1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_WIRE_PAIR_MASK 0xF 105 106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 107 #define LAN8814_INTC 0x18 108 #define LAN8814_INTS 0x1B 109 110 #define LAN8814_INT_LINK_DOWN BIT(2) 111 #define LAN8814_INT_LINK_UP BIT(0) 112 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 113 LAN8814_INT_LINK_DOWN) 114 115 #define LAN8814_INTR_CTRL_REG 0x34 116 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 117 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 118 119 #define LAN8814_EEE_STATE 0x38 120 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 121 122 #define LAN8814_PD_CONTROLS 0x9d 123 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 125 126 /* Represents 1ppm adjustment in 2^32 format with 127 * each nsec contains 4 clock cycles. 128 * The value is calculated as following: (1/1000000)/((2^-32)/4) 129 */ 130 #define LAN8814_1PPM_FORMAT 17179 131 132 /* Represents 1ppm adjustment in 2^32 format with 133 * each nsec contains 8 clock cycles. 134 * The value is calculated as following: (1/1000000)/((2^-32)/8) 135 */ 136 #define LAN8841_1PPM_FORMAT 34360 137 138 #define PTP_RX_VERSION 0x0248 139 #define PTP_TX_VERSION 0x0288 140 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 141 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 142 143 #define PTP_RX_MOD 0x024F 144 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 145 #define PTP_RX_TIMESTAMP_EN 0x024D 146 #define PTP_TX_TIMESTAMP_EN 0x028D 147 148 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 149 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 150 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 151 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 152 153 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 154 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 155 156 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 157 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 158 #define LTC_HARD_RESET 0x023F 159 #define LTC_HARD_RESET_ BIT(0) 160 161 #define TSU_HARD_RESET 0x02C1 162 #define TSU_HARD_RESET_ BIT(0) 163 164 #define PTP_CMD_CTL 0x0200 165 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 166 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 167 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 168 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 169 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 170 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 171 172 #define PTP_COMMON_INT_ENA 0x0204 173 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 174 175 #define PTP_CLOCK_SET_SEC_HI 0x0205 176 #define PTP_CLOCK_SET_SEC_MID 0x0206 177 #define PTP_CLOCK_SET_SEC_LO 0x0207 178 #define PTP_CLOCK_SET_NS_HI 0x0208 179 #define PTP_CLOCK_SET_NS_LO 0x0209 180 181 #define PTP_CLOCK_READ_SEC_HI 0x0229 182 #define PTP_CLOCK_READ_SEC_MID 0x022A 183 #define PTP_CLOCK_READ_SEC_LO 0x022B 184 #define PTP_CLOCK_READ_NS_HI 0x022C 185 #define PTP_CLOCK_READ_NS_LO 0x022D 186 187 #define PTP_GPIO_SEL 0x0230 188 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 189 #define PTP_GPIO_CAP_MAP_LO 0x0232 190 191 #define PTP_GPIO_CAP_EN 0x0233 192 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 193 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 194 195 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 196 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 197 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 198 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 199 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 200 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 201 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 202 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 203 204 #define PTP_GPIO_CAP_STS 0x023D 205 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 206 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 207 208 #define PTP_OPERATING_MODE 0x0241 209 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 210 211 #define PTP_TX_MOD 0x028F 212 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 213 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 214 215 #define PTP_RX_PARSE_CONFIG 0x0242 216 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 217 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 218 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 219 220 #define PTP_TX_PARSE_CONFIG 0x0282 221 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 222 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 223 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 224 225 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 226 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 227 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 228 229 #define PTP_LTC_STEP_ADJ_HI 0x0212 230 #define PTP_LTC_STEP_ADJ_LO 0x0213 231 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 232 233 #define LAN8814_INTR_STS_REG 0x0033 234 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 235 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 236 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 237 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 238 239 #define PTP_CAP_INFO 0x022A 240 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 241 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 242 243 #define PTP_TX_EGRESS_SEC_HI 0x0296 244 #define PTP_TX_EGRESS_SEC_LO 0x0297 245 #define PTP_TX_EGRESS_NS_HI 0x0294 246 #define PTP_TX_EGRESS_NS_LO 0x0295 247 #define PTP_TX_MSG_HEADER2 0x0299 248 249 #define PTP_RX_INGRESS_SEC_HI 0x0256 250 #define PTP_RX_INGRESS_SEC_LO 0x0257 251 #define PTP_RX_INGRESS_NS_HI 0x0254 252 #define PTP_RX_INGRESS_NS_LO 0x0255 253 #define PTP_RX_MSG_HEADER2 0x0259 254 255 #define PTP_TSU_INT_EN 0x0200 256 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 257 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 258 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 259 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 260 261 #define PTP_TSU_INT_STS 0x0201 262 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 263 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 264 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 265 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 266 267 #define LAN8814_LED_CTRL_1 0x0 268 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 269 270 /* PHY Control 1 */ 271 #define MII_KSZPHY_CTRL_1 0x1e 272 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 273 274 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 275 #define MII_KSZPHY_CTRL_2 0x1f 276 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 277 /* bitmap of PHY register to set interrupt mode */ 278 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 279 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 280 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 281 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 282 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 283 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 284 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 285 286 /* Write/read to/from extended registers */ 287 #define MII_KSZPHY_EXTREG 0x0b 288 #define KSZPHY_EXTREG_WRITE 0x8000 289 290 #define MII_KSZPHY_EXTREG_WRITE 0x0c 291 #define MII_KSZPHY_EXTREG_READ 0x0d 292 293 /* Extended registers */ 294 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 295 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 296 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 297 298 #define PS_TO_REG 200 299 #define FIFO_SIZE 8 300 301 #define LAN8814_PTP_GPIO_NUM 24 302 #define LAN8814_PTP_PEROUT_NUM 2 303 #define LAN8814_PTP_EXTTS_NUM 3 304 305 #define LAN8814_BUFFER_TIME 2 306 307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 321 322 #define LAN8814_GPIO_EN1 0x20 323 #define LAN8814_GPIO_EN2 0x21 324 #define LAN8814_GPIO_DIR1 0x22 325 #define LAN8814_GPIO_DIR2 0x23 326 #define LAN8814_GPIO_BUF1 0x24 327 #define LAN8814_GPIO_BUF2 0x25 328 329 #define LAN8814_GPIO_EN_ADDR(pin) \ 330 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 331 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 332 #define LAN8814_GPIO_DIR_ADDR(pin) \ 333 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 334 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 335 #define LAN8814_GPIO_BUF_ADDR(pin) \ 336 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 337 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 338 339 #define LAN8814_EVENT_A 0 340 #define LAN8814_EVENT_B 1 341 342 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 344 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 345 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 346 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 347 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 348 ((event) ? BIT(2) : BIT(0)) 349 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 350 ((event) ? BIT(3) : BIT(1)) 351 352 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 353 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 354 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 355 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 356 357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 359 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 361 362 /* Delay used to get the second part from the LTC */ 363 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 364 365 struct kszphy_hw_stat { 366 const char *string; 367 u8 reg; 368 u8 bits; 369 }; 370 371 static struct kszphy_hw_stat kszphy_hw_stats[] = { 372 { "phy_receive_errors", 21, 16}, 373 { "phy_idle_errors", 10, 8 }, 374 }; 375 376 struct kszphy_type { 377 u32 led_mode_reg; 378 u16 interrupt_level_mask; 379 u16 cable_diag_reg; 380 unsigned long pair_mask; 381 u16 disable_dll_tx_bit; 382 u16 disable_dll_rx_bit; 383 u16 disable_dll_mask; 384 bool has_broadcast_disable; 385 bool has_nand_tree_disable; 386 bool has_rmii_ref_clk_sel; 387 }; 388 389 /* Shared structure between the PHYs of the same package. */ 390 struct lan8814_shared_priv { 391 struct phy_device *phydev; 392 struct ptp_clock *ptp_clock; 393 struct ptp_clock_info ptp_clock_info; 394 struct ptp_pin_desc *pin_config; 395 396 /* Lock for ptp_clock */ 397 struct mutex shared_lock; 398 }; 399 400 struct lan8814_ptp_rx_ts { 401 struct list_head list; 402 u32 seconds; 403 u32 nsec; 404 u16 seq_id; 405 }; 406 407 struct kszphy_ptp_priv { 408 struct mii_timestamper mii_ts; 409 struct phy_device *phydev; 410 411 struct sk_buff_head tx_queue; 412 struct sk_buff_head rx_queue; 413 414 struct list_head rx_ts_list; 415 /* Lock for Rx ts fifo */ 416 spinlock_t rx_ts_lock; 417 418 int hwts_tx_type; 419 enum hwtstamp_rx_filters rx_filter; 420 int layer; 421 int version; 422 423 struct ptp_clock *ptp_clock; 424 struct ptp_clock_info ptp_clock_info; 425 /* Lock for ptp_clock */ 426 struct mutex ptp_lock; 427 struct ptp_pin_desc *pin_config; 428 429 s64 seconds; 430 /* Lock for accessing seconds */ 431 spinlock_t seconds_lock; 432 }; 433 434 struct kszphy_phy_stats { 435 u64 rx_err_pkt_cnt; 436 }; 437 438 struct kszphy_priv { 439 struct kszphy_ptp_priv ptp_priv; 440 const struct kszphy_type *type; 441 struct clk *clk; 442 int led_mode; 443 u16 vct_ctrl1000; 444 bool rmii_ref_clk_sel; 445 bool rmii_ref_clk_sel_val; 446 bool clk_enable; 447 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 448 struct kszphy_phy_stats phy_stats; 449 }; 450 451 static const struct kszphy_type lan8814_type = { 452 .led_mode_reg = ~LAN8814_LED_CTRL_1, 453 .cable_diag_reg = LAN8814_CABLE_DIAG, 454 .pair_mask = LAN8814_WIRE_PAIR_MASK, 455 }; 456 457 static const struct kszphy_type ksz886x_type = { 458 .cable_diag_reg = KSZ8081_LMD, 459 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 460 }; 461 462 static const struct kszphy_type ksz8021_type = { 463 .led_mode_reg = MII_KSZPHY_CTRL_2, 464 .has_broadcast_disable = true, 465 .has_nand_tree_disable = true, 466 .has_rmii_ref_clk_sel = true, 467 }; 468 469 static const struct kszphy_type ksz8041_type = { 470 .led_mode_reg = MII_KSZPHY_CTRL_1, 471 }; 472 473 static const struct kszphy_type ksz8051_type = { 474 .led_mode_reg = MII_KSZPHY_CTRL_2, 475 .has_nand_tree_disable = true, 476 }; 477 478 static const struct kszphy_type ksz8081_type = { 479 .led_mode_reg = MII_KSZPHY_CTRL_2, 480 .has_broadcast_disable = true, 481 .has_nand_tree_disable = true, 482 .has_rmii_ref_clk_sel = true, 483 }; 484 485 static const struct kszphy_type ks8737_type = { 486 .interrupt_level_mask = BIT(14), 487 }; 488 489 static const struct kszphy_type ksz9021_type = { 490 .interrupt_level_mask = BIT(14), 491 }; 492 493 static const struct kszphy_type ksz9131_type = { 494 .interrupt_level_mask = BIT(14), 495 .disable_dll_tx_bit = BIT(12), 496 .disable_dll_rx_bit = BIT(12), 497 .disable_dll_mask = BIT_MASK(12), 498 }; 499 500 static const struct kszphy_type lan8841_type = { 501 .disable_dll_tx_bit = BIT(14), 502 .disable_dll_rx_bit = BIT(14), 503 .disable_dll_mask = BIT_MASK(14), 504 .cable_diag_reg = LAN8814_CABLE_DIAG, 505 .pair_mask = LAN8814_WIRE_PAIR_MASK, 506 }; 507 508 static int kszphy_extended_write(struct phy_device *phydev, 509 u32 regnum, u16 val) 510 { 511 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 512 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 513 } 514 515 static int kszphy_extended_read(struct phy_device *phydev, 516 u32 regnum) 517 { 518 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 519 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 520 } 521 522 static int kszphy_ack_interrupt(struct phy_device *phydev) 523 { 524 /* bit[7..0] int status, which is a read and clear register. */ 525 int rc; 526 527 rc = phy_read(phydev, MII_KSZPHY_INTCS); 528 529 return (rc < 0) ? rc : 0; 530 } 531 532 static int kszphy_config_intr(struct phy_device *phydev) 533 { 534 const struct kszphy_type *type = phydev->drv->driver_data; 535 int temp, err; 536 u16 mask; 537 538 if (type && type->interrupt_level_mask) 539 mask = type->interrupt_level_mask; 540 else 541 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 542 543 /* set the interrupt pin active low */ 544 temp = phy_read(phydev, MII_KSZPHY_CTRL); 545 if (temp < 0) 546 return temp; 547 temp &= ~mask; 548 phy_write(phydev, MII_KSZPHY_CTRL, temp); 549 550 /* enable / disable interrupts */ 551 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 552 err = kszphy_ack_interrupt(phydev); 553 if (err) 554 return err; 555 556 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 557 } else { 558 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 559 if (err) 560 return err; 561 562 err = kszphy_ack_interrupt(phydev); 563 } 564 565 return err; 566 } 567 568 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 569 { 570 int irq_status; 571 572 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 573 if (irq_status < 0) { 574 phy_error(phydev); 575 return IRQ_NONE; 576 } 577 578 if (!(irq_status & KSZPHY_INTCS_STATUS)) 579 return IRQ_NONE; 580 581 phy_trigger_machine(phydev); 582 583 return IRQ_HANDLED; 584 } 585 586 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 587 { 588 int ctrl; 589 590 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 591 if (ctrl < 0) 592 return ctrl; 593 594 if (val) 595 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 596 else 597 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 598 599 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 600 } 601 602 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 603 { 604 int rc, temp, shift; 605 606 switch (reg) { 607 case MII_KSZPHY_CTRL_1: 608 shift = 14; 609 break; 610 case MII_KSZPHY_CTRL_2: 611 shift = 4; 612 break; 613 default: 614 return -EINVAL; 615 } 616 617 temp = phy_read(phydev, reg); 618 if (temp < 0) { 619 rc = temp; 620 goto out; 621 } 622 623 temp &= ~(3 << shift); 624 temp |= val << shift; 625 rc = phy_write(phydev, reg, temp); 626 out: 627 if (rc < 0) 628 phydev_err(phydev, "failed to set led mode\n"); 629 630 return rc; 631 } 632 633 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 634 * unique (non-broadcast) address on a shared bus. 635 */ 636 static int kszphy_broadcast_disable(struct phy_device *phydev) 637 { 638 int ret; 639 640 ret = phy_read(phydev, MII_KSZPHY_OMSO); 641 if (ret < 0) 642 goto out; 643 644 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 645 out: 646 if (ret) 647 phydev_err(phydev, "failed to disable broadcast address\n"); 648 649 return ret; 650 } 651 652 static int kszphy_nand_tree_disable(struct phy_device *phydev) 653 { 654 int ret; 655 656 ret = phy_read(phydev, MII_KSZPHY_OMSO); 657 if (ret < 0) 658 goto out; 659 660 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 661 return 0; 662 663 ret = phy_write(phydev, MII_KSZPHY_OMSO, 664 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 665 out: 666 if (ret) 667 phydev_err(phydev, "failed to disable NAND tree mode\n"); 668 669 return ret; 670 } 671 672 /* Some config bits need to be set again on resume, handle them here. */ 673 static int kszphy_config_reset(struct phy_device *phydev) 674 { 675 struct kszphy_priv *priv = phydev->priv; 676 int ret; 677 678 if (priv->rmii_ref_clk_sel) { 679 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 680 if (ret) { 681 phydev_err(phydev, 682 "failed to set rmii reference clock\n"); 683 return ret; 684 } 685 } 686 687 if (priv->type && priv->led_mode >= 0) 688 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 689 690 return 0; 691 } 692 693 static int kszphy_config_init(struct phy_device *phydev) 694 { 695 struct kszphy_priv *priv = phydev->priv; 696 const struct kszphy_type *type; 697 698 if (!priv) 699 return 0; 700 701 type = priv->type; 702 703 if (type && type->has_broadcast_disable) 704 kszphy_broadcast_disable(phydev); 705 706 if (type && type->has_nand_tree_disable) 707 kszphy_nand_tree_disable(phydev); 708 709 return kszphy_config_reset(phydev); 710 } 711 712 static int ksz8041_fiber_mode(struct phy_device *phydev) 713 { 714 struct device_node *of_node = phydev->mdio.dev.of_node; 715 716 return of_property_read_bool(of_node, "micrel,fiber-mode"); 717 } 718 719 static int ksz8041_config_init(struct phy_device *phydev) 720 { 721 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 722 723 /* Limit supported and advertised modes in fiber mode */ 724 if (ksz8041_fiber_mode(phydev)) { 725 phydev->dev_flags |= MICREL_PHY_FXEN; 726 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 727 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 728 729 linkmode_and(phydev->supported, phydev->supported, mask); 730 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 731 phydev->supported); 732 linkmode_and(phydev->advertising, phydev->advertising, mask); 733 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 734 phydev->advertising); 735 phydev->autoneg = AUTONEG_DISABLE; 736 } 737 738 return kszphy_config_init(phydev); 739 } 740 741 static int ksz8041_config_aneg(struct phy_device *phydev) 742 { 743 /* Skip auto-negotiation in fiber mode */ 744 if (phydev->dev_flags & MICREL_PHY_FXEN) { 745 phydev->speed = SPEED_100; 746 return 0; 747 } 748 749 return genphy_config_aneg(phydev); 750 } 751 752 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 753 const bool ksz_8051) 754 { 755 int ret; 756 757 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 758 return 0; 759 760 ret = phy_read(phydev, MII_BMSR); 761 if (ret < 0) 762 return ret; 763 764 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 765 * exact PHY ID. However, they can be told apart by the extended 766 * capability registers presence. The KSZ8051 PHY has them while 767 * the switch does not. 768 */ 769 ret &= BMSR_ERCAP; 770 if (ksz_8051) 771 return ret; 772 else 773 return !ret; 774 } 775 776 static int ksz8051_match_phy_device(struct phy_device *phydev, 777 const struct phy_driver *phydrv) 778 { 779 return ksz8051_ksz8795_match_phy_device(phydev, true); 780 } 781 782 static int ksz8081_config_init(struct phy_device *phydev) 783 { 784 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 785 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 786 * pull-down is missing, the factory test mode should be cleared by 787 * manually writing a 0. 788 */ 789 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 790 791 return kszphy_config_init(phydev); 792 } 793 794 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 795 { 796 u16 val; 797 798 switch (ctrl) { 799 case ETH_TP_MDI: 800 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 801 break; 802 case ETH_TP_MDI_X: 803 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 804 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 805 break; 806 case ETH_TP_MDI_AUTO: 807 val = 0; 808 break; 809 default: 810 return 0; 811 } 812 813 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 814 KSZ8081_CTRL2_HP_MDIX | 815 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 816 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 817 KSZ8081_CTRL2_HP_MDIX | val); 818 } 819 820 static int ksz8081_config_aneg(struct phy_device *phydev) 821 { 822 int ret; 823 824 ret = genphy_config_aneg(phydev); 825 if (ret) 826 return ret; 827 828 /* The MDI-X configuration is automatically changed by the PHY after 829 * switching from autoneg off to on. So, take MDI-X configuration under 830 * own control and set it after autoneg configuration was done. 831 */ 832 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 833 } 834 835 static int ksz8081_mdix_update(struct phy_device *phydev) 836 { 837 int ret; 838 839 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 840 if (ret < 0) 841 return ret; 842 843 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 844 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 845 phydev->mdix_ctrl = ETH_TP_MDI_X; 846 else 847 phydev->mdix_ctrl = ETH_TP_MDI; 848 } else { 849 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 850 } 851 852 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 853 if (ret < 0) 854 return ret; 855 856 if (ret & KSZ8081_CTRL1_MDIX_STAT) 857 phydev->mdix = ETH_TP_MDI; 858 else 859 phydev->mdix = ETH_TP_MDI_X; 860 861 return 0; 862 } 863 864 static int ksz8081_read_status(struct phy_device *phydev) 865 { 866 int ret; 867 868 ret = ksz8081_mdix_update(phydev); 869 if (ret < 0) 870 return ret; 871 872 return genphy_read_status(phydev); 873 } 874 875 static int ksz8061_config_init(struct phy_device *phydev) 876 { 877 int ret; 878 879 /* Chip can be powered down by the bootstrap code. */ 880 ret = phy_read(phydev, MII_BMCR); 881 if (ret < 0) 882 return ret; 883 if (ret & BMCR_PDOWN) { 884 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 885 if (ret < 0) 886 return ret; 887 usleep_range(1000, 2000); 888 } 889 890 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 891 if (ret) 892 return ret; 893 894 return kszphy_config_init(phydev); 895 } 896 897 static int ksz8795_match_phy_device(struct phy_device *phydev, 898 const struct phy_driver *phydrv) 899 { 900 return ksz8051_ksz8795_match_phy_device(phydev, false); 901 } 902 903 static int ksz9021_load_values_from_of(struct phy_device *phydev, 904 const struct device_node *of_node, 905 u16 reg, 906 const char *field1, const char *field2, 907 const char *field3, const char *field4) 908 { 909 int val1 = -1; 910 int val2 = -2; 911 int val3 = -3; 912 int val4 = -4; 913 int newval; 914 int matches = 0; 915 916 if (!of_property_read_u32(of_node, field1, &val1)) 917 matches++; 918 919 if (!of_property_read_u32(of_node, field2, &val2)) 920 matches++; 921 922 if (!of_property_read_u32(of_node, field3, &val3)) 923 matches++; 924 925 if (!of_property_read_u32(of_node, field4, &val4)) 926 matches++; 927 928 if (!matches) 929 return 0; 930 931 if (matches < 4) 932 newval = kszphy_extended_read(phydev, reg); 933 else 934 newval = 0; 935 936 if (val1 != -1) 937 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 938 939 if (val2 != -2) 940 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 941 942 if (val3 != -3) 943 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 944 945 if (val4 != -4) 946 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 947 948 return kszphy_extended_write(phydev, reg, newval); 949 } 950 951 static int ksz9021_config_init(struct phy_device *phydev) 952 { 953 const struct device_node *of_node; 954 const struct device *dev_walker; 955 956 /* The Micrel driver has a deprecated option to place phy OF 957 * properties in the MAC node. Walk up the tree of devices to 958 * find a device with an OF node. 959 */ 960 dev_walker = &phydev->mdio.dev; 961 do { 962 of_node = dev_walker->of_node; 963 dev_walker = dev_walker->parent; 964 965 } while (!of_node && dev_walker); 966 967 if (of_node) { 968 ksz9021_load_values_from_of(phydev, of_node, 969 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 970 "txen-skew-ps", "txc-skew-ps", 971 "rxdv-skew-ps", "rxc-skew-ps"); 972 ksz9021_load_values_from_of(phydev, of_node, 973 MII_KSZPHY_RX_DATA_PAD_SKEW, 974 "rxd0-skew-ps", "rxd1-skew-ps", 975 "rxd2-skew-ps", "rxd3-skew-ps"); 976 ksz9021_load_values_from_of(phydev, of_node, 977 MII_KSZPHY_TX_DATA_PAD_SKEW, 978 "txd0-skew-ps", "txd1-skew-ps", 979 "txd2-skew-ps", "txd3-skew-ps"); 980 } 981 return 0; 982 } 983 984 #define KSZ9031_PS_TO_REG 60 985 986 /* Extended registers */ 987 /* MMD Address 0x0 */ 988 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 989 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 990 991 /* MMD Address 0x2 */ 992 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 993 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 994 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 995 996 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 997 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 998 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 999 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 1000 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 1001 1002 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 1003 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 1004 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1005 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1006 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1007 1008 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1009 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1010 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1011 1012 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1013 * provide different RGMII options we need to configure delay offset 1014 * for each pad relative to build in delay. 1015 */ 1016 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1017 * 1.80ns 1018 */ 1019 #define RX_ID 0x7 1020 #define RX_CLK_ID 0x19 1021 1022 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1023 * internal 1.2ns delay. 1024 */ 1025 #define RX_ND 0xc 1026 #define RX_CLK_ND 0x0 1027 1028 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1029 #define TX_ID 0x0 1030 #define TX_CLK_ID 0x1f 1031 1032 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1033 * dealy 1034 */ 1035 #define TX_ND 0x7 1036 #define TX_CLK_ND 0xf 1037 1038 /* MMD Address 0x1C */ 1039 #define MII_KSZ9031RN_EDPD 0x23 1040 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1041 1042 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1043 int speed) 1044 { 1045 u16 ctl = BMCR_LOOPBACK; 1046 int val; 1047 1048 if (!enable) 1049 return genphy_loopback(phydev, enable, 0); 1050 1051 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1052 phydev->speed = speed; 1053 else if (speed) 1054 return -EINVAL; 1055 phydev->duplex = DUPLEX_FULL; 1056 1057 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1058 1059 phy_write(phydev, MII_BMCR, ctl); 1060 1061 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1062 5000, 500000, true); 1063 } 1064 1065 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1066 const struct device_node *of_node, 1067 u16 reg, size_t field_sz, 1068 const char *field[], u8 numfields, 1069 bool *update) 1070 { 1071 int val[4] = {-1, -2, -3, -4}; 1072 int matches = 0; 1073 u16 mask; 1074 u16 maxval; 1075 u16 newval; 1076 int i; 1077 1078 for (i = 0; i < numfields; i++) 1079 if (!of_property_read_u32(of_node, field[i], val + i)) 1080 matches++; 1081 1082 if (!matches) 1083 return 0; 1084 1085 *update |= true; 1086 1087 if (matches < numfields) 1088 newval = phy_read_mmd(phydev, 2, reg); 1089 else 1090 newval = 0; 1091 1092 maxval = (field_sz == 4) ? 0xf : 0x1f; 1093 for (i = 0; i < numfields; i++) 1094 if (val[i] != -(i + 1)) { 1095 mask = 0xffff; 1096 mask ^= maxval << (field_sz * i); 1097 newval = (newval & mask) | 1098 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1099 << (field_sz * i)); 1100 } 1101 1102 return phy_write_mmd(phydev, 2, reg, newval); 1103 } 1104 1105 /* Center KSZ9031RNX FLP timing at 16ms. */ 1106 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1107 { 1108 int result; 1109 1110 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1111 0x0006); 1112 if (result) 1113 return result; 1114 1115 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1116 0x1A80); 1117 if (result) 1118 return result; 1119 1120 return genphy_restart_aneg(phydev); 1121 } 1122 1123 /* Enable energy-detect power-down mode */ 1124 static int ksz9031_enable_edpd(struct phy_device *phydev) 1125 { 1126 int reg; 1127 1128 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1129 if (reg < 0) 1130 return reg; 1131 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1132 reg | MII_KSZ9031RN_EDPD_ENABLE); 1133 } 1134 1135 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1136 { 1137 u16 rx, tx, rx_clk, tx_clk; 1138 int ret; 1139 1140 switch (phydev->interface) { 1141 case PHY_INTERFACE_MODE_RGMII: 1142 tx = TX_ND; 1143 tx_clk = TX_CLK_ND; 1144 rx = RX_ND; 1145 rx_clk = RX_CLK_ND; 1146 break; 1147 case PHY_INTERFACE_MODE_RGMII_ID: 1148 tx = TX_ID; 1149 tx_clk = TX_CLK_ID; 1150 rx = RX_ID; 1151 rx_clk = RX_CLK_ID; 1152 break; 1153 case PHY_INTERFACE_MODE_RGMII_RXID: 1154 tx = TX_ND; 1155 tx_clk = TX_CLK_ND; 1156 rx = RX_ID; 1157 rx_clk = RX_CLK_ID; 1158 break; 1159 case PHY_INTERFACE_MODE_RGMII_TXID: 1160 tx = TX_ID; 1161 tx_clk = TX_CLK_ID; 1162 rx = RX_ND; 1163 rx_clk = RX_CLK_ND; 1164 break; 1165 default: 1166 return 0; 1167 } 1168 1169 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1170 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1171 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1172 if (ret < 0) 1173 return ret; 1174 1175 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1176 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1177 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1178 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1179 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1180 if (ret < 0) 1181 return ret; 1182 1183 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1184 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1185 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1186 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1187 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1188 if (ret < 0) 1189 return ret; 1190 1191 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1192 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1193 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1194 } 1195 1196 static int ksz9031_config_init(struct phy_device *phydev) 1197 { 1198 const struct device_node *of_node; 1199 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1200 static const char *rx_data_skews[4] = { 1201 "rxd0-skew-ps", "rxd1-skew-ps", 1202 "rxd2-skew-ps", "rxd3-skew-ps" 1203 }; 1204 static const char *tx_data_skews[4] = { 1205 "txd0-skew-ps", "txd1-skew-ps", 1206 "txd2-skew-ps", "txd3-skew-ps" 1207 }; 1208 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1209 const struct device *dev_walker; 1210 int result; 1211 1212 result = ksz9031_enable_edpd(phydev); 1213 if (result < 0) 1214 return result; 1215 1216 /* The Micrel driver has a deprecated option to place phy OF 1217 * properties in the MAC node. Walk up the tree of devices to 1218 * find a device with an OF node. 1219 */ 1220 dev_walker = &phydev->mdio.dev; 1221 do { 1222 of_node = dev_walker->of_node; 1223 dev_walker = dev_walker->parent; 1224 } while (!of_node && dev_walker); 1225 1226 if (of_node) { 1227 bool update = false; 1228 1229 if (phy_interface_is_rgmii(phydev)) { 1230 result = ksz9031_config_rgmii_delay(phydev); 1231 if (result < 0) 1232 return result; 1233 } 1234 1235 ksz9031_of_load_skew_values(phydev, of_node, 1236 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1237 clk_skews, 2, &update); 1238 1239 ksz9031_of_load_skew_values(phydev, of_node, 1240 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1241 control_skews, 2, &update); 1242 1243 ksz9031_of_load_skew_values(phydev, of_node, 1244 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1245 rx_data_skews, 4, &update); 1246 1247 ksz9031_of_load_skew_values(phydev, of_node, 1248 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1249 tx_data_skews, 4, &update); 1250 1251 if (update && !phy_interface_is_rgmii(phydev)) 1252 phydev_warn(phydev, 1253 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1254 1255 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1256 * When the device links in the 1000BASE-T slave mode only, 1257 * the optional 125MHz reference output clock (CLK125_NDO) 1258 * has wide duty cycle variation. 1259 * 1260 * The optional CLK125_NDO clock does not meet the RGMII 1261 * 45/55 percent (min/max) duty cycle requirement and therefore 1262 * cannot be used directly by the MAC side for clocking 1263 * applications that have setup/hold time requirements on 1264 * rising and falling clock edges. 1265 * 1266 * Workaround: 1267 * Force the phy to be the master to receive a stable clock 1268 * which meets the duty cycle requirement. 1269 */ 1270 if (of_property_read_bool(of_node, "micrel,force-master")) { 1271 result = phy_read(phydev, MII_CTRL1000); 1272 if (result < 0) 1273 goto err_force_master; 1274 1275 /* enable master mode, config & prefer master */ 1276 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1277 result = phy_write(phydev, MII_CTRL1000, result); 1278 if (result < 0) 1279 goto err_force_master; 1280 } 1281 } 1282 1283 return ksz9031_center_flp_timing(phydev); 1284 1285 err_force_master: 1286 phydev_err(phydev, "failed to force the phy to master mode\n"); 1287 return result; 1288 } 1289 1290 #define KSZ9131_SKEW_5BIT_MAX 2400 1291 #define KSZ9131_SKEW_4BIT_MAX 800 1292 #define KSZ9131_OFFSET 700 1293 #define KSZ9131_STEP 100 1294 1295 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1296 struct device_node *of_node, 1297 u16 reg, size_t field_sz, 1298 char *field[], u8 numfields) 1299 { 1300 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1301 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1302 int skewval, skewmax = 0; 1303 int matches = 0; 1304 u16 maxval; 1305 u16 newval; 1306 u16 mask; 1307 int i; 1308 1309 /* psec properties in dts should mean x pico seconds */ 1310 if (field_sz == 5) 1311 skewmax = KSZ9131_SKEW_5BIT_MAX; 1312 else 1313 skewmax = KSZ9131_SKEW_4BIT_MAX; 1314 1315 for (i = 0; i < numfields; i++) 1316 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1317 if (skewval < -KSZ9131_OFFSET) 1318 skewval = -KSZ9131_OFFSET; 1319 else if (skewval > skewmax) 1320 skewval = skewmax; 1321 1322 val[i] = skewval + KSZ9131_OFFSET; 1323 matches++; 1324 } 1325 1326 if (!matches) 1327 return 0; 1328 1329 if (matches < numfields) 1330 newval = phy_read_mmd(phydev, 2, reg); 1331 else 1332 newval = 0; 1333 1334 maxval = (field_sz == 4) ? 0xf : 0x1f; 1335 for (i = 0; i < numfields; i++) 1336 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1337 mask = 0xffff; 1338 mask ^= maxval << (field_sz * i); 1339 newval = (newval & mask) | 1340 (((val[i] / KSZ9131_STEP) & maxval) 1341 << (field_sz * i)); 1342 } 1343 1344 return phy_write_mmd(phydev, 2, reg, newval); 1345 } 1346 1347 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1348 #define KSZ9131RN_RXC_DLL_CTRL 76 1349 #define KSZ9131RN_TXC_DLL_CTRL 77 1350 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1351 1352 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1353 { 1354 const struct kszphy_type *type = phydev->drv->driver_data; 1355 u16 rxcdll_val, txcdll_val; 1356 int ret; 1357 1358 switch (phydev->interface) { 1359 case PHY_INTERFACE_MODE_RGMII: 1360 rxcdll_val = type->disable_dll_rx_bit; 1361 txcdll_val = type->disable_dll_tx_bit; 1362 break; 1363 case PHY_INTERFACE_MODE_RGMII_ID: 1364 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1365 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1366 break; 1367 case PHY_INTERFACE_MODE_RGMII_RXID: 1368 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1369 txcdll_val = type->disable_dll_tx_bit; 1370 break; 1371 case PHY_INTERFACE_MODE_RGMII_TXID: 1372 rxcdll_val = type->disable_dll_rx_bit; 1373 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1374 break; 1375 default: 1376 return 0; 1377 } 1378 1379 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1380 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1381 rxcdll_val); 1382 if (ret < 0) 1383 return ret; 1384 1385 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1386 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1387 txcdll_val); 1388 } 1389 1390 /* Silicon Errata DS80000693B 1391 * 1392 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1393 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1394 * according to the datasheet (off if there is no link). 1395 */ 1396 static int ksz9131_led_errata(struct phy_device *phydev) 1397 { 1398 int reg; 1399 1400 reg = phy_read_mmd(phydev, 2, 0); 1401 if (reg < 0) 1402 return reg; 1403 1404 if (!(reg & BIT(4))) 1405 return 0; 1406 1407 return phy_set_bits(phydev, 0x1e, BIT(9)); 1408 } 1409 1410 static int ksz9131_config_init(struct phy_device *phydev) 1411 { 1412 struct device_node *of_node; 1413 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1414 char *rx_data_skews[4] = { 1415 "rxd0-skew-psec", "rxd1-skew-psec", 1416 "rxd2-skew-psec", "rxd3-skew-psec" 1417 }; 1418 char *tx_data_skews[4] = { 1419 "txd0-skew-psec", "txd1-skew-psec", 1420 "txd2-skew-psec", "txd3-skew-psec" 1421 }; 1422 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1423 const struct device *dev_walker; 1424 int ret; 1425 1426 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1427 1428 dev_walker = &phydev->mdio.dev; 1429 do { 1430 of_node = dev_walker->of_node; 1431 dev_walker = dev_walker->parent; 1432 } while (!of_node && dev_walker); 1433 1434 if (!of_node) 1435 return 0; 1436 1437 if (phy_interface_is_rgmii(phydev)) { 1438 ret = ksz9131_config_rgmii_delay(phydev); 1439 if (ret < 0) 1440 return ret; 1441 } 1442 1443 ret = ksz9131_of_load_skew_values(phydev, of_node, 1444 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1445 clk_skews, 2); 1446 if (ret < 0) 1447 return ret; 1448 1449 ret = ksz9131_of_load_skew_values(phydev, of_node, 1450 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1451 control_skews, 2); 1452 if (ret < 0) 1453 return ret; 1454 1455 ret = ksz9131_of_load_skew_values(phydev, of_node, 1456 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1457 rx_data_skews, 4); 1458 if (ret < 0) 1459 return ret; 1460 1461 ret = ksz9131_of_load_skew_values(phydev, of_node, 1462 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1463 tx_data_skews, 4); 1464 if (ret < 0) 1465 return ret; 1466 1467 ret = ksz9131_led_errata(phydev); 1468 if (ret < 0) 1469 return ret; 1470 1471 return 0; 1472 } 1473 1474 #define MII_KSZ9131_AUTO_MDIX 0x1C 1475 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1476 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1477 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1478 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1479 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1480 1481 static int ksz9131_mdix_update(struct phy_device *phydev) 1482 { 1483 int ret; 1484 1485 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1486 phydev->mdix = phydev->mdix_ctrl; 1487 } else { 1488 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1489 if (ret < 0) 1490 return ret; 1491 1492 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1493 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1494 phydev->mdix = ETH_TP_MDI; 1495 else 1496 phydev->mdix = ETH_TP_MDI_X; 1497 } else { 1498 phydev->mdix = ETH_TP_MDI_INVALID; 1499 } 1500 } 1501 1502 return 0; 1503 } 1504 1505 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1506 { 1507 u16 val; 1508 1509 switch (ctrl) { 1510 case ETH_TP_MDI: 1511 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1512 MII_KSZ9131_AUTO_MDI_SET; 1513 break; 1514 case ETH_TP_MDI_X: 1515 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1516 break; 1517 case ETH_TP_MDI_AUTO: 1518 val = 0; 1519 break; 1520 default: 1521 return 0; 1522 } 1523 1524 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1525 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1526 MII_KSZ9131_AUTO_MDI_SET, val); 1527 } 1528 1529 static int ksz9131_read_status(struct phy_device *phydev) 1530 { 1531 int ret; 1532 1533 ret = ksz9131_mdix_update(phydev); 1534 if (ret < 0) 1535 return ret; 1536 1537 return genphy_read_status(phydev); 1538 } 1539 1540 static int ksz9131_config_aneg(struct phy_device *phydev) 1541 { 1542 int ret; 1543 1544 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1545 if (ret) 1546 return ret; 1547 1548 return genphy_config_aneg(phydev); 1549 } 1550 1551 static int ksz9477_get_features(struct phy_device *phydev) 1552 { 1553 int ret; 1554 1555 ret = genphy_read_abilities(phydev); 1556 if (ret) 1557 return ret; 1558 1559 /* The "EEE control and capability 1" (Register 3.20) seems to be 1560 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1561 * on the 7.60 will affect 3.20. So, we need to construct our own list 1562 * of caps. 1563 * KSZ8563R should have 100BaseTX/Full only. 1564 */ 1565 linkmode_and(phydev->supported_eee, phydev->supported, 1566 PHY_EEE_CAP1_FEATURES); 1567 1568 return 0; 1569 } 1570 1571 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1572 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1573 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1574 static int ksz8873mll_read_status(struct phy_device *phydev) 1575 { 1576 int regval; 1577 1578 /* dummy read */ 1579 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1580 1581 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1582 1583 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1584 phydev->duplex = DUPLEX_HALF; 1585 else 1586 phydev->duplex = DUPLEX_FULL; 1587 1588 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1589 phydev->speed = SPEED_10; 1590 else 1591 phydev->speed = SPEED_100; 1592 1593 phydev->link = 1; 1594 phydev->pause = phydev->asym_pause = 0; 1595 1596 return 0; 1597 } 1598 1599 static int ksz9031_get_features(struct phy_device *phydev) 1600 { 1601 int ret; 1602 1603 ret = genphy_read_abilities(phydev); 1604 if (ret < 0) 1605 return ret; 1606 1607 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1608 * Whenever the device's Asymmetric Pause capability is set to 1, 1609 * link-up may fail after a link-up to link-down transition. 1610 * 1611 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1612 * 1613 * Workaround: 1614 * Do not enable the Asymmetric Pause capability bit. 1615 */ 1616 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1617 1618 /* We force setting the Pause capability as the core will force the 1619 * Asymmetric Pause capability to 1 otherwise. 1620 */ 1621 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1622 1623 return 0; 1624 } 1625 1626 static int ksz9031_read_status(struct phy_device *phydev) 1627 { 1628 int err; 1629 int regval; 1630 1631 err = genphy_read_status(phydev); 1632 if (err) 1633 return err; 1634 1635 /* Make sure the PHY is not broken. Read idle error count, 1636 * and reset the PHY if it is maxed out. 1637 */ 1638 regval = phy_read(phydev, MII_STAT1000); 1639 if ((regval & 0xFF) == 0xFF) { 1640 phy_init_hw(phydev); 1641 phydev->link = 0; 1642 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1643 phydev->drv->config_intr(phydev); 1644 return genphy_config_aneg(phydev); 1645 } 1646 1647 return 0; 1648 } 1649 1650 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1651 { 1652 struct kszphy_priv *priv = phydev->priv; 1653 int ret; 1654 1655 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1656 * Prior to running the cable diagnostics, Auto-negotiation should 1657 * be disabled, full duplex set and the link speed set to 1000Mbps 1658 * via the Basic Control Register. 1659 */ 1660 ret = phy_modify(phydev, MII_BMCR, 1661 BMCR_SPEED1000 | BMCR_FULLDPLX | 1662 BMCR_ANENABLE | BMCR_SPEED100, 1663 BMCR_SPEED1000 | BMCR_FULLDPLX); 1664 if (ret) 1665 return ret; 1666 1667 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1668 * The Master-Slave configuration should be set to Slave by writing 1669 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1670 * Register. 1671 */ 1672 ret = phy_read(phydev, MII_CTRL1000); 1673 if (ret < 0) 1674 return ret; 1675 1676 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1677 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1678 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1679 ret |= CTL1000_ENABLE_MASTER; 1680 1681 return phy_write(phydev, MII_CTRL1000, ret); 1682 } 1683 1684 static int ksz9x31_cable_test_result_trans(u16 status) 1685 { 1686 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1687 case KSZ9x31_LMD_VCT_ST_NORMAL: 1688 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1689 case KSZ9x31_LMD_VCT_ST_OPEN: 1690 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1691 case KSZ9x31_LMD_VCT_ST_SHORT: 1692 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1693 case KSZ9x31_LMD_VCT_ST_FAIL: 1694 fallthrough; 1695 default: 1696 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1697 } 1698 } 1699 1700 static bool ksz9x31_cable_test_failed(u16 status) 1701 { 1702 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1703 1704 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1705 } 1706 1707 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1708 { 1709 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1710 case KSZ9x31_LMD_VCT_ST_OPEN: 1711 fallthrough; 1712 case KSZ9x31_LMD_VCT_ST_SHORT: 1713 return true; 1714 } 1715 return false; 1716 } 1717 1718 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1719 { 1720 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1721 1722 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1723 * 1724 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1725 */ 1726 if (phydev_id_compare(phydev, PHY_ID_KSZ9131) || 1727 phydev_id_compare(phydev, PHY_ID_KSZ9477)) 1728 dt = clamp(dt - 22, 0, 255); 1729 1730 return (dt * 400) / 10; 1731 } 1732 1733 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1734 { 1735 int val, ret; 1736 1737 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1738 !(val & KSZ9x31_LMD_VCT_EN), 1739 30000, 100000, true); 1740 1741 return ret < 0 ? ret : 0; 1742 } 1743 1744 static int ksz9x31_cable_test_get_pair(int pair) 1745 { 1746 static const int ethtool_pair[] = { 1747 ETHTOOL_A_CABLE_PAIR_A, 1748 ETHTOOL_A_CABLE_PAIR_B, 1749 ETHTOOL_A_CABLE_PAIR_C, 1750 ETHTOOL_A_CABLE_PAIR_D, 1751 }; 1752 1753 return ethtool_pair[pair]; 1754 } 1755 1756 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1757 { 1758 int ret, val; 1759 1760 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1761 * To test each individual cable pair, set the cable pair in the Cable 1762 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1763 * Diagnostic Register, along with setting the Cable Diagnostics Test 1764 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1765 * will self clear when the test is concluded. 1766 */ 1767 ret = phy_write(phydev, KSZ9x31_LMD, 1768 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1769 if (ret) 1770 return ret; 1771 1772 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1773 if (ret) 1774 return ret; 1775 1776 val = phy_read(phydev, KSZ9x31_LMD); 1777 if (val < 0) 1778 return val; 1779 1780 if (ksz9x31_cable_test_failed(val)) 1781 return -EAGAIN; 1782 1783 ret = ethnl_cable_test_result(phydev, 1784 ksz9x31_cable_test_get_pair(pair), 1785 ksz9x31_cable_test_result_trans(val)); 1786 if (ret) 1787 return ret; 1788 1789 if (!ksz9x31_cable_test_fault_length_valid(val)) 1790 return 0; 1791 1792 return ethnl_cable_test_fault_length(phydev, 1793 ksz9x31_cable_test_get_pair(pair), 1794 ksz9x31_cable_test_fault_length(phydev, val)); 1795 } 1796 1797 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1798 bool *finished) 1799 { 1800 struct kszphy_priv *priv = phydev->priv; 1801 unsigned long pair_mask; 1802 int retries = 20; 1803 int pair, ret, rv; 1804 1805 *finished = false; 1806 1807 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1808 phydev->supported) || 1809 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1810 phydev->supported)) 1811 pair_mask = 0xf; /* All pairs */ 1812 else 1813 pair_mask = 0x3; /* Pairs A and B only */ 1814 1815 /* Try harder if link partner is active */ 1816 while (pair_mask && retries--) { 1817 for_each_set_bit(pair, &pair_mask, 4) { 1818 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1819 if (ret == -EAGAIN) 1820 continue; 1821 if (ret < 0) 1822 return ret; 1823 clear_bit(pair, &pair_mask); 1824 } 1825 /* If link partner is in autonegotiation mode it will send 2ms 1826 * of FLPs with at least 6ms of silence. 1827 * Add 2ms sleep to have better chances to hit this silence. 1828 */ 1829 if (pair_mask) 1830 usleep_range(2000, 3000); 1831 } 1832 1833 /* Report remaining unfinished pair result as unknown. */ 1834 for_each_set_bit(pair, &pair_mask, 4) { 1835 ret = ethnl_cable_test_result(phydev, 1836 ksz9x31_cable_test_get_pair(pair), 1837 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1838 } 1839 1840 *finished = true; 1841 1842 /* Restore cached bits from before LinkMD got started. */ 1843 rv = phy_modify(phydev, MII_CTRL1000, 1844 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1845 priv->vct_ctrl1000); 1846 if (rv) 1847 return rv; 1848 1849 return ret; 1850 } 1851 1852 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1853 { 1854 return 0; 1855 } 1856 1857 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1858 { 1859 u16 val; 1860 1861 switch (ctrl) { 1862 case ETH_TP_MDI: 1863 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1864 break; 1865 case ETH_TP_MDI_X: 1866 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1867 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1868 * sheet seems to be missing: 1869 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1870 * 0 = Normal operation (transmit on TX+/TX- pins) 1871 */ 1872 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1873 break; 1874 case ETH_TP_MDI_AUTO: 1875 val = 0; 1876 break; 1877 default: 1878 return 0; 1879 } 1880 1881 return phy_modify(phydev, MII_BMCR, 1882 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1883 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1884 KSZ886X_BMCR_HP_MDIX | val); 1885 } 1886 1887 static int ksz886x_config_aneg(struct phy_device *phydev) 1888 { 1889 int ret; 1890 1891 ret = genphy_config_aneg(phydev); 1892 if (ret) 1893 return ret; 1894 1895 if (phydev->autoneg != AUTONEG_ENABLE) { 1896 /* When autonegotation is disabled, we need to manually force 1897 * the link state. If we don't do this, the PHY will keep 1898 * sending Fast Link Pulses (FLPs) which are part of the 1899 * autonegotiation process. This is not desired when 1900 * autonegotiation is off. 1901 */ 1902 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1903 KSZ886X_CTRL_FORCE_LINK); 1904 if (ret) 1905 return ret; 1906 } else { 1907 /* If we had previously forced the link state, we need to 1908 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1909 * will not perform autonegotiation. 1910 */ 1911 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1912 KSZ886X_CTRL_FORCE_LINK); 1913 if (ret) 1914 return ret; 1915 } 1916 1917 /* The MDI-X configuration is automatically changed by the PHY after 1918 * switching from autoneg off to on. So, take MDI-X configuration under 1919 * own control and set it after autoneg configuration was done. 1920 */ 1921 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1922 } 1923 1924 static int ksz886x_mdix_update(struct phy_device *phydev) 1925 { 1926 int ret; 1927 1928 ret = phy_read(phydev, MII_BMCR); 1929 if (ret < 0) 1930 return ret; 1931 1932 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1933 if (ret & KSZ886X_BMCR_FORCE_MDI) 1934 phydev->mdix_ctrl = ETH_TP_MDI_X; 1935 else 1936 phydev->mdix_ctrl = ETH_TP_MDI; 1937 } else { 1938 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1939 } 1940 1941 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1942 if (ret < 0) 1943 return ret; 1944 1945 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1946 if (ret & KSZ886X_CTRL_MDIX_STAT) 1947 phydev->mdix = ETH_TP_MDI_X; 1948 else 1949 phydev->mdix = ETH_TP_MDI; 1950 1951 return 0; 1952 } 1953 1954 static int ksz886x_read_status(struct phy_device *phydev) 1955 { 1956 int ret; 1957 1958 ret = ksz886x_mdix_update(phydev); 1959 if (ret < 0) 1960 return ret; 1961 1962 return genphy_read_status(phydev); 1963 } 1964 1965 static int ksz9477_mdix_update(struct phy_device *phydev) 1966 { 1967 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) 1968 phydev->mdix = phydev->mdix_ctrl; 1969 else 1970 phydev->mdix = ETH_TP_MDI_INVALID; 1971 1972 return 0; 1973 } 1974 1975 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev) 1976 { 1977 int val; 1978 1979 val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 1980 if (val < 0) 1981 return val; 1982 1983 if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF)) 1984 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1985 else if (val & MII_KSZ9131_AUTO_MDI_SET) 1986 phydev->mdix_ctrl = ETH_TP_MDI; 1987 else 1988 phydev->mdix_ctrl = ETH_TP_MDI_X; 1989 1990 return 0; 1991 } 1992 1993 static int ksz9477_read_status(struct phy_device *phydev) 1994 { 1995 int ret; 1996 1997 ret = ksz9477_mdix_update(phydev); 1998 if (ret) 1999 return ret; 2000 2001 return genphy_read_status(phydev); 2002 } 2003 2004 static int ksz9477_config_aneg(struct phy_device *phydev) 2005 { 2006 int ret; 2007 2008 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 2009 if (ret) 2010 return ret; 2011 2012 return genphy_config_aneg(phydev); 2013 } 2014 2015 struct ksz9477_errata_write { 2016 u8 dev_addr; 2017 u8 reg_addr; 2018 u16 val; 2019 }; 2020 2021 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 2022 /* Register settings are needed to improve PHY receive performance */ 2023 {0x01, 0x6f, 0xdd0b}, 2024 {0x01, 0x8f, 0x6032}, 2025 {0x01, 0x9d, 0x248c}, 2026 {0x01, 0x75, 0x0060}, 2027 {0x01, 0xd3, 0x7777}, 2028 {0x1c, 0x06, 0x3008}, 2029 {0x1c, 0x08, 0x2000}, 2030 2031 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 2032 {0x1c, 0x04, 0x00d0}, 2033 2034 /* Register settings are required to meet data sheet supply current specifications */ 2035 {0x1c, 0x13, 0x6eff}, 2036 {0x1c, 0x14, 0xe6ff}, 2037 {0x1c, 0x15, 0x6eff}, 2038 {0x1c, 0x16, 0xe6ff}, 2039 {0x1c, 0x17, 0x00ff}, 2040 {0x1c, 0x18, 0x43ff}, 2041 {0x1c, 0x19, 0xc3ff}, 2042 {0x1c, 0x1a, 0x6fff}, 2043 {0x1c, 0x1b, 0x07ff}, 2044 {0x1c, 0x1c, 0x0fff}, 2045 {0x1c, 0x1d, 0xe7ff}, 2046 {0x1c, 0x1e, 0xefff}, 2047 {0x1c, 0x20, 0xeeee}, 2048 }; 2049 2050 static int ksz9477_phy_errata(struct phy_device *phydev) 2051 { 2052 int err; 2053 int i; 2054 2055 /* Apply PHY settings to address errata listed in 2056 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 2057 * Silicon Errata and Data Sheet Clarification documents. 2058 * 2059 * Document notes: Before configuring the PHY MMD registers, it is 2060 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 2061 * disabled by writing to register 0xN100-0xN101. After writing the 2062 * MMD registers, and after all errata workarounds that involve PHY 2063 * register settings, write register 0xN100-0xN101 again to enable 2064 * and restart auto-negotiation. 2065 */ 2066 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2067 if (err) 2068 return err; 2069 2070 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2071 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2072 2073 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2074 if (err) 2075 return err; 2076 } 2077 2078 err = genphy_restart_aneg(phydev); 2079 if (err) 2080 return err; 2081 2082 return err; 2083 } 2084 2085 static int ksz9477_config_init(struct phy_device *phydev) 2086 { 2087 int err; 2088 2089 /* Only KSZ9897 family of switches needs this fix. */ 2090 if ((phydev->phy_id & 0xf) == 1) { 2091 err = ksz9477_phy_errata(phydev); 2092 if (err) 2093 return err; 2094 } 2095 2096 /* Read initial MDI-X config state. So, we do not need to poll it 2097 * later on. 2098 */ 2099 err = ksz9477_read_mdix_ctrl(phydev); 2100 if (err) 2101 return err; 2102 2103 return kszphy_config_init(phydev); 2104 } 2105 2106 static int kszphy_get_sset_count(struct phy_device *phydev) 2107 { 2108 return ARRAY_SIZE(kszphy_hw_stats); 2109 } 2110 2111 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2112 { 2113 int i; 2114 2115 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2116 ethtool_puts(&data, kszphy_hw_stats[i].string); 2117 } 2118 2119 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2120 { 2121 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2122 struct kszphy_priv *priv = phydev->priv; 2123 int val; 2124 u64 ret; 2125 2126 val = phy_read(phydev, stat.reg); 2127 if (val < 0) { 2128 ret = U64_MAX; 2129 } else { 2130 val = val & ((1 << stat.bits) - 1); 2131 priv->stats[i] += val; 2132 ret = priv->stats[i]; 2133 } 2134 2135 return ret; 2136 } 2137 2138 static void kszphy_get_stats(struct phy_device *phydev, 2139 struct ethtool_stats *stats, u64 *data) 2140 { 2141 int i; 2142 2143 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2144 data[i] = kszphy_get_stat(phydev, i); 2145 } 2146 2147 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313, 2148 * etc. The counter is incremented when the PHY receives a frame with one or 2149 * more symbol errors. The counter is cleared when the register is read. 2150 */ 2151 #define MII_KSZ9477_PHY_RXER_COUNTER 0x15 2152 2153 static int kszphy_update_stats(struct phy_device *phydev) 2154 { 2155 struct kszphy_priv *priv = phydev->priv; 2156 int ret; 2157 2158 ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER); 2159 if (ret < 0) 2160 return ret; 2161 2162 priv->phy_stats.rx_err_pkt_cnt += ret; 2163 2164 return 0; 2165 } 2166 2167 static void kszphy_get_phy_stats(struct phy_device *phydev, 2168 struct ethtool_eth_phy_stats *eth_stats, 2169 struct ethtool_phy_stats *stats) 2170 { 2171 struct kszphy_priv *priv = phydev->priv; 2172 2173 stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt; 2174 } 2175 2176 /* Base register for Signal Quality Indicator (SQI) - Channel A 2177 * 2178 * MMD Address: MDIO_MMD_PMAPMD (0x01) 2179 * Register: 0xAC (Channel A) 2180 * Each channel (pair) has its own register: 2181 * Channel A: 0xAC 2182 * Channel B: 0xAD 2183 * Channel C: 0xAE 2184 * Channel D: 0xAF 2185 */ 2186 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A 0xac 2187 2188 /* SQI field mask for bits [14:8] 2189 * 2190 * SQI indicates relative quality of the signal. 2191 * A lower value indicates better signal quality. 2192 */ 2193 #define KSZ9477_MMD_SQI_MASK GENMASK(14, 8) 2194 2195 #define KSZ9477_MAX_CHANNELS 4 2196 #define KSZ9477_SQI_MAX 7 2197 2198 /* Number of SQI samples to average for a stable result. 2199 * 2200 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2201 * For noisy environments, a minimum of 30–50 readings is recommended. 2202 */ 2203 #define KSZ9477_SQI_SAMPLE_COUNT 40 2204 2205 /* The hardware SQI register provides a raw value from 0-127, where a lower 2206 * value indicates better signal quality. However, empirical testing has 2207 * shown that only the 0-7 range is relevant for a functional link. A raw 2208 * value of 8 or higher was measured directly before link drop. This aligns 2209 * with the OPEN Alliance recommendation that SQI=0 should represent the 2210 * pre-failure state. 2211 * 2212 * This table provides a non-linear mapping from the useful raw hardware 2213 * values (0-7) to the standard 0-7 SQI scale, where higher is better. 2214 */ 2215 static const u8 ksz_sqi_mapping[] = { 2216 7, /* raw 0 -> SQI 7 */ 2217 7, /* raw 1 -> SQI 7 */ 2218 6, /* raw 2 -> SQI 6 */ 2219 5, /* raw 3 -> SQI 5 */ 2220 4, /* raw 4 -> SQI 4 */ 2221 3, /* raw 5 -> SQI 3 */ 2222 2, /* raw 6 -> SQI 2 */ 2223 1, /* raw 7 -> SQI 1 */ 2224 }; 2225 2226 /** 2227 * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI) 2228 * @phydev: the PHY device 2229 * 2230 * This function reads and processes the raw Signal Quality Index from the 2231 * PHY. Based on empirical testing, a raw value of 8 or higher indicates a 2232 * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are 2233 * mapped to the standard 0-7 SQI scale via a lookup table. 2234 * 2235 * Return: SQI value (0–7), or a negative errno on failure. 2236 */ 2237 static int kszphy_get_sqi(struct phy_device *phydev) 2238 { 2239 int sum[KSZ9477_MAX_CHANNELS] = { 0 }; 2240 int worst_sqi = KSZ9477_SQI_MAX; 2241 int i, val, raw_sqi, ch; 2242 u8 channels; 2243 2244 /* Determine applicable channels based on link speed */ 2245 if (phydev->speed == SPEED_1000) 2246 channels = 4; 2247 else if (phydev->speed == SPEED_100) 2248 channels = 1; 2249 else 2250 return -EOPNOTSUPP; 2251 2252 /* Sample and accumulate SQI readings for each pair (currently only one). 2253 * 2254 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2255 * - The SQI register is updated every 2 µs. 2256 * - Values may fluctuate significantly, even in low-noise environments. 2257 * - For reliable estimation, average a minimum of 30–50 samples 2258 * (recommended for noisy environments) 2259 * - In noisy environments, individual readings are highly unreliable. 2260 * 2261 * We use 40 samples per pair with a delay of 3 µs between each 2262 * read to ensure new values are captured (2 µs update interval). 2263 */ 2264 for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) { 2265 for (ch = 0; ch < channels; ch++) { 2266 val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2267 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch); 2268 if (val < 0) 2269 return val; 2270 2271 raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val); 2272 sum[ch] += raw_sqi; 2273 2274 /* We communicate with the PHY via MDIO via SPI or 2275 * I2C, which is relatively slow. At least slower than 2276 * the update interval of the SQI register. 2277 * So, we can skip the delay between reads. 2278 */ 2279 } 2280 } 2281 2282 /* Calculate average for each channel and find the worst SQI */ 2283 for (ch = 0; ch < channels; ch++) { 2284 int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT; 2285 int mapped_sqi; 2286 2287 /* Handle the pre-fail/failed state first. */ 2288 if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping)) 2289 mapped_sqi = 0; 2290 else 2291 /* Use the lookup table for the good signal range. */ 2292 mapped_sqi = ksz_sqi_mapping[avg_raw_sqi]; 2293 2294 if (mapped_sqi < worst_sqi) 2295 worst_sqi = mapped_sqi; 2296 } 2297 2298 return worst_sqi; 2299 } 2300 2301 static int kszphy_get_sqi_max(struct phy_device *phydev) 2302 { 2303 return KSZ9477_SQI_MAX; 2304 } 2305 2306 static void kszphy_enable_clk(struct phy_device *phydev) 2307 { 2308 struct kszphy_priv *priv = phydev->priv; 2309 2310 if (!priv->clk_enable && priv->clk) { 2311 clk_prepare_enable(priv->clk); 2312 priv->clk_enable = true; 2313 } 2314 } 2315 2316 static void kszphy_disable_clk(struct phy_device *phydev) 2317 { 2318 struct kszphy_priv *priv = phydev->priv; 2319 2320 if (priv->clk_enable && priv->clk) { 2321 clk_disable_unprepare(priv->clk); 2322 priv->clk_enable = false; 2323 } 2324 } 2325 2326 static int kszphy_generic_resume(struct phy_device *phydev) 2327 { 2328 kszphy_enable_clk(phydev); 2329 2330 return genphy_resume(phydev); 2331 } 2332 2333 static int kszphy_generic_suspend(struct phy_device *phydev) 2334 { 2335 int ret; 2336 2337 ret = genphy_suspend(phydev); 2338 if (ret) 2339 return ret; 2340 2341 kszphy_disable_clk(phydev); 2342 2343 return 0; 2344 } 2345 2346 static int kszphy_suspend(struct phy_device *phydev) 2347 { 2348 /* Disable PHY Interrupts */ 2349 if (phy_interrupt_is_valid(phydev)) { 2350 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2351 if (phydev->drv->config_intr) 2352 phydev->drv->config_intr(phydev); 2353 } 2354 2355 return kszphy_generic_suspend(phydev); 2356 } 2357 2358 static void kszphy_parse_led_mode(struct phy_device *phydev) 2359 { 2360 const struct kszphy_type *type = phydev->drv->driver_data; 2361 const struct device_node *np = phydev->mdio.dev.of_node; 2362 struct kszphy_priv *priv = phydev->priv; 2363 int ret; 2364 2365 if (type && type->led_mode_reg) { 2366 ret = of_property_read_u32(np, "micrel,led-mode", 2367 &priv->led_mode); 2368 2369 if (ret) 2370 priv->led_mode = -1; 2371 2372 if (priv->led_mode > 3) { 2373 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2374 priv->led_mode); 2375 priv->led_mode = -1; 2376 } 2377 } else { 2378 priv->led_mode = -1; 2379 } 2380 } 2381 2382 static int kszphy_resume(struct phy_device *phydev) 2383 { 2384 int ret; 2385 2386 ret = kszphy_generic_resume(phydev); 2387 if (ret) 2388 return ret; 2389 2390 /* After switching from power-down to normal mode, an internal global 2391 * reset is automatically generated. Wait a minimum of 1 ms before 2392 * read/write access to the PHY registers. 2393 */ 2394 usleep_range(1000, 2000); 2395 2396 ret = kszphy_config_reset(phydev); 2397 if (ret) 2398 return ret; 2399 2400 /* Enable PHY Interrupts */ 2401 if (phy_interrupt_is_valid(phydev)) { 2402 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2403 if (phydev->drv->config_intr) 2404 phydev->drv->config_intr(phydev); 2405 } 2406 2407 return 0; 2408 } 2409 2410 /* Because of errata DS80000700A, receiver error following software 2411 * power down. Suspend and resume callbacks only disable and enable 2412 * external rmii reference clock. 2413 */ 2414 static int ksz8041_resume(struct phy_device *phydev) 2415 { 2416 kszphy_enable_clk(phydev); 2417 2418 return 0; 2419 } 2420 2421 static int ksz8041_suspend(struct phy_device *phydev) 2422 { 2423 kszphy_disable_clk(phydev); 2424 2425 return 0; 2426 } 2427 2428 static int ksz9477_resume(struct phy_device *phydev) 2429 { 2430 int ret; 2431 2432 /* No need to initialize registers if not powered down. */ 2433 ret = phy_read(phydev, MII_BMCR); 2434 if (ret < 0) 2435 return ret; 2436 if (!(ret & BMCR_PDOWN)) 2437 return 0; 2438 2439 genphy_resume(phydev); 2440 2441 /* After switching from power-down to normal mode, an internal global 2442 * reset is automatically generated. Wait a minimum of 1 ms before 2443 * read/write access to the PHY registers. 2444 */ 2445 usleep_range(1000, 2000); 2446 2447 /* Only KSZ9897 family of switches needs this fix. */ 2448 if ((phydev->phy_id & 0xf) == 1) { 2449 ret = ksz9477_phy_errata(phydev); 2450 if (ret) 2451 return ret; 2452 } 2453 2454 /* Enable PHY Interrupts */ 2455 if (phy_interrupt_is_valid(phydev)) { 2456 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2457 if (phydev->drv->config_intr) 2458 phydev->drv->config_intr(phydev); 2459 } 2460 2461 return 0; 2462 } 2463 2464 static int ksz8061_resume(struct phy_device *phydev) 2465 { 2466 int ret; 2467 2468 /* This function can be called twice when the Ethernet device is on. */ 2469 ret = phy_read(phydev, MII_BMCR); 2470 if (ret < 0) 2471 return ret; 2472 if (!(ret & BMCR_PDOWN)) 2473 return 0; 2474 2475 ret = kszphy_generic_resume(phydev); 2476 if (ret) 2477 return ret; 2478 2479 usleep_range(1000, 2000); 2480 2481 /* Re-program the value after chip is reset. */ 2482 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2483 if (ret) 2484 return ret; 2485 2486 /* Enable PHY Interrupts */ 2487 if (phy_interrupt_is_valid(phydev)) { 2488 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2489 if (phydev->drv->config_intr) 2490 phydev->drv->config_intr(phydev); 2491 } 2492 2493 return 0; 2494 } 2495 2496 static int ksz8061_suspend(struct phy_device *phydev) 2497 { 2498 return kszphy_suspend(phydev); 2499 } 2500 2501 static int kszphy_probe(struct phy_device *phydev) 2502 { 2503 const struct kszphy_type *type = phydev->drv->driver_data; 2504 const struct device_node *np = phydev->mdio.dev.of_node; 2505 struct kszphy_priv *priv; 2506 struct clk *clk; 2507 2508 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2509 if (!priv) 2510 return -ENOMEM; 2511 2512 phydev->priv = priv; 2513 2514 priv->type = type; 2515 2516 kszphy_parse_led_mode(phydev); 2517 2518 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2519 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2520 if (!IS_ERR_OR_NULL(clk)) { 2521 unsigned long rate = clk_get_rate(clk); 2522 bool rmii_ref_clk_sel_25_mhz; 2523 2524 if (type) 2525 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2526 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2527 "micrel,rmii-reference-clock-select-25-mhz"); 2528 2529 if (rate > 24500000 && rate < 25500000) { 2530 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2531 } else if (rate > 49500000 && rate < 50500000) { 2532 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2533 } else { 2534 phydev_err(phydev, "Clock rate out of range: %ld\n", 2535 rate); 2536 return -EINVAL; 2537 } 2538 } else if (!clk) { 2539 /* unnamed clock from the generic ethernet-phy binding */ 2540 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2541 } 2542 2543 if (IS_ERR(clk)) 2544 return PTR_ERR(clk); 2545 2546 clk_disable_unprepare(clk); 2547 priv->clk = clk; 2548 2549 if (ksz8041_fiber_mode(phydev)) 2550 phydev->port = PORT_FIBRE; 2551 2552 /* Support legacy board-file configuration */ 2553 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2554 priv->rmii_ref_clk_sel = true; 2555 priv->rmii_ref_clk_sel_val = true; 2556 } 2557 2558 return 0; 2559 } 2560 2561 static int lan8814_cable_test_start(struct phy_device *phydev) 2562 { 2563 /* If autoneg is enabled, we won't be able to test cross pair 2564 * short. In this case, the PHY will "detect" a link and 2565 * confuse the internal state machine - disable auto neg here. 2566 * Set the speed to 1000mbit and full duplex. 2567 */ 2568 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2569 BMCR_SPEED1000 | BMCR_FULLDPLX); 2570 } 2571 2572 static int ksz886x_cable_test_start(struct phy_device *phydev) 2573 { 2574 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2575 return -EOPNOTSUPP; 2576 2577 /* If autoneg is enabled, we won't be able to test cross pair 2578 * short. In this case, the PHY will "detect" a link and 2579 * confuse the internal state machine - disable auto neg here. 2580 * If autoneg is disabled, we should set the speed to 10mbit. 2581 */ 2582 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2583 } 2584 2585 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2586 { 2587 switch (FIELD_GET(mask, status)) { 2588 case KSZ8081_LMD_STAT_NORMAL: 2589 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2590 case KSZ8081_LMD_STAT_SHORT: 2591 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2592 case KSZ8081_LMD_STAT_OPEN: 2593 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2594 case KSZ8081_LMD_STAT_FAIL: 2595 fallthrough; 2596 default: 2597 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2598 } 2599 } 2600 2601 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2602 { 2603 return FIELD_GET(mask, status) == 2604 KSZ8081_LMD_STAT_FAIL; 2605 } 2606 2607 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2608 { 2609 switch (FIELD_GET(mask, status)) { 2610 case KSZ8081_LMD_STAT_OPEN: 2611 fallthrough; 2612 case KSZ8081_LMD_STAT_SHORT: 2613 return true; 2614 } 2615 return false; 2616 } 2617 2618 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2619 u16 status, u16 data_mask) 2620 { 2621 int dt; 2622 2623 /* According to the data sheet the distance to the fault is 2624 * DELTA_TIME * 0.4 meters for ksz phys. 2625 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2626 */ 2627 dt = FIELD_GET(data_mask, status); 2628 2629 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2630 return ((dt - 22) * 800) / 10; 2631 else 2632 return (dt * 400) / 10; 2633 } 2634 2635 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2636 { 2637 const struct kszphy_type *type = phydev->drv->driver_data; 2638 int val, ret; 2639 2640 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2641 !(val & KSZ8081_LMD_ENABLE_TEST), 2642 30000, 100000, true); 2643 2644 return ret < 0 ? ret : 0; 2645 } 2646 2647 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2648 { 2649 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2650 ETHTOOL_A_CABLE_PAIR_B, 2651 ETHTOOL_A_CABLE_PAIR_C, 2652 ETHTOOL_A_CABLE_PAIR_D, 2653 }; 2654 u32 fault_length; 2655 int ret; 2656 int val; 2657 2658 val = KSZ8081_LMD_ENABLE_TEST; 2659 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2660 2661 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2662 if (ret < 0) 2663 return ret; 2664 2665 ret = ksz886x_cable_test_wait_for_completion(phydev); 2666 if (ret) 2667 return ret; 2668 2669 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2670 if (val < 0) 2671 return val; 2672 2673 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2674 return -EAGAIN; 2675 2676 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2677 ksz886x_cable_test_result_trans(val, 2678 LAN8814_CABLE_DIAG_STAT_MASK 2679 )); 2680 if (ret) 2681 return ret; 2682 2683 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2684 return 0; 2685 2686 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2687 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2688 2689 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2690 } 2691 2692 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2693 { 2694 static const int ethtool_pair[] = { 2695 ETHTOOL_A_CABLE_PAIR_A, 2696 ETHTOOL_A_CABLE_PAIR_B, 2697 }; 2698 int ret, val, mdix; 2699 u32 fault_length; 2700 2701 /* There is no way to choice the pair, like we do one ksz9031. 2702 * We can workaround this limitation by using the MDI-X functionality. 2703 */ 2704 if (pair == 0) 2705 mdix = ETH_TP_MDI; 2706 else 2707 mdix = ETH_TP_MDI_X; 2708 2709 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2710 case PHY_ID_KSZ8081: 2711 ret = ksz8081_config_mdix(phydev, mdix); 2712 break; 2713 case PHY_ID_KSZ886X: 2714 ret = ksz886x_config_mdix(phydev, mdix); 2715 break; 2716 default: 2717 ret = -ENODEV; 2718 } 2719 2720 if (ret) 2721 return ret; 2722 2723 /* Now we are ready to fire. This command will send a 100ns pulse 2724 * to the pair. 2725 */ 2726 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2727 if (ret) 2728 return ret; 2729 2730 ret = ksz886x_cable_test_wait_for_completion(phydev); 2731 if (ret) 2732 return ret; 2733 2734 val = phy_read(phydev, KSZ8081_LMD); 2735 if (val < 0) 2736 return val; 2737 2738 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2739 return -EAGAIN; 2740 2741 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2742 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2743 if (ret) 2744 return ret; 2745 2746 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2747 return 0; 2748 2749 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2750 2751 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2752 } 2753 2754 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2755 bool *finished) 2756 { 2757 const struct kszphy_type *type = phydev->drv->driver_data; 2758 unsigned long pair_mask = type->pair_mask; 2759 int retries = 20; 2760 int ret = 0; 2761 int pair; 2762 2763 *finished = false; 2764 2765 /* Try harder if link partner is active */ 2766 while (pair_mask && retries--) { 2767 for_each_set_bit(pair, &pair_mask, 4) { 2768 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2769 ret = lan8814_cable_test_one_pair(phydev, pair); 2770 else 2771 ret = ksz886x_cable_test_one_pair(phydev, pair); 2772 if (ret == -EAGAIN) 2773 continue; 2774 if (ret < 0) 2775 return ret; 2776 clear_bit(pair, &pair_mask); 2777 } 2778 /* If link partner is in autonegotiation mode it will send 2ms 2779 * of FLPs with at least 6ms of silence. 2780 * Add 2ms sleep to have better chances to hit this silence. 2781 */ 2782 if (pair_mask) 2783 msleep(2); 2784 } 2785 2786 *finished = true; 2787 2788 return ret; 2789 } 2790 2791 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2792 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2793 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2794 2795 #define LAN8814_QSGMII_SOFT_RESET 0x43 2796 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2797 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2798 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2799 #define LAN8814_ALIGN_SWAP 0x4a 2800 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2801 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2802 2803 #define LAN8804_ALIGN_SWAP 0x4a 2804 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2805 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2806 #define LAN8814_CLOCK_MANAGEMENT 0xd 2807 #define LAN8814_LINK_QUALITY 0x8e 2808 2809 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2810 { 2811 int data; 2812 2813 phy_lock_mdio_bus(phydev); 2814 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2815 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2816 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2817 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2818 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2819 phy_unlock_mdio_bus(phydev); 2820 2821 return data; 2822 } 2823 2824 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2825 u16 val) 2826 { 2827 phy_lock_mdio_bus(phydev); 2828 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2829 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2830 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2831 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2832 2833 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2834 if (val != 0) 2835 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2836 val); 2837 phy_unlock_mdio_bus(phydev); 2838 return val; 2839 } 2840 2841 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2842 { 2843 u16 val = 0; 2844 2845 if (enable) 2846 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2847 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2848 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2849 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2850 2851 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); 2852 } 2853 2854 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2855 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2856 { 2857 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); 2858 *seconds = (*seconds << 16) | 2859 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); 2860 2861 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); 2862 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2863 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); 2864 2865 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); 2866 } 2867 2868 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2869 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2870 { 2871 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); 2872 *seconds = *seconds << 16 | 2873 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); 2874 2875 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); 2876 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2877 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); 2878 2879 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); 2880 } 2881 2882 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 2883 { 2884 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2885 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 2886 2887 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2888 SOF_TIMESTAMPING_RX_HARDWARE | 2889 SOF_TIMESTAMPING_RAW_HARDWARE; 2890 2891 info->phc_index = ptp_clock_index(shared->ptp_clock); 2892 2893 info->tx_types = 2894 (1 << HWTSTAMP_TX_OFF) | 2895 (1 << HWTSTAMP_TX_ON) | 2896 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2897 2898 info->rx_filters = 2899 (1 << HWTSTAMP_FILTER_NONE) | 2900 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2901 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2902 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2903 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2904 2905 return 0; 2906 } 2907 2908 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 2909 { 2910 int i; 2911 2912 for (i = 0; i < FIFO_SIZE; ++i) 2913 lanphy_read_page_reg(phydev, 5, 2914 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 2915 2916 /* Read to clear overflow status bit */ 2917 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 2918 } 2919 2920 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 2921 struct kernel_hwtstamp_config *config, 2922 struct netlink_ext_ack *extack) 2923 { 2924 struct kszphy_ptp_priv *ptp_priv = 2925 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2926 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 2927 int txcfg = 0, rxcfg = 0; 2928 int pkt_ts_enable; 2929 int tx_mod; 2930 2931 ptp_priv->hwts_tx_type = config->tx_type; 2932 ptp_priv->rx_filter = config->rx_filter; 2933 2934 switch (config->rx_filter) { 2935 case HWTSTAMP_FILTER_NONE: 2936 ptp_priv->layer = 0; 2937 ptp_priv->version = 0; 2938 break; 2939 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2940 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2941 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2942 ptp_priv->layer = PTP_CLASS_L4; 2943 ptp_priv->version = PTP_CLASS_V2; 2944 break; 2945 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2946 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2947 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2948 ptp_priv->layer = PTP_CLASS_L2; 2949 ptp_priv->version = PTP_CLASS_V2; 2950 break; 2951 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2952 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2953 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2954 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 2955 ptp_priv->version = PTP_CLASS_V2; 2956 break; 2957 default: 2958 return -ERANGE; 2959 } 2960 2961 if (ptp_priv->layer & PTP_CLASS_L2) { 2962 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 2963 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 2964 } else if (ptp_priv->layer & PTP_CLASS_L4) { 2965 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 2966 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 2967 } 2968 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); 2969 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); 2970 2971 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 2972 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 2973 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 2974 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 2975 2976 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD); 2977 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 2978 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2979 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2980 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 2981 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, 2982 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 2983 } 2984 2985 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 2986 lan8814_config_ts_intr(ptp_priv->phydev, true); 2987 else 2988 lan8814_config_ts_intr(ptp_priv->phydev, false); 2989 2990 /* In case of multiple starts and stops, these needs to be cleared */ 2991 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 2992 list_del(&rx_ts->list); 2993 kfree(rx_ts); 2994 } 2995 skb_queue_purge(&ptp_priv->rx_queue); 2996 skb_queue_purge(&ptp_priv->tx_queue); 2997 2998 lan8814_flush_fifo(ptp_priv->phydev, false); 2999 lan8814_flush_fifo(ptp_priv->phydev, true); 3000 3001 return 0; 3002 } 3003 3004 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 3005 struct sk_buff *skb, int type) 3006 { 3007 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3008 3009 switch (ptp_priv->hwts_tx_type) { 3010 case HWTSTAMP_TX_ONESTEP_SYNC: 3011 if (ptp_msg_is_sync(skb, type)) { 3012 kfree_skb(skb); 3013 return; 3014 } 3015 fallthrough; 3016 case HWTSTAMP_TX_ON: 3017 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3018 skb_queue_tail(&ptp_priv->tx_queue, skb); 3019 break; 3020 case HWTSTAMP_TX_OFF: 3021 default: 3022 kfree_skb(skb); 3023 break; 3024 } 3025 } 3026 3027 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 3028 { 3029 struct ptp_header *ptp_header; 3030 u32 type; 3031 3032 skb_push(skb, ETH_HLEN); 3033 type = ptp_classify_raw(skb); 3034 ptp_header = ptp_parse_header(skb, type); 3035 skb_pull_inline(skb, ETH_HLEN); 3036 3037 if (!ptp_header) 3038 return false; 3039 3040 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3041 return true; 3042 } 3043 3044 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 3045 struct sk_buff *skb) 3046 { 3047 struct skb_shared_hwtstamps *shhwtstamps; 3048 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3049 unsigned long flags; 3050 bool ret = false; 3051 u16 skb_sig; 3052 3053 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3054 return ret; 3055 3056 /* Iterate over all RX timestamps and match it with the received skbs */ 3057 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3058 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3059 /* Check if we found the signature we were looking for. */ 3060 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3061 continue; 3062 3063 shhwtstamps = skb_hwtstamps(skb); 3064 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3065 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 3066 rx_ts->nsec); 3067 list_del(&rx_ts->list); 3068 kfree(rx_ts); 3069 3070 ret = true; 3071 break; 3072 } 3073 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3074 3075 if (ret) 3076 netif_rx(skb); 3077 return ret; 3078 } 3079 3080 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 3081 { 3082 struct kszphy_ptp_priv *ptp_priv = 3083 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3084 3085 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3086 type == PTP_CLASS_NONE) 3087 return false; 3088 3089 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3090 return false; 3091 3092 /* If we failed to match then add it to the queue for when the timestamp 3093 * will come 3094 */ 3095 if (!lan8814_match_rx_skb(ptp_priv, skb)) 3096 skb_queue_tail(&ptp_priv->rx_queue, skb); 3097 3098 return true; 3099 } 3100 3101 static void lan8814_ptp_clock_set(struct phy_device *phydev, 3102 time64_t sec, u32 nsec) 3103 { 3104 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 3105 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 3106 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 3107 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 3108 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 3109 3110 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); 3111 } 3112 3113 static void lan8814_ptp_clock_get(struct phy_device *phydev, 3114 time64_t *sec, u32 *nsec) 3115 { 3116 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); 3117 3118 *sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI); 3119 *sec <<= 16; 3120 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); 3121 *sec <<= 16; 3122 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); 3123 3124 *nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); 3125 *nsec <<= 16; 3126 *nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); 3127 } 3128 3129 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 3130 struct timespec64 *ts) 3131 { 3132 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3133 ptp_clock_info); 3134 struct phy_device *phydev = shared->phydev; 3135 u32 nano_seconds; 3136 time64_t seconds; 3137 3138 mutex_lock(&shared->shared_lock); 3139 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 3140 mutex_unlock(&shared->shared_lock); 3141 ts->tv_sec = seconds; 3142 ts->tv_nsec = nano_seconds; 3143 3144 return 0; 3145 } 3146 3147 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 3148 const struct timespec64 *ts) 3149 { 3150 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3151 ptp_clock_info); 3152 struct phy_device *phydev = shared->phydev; 3153 3154 mutex_lock(&shared->shared_lock); 3155 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 3156 mutex_unlock(&shared->shared_lock); 3157 3158 return 0; 3159 } 3160 3161 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 3162 s64 start_sec, u32 start_nsec) 3163 { 3164 /* Set the start time */ 3165 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 3166 lower_16_bits(start_sec)); 3167 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 3168 upper_16_bits(start_sec)); 3169 3170 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 3171 lower_16_bits(start_nsec)); 3172 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 3173 upper_16_bits(start_nsec) & 0x3fff); 3174 } 3175 3176 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 3177 { 3178 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 3179 sec + LAN8814_BUFFER_TIME, 0); 3180 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 3181 sec + LAN8814_BUFFER_TIME, 0); 3182 } 3183 3184 static void lan8814_ptp_clock_step(struct phy_device *phydev, 3185 s64 time_step_ns) 3186 { 3187 u32 nano_seconds_step; 3188 u64 abs_time_step_ns; 3189 time64_t set_seconds; 3190 u32 nano_seconds; 3191 u32 remainder; 3192 s32 seconds; 3193 3194 if (time_step_ns > 15000000000LL) { 3195 /* convert to clock set */ 3196 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3197 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 3198 &remainder); 3199 nano_seconds += remainder; 3200 if (nano_seconds >= 1000000000) { 3201 set_seconds++; 3202 nano_seconds -= 1000000000; 3203 } 3204 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3205 lan8814_ptp_update_target(phydev, set_seconds); 3206 return; 3207 } else if (time_step_ns < -15000000000LL) { 3208 /* convert to clock set */ 3209 time_step_ns = -time_step_ns; 3210 3211 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3212 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 3213 &remainder); 3214 nano_seconds_step = remainder; 3215 if (nano_seconds < nano_seconds_step) { 3216 set_seconds--; 3217 nano_seconds += 1000000000; 3218 } 3219 nano_seconds -= nano_seconds_step; 3220 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3221 lan8814_ptp_update_target(phydev, set_seconds); 3222 return; 3223 } 3224 3225 /* do clock step */ 3226 if (time_step_ns >= 0) { 3227 abs_time_step_ns = (u64)time_step_ns; 3228 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3229 &remainder); 3230 nano_seconds = remainder; 3231 } else { 3232 abs_time_step_ns = (u64)(-time_step_ns); 3233 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3234 &remainder)); 3235 nano_seconds = remainder; 3236 if (nano_seconds > 0) { 3237 /* subtracting nano seconds is not allowed 3238 * convert to subtracting from seconds, 3239 * and adding to nanoseconds 3240 */ 3241 seconds--; 3242 nano_seconds = (1000000000 - nano_seconds); 3243 } 3244 } 3245 3246 if (nano_seconds > 0) { 3247 /* add 8 ns to cover the likely normal increment */ 3248 nano_seconds += 8; 3249 } 3250 3251 if (nano_seconds >= 1000000000) { 3252 /* carry into seconds */ 3253 seconds++; 3254 nano_seconds -= 1000000000; 3255 } 3256 3257 while (seconds) { 3258 u32 nsec; 3259 3260 if (seconds > 0) { 3261 u32 adjustment_value = (u32)seconds; 3262 u16 adjustment_value_lo, adjustment_value_hi; 3263 3264 if (adjustment_value > 0xF) 3265 adjustment_value = 0xF; 3266 3267 adjustment_value_lo = adjustment_value & 0xffff; 3268 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3269 3270 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3271 adjustment_value_lo); 3272 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3273 PTP_LTC_STEP_ADJ_DIR_ | 3274 adjustment_value_hi); 3275 seconds -= ((s32)adjustment_value); 3276 3277 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3278 set_seconds -= adjustment_value; 3279 lan8814_ptp_update_target(phydev, set_seconds); 3280 } else { 3281 u32 adjustment_value = (u32)(-seconds); 3282 u16 adjustment_value_lo, adjustment_value_hi; 3283 3284 if (adjustment_value > 0xF) 3285 adjustment_value = 0xF; 3286 3287 adjustment_value_lo = adjustment_value & 0xffff; 3288 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3289 3290 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3291 adjustment_value_lo); 3292 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3293 adjustment_value_hi); 3294 seconds += ((s32)adjustment_value); 3295 3296 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3297 set_seconds += adjustment_value; 3298 lan8814_ptp_update_target(phydev, set_seconds); 3299 } 3300 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3301 PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3302 } 3303 if (nano_seconds) { 3304 u16 nano_seconds_lo; 3305 u16 nano_seconds_hi; 3306 3307 nano_seconds_lo = nano_seconds & 0xffff; 3308 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3309 3310 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, 3311 nano_seconds_lo); 3312 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, 3313 PTP_LTC_STEP_ADJ_DIR_ | 3314 nano_seconds_hi); 3315 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, 3316 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3317 } 3318 } 3319 3320 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3321 { 3322 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3323 ptp_clock_info); 3324 struct phy_device *phydev = shared->phydev; 3325 3326 mutex_lock(&shared->shared_lock); 3327 lan8814_ptp_clock_step(phydev, delta); 3328 mutex_unlock(&shared->shared_lock); 3329 3330 return 0; 3331 } 3332 3333 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3334 { 3335 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3336 ptp_clock_info); 3337 struct phy_device *phydev = shared->phydev; 3338 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3339 bool positive = true; 3340 u32 kszphy_rate_adj; 3341 3342 if (scaled_ppm < 0) { 3343 scaled_ppm = -scaled_ppm; 3344 positive = false; 3345 } 3346 3347 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3348 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3349 3350 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3351 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3352 3353 if (positive) 3354 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3355 3356 mutex_lock(&shared->shared_lock); 3357 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); 3358 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); 3359 mutex_unlock(&shared->shared_lock); 3360 3361 return 0; 3362 } 3363 3364 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3365 s64 period_sec, u32 period_nsec) 3366 { 3367 lanphy_write_page_reg(phydev, 4, 3368 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3369 lower_16_bits(period_sec)); 3370 lanphy_write_page_reg(phydev, 4, 3371 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3372 upper_16_bits(period_sec)); 3373 3374 lanphy_write_page_reg(phydev, 4, 3375 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3376 lower_16_bits(period_nsec)); 3377 lanphy_write_page_reg(phydev, 4, 3378 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3379 upper_16_bits(period_nsec) & 0x3fff); 3380 } 3381 3382 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3383 int pulse_width) 3384 { 3385 u16 val; 3386 3387 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3388 /* Set the pulse width of the event */ 3389 val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event)); 3390 /* Make sure that the target clock will be incremented each time when 3391 * local time reaches or pass it 3392 */ 3393 val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width); 3394 val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3395 /* Set the polarity high */ 3396 val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event); 3397 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3398 } 3399 3400 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3401 { 3402 u16 val; 3403 3404 /* Set target to too far in the future, effectively disabling it */ 3405 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3406 3407 /* And then reload once it recheas the target */ 3408 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); 3409 val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event); 3410 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); 3411 } 3412 3413 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3414 { 3415 u16 val; 3416 3417 /* Disable gpio alternate function, 3418 * 1: select as gpio, 3419 * 0: select alt func 3420 */ 3421 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3422 val |= LAN8814_GPIO_EN_BIT(pin); 3423 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3424 3425 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3426 val &= ~LAN8814_GPIO_DIR_BIT(pin); 3427 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3428 3429 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3430 val &= ~LAN8814_GPIO_BUF_BIT(pin); 3431 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3432 } 3433 3434 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3435 { 3436 int val; 3437 3438 /* Set as gpio output */ 3439 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3440 val |= LAN8814_GPIO_DIR_BIT(pin); 3441 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); 3442 3443 /* Enable gpio 0:for alternate function, 1:gpio */ 3444 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3445 val &= ~LAN8814_GPIO_EN_BIT(pin); 3446 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); 3447 3448 /* Set buffer type to push pull */ 3449 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); 3450 val |= LAN8814_GPIO_BUF_BIT(pin); 3451 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); 3452 } 3453 3454 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3455 struct ptp_clock_request *rq, int on) 3456 { 3457 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3458 ptp_clock_info); 3459 struct phy_device *phydev = shared->phydev; 3460 struct timespec64 ts_on, ts_period; 3461 s64 on_nsec, period_nsec; 3462 int pulse_width; 3463 int pin, event; 3464 3465 mutex_lock(&shared->shared_lock); 3466 event = rq->perout.index; 3467 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3468 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3469 mutex_unlock(&shared->shared_lock); 3470 return -EBUSY; 3471 } 3472 3473 if (!on) { 3474 lan8814_ptp_perout_off(phydev, pin); 3475 lan8814_ptp_disable_event(phydev, event); 3476 mutex_unlock(&shared->shared_lock); 3477 return 0; 3478 } 3479 3480 ts_on.tv_sec = rq->perout.on.sec; 3481 ts_on.tv_nsec = rq->perout.on.nsec; 3482 on_nsec = timespec64_to_ns(&ts_on); 3483 3484 ts_period.tv_sec = rq->perout.period.sec; 3485 ts_period.tv_nsec = rq->perout.period.nsec; 3486 period_nsec = timespec64_to_ns(&ts_period); 3487 3488 if (period_nsec < 200) { 3489 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3490 phydev_name(phydev)); 3491 mutex_unlock(&shared->shared_lock); 3492 return -EOPNOTSUPP; 3493 } 3494 3495 if (on_nsec >= period_nsec) { 3496 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3497 phydev_name(phydev)); 3498 mutex_unlock(&shared->shared_lock); 3499 return -EINVAL; 3500 } 3501 3502 switch (on_nsec) { 3503 case 200000000: 3504 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3505 break; 3506 case 100000000: 3507 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3508 break; 3509 case 50000000: 3510 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3511 break; 3512 case 10000000: 3513 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3514 break; 3515 case 5000000: 3516 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3517 break; 3518 case 1000000: 3519 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3520 break; 3521 case 500000: 3522 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3523 break; 3524 case 100000: 3525 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3526 break; 3527 case 50000: 3528 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3529 break; 3530 case 10000: 3531 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3532 break; 3533 case 5000: 3534 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3535 break; 3536 case 1000: 3537 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3538 break; 3539 case 500: 3540 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3541 break; 3542 case 100: 3543 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3544 break; 3545 default: 3546 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3547 phydev_name(phydev)); 3548 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3549 break; 3550 } 3551 3552 /* Configure to pulse every period */ 3553 lan8814_ptp_enable_event(phydev, event, pulse_width); 3554 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3555 rq->perout.start.nsec); 3556 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3557 rq->perout.period.nsec); 3558 lan8814_ptp_perout_on(phydev, pin); 3559 mutex_unlock(&shared->shared_lock); 3560 3561 return 0; 3562 } 3563 3564 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3565 { 3566 u16 tmp; 3567 3568 /* Set as gpio input */ 3569 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3570 tmp &= ~LAN8814_GPIO_DIR_BIT(pin); 3571 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3572 3573 /* Map the pin to ltc pin 0 of the capture map registers */ 3574 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3575 tmp |= pin; 3576 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3577 3578 /* Enable capture on the edges of the ltc pin */ 3579 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3580 if (flags & PTP_RISING_EDGE) 3581 tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0); 3582 if (flags & PTP_FALLING_EDGE) 3583 tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0); 3584 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3585 3586 /* Enable interrupt top interrupt */ 3587 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3588 tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3589 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3590 } 3591 3592 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3593 { 3594 u16 tmp; 3595 3596 /* Set as gpio out */ 3597 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); 3598 tmp |= LAN8814_GPIO_DIR_BIT(pin); 3599 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); 3600 3601 /* Enable alternate, 0:for alternate function, 1:gpio */ 3602 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); 3603 tmp &= ~LAN8814_GPIO_EN_BIT(pin); 3604 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp); 3605 3606 /* Clear the mapping of pin to registers 0 of the capture registers */ 3607 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); 3608 tmp &= ~GENMASK(3, 0); 3609 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); 3610 3611 /* Disable capture on both of the edges */ 3612 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); 3613 tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 3614 tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 3615 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); 3616 3617 /* Disable interrupt top interrupt */ 3618 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); 3619 tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN; 3620 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); 3621 } 3622 3623 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3624 struct ptp_clock_request *rq, int on) 3625 { 3626 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3627 ptp_clock_info); 3628 struct phy_device *phydev = shared->phydev; 3629 int pin; 3630 3631 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3632 rq->extts.index); 3633 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3634 return -EINVAL; 3635 3636 mutex_lock(&shared->shared_lock); 3637 if (on) 3638 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3639 else 3640 lan8814_ptp_extts_off(phydev, pin); 3641 3642 mutex_unlock(&shared->shared_lock); 3643 3644 return 0; 3645 } 3646 3647 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3648 struct ptp_clock_request *rq, int on) 3649 { 3650 switch (rq->type) { 3651 case PTP_CLK_REQ_PEROUT: 3652 return lan8814_ptp_perout(ptpci, rq, on); 3653 case PTP_CLK_REQ_EXTTS: 3654 return lan8814_ptp_extts(ptpci, rq, on); 3655 default: 3656 return -EINVAL; 3657 } 3658 } 3659 3660 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3661 enum ptp_pin_function func, unsigned int chan) 3662 { 3663 switch (func) { 3664 case PTP_PF_NONE: 3665 case PTP_PF_PEROUT: 3666 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3667 * there is only chan 0 (event A) and for pin 1 there is only 3668 * chan 1 (event B) 3669 */ 3670 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3671 return -1; 3672 break; 3673 case PTP_PF_EXTTS: 3674 if (pin != LAN8814_PTP_EXTTS_NUM) 3675 return -1; 3676 break; 3677 default: 3678 return -1; 3679 } 3680 3681 return 0; 3682 } 3683 3684 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3685 { 3686 struct ptp_header *ptp_header; 3687 u32 type; 3688 3689 type = ptp_classify_raw(skb); 3690 ptp_header = ptp_parse_header(skb, type); 3691 3692 if (!ptp_header) 3693 return false; 3694 3695 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3696 return true; 3697 } 3698 3699 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3700 u32 seconds, u32 nsec, u16 seq_id) 3701 { 3702 struct skb_shared_hwtstamps shhwtstamps; 3703 struct sk_buff *skb, *skb_tmp; 3704 unsigned long flags; 3705 bool ret = false; 3706 u16 skb_sig; 3707 3708 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3709 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3710 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3711 continue; 3712 3713 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3714 continue; 3715 3716 __skb_unlink(skb, &ptp_priv->tx_queue); 3717 ret = true; 3718 break; 3719 } 3720 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3721 3722 if (ret) { 3723 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3724 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3725 skb_complete_tx_timestamp(skb, &shhwtstamps); 3726 } 3727 } 3728 3729 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3730 { 3731 struct phy_device *phydev = ptp_priv->phydev; 3732 u32 seconds, nsec; 3733 u16 seq_id; 3734 3735 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3736 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3737 } 3738 3739 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3740 { 3741 struct phy_device *phydev = ptp_priv->phydev; 3742 u32 reg; 3743 3744 do { 3745 lan8814_dequeue_tx_skb(ptp_priv); 3746 3747 /* If other timestamps are available in the FIFO, 3748 * process them. 3749 */ 3750 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3751 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 3752 } 3753 3754 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 3755 struct lan8814_ptp_rx_ts *rx_ts) 3756 { 3757 struct skb_shared_hwtstamps *shhwtstamps; 3758 struct sk_buff *skb, *skb_tmp; 3759 unsigned long flags; 3760 bool ret = false; 3761 u16 skb_sig; 3762 3763 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 3764 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 3765 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3766 continue; 3767 3768 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3769 continue; 3770 3771 __skb_unlink(skb, &ptp_priv->rx_queue); 3772 3773 ret = true; 3774 break; 3775 } 3776 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 3777 3778 if (ret) { 3779 shhwtstamps = skb_hwtstamps(skb); 3780 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3781 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 3782 netif_rx(skb); 3783 } 3784 3785 return ret; 3786 } 3787 3788 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 3789 struct lan8814_ptp_rx_ts *rx_ts) 3790 { 3791 unsigned long flags; 3792 3793 /* If we failed to match the skb add it to the queue for when 3794 * the frame will come 3795 */ 3796 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 3797 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3798 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 3799 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3800 } else { 3801 kfree(rx_ts); 3802 } 3803 } 3804 3805 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 3806 { 3807 struct phy_device *phydev = ptp_priv->phydev; 3808 struct lan8814_ptp_rx_ts *rx_ts; 3809 u32 reg; 3810 3811 do { 3812 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 3813 if (!rx_ts) 3814 return; 3815 3816 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 3817 &rx_ts->seq_id); 3818 lan8814_match_rx_ts(ptp_priv, rx_ts); 3819 3820 /* If other timestamps are available in the FIFO, 3821 * process them. 3822 */ 3823 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); 3824 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 3825 } 3826 3827 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 3828 { 3829 struct kszphy_priv *priv = phydev->priv; 3830 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3831 3832 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 3833 lan8814_get_tx_ts(ptp_priv); 3834 3835 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 3836 lan8814_get_rx_ts(ptp_priv); 3837 3838 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 3839 lan8814_flush_fifo(phydev, true); 3840 skb_queue_purge(&ptp_priv->tx_queue); 3841 } 3842 3843 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 3844 lan8814_flush_fifo(phydev, false); 3845 skb_queue_purge(&ptp_priv->rx_queue); 3846 } 3847 } 3848 3849 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 3850 { 3851 struct phy_device *phydev = shared->phydev; 3852 struct ptp_clock_event ptp_event = {0}; 3853 unsigned long nsec; 3854 s64 sec; 3855 u16 tmp; 3856 3857 /* This is 0 because whatever was the input pin it was mapped it to 3858 * ltc gpio pin 0 3859 */ 3860 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL); 3861 tmp |= PTP_GPIO_SEL_GPIO_SEL(0); 3862 lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp); 3863 3864 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS); 3865 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 3866 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 3867 return -1; 3868 3869 if (tmp & BIT(0)) { 3870 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP); 3871 sec <<= 16; 3872 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP); 3873 3874 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 3875 nsec <<= 16; 3876 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3877 } else { 3878 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP); 3879 sec <<= 16; 3880 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP); 3881 3882 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 3883 nsec <<= 16; 3884 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); 3885 } 3886 3887 ptp_event.index = 0; 3888 ptp_event.timestamp = ktime_set(sec, nsec); 3889 ptp_event.type = PTP_CLOCK_EXTTS; 3890 ptp_clock_event(shared->ptp_clock, &ptp_event); 3891 3892 return 0; 3893 } 3894 3895 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 3896 { 3897 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 3898 int ret; 3899 3900 mutex_lock(&shared->shared_lock); 3901 ret = lan8814_gpio_process_cap(shared); 3902 mutex_unlock(&shared->shared_lock); 3903 3904 return ret; 3905 } 3906 3907 static int lan8804_config_init(struct phy_device *phydev) 3908 { 3909 int val; 3910 3911 /* MDI-X setting for swap A,B transmit */ 3912 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); 3913 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; 3914 val |= LAN8804_ALIGN_TX_A_B_SWAP; 3915 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); 3916 3917 /* Make sure that the PHY will not stop generating the clock when the 3918 * link partner goes down 3919 */ 3920 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); 3921 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); 3922 3923 return 0; 3924 } 3925 3926 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 3927 { 3928 int status; 3929 3930 status = phy_read(phydev, LAN8814_INTS); 3931 if (status < 0) { 3932 phy_error(phydev); 3933 return IRQ_NONE; 3934 } 3935 3936 if (status > 0) 3937 phy_trigger_machine(phydev); 3938 3939 return IRQ_HANDLED; 3940 } 3941 3942 #define LAN8804_OUTPUT_CONTROL 25 3943 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 3944 #define LAN8804_CONTROL 31 3945 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 3946 3947 static int lan8804_config_intr(struct phy_device *phydev) 3948 { 3949 int err; 3950 3951 /* This is an internal PHY of lan966x and is not possible to change the 3952 * polarity on the GIC found in lan966x, therefore change the polarity 3953 * of the interrupt in the PHY from being active low instead of active 3954 * high. 3955 */ 3956 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 3957 3958 /* By default interrupt buffer is open-drain in which case the interrupt 3959 * can be active only low. Therefore change the interrupt buffer to be 3960 * push-pull to be able to change interrupt polarity 3961 */ 3962 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 3963 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 3964 3965 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 3966 err = phy_read(phydev, LAN8814_INTS); 3967 if (err < 0) 3968 return err; 3969 3970 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 3971 if (err) 3972 return err; 3973 } else { 3974 err = phy_write(phydev, LAN8814_INTC, 0); 3975 if (err) 3976 return err; 3977 3978 err = phy_read(phydev, LAN8814_INTS); 3979 if (err < 0) 3980 return err; 3981 } 3982 3983 return 0; 3984 } 3985 3986 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 3987 { 3988 int ret = IRQ_NONE; 3989 int irq_status; 3990 3991 irq_status = phy_read(phydev, LAN8814_INTS); 3992 if (irq_status < 0) { 3993 phy_error(phydev); 3994 return IRQ_NONE; 3995 } 3996 3997 if (irq_status & LAN8814_INT_LINK) { 3998 phy_trigger_machine(phydev); 3999 ret = IRQ_HANDLED; 4000 } 4001 4002 while (true) { 4003 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); 4004 if (!irq_status) 4005 break; 4006 4007 lan8814_handle_ptp_interrupt(phydev, irq_status); 4008 ret = IRQ_HANDLED; 4009 } 4010 4011 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 4012 ret = IRQ_HANDLED; 4013 4014 return ret; 4015 } 4016 4017 static int lan8814_ack_interrupt(struct phy_device *phydev) 4018 { 4019 /* bit[12..0] int status, which is a read and clear register. */ 4020 int rc; 4021 4022 rc = phy_read(phydev, LAN8814_INTS); 4023 4024 return (rc < 0) ? rc : 0; 4025 } 4026 4027 static int lan8814_config_intr(struct phy_device *phydev) 4028 { 4029 int err; 4030 4031 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, 4032 LAN8814_INTR_CTRL_REG_POLARITY | 4033 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 4034 4035 /* enable / disable interrupts */ 4036 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4037 err = lan8814_ack_interrupt(phydev); 4038 if (err) 4039 return err; 4040 4041 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4042 } else { 4043 err = phy_write(phydev, LAN8814_INTC, 0); 4044 if (err) 4045 return err; 4046 4047 err = lan8814_ack_interrupt(phydev); 4048 } 4049 4050 return err; 4051 } 4052 4053 static void lan8814_ptp_init(struct phy_device *phydev) 4054 { 4055 struct kszphy_priv *priv = phydev->priv; 4056 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4057 u32 temp; 4058 4059 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 4060 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4061 return; 4062 4063 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); 4064 4065 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); 4066 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 4067 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); 4068 4069 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); 4070 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; 4071 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); 4072 4073 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); 4074 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); 4075 4076 /* Removing default registers configs related to L2 and IP */ 4077 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); 4078 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); 4079 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); 4080 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); 4081 4082 /* Disable checking for minorVersionPTP field */ 4083 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION, 4084 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4085 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION, 4086 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4087 4088 skb_queue_head_init(&ptp_priv->tx_queue); 4089 skb_queue_head_init(&ptp_priv->rx_queue); 4090 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 4091 spin_lock_init(&ptp_priv->rx_ts_lock); 4092 4093 ptp_priv->phydev = phydev; 4094 4095 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 4096 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4097 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 4098 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 4099 4100 phydev->mii_ts = &ptp_priv->mii_ts; 4101 4102 /* Timestamp selected by default to keep legacy API */ 4103 phydev->default_timestamp = true; 4104 } 4105 4106 static int lan8814_ptp_probe_once(struct phy_device *phydev) 4107 { 4108 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4109 4110 /* Initialise shared lock for clock*/ 4111 mutex_init(&shared->shared_lock); 4112 4113 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 4114 LAN8814_PTP_GPIO_NUM, 4115 sizeof(*shared->pin_config), 4116 GFP_KERNEL); 4117 if (!shared->pin_config) 4118 return -ENOMEM; 4119 4120 for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) { 4121 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 4122 4123 memset(ptp_pin, 0, sizeof(*ptp_pin)); 4124 snprintf(ptp_pin->name, 4125 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i); 4126 ptp_pin->index = i; 4127 ptp_pin->func = PTP_PF_NONE; 4128 } 4129 4130 shared->ptp_clock_info.owner = THIS_MODULE; 4131 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 4132 shared->ptp_clock_info.max_adj = 31249999; 4133 shared->ptp_clock_info.n_alarm = 0; 4134 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 4135 shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM; 4136 shared->ptp_clock_info.pps = 0; 4137 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 4138 PTP_FALLING_EDGE | 4139 PTP_STRICT_FLAGS; 4140 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 4141 shared->ptp_clock_info.pin_config = shared->pin_config; 4142 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 4143 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 4144 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 4145 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 4146 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 4147 shared->ptp_clock_info.getcrosststamp = NULL; 4148 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 4149 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 4150 4151 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 4152 &phydev->mdio.dev); 4153 if (IS_ERR(shared->ptp_clock)) { 4154 phydev_err(phydev, "ptp_clock_register failed %lu\n", 4155 PTR_ERR(shared->ptp_clock)); 4156 return -EINVAL; 4157 } 4158 4159 /* Check if PHC support is missing at the configuration level */ 4160 if (!shared->ptp_clock) 4161 return 0; 4162 4163 phydev_dbg(phydev, "successfully registered ptp clock\n"); 4164 4165 shared->phydev = phydev; 4166 4167 /* The EP.4 is shared between all the PHYs in the package and also it 4168 * can be accessed by any of the PHYs 4169 */ 4170 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); 4171 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, 4172 PTP_OPERATING_MODE_STANDALONE_); 4173 4174 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 4175 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_); 4176 4177 return 0; 4178 } 4179 4180 static void lan8814_setup_led(struct phy_device *phydev, int val) 4181 { 4182 int temp; 4183 4184 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); 4185 4186 if (val) 4187 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4188 else 4189 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4190 4191 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); 4192 } 4193 4194 static int lan8814_config_init(struct phy_device *phydev) 4195 { 4196 struct kszphy_priv *lan8814 = phydev->priv; 4197 int val; 4198 4199 /* Reset the PHY */ 4200 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); 4201 val |= LAN8814_QSGMII_SOFT_RESET_BIT; 4202 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); 4203 4204 /* Disable ANEG with QSGMII PCS Host side */ 4205 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); 4206 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; 4207 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); 4208 4209 /* MDI-X setting for swap A,B transmit */ 4210 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); 4211 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; 4212 val |= LAN8814_ALIGN_TX_A_B_SWAP; 4213 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); 4214 4215 if (lan8814->led_mode >= 0) 4216 lan8814_setup_led(phydev, lan8814->led_mode); 4217 4218 return 0; 4219 } 4220 4221 /* It is expected that there will not be any 'lan8814_take_coma_mode' 4222 * function called in suspend. Because the GPIO line can be shared, so if one of 4223 * the phys goes back in coma mode, then all the other PHYs will go, which is 4224 * wrong. 4225 */ 4226 static int lan8814_release_coma_mode(struct phy_device *phydev) 4227 { 4228 struct gpio_desc *gpiod; 4229 4230 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4231 GPIOD_OUT_HIGH_OPEN_DRAIN | 4232 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4233 if (IS_ERR(gpiod)) 4234 return PTR_ERR(gpiod); 4235 4236 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4237 gpiod_set_value_cansleep(gpiod, 0); 4238 4239 return 0; 4240 } 4241 4242 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4243 { 4244 u16 val; 4245 4246 /* It was noticed that when traffic is passing through the PHY and the 4247 * cable is removed then the LED was still one even though there is no 4248 * link 4249 */ 4250 val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE); 4251 val &= ~LAN8814_EEE_STATE_MASK2P5P; 4252 lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val); 4253 } 4254 4255 static void lan8814_update_meas_time(struct phy_device *phydev) 4256 { 4257 u16 val; 4258 4259 /* By setting the measure time to a value of 0xb this will allow cables 4260 * longer than 100m to be used. This configuration can be used 4261 * regardless of the mode of operation of the PHY 4262 */ 4263 val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS); 4264 val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK; 4265 val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL; 4266 lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val); 4267 } 4268 4269 static int lan8814_probe(struct phy_device *phydev) 4270 { 4271 const struct kszphy_type *type = phydev->drv->driver_data; 4272 struct kszphy_priv *priv; 4273 u16 addr; 4274 int err; 4275 4276 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4277 if (!priv) 4278 return -ENOMEM; 4279 4280 phydev->priv = priv; 4281 4282 priv->type = type; 4283 4284 kszphy_parse_led_mode(phydev); 4285 4286 /* Strap-in value for PHY address, below register read gives starting 4287 * phy address value 4288 */ 4289 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; 4290 devm_phy_package_join(&phydev->mdio.dev, phydev, 4291 addr, sizeof(struct lan8814_shared_priv)); 4292 4293 if (phy_package_init_once(phydev)) { 4294 err = lan8814_release_coma_mode(phydev); 4295 if (err) 4296 return err; 4297 4298 err = lan8814_ptp_probe_once(phydev); 4299 if (err) 4300 return err; 4301 } 4302 4303 lan8814_ptp_init(phydev); 4304 4305 /* Errata workarounds */ 4306 lan8814_clear_2psp_bit(phydev); 4307 lan8814_update_meas_time(phydev); 4308 4309 return 0; 4310 } 4311 4312 #define LAN8841_MMD_TIMER_REG 0 4313 #define LAN8841_MMD0_REGISTER_17 17 4314 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4315 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4316 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4317 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4318 #define LAN8841_MMD_ANALOG_REG 28 4319 #define LAN8841_ANALOG_CONTROL_1 1 4320 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4321 #define LAN8841_ANALOG_CONTROL_10 13 4322 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4323 #define LAN8841_ANALOG_CONTROL_11 14 4324 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4325 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4326 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4327 #define LAN8841_BTRX_POWER_DOWN 70 4328 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4329 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4330 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4331 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4332 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4333 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4334 #define LAN8841_ADC_CHANNEL_MASK 198 4335 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4336 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4337 #define LAN8841_PTP_RX_VERSION 374 4338 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4339 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4340 #define LAN8841_PTP_TX_VERSION 438 4341 #define LAN8841_PTP_CMD_CTL 256 4342 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4343 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4344 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4345 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4346 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4347 #define LAN8841_PTP_RX_MODE 381 4348 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4349 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4350 4351 static int lan8841_config_init(struct phy_device *phydev) 4352 { 4353 int ret; 4354 4355 ret = ksz9131_config_init(phydev); 4356 if (ret) 4357 return ret; 4358 4359 /* Initialize the HW by resetting everything */ 4360 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4361 LAN8841_PTP_CMD_CTL, 4362 LAN8841_PTP_CMD_CTL_PTP_RESET, 4363 LAN8841_PTP_CMD_CTL_PTP_RESET); 4364 4365 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4366 LAN8841_PTP_CMD_CTL, 4367 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4368 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4369 4370 /* Don't process any frames */ 4371 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4372 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4373 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4374 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4375 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4376 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4377 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4378 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4379 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4380 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4381 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4382 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4383 4384 /* Disable checking for minorVersionPTP field */ 4385 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4386 LAN8841_PTP_RX_VERSION, 0xff00); 4387 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4388 LAN8841_PTP_TX_VERSION, 0xff00); 4389 4390 /* 100BT Clause 40 improvenent errata */ 4391 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4392 LAN8841_ANALOG_CONTROL_1, 4393 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4394 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4395 LAN8841_ANALOG_CONTROL_10, 4396 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4397 4398 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4399 * Magnetics 4400 */ 4401 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4402 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4403 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4404 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4405 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4406 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4407 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4408 LAN8841_BTRX_POWER_DOWN, 4409 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4410 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4411 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4412 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4413 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4414 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4415 } 4416 4417 /* LDO Adjustment errata */ 4418 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4419 LAN8841_ANALOG_CONTROL_11, 4420 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4421 4422 /* 100BT RGMII latency tuning errata */ 4423 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4424 LAN8841_ADC_CHANNEL_MASK, 0x0); 4425 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4426 LAN8841_MMD0_REGISTER_17, 4427 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4428 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4429 4430 return 0; 4431 } 4432 4433 #define LAN8841_OUTPUT_CTRL 25 4434 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4435 #define LAN8841_INT_PTP BIT(9) 4436 4437 static int lan8841_config_intr(struct phy_device *phydev) 4438 { 4439 int err; 4440 4441 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4442 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4443 4444 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4445 err = phy_read(phydev, LAN8814_INTS); 4446 if (err < 0) 4447 return err; 4448 4449 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4450 * even if it PTP is not enabled. Because the underneath blocks 4451 * will not enable the PTP so we will never get the PTP 4452 * interrupt. 4453 */ 4454 err = phy_write(phydev, LAN8814_INTC, 4455 LAN8814_INT_LINK | LAN8841_INT_PTP); 4456 } else { 4457 err = phy_write(phydev, LAN8814_INTC, 0); 4458 if (err) 4459 return err; 4460 4461 err = phy_read(phydev, LAN8814_INTS); 4462 if (err < 0) 4463 return err; 4464 4465 /* Getting a positive value doesn't mean that is an error, it 4466 * just indicates what was the status. Therefore make sure to 4467 * clear the value and say that there is no error. 4468 */ 4469 err = 0; 4470 } 4471 4472 return err; 4473 } 4474 4475 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4476 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4477 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4478 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4479 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4480 #define LAN8841_PTP_TX_MSG_HEADER2 455 4481 4482 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4483 u32 *sec, u32 *nsec, u16 *seq) 4484 { 4485 struct phy_device *phydev = ptp_priv->phydev; 4486 4487 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4488 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4489 return false; 4490 4491 *nsec = ((*nsec & 0x3fff) << 16); 4492 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4493 4494 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4495 *sec = *sec << 16; 4496 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4497 4498 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4499 4500 return true; 4501 } 4502 4503 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4504 { 4505 u32 sec, nsec; 4506 u16 seq; 4507 4508 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4509 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4510 } 4511 4512 #define LAN8841_PTP_INT_STS 259 4513 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4514 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4515 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4516 4517 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4518 { 4519 struct phy_device *phydev = ptp_priv->phydev; 4520 int i; 4521 4522 for (i = 0; i < FIFO_SIZE; ++i) 4523 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4524 4525 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4526 } 4527 4528 #define LAN8841_PTP_GPIO_CAP_STS 506 4529 #define LAN8841_PTP_GPIO_SEL 327 4530 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4531 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4532 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4533 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4534 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4535 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4536 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4537 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4538 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4539 4540 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4541 { 4542 struct phy_device *phydev = ptp_priv->phydev; 4543 struct ptp_clock_event ptp_event = {0}; 4544 int pin, ret, tmp; 4545 s32 sec, nsec; 4546 4547 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4548 if (pin == -1) 4549 return; 4550 4551 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4552 if (tmp < 0) 4553 return; 4554 4555 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4556 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4557 if (ret) 4558 return; 4559 4560 mutex_lock(&ptp_priv->ptp_lock); 4561 if (tmp & BIT(pin)) { 4562 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4563 sec <<= 16; 4564 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4565 4566 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4567 nsec <<= 16; 4568 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4569 } else { 4570 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4571 sec <<= 16; 4572 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4573 4574 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4575 nsec <<= 16; 4576 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4577 } 4578 mutex_unlock(&ptp_priv->ptp_lock); 4579 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4580 if (ret) 4581 return; 4582 4583 ptp_event.index = 0; 4584 ptp_event.timestamp = ktime_set(sec, nsec); 4585 ptp_event.type = PTP_CLOCK_EXTTS; 4586 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4587 } 4588 4589 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4590 { 4591 struct kszphy_priv *priv = phydev->priv; 4592 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4593 u16 status; 4594 4595 do { 4596 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4597 4598 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4599 lan8841_ptp_process_tx_ts(ptp_priv); 4600 4601 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4602 lan8841_gpio_process_cap(ptp_priv); 4603 4604 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4605 lan8841_ptp_flush_fifo(ptp_priv); 4606 skb_queue_purge(&ptp_priv->tx_queue); 4607 } 4608 4609 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4610 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4611 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4612 } 4613 4614 #define LAN8841_INTS_PTP BIT(9) 4615 4616 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4617 { 4618 irqreturn_t ret = IRQ_NONE; 4619 int irq_status; 4620 4621 irq_status = phy_read(phydev, LAN8814_INTS); 4622 if (irq_status < 0) { 4623 phy_error(phydev); 4624 return IRQ_NONE; 4625 } 4626 4627 if (irq_status & LAN8814_INT_LINK) { 4628 phy_trigger_machine(phydev); 4629 ret = IRQ_HANDLED; 4630 } 4631 4632 if (irq_status & LAN8841_INTS_PTP) { 4633 lan8841_handle_ptp_interrupt(phydev); 4634 ret = IRQ_HANDLED; 4635 } 4636 4637 return ret; 4638 } 4639 4640 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4641 struct kernel_ethtool_ts_info *info) 4642 { 4643 struct kszphy_ptp_priv *ptp_priv; 4644 4645 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4646 4647 info->phc_index = ptp_priv->ptp_clock ? 4648 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4649 if (info->phc_index == -1) 4650 return 0; 4651 4652 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4653 SOF_TIMESTAMPING_RX_HARDWARE | 4654 SOF_TIMESTAMPING_RAW_HARDWARE; 4655 4656 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4657 (1 << HWTSTAMP_TX_ON) | 4658 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4659 4660 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4661 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4662 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4663 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4664 4665 return 0; 4666 } 4667 4668 #define LAN8841_PTP_INT_EN 260 4669 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4670 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4671 4672 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 4673 bool enable) 4674 { 4675 struct phy_device *phydev = ptp_priv->phydev; 4676 4677 if (enable) { 4678 /* Enable interrupts on the TX side */ 4679 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4680 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4681 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 4682 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4683 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 4684 4685 /* Enable the modification of the frame on RX side, 4686 * this will add the ns and 2 bits of sec in the reserved field 4687 * of the PTP header 4688 */ 4689 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4690 LAN8841_PTP_RX_MODE, 4691 LAN8841_PTP_INSERT_TS_EN | 4692 LAN8841_PTP_INSERT_TS_32BIT, 4693 LAN8841_PTP_INSERT_TS_EN | 4694 LAN8841_PTP_INSERT_TS_32BIT); 4695 4696 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 4697 } else { 4698 /* Disable interrupts on the TX side */ 4699 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4700 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4701 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 4702 4703 /* Disable modification of the RX frames */ 4704 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4705 LAN8841_PTP_RX_MODE, 4706 LAN8841_PTP_INSERT_TS_EN | 4707 LAN8841_PTP_INSERT_TS_32BIT, 0); 4708 4709 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4710 } 4711 } 4712 4713 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 4714 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 4715 #define LAN8841_PTP_TX_MOD 445 4716 4717 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 4718 struct kernel_hwtstamp_config *config, 4719 struct netlink_ext_ack *extack) 4720 { 4721 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4722 struct phy_device *phydev = ptp_priv->phydev; 4723 int txcfg = 0, rxcfg = 0; 4724 int pkt_ts_enable; 4725 4726 ptp_priv->hwts_tx_type = config->tx_type; 4727 ptp_priv->rx_filter = config->rx_filter; 4728 4729 switch (config->rx_filter) { 4730 case HWTSTAMP_FILTER_NONE: 4731 ptp_priv->layer = 0; 4732 ptp_priv->version = 0; 4733 break; 4734 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 4735 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 4736 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 4737 ptp_priv->layer = PTP_CLASS_L4; 4738 ptp_priv->version = PTP_CLASS_V2; 4739 break; 4740 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 4741 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 4742 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 4743 ptp_priv->layer = PTP_CLASS_L2; 4744 ptp_priv->version = PTP_CLASS_V2; 4745 break; 4746 case HWTSTAMP_FILTER_PTP_V2_EVENT: 4747 case HWTSTAMP_FILTER_PTP_V2_SYNC: 4748 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 4749 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 4750 ptp_priv->version = PTP_CLASS_V2; 4751 break; 4752 default: 4753 return -ERANGE; 4754 } 4755 4756 /* Setup parsing of the frames and enable the timestamping for ptp 4757 * frames 4758 */ 4759 if (ptp_priv->layer & PTP_CLASS_L2) { 4760 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 4761 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 4762 } else if (ptp_priv->layer & PTP_CLASS_L4) { 4763 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 4764 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 4765 } 4766 4767 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 4768 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 4769 4770 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 4771 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 4772 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 4773 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 4774 4775 /* Enable / disable of the TX timestamp in the SYNC frames */ 4776 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 4777 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 4778 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 4779 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 4780 4781 /* Now enable/disable the timestamping */ 4782 lan8841_ptp_enable_processing(ptp_priv, 4783 config->rx_filter != HWTSTAMP_FILTER_NONE); 4784 4785 skb_queue_purge(&ptp_priv->tx_queue); 4786 4787 lan8841_ptp_flush_fifo(ptp_priv); 4788 4789 return 0; 4790 } 4791 4792 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 4793 struct sk_buff *skb, int type) 4794 { 4795 struct kszphy_ptp_priv *ptp_priv = 4796 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4797 struct ptp_header *header = ptp_parse_header(skb, type); 4798 struct skb_shared_hwtstamps *shhwtstamps; 4799 struct timespec64 ts; 4800 unsigned long flags; 4801 u32 ts_header; 4802 4803 if (!header) 4804 return false; 4805 4806 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 4807 type == PTP_CLASS_NONE) 4808 return false; 4809 4810 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 4811 return false; 4812 4813 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4814 ts.tv_sec = ptp_priv->seconds; 4815 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4816 ts_header = __be32_to_cpu(header->reserved2); 4817 4818 shhwtstamps = skb_hwtstamps(skb); 4819 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4820 4821 /* Check for any wrap arounds for the second part */ 4822 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 4823 ts.tv_sec -= GENMASK(1, 0) + 1; 4824 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 4825 ts.tv_sec += 1; 4826 4827 shhwtstamps->hwtstamp = 4828 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 4829 ts_header & GENMASK(29, 0)); 4830 header->reserved2 = 0; 4831 4832 netif_rx(skb); 4833 4834 return true; 4835 } 4836 4837 #define LAN8841_EVENT_A 0 4838 #define LAN8841_EVENT_B 1 4839 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 4840 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 4841 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 4842 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 4843 4844 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 4845 s64 sec, u32 nsec) 4846 { 4847 struct phy_device *phydev = ptp_priv->phydev; 4848 int ret; 4849 4850 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 4851 upper_16_bits(sec)); 4852 if (ret) 4853 return ret; 4854 4855 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 4856 lower_16_bits(sec)); 4857 if (ret) 4858 return ret; 4859 4860 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 4861 upper_16_bits(nsec)); 4862 if (ret) 4863 return ret; 4864 4865 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 4866 lower_16_bits(nsec)); 4867 } 4868 4869 #define LAN8841_BUFFER_TIME 2 4870 4871 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 4872 const struct timespec64 *ts) 4873 { 4874 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 4875 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 4876 } 4877 4878 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 4879 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 4880 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 4881 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 4882 4883 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 4884 s64 sec, u32 nsec) 4885 { 4886 struct phy_device *phydev = ptp_priv->phydev; 4887 int ret; 4888 4889 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 4890 upper_16_bits(sec)); 4891 if (ret) 4892 return ret; 4893 4894 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 4895 lower_16_bits(sec)); 4896 if (ret) 4897 return ret; 4898 4899 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 4900 upper_16_bits(nsec)); 4901 if (ret) 4902 return ret; 4903 4904 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 4905 lower_16_bits(nsec)); 4906 } 4907 4908 #define LAN8841_PTP_LTC_SET_SEC_HI 262 4909 #define LAN8841_PTP_LTC_SET_SEC_MID 263 4910 #define LAN8841_PTP_LTC_SET_SEC_LO 264 4911 #define LAN8841_PTP_LTC_SET_NS_HI 265 4912 #define LAN8841_PTP_LTC_SET_NS_LO 266 4913 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 4914 4915 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 4916 const struct timespec64 *ts) 4917 { 4918 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4919 ptp_clock_info); 4920 struct phy_device *phydev = ptp_priv->phydev; 4921 unsigned long flags; 4922 int ret; 4923 4924 /* Set the value to be stored */ 4925 mutex_lock(&ptp_priv->ptp_lock); 4926 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 4927 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 4928 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 4929 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 4930 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 4931 4932 /* Set the command to load the LTC */ 4933 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4934 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 4935 ret = lan8841_ptp_update_target(ptp_priv, ts); 4936 mutex_unlock(&ptp_priv->ptp_lock); 4937 4938 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4939 ptp_priv->seconds = ts->tv_sec; 4940 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4941 4942 return ret; 4943 } 4944 4945 #define LAN8841_PTP_LTC_RD_SEC_HI 358 4946 #define LAN8841_PTP_LTC_RD_SEC_MID 359 4947 #define LAN8841_PTP_LTC_RD_SEC_LO 360 4948 #define LAN8841_PTP_LTC_RD_NS_HI 361 4949 #define LAN8841_PTP_LTC_RD_NS_LO 362 4950 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 4951 4952 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 4953 struct timespec64 *ts) 4954 { 4955 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4956 ptp_clock_info); 4957 struct phy_device *phydev = ptp_priv->phydev; 4958 time64_t s; 4959 s64 ns; 4960 4961 mutex_lock(&ptp_priv->ptp_lock); 4962 /* Issue the command to read the LTC */ 4963 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4964 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4965 4966 /* Read the LTC */ 4967 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4968 s <<= 16; 4969 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4970 s <<= 16; 4971 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 4972 4973 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 4974 ns <<= 16; 4975 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 4976 mutex_unlock(&ptp_priv->ptp_lock); 4977 4978 set_normalized_timespec64(ts, s, ns); 4979 return 0; 4980 } 4981 4982 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 4983 struct timespec64 *ts) 4984 { 4985 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 4986 ptp_clock_info); 4987 struct phy_device *phydev = ptp_priv->phydev; 4988 time64_t s; 4989 4990 mutex_lock(&ptp_priv->ptp_lock); 4991 /* Issue the command to read the LTC */ 4992 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 4993 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 4994 4995 /* Read the LTC */ 4996 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 4997 s <<= 16; 4998 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 4999 s <<= 16; 5000 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5001 mutex_unlock(&ptp_priv->ptp_lock); 5002 5003 set_normalized_timespec64(ts, s, 0); 5004 } 5005 5006 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 5007 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 5008 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 5009 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 5010 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 5011 5012 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 5013 { 5014 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5015 ptp_clock_info); 5016 struct phy_device *phydev = ptp_priv->phydev; 5017 struct timespec64 ts; 5018 bool add = true; 5019 u32 nsec; 5020 s32 sec; 5021 int ret; 5022 5023 /* The HW allows up to 15 sec to adjust the time, but here we limit to 5024 * 10 sec the adjustment. The reason is, in case the adjustment is 14 5025 * sec and 999999999 nsec, then we add 8ns to compansate the actual 5026 * increment so the value can be bigger than 15 sec. Therefore limit the 5027 * possible adjustments so we will not have these corner cases 5028 */ 5029 if (delta > 10000000000LL || delta < -10000000000LL) { 5030 /* The timeadjustment is too big, so fall back using set time */ 5031 u64 now; 5032 5033 ptp->gettime64(ptp, &ts); 5034 5035 now = ktime_to_ns(timespec64_to_ktime(ts)); 5036 ts = ns_to_timespec64(now + delta); 5037 5038 ptp->settime64(ptp, &ts); 5039 return 0; 5040 } 5041 5042 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 5043 if (delta < 0 && nsec != 0) { 5044 /* It is not allowed to adjust low the nsec part, therefore 5045 * subtract more from second part and add to nanosecond such 5046 * that would roll over, so the second part will increase 5047 */ 5048 sec--; 5049 nsec = NSEC_PER_SEC - nsec; 5050 } 5051 5052 /* Calculate the adjustments and the direction */ 5053 if (delta < 0) 5054 add = false; 5055 5056 if (nsec > 0) 5057 /* add 8 ns to cover the likely normal increment */ 5058 nsec += 8; 5059 5060 if (nsec >= NSEC_PER_SEC) { 5061 /* carry into seconds */ 5062 sec++; 5063 nsec -= NSEC_PER_SEC; 5064 } 5065 5066 mutex_lock(&ptp_priv->ptp_lock); 5067 if (sec) { 5068 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 5069 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5070 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 5071 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5072 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 5073 } 5074 5075 if (nsec) { 5076 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 5077 nsec & 0xffff); 5078 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5079 (nsec >> 16) & 0x3fff); 5080 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5081 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 5082 } 5083 mutex_unlock(&ptp_priv->ptp_lock); 5084 5085 /* Update the target clock */ 5086 ptp->gettime64(ptp, &ts); 5087 mutex_lock(&ptp_priv->ptp_lock); 5088 ret = lan8841_ptp_update_target(ptp_priv, &ts); 5089 mutex_unlock(&ptp_priv->ptp_lock); 5090 5091 return ret; 5092 } 5093 5094 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 5095 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 5096 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 5097 5098 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 5099 { 5100 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5101 ptp_clock_info); 5102 struct phy_device *phydev = ptp_priv->phydev; 5103 bool faster = true; 5104 u32 rate; 5105 5106 if (!scaled_ppm) 5107 return 0; 5108 5109 if (scaled_ppm < 0) { 5110 scaled_ppm = -scaled_ppm; 5111 faster = false; 5112 } 5113 5114 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 5115 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 5116 5117 mutex_lock(&ptp_priv->ptp_lock); 5118 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 5119 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 5120 : upper_16_bits(rate) & 0x3fff); 5121 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 5122 mutex_unlock(&ptp_priv->ptp_lock); 5123 5124 return 0; 5125 } 5126 5127 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 5128 enum ptp_pin_function func, unsigned int chan) 5129 { 5130 switch (func) { 5131 case PTP_PF_NONE: 5132 case PTP_PF_PEROUT: 5133 case PTP_PF_EXTTS: 5134 break; 5135 default: 5136 return -1; 5137 } 5138 5139 return 0; 5140 } 5141 5142 #define LAN8841_PTP_GPIO_NUM 10 5143 #define LAN8841_GPIO_EN 128 5144 #define LAN8841_GPIO_DIR 129 5145 #define LAN8841_GPIO_BUF 130 5146 5147 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5148 { 5149 struct phy_device *phydev = ptp_priv->phydev; 5150 int ret; 5151 5152 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5153 if (ret) 5154 return ret; 5155 5156 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5157 if (ret) 5158 return ret; 5159 5160 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5161 } 5162 5163 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 5164 { 5165 struct phy_device *phydev = ptp_priv->phydev; 5166 int ret; 5167 5168 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5169 if (ret) 5170 return ret; 5171 5172 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5173 if (ret) 5174 return ret; 5175 5176 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5177 } 5178 5179 #define LAN8841_GPIO_DATA_SEL1 131 5180 #define LAN8841_GPIO_DATA_SEL2 132 5181 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 5182 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 5183 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 5184 #define LAN8841_PTP_GENERAL_CONFIG 257 5185 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 5186 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 5187 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 5188 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 5189 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 5190 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 5191 5192 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5193 u8 event) 5194 { 5195 struct phy_device *phydev = ptp_priv->phydev; 5196 u16 tmp; 5197 int ret; 5198 5199 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 5200 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5201 * depending on the pin, it requires to read a different register 5202 */ 5203 if (pin < 5) { 5204 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 5205 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 5206 } else { 5207 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 5208 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 5209 } 5210 if (ret) 5211 return ret; 5212 5213 /* Disable the event */ 5214 if (event == LAN8841_EVENT_A) 5215 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5216 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 5217 else 5218 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5219 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 5220 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5221 } 5222 5223 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5224 u8 event, int pulse_width) 5225 { 5226 struct phy_device *phydev = ptp_priv->phydev; 5227 u16 tmp; 5228 int ret; 5229 5230 /* Enable the event */ 5231 if (event == LAN8841_EVENT_A) 5232 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5233 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5234 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5235 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5236 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5237 else 5238 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5239 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5240 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5241 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5242 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5243 if (ret) 5244 return ret; 5245 5246 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5247 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5248 * depending on the pin, it requires to read a different register 5249 */ 5250 if (event == LAN8841_EVENT_A) 5251 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5252 else 5253 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5254 5255 if (pin < 5) 5256 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5257 tmp << (3 * pin)); 5258 else 5259 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5260 tmp << (3 * (pin - 5))); 5261 5262 return ret; 5263 } 5264 5265 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5266 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5267 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5268 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5269 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5270 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5271 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5272 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5273 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5274 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5275 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5276 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5277 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5278 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5279 5280 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5281 struct ptp_clock_request *rq, int on) 5282 { 5283 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5284 ptp_clock_info); 5285 struct phy_device *phydev = ptp_priv->phydev; 5286 struct timespec64 ts_on, ts_period; 5287 s64 on_nsec, period_nsec; 5288 int pulse_width; 5289 int pin; 5290 int ret; 5291 5292 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5293 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5294 return -EINVAL; 5295 5296 if (!on) { 5297 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5298 if (ret) 5299 return ret; 5300 5301 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5302 } 5303 5304 ts_on.tv_sec = rq->perout.on.sec; 5305 ts_on.tv_nsec = rq->perout.on.nsec; 5306 on_nsec = timespec64_to_ns(&ts_on); 5307 5308 ts_period.tv_sec = rq->perout.period.sec; 5309 ts_period.tv_nsec = rq->perout.period.nsec; 5310 period_nsec = timespec64_to_ns(&ts_period); 5311 5312 if (period_nsec < 200) { 5313 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5314 phydev_name(phydev)); 5315 return -EOPNOTSUPP; 5316 } 5317 5318 if (on_nsec >= period_nsec) { 5319 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5320 phydev_name(phydev)); 5321 return -EINVAL; 5322 } 5323 5324 switch (on_nsec) { 5325 case 200000000: 5326 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5327 break; 5328 case 100000000: 5329 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5330 break; 5331 case 50000000: 5332 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5333 break; 5334 case 10000000: 5335 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5336 break; 5337 case 5000000: 5338 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5339 break; 5340 case 1000000: 5341 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5342 break; 5343 case 500000: 5344 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5345 break; 5346 case 100000: 5347 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5348 break; 5349 case 50000: 5350 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5351 break; 5352 case 10000: 5353 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5354 break; 5355 case 5000: 5356 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5357 break; 5358 case 1000: 5359 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5360 break; 5361 case 500: 5362 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5363 break; 5364 case 100: 5365 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5366 break; 5367 default: 5368 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5369 phydev_name(phydev)); 5370 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5371 break; 5372 } 5373 5374 mutex_lock(&ptp_priv->ptp_lock); 5375 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5376 rq->perout.start.nsec); 5377 mutex_unlock(&ptp_priv->ptp_lock); 5378 if (ret) 5379 return ret; 5380 5381 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5382 rq->perout.period.nsec); 5383 if (ret) 5384 return ret; 5385 5386 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5387 pulse_width); 5388 if (ret) 5389 return ret; 5390 5391 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5392 if (ret) 5393 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5394 5395 return ret; 5396 } 5397 5398 #define LAN8841_PTP_GPIO_CAP_EN 496 5399 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5400 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5401 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5402 5403 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5404 u32 flags) 5405 { 5406 struct phy_device *phydev = ptp_priv->phydev; 5407 u16 tmp = 0; 5408 int ret; 5409 5410 /* Set GPIO to be intput */ 5411 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5412 if (ret) 5413 return ret; 5414 5415 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5416 if (ret) 5417 return ret; 5418 5419 /* Enable capture on the edges of the pin */ 5420 if (flags & PTP_RISING_EDGE) 5421 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5422 if (flags & PTP_FALLING_EDGE) 5423 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5424 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5425 if (ret) 5426 return ret; 5427 5428 /* Enable interrupt */ 5429 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5430 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5431 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5432 } 5433 5434 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5435 { 5436 struct phy_device *phydev = ptp_priv->phydev; 5437 int ret; 5438 5439 /* Set GPIO to be output */ 5440 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5441 if (ret) 5442 return ret; 5443 5444 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5445 if (ret) 5446 return ret; 5447 5448 /* Disable capture on both of the edges */ 5449 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5450 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5451 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5452 0); 5453 if (ret) 5454 return ret; 5455 5456 /* Disable interrupt */ 5457 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5458 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5459 0); 5460 } 5461 5462 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5463 struct ptp_clock_request *rq, int on) 5464 { 5465 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5466 ptp_clock_info); 5467 int pin; 5468 int ret; 5469 5470 /* Reject requests with unsupported flags */ 5471 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5472 PTP_EXTTS_EDGES | 5473 PTP_STRICT_FLAGS)) 5474 return -EOPNOTSUPP; 5475 5476 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5477 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5478 return -EINVAL; 5479 5480 mutex_lock(&ptp_priv->ptp_lock); 5481 if (on) 5482 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5483 else 5484 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5485 mutex_unlock(&ptp_priv->ptp_lock); 5486 5487 return ret; 5488 } 5489 5490 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5491 struct ptp_clock_request *rq, int on) 5492 { 5493 switch (rq->type) { 5494 case PTP_CLK_REQ_EXTTS: 5495 return lan8841_ptp_extts(ptp, rq, on); 5496 case PTP_CLK_REQ_PEROUT: 5497 return lan8841_ptp_perout(ptp, rq, on); 5498 default: 5499 return -EOPNOTSUPP; 5500 } 5501 5502 return 0; 5503 } 5504 5505 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5506 { 5507 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5508 ptp_clock_info); 5509 struct timespec64 ts; 5510 unsigned long flags; 5511 5512 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5513 5514 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5515 ptp_priv->seconds = ts.tv_sec; 5516 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5517 5518 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5519 } 5520 5521 static struct ptp_clock_info lan8841_ptp_clock_info = { 5522 .owner = THIS_MODULE, 5523 .name = "lan8841 ptp", 5524 .max_adj = 31249999, 5525 .gettime64 = lan8841_ptp_gettime64, 5526 .settime64 = lan8841_ptp_settime64, 5527 .adjtime = lan8841_ptp_adjtime, 5528 .adjfine = lan8841_ptp_adjfine, 5529 .verify = lan8841_ptp_verify, 5530 .enable = lan8841_ptp_enable, 5531 .do_aux_work = lan8841_ptp_do_aux_work, 5532 .n_per_out = LAN8841_PTP_GPIO_NUM, 5533 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5534 .n_pins = LAN8841_PTP_GPIO_NUM, 5535 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5536 }; 5537 5538 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5539 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5540 5541 static int lan8841_probe(struct phy_device *phydev) 5542 { 5543 struct kszphy_ptp_priv *ptp_priv; 5544 struct kszphy_priv *priv; 5545 int err; 5546 5547 err = kszphy_probe(phydev); 5548 if (err) 5549 return err; 5550 5551 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5552 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5553 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5554 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5555 5556 /* Register the clock */ 5557 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5558 return 0; 5559 5560 priv = phydev->priv; 5561 ptp_priv = &priv->ptp_priv; 5562 5563 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5564 LAN8841_PTP_GPIO_NUM, 5565 sizeof(*ptp_priv->pin_config), 5566 GFP_KERNEL); 5567 if (!ptp_priv->pin_config) 5568 return -ENOMEM; 5569 5570 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5571 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5572 5573 snprintf(p->name, sizeof(p->name), "pin%d", i); 5574 p->index = i; 5575 p->func = PTP_PF_NONE; 5576 } 5577 5578 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5579 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5580 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5581 &phydev->mdio.dev); 5582 if (IS_ERR(ptp_priv->ptp_clock)) { 5583 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 5584 PTR_ERR(ptp_priv->ptp_clock)); 5585 return -EINVAL; 5586 } 5587 5588 if (!ptp_priv->ptp_clock) 5589 return 0; 5590 5591 /* Initialize the SW */ 5592 skb_queue_head_init(&ptp_priv->tx_queue); 5593 ptp_priv->phydev = phydev; 5594 mutex_init(&ptp_priv->ptp_lock); 5595 spin_lock_init(&ptp_priv->seconds_lock); 5596 5597 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5598 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5599 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 5600 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5601 5602 phydev->mii_ts = &ptp_priv->mii_ts; 5603 5604 /* Timestamp selected by default to keep legacy API */ 5605 phydev->default_timestamp = true; 5606 5607 return 0; 5608 } 5609 5610 static int lan8804_resume(struct phy_device *phydev) 5611 { 5612 return kszphy_resume(phydev); 5613 } 5614 5615 static int lan8804_suspend(struct phy_device *phydev) 5616 { 5617 return kszphy_generic_suspend(phydev); 5618 } 5619 5620 static int lan8841_resume(struct phy_device *phydev) 5621 { 5622 return kszphy_generic_resume(phydev); 5623 } 5624 5625 static int lan8841_suspend(struct phy_device *phydev) 5626 { 5627 struct kszphy_priv *priv = phydev->priv; 5628 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5629 5630 if (ptp_priv->ptp_clock) 5631 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5632 5633 return kszphy_generic_suspend(phydev); 5634 } 5635 5636 static int ksz9131_resume(struct phy_device *phydev) 5637 { 5638 if (phydev->suspended && phy_interface_is_rgmii(phydev)) 5639 ksz9131_config_rgmii_delay(phydev); 5640 5641 return kszphy_resume(phydev); 5642 } 5643 5644 static struct phy_driver ksphy_driver[] = { 5645 { 5646 .phy_id = PHY_ID_KS8737, 5647 .phy_id_mask = MICREL_PHY_ID_MASK, 5648 .name = "Micrel KS8737", 5649 /* PHY_BASIC_FEATURES */ 5650 .driver_data = &ks8737_type, 5651 .probe = kszphy_probe, 5652 .config_init = kszphy_config_init, 5653 .config_intr = kszphy_config_intr, 5654 .handle_interrupt = kszphy_handle_interrupt, 5655 .suspend = kszphy_suspend, 5656 .resume = kszphy_resume, 5657 }, { 5658 .phy_id = PHY_ID_KSZ8021, 5659 .phy_id_mask = 0x00ffffff, 5660 .name = "Micrel KSZ8021 or KSZ8031", 5661 /* PHY_BASIC_FEATURES */ 5662 .driver_data = &ksz8021_type, 5663 .probe = kszphy_probe, 5664 .config_init = kszphy_config_init, 5665 .config_intr = kszphy_config_intr, 5666 .handle_interrupt = kszphy_handle_interrupt, 5667 .get_sset_count = kszphy_get_sset_count, 5668 .get_strings = kszphy_get_strings, 5669 .get_stats = kszphy_get_stats, 5670 .suspend = kszphy_suspend, 5671 .resume = kszphy_resume, 5672 }, { 5673 .phy_id = PHY_ID_KSZ8031, 5674 .phy_id_mask = 0x00ffffff, 5675 .name = "Micrel KSZ8031", 5676 /* PHY_BASIC_FEATURES */ 5677 .driver_data = &ksz8021_type, 5678 .probe = kszphy_probe, 5679 .config_init = kszphy_config_init, 5680 .config_intr = kszphy_config_intr, 5681 .handle_interrupt = kszphy_handle_interrupt, 5682 .get_sset_count = kszphy_get_sset_count, 5683 .get_strings = kszphy_get_strings, 5684 .get_stats = kszphy_get_stats, 5685 .suspend = kszphy_suspend, 5686 .resume = kszphy_resume, 5687 }, { 5688 .phy_id = PHY_ID_KSZ8041, 5689 .phy_id_mask = MICREL_PHY_ID_MASK, 5690 .name = "Micrel KSZ8041", 5691 /* PHY_BASIC_FEATURES */ 5692 .driver_data = &ksz8041_type, 5693 .probe = kszphy_probe, 5694 .config_init = ksz8041_config_init, 5695 .config_aneg = ksz8041_config_aneg, 5696 .config_intr = kszphy_config_intr, 5697 .handle_interrupt = kszphy_handle_interrupt, 5698 .get_sset_count = kszphy_get_sset_count, 5699 .get_strings = kszphy_get_strings, 5700 .get_stats = kszphy_get_stats, 5701 .suspend = ksz8041_suspend, 5702 .resume = ksz8041_resume, 5703 }, { 5704 .phy_id = PHY_ID_KSZ8041RNLI, 5705 .phy_id_mask = MICREL_PHY_ID_MASK, 5706 .name = "Micrel KSZ8041RNLI", 5707 /* PHY_BASIC_FEATURES */ 5708 .driver_data = &ksz8041_type, 5709 .probe = kszphy_probe, 5710 .config_init = kszphy_config_init, 5711 .config_intr = kszphy_config_intr, 5712 .handle_interrupt = kszphy_handle_interrupt, 5713 .get_sset_count = kszphy_get_sset_count, 5714 .get_strings = kszphy_get_strings, 5715 .get_stats = kszphy_get_stats, 5716 .suspend = kszphy_suspend, 5717 .resume = kszphy_resume, 5718 }, { 5719 .name = "Micrel KSZ8051", 5720 /* PHY_BASIC_FEATURES */ 5721 .driver_data = &ksz8051_type, 5722 .probe = kszphy_probe, 5723 .config_init = kszphy_config_init, 5724 .config_intr = kszphy_config_intr, 5725 .handle_interrupt = kszphy_handle_interrupt, 5726 .get_sset_count = kszphy_get_sset_count, 5727 .get_strings = kszphy_get_strings, 5728 .get_stats = kszphy_get_stats, 5729 .match_phy_device = ksz8051_match_phy_device, 5730 .suspend = kszphy_suspend, 5731 .resume = kszphy_resume, 5732 }, { 5733 .phy_id = PHY_ID_KSZ8001, 5734 .name = "Micrel KSZ8001 or KS8721", 5735 .phy_id_mask = 0x00fffffc, 5736 /* PHY_BASIC_FEATURES */ 5737 .driver_data = &ksz8041_type, 5738 .probe = kszphy_probe, 5739 .config_init = kszphy_config_init, 5740 .config_intr = kszphy_config_intr, 5741 .handle_interrupt = kszphy_handle_interrupt, 5742 .get_sset_count = kszphy_get_sset_count, 5743 .get_strings = kszphy_get_strings, 5744 .get_stats = kszphy_get_stats, 5745 .suspend = kszphy_suspend, 5746 .resume = kszphy_resume, 5747 }, { 5748 .phy_id = PHY_ID_KSZ8081, 5749 .name = "Micrel KSZ8081 or KSZ8091", 5750 .phy_id_mask = MICREL_PHY_ID_MASK, 5751 .flags = PHY_POLL_CABLE_TEST, 5752 /* PHY_BASIC_FEATURES */ 5753 .driver_data = &ksz8081_type, 5754 .probe = kszphy_probe, 5755 .config_init = ksz8081_config_init, 5756 .soft_reset = genphy_soft_reset, 5757 .config_aneg = ksz8081_config_aneg, 5758 .read_status = ksz8081_read_status, 5759 .config_intr = kszphy_config_intr, 5760 .handle_interrupt = kszphy_handle_interrupt, 5761 .get_sset_count = kszphy_get_sset_count, 5762 .get_strings = kszphy_get_strings, 5763 .get_stats = kszphy_get_stats, 5764 .suspend = kszphy_suspend, 5765 .resume = kszphy_resume, 5766 .cable_test_start = ksz886x_cable_test_start, 5767 .cable_test_get_status = ksz886x_cable_test_get_status, 5768 }, { 5769 .phy_id = PHY_ID_KSZ8061, 5770 .name = "Micrel KSZ8061", 5771 .phy_id_mask = MICREL_PHY_ID_MASK, 5772 /* PHY_BASIC_FEATURES */ 5773 .probe = kszphy_probe, 5774 .config_init = ksz8061_config_init, 5775 .soft_reset = genphy_soft_reset, 5776 .config_intr = kszphy_config_intr, 5777 .handle_interrupt = kszphy_handle_interrupt, 5778 .suspend = ksz8061_suspend, 5779 .resume = ksz8061_resume, 5780 }, { 5781 .phy_id = PHY_ID_KSZ9021, 5782 .phy_id_mask = 0x000ffffe, 5783 .name = "Micrel KSZ9021 Gigabit PHY", 5784 /* PHY_GBIT_FEATURES */ 5785 .driver_data = &ksz9021_type, 5786 .probe = kszphy_probe, 5787 .get_features = ksz9031_get_features, 5788 .config_init = ksz9021_config_init, 5789 .config_intr = kszphy_config_intr, 5790 .handle_interrupt = kszphy_handle_interrupt, 5791 .get_sset_count = kszphy_get_sset_count, 5792 .get_strings = kszphy_get_strings, 5793 .get_stats = kszphy_get_stats, 5794 .suspend = kszphy_suspend, 5795 .resume = kszphy_resume, 5796 .read_mmd = genphy_read_mmd_unsupported, 5797 .write_mmd = genphy_write_mmd_unsupported, 5798 }, { 5799 .phy_id = PHY_ID_KSZ9031, 5800 .phy_id_mask = MICREL_PHY_ID_MASK, 5801 .name = "Micrel KSZ9031 Gigabit PHY", 5802 .flags = PHY_POLL_CABLE_TEST, 5803 .driver_data = &ksz9021_type, 5804 .probe = kszphy_probe, 5805 .get_features = ksz9031_get_features, 5806 .config_init = ksz9031_config_init, 5807 .soft_reset = genphy_soft_reset, 5808 .read_status = ksz9031_read_status, 5809 .config_intr = kszphy_config_intr, 5810 .handle_interrupt = kszphy_handle_interrupt, 5811 .get_sset_count = kszphy_get_sset_count, 5812 .get_strings = kszphy_get_strings, 5813 .get_stats = kszphy_get_stats, 5814 .suspend = kszphy_suspend, 5815 .resume = kszphy_resume, 5816 .cable_test_start = ksz9x31_cable_test_start, 5817 .cable_test_get_status = ksz9x31_cable_test_get_status, 5818 .set_loopback = ksz9031_set_loopback, 5819 }, { 5820 .phy_id = PHY_ID_LAN8814, 5821 .phy_id_mask = MICREL_PHY_ID_MASK, 5822 .name = "Microchip INDY Gigabit Quad PHY", 5823 .flags = PHY_POLL_CABLE_TEST, 5824 .config_init = lan8814_config_init, 5825 .driver_data = &lan8814_type, 5826 .probe = lan8814_probe, 5827 .soft_reset = genphy_soft_reset, 5828 .read_status = ksz9031_read_status, 5829 .get_sset_count = kszphy_get_sset_count, 5830 .get_strings = kszphy_get_strings, 5831 .get_stats = kszphy_get_stats, 5832 .suspend = genphy_suspend, 5833 .resume = kszphy_resume, 5834 .config_intr = lan8814_config_intr, 5835 .handle_interrupt = lan8814_handle_interrupt, 5836 .cable_test_start = lan8814_cable_test_start, 5837 .cable_test_get_status = ksz886x_cable_test_get_status, 5838 }, { 5839 .phy_id = PHY_ID_LAN8804, 5840 .phy_id_mask = MICREL_PHY_ID_MASK, 5841 .name = "Microchip LAN966X Gigabit PHY", 5842 .config_init = lan8804_config_init, 5843 .driver_data = &ksz9021_type, 5844 .probe = kszphy_probe, 5845 .soft_reset = genphy_soft_reset, 5846 .read_status = ksz9031_read_status, 5847 .get_sset_count = kszphy_get_sset_count, 5848 .get_strings = kszphy_get_strings, 5849 .get_stats = kszphy_get_stats, 5850 .suspend = lan8804_suspend, 5851 .resume = lan8804_resume, 5852 .config_intr = lan8804_config_intr, 5853 .handle_interrupt = lan8804_handle_interrupt, 5854 }, { 5855 .phy_id = PHY_ID_LAN8841, 5856 .phy_id_mask = MICREL_PHY_ID_MASK, 5857 .name = "Microchip LAN8841 Gigabit PHY", 5858 .flags = PHY_POLL_CABLE_TEST, 5859 .driver_data = &lan8841_type, 5860 .config_init = lan8841_config_init, 5861 .probe = lan8841_probe, 5862 .soft_reset = genphy_soft_reset, 5863 .config_intr = lan8841_config_intr, 5864 .handle_interrupt = lan8841_handle_interrupt, 5865 .get_sset_count = kszphy_get_sset_count, 5866 .get_strings = kszphy_get_strings, 5867 .get_stats = kszphy_get_stats, 5868 .suspend = lan8841_suspend, 5869 .resume = lan8841_resume, 5870 .cable_test_start = lan8814_cable_test_start, 5871 .cable_test_get_status = ksz886x_cable_test_get_status, 5872 }, { 5873 .phy_id = PHY_ID_KSZ9131, 5874 .phy_id_mask = MICREL_PHY_ID_MASK, 5875 .name = "Microchip KSZ9131 Gigabit PHY", 5876 /* PHY_GBIT_FEATURES */ 5877 .flags = PHY_POLL_CABLE_TEST, 5878 .driver_data = &ksz9131_type, 5879 .probe = kszphy_probe, 5880 .soft_reset = genphy_soft_reset, 5881 .config_init = ksz9131_config_init, 5882 .config_intr = kszphy_config_intr, 5883 .config_aneg = ksz9131_config_aneg, 5884 .read_status = ksz9131_read_status, 5885 .handle_interrupt = kszphy_handle_interrupt, 5886 .get_sset_count = kszphy_get_sset_count, 5887 .get_strings = kszphy_get_strings, 5888 .get_stats = kszphy_get_stats, 5889 .suspend = kszphy_suspend, 5890 .resume = ksz9131_resume, 5891 .cable_test_start = ksz9x31_cable_test_start, 5892 .cable_test_get_status = ksz9x31_cable_test_get_status, 5893 .get_features = ksz9477_get_features, 5894 }, { 5895 .phy_id = PHY_ID_KSZ8873MLL, 5896 .phy_id_mask = MICREL_PHY_ID_MASK, 5897 .name = "Micrel KSZ8873MLL Switch", 5898 /* PHY_BASIC_FEATURES */ 5899 .config_init = kszphy_config_init, 5900 .config_aneg = ksz8873mll_config_aneg, 5901 .read_status = ksz8873mll_read_status, 5902 .suspend = genphy_suspend, 5903 .resume = genphy_resume, 5904 }, { 5905 .phy_id = PHY_ID_KSZ886X, 5906 .phy_id_mask = MICREL_PHY_ID_MASK, 5907 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 5908 .driver_data = &ksz886x_type, 5909 /* PHY_BASIC_FEATURES */ 5910 .flags = PHY_POLL_CABLE_TEST, 5911 .config_init = kszphy_config_init, 5912 .config_aneg = ksz886x_config_aneg, 5913 .read_status = ksz886x_read_status, 5914 .suspend = genphy_suspend, 5915 .resume = genphy_resume, 5916 .cable_test_start = ksz886x_cable_test_start, 5917 .cable_test_get_status = ksz886x_cable_test_get_status, 5918 }, { 5919 .name = "Micrel KSZ87XX Switch", 5920 /* PHY_BASIC_FEATURES */ 5921 .config_init = kszphy_config_init, 5922 .match_phy_device = ksz8795_match_phy_device, 5923 .suspend = genphy_suspend, 5924 .resume = genphy_resume, 5925 }, { 5926 .phy_id = PHY_ID_KSZ9477, 5927 .phy_id_mask = MICREL_PHY_ID_MASK, 5928 .name = "Microchip KSZ9477", 5929 .probe = kszphy_probe, 5930 /* PHY_GBIT_FEATURES */ 5931 .config_init = ksz9477_config_init, 5932 .config_intr = kszphy_config_intr, 5933 .config_aneg = ksz9477_config_aneg, 5934 .read_status = ksz9477_read_status, 5935 .handle_interrupt = kszphy_handle_interrupt, 5936 .suspend = genphy_suspend, 5937 .resume = ksz9477_resume, 5938 .get_phy_stats = kszphy_get_phy_stats, 5939 .update_stats = kszphy_update_stats, 5940 .cable_test_start = ksz9x31_cable_test_start, 5941 .cable_test_get_status = ksz9x31_cable_test_get_status, 5942 .get_sqi = kszphy_get_sqi, 5943 .get_sqi_max = kszphy_get_sqi_max, 5944 } }; 5945 5946 module_phy_driver(ksphy_driver); 5947 5948 MODULE_DESCRIPTION("Micrel PHY driver"); 5949 MODULE_AUTHOR("David J. Choi"); 5950 MODULE_LICENSE("GPL"); 5951 5952 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 5953 { PHY_ID_KSZ9021, 0x000ffffe }, 5954 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, 5955 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, 5956 { PHY_ID_KSZ8001, 0x00fffffc }, 5957 { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, 5958 { PHY_ID_KSZ8021, 0x00ffffff }, 5959 { PHY_ID_KSZ8031, 0x00ffffff }, 5960 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, 5961 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, 5962 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, 5963 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, 5964 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, 5965 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, 5966 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK }, 5967 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, 5968 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, 5969 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, 5970 { } 5971 }; 5972 5973 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 5974