 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2545 	unsigned long flags;
2546 	bool ret = false;
2547 	u16 skb_sig;
2548 
2549 	lan8814_get_sig_rx(skb, &skb_sig);
2550 
2551 	/* Iterate over all RX timestamps and match it with the received skbs */
2552 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2553 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2554 		/* Check if we found the signature we were looking for. */
2555 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2556 			continue;
2557 
2558 		shhwtstamps = skb_hwtstamps(skb);
2559 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2560 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2561 						  rx_ts->nsec);
2562 		list_del(&rx_ts->list);
2563 		kfree(rx_ts);
2564 
2565 		ret = true;
2566 		break;
2567 	}
2568 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2569 
2570 	if (ret)
2571 		netif_rx(skb);
2572 	return ret;
2573 }
2574 
2575 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2576 {
2577 	struct kszphy_ptp_priv *ptp_priv =
2578 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2579 
2580 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2581 	    type == PTP_CLASS_NONE)
2582 		return false;
2583 
2584 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2585 		return false;
2586 
2587 	/* If we failed to match then add it to the queue for when the timestamp
2588 	 * will come
2589 	 */
2590 	if (!lan8814_match_rx_skb(ptp_priv, skb))
2591 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2592 
2593 	return true;
2594 }
2595 
2596 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2597 				  time64_t sec, u32 nsec)
2598 {
2599 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
2600 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
2601 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
2602 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
2603 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
2604 
2605 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2606 }
2607 
2608 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2609 				  time64_t *sec, u32 *nsec)
2610 {
2611 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2612 
2613 	*sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
2614 	*sec <<= 16;
2615 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2616 	*sec <<= 16;
2617 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2618 
2619 	*nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2620 	*nsec <<= 16;
2621 	*nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2622 }
2623 
2624 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2625 				   struct timespec64 *ts)
2626 {
2627 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2628 							  ptp_clock_info);
2629 	struct phy_device *phydev = shared->phydev;
2630 	u32 nano_seconds;
2631 	time64_t seconds;
2632 
2633 	mutex_lock(&shared->shared_lock);
2634 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2635 	mutex_unlock(&shared->shared_lock);
2636 	ts->tv_sec = seconds;
2637 	ts->tv_nsec = nano_seconds;
2638 
2639 	return 0;
2640 }
2641 
2642 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2643 				   const struct timespec64 *ts)
2644 {
2645 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2646 							  ptp_clock_info);
2647 	struct phy_device *phydev = shared->phydev;
2648 
2649 	mutex_lock(&shared->shared_lock);
2650 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2651 	mutex_unlock(&shared->shared_lock);
2652 
2653 	return 0;
2654 }
2655 
2656 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2657 				   s64 time_step_ns)
2658 {
2659 	u32 nano_seconds_step;
2660 	u64 abs_time_step_ns;
2661 	time64_t set_seconds;
2662 	u32 nano_seconds;
2663 	u32 remainder;
2664 	s32 seconds;
2665 
2666 	if (time_step_ns >  15000000000LL) {
2667 		/* convert to clock set */
2668 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2669 		set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2670 					   &remainder);
2671 		nano_seconds += remainder;
2672 		if (nano_seconds >= 1000000000) {
2673 			set_seconds++;
2674 			nano_seconds -= 1000000000;
2675 		}
2676 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2677 		return;
2678 	} else if (time_step_ns < -15000000000LL) {
2679 		/* convert to clock set */
2680 		time_step_ns = -time_step_ns;
2681 
2682 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2683 		set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2684 					   &remainder);
2685 		nano_seconds_step = remainder;
2686 		if (nano_seconds < nano_seconds_step) {
2687 			set_seconds--;
2688 			nano_seconds += 1000000000;
2689 		}
2690 		nano_seconds -= nano_seconds_step;
2691 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2692 		return;
2693 	}
2694 
2695 	/* do clock step */
2696 	if (time_step_ns >= 0) {
2697 		abs_time_step_ns = (u64)time_step_ns;
2698 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2699 					   &remainder);
2700 		nano_seconds = remainder;
2701 	} else {
2702 		abs_time_step_ns = (u64)(-time_step_ns);
2703 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2704 			    &remainder));
2705 		nano_seconds = remainder;
2706 		if (nano_seconds > 0) {
2707 			/* subtracting nano seconds is not allowed
2708 			 * convert to subtracting from seconds,
2709 			 * and adding to nanoseconds
2710 			 */
2711 			seconds--;
2712 			nano_seconds = (1000000000 - nano_seconds);
2713 		}
2714 	}
2715 
2716 	if (nano_seconds > 0) {
2717 		/* add 8 ns to cover the likely normal increment */
2718 		nano_seconds += 8;
2719 	}
2720 
2721 	if (nano_seconds >= 1000000000) {
2722 		/* carry into seconds */
2723 		seconds++;
2724 		nano_seconds -= 1000000000;
2725 	}
2726 
2727 	while (seconds) {
2728 		if (seconds > 0) {
2729 			u32 adjustment_value = (u32)seconds;
2730 			u16 adjustment_value_lo, adjustment_value_hi;
2731 
2732 			if (adjustment_value > 0xF)
2733 				adjustment_value = 0xF;
2734 
2735 			adjustment_value_lo = adjustment_value & 0xffff;
2736 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2737 
2738 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2739 					      adjustment_value_lo);
2740 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2741 					      PTP_LTC_STEP_ADJ_DIR_ |
2742 					      adjustment_value_hi);
2743 			seconds -= ((s32)adjustment_value);
2744 		} else {
2745 			u32 adjustment_value = (u32)(-seconds);
2746 			u16 adjustment_value_lo, adjustment_value_hi;
2747 
2748 			if (adjustment_value > 0xF)
2749 				adjustment_value = 0xF;
2750 
2751 			adjustment_value_lo = adjustment_value & 0xffff;
2752 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2753 
2754 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2755 					      adjustment_value_lo);
2756 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2757 					      adjustment_value_hi);
2758 			seconds += ((s32)adjustment_value);
2759 		}
2760 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2761 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2762 	}
2763 	if (nano_seconds) {
2764 		u16 nano_seconds_lo;
2765 		u16 nano_seconds_hi;
2766 
2767 		nano_seconds_lo = nano_seconds & 0xffff;
2768 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2769 
2770 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2771 				      nano_seconds_lo);
2772 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2773 				      PTP_LTC_STEP_ADJ_DIR_ |
2774 				      nano_seconds_hi);
2775 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2776 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2777 	}
2778 }
2779 
2780 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2781 {
2782 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2783 							  ptp_clock_info);
2784 	struct phy_device *phydev = shared->phydev;
2785 
2786 	mutex_lock(&shared->shared_lock);
2787 	lan8814_ptp_clock_step(phydev, delta);
2788 	mutex_unlock(&shared->shared_lock);
2789 
2790 	return 0;
2791 }
2792 
2793 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2794 {
2795 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2796 							  ptp_clock_info);
2797 	struct phy_device *phydev = shared->phydev;
2798 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2799 	bool positive = true;
2800 	u32 kszphy_rate_adj;
2801 
2802 	if (scaled_ppm < 0) {
2803 		scaled_ppm = -scaled_ppm;
2804 		positive = false;
2805 	}
2806 
2807 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2808 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2809 
2810 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2811 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2812 
2813 	if (positive)
2814 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2815 
2816 	mutex_lock(&shared->shared_lock);
2817 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2818 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2819 	mutex_unlock(&shared->shared_lock);
2820 
2821 	return 0;
2822 }
2823 
2824 static void lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2825 {
2826 	struct ptp_header *ptp_header;
2827 	u32 type;
2828 
2829 	type = ptp_classify_raw(skb);
2830 	ptp_header = ptp_parse_header(skb, type);
2831 
2832 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2833 }
2834 
2835 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
2836 				 u32 seconds, u32 nsec, u16 seq_id)
2837 {
2838 	struct skb_shared_hwtstamps shhwtstamps;
2839 	struct sk_buff *skb, *skb_tmp;
2840 	unsigned long flags;
2841 	bool ret = false;
2842 	u16 skb_sig;
2843 
2844 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2845 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2846 		lan8814_get_sig_tx(skb, &skb_sig);
2847 
2848 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2849 			continue;
2850 
2851 		__skb_unlink(skb, &ptp_priv->tx_queue);
2852 		ret = true;
2853 		break;
2854 	}
2855 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2856 
2857 	if (ret) {
2858 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2859 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2860 		skb_complete_tx_timestamp(skb, &shhwtstamps);
2861 	}
2862 }
2863 
2864 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2865 {
2866 	struct phy_device *phydev = ptp_priv->phydev;
2867 	u32 seconds, nsec;
2868 	u16 seq_id;
2869 
2870 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2871 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
2872 }
2873 
2874 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2875 {
2876 	struct phy_device *phydev = ptp_priv->phydev;
2877 	u32 reg;
2878 
2879 	do {
2880 		lan8814_dequeue_tx_skb(ptp_priv);
2881 
2882 		/* If other timestamps are available in the FIFO,
2883 		 * process them.
2884 		 */
2885 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2886 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2887 }
2888 
2889 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2890 			      struct lan8814_ptp_rx_ts *rx_ts)
2891 {
2892 	struct skb_shared_hwtstamps *shhwtstamps;
2893 	struct sk_buff *skb, *skb_tmp;
2894 	unsigned long flags;
2895 	bool ret = false;
2896 	u16 skb_sig;
2897 
2898 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2899 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2900 		lan8814_get_sig_rx(skb, &skb_sig);
2901 
2902 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2903 			continue;
2904 
2905 		__skb_unlink(skb, &ptp_priv->rx_queue);
2906 
2907 		ret = true;
2908 		break;
2909 	}
2910 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2911 
2912 	if (ret) {
2913 		shhwtstamps = skb_hwtstamps(skb);
2914 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2915 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2916 		netif_rx(skb);
2917 	}
2918 
2919 	return ret;
2920 }
2921 
2922 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2923 				struct lan8814_ptp_rx_ts *rx_ts)
2924 {
2925 	unsigned long flags;
2926 
2927 	/* If we failed to match the skb add it to the queue for when
2928 	 * the frame will come
2929 	 */
2930 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2931 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2932 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2933 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2934 	} else {
2935 		kfree(rx_ts);
2936 	}
2937 }
2938 
2939 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2940 {
2941 	struct phy_device *phydev = ptp_priv->phydev;
2942 	struct lan8814_ptp_rx_ts *rx_ts;
2943 	u32 reg;
2944 
2945 	do {
2946 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2947 		if (!rx_ts)
2948 			return;
2949 
2950 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2951 				      &rx_ts->seq_id);
2952 		lan8814_match_rx_ts(ptp_priv, rx_ts);
2953 
2954 		/* If other timestamps are available in the FIFO,
2955 		 * process them.
2956 		 */
2957 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2958 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2959 }
2960 
2961 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
2962 {
2963 	struct kszphy_priv *priv = phydev->priv;
2964 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2965 
2966 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2967 		lan8814_get_tx_ts(ptp_priv);
2968 
2969 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
2970 		lan8814_get_rx_ts(ptp_priv);
2971 
2972 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
2973 		lan8814_flush_fifo(phydev, true);
2974 		skb_queue_purge(&ptp_priv->tx_queue);
2975 	}
2976 
2977 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
2978 		lan8814_flush_fifo(phydev, false);
2979 		skb_queue_purge(&ptp_priv->rx_queue);
2980 	}
2981 }
2982 
2983 static int lan8804_config_init(struct phy_device *phydev)
2984 {
2985 	int val;
2986 
2987 	/* MDI-X setting for swap A,B transmit */
2988 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
2989 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
2990 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
2991 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
2992 
2993 	/* Make sure that the PHY will not stop generating the clock when the
2994 	 * link partner goes down
2995 	 */
2996 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
2997 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
2998 
2999 	return 0;
3000 }
3001 
3002 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3003 {
3004 	int status;
3005 
3006 	status = phy_read(phydev, LAN8814_INTS);
3007 	if (status < 0) {
3008 		phy_error(phydev);
3009 		return IRQ_NONE;
3010 	}
3011 
3012 	if (status > 0)
3013 		phy_trigger_machine(phydev);
3014 
3015 	return IRQ_HANDLED;
3016 }
3017 
3018 #define LAN8804_OUTPUT_CONTROL			25
3019 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
3020 #define LAN8804_CONTROL				31
3021 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
3022 
3023 static int lan8804_config_intr(struct phy_device *phydev)
3024 {
3025 	int err;
3026 
3027 	/* This is an internal PHY of lan966x and is not possible to change the
3028 	 * polarity on the GIC found in lan966x, therefore change the polarity
3029 	 * of the interrupt in the PHY from being active low instead of active
3030 	 * high.
3031 	 */
3032 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3033 
3034 	/* By default interrupt buffer is open-drain in which case the interrupt
3035 	 * can be active only low. Therefore change the interrupt buffer to be
3036 	 * push-pull to be able to change interrupt polarity
3037 	 */
3038 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3039 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3040 
3041 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3042 		err = phy_read(phydev, LAN8814_INTS);
3043 		if (err < 0)
3044 			return err;
3045 
3046 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3047 		if (err)
3048 			return err;
3049 	} else {
3050 		err = phy_write(phydev, LAN8814_INTC, 0);
3051 		if (err)
3052 			return err;
3053 
3054 		err = phy_read(phydev, LAN8814_INTS);
3055 		if (err < 0)
3056 			return err;
3057 	}
3058 
3059 	return 0;
3060 }
3061 
3062 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3063 {
3064 	int ret = IRQ_NONE;
3065 	int irq_status;
3066 
3067 	irq_status = phy_read(phydev, LAN8814_INTS);
3068 	if (irq_status < 0) {
3069 		phy_error(phydev);
3070 		return IRQ_NONE;
3071 	}
3072 
3073 	if (irq_status & LAN8814_INT_LINK) {
3074 		phy_trigger_machine(phydev);
3075 		ret = IRQ_HANDLED;
3076 	}
3077 
3078 	while (true) {
3079 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3080 		if (!irq_status)
3081 			break;
3082 
3083 		lan8814_handle_ptp_interrupt(phydev, irq_status);
3084 		ret = IRQ_HANDLED;
3085 	}
3086 
3087 	return ret;
3088 }
3089 
3090 static int lan8814_ack_interrupt(struct phy_device *phydev)
3091 {
3092 	/* bit[12..0] int status, which is a read and clear register. */
3093 	int rc;
3094 
3095 	rc = phy_read(phydev, LAN8814_INTS);
3096 
3097 	return (rc < 0) ? rc : 0;
3098 }
3099 
3100 static int lan8814_config_intr(struct phy_device *phydev)
3101 {
3102 	int err;
3103 
3104 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3105 			      LAN8814_INTR_CTRL_REG_POLARITY |
3106 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3107 
3108 	/* enable / disable interrupts */
3109 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3110 		err = lan8814_ack_interrupt(phydev);
3111 		if (err)
3112 			return err;
3113 
3114 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3115 	} else {
3116 		err = phy_write(phydev, LAN8814_INTC, 0);
3117 		if (err)
3118 			return err;
3119 
3120 		err = lan8814_ack_interrupt(phydev);
3121 	}
3122 
3123 	return err;
3124 }
3125 
3126 static void lan8814_ptp_init(struct phy_device *phydev)
3127 {
3128 	struct kszphy_priv *priv = phydev->priv;
3129 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3130 	u32 temp;
3131 
3132 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3133 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3134 		return;
3135 
3136 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3137 
3138 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3139 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3140 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3141 
3142 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3143 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3144 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3145 
3146 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3147 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3148 
3149 	/* Removing default registers configs related to L2 and IP */
3150 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3151 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3152 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3153 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3154 
3155 	/* Disable checking for minorVersionPTP field */
3156 	lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3157 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3158 	lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3159 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3160 
3161 	skb_queue_head_init(&ptp_priv->tx_queue);
3162 	skb_queue_head_init(&ptp_priv->rx_queue);
3163 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3164 	spin_lock_init(&ptp_priv->rx_ts_lock);
3165 
3166 	ptp_priv->phydev = phydev;
3167 
3168 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3169 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3170 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3171 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3172 
3173 	phydev->mii_ts = &ptp_priv->mii_ts;
3174 }
3175 
3176 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3177 {
3178 	struct lan8814_shared_priv *shared = phydev->shared->priv;
3179 
3180 	/* Initialise shared lock for clock*/
3181 	mutex_init(&shared->shared_lock);
3182 
3183 	shared->ptp_clock_info.owner = THIS_MODULE;
3184 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3185 	shared->ptp_clock_info.max_adj = 31249999;
3186 	shared->ptp_clock_info.n_alarm = 0;
3187 	shared->ptp_clock_info.n_ext_ts = 0;
3188 	shared->ptp_clock_info.n_pins = 0;
3189 	shared->ptp_clock_info.pps = 0;
3190 	shared->ptp_clock_info.pin_config = NULL;
3191 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3192 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3193 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3194 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3195 	shared->ptp_clock_info.getcrosststamp = NULL;
3196 
3197 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3198 					       &phydev->mdio.dev);
3199 	if (IS_ERR(shared->ptp_clock)) {
3200 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3201 			   PTR_ERR(shared->ptp_clock));
3202 		return -EINVAL;
3203 	}
3204 
3205 	/* Check if PHC support is missing at the configuration level */
3206 	if (!shared->ptp_clock)
3207 		return 0;
3208 
3209 	phydev_dbg(phydev, "successfully registered ptp clock\n");
3210 
3211 	shared->phydev = phydev;
3212 
3213 	/* The EP.4 is shared between all the PHYs in the package and also it
3214 	 * can be accessed by any of the PHYs
3215 	 */
3216 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3217 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3218 			      PTP_OPERATING_MODE_STANDALONE_);
3219 
3220 	return 0;
3221 }
3222 
3223 static void lan8814_setup_led(struct phy_device *phydev, int val)
3224 {
3225 	int temp;
3226 
3227 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3228 
3229 	if (val)
3230 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3231 	else
3232 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3233 
3234 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3235 }
3236 
3237 static int lan8814_config_init(struct phy_device *phydev)
3238 {
3239 	struct kszphy_priv *lan8814 = phydev->priv;
3240 	int val;
3241 
3242 	/* Reset the PHY */
3243 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3244 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3245 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3246 
3247 	/* Disable ANEG with QSGMII PCS Host side */
3248 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3249 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3250 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3251 
3252 	/* MDI-X setting for swap A,B transmit */
3253 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3254 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3255 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3256 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3257 
3258 	if (lan8814->led_mode >= 0)
3259 		lan8814_setup_led(phydev, lan8814->led_mode);
3260 
3261 	return 0;
3262 }
3263 
3264 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3265  * function called in suspend. Because the GPIO line can be shared, so if one of
3266  * the phys goes back in coma mode, then all the other PHYs will go, which is
3267  * wrong.
3268  */
3269 static int lan8814_release_coma_mode(struct phy_device *phydev)
3270 {
3271 	struct gpio_desc *gpiod;
3272 
3273 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3274 					GPIOD_OUT_HIGH_OPEN_DRAIN |
3275 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3276 	if (IS_ERR(gpiod))
3277 		return PTR_ERR(gpiod);
3278 
3279 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3280 	gpiod_set_value_cansleep(gpiod, 0);
3281 
3282 	return 0;
3283 }
3284 
3285 static int lan8814_probe(struct phy_device *phydev)
3286 {
3287 	const struct kszphy_type *type = phydev->drv->driver_data;
3288 	struct kszphy_priv *priv;
3289 	u16 addr;
3290 	int err;
3291 
3292 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3293 	if (!priv)
3294 		return -ENOMEM;
3295 
3296 	phydev->priv = priv;
3297 
3298 	priv->type = type;
3299 
3300 	kszphy_parse_led_mode(phydev);
3301 
3302 	/* Strap-in value for PHY address, below register read gives starting
3303 	 * phy address value
3304 	 */
3305 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3306 	devm_phy_package_join(&phydev->mdio.dev, phydev,
3307 			      addr, sizeof(struct lan8814_shared_priv));
3308 
3309 	if (phy_package_init_once(phydev)) {
3310 		err = lan8814_release_coma_mode(phydev);
3311 		if (err)
3312 			return err;
3313 
3314 		err = lan8814_ptp_probe_once(phydev);
3315 		if (err)
3316 			return err;
3317 	}
3318 
3319 	lan8814_ptp_init(phydev);
3320 
3321 	return 0;
3322 }
3323 
3324 #define LAN8841_MMD_TIMER_REG			0
3325 #define LAN8841_MMD0_REGISTER_17		17
3326 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
3327 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
3328 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
3329 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
3330 #define LAN8841_MMD_ANALOG_REG			28
3331 #define LAN8841_ANALOG_CONTROL_1		1
3332 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
3333 #define LAN8841_ANALOG_CONTROL_10		13
3334 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
3335 #define LAN8841_ANALOG_CONTROL_11		14
3336 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
3337 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
3338 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3339 #define LAN8841_BTRX_POWER_DOWN			70
3340 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
3341 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
3342 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
3343 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
3344 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
3345 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
3346 #define LAN8841_ADC_CHANNEL_MASK		198
3347 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
3348 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
3349 #define LAN8841_PTP_RX_VERSION			374
3350 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
3351 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
3352 #define LAN8841_PTP_TX_VERSION			438
3353 #define LAN8841_PTP_CMD_CTL			256
3354 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
3355 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
3356 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
3357 #define LAN8841_PTP_RX_PARSE_CONFIG		368
3358 #define LAN8841_PTP_TX_PARSE_CONFIG		432
3359 #define LAN8841_PTP_RX_MODE			381
3360 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
3361 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
3362 
3363 static int lan8841_config_init(struct phy_device *phydev)
3364 {
3365 	int ret;
3366 
3367 	ret = ksz9131_config_init(phydev);
3368 	if (ret)
3369 		return ret;
3370 
3371 	/* Initialize the HW by resetting everything */
3372 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3373 		       LAN8841_PTP_CMD_CTL,
3374 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
3375 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
3376 
3377 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3378 		       LAN8841_PTP_CMD_CTL,
3379 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
3380 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
3381 
3382 	/* Don't process any frames */
3383 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3384 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
3385 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3386 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
3387 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3388 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
3389 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3390 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
3391 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3392 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
3393 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3394 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
3395 
3396 	/* Disable checking for minorVersionPTP field */
3397 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3398 		      LAN8841_PTP_RX_VERSION, 0xff00);
3399 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3400 		      LAN8841_PTP_TX_VERSION, 0xff00);
3401 
3402 	/* 100BT Clause 40 improvenent errata */
3403 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3404 		      LAN8841_ANALOG_CONTROL_1,
3405 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3406 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3407 		      LAN8841_ANALOG_CONTROL_10,
3408 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3409 
3410 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3411 	 * Magnetics
3412 	 */
3413 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3414 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3415 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3416 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3417 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3418 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3419 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3420 			      LAN8841_BTRX_POWER_DOWN,
3421 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3422 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3423 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3424 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3425 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
3426 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
3427 	}
3428 
3429 	/* LDO Adjustment errata */
3430 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3431 		      LAN8841_ANALOG_CONTROL_11,
3432 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
3433 
3434 	/* 100BT RGMII latency tuning errata */
3435 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
3436 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
3437 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
3438 		      LAN8841_MMD0_REGISTER_17,
3439 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
3440 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
3441 
3442 	return 0;
3443 }
3444 
3445 #define LAN8841_OUTPUT_CTRL			25
3446 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
3447 #define LAN8841_INT_PTP				BIT(9)
3448 
3449 static int lan8841_config_intr(struct phy_device *phydev)
3450 {
3451 	int err;
3452 
3453 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
3454 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
3455 
3456 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3457 		err = phy_read(phydev, LAN8814_INTS);
3458 		if (err)
3459 			return err;
3460 
3461 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
3462 		 * even if it PTP is not enabled. Because the underneath blocks
3463 		 * will not enable the PTP so we will never get the PTP
3464 		 * interrupt.
3465 		 */
3466 		err = phy_write(phydev, LAN8814_INTC,
3467 				LAN8814_INT_LINK | LAN8841_INT_PTP);
3468 	} else {
3469 		err = phy_write(phydev, LAN8814_INTC, 0);
3470 		if (err)
3471 			return err;
3472 
3473 		err = phy_read(phydev, LAN8814_INTS);
3474 	}
3475 
3476 	return err;
3477 }
3478 
3479 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
3480 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
3481 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
3482 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
3483 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
3484 #define LAN8841_PTP_TX_MSG_HEADER2			455
3485 
3486 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
3487 				  u32 *sec, u32 *nsec, u16 *seq)
3488 {
3489 	struct phy_device *phydev = ptp_priv->phydev;
3490 
3491 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
3492 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
3493 		return false;
3494 
3495 	*nsec = ((*nsec & 0x3fff) << 16);
3496 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
3497 
3498 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
3499 	*sec = *sec << 16;
3500 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
3501 
3502 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3503 
3504 	return true;
3505 }
3506 
3507 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3508 {
3509 	u32 sec, nsec;
3510 	u16 seq;
3511 
3512 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
3513 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
3514 }
3515 
3516 #define LAN8841_PTP_INT_STS			259
3517 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
3518 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
3519 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
3520 
3521 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
3522 {
3523 	struct phy_device *phydev = ptp_priv->phydev;
3524 	int i;
3525 
3526 	for (i = 0; i < FIFO_SIZE; ++i)
3527 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3528 
3529 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3530 }
3531 
3532 #define LAN8841_PTP_GPIO_CAP_STS			506
3533 #define LAN8841_PTP_GPIO_SEL				327
3534 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
3535 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
3536 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
3537 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
3538 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
3539 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
3540 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
3541 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
3542 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
3543 
3544 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
3545 {
3546 	struct phy_device *phydev = ptp_priv->phydev;
3547 	struct ptp_clock_event ptp_event = {0};
3548 	int pin, ret, tmp;
3549 	s32 sec, nsec;
3550 
3551 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
3552 	if (pin == -1)
3553 		return;
3554 
3555 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
3556 	if (tmp < 0)
3557 		return;
3558 
3559 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
3560 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
3561 	if (ret)
3562 		return;
3563 
3564 	mutex_lock(&ptp_priv->ptp_lock);
3565 	if (tmp & BIT(pin)) {
3566 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
3567 		sec <<= 16;
3568 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
3569 
3570 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3571 		nsec <<= 16;
3572 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
3573 	} else {
3574 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
3575 		sec <<= 16;
3576 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
3577 
3578 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3579 		nsec <<= 16;
3580 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
3581 	}
3582 	mutex_unlock(&ptp_priv->ptp_lock);
3583 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
3584 	if (ret)
3585 		return;
3586 
3587 	ptp_event.index = 0;
3588 	ptp_event.timestamp = ktime_set(sec, nsec);
3589 	ptp_event.type = PTP_CLOCK_EXTTS;
3590 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
3591 }
3592 
3593 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
3594 {
3595 	struct kszphy_priv *priv = phydev->priv;
3596 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3597 	u16 status;
3598 
3599 	do {
3600 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3601 
3602 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
3603 			lan8841_ptp_process_tx_ts(ptp_priv);
3604 
3605 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
3606 			lan8841_gpio_process_cap(ptp_priv);
3607 
3608 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
3609 			lan8841_ptp_flush_fifo(ptp_priv);
3610 			skb_queue_purge(&ptp_priv->tx_queue);
3611 		}
3612 
3613 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
3614 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
3615 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
3616 }
3617 
3618 #define LAN8841_INTS_PTP		BIT(9)
3619 
3620 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
3621 {
3622 	irqreturn_t ret = IRQ_NONE;
3623 	int irq_status;
3624 
3625 	irq_status = phy_read(phydev, LAN8814_INTS);
3626 	if (irq_status < 0) {
3627 		phy_error(phydev);
3628 		return IRQ_NONE;
3629 	}
3630 
3631 	if (irq_status & LAN8814_INT_LINK) {
3632 		phy_trigger_machine(phydev);
3633 		ret = IRQ_HANDLED;
3634 	}
3635 
3636 	if (irq_status & LAN8841_INTS_PTP) {
3637 		lan8841_handle_ptp_interrupt(phydev);
3638 		ret = IRQ_HANDLED;
3639 	}
3640 
3641 	return ret;
3642 }
3643 
3644 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
3645 			   struct ethtool_ts_info *info)
3646 {
3647 	struct kszphy_ptp_priv *ptp_priv;
3648 
3649 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3650 
3651 	info->phc_index = ptp_priv->ptp_clock ?
3652 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
3653 	if (info->phc_index == -1)
3654 		return 0;
3655 
3656 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3657 				SOF_TIMESTAMPING_RX_HARDWARE |
3658 				SOF_TIMESTAMPING_RAW_HARDWARE;
3659 
3660 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
3661 			 (1 << HWTSTAMP_TX_ON) |
3662 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
3663 
3664 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
3665 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3666 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3667 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3668 
3669 	return 0;
3670 }
3671 
3672 #define LAN8841_PTP_INT_EN			260
3673 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
3674 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
3675 
3676 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
3677 					  bool enable)
3678 {
3679 	struct phy_device *phydev = ptp_priv->phydev;
3680 
3681 	if (enable) {
3682 		/* Enable interrupts on the TX side */
3683 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3684 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3685 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
3686 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3687 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
3688 
3689 		/* Enable the modification of the frame on RX side,
3690 		 * this will add the ns and 2 bits of sec in the reserved field
3691 		 * of the PTP header
3692 		 */
3693 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3694 			       LAN8841_PTP_RX_MODE,
3695 			       LAN8841_PTP_INSERT_TS_EN |
3696 			       LAN8841_PTP_INSERT_TS_32BIT,
3697 			       LAN8841_PTP_INSERT_TS_EN |
3698 			       LAN8841_PTP_INSERT_TS_32BIT);
3699 
3700 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
3701 	} else {
3702 		/* Disable interrupts on the TX side */
3703 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3704 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3705 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
3706 
3707 		/* Disable modification of the RX frames */
3708 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3709 			       LAN8841_PTP_RX_MODE,
3710 			       LAN8841_PTP_INSERT_TS_EN |
3711 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
3712 
3713 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
3714 	}
3715 }
3716 
3717 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
3718 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
3719 #define LAN8841_PTP_TX_MOD			445
3720 
3721 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
3722 			    struct kernel_hwtstamp_config *config,
3723 			    struct netlink_ext_ack *extack)
3724 {
3725 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3726 	struct phy_device *phydev = ptp_priv->phydev;
3727 	int txcfg = 0, rxcfg = 0;
3728 	int pkt_ts_enable;
3729 
3730 	ptp_priv->hwts_tx_type = config->tx_type;
3731 	ptp_priv->rx_filter = config->rx_filter;
3732 
3733 	switch (config->rx_filter) {
3734 	case HWTSTAMP_FILTER_NONE:
3735 		ptp_priv->layer = 0;
3736 		ptp_priv->version = 0;
3737 		break;
3738 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3739 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3740 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3741 		ptp_priv->layer = PTP_CLASS_L4;
3742 		ptp_priv->version = PTP_CLASS_V2;
3743 		break;
3744 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3745 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3746 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3747 		ptp_priv->layer = PTP_CLASS_L2;
3748 		ptp_priv->version = PTP_CLASS_V2;
3749 		break;
3750 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3751 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3752 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3753 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3754 		ptp_priv->version = PTP_CLASS_V2;
3755 		break;
3756 	default:
3757 		return -ERANGE;
3758 	}
3759 
3760 	/* Setup parsing of the frames and enable the timestamping for ptp
3761 	 * frames
3762 	 */
3763 	if (ptp_priv->layer & PTP_CLASS_L2) {
3764 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3765 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3766 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3767 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3768 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3769 	}
3770 
3771 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
3772 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
3773 
3774 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3775 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3776 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3777 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3778 
3779 	/* Enable / disable of the TX timestamp in the SYNC frames */
3780 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
3781 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3782 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
3783 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
3784 
3785 	/* Now enable/disable the timestamping */
3786 	lan8841_ptp_enable_processing(ptp_priv,
3787 				      config->rx_filter != HWTSTAMP_FILTER_NONE);
3788 
3789 	skb_queue_purge(&ptp_priv->tx_queue);
3790 
3791 	lan8841_ptp_flush_fifo(ptp_priv);
3792 
3793 	return 0;
3794 }
3795 
3796 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
3797 			     struct sk_buff *skb, int type)
3798 {
3799 	struct kszphy_ptp_priv *ptp_priv =
3800 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3801 	struct ptp_header *header = ptp_parse_header(skb, type);
3802 	struct skb_shared_hwtstamps *shhwtstamps;
3803 	struct timespec64 ts;
3804 	unsigned long flags;
3805 	u32 ts_header;
3806 
3807 	if (!header)
3808 		return false;
3809 
3810 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3811 	    type == PTP_CLASS_NONE)
3812 		return false;
3813 
3814 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3815 		return false;
3816 
3817 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3818 	ts.tv_sec = ptp_priv->seconds;
3819 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3820 	ts_header = __be32_to_cpu(header->reserved2);
3821 
3822 	shhwtstamps = skb_hwtstamps(skb);
3823 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3824 
3825 	/* Check for any wrap arounds for the second part */
3826 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
3827 		ts.tv_sec -= GENMASK(1, 0) + 1;
3828 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
3829 		ts.tv_sec += 1;
3830 
3831 	shhwtstamps->hwtstamp =
3832 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
3833 			  ts_header & GENMASK(29, 0));
3834 	header->reserved2 = 0;
3835 
3836 	netif_rx(skb);
3837 
3838 	return true;
3839 }
3840 
3841 #define LAN8841_EVENT_A		0
3842 #define LAN8841_EVENT_B		1
3843 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
3844 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
3845 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
3846 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
3847 
3848 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
3849 				  s64 sec, u32 nsec)
3850 {
3851 	struct phy_device *phydev = ptp_priv->phydev;
3852 	int ret;
3853 
3854 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
3855 			    upper_16_bits(sec));
3856 	if (ret)
3857 		return ret;
3858 
3859 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
3860 			    lower_16_bits(sec));
3861 	if (ret)
3862 		return ret;
3863 
3864 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
3865 			    upper_16_bits(nsec));
3866 	if (ret)
3867 		return ret;
3868 
3869 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
3870 			    lower_16_bits(nsec));
3871 }
3872 
3873 #define LAN8841_BUFFER_TIME	2
3874 
3875 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
3876 				     const struct timespec64 *ts)
3877 {
3878 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
3879 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
3880 }
3881 
3882 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
3883 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
3884 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
3885 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
3886 
3887 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
3888 				  s64 sec, u32 nsec)
3889 {
3890 	struct phy_device *phydev = ptp_priv->phydev;
3891 	int ret;
3892 
3893 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
3894 			    upper_16_bits(sec));
3895 	if (ret)
3896 		return ret;
3897 
3898 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
3899 			    lower_16_bits(sec));
3900 	if (ret)
3901 		return ret;
3902 
3903 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
3904 			    upper_16_bits(nsec));
3905 	if (ret)
3906 		return ret;
3907 
3908 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
3909 			     lower_16_bits(nsec));
3910 }
3911 
3912 #define LAN8841_PTP_LTC_SET_SEC_HI	262
3913 #define LAN8841_PTP_LTC_SET_SEC_MID	263
3914 #define LAN8841_PTP_LTC_SET_SEC_LO	264
3915 #define LAN8841_PTP_LTC_SET_NS_HI	265
3916 #define LAN8841_PTP_LTC_SET_NS_LO	266
3917 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
3918 
3919 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
3920 				 const struct timespec64 *ts)
3921 {
3922 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3923 							ptp_clock_info);
3924 	struct phy_device *phydev = ptp_priv->phydev;
3925 	unsigned long flags;
3926 	int ret;
3927 
3928 	/* Set the value to be stored */
3929 	mutex_lock(&ptp_priv->ptp_lock);
3930 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
3931 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
3932 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
3933 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
3934 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
3935 
3936 	/* Set the command to load the LTC */
3937 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3938 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
3939 	ret = lan8841_ptp_update_target(ptp_priv, ts);
3940 	mutex_unlock(&ptp_priv->ptp_lock);
3941 
3942 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3943 	ptp_priv->seconds = ts->tv_sec;
3944 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3945 
3946 	return ret;
3947 }
3948 
3949 #define LAN8841_PTP_LTC_RD_SEC_HI	358
3950 #define LAN8841_PTP_LTC_RD_SEC_MID	359
3951 #define LAN8841_PTP_LTC_RD_SEC_LO	360
3952 #define LAN8841_PTP_LTC_RD_NS_HI	361
3953 #define LAN8841_PTP_LTC_RD_NS_LO	362
3954 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
3955 
3956 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
3957 				 struct timespec64 *ts)
3958 {
3959 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3960 							ptp_clock_info);
3961 	struct phy_device *phydev = ptp_priv->phydev;
3962 	time64_t s;
3963 	s64 ns;
3964 
3965 	mutex_lock(&ptp_priv->ptp_lock);
3966 	/* Issue the command to read the LTC */
3967 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3968 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
3969 
3970 	/* Read the LTC */
3971 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
3972 	s <<= 16;
3973 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
3974 	s <<= 16;
3975 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
3976 
3977 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
3978 	ns <<= 16;
3979 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
3980 	mutex_unlock(&ptp_priv->ptp_lock);
3981 
3982 	set_normalized_timespec64(ts, s, ns);
3983 	return 0;
3984 }
3985 
3986 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
3987 				   struct timespec64 *ts)
3988 {
3989 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3990 							ptp_clock_info);
3991 	struct phy_device *phydev = ptp_priv->phydev;
3992 	time64_t s;
3993 
3994 	mutex_lock(&ptp_priv->ptp_lock);
3995 	/* Issue the command to read the LTC */
3996 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3997 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
3998 
3999 	/* Read the LTC */
4000 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4001 	s <<= 16;
4002 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4003 	s <<= 16;
4004 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4005 	mutex_unlock(&ptp_priv->ptp_lock);
4006 
4007 	set_normalized_timespec64(ts, s, 0);
4008 }
4009 
4010 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
4011 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
4012 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
4013 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
4014 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
4015 
4016 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4017 {
4018 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4019 							ptp_clock_info);
4020 	struct phy_device *phydev = ptp_priv->phydev;
4021 	struct timespec64 ts;
4022 	bool add = true;
4023 	u32 nsec;
4024 	s32 sec;
4025 	int ret;
4026 
4027 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
4028 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4029 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4030 	 * increment so the value can be bigger than 15 sec. Therefore limit the
4031 	 * possible adjustments so we will not have these corner cases
4032 	 */
4033 	if (delta > 10000000000LL || delta < -10000000000LL) {
4034 		/* The timeadjustment is too big, so fall back using set time */
4035 		u64 now;
4036 
4037 		ptp->gettime64(ptp, &ts);
4038 
4039 		now = ktime_to_ns(timespec64_to_ktime(ts));
4040 		ts = ns_to_timespec64(now + delta);
4041 
4042 		ptp->settime64(ptp, &ts);
4043 		return 0;
4044 	}
4045 
4046 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4047 	if (delta < 0 && nsec != 0) {
4048 		/* It is not allowed to adjust low the nsec part, therefore
4049 		 * subtract more from second part and add to nanosecond such
4050 		 * that would roll over, so the second part will increase
4051 		 */
4052 		sec--;
4053 		nsec = NSEC_PER_SEC - nsec;
4054 	}
4055 
4056 	/* Calculate the adjustments and the direction */
4057 	if (delta < 0)
4058 		add = false;
4059 
4060 	if (nsec > 0)
4061 		/* add 8 ns to cover the likely normal increment */
4062 		nsec += 8;
4063 
4064 	if (nsec >= NSEC_PER_SEC) {
4065 		/* carry into seconds */
4066 		sec++;
4067 		nsec -= NSEC_PER_SEC;
4068 	}
4069 
4070 	mutex_lock(&ptp_priv->ptp_lock);
4071 	if (sec) {
4072 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4073 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4074 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4075 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4076 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4077 	}
4078 
4079 	if (nsec) {
4080 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4081 			      nsec & 0xffff);
4082 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4083 			      (nsec >> 16) & 0x3fff);
4084 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4085 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4086 	}
4087 	mutex_unlock(&ptp_priv->ptp_lock);
4088 
4089 	/* Update the target clock */
4090 	ptp->gettime64(ptp, &ts);
4091 	mutex_lock(&ptp_priv->ptp_lock);
4092 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
4093 	mutex_unlock(&ptp_priv->ptp_lock);
4094 
4095 	return ret;
4096 }
4097 
4098 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
4099 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
4100 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
4101 
4102 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4103 {
4104 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4105 							ptp_clock_info);
4106 	struct phy_device *phydev = ptp_priv->phydev;
4107 	bool faster = true;
4108 	u32 rate;
4109 
4110 	if (!scaled_ppm)
4111 		return 0;
4112 
4113 	if (scaled_ppm < 0) {
4114 		scaled_ppm = -scaled_ppm;
4115 		faster = false;
4116 	}
4117 
4118 	rate = LAN8814_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4119 	rate += (LAN8814_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4120 
4121 	mutex_lock(&ptp_priv->ptp_lock);
4122 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4123 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4124 			     : upper_16_bits(rate) & 0x3fff);
4125 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4126 	mutex_unlock(&ptp_priv->ptp_lock);
4127 
4128 	return 0;
4129 }
4130 
4131 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4132 			      enum ptp_pin_function func, unsigned int chan)
4133 {
4134 	switch (func) {
4135 	case PTP_PF_NONE:
4136 	case PTP_PF_PEROUT:
4137 	case PTP_PF_EXTTS:
4138 		break;
4139 	default:
4140 		return -1;
4141 	}
4142 
4143 	return 0;
4144 }
4145 
4146 #define LAN8841_PTP_GPIO_NUM	10
4147 #define LAN8841_GPIO_EN		128
4148 #define LAN8841_GPIO_DIR	129
4149 #define LAN8841_GPIO_BUF	130
4150 
4151 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4152 {
4153 	struct phy_device *phydev = ptp_priv->phydev;
4154 	int ret;
4155 
4156 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4157 	if (ret)
4158 		return ret;
4159 
4160 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4161 	if (ret)
4162 		return ret;
4163 
4164 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4165 }
4166 
4167 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4168 {
4169 	struct phy_device *phydev = ptp_priv->phydev;
4170 	int ret;
4171 
4172 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4173 	if (ret)
4174 		return ret;
4175 
4176 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4177 	if (ret)
4178 		return ret;
4179 
4180 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4181 }
4182 
4183 #define LAN8841_GPIO_DATA_SEL1				131
4184 #define LAN8841_GPIO_DATA_SEL2				132
4185 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
4186 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
4187 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
4188 #define LAN8841_PTP_GENERAL_CONFIG			257
4189 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
4190 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
4191 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
4192 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
4193 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
4194 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
4195 
4196 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4197 				    u8 event)
4198 {
4199 	struct phy_device *phydev = ptp_priv->phydev;
4200 	u16 tmp;
4201 	int ret;
4202 
4203 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4204 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4205 	 * depending on the pin, it requires to read a different register
4206 	 */
4207 	if (pin < 5) {
4208 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4209 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4210 	} else {
4211 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4212 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4213 	}
4214 	if (ret)
4215 		return ret;
4216 
4217 	/* Disable the event */
4218 	if (event == LAN8841_EVENT_A)
4219 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4220 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4221 	else
4222 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4223 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4224 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4225 }
4226 
4227 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4228 				    u8 event, int pulse_width)
4229 {
4230 	struct phy_device *phydev = ptp_priv->phydev;
4231 	u16 tmp;
4232 	int ret;
4233 
4234 	/* Enable the event */
4235 	if (event == LAN8841_EVENT_A)
4236 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4237 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4238 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4239 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4240 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4241 	else
4242 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4243 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4244 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4245 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4246 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4247 	if (ret)
4248 		return ret;
4249 
4250 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4251 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4252 	 * depending on the pin, it requires to read a different register
4253 	 */
4254 	if (event == LAN8841_EVENT_A)
4255 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4256 	else
4257 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4258 
4259 	if (pin < 5)
4260 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4261 				       tmp << (3 * pin));
4262 	else
4263 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4264 				       tmp << (3 * (pin - 5)));
4265 
4266 	return ret;
4267 }
4268 
4269 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
4270 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
4271 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
4272 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
4273 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
4274 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
4275 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
4276 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
4277 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
4278 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
4279 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
4280 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
4281 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
4282 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
4283 
4284 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4285 			      struct ptp_clock_request *rq, int on)
4286 {
4287 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4288 							ptp_clock_info);
4289 	struct phy_device *phydev = ptp_priv->phydev;
4290 	struct timespec64 ts_on, ts_period;
4291 	s64 on_nsec, period_nsec;
4292 	int pulse_width;
4293 	int pin;
4294 	int ret;
4295 
4296 	if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4297 		return -EOPNOTSUPP;
4298 
4299 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4300 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4301 		return -EINVAL;
4302 
4303 	if (!on) {
4304 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
4305 		if (ret)
4306 			return ret;
4307 
4308 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4309 	}
4310 
4311 	ts_on.tv_sec = rq->perout.on.sec;
4312 	ts_on.tv_nsec = rq->perout.on.nsec;
4313 	on_nsec = timespec64_to_ns(&ts_on);
4314 
4315 	ts_period.tv_sec = rq->perout.period.sec;
4316 	ts_period.tv_nsec = rq->perout.period.nsec;
4317 	period_nsec = timespec64_to_ns(&ts_period);
4318 
4319 	if (period_nsec < 200) {
4320 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
4321 				    phydev_name(phydev));
4322 		return -EOPNOTSUPP;
4323 	}
4324 
4325 	if (on_nsec >= period_nsec) {
4326 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
4327 				    phydev_name(phydev));
4328 		return -EINVAL;
4329 	}
4330 
4331 	switch (on_nsec) {
4332 	case 200000000:
4333 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
4334 		break;
4335 	case 100000000:
4336 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
4337 		break;
4338 	case 50000000:
4339 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
4340 		break;
4341 	case 10000000:
4342 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
4343 		break;
4344 	case 5000000:
4345 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
4346 		break;
4347 	case 1000000:
4348 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
4349 		break;
4350 	case 500000:
4351 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
4352 		break;
4353 	case 100000:
4354 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
4355 		break;
4356 	case 50000:
4357 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
4358 		break;
4359 	case 10000:
4360 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
4361 		break;
4362 	case 5000:
4363 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
4364 		break;
4365 	case 1000:
4366 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
4367 		break;
4368 	case 500:
4369 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
4370 		break;
4371 	case 100:
4372 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4373 		break;
4374 	default:
4375 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
4376 				    phydev_name(phydev));
4377 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4378 		break;
4379 	}
4380 
4381 	mutex_lock(&ptp_priv->ptp_lock);
4382 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
4383 				     rq->perout.start.nsec);
4384 	mutex_unlock(&ptp_priv->ptp_lock);
4385 	if (ret)
4386 		return ret;
4387 
4388 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
4389 				     rq->perout.period.nsec);
4390 	if (ret)
4391 		return ret;
4392 
4393 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
4394 				       pulse_width);
4395 	if (ret)
4396 		return ret;
4397 
4398 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
4399 	if (ret)
4400 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
4401 
4402 	return ret;
4403 }
4404 
4405 #define LAN8841_PTP_GPIO_CAP_EN			496
4406 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
4407 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
4408 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
4409 
4410 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
4411 				u32 flags)
4412 {
4413 	struct phy_device *phydev = ptp_priv->phydev;
4414 	u16 tmp = 0;
4415 	int ret;
4416 
4417 	/* Set GPIO to be intput */
4418 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4419 	if (ret)
4420 		return ret;
4421 
4422 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4423 	if (ret)
4424 		return ret;
4425 
4426 	/* Enable capture on the edges of the pin */
4427 	if (flags & PTP_RISING_EDGE)
4428 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
4429 	if (flags & PTP_FALLING_EDGE)
4430 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
4431 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
4432 	if (ret)
4433 		return ret;
4434 
4435 	/* Enable interrupt */
4436 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4437 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4438 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
4439 }
4440 
4441 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4442 {
4443 	struct phy_device *phydev = ptp_priv->phydev;
4444 	int ret;
4445 
4446 	/* Set GPIO to be output */
4447 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4448 	if (ret)
4449 		return ret;
4450 
4451 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4452 	if (ret)
4453 		return ret;
4454 
4455 	/* Disable capture on both of the edges */
4456 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
4457 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
4458 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
4459 			     0);
4460 	if (ret)
4461 		return ret;
4462 
4463 	/* Disable interrupt */
4464 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4465 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4466 			      0);
4467 }
4468 
4469 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
4470 			     struct ptp_clock_request *rq, int on)
4471 {
4472 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4473 							ptp_clock_info);
4474 	int pin;
4475 	int ret;
4476 
4477 	/* Reject requests with unsupported flags */
4478 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
4479 				PTP_EXTTS_EDGES |
4480 				PTP_STRICT_FLAGS))
4481 		return -EOPNOTSUPP;
4482 
4483 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
4484 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4485 		return -EINVAL;
4486 
4487 	mutex_lock(&ptp_priv->ptp_lock);
4488 	if (on)
4489 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
4490 	else
4491 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
4492 	mutex_unlock(&ptp_priv->ptp_lock);
4493 
4494 	return ret;
4495 }
4496 
4497 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
4498 			      struct ptp_clock_request *rq, int on)
4499 {
4500 	switch (rq->type) {
4501 	case PTP_CLK_REQ_EXTTS:
4502 		return lan8841_ptp_extts(ptp, rq, on);
4503 	case PTP_CLK_REQ_PEROUT:
4504 		return lan8841_ptp_perout(ptp, rq, on);
4505 	default:
4506 		return -EOPNOTSUPP;
4507 	}
4508 
4509 	return 0;
4510 }
4511 
4512 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
4513 {
4514 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4515 							ptp_clock_info);
4516 	struct timespec64 ts;
4517 	unsigned long flags;
4518 
4519 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
4520 
4521 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4522 	ptp_priv->seconds = ts.tv_sec;
4523 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4524 
4525 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
4526 }
4527 
4528 static struct ptp_clock_info lan8841_ptp_clock_info = {
4529 	.owner		= THIS_MODULE,
4530 	.name		= "lan8841 ptp",
4531 	.max_adj	= 31249999,
4532 	.gettime64	= lan8841_ptp_gettime64,
4533 	.settime64	= lan8841_ptp_settime64,
4534 	.adjtime	= lan8841_ptp_adjtime,
4535 	.adjfine	= lan8841_ptp_adjfine,
4536 	.verify         = lan8841_ptp_verify,
4537 	.enable         = lan8841_ptp_enable,
4538 	.do_aux_work	= lan8841_ptp_do_aux_work,
4539 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
4540 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
4541 	.n_pins         = LAN8841_PTP_GPIO_NUM,
4542 };
4543 
4544 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
4545 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
4546 
4547 static int lan8841_probe(struct phy_device *phydev)
4548 {
4549 	struct kszphy_ptp_priv *ptp_priv;
4550 	struct kszphy_priv *priv;
4551 	int err;
4552 
4553 	err = kszphy_probe(phydev);
4554 	if (err)
4555 		return err;
4556 
4557 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4558 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
4559 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
4560 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
4561 
4562 	/* Register the clock */
4563 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4564 		return 0;
4565 
4566 	priv = phydev->priv;
4567 	ptp_priv = &priv->ptp_priv;
4568 
4569 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
4570 					    LAN8841_PTP_GPIO_NUM,
4571 					    sizeof(*ptp_priv->pin_config),
4572 					    GFP_KERNEL);
4573 	if (!ptp_priv->pin_config)
4574 		return -ENOMEM;
4575 
4576 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
4577 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
4578 
4579 		snprintf(p->name, sizeof(p->name), "pin%d", i);
4580 		p->index = i;
4581 		p->func = PTP_PF_NONE;
4582 	}
4583 
4584 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
4585 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
4586 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
4587 						 &phydev->mdio.dev);
4588 	if (IS_ERR(ptp_priv->ptp_clock)) {
4589 		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
4590 			   PTR_ERR(ptp_priv->ptp_clock));
4591 		return -EINVAL;
4592 	}
4593 
4594 	if (!ptp_priv->ptp_clock)
4595 		return 0;
4596 
4597 	/* Initialize the SW */
4598 	skb_queue_head_init(&ptp_priv->tx_queue);
4599 	ptp_priv->phydev = phydev;
4600 	mutex_init(&ptp_priv->ptp_lock);
4601 	spin_lock_init(&ptp_priv->seconds_lock);
4602 
4603 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
4604 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4605 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
4606 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
4607 
4608 	phydev->mii_ts = &ptp_priv->mii_ts;
4609 
4610 	return 0;
4611 }
4612 
4613 static int lan8841_suspend(struct phy_device *phydev)
4614 {
4615 	struct kszphy_priv *priv = phydev->priv;
4616 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4617 
4618 	ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4619 
4620 	return genphy_suspend(phydev);
4621 }
4622 
4623 static struct phy_driver ksphy_driver[] = {
4624 {
4625 	.phy_id		= PHY_ID_KS8737,
4626 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4627 	.name		= "Micrel KS8737",
4628 	/* PHY_BASIC_FEATURES */
4629 	.driver_data	= &ks8737_type,
4630 	.probe		= kszphy_probe,
4631 	.config_init	= kszphy_config_init,
4632 	.config_intr	= kszphy_config_intr,
4633 	.handle_interrupt = kszphy_handle_interrupt,
4634 	.suspend	= kszphy_suspend,
4635 	.resume		= kszphy_resume,
4636 }, {
4637 	.phy_id		= PHY_ID_KSZ8021,
4638 	.phy_id_mask	= 0x00ffffff,
4639 	.name		= "Micrel KSZ8021 or KSZ8031",
4640 	/* PHY_BASIC_FEATURES */
4641 	.driver_data	= &ksz8021_type,
4642 	.probe		= kszphy_probe,
4643 	.config_init	= kszphy_config_init,
4644 	.config_intr	= kszphy_config_intr,
4645 	.handle_interrupt = kszphy_handle_interrupt,
4646 	.get_sset_count = kszphy_get_sset_count,
4647 	.get_strings	= kszphy_get_strings,
4648 	.get_stats	= kszphy_get_stats,
4649 	.suspend	= kszphy_suspend,
4650 	.resume		= kszphy_resume,
4651 }, {
4652 	.phy_id		= PHY_ID_KSZ8031,
4653 	.phy_id_mask	= 0x00ffffff,
4654 	.name		= "Micrel KSZ8031",
4655 	/* PHY_BASIC_FEATURES */
4656 	.driver_data	= &ksz8021_type,
4657 	.probe		= kszphy_probe,
4658 	.config_init	= kszphy_config_init,
4659 	.config_intr	= kszphy_config_intr,
4660 	.handle_interrupt = kszphy_handle_interrupt,
4661 	.get_sset_count = kszphy_get_sset_count,
4662 	.get_strings	= kszphy_get_strings,
4663 	.get_stats	= kszphy_get_stats,
4664 	.suspend	= kszphy_suspend,
4665 	.resume		= kszphy_resume,
4666 }, {
4667 	.phy_id		= PHY_ID_KSZ8041,
4668 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4669 	.name		= "Micrel KSZ8041",
4670 	/* PHY_BASIC_FEATURES */
4671 	.driver_data	= &ksz8041_type,
4672 	.probe		= kszphy_probe,
4673 	.config_init	= ksz8041_config_init,
4674 	.config_aneg	= ksz8041_config_aneg,
4675 	.config_intr	= kszphy_config_intr,
4676 	.handle_interrupt = kszphy_handle_interrupt,
4677 	.get_sset_count = kszphy_get_sset_count,
4678 	.get_strings	= kszphy_get_strings,
4679 	.get_stats	= kszphy_get_stats,
4680 	/* No suspend/resume callbacks because of errata DS80000700A,
4681 	 * receiver error following software power down.
4682 	 */
4683 }, {
4684 	.phy_id		= PHY_ID_KSZ8041RNLI,
4685 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4686 	.name		= "Micrel KSZ8041RNLI",
4687 	/* PHY_BASIC_FEATURES */
4688 	.driver_data	= &ksz8041_type,
4689 	.probe		= kszphy_probe,
4690 	.config_init	= kszphy_config_init,
4691 	.config_intr	= kszphy_config_intr,
4692 	.handle_interrupt = kszphy_handle_interrupt,
4693 	.get_sset_count = kszphy_get_sset_count,
4694 	.get_strings	= kszphy_get_strings,
4695 	.get_stats	= kszphy_get_stats,
4696 	.suspend	= kszphy_suspend,
4697 	.resume		= kszphy_resume,
4698 }, {
4699 	.name		= "Micrel KSZ8051",
4700 	/* PHY_BASIC_FEATURES */
4701 	.driver_data	= &ksz8051_type,
4702 	.probe		= kszphy_probe,
4703 	.config_init	= kszphy_config_init,
4704 	.config_intr	= kszphy_config_intr,
4705 	.handle_interrupt = kszphy_handle_interrupt,
4706 	.get_sset_count = kszphy_get_sset_count,
4707 	.get_strings	= kszphy_get_strings,
4708 	.get_stats	= kszphy_get_stats,
4709 	.match_phy_device = ksz8051_match_phy_device,
4710 	.suspend	= kszphy_suspend,
4711 	.resume		= kszphy_resume,
4712 }, {
4713 	.phy_id		= PHY_ID_KSZ8001,
4714 	.name		= "Micrel KSZ8001 or KS8721",
4715 	.phy_id_mask	= 0x00fffffc,
4716 	/* PHY_BASIC_FEATURES */
4717 	.driver_data	= &ksz8041_type,
4718 	.probe		= kszphy_probe,
4719 	.config_init	= kszphy_config_init,
4720 	.config_intr	= kszphy_config_intr,
4721 	.handle_interrupt = kszphy_handle_interrupt,
4722 	.get_sset_count = kszphy_get_sset_count,
4723 	.get_strings	= kszphy_get_strings,
4724 	.get_stats	= kszphy_get_stats,
4725 	.suspend	= kszphy_suspend,
4726 	.resume		= kszphy_resume,
4727 }, {
4728 	.phy_id		= PHY_ID_KSZ8081,
4729 	.name		= "Micrel KSZ8081 or KSZ8091",
4730 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4731 	.flags		= PHY_POLL_CABLE_TEST,
4732 	/* PHY_BASIC_FEATURES */
4733 	.driver_data	= &ksz8081_type,
4734 	.probe		= kszphy_probe,
4735 	.config_init	= ksz8081_config_init,
4736 	.soft_reset	= genphy_soft_reset,
4737 	.config_aneg	= ksz8081_config_aneg,
4738 	.read_status	= ksz8081_read_status,
4739 	.config_intr	= kszphy_config_intr,
4740 	.handle_interrupt = kszphy_handle_interrupt,
4741 	.get_sset_count = kszphy_get_sset_count,
4742 	.get_strings	= kszphy_get_strings,
4743 	.get_stats	= kszphy_get_stats,
4744 	.suspend	= kszphy_suspend,
4745 	.resume		= kszphy_resume,
4746 	.cable_test_start	= ksz886x_cable_test_start,
4747 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4748 }, {
4749 	.phy_id		= PHY_ID_KSZ8061,
4750 	.name		= "Micrel KSZ8061",
4751 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4752 	/* PHY_BASIC_FEATURES */
4753 	.probe		= kszphy_probe,
4754 	.config_init	= ksz8061_config_init,
4755 	.config_intr	= kszphy_config_intr,
4756 	.handle_interrupt = kszphy_handle_interrupt,
4757 	.suspend	= kszphy_suspend,
4758 	.resume		= kszphy_resume,
4759 }, {
4760 	.phy_id		= PHY_ID_KSZ9021,
4761 	.phy_id_mask	= 0x000ffffe,
4762 	.name		= "Micrel KSZ9021 Gigabit PHY",
4763 	/* PHY_GBIT_FEATURES */
4764 	.driver_data	= &ksz9021_type,
4765 	.probe		= kszphy_probe,
4766 	.get_features	= ksz9031_get_features,
4767 	.config_init	= ksz9021_config_init,
4768 	.config_intr	= kszphy_config_intr,
4769 	.handle_interrupt = kszphy_handle_interrupt,
4770 	.get_sset_count = kszphy_get_sset_count,
4771 	.get_strings	= kszphy_get_strings,
4772 	.get_stats	= kszphy_get_stats,
4773 	.suspend	= kszphy_suspend,
4774 	.resume		= kszphy_resume,
4775 	.read_mmd	= genphy_read_mmd_unsupported,
4776 	.write_mmd	= genphy_write_mmd_unsupported,
4777 }, {
4778 	.phy_id		= PHY_ID_KSZ9031,
4779 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4780 	.name		= "Micrel KSZ9031 Gigabit PHY",
4781 	.flags		= PHY_POLL_CABLE_TEST,
4782 	.driver_data	= &ksz9021_type,
4783 	.probe		= kszphy_probe,
4784 	.get_features	= ksz9031_get_features,
4785 	.config_init	= ksz9031_config_init,
4786 	.soft_reset	= genphy_soft_reset,
4787 	.read_status	= ksz9031_read_status,
4788 	.config_intr	= kszphy_config_intr,
4789 	.handle_interrupt = kszphy_handle_interrupt,
4790 	.get_sset_count = kszphy_get_sset_count,
4791 	.get_strings	= kszphy_get_strings,
4792 	.get_stats	= kszphy_get_stats,
4793 	.suspend	= kszphy_suspend,
4794 	.resume		= kszphy_resume,
4795 	.cable_test_start	= ksz9x31_cable_test_start,
4796 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4797 }, {
4798 	.phy_id		= PHY_ID_LAN8814,
4799 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4800 	.name		= "Microchip INDY Gigabit Quad PHY",
4801 	.flags          = PHY_POLL_CABLE_TEST,
4802 	.config_init	= lan8814_config_init,
4803 	.driver_data	= &lan8814_type,
4804 	.probe		= lan8814_probe,
4805 	.soft_reset	= genphy_soft_reset,
4806 	.read_status	= ksz9031_read_status,
4807 	.get_sset_count	= kszphy_get_sset_count,
4808 	.get_strings	= kszphy_get_strings,
4809 	.get_stats	= kszphy_get_stats,
4810 	.suspend	= genphy_suspend,
4811 	.resume		= kszphy_resume,
4812 	.config_intr	= lan8814_config_intr,
4813 	.handle_interrupt = lan8814_handle_interrupt,
4814 	.cable_test_start	= lan8814_cable_test_start,
4815 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4816 }, {
4817 	.phy_id		= PHY_ID_LAN8804,
4818 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4819 	.name		= "Microchip LAN966X Gigabit PHY",
4820 	.config_init	= lan8804_config_init,
4821 	.driver_data	= &ksz9021_type,
4822 	.probe		= kszphy_probe,
4823 	.soft_reset	= genphy_soft_reset,
4824 	.read_status	= ksz9031_read_status,
4825 	.get_sset_count	= kszphy_get_sset_count,
4826 	.get_strings	= kszphy_get_strings,
4827 	.get_stats	= kszphy_get_stats,
4828 	.suspend	= genphy_suspend,
4829 	.resume		= kszphy_resume,
4830 	.config_intr	= lan8804_config_intr,
4831 	.handle_interrupt = lan8804_handle_interrupt,
4832 }, {
4833 	.phy_id		= PHY_ID_LAN8841,
4834 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4835 	.name		= "Microchip LAN8841 Gigabit PHY",
4836 	.flags		= PHY_POLL_CABLE_TEST,
4837 	.driver_data	= &lan8841_type,
4838 	.config_init	= lan8841_config_init,
4839 	.probe		= lan8841_probe,
4840 	.soft_reset	= genphy_soft_reset,
4841 	.config_intr	= lan8841_config_intr,
4842 	.handle_interrupt = lan8841_handle_interrupt,
4843 	.get_sset_count = kszphy_get_sset_count,
4844 	.get_strings	= kszphy_get_strings,
4845 	.get_stats	= kszphy_get_stats,
4846 	.suspend	= lan8841_suspend,
4847 	.resume		= genphy_resume,
4848 	.cable_test_start	= lan8814_cable_test_start,
4849 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4850 }, {
4851 	.phy_id		= PHY_ID_KSZ9131,
4852 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4853 	.name		= "Microchip KSZ9131 Gigabit PHY",
4854 	/* PHY_GBIT_FEATURES */
4855 	.flags		= PHY_POLL_CABLE_TEST,
4856 	.driver_data	= &ksz9131_type,
4857 	.probe		= kszphy_probe,
4858 	.soft_reset	= genphy_soft_reset,
4859 	.config_init	= ksz9131_config_init,
4860 	.config_intr	= kszphy_config_intr,
4861 	.config_aneg	= ksz9131_config_aneg,
4862 	.read_status	= ksz9131_read_status,
4863 	.handle_interrupt = kszphy_handle_interrupt,
4864 	.get_sset_count = kszphy_get_sset_count,
4865 	.get_strings	= kszphy_get_strings,
4866 	.get_stats	= kszphy_get_stats,
4867 	.suspend	= kszphy_suspend,
4868 	.resume		= kszphy_resume,
4869 	.cable_test_start	= ksz9x31_cable_test_start,
4870 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4871 	.get_features	= ksz9477_get_features,
4872 }, {
4873 	.phy_id		= PHY_ID_KSZ8873MLL,
4874 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4875 	.name		= "Micrel KSZ8873MLL Switch",
4876 	/* PHY_BASIC_FEATURES */
4877 	.config_init	= kszphy_config_init,
4878 	.config_aneg	= ksz8873mll_config_aneg,
4879 	.read_status	= ksz8873mll_read_status,
4880 	.suspend	= genphy_suspend,
4881 	.resume		= genphy_resume,
4882 }, {
4883 	.phy_id		= PHY_ID_KSZ886X,
4884 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4885 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
4886 	.driver_data	= &ksz886x_type,
4887 	/* PHY_BASIC_FEATURES */
4888 	.flags		= PHY_POLL_CABLE_TEST,
4889 	.config_init	= kszphy_config_init,
4890 	.config_aneg	= ksz886x_config_aneg,
4891 	.read_status	= ksz886x_read_status,
4892 	.suspend	= genphy_suspend,
4893 	.resume		= genphy_resume,
4894 	.cable_test_start	= ksz886x_cable_test_start,
4895 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4896 }, {
4897 	.name		= "Micrel KSZ87XX Switch",
4898 	/* PHY_BASIC_FEATURES */
4899 	.config_init	= kszphy_config_init,
4900 	.match_phy_device = ksz8795_match_phy_device,
4901 	.suspend	= genphy_suspend,
4902 	.resume		= genphy_resume,
4903 }, {
4904 	.phy_id		= PHY_ID_KSZ9477,
4905 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4906 	.name		= "Microchip KSZ9477",
4907 	/* PHY_GBIT_FEATURES */
4908 	.config_init	= ksz9477_config_init,
4909 	.config_intr	= kszphy_config_intr,
4910 	.handle_interrupt = kszphy_handle_interrupt,
4911 	.suspend	= genphy_suspend,
4912 	.resume		= genphy_resume,
4913 	.get_features	= ksz9477_get_features,
4914 } };
4915 
4916 module_phy_driver(ksphy_driver);
4917 
4918 MODULE_DESCRIPTION("Micrel PHY driver");
4919 MODULE_AUTHOR("David J. Choi");
4920 MODULE_LICENSE("GPL");
4921 
4922 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
4923 	{ PHY_ID_KSZ9021, 0x000ffffe },
4924 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
4925 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
4926 	{ PHY_ID_KSZ8001, 0x00fffffc },
4927 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
4928 	{ PHY_ID_KSZ8021, 0x00ffffff },
4929 	{ PHY_ID_KSZ8031, 0x00ffffff },
4930 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
4931 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
4932 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
4933 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
4934 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
4935 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
4936 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
4937 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
4938 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
4939 	{ }
4940 };
4941 
4942 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
4943