xref: /linux/drivers/net/phy/micrel.c (revision af2d6148d2a159e1a0862bce5a2c88c1618a2b27)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 #include "phylib.h"
38 
39 /* Operation Mode Strap Override */
40 #define MII_KSZPHY_OMSO				0x16
41 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
42 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
43 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
44 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
45 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
46 
47 /* general Interrupt control/status reg in vendor specific block. */
48 #define MII_KSZPHY_INTCS			0x1B
49 #define KSZPHY_INTCS_JABBER			BIT(15)
50 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
51 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
52 #define KSZPHY_INTCS_PARELLEL			BIT(12)
53 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
54 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
55 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
56 #define KSZPHY_INTCS_LINK_UP			BIT(8)
57 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
58 						KSZPHY_INTCS_LINK_DOWN)
59 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
60 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
61 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
62 						 KSZPHY_INTCS_LINK_UP_STATUS)
63 
64 /* LinkMD Control/Status */
65 #define KSZ8081_LMD				0x1d
66 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
67 #define KSZ8081_LMD_STAT_NORMAL			0
68 #define KSZ8081_LMD_STAT_OPEN			1
69 #define KSZ8081_LMD_STAT_SHORT			2
70 #define KSZ8081_LMD_STAT_FAIL			3
71 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
72 /* Short cable (<10 meter) has been detected by LinkMD */
73 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
74 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
75 
76 #define KSZ9x31_LMD				0x12
77 #define KSZ9x31_LMD_VCT_EN			BIT(15)
78 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
79 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
80 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
83 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
84 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
85 #define KSZ9x31_LMD_VCT_ST_OPEN			1
86 #define KSZ9x31_LMD_VCT_ST_SHORT		2
87 #define KSZ9x31_LMD_VCT_ST_FAIL			3
88 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
91 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
95 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
96 
97 #define KSZPHY_WIRE_PAIR_MASK			0x3
98 
99 #define LAN8814_CABLE_DIAG			0x12
100 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
102 #define LAN8814_PAIR_BIT_SHIFT			12
103 
104 #define LAN8814_WIRE_PAIR_MASK			0xF
105 
106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
107 #define LAN8814_INTC				0x18
108 #define LAN8814_INTS				0x1B
109 
110 #define LAN8814_INT_LINK_DOWN			BIT(2)
111 #define LAN8814_INT_LINK_UP			BIT(0)
112 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
113 						 LAN8814_INT_LINK_DOWN)
114 
115 #define LAN8814_INTR_CTRL_REG			0x34
116 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
117 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
118 
119 #define LAN8814_EEE_STATE			0x38
120 #define LAN8814_EEE_STATE_MASK2P5P		BIT(10)
121 
122 #define LAN8814_PD_CONTROLS			0x9d
123 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK	GENMASK(3, 0)
124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL	0xb
125 
126 /* Represents 1ppm adjustment in 2^32 format with
127  * each nsec contains 4 clock cycles.
128  * The value is calculated as following: (1/1000000)/((2^-32)/4)
129  */
130 #define LAN8814_1PPM_FORMAT			17179
131 
132 /* Represents 1ppm adjustment in 2^32 format with
133  * each nsec contains 8 clock cycles.
134  * The value is calculated as following: (1/1000000)/((2^-32)/8)
135  */
136 #define LAN8841_1PPM_FORMAT			34360
137 
138 #define PTP_RX_VERSION				0x0248
139 #define PTP_TX_VERSION				0x0288
140 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
141 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
142 
143 #define PTP_RX_MOD				0x024F
144 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
145 #define PTP_RX_TIMESTAMP_EN			0x024D
146 #define PTP_TX_TIMESTAMP_EN			0x028D
147 
148 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
149 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
150 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
151 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
152 
153 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
154 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
155 
156 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
157 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
158 #define LTC_HARD_RESET				0x023F
159 #define LTC_HARD_RESET_				BIT(0)
160 
161 #define TSU_HARD_RESET				0x02C1
162 #define TSU_HARD_RESET_				BIT(0)
163 
164 #define PTP_CMD_CTL				0x0200
165 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
166 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
167 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
168 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
169 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
170 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
171 
172 #define PTP_COMMON_INT_ENA			0x0204
173 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN		BIT(2)
174 
175 #define PTP_CLOCK_SET_SEC_HI			0x0205
176 #define PTP_CLOCK_SET_SEC_MID			0x0206
177 #define PTP_CLOCK_SET_SEC_LO			0x0207
178 #define PTP_CLOCK_SET_NS_HI			0x0208
179 #define PTP_CLOCK_SET_NS_LO			0x0209
180 
181 #define PTP_CLOCK_READ_SEC_HI			0x0229
182 #define PTP_CLOCK_READ_SEC_MID			0x022A
183 #define PTP_CLOCK_READ_SEC_LO			0x022B
184 #define PTP_CLOCK_READ_NS_HI			0x022C
185 #define PTP_CLOCK_READ_NS_LO			0x022D
186 
187 #define PTP_GPIO_SEL				0x0230
188 #define PTP_GPIO_SEL_GPIO_SEL(pin)		((pin) << 8)
189 #define PTP_GPIO_CAP_MAP_LO			0x0232
190 
191 #define PTP_GPIO_CAP_EN				0x0233
192 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	BIT(gpio)
193 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
194 
195 #define PTP_GPIO_RE_LTC_SEC_HI_CAP		0x0235
196 #define PTP_GPIO_RE_LTC_SEC_LO_CAP		0x0236
197 #define PTP_GPIO_RE_LTC_NS_HI_CAP		0x0237
198 #define PTP_GPIO_RE_LTC_NS_LO_CAP		0x0238
199 #define PTP_GPIO_FE_LTC_SEC_HI_CAP		0x0239
200 #define PTP_GPIO_FE_LTC_SEC_LO_CAP		0x023A
201 #define PTP_GPIO_FE_LTC_NS_HI_CAP		0x023B
202 #define PTP_GPIO_FE_LTC_NS_LO_CAP		0x023C
203 
204 #define PTP_GPIO_CAP_STS			0x023D
205 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio)	BIT(gpio)
206 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio)	(BIT(gpio) << 8)
207 
208 #define PTP_OPERATING_MODE			0x0241
209 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
210 
211 #define PTP_TX_MOD				0x028F
212 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
213 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
214 
215 #define PTP_RX_PARSE_CONFIG			0x0242
216 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
217 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
218 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
219 
220 #define PTP_TX_PARSE_CONFIG			0x0282
221 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
222 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
223 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
224 
225 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
226 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
227 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
228 
229 #define PTP_LTC_STEP_ADJ_HI			0x0212
230 #define PTP_LTC_STEP_ADJ_LO			0x0213
231 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
232 
233 #define LAN8814_INTR_STS_REG			0x0033
234 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
235 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
236 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
237 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
238 
239 #define PTP_CAP_INFO				0x022A
240 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
241 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
242 
243 #define PTP_TX_EGRESS_SEC_HI			0x0296
244 #define PTP_TX_EGRESS_SEC_LO			0x0297
245 #define PTP_TX_EGRESS_NS_HI			0x0294
246 #define PTP_TX_EGRESS_NS_LO			0x0295
247 #define PTP_TX_MSG_HEADER2			0x0299
248 
249 #define PTP_RX_INGRESS_SEC_HI			0x0256
250 #define PTP_RX_INGRESS_SEC_LO			0x0257
251 #define PTP_RX_INGRESS_NS_HI			0x0254
252 #define PTP_RX_INGRESS_NS_LO			0x0255
253 #define PTP_RX_MSG_HEADER2			0x0259
254 
255 #define PTP_TSU_INT_EN				0x0200
256 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
257 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
258 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
259 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
260 
261 #define PTP_TSU_INT_STS				0x0201
262 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
263 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
264 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
265 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
266 
267 #define LAN8814_LED_CTRL_1			0x0
268 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
269 
270 /* PHY Control 1 */
271 #define MII_KSZPHY_CTRL_1			0x1e
272 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
273 
274 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
275 #define MII_KSZPHY_CTRL_2			0x1f
276 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
277 /* bitmap of PHY register to set interrupt mode */
278 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
279 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
280 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
281 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
282 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
283 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
284 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
285 
286 /* Write/read to/from extended registers */
287 #define MII_KSZPHY_EXTREG			0x0b
288 #define KSZPHY_EXTREG_WRITE			0x8000
289 
290 #define MII_KSZPHY_EXTREG_WRITE			0x0c
291 #define MII_KSZPHY_EXTREG_READ			0x0d
292 
293 /* Extended registers */
294 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
295 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
296 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
297 
298 #define PS_TO_REG				200
299 #define FIFO_SIZE				8
300 
301 #define LAN8814_PTP_GPIO_NUM			24
302 #define LAN8814_PTP_PEROUT_NUM			2
303 #define LAN8814_PTP_EXTTS_NUM			3
304 
305 #define LAN8814_BUFFER_TIME			2
306 
307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
321 
322 #define LAN8814_GPIO_EN1			0x20
323 #define LAN8814_GPIO_EN2			0x21
324 #define LAN8814_GPIO_DIR1			0x22
325 #define LAN8814_GPIO_DIR2			0x23
326 #define LAN8814_GPIO_BUF1			0x24
327 #define LAN8814_GPIO_BUF2			0x25
328 
329 #define LAN8814_GPIO_EN_ADDR(pin) \
330 	((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
331 #define LAN8814_GPIO_EN_BIT(pin)		BIT(pin)
332 #define LAN8814_GPIO_DIR_ADDR(pin) \
333 	((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
334 #define LAN8814_GPIO_DIR_BIT(pin)		BIT(pin)
335 #define LAN8814_GPIO_BUF_ADDR(pin) \
336 	((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
337 #define LAN8814_GPIO_BUF_BIT(pin)		BIT(pin)
338 
339 #define LAN8814_EVENT_A				0
340 #define LAN8814_EVENT_B				1
341 
342 #define LAN8814_PTP_GENERAL_CONFIG		0x0201
343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
344 	((event) ? GENMASK(11, 8) : GENMASK(7, 4))
345 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
346 	(((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
347 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
348 	((event) ? BIT(2) : BIT(0))
349 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
350 	((event) ? BIT(3) : BIT(1))
351 
352 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event)	((event) ? 0x21F : 0x215)
353 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event)	((event) ? 0x220 : 0x216)
354 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event)	((event) ? 0x221 : 0x217)
355 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event)	((event) ? 0x222 : 0x218)
356 
357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event)	((event) ? 0x223 : 0x219)
358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event)	((event) ? 0x224 : 0x21A)
359 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event)	((event) ? 0x225 : 0x21B)
360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event)	((event) ? 0x226 : 0x21C)
361 
362 /* Delay used to get the second part from the LTC */
363 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
364 
365 struct kszphy_hw_stat {
366 	const char *string;
367 	u8 reg;
368 	u8 bits;
369 };
370 
371 static struct kszphy_hw_stat kszphy_hw_stats[] = {
372 	{ "phy_receive_errors", 21, 16},
373 	{ "phy_idle_errors", 10, 8 },
374 };
375 
376 struct kszphy_type {
377 	u32 led_mode_reg;
378 	u16 interrupt_level_mask;
379 	u16 cable_diag_reg;
380 	unsigned long pair_mask;
381 	u16 disable_dll_tx_bit;
382 	u16 disable_dll_rx_bit;
383 	u16 disable_dll_mask;
384 	bool has_broadcast_disable;
385 	bool has_nand_tree_disable;
386 	bool has_rmii_ref_clk_sel;
387 };
388 
389 /* Shared structure between the PHYs of the same package. */
390 struct lan8814_shared_priv {
391 	struct phy_device *phydev;
392 	struct ptp_clock *ptp_clock;
393 	struct ptp_clock_info ptp_clock_info;
394 	struct ptp_pin_desc *pin_config;
395 
396 	/* Lock for ptp_clock */
397 	struct mutex shared_lock;
398 };
399 
400 struct lan8814_ptp_rx_ts {
401 	struct list_head list;
402 	u32 seconds;
403 	u32 nsec;
404 	u16 seq_id;
405 };
406 
407 struct kszphy_ptp_priv {
408 	struct mii_timestamper mii_ts;
409 	struct phy_device *phydev;
410 
411 	struct sk_buff_head tx_queue;
412 	struct sk_buff_head rx_queue;
413 
414 	struct list_head rx_ts_list;
415 	/* Lock for Rx ts fifo */
416 	spinlock_t rx_ts_lock;
417 
418 	int hwts_tx_type;
419 	enum hwtstamp_rx_filters rx_filter;
420 	int layer;
421 	int version;
422 
423 	struct ptp_clock *ptp_clock;
424 	struct ptp_clock_info ptp_clock_info;
425 	/* Lock for ptp_clock */
426 	struct mutex ptp_lock;
427 	struct ptp_pin_desc *pin_config;
428 
429 	s64 seconds;
430 	/* Lock for accessing seconds */
431 	spinlock_t seconds_lock;
432 };
433 
434 struct kszphy_phy_stats {
435 	u64 rx_err_pkt_cnt;
436 };
437 
438 struct kszphy_priv {
439 	struct kszphy_ptp_priv ptp_priv;
440 	const struct kszphy_type *type;
441 	struct clk *clk;
442 	int led_mode;
443 	u16 vct_ctrl1000;
444 	bool rmii_ref_clk_sel;
445 	bool rmii_ref_clk_sel_val;
446 	bool clk_enable;
447 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
448 	struct kszphy_phy_stats phy_stats;
449 };
450 
451 static const struct kszphy_type lan8814_type = {
452 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
453 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
454 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
455 };
456 
457 static const struct kszphy_type ksz886x_type = {
458 	.cable_diag_reg		= KSZ8081_LMD,
459 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
460 };
461 
462 static const struct kszphy_type ksz8021_type = {
463 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
464 	.has_broadcast_disable	= true,
465 	.has_nand_tree_disable	= true,
466 	.has_rmii_ref_clk_sel	= true,
467 };
468 
469 static const struct kszphy_type ksz8041_type = {
470 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
471 };
472 
473 static const struct kszphy_type ksz8051_type = {
474 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
475 	.has_nand_tree_disable	= true,
476 };
477 
478 static const struct kszphy_type ksz8081_type = {
479 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
480 	.has_broadcast_disable	= true,
481 	.has_nand_tree_disable	= true,
482 	.has_rmii_ref_clk_sel	= true,
483 };
484 
485 static const struct kszphy_type ks8737_type = {
486 	.interrupt_level_mask	= BIT(14),
487 };
488 
489 static const struct kszphy_type ksz9021_type = {
490 	.interrupt_level_mask	= BIT(14),
491 };
492 
493 static const struct kszphy_type ksz9131_type = {
494 	.interrupt_level_mask	= BIT(14),
495 	.disable_dll_tx_bit	= BIT(12),
496 	.disable_dll_rx_bit	= BIT(12),
497 	.disable_dll_mask	= BIT_MASK(12),
498 };
499 
500 static const struct kszphy_type lan8841_type = {
501 	.disable_dll_tx_bit	= BIT(14),
502 	.disable_dll_rx_bit	= BIT(14),
503 	.disable_dll_mask	= BIT_MASK(14),
504 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
505 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
506 };
507 
508 static int kszphy_extended_write(struct phy_device *phydev,
509 				u32 regnum, u16 val)
510 {
511 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
512 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
513 }
514 
515 static int kszphy_extended_read(struct phy_device *phydev,
516 				u32 regnum)
517 {
518 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
519 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
520 }
521 
522 static int kszphy_ack_interrupt(struct phy_device *phydev)
523 {
524 	/* bit[7..0] int status, which is a read and clear register. */
525 	int rc;
526 
527 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
528 
529 	return (rc < 0) ? rc : 0;
530 }
531 
532 static int kszphy_config_intr(struct phy_device *phydev)
533 {
534 	const struct kszphy_type *type = phydev->drv->driver_data;
535 	int temp, err;
536 	u16 mask;
537 
538 	if (type && type->interrupt_level_mask)
539 		mask = type->interrupt_level_mask;
540 	else
541 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
542 
543 	/* set the interrupt pin active low */
544 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
545 	if (temp < 0)
546 		return temp;
547 	temp &= ~mask;
548 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
549 
550 	/* enable / disable interrupts */
551 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
552 		err = kszphy_ack_interrupt(phydev);
553 		if (err)
554 			return err;
555 
556 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
557 	} else {
558 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
559 		if (err)
560 			return err;
561 
562 		err = kszphy_ack_interrupt(phydev);
563 	}
564 
565 	return err;
566 }
567 
568 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
569 {
570 	int irq_status;
571 
572 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
573 	if (irq_status < 0) {
574 		phy_error(phydev);
575 		return IRQ_NONE;
576 	}
577 
578 	if (!(irq_status & KSZPHY_INTCS_STATUS))
579 		return IRQ_NONE;
580 
581 	phy_trigger_machine(phydev);
582 
583 	return IRQ_HANDLED;
584 }
585 
586 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
587 {
588 	int ctrl;
589 
590 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
591 	if (ctrl < 0)
592 		return ctrl;
593 
594 	if (val)
595 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
596 	else
597 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
598 
599 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
600 }
601 
602 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
603 {
604 	int rc, temp, shift;
605 
606 	switch (reg) {
607 	case MII_KSZPHY_CTRL_1:
608 		shift = 14;
609 		break;
610 	case MII_KSZPHY_CTRL_2:
611 		shift = 4;
612 		break;
613 	default:
614 		return -EINVAL;
615 	}
616 
617 	temp = phy_read(phydev, reg);
618 	if (temp < 0) {
619 		rc = temp;
620 		goto out;
621 	}
622 
623 	temp &= ~(3 << shift);
624 	temp |= val << shift;
625 	rc = phy_write(phydev, reg, temp);
626 out:
627 	if (rc < 0)
628 		phydev_err(phydev, "failed to set led mode\n");
629 
630 	return rc;
631 }
632 
633 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
634  * unique (non-broadcast) address on a shared bus.
635  */
636 static int kszphy_broadcast_disable(struct phy_device *phydev)
637 {
638 	int ret;
639 
640 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
641 	if (ret < 0)
642 		goto out;
643 
644 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
645 out:
646 	if (ret)
647 		phydev_err(phydev, "failed to disable broadcast address\n");
648 
649 	return ret;
650 }
651 
652 static int kszphy_nand_tree_disable(struct phy_device *phydev)
653 {
654 	int ret;
655 
656 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
657 	if (ret < 0)
658 		goto out;
659 
660 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
661 		return 0;
662 
663 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
664 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
665 out:
666 	if (ret)
667 		phydev_err(phydev, "failed to disable NAND tree mode\n");
668 
669 	return ret;
670 }
671 
672 /* Some config bits need to be set again on resume, handle them here. */
673 static int kszphy_config_reset(struct phy_device *phydev)
674 {
675 	struct kszphy_priv *priv = phydev->priv;
676 	int ret;
677 
678 	if (priv->rmii_ref_clk_sel) {
679 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
680 		if (ret) {
681 			phydev_err(phydev,
682 				   "failed to set rmii reference clock\n");
683 			return ret;
684 		}
685 	}
686 
687 	if (priv->type && priv->led_mode >= 0)
688 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
689 
690 	return 0;
691 }
692 
693 static int kszphy_config_init(struct phy_device *phydev)
694 {
695 	struct kszphy_priv *priv = phydev->priv;
696 	const struct kszphy_type *type;
697 
698 	if (!priv)
699 		return 0;
700 
701 	type = priv->type;
702 
703 	if (type && type->has_broadcast_disable)
704 		kszphy_broadcast_disable(phydev);
705 
706 	if (type && type->has_nand_tree_disable)
707 		kszphy_nand_tree_disable(phydev);
708 
709 	return kszphy_config_reset(phydev);
710 }
711 
712 static int ksz8041_fiber_mode(struct phy_device *phydev)
713 {
714 	struct device_node *of_node = phydev->mdio.dev.of_node;
715 
716 	return of_property_read_bool(of_node, "micrel,fiber-mode");
717 }
718 
719 static int ksz8041_config_init(struct phy_device *phydev)
720 {
721 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
722 
723 	/* Limit supported and advertised modes in fiber mode */
724 	if (ksz8041_fiber_mode(phydev)) {
725 		phydev->dev_flags |= MICREL_PHY_FXEN;
726 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
727 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
728 
729 		linkmode_and(phydev->supported, phydev->supported, mask);
730 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
731 				 phydev->supported);
732 		linkmode_and(phydev->advertising, phydev->advertising, mask);
733 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
734 				 phydev->advertising);
735 		phydev->autoneg = AUTONEG_DISABLE;
736 	}
737 
738 	return kszphy_config_init(phydev);
739 }
740 
741 static int ksz8041_config_aneg(struct phy_device *phydev)
742 {
743 	/* Skip auto-negotiation in fiber mode */
744 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
745 		phydev->speed = SPEED_100;
746 		return 0;
747 	}
748 
749 	return genphy_config_aneg(phydev);
750 }
751 
752 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
753 					    const bool ksz_8051)
754 {
755 	int ret;
756 
757 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
758 		return 0;
759 
760 	ret = phy_read(phydev, MII_BMSR);
761 	if (ret < 0)
762 		return ret;
763 
764 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
765 	 * exact PHY ID. However, they can be told apart by the extended
766 	 * capability registers presence. The KSZ8051 PHY has them while
767 	 * the switch does not.
768 	 */
769 	ret &= BMSR_ERCAP;
770 	if (ksz_8051)
771 		return ret;
772 	else
773 		return !ret;
774 }
775 
776 static int ksz8051_match_phy_device(struct phy_device *phydev,
777 				    const struct phy_driver *phydrv)
778 {
779 	return ksz8051_ksz8795_match_phy_device(phydev, true);
780 }
781 
782 static int ksz8081_config_init(struct phy_device *phydev)
783 {
784 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
785 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
786 	 * pull-down is missing, the factory test mode should be cleared by
787 	 * manually writing a 0.
788 	 */
789 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
790 
791 	return kszphy_config_init(phydev);
792 }
793 
794 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
795 {
796 	u16 val;
797 
798 	switch (ctrl) {
799 	case ETH_TP_MDI:
800 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
801 		break;
802 	case ETH_TP_MDI_X:
803 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
804 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
805 		break;
806 	case ETH_TP_MDI_AUTO:
807 		val = 0;
808 		break;
809 	default:
810 		return 0;
811 	}
812 
813 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
814 			  KSZ8081_CTRL2_HP_MDIX |
815 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
816 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
817 			  KSZ8081_CTRL2_HP_MDIX | val);
818 }
819 
820 static int ksz8081_config_aneg(struct phy_device *phydev)
821 {
822 	int ret;
823 
824 	ret = genphy_config_aneg(phydev);
825 	if (ret)
826 		return ret;
827 
828 	/* The MDI-X configuration is automatically changed by the PHY after
829 	 * switching from autoneg off to on. So, take MDI-X configuration under
830 	 * own control and set it after autoneg configuration was done.
831 	 */
832 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
833 }
834 
835 static int ksz8081_mdix_update(struct phy_device *phydev)
836 {
837 	int ret;
838 
839 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
840 	if (ret < 0)
841 		return ret;
842 
843 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
844 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
845 			phydev->mdix_ctrl = ETH_TP_MDI_X;
846 		else
847 			phydev->mdix_ctrl = ETH_TP_MDI;
848 	} else {
849 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
850 	}
851 
852 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
853 	if (ret < 0)
854 		return ret;
855 
856 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
857 		phydev->mdix = ETH_TP_MDI;
858 	else
859 		phydev->mdix = ETH_TP_MDI_X;
860 
861 	return 0;
862 }
863 
864 static int ksz8081_read_status(struct phy_device *phydev)
865 {
866 	int ret;
867 
868 	ret = ksz8081_mdix_update(phydev);
869 	if (ret < 0)
870 		return ret;
871 
872 	return genphy_read_status(phydev);
873 }
874 
875 static int ksz8061_config_init(struct phy_device *phydev)
876 {
877 	int ret;
878 
879 	/* Chip can be powered down by the bootstrap code. */
880 	ret = phy_read(phydev, MII_BMCR);
881 	if (ret < 0)
882 		return ret;
883 	if (ret & BMCR_PDOWN) {
884 		ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
885 		if (ret < 0)
886 			return ret;
887 		usleep_range(1000, 2000);
888 	}
889 
890 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
891 	if (ret)
892 		return ret;
893 
894 	return kszphy_config_init(phydev);
895 }
896 
897 static int ksz8795_match_phy_device(struct phy_device *phydev,
898 				    const struct phy_driver *phydrv)
899 {
900 	return ksz8051_ksz8795_match_phy_device(phydev, false);
901 }
902 
903 static int ksz9021_load_values_from_of(struct phy_device *phydev,
904 				       const struct device_node *of_node,
905 				       u16 reg,
906 				       const char *field1, const char *field2,
907 				       const char *field3, const char *field4)
908 {
909 	int val1 = -1;
910 	int val2 = -2;
911 	int val3 = -3;
912 	int val4 = -4;
913 	int newval;
914 	int matches = 0;
915 
916 	if (!of_property_read_u32(of_node, field1, &val1))
917 		matches++;
918 
919 	if (!of_property_read_u32(of_node, field2, &val2))
920 		matches++;
921 
922 	if (!of_property_read_u32(of_node, field3, &val3))
923 		matches++;
924 
925 	if (!of_property_read_u32(of_node, field4, &val4))
926 		matches++;
927 
928 	if (!matches)
929 		return 0;
930 
931 	if (matches < 4)
932 		newval = kszphy_extended_read(phydev, reg);
933 	else
934 		newval = 0;
935 
936 	if (val1 != -1)
937 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
938 
939 	if (val2 != -2)
940 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
941 
942 	if (val3 != -3)
943 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
944 
945 	if (val4 != -4)
946 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
947 
948 	return kszphy_extended_write(phydev, reg, newval);
949 }
950 
951 static int ksz9021_config_init(struct phy_device *phydev)
952 {
953 	const struct device_node *of_node;
954 	const struct device *dev_walker;
955 
956 	/* The Micrel driver has a deprecated option to place phy OF
957 	 * properties in the MAC node. Walk up the tree of devices to
958 	 * find a device with an OF node.
959 	 */
960 	dev_walker = &phydev->mdio.dev;
961 	do {
962 		of_node = dev_walker->of_node;
963 		dev_walker = dev_walker->parent;
964 
965 	} while (!of_node && dev_walker);
966 
967 	if (of_node) {
968 		ksz9021_load_values_from_of(phydev, of_node,
969 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
970 				    "txen-skew-ps", "txc-skew-ps",
971 				    "rxdv-skew-ps", "rxc-skew-ps");
972 		ksz9021_load_values_from_of(phydev, of_node,
973 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
974 				    "rxd0-skew-ps", "rxd1-skew-ps",
975 				    "rxd2-skew-ps", "rxd3-skew-ps");
976 		ksz9021_load_values_from_of(phydev, of_node,
977 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
978 				    "txd0-skew-ps", "txd1-skew-ps",
979 				    "txd2-skew-ps", "txd3-skew-ps");
980 	}
981 	return 0;
982 }
983 
984 #define KSZ9031_PS_TO_REG		60
985 
986 /* Extended registers */
987 /* MMD Address 0x0 */
988 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
989 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
990 
991 /* MMD Address 0x2 */
992 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
993 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
994 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
995 
996 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
997 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
998 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
999 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
1000 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
1001 
1002 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
1003 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
1004 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
1005 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
1006 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
1007 
1008 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
1009 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
1010 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
1011 
1012 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
1013  * provide different RGMII options we need to configure delay offset
1014  * for each pad relative to build in delay.
1015  */
1016 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
1017  * 1.80ns
1018  */
1019 #define RX_ID				0x7
1020 #define RX_CLK_ID			0x19
1021 
1022 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1023  * internal 1.2ns delay.
1024  */
1025 #define RX_ND				0xc
1026 #define RX_CLK_ND			0x0
1027 
1028 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1029 #define TX_ID				0x0
1030 #define TX_CLK_ID			0x1f
1031 
1032 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1033  * dealy
1034  */
1035 #define TX_ND				0x7
1036 #define TX_CLK_ND			0xf
1037 
1038 /* MMD Address 0x1C */
1039 #define MII_KSZ9031RN_EDPD		0x23
1040 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
1041 
1042 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable,
1043 				int speed)
1044 {
1045 	u16 ctl = BMCR_LOOPBACK;
1046 	int val;
1047 
1048 	if (!enable)
1049 		return genphy_loopback(phydev, enable, 0);
1050 
1051 	if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000)
1052 		phydev->speed = speed;
1053 	else if (speed)
1054 		return -EINVAL;
1055 	phydev->duplex = DUPLEX_FULL;
1056 
1057 	ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex);
1058 
1059 	phy_write(phydev, MII_BMCR, ctl);
1060 
1061 	return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS,
1062 				     5000, 500000, true);
1063 }
1064 
1065 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1066 				       const struct device_node *of_node,
1067 				       u16 reg, size_t field_sz,
1068 				       const char *field[], u8 numfields,
1069 				       bool *update)
1070 {
1071 	int val[4] = {-1, -2, -3, -4};
1072 	int matches = 0;
1073 	u16 mask;
1074 	u16 maxval;
1075 	u16 newval;
1076 	int i;
1077 
1078 	for (i = 0; i < numfields; i++)
1079 		if (!of_property_read_u32(of_node, field[i], val + i))
1080 			matches++;
1081 
1082 	if (!matches)
1083 		return 0;
1084 
1085 	*update |= true;
1086 
1087 	if (matches < numfields)
1088 		newval = phy_read_mmd(phydev, 2, reg);
1089 	else
1090 		newval = 0;
1091 
1092 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1093 	for (i = 0; i < numfields; i++)
1094 		if (val[i] != -(i + 1)) {
1095 			mask = 0xffff;
1096 			mask ^= maxval << (field_sz * i);
1097 			newval = (newval & mask) |
1098 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
1099 					<< (field_sz * i));
1100 		}
1101 
1102 	return phy_write_mmd(phydev, 2, reg, newval);
1103 }
1104 
1105 /* Center KSZ9031RNX FLP timing at 16ms. */
1106 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1107 {
1108 	int result;
1109 
1110 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1111 			       0x0006);
1112 	if (result)
1113 		return result;
1114 
1115 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1116 			       0x1A80);
1117 	if (result)
1118 		return result;
1119 
1120 	return genphy_restart_aneg(phydev);
1121 }
1122 
1123 /* Enable energy-detect power-down mode */
1124 static int ksz9031_enable_edpd(struct phy_device *phydev)
1125 {
1126 	int reg;
1127 
1128 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1129 	if (reg < 0)
1130 		return reg;
1131 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1132 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
1133 }
1134 
1135 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1136 {
1137 	u16 rx, tx, rx_clk, tx_clk;
1138 	int ret;
1139 
1140 	switch (phydev->interface) {
1141 	case PHY_INTERFACE_MODE_RGMII:
1142 		tx = TX_ND;
1143 		tx_clk = TX_CLK_ND;
1144 		rx = RX_ND;
1145 		rx_clk = RX_CLK_ND;
1146 		break;
1147 	case PHY_INTERFACE_MODE_RGMII_ID:
1148 		tx = TX_ID;
1149 		tx_clk = TX_CLK_ID;
1150 		rx = RX_ID;
1151 		rx_clk = RX_CLK_ID;
1152 		break;
1153 	case PHY_INTERFACE_MODE_RGMII_RXID:
1154 		tx = TX_ND;
1155 		tx_clk = TX_CLK_ND;
1156 		rx = RX_ID;
1157 		rx_clk = RX_CLK_ID;
1158 		break;
1159 	case PHY_INTERFACE_MODE_RGMII_TXID:
1160 		tx = TX_ID;
1161 		tx_clk = TX_CLK_ID;
1162 		rx = RX_ND;
1163 		rx_clk = RX_CLK_ND;
1164 		break;
1165 	default:
1166 		return 0;
1167 	}
1168 
1169 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1170 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1171 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1172 	if (ret < 0)
1173 		return ret;
1174 
1175 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1176 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1177 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1178 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1179 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1180 	if (ret < 0)
1181 		return ret;
1182 
1183 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1184 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1185 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1186 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1187 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1188 	if (ret < 0)
1189 		return ret;
1190 
1191 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1192 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1193 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1194 }
1195 
1196 static int ksz9031_config_init(struct phy_device *phydev)
1197 {
1198 	const struct device_node *of_node;
1199 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1200 	static const char *rx_data_skews[4] = {
1201 		"rxd0-skew-ps", "rxd1-skew-ps",
1202 		"rxd2-skew-ps", "rxd3-skew-ps"
1203 	};
1204 	static const char *tx_data_skews[4] = {
1205 		"txd0-skew-ps", "txd1-skew-ps",
1206 		"txd2-skew-ps", "txd3-skew-ps"
1207 	};
1208 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1209 	const struct device *dev_walker;
1210 	int result;
1211 
1212 	result = ksz9031_enable_edpd(phydev);
1213 	if (result < 0)
1214 		return result;
1215 
1216 	/* The Micrel driver has a deprecated option to place phy OF
1217 	 * properties in the MAC node. Walk up the tree of devices to
1218 	 * find a device with an OF node.
1219 	 */
1220 	dev_walker = &phydev->mdio.dev;
1221 	do {
1222 		of_node = dev_walker->of_node;
1223 		dev_walker = dev_walker->parent;
1224 	} while (!of_node && dev_walker);
1225 
1226 	if (of_node) {
1227 		bool update = false;
1228 
1229 		if (phy_interface_is_rgmii(phydev)) {
1230 			result = ksz9031_config_rgmii_delay(phydev);
1231 			if (result < 0)
1232 				return result;
1233 		}
1234 
1235 		ksz9031_of_load_skew_values(phydev, of_node,
1236 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1237 				clk_skews, 2, &update);
1238 
1239 		ksz9031_of_load_skew_values(phydev, of_node,
1240 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1241 				control_skews, 2, &update);
1242 
1243 		ksz9031_of_load_skew_values(phydev, of_node,
1244 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1245 				rx_data_skews, 4, &update);
1246 
1247 		ksz9031_of_load_skew_values(phydev, of_node,
1248 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1249 				tx_data_skews, 4, &update);
1250 
1251 		if (update && !phy_interface_is_rgmii(phydev))
1252 			phydev_warn(phydev,
1253 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1254 
1255 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1256 		 * When the device links in the 1000BASE-T slave mode only,
1257 		 * the optional 125MHz reference output clock (CLK125_NDO)
1258 		 * has wide duty cycle variation.
1259 		 *
1260 		 * The optional CLK125_NDO clock does not meet the RGMII
1261 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1262 		 * cannot be used directly by the MAC side for clocking
1263 		 * applications that have setup/hold time requirements on
1264 		 * rising and falling clock edges.
1265 		 *
1266 		 * Workaround:
1267 		 * Force the phy to be the master to receive a stable clock
1268 		 * which meets the duty cycle requirement.
1269 		 */
1270 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1271 			result = phy_read(phydev, MII_CTRL1000);
1272 			if (result < 0)
1273 				goto err_force_master;
1274 
1275 			/* enable master mode, config & prefer master */
1276 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1277 			result = phy_write(phydev, MII_CTRL1000, result);
1278 			if (result < 0)
1279 				goto err_force_master;
1280 		}
1281 	}
1282 
1283 	return ksz9031_center_flp_timing(phydev);
1284 
1285 err_force_master:
1286 	phydev_err(phydev, "failed to force the phy to master mode\n");
1287 	return result;
1288 }
1289 
1290 #define KSZ9131_SKEW_5BIT_MAX	2400
1291 #define KSZ9131_SKEW_4BIT_MAX	800
1292 #define KSZ9131_OFFSET		700
1293 #define KSZ9131_STEP		100
1294 
1295 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1296 				       struct device_node *of_node,
1297 				       u16 reg, size_t field_sz,
1298 				       char *field[], u8 numfields)
1299 {
1300 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1301 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1302 	int skewval, skewmax = 0;
1303 	int matches = 0;
1304 	u16 maxval;
1305 	u16 newval;
1306 	u16 mask;
1307 	int i;
1308 
1309 	/* psec properties in dts should mean x pico seconds */
1310 	if (field_sz == 5)
1311 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1312 	else
1313 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1314 
1315 	for (i = 0; i < numfields; i++)
1316 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1317 			if (skewval < -KSZ9131_OFFSET)
1318 				skewval = -KSZ9131_OFFSET;
1319 			else if (skewval > skewmax)
1320 				skewval = skewmax;
1321 
1322 			val[i] = skewval + KSZ9131_OFFSET;
1323 			matches++;
1324 		}
1325 
1326 	if (!matches)
1327 		return 0;
1328 
1329 	if (matches < numfields)
1330 		newval = phy_read_mmd(phydev, 2, reg);
1331 	else
1332 		newval = 0;
1333 
1334 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1335 	for (i = 0; i < numfields; i++)
1336 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1337 			mask = 0xffff;
1338 			mask ^= maxval << (field_sz * i);
1339 			newval = (newval & mask) |
1340 				(((val[i] / KSZ9131_STEP) & maxval)
1341 					<< (field_sz * i));
1342 		}
1343 
1344 	return phy_write_mmd(phydev, 2, reg, newval);
1345 }
1346 
1347 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1348 #define KSZ9131RN_RXC_DLL_CTRL		76
1349 #define KSZ9131RN_TXC_DLL_CTRL		77
1350 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1351 
1352 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1353 {
1354 	const struct kszphy_type *type = phydev->drv->driver_data;
1355 	u16 rxcdll_val, txcdll_val;
1356 	int ret;
1357 
1358 	switch (phydev->interface) {
1359 	case PHY_INTERFACE_MODE_RGMII:
1360 		rxcdll_val = type->disable_dll_rx_bit;
1361 		txcdll_val = type->disable_dll_tx_bit;
1362 		break;
1363 	case PHY_INTERFACE_MODE_RGMII_ID:
1364 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1365 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1366 		break;
1367 	case PHY_INTERFACE_MODE_RGMII_RXID:
1368 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1369 		txcdll_val = type->disable_dll_tx_bit;
1370 		break;
1371 	case PHY_INTERFACE_MODE_RGMII_TXID:
1372 		rxcdll_val = type->disable_dll_rx_bit;
1373 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1374 		break;
1375 	default:
1376 		return 0;
1377 	}
1378 
1379 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1380 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1381 			     rxcdll_val);
1382 	if (ret < 0)
1383 		return ret;
1384 
1385 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1386 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1387 			      txcdll_val);
1388 }
1389 
1390 /* Silicon Errata DS80000693B
1391  *
1392  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1393  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1394  * according to the datasheet (off if there is no link).
1395  */
1396 static int ksz9131_led_errata(struct phy_device *phydev)
1397 {
1398 	int reg;
1399 
1400 	reg = phy_read_mmd(phydev, 2, 0);
1401 	if (reg < 0)
1402 		return reg;
1403 
1404 	if (!(reg & BIT(4)))
1405 		return 0;
1406 
1407 	return phy_set_bits(phydev, 0x1e, BIT(9));
1408 }
1409 
1410 static int ksz9131_config_init(struct phy_device *phydev)
1411 {
1412 	struct device_node *of_node;
1413 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1414 	char *rx_data_skews[4] = {
1415 		"rxd0-skew-psec", "rxd1-skew-psec",
1416 		"rxd2-skew-psec", "rxd3-skew-psec"
1417 	};
1418 	char *tx_data_skews[4] = {
1419 		"txd0-skew-psec", "txd1-skew-psec",
1420 		"txd2-skew-psec", "txd3-skew-psec"
1421 	};
1422 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1423 	const struct device *dev_walker;
1424 	int ret;
1425 
1426 	phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1427 
1428 	dev_walker = &phydev->mdio.dev;
1429 	do {
1430 		of_node = dev_walker->of_node;
1431 		dev_walker = dev_walker->parent;
1432 	} while (!of_node && dev_walker);
1433 
1434 	if (!of_node)
1435 		return 0;
1436 
1437 	if (phy_interface_is_rgmii(phydev)) {
1438 		ret = ksz9131_config_rgmii_delay(phydev);
1439 		if (ret < 0)
1440 			return ret;
1441 	}
1442 
1443 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1444 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1445 					  clk_skews, 2);
1446 	if (ret < 0)
1447 		return ret;
1448 
1449 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1450 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1451 					  control_skews, 2);
1452 	if (ret < 0)
1453 		return ret;
1454 
1455 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1456 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1457 					  rx_data_skews, 4);
1458 	if (ret < 0)
1459 		return ret;
1460 
1461 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1462 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1463 					  tx_data_skews, 4);
1464 	if (ret < 0)
1465 		return ret;
1466 
1467 	ret = ksz9131_led_errata(phydev);
1468 	if (ret < 0)
1469 		return ret;
1470 
1471 	return 0;
1472 }
1473 
1474 #define MII_KSZ9131_AUTO_MDIX		0x1C
1475 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1476 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1477 #define MII_KSZ9131_DIG_AXAN_STS	0x14
1478 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET	BIT(14)
1479 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT	BIT(12)
1480 
1481 static int ksz9131_mdix_update(struct phy_device *phydev)
1482 {
1483 	int ret;
1484 
1485 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1486 		phydev->mdix = phydev->mdix_ctrl;
1487 	} else {
1488 		ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1489 		if (ret < 0)
1490 			return ret;
1491 
1492 		if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1493 			if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1494 				phydev->mdix = ETH_TP_MDI;
1495 			else
1496 				phydev->mdix = ETH_TP_MDI_X;
1497 		} else {
1498 			phydev->mdix = ETH_TP_MDI_INVALID;
1499 		}
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1506 {
1507 	u16 val;
1508 
1509 	switch (ctrl) {
1510 	case ETH_TP_MDI:
1511 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1512 		      MII_KSZ9131_AUTO_MDI_SET;
1513 		break;
1514 	case ETH_TP_MDI_X:
1515 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1516 		break;
1517 	case ETH_TP_MDI_AUTO:
1518 		val = 0;
1519 		break;
1520 	default:
1521 		return 0;
1522 	}
1523 
1524 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1525 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1526 			  MII_KSZ9131_AUTO_MDI_SET, val);
1527 }
1528 
1529 static int ksz9131_read_status(struct phy_device *phydev)
1530 {
1531 	int ret;
1532 
1533 	ret = ksz9131_mdix_update(phydev);
1534 	if (ret < 0)
1535 		return ret;
1536 
1537 	return genphy_read_status(phydev);
1538 }
1539 
1540 static int ksz9131_config_aneg(struct phy_device *phydev)
1541 {
1542 	int ret;
1543 
1544 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1545 	if (ret)
1546 		return ret;
1547 
1548 	return genphy_config_aneg(phydev);
1549 }
1550 
1551 static int ksz9477_get_features(struct phy_device *phydev)
1552 {
1553 	int ret;
1554 
1555 	ret = genphy_read_abilities(phydev);
1556 	if (ret)
1557 		return ret;
1558 
1559 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1560 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1561 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1562 	 * of caps.
1563 	 * KSZ8563R should have 100BaseTX/Full only.
1564 	 */
1565 	linkmode_and(phydev->supported_eee, phydev->supported,
1566 		     PHY_EEE_CAP1_FEATURES);
1567 
1568 	return 0;
1569 }
1570 
1571 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1572 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1573 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1574 static int ksz8873mll_read_status(struct phy_device *phydev)
1575 {
1576 	int regval;
1577 
1578 	/* dummy read */
1579 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1580 
1581 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1582 
1583 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1584 		phydev->duplex = DUPLEX_HALF;
1585 	else
1586 		phydev->duplex = DUPLEX_FULL;
1587 
1588 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1589 		phydev->speed = SPEED_10;
1590 	else
1591 		phydev->speed = SPEED_100;
1592 
1593 	phydev->link = 1;
1594 	phydev->pause = phydev->asym_pause = 0;
1595 
1596 	return 0;
1597 }
1598 
1599 static int ksz9031_get_features(struct phy_device *phydev)
1600 {
1601 	int ret;
1602 
1603 	ret = genphy_read_abilities(phydev);
1604 	if (ret < 0)
1605 		return ret;
1606 
1607 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1608 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1609 	 * link-up may fail after a link-up to link-down transition.
1610 	 *
1611 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1612 	 *
1613 	 * Workaround:
1614 	 * Do not enable the Asymmetric Pause capability bit.
1615 	 */
1616 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1617 
1618 	/* We force setting the Pause capability as the core will force the
1619 	 * Asymmetric Pause capability to 1 otherwise.
1620 	 */
1621 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1622 
1623 	return 0;
1624 }
1625 
1626 static int ksz9031_read_status(struct phy_device *phydev)
1627 {
1628 	int err;
1629 	int regval;
1630 
1631 	err = genphy_read_status(phydev);
1632 	if (err)
1633 		return err;
1634 
1635 	/* Make sure the PHY is not broken. Read idle error count,
1636 	 * and reset the PHY if it is maxed out.
1637 	 */
1638 	regval = phy_read(phydev, MII_STAT1000);
1639 	if ((regval & 0xFF) == 0xFF) {
1640 		phy_init_hw(phydev);
1641 		phydev->link = 0;
1642 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1643 			phydev->drv->config_intr(phydev);
1644 		return genphy_config_aneg(phydev);
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1651 {
1652 	struct kszphy_priv *priv = phydev->priv;
1653 	int ret;
1654 
1655 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1656 	 * Prior to running the cable diagnostics, Auto-negotiation should
1657 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1658 	 * via the Basic Control Register.
1659 	 */
1660 	ret = phy_modify(phydev, MII_BMCR,
1661 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1662 			 BMCR_ANENABLE | BMCR_SPEED100,
1663 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1664 	if (ret)
1665 		return ret;
1666 
1667 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1668 	 * The Master-Slave configuration should be set to Slave by writing
1669 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1670 	 * Register.
1671 	 */
1672 	ret = phy_read(phydev, MII_CTRL1000);
1673 	if (ret < 0)
1674 		return ret;
1675 
1676 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1677 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1678 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1679 	ret |= CTL1000_ENABLE_MASTER;
1680 
1681 	return phy_write(phydev, MII_CTRL1000, ret);
1682 }
1683 
1684 static int ksz9x31_cable_test_result_trans(u16 status)
1685 {
1686 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1687 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1688 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1689 	case KSZ9x31_LMD_VCT_ST_OPEN:
1690 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1691 	case KSZ9x31_LMD_VCT_ST_SHORT:
1692 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1693 	case KSZ9x31_LMD_VCT_ST_FAIL:
1694 		fallthrough;
1695 	default:
1696 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1697 	}
1698 }
1699 
1700 static bool ksz9x31_cable_test_failed(u16 status)
1701 {
1702 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1703 
1704 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1705 }
1706 
1707 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1708 {
1709 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1710 	case KSZ9x31_LMD_VCT_ST_OPEN:
1711 		fallthrough;
1712 	case KSZ9x31_LMD_VCT_ST_SHORT:
1713 		return true;
1714 	}
1715 	return false;
1716 }
1717 
1718 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1719 {
1720 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1721 
1722 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1723 	 *
1724 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1725 	 */
1726 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131) ||
1727 	    phydev_id_compare(phydev, PHY_ID_KSZ9477))
1728 		dt = clamp(dt - 22, 0, 255);
1729 
1730 	return (dt * 400) / 10;
1731 }
1732 
1733 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1734 {
1735 	int val, ret;
1736 
1737 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1738 				    !(val & KSZ9x31_LMD_VCT_EN),
1739 				    30000, 100000, true);
1740 
1741 	return ret < 0 ? ret : 0;
1742 }
1743 
1744 static int ksz9x31_cable_test_get_pair(int pair)
1745 {
1746 	static const int ethtool_pair[] = {
1747 		ETHTOOL_A_CABLE_PAIR_A,
1748 		ETHTOOL_A_CABLE_PAIR_B,
1749 		ETHTOOL_A_CABLE_PAIR_C,
1750 		ETHTOOL_A_CABLE_PAIR_D,
1751 	};
1752 
1753 	return ethtool_pair[pair];
1754 }
1755 
1756 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1757 {
1758 	int ret, val;
1759 
1760 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1761 	 * To test each individual cable pair, set the cable pair in the Cable
1762 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1763 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1764 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1765 	 * will self clear when the test is concluded.
1766 	 */
1767 	ret = phy_write(phydev, KSZ9x31_LMD,
1768 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1769 	if (ret)
1770 		return ret;
1771 
1772 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1773 	if (ret)
1774 		return ret;
1775 
1776 	val = phy_read(phydev, KSZ9x31_LMD);
1777 	if (val < 0)
1778 		return val;
1779 
1780 	if (ksz9x31_cable_test_failed(val))
1781 		return -EAGAIN;
1782 
1783 	ret = ethnl_cable_test_result(phydev,
1784 				      ksz9x31_cable_test_get_pair(pair),
1785 				      ksz9x31_cable_test_result_trans(val));
1786 	if (ret)
1787 		return ret;
1788 
1789 	if (!ksz9x31_cable_test_fault_length_valid(val))
1790 		return 0;
1791 
1792 	return ethnl_cable_test_fault_length(phydev,
1793 					     ksz9x31_cable_test_get_pair(pair),
1794 					     ksz9x31_cable_test_fault_length(phydev, val));
1795 }
1796 
1797 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1798 					 bool *finished)
1799 {
1800 	struct kszphy_priv *priv = phydev->priv;
1801 	unsigned long pair_mask;
1802 	int retries = 20;
1803 	int pair, ret, rv;
1804 
1805 	*finished = false;
1806 
1807 	if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1808 			      phydev->supported) ||
1809 	    linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
1810 			      phydev->supported))
1811 		pair_mask = 0xf; /* All pairs */
1812 	else
1813 		pair_mask = 0x3; /* Pairs A and B only */
1814 
1815 	/* Try harder if link partner is active */
1816 	while (pair_mask && retries--) {
1817 		for_each_set_bit(pair, &pair_mask, 4) {
1818 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1819 			if (ret == -EAGAIN)
1820 				continue;
1821 			if (ret < 0)
1822 				return ret;
1823 			clear_bit(pair, &pair_mask);
1824 		}
1825 		/* If link partner is in autonegotiation mode it will send 2ms
1826 		 * of FLPs with at least 6ms of silence.
1827 		 * Add 2ms sleep to have better chances to hit this silence.
1828 		 */
1829 		if (pair_mask)
1830 			usleep_range(2000, 3000);
1831 	}
1832 
1833 	/* Report remaining unfinished pair result as unknown. */
1834 	for_each_set_bit(pair, &pair_mask, 4) {
1835 		ret = ethnl_cable_test_result(phydev,
1836 					      ksz9x31_cable_test_get_pair(pair),
1837 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1838 	}
1839 
1840 	*finished = true;
1841 
1842 	/* Restore cached bits from before LinkMD got started. */
1843 	rv = phy_modify(phydev, MII_CTRL1000,
1844 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1845 			priv->vct_ctrl1000);
1846 	if (rv)
1847 		return rv;
1848 
1849 	return ret;
1850 }
1851 
1852 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1853 {
1854 	return 0;
1855 }
1856 
1857 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1858 {
1859 	u16 val;
1860 
1861 	switch (ctrl) {
1862 	case ETH_TP_MDI:
1863 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1864 		break;
1865 	case ETH_TP_MDI_X:
1866 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1867 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1868 		 * sheet seems to be missing:
1869 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1870 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1871 		 */
1872 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1873 		break;
1874 	case ETH_TP_MDI_AUTO:
1875 		val = 0;
1876 		break;
1877 	default:
1878 		return 0;
1879 	}
1880 
1881 	return phy_modify(phydev, MII_BMCR,
1882 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1883 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1884 			  KSZ886X_BMCR_HP_MDIX | val);
1885 }
1886 
1887 static int ksz886x_config_aneg(struct phy_device *phydev)
1888 {
1889 	int ret;
1890 
1891 	ret = genphy_config_aneg(phydev);
1892 	if (ret)
1893 		return ret;
1894 
1895 	if (phydev->autoneg != AUTONEG_ENABLE) {
1896 		/* When autonegotation is disabled, we need to manually force
1897 		 * the link state. If we don't do this, the PHY will keep
1898 		 * sending Fast Link Pulses (FLPs) which are part of the
1899 		 * autonegotiation process. This is not desired when
1900 		 * autonegotiation is off.
1901 		 */
1902 		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1903 				   KSZ886X_CTRL_FORCE_LINK);
1904 		if (ret)
1905 			return ret;
1906 	} else {
1907 		/* If we had previously forced the link state, we need to
1908 		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1909 		 * will not perform autonegotiation.
1910 		 */
1911 		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1912 				     KSZ886X_CTRL_FORCE_LINK);
1913 		if (ret)
1914 			return ret;
1915 	}
1916 
1917 	/* The MDI-X configuration is automatically changed by the PHY after
1918 	 * switching from autoneg off to on. So, take MDI-X configuration under
1919 	 * own control and set it after autoneg configuration was done.
1920 	 */
1921 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1922 }
1923 
1924 static int ksz886x_mdix_update(struct phy_device *phydev)
1925 {
1926 	int ret;
1927 
1928 	ret = phy_read(phydev, MII_BMCR);
1929 	if (ret < 0)
1930 		return ret;
1931 
1932 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1933 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1934 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1935 		else
1936 			phydev->mdix_ctrl = ETH_TP_MDI;
1937 	} else {
1938 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1939 	}
1940 
1941 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1942 	if (ret < 0)
1943 		return ret;
1944 
1945 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1946 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1947 		phydev->mdix = ETH_TP_MDI_X;
1948 	else
1949 		phydev->mdix = ETH_TP_MDI;
1950 
1951 	return 0;
1952 }
1953 
1954 static int ksz886x_read_status(struct phy_device *phydev)
1955 {
1956 	int ret;
1957 
1958 	ret = ksz886x_mdix_update(phydev);
1959 	if (ret < 0)
1960 		return ret;
1961 
1962 	return genphy_read_status(phydev);
1963 }
1964 
1965 static int ksz9477_mdix_update(struct phy_device *phydev)
1966 {
1967 	if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO)
1968 		phydev->mdix = phydev->mdix_ctrl;
1969 	else
1970 		phydev->mdix = ETH_TP_MDI_INVALID;
1971 
1972 	return 0;
1973 }
1974 
1975 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev)
1976 {
1977 	int val;
1978 
1979 	val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1980 	if (val < 0)
1981 		return val;
1982 
1983 	if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF))
1984 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1985 	else if (val & MII_KSZ9131_AUTO_MDI_SET)
1986 		phydev->mdix_ctrl = ETH_TP_MDI;
1987 	else
1988 		phydev->mdix_ctrl = ETH_TP_MDI_X;
1989 
1990 	return 0;
1991 }
1992 
1993 static int ksz9477_read_status(struct phy_device *phydev)
1994 {
1995 	int ret;
1996 
1997 	ret = ksz9477_mdix_update(phydev);
1998 	if (ret)
1999 		return ret;
2000 
2001 	return genphy_read_status(phydev);
2002 }
2003 
2004 static int ksz9477_config_aneg(struct phy_device *phydev)
2005 {
2006 	int ret;
2007 
2008 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
2009 	if (ret)
2010 		return ret;
2011 
2012 	return genphy_config_aneg(phydev);
2013 }
2014 
2015 struct ksz9477_errata_write {
2016 	u8 dev_addr;
2017 	u8 reg_addr;
2018 	u16 val;
2019 };
2020 
2021 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
2022 	 /* Register settings are needed to improve PHY receive performance */
2023 	{0x01, 0x6f, 0xdd0b},
2024 	{0x01, 0x8f, 0x6032},
2025 	{0x01, 0x9d, 0x248c},
2026 	{0x01, 0x75, 0x0060},
2027 	{0x01, 0xd3, 0x7777},
2028 	{0x1c, 0x06, 0x3008},
2029 	{0x1c, 0x08, 0x2000},
2030 
2031 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
2032 	{0x1c, 0x04, 0x00d0},
2033 
2034 	/* Register settings are required to meet data sheet supply current specifications */
2035 	{0x1c, 0x13, 0x6eff},
2036 	{0x1c, 0x14, 0xe6ff},
2037 	{0x1c, 0x15, 0x6eff},
2038 	{0x1c, 0x16, 0xe6ff},
2039 	{0x1c, 0x17, 0x00ff},
2040 	{0x1c, 0x18, 0x43ff},
2041 	{0x1c, 0x19, 0xc3ff},
2042 	{0x1c, 0x1a, 0x6fff},
2043 	{0x1c, 0x1b, 0x07ff},
2044 	{0x1c, 0x1c, 0x0fff},
2045 	{0x1c, 0x1d, 0xe7ff},
2046 	{0x1c, 0x1e, 0xefff},
2047 	{0x1c, 0x20, 0xeeee},
2048 };
2049 
2050 static int ksz9477_phy_errata(struct phy_device *phydev)
2051 {
2052 	int err;
2053 	int i;
2054 
2055 	/* Apply PHY settings to address errata listed in
2056 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
2057 	 * Silicon Errata and Data Sheet Clarification documents.
2058 	 *
2059 	 * Document notes: Before configuring the PHY MMD registers, it is
2060 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
2061 	 * disabled by writing to register 0xN100-0xN101. After writing the
2062 	 * MMD registers, and after all errata workarounds that involve PHY
2063 	 * register settings, write register 0xN100-0xN101 again to enable
2064 	 * and restart auto-negotiation.
2065 	 */
2066 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
2067 	if (err)
2068 		return err;
2069 
2070 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
2071 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
2072 
2073 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
2074 		if (err)
2075 			return err;
2076 	}
2077 
2078 	err = genphy_restart_aneg(phydev);
2079 	if (err)
2080 		return err;
2081 
2082 	return err;
2083 }
2084 
2085 static int ksz9477_config_init(struct phy_device *phydev)
2086 {
2087 	int err;
2088 
2089 	/* Only KSZ9897 family of switches needs this fix. */
2090 	if ((phydev->phy_id & 0xf) == 1) {
2091 		err = ksz9477_phy_errata(phydev);
2092 		if (err)
2093 			return err;
2094 	}
2095 
2096 	/* Read initial MDI-X config state. So, we do not need to poll it
2097 	 * later on.
2098 	 */
2099 	err = ksz9477_read_mdix_ctrl(phydev);
2100 	if (err)
2101 		return err;
2102 
2103 	return kszphy_config_init(phydev);
2104 }
2105 
2106 static int kszphy_get_sset_count(struct phy_device *phydev)
2107 {
2108 	return ARRAY_SIZE(kszphy_hw_stats);
2109 }
2110 
2111 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
2112 {
2113 	int i;
2114 
2115 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2116 		ethtool_puts(&data, kszphy_hw_stats[i].string);
2117 }
2118 
2119 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
2120 {
2121 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2122 	struct kszphy_priv *priv = phydev->priv;
2123 	int val;
2124 	u64 ret;
2125 
2126 	val = phy_read(phydev, stat.reg);
2127 	if (val < 0) {
2128 		ret = U64_MAX;
2129 	} else {
2130 		val = val & ((1 << stat.bits) - 1);
2131 		priv->stats[i] += val;
2132 		ret = priv->stats[i];
2133 	}
2134 
2135 	return ret;
2136 }
2137 
2138 static void kszphy_get_stats(struct phy_device *phydev,
2139 			     struct ethtool_stats *stats, u64 *data)
2140 {
2141 	int i;
2142 
2143 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2144 		data[i] = kszphy_get_stat(phydev, i);
2145 }
2146 
2147 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313,
2148  * etc. The counter is incremented when the PHY receives a frame with one or
2149  * more symbol errors. The counter is cleared when the register is read.
2150  */
2151 #define MII_KSZ9477_PHY_RXER_COUNTER	0x15
2152 
2153 static int kszphy_update_stats(struct phy_device *phydev)
2154 {
2155 	struct kszphy_priv *priv = phydev->priv;
2156 	int ret;
2157 
2158 	ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER);
2159 	if (ret < 0)
2160 		return ret;
2161 
2162 	priv->phy_stats.rx_err_pkt_cnt += ret;
2163 
2164 	return 0;
2165 }
2166 
2167 static void kszphy_get_phy_stats(struct phy_device *phydev,
2168 				 struct ethtool_eth_phy_stats *eth_stats,
2169 				 struct ethtool_phy_stats *stats)
2170 {
2171 	struct kszphy_priv *priv = phydev->priv;
2172 
2173 	stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt;
2174 }
2175 
2176 /* Base register for Signal Quality Indicator (SQI) - Channel A
2177  *
2178  * MMD Address: MDIO_MMD_PMAPMD (0x01)
2179  * Register:    0xAC (Channel A)
2180  * Each channel (pair) has its own register:
2181  *   Channel A: 0xAC
2182  *   Channel B: 0xAD
2183  *   Channel C: 0xAE
2184  *   Channel D: 0xAF
2185  */
2186 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A	0xac
2187 
2188 /* SQI field mask for bits [14:8]
2189  *
2190  * SQI indicates relative quality of the signal.
2191  * A lower value indicates better signal quality.
2192  */
2193 #define KSZ9477_MMD_SQI_MASK			GENMASK(14, 8)
2194 
2195 #define KSZ9477_MAX_CHANNELS			4
2196 #define KSZ9477_SQI_MAX				7
2197 
2198 /* Number of SQI samples to average for a stable result.
2199  *
2200  * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26)
2201  * For noisy environments, a minimum of 30–50 readings is recommended.
2202  */
2203 #define KSZ9477_SQI_SAMPLE_COUNT		40
2204 
2205 /* The hardware SQI register provides a raw value from 0-127, where a lower
2206  * value indicates better signal quality. However, empirical testing has
2207  * shown that only the 0-7 range is relevant for a functional link. A raw
2208  * value of 8 or higher was measured directly before link drop. This aligns
2209  * with the OPEN Alliance recommendation that SQI=0 should represent the
2210  * pre-failure state.
2211  *
2212  * This table provides a non-linear mapping from the useful raw hardware
2213  * values (0-7) to the standard 0-7 SQI scale, where higher is better.
2214  */
2215 static const u8 ksz_sqi_mapping[] = {
2216 	7, /* raw 0 -> SQI 7 */
2217 	7, /* raw 1 -> SQI 7 */
2218 	6, /* raw 2 -> SQI 6 */
2219 	5, /* raw 3 -> SQI 5 */
2220 	4, /* raw 4 -> SQI 4 */
2221 	3, /* raw 5 -> SQI 3 */
2222 	2, /* raw 6 -> SQI 2 */
2223 	1, /* raw 7 -> SQI 1 */
2224 };
2225 
2226 /**
2227  * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI)
2228  * @phydev: the PHY device
2229  *
2230  * This function reads and processes the raw Signal Quality Index from the
2231  * PHY. Based on empirical testing, a raw value of 8 or higher indicates a
2232  * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are
2233  * mapped to the standard 0-7 SQI scale via a lookup table.
2234  *
2235  * Return: SQI value (0–7), or a negative errno on failure.
2236  */
2237 static int kszphy_get_sqi(struct phy_device *phydev)
2238 {
2239 	int sum[KSZ9477_MAX_CHANNELS] = { 0 };
2240 	int worst_sqi = KSZ9477_SQI_MAX;
2241 	int i, val, raw_sqi, ch;
2242 	u8 channels;
2243 
2244 	/* Determine applicable channels based on link speed */
2245 	if (phydev->speed == SPEED_1000)
2246 		channels = 4;
2247 	else if (phydev->speed == SPEED_100)
2248 		channels = 1;
2249 	else
2250 		return -EOPNOTSUPP;
2251 
2252 	/* Sample and accumulate SQI readings for each pair (currently only one).
2253 	 *
2254 	 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26)
2255 	 * - The SQI register is updated every 2 µs.
2256 	 * - Values may fluctuate significantly, even in low-noise environments.
2257 	 * - For reliable estimation, average a minimum of 30–50 samples
2258 	 *   (recommended for noisy environments)
2259 	 * - In noisy environments, individual readings are highly unreliable.
2260 	 *
2261 	 * We use 40 samples per pair with a delay of 3 µs between each
2262 	 * read to ensure new values are captured (2 µs update interval).
2263 	 */
2264 	for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) {
2265 		for (ch = 0; ch < channels; ch++) {
2266 			val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD,
2267 					   KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch);
2268 			if (val < 0)
2269 				return val;
2270 
2271 			raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val);
2272 			sum[ch] += raw_sqi;
2273 
2274 			/* We communicate with the PHY via MDIO via SPI or
2275 			 * I2C, which is relatively slow. At least slower than
2276 			 * the update interval of the SQI register.
2277 			 * So, we can skip the delay between reads.
2278 			 */
2279 		}
2280 	}
2281 
2282 	/* Calculate average for each channel and find the worst SQI */
2283 	for (ch = 0; ch < channels; ch++) {
2284 		int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT;
2285 		int mapped_sqi;
2286 
2287 		/* Handle the pre-fail/failed state first. */
2288 		if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping))
2289 			mapped_sqi = 0;
2290 		else
2291 			/* Use the lookup table for the good signal range. */
2292 			mapped_sqi = ksz_sqi_mapping[avg_raw_sqi];
2293 
2294 		if (mapped_sqi < worst_sqi)
2295 			worst_sqi = mapped_sqi;
2296 	}
2297 
2298 	return worst_sqi;
2299 }
2300 
2301 static int kszphy_get_sqi_max(struct phy_device *phydev)
2302 {
2303 	return KSZ9477_SQI_MAX;
2304 }
2305 
2306 static void kszphy_enable_clk(struct phy_device *phydev)
2307 {
2308 	struct kszphy_priv *priv = phydev->priv;
2309 
2310 	if (!priv->clk_enable && priv->clk) {
2311 		clk_prepare_enable(priv->clk);
2312 		priv->clk_enable = true;
2313 	}
2314 }
2315 
2316 static void kszphy_disable_clk(struct phy_device *phydev)
2317 {
2318 	struct kszphy_priv *priv = phydev->priv;
2319 
2320 	if (priv->clk_enable && priv->clk) {
2321 		clk_disable_unprepare(priv->clk);
2322 		priv->clk_enable = false;
2323 	}
2324 }
2325 
2326 static int kszphy_generic_resume(struct phy_device *phydev)
2327 {
2328 	kszphy_enable_clk(phydev);
2329 
2330 	return genphy_resume(phydev);
2331 }
2332 
2333 static int kszphy_generic_suspend(struct phy_device *phydev)
2334 {
2335 	int ret;
2336 
2337 	ret = genphy_suspend(phydev);
2338 	if (ret)
2339 		return ret;
2340 
2341 	kszphy_disable_clk(phydev);
2342 
2343 	return 0;
2344 }
2345 
2346 static int kszphy_suspend(struct phy_device *phydev)
2347 {
2348 	/* Disable PHY Interrupts */
2349 	if (phy_interrupt_is_valid(phydev)) {
2350 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
2351 		if (phydev->drv->config_intr)
2352 			phydev->drv->config_intr(phydev);
2353 	}
2354 
2355 	return kszphy_generic_suspend(phydev);
2356 }
2357 
2358 static void kszphy_parse_led_mode(struct phy_device *phydev)
2359 {
2360 	const struct kszphy_type *type = phydev->drv->driver_data;
2361 	const struct device_node *np = phydev->mdio.dev.of_node;
2362 	struct kszphy_priv *priv = phydev->priv;
2363 	int ret;
2364 
2365 	if (type && type->led_mode_reg) {
2366 		ret = of_property_read_u32(np, "micrel,led-mode",
2367 					   &priv->led_mode);
2368 
2369 		if (ret)
2370 			priv->led_mode = -1;
2371 
2372 		if (priv->led_mode > 3) {
2373 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
2374 				   priv->led_mode);
2375 			priv->led_mode = -1;
2376 		}
2377 	} else {
2378 		priv->led_mode = -1;
2379 	}
2380 }
2381 
2382 static int kszphy_resume(struct phy_device *phydev)
2383 {
2384 	int ret;
2385 
2386 	ret = kszphy_generic_resume(phydev);
2387 	if (ret)
2388 		return ret;
2389 
2390 	/* After switching from power-down to normal mode, an internal global
2391 	 * reset is automatically generated. Wait a minimum of 1 ms before
2392 	 * read/write access to the PHY registers.
2393 	 */
2394 	usleep_range(1000, 2000);
2395 
2396 	ret = kszphy_config_reset(phydev);
2397 	if (ret)
2398 		return ret;
2399 
2400 	/* Enable PHY Interrupts */
2401 	if (phy_interrupt_is_valid(phydev)) {
2402 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2403 		if (phydev->drv->config_intr)
2404 			phydev->drv->config_intr(phydev);
2405 	}
2406 
2407 	return 0;
2408 }
2409 
2410 /* Because of errata DS80000700A, receiver error following software
2411  * power down. Suspend and resume callbacks only disable and enable
2412  * external rmii reference clock.
2413  */
2414 static int ksz8041_resume(struct phy_device *phydev)
2415 {
2416 	kszphy_enable_clk(phydev);
2417 
2418 	return 0;
2419 }
2420 
2421 static int ksz8041_suspend(struct phy_device *phydev)
2422 {
2423 	kszphy_disable_clk(phydev);
2424 
2425 	return 0;
2426 }
2427 
2428 static int ksz9477_resume(struct phy_device *phydev)
2429 {
2430 	int ret;
2431 
2432 	/* No need to initialize registers if not powered down. */
2433 	ret = phy_read(phydev, MII_BMCR);
2434 	if (ret < 0)
2435 		return ret;
2436 	if (!(ret & BMCR_PDOWN))
2437 		return 0;
2438 
2439 	genphy_resume(phydev);
2440 
2441 	/* After switching from power-down to normal mode, an internal global
2442 	 * reset is automatically generated. Wait a minimum of 1 ms before
2443 	 * read/write access to the PHY registers.
2444 	 */
2445 	usleep_range(1000, 2000);
2446 
2447 	/* Only KSZ9897 family of switches needs this fix. */
2448 	if ((phydev->phy_id & 0xf) == 1) {
2449 		ret = ksz9477_phy_errata(phydev);
2450 		if (ret)
2451 			return ret;
2452 	}
2453 
2454 	/* Enable PHY Interrupts */
2455 	if (phy_interrupt_is_valid(phydev)) {
2456 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2457 		if (phydev->drv->config_intr)
2458 			phydev->drv->config_intr(phydev);
2459 	}
2460 
2461 	return 0;
2462 }
2463 
2464 static int ksz8061_resume(struct phy_device *phydev)
2465 {
2466 	int ret;
2467 
2468 	/* This function can be called twice when the Ethernet device is on. */
2469 	ret = phy_read(phydev, MII_BMCR);
2470 	if (ret < 0)
2471 		return ret;
2472 	if (!(ret & BMCR_PDOWN))
2473 		return 0;
2474 
2475 	ret = kszphy_generic_resume(phydev);
2476 	if (ret)
2477 		return ret;
2478 
2479 	usleep_range(1000, 2000);
2480 
2481 	/* Re-program the value after chip is reset. */
2482 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2483 	if (ret)
2484 		return ret;
2485 
2486 	/* Enable PHY Interrupts */
2487 	if (phy_interrupt_is_valid(phydev)) {
2488 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2489 		if (phydev->drv->config_intr)
2490 			phydev->drv->config_intr(phydev);
2491 	}
2492 
2493 	return 0;
2494 }
2495 
2496 static int ksz8061_suspend(struct phy_device *phydev)
2497 {
2498 	return kszphy_suspend(phydev);
2499 }
2500 
2501 static int kszphy_probe(struct phy_device *phydev)
2502 {
2503 	const struct kszphy_type *type = phydev->drv->driver_data;
2504 	const struct device_node *np = phydev->mdio.dev.of_node;
2505 	struct kszphy_priv *priv;
2506 	struct clk *clk;
2507 
2508 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2509 	if (!priv)
2510 		return -ENOMEM;
2511 
2512 	phydev->priv = priv;
2513 
2514 	priv->type = type;
2515 
2516 	kszphy_parse_led_mode(phydev);
2517 
2518 	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2519 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2520 	if (!IS_ERR_OR_NULL(clk)) {
2521 		unsigned long rate = clk_get_rate(clk);
2522 		bool rmii_ref_clk_sel_25_mhz;
2523 
2524 		if (type)
2525 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2526 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2527 				"micrel,rmii-reference-clock-select-25-mhz");
2528 
2529 		if (rate > 24500000 && rate < 25500000) {
2530 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2531 		} else if (rate > 49500000 && rate < 50500000) {
2532 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2533 		} else {
2534 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2535 				   rate);
2536 			return -EINVAL;
2537 		}
2538 	} else if (!clk) {
2539 		/* unnamed clock from the generic ethernet-phy binding */
2540 		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2541 	}
2542 
2543 	if (IS_ERR(clk))
2544 		return PTR_ERR(clk);
2545 
2546 	clk_disable_unprepare(clk);
2547 	priv->clk = clk;
2548 
2549 	if (ksz8041_fiber_mode(phydev))
2550 		phydev->port = PORT_FIBRE;
2551 
2552 	/* Support legacy board-file configuration */
2553 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2554 		priv->rmii_ref_clk_sel = true;
2555 		priv->rmii_ref_clk_sel_val = true;
2556 	}
2557 
2558 	return 0;
2559 }
2560 
2561 static int lan8814_cable_test_start(struct phy_device *phydev)
2562 {
2563 	/* If autoneg is enabled, we won't be able to test cross pair
2564 	 * short. In this case, the PHY will "detect" a link and
2565 	 * confuse the internal state machine - disable auto neg here.
2566 	 * Set the speed to 1000mbit and full duplex.
2567 	 */
2568 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2569 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2570 }
2571 
2572 static int ksz886x_cable_test_start(struct phy_device *phydev)
2573 {
2574 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2575 		return -EOPNOTSUPP;
2576 
2577 	/* If autoneg is enabled, we won't be able to test cross pair
2578 	 * short. In this case, the PHY will "detect" a link and
2579 	 * confuse the internal state machine - disable auto neg here.
2580 	 * If autoneg is disabled, we should set the speed to 10mbit.
2581 	 */
2582 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2583 }
2584 
2585 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2586 {
2587 	switch (FIELD_GET(mask, status)) {
2588 	case KSZ8081_LMD_STAT_NORMAL:
2589 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2590 	case KSZ8081_LMD_STAT_SHORT:
2591 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2592 	case KSZ8081_LMD_STAT_OPEN:
2593 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2594 	case KSZ8081_LMD_STAT_FAIL:
2595 		fallthrough;
2596 	default:
2597 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2598 	}
2599 }
2600 
2601 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2602 {
2603 	return FIELD_GET(mask, status) ==
2604 		KSZ8081_LMD_STAT_FAIL;
2605 }
2606 
2607 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2608 {
2609 	switch (FIELD_GET(mask, status)) {
2610 	case KSZ8081_LMD_STAT_OPEN:
2611 		fallthrough;
2612 	case KSZ8081_LMD_STAT_SHORT:
2613 		return true;
2614 	}
2615 	return false;
2616 }
2617 
2618 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2619 							   u16 status, u16 data_mask)
2620 {
2621 	int dt;
2622 
2623 	/* According to the data sheet the distance to the fault is
2624 	 * DELTA_TIME * 0.4 meters for ksz phys.
2625 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2626 	 */
2627 	dt = FIELD_GET(data_mask, status);
2628 
2629 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2630 		return ((dt - 22) * 800) / 10;
2631 	else
2632 		return (dt * 400) / 10;
2633 }
2634 
2635 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2636 {
2637 	const struct kszphy_type *type = phydev->drv->driver_data;
2638 	int val, ret;
2639 
2640 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2641 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2642 				    30000, 100000, true);
2643 
2644 	return ret < 0 ? ret : 0;
2645 }
2646 
2647 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2648 {
2649 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2650 					    ETHTOOL_A_CABLE_PAIR_B,
2651 					    ETHTOOL_A_CABLE_PAIR_C,
2652 					    ETHTOOL_A_CABLE_PAIR_D,
2653 					  };
2654 	u32 fault_length;
2655 	int ret;
2656 	int val;
2657 
2658 	val = KSZ8081_LMD_ENABLE_TEST;
2659 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2660 
2661 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2662 	if (ret < 0)
2663 		return ret;
2664 
2665 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2666 	if (ret)
2667 		return ret;
2668 
2669 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2670 	if (val < 0)
2671 		return val;
2672 
2673 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2674 		return -EAGAIN;
2675 
2676 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2677 				      ksz886x_cable_test_result_trans(val,
2678 								      LAN8814_CABLE_DIAG_STAT_MASK
2679 								      ));
2680 	if (ret)
2681 		return ret;
2682 
2683 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2684 		return 0;
2685 
2686 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2687 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2688 
2689 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2690 }
2691 
2692 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2693 {
2694 	static const int ethtool_pair[] = {
2695 		ETHTOOL_A_CABLE_PAIR_A,
2696 		ETHTOOL_A_CABLE_PAIR_B,
2697 	};
2698 	int ret, val, mdix;
2699 	u32 fault_length;
2700 
2701 	/* There is no way to choice the pair, like we do one ksz9031.
2702 	 * We can workaround this limitation by using the MDI-X functionality.
2703 	 */
2704 	if (pair == 0)
2705 		mdix = ETH_TP_MDI;
2706 	else
2707 		mdix = ETH_TP_MDI_X;
2708 
2709 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2710 	case PHY_ID_KSZ8081:
2711 		ret = ksz8081_config_mdix(phydev, mdix);
2712 		break;
2713 	case PHY_ID_KSZ886X:
2714 		ret = ksz886x_config_mdix(phydev, mdix);
2715 		break;
2716 	default:
2717 		ret = -ENODEV;
2718 	}
2719 
2720 	if (ret)
2721 		return ret;
2722 
2723 	/* Now we are ready to fire. This command will send a 100ns pulse
2724 	 * to the pair.
2725 	 */
2726 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2727 	if (ret)
2728 		return ret;
2729 
2730 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2731 	if (ret)
2732 		return ret;
2733 
2734 	val = phy_read(phydev, KSZ8081_LMD);
2735 	if (val < 0)
2736 		return val;
2737 
2738 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2739 		return -EAGAIN;
2740 
2741 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2742 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2743 	if (ret)
2744 		return ret;
2745 
2746 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2747 		return 0;
2748 
2749 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2750 
2751 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2752 }
2753 
2754 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2755 					 bool *finished)
2756 {
2757 	const struct kszphy_type *type = phydev->drv->driver_data;
2758 	unsigned long pair_mask = type->pair_mask;
2759 	int retries = 20;
2760 	int ret = 0;
2761 	int pair;
2762 
2763 	*finished = false;
2764 
2765 	/* Try harder if link partner is active */
2766 	while (pair_mask && retries--) {
2767 		for_each_set_bit(pair, &pair_mask, 4) {
2768 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2769 				ret = lan8814_cable_test_one_pair(phydev, pair);
2770 			else
2771 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2772 			if (ret == -EAGAIN)
2773 				continue;
2774 			if (ret < 0)
2775 				return ret;
2776 			clear_bit(pair, &pair_mask);
2777 		}
2778 		/* If link partner is in autonegotiation mode it will send 2ms
2779 		 * of FLPs with at least 6ms of silence.
2780 		 * Add 2ms sleep to have better chances to hit this silence.
2781 		 */
2782 		if (pair_mask)
2783 			msleep(2);
2784 	}
2785 
2786 	*finished = true;
2787 
2788 	return ret;
2789 }
2790 
2791 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2792 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2793 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2794 
2795 #define LAN8814_QSGMII_SOFT_RESET			0x43
2796 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2797 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2798 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2799 #define LAN8814_ALIGN_SWAP				0x4a
2800 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2801 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2802 
2803 #define LAN8804_ALIGN_SWAP				0x4a
2804 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2805 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2806 #define LAN8814_CLOCK_MANAGEMENT			0xd
2807 #define LAN8814_LINK_QUALITY				0x8e
2808 
2809 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2810 {
2811 	int data;
2812 
2813 	phy_lock_mdio_bus(phydev);
2814 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2815 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2816 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2817 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2818 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2819 	phy_unlock_mdio_bus(phydev);
2820 
2821 	return data;
2822 }
2823 
2824 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2825 				 u16 val)
2826 {
2827 	phy_lock_mdio_bus(phydev);
2828 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2829 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2830 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2831 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2832 
2833 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2834 	if (val != 0)
2835 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2836 			   val);
2837 	phy_unlock_mdio_bus(phydev);
2838 	return val;
2839 }
2840 
2841 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2842 {
2843 	u16 val = 0;
2844 
2845 	if (enable)
2846 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2847 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2848 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2849 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2850 
2851 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2852 }
2853 
2854 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2855 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2856 {
2857 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2858 	*seconds = (*seconds << 16) |
2859 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2860 
2861 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2862 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2863 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2864 
2865 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2866 }
2867 
2868 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2869 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2870 {
2871 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2872 	*seconds = *seconds << 16 |
2873 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2874 
2875 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2876 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2877 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2878 
2879 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2880 }
2881 
2882 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
2883 {
2884 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2885 	struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev);
2886 
2887 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2888 				SOF_TIMESTAMPING_RX_HARDWARE |
2889 				SOF_TIMESTAMPING_RAW_HARDWARE;
2890 
2891 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2892 
2893 	info->tx_types =
2894 		(1 << HWTSTAMP_TX_OFF) |
2895 		(1 << HWTSTAMP_TX_ON) |
2896 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2897 
2898 	info->rx_filters =
2899 		(1 << HWTSTAMP_FILTER_NONE) |
2900 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2901 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2902 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2903 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2904 
2905 	return 0;
2906 }
2907 
2908 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2909 {
2910 	int i;
2911 
2912 	for (i = 0; i < FIFO_SIZE; ++i)
2913 		lanphy_read_page_reg(phydev, 5,
2914 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2915 
2916 	/* Read to clear overflow status bit */
2917 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2918 }
2919 
2920 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2921 			    struct kernel_hwtstamp_config *config,
2922 			    struct netlink_ext_ack *extack)
2923 {
2924 	struct kszphy_ptp_priv *ptp_priv =
2925 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2926 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2927 	int txcfg = 0, rxcfg = 0;
2928 	int pkt_ts_enable;
2929 	int tx_mod;
2930 
2931 	ptp_priv->hwts_tx_type = config->tx_type;
2932 	ptp_priv->rx_filter = config->rx_filter;
2933 
2934 	switch (config->rx_filter) {
2935 	case HWTSTAMP_FILTER_NONE:
2936 		ptp_priv->layer = 0;
2937 		ptp_priv->version = 0;
2938 		break;
2939 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2940 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2941 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2942 		ptp_priv->layer = PTP_CLASS_L4;
2943 		ptp_priv->version = PTP_CLASS_V2;
2944 		break;
2945 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2946 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2947 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2948 		ptp_priv->layer = PTP_CLASS_L2;
2949 		ptp_priv->version = PTP_CLASS_V2;
2950 		break;
2951 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2952 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2953 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2954 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2955 		ptp_priv->version = PTP_CLASS_V2;
2956 		break;
2957 	default:
2958 		return -ERANGE;
2959 	}
2960 
2961 	if (ptp_priv->layer & PTP_CLASS_L2) {
2962 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2963 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2964 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2965 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2966 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2967 	}
2968 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2969 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2970 
2971 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2972 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2973 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2974 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2975 
2976 	tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
2977 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
2978 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2979 				      tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2980 	} else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
2981 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2982 				      tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2983 	}
2984 
2985 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2986 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2987 	else
2988 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2989 
2990 	/* In case of multiple starts and stops, these needs to be cleared */
2991 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2992 		list_del(&rx_ts->list);
2993 		kfree(rx_ts);
2994 	}
2995 	skb_queue_purge(&ptp_priv->rx_queue);
2996 	skb_queue_purge(&ptp_priv->tx_queue);
2997 
2998 	lan8814_flush_fifo(ptp_priv->phydev, false);
2999 	lan8814_flush_fifo(ptp_priv->phydev, true);
3000 
3001 	return 0;
3002 }
3003 
3004 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
3005 			     struct sk_buff *skb, int type)
3006 {
3007 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3008 
3009 	switch (ptp_priv->hwts_tx_type) {
3010 	case HWTSTAMP_TX_ONESTEP_SYNC:
3011 		if (ptp_msg_is_sync(skb, type)) {
3012 			kfree_skb(skb);
3013 			return;
3014 		}
3015 		fallthrough;
3016 	case HWTSTAMP_TX_ON:
3017 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3018 		skb_queue_tail(&ptp_priv->tx_queue, skb);
3019 		break;
3020 	case HWTSTAMP_TX_OFF:
3021 	default:
3022 		kfree_skb(skb);
3023 		break;
3024 	}
3025 }
3026 
3027 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
3028 {
3029 	struct ptp_header *ptp_header;
3030 	u32 type;
3031 
3032 	skb_push(skb, ETH_HLEN);
3033 	type = ptp_classify_raw(skb);
3034 	ptp_header = ptp_parse_header(skb, type);
3035 	skb_pull_inline(skb, ETH_HLEN);
3036 
3037 	if (!ptp_header)
3038 		return false;
3039 
3040 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3041 	return true;
3042 }
3043 
3044 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
3045 				 struct sk_buff *skb)
3046 {
3047 	struct skb_shared_hwtstamps *shhwtstamps;
3048 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
3049 	unsigned long flags;
3050 	bool ret = false;
3051 	u16 skb_sig;
3052 
3053 	if (!lan8814_get_sig_rx(skb, &skb_sig))
3054 		return ret;
3055 
3056 	/* Iterate over all RX timestamps and match it with the received skbs */
3057 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3058 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
3059 		/* Check if we found the signature we were looking for. */
3060 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3061 			continue;
3062 
3063 		shhwtstamps = skb_hwtstamps(skb);
3064 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3065 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
3066 						  rx_ts->nsec);
3067 		list_del(&rx_ts->list);
3068 		kfree(rx_ts);
3069 
3070 		ret = true;
3071 		break;
3072 	}
3073 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3074 
3075 	if (ret)
3076 		netif_rx(skb);
3077 	return ret;
3078 }
3079 
3080 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
3081 {
3082 	struct kszphy_ptp_priv *ptp_priv =
3083 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3084 
3085 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3086 	    type == PTP_CLASS_NONE)
3087 		return false;
3088 
3089 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3090 		return false;
3091 
3092 	/* If we failed to match then add it to the queue for when the timestamp
3093 	 * will come
3094 	 */
3095 	if (!lan8814_match_rx_skb(ptp_priv, skb))
3096 		skb_queue_tail(&ptp_priv->rx_queue, skb);
3097 
3098 	return true;
3099 }
3100 
3101 static void lan8814_ptp_clock_set(struct phy_device *phydev,
3102 				  time64_t sec, u32 nsec)
3103 {
3104 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
3105 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
3106 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
3107 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
3108 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
3109 
3110 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
3111 }
3112 
3113 static void lan8814_ptp_clock_get(struct phy_device *phydev,
3114 				  time64_t *sec, u32 *nsec)
3115 {
3116 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
3117 
3118 	*sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
3119 	*sec <<= 16;
3120 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
3121 	*sec <<= 16;
3122 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
3123 
3124 	*nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
3125 	*nsec <<= 16;
3126 	*nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
3127 }
3128 
3129 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
3130 				   struct timespec64 *ts)
3131 {
3132 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3133 							  ptp_clock_info);
3134 	struct phy_device *phydev = shared->phydev;
3135 	u32 nano_seconds;
3136 	time64_t seconds;
3137 
3138 	mutex_lock(&shared->shared_lock);
3139 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
3140 	mutex_unlock(&shared->shared_lock);
3141 	ts->tv_sec = seconds;
3142 	ts->tv_nsec = nano_seconds;
3143 
3144 	return 0;
3145 }
3146 
3147 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
3148 				   const struct timespec64 *ts)
3149 {
3150 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3151 							  ptp_clock_info);
3152 	struct phy_device *phydev = shared->phydev;
3153 
3154 	mutex_lock(&shared->shared_lock);
3155 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
3156 	mutex_unlock(&shared->shared_lock);
3157 
3158 	return 0;
3159 }
3160 
3161 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
3162 				   s64 start_sec, u32 start_nsec)
3163 {
3164 	/* Set the start time */
3165 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
3166 			      lower_16_bits(start_sec));
3167 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
3168 			      upper_16_bits(start_sec));
3169 
3170 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
3171 			      lower_16_bits(start_nsec));
3172 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
3173 			      upper_16_bits(start_nsec) & 0x3fff);
3174 }
3175 
3176 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
3177 {
3178 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
3179 			       sec + LAN8814_BUFFER_TIME, 0);
3180 	lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
3181 			       sec + LAN8814_BUFFER_TIME, 0);
3182 }
3183 
3184 static void lan8814_ptp_clock_step(struct phy_device *phydev,
3185 				   s64 time_step_ns)
3186 {
3187 	u32 nano_seconds_step;
3188 	u64 abs_time_step_ns;
3189 	time64_t set_seconds;
3190 	u32 nano_seconds;
3191 	u32 remainder;
3192 	s32 seconds;
3193 
3194 	if (time_step_ns >  15000000000LL) {
3195 		/* convert to clock set */
3196 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
3197 		set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
3198 					   &remainder);
3199 		nano_seconds += remainder;
3200 		if (nano_seconds >= 1000000000) {
3201 			set_seconds++;
3202 			nano_seconds -= 1000000000;
3203 		}
3204 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
3205 		lan8814_ptp_update_target(phydev, set_seconds);
3206 		return;
3207 	} else if (time_step_ns < -15000000000LL) {
3208 		/* convert to clock set */
3209 		time_step_ns = -time_step_ns;
3210 
3211 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
3212 		set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
3213 					   &remainder);
3214 		nano_seconds_step = remainder;
3215 		if (nano_seconds < nano_seconds_step) {
3216 			set_seconds--;
3217 			nano_seconds += 1000000000;
3218 		}
3219 		nano_seconds -= nano_seconds_step;
3220 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
3221 		lan8814_ptp_update_target(phydev, set_seconds);
3222 		return;
3223 	}
3224 
3225 	/* do clock step */
3226 	if (time_step_ns >= 0) {
3227 		abs_time_step_ns = (u64)time_step_ns;
3228 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
3229 					   &remainder);
3230 		nano_seconds = remainder;
3231 	} else {
3232 		abs_time_step_ns = (u64)(-time_step_ns);
3233 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
3234 			    &remainder));
3235 		nano_seconds = remainder;
3236 		if (nano_seconds > 0) {
3237 			/* subtracting nano seconds is not allowed
3238 			 * convert to subtracting from seconds,
3239 			 * and adding to nanoseconds
3240 			 */
3241 			seconds--;
3242 			nano_seconds = (1000000000 - nano_seconds);
3243 		}
3244 	}
3245 
3246 	if (nano_seconds > 0) {
3247 		/* add 8 ns to cover the likely normal increment */
3248 		nano_seconds += 8;
3249 	}
3250 
3251 	if (nano_seconds >= 1000000000) {
3252 		/* carry into seconds */
3253 		seconds++;
3254 		nano_seconds -= 1000000000;
3255 	}
3256 
3257 	while (seconds) {
3258 		u32 nsec;
3259 
3260 		if (seconds > 0) {
3261 			u32 adjustment_value = (u32)seconds;
3262 			u16 adjustment_value_lo, adjustment_value_hi;
3263 
3264 			if (adjustment_value > 0xF)
3265 				adjustment_value = 0xF;
3266 
3267 			adjustment_value_lo = adjustment_value & 0xffff;
3268 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3269 
3270 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3271 					      adjustment_value_lo);
3272 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3273 					      PTP_LTC_STEP_ADJ_DIR_ |
3274 					      adjustment_value_hi);
3275 			seconds -= ((s32)adjustment_value);
3276 
3277 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3278 			set_seconds -= adjustment_value;
3279 			lan8814_ptp_update_target(phydev, set_seconds);
3280 		} else {
3281 			u32 adjustment_value = (u32)(-seconds);
3282 			u16 adjustment_value_lo, adjustment_value_hi;
3283 
3284 			if (adjustment_value > 0xF)
3285 				adjustment_value = 0xF;
3286 
3287 			adjustment_value_lo = adjustment_value & 0xffff;
3288 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
3289 
3290 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3291 					      adjustment_value_lo);
3292 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3293 					      adjustment_value_hi);
3294 			seconds += ((s32)adjustment_value);
3295 
3296 			lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
3297 			set_seconds += adjustment_value;
3298 			lan8814_ptp_update_target(phydev, set_seconds);
3299 		}
3300 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
3301 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
3302 	}
3303 	if (nano_seconds) {
3304 		u16 nano_seconds_lo;
3305 		u16 nano_seconds_hi;
3306 
3307 		nano_seconds_lo = nano_seconds & 0xffff;
3308 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
3309 
3310 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
3311 				      nano_seconds_lo);
3312 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
3313 				      PTP_LTC_STEP_ADJ_DIR_ |
3314 				      nano_seconds_hi);
3315 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
3316 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
3317 	}
3318 }
3319 
3320 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
3321 {
3322 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3323 							  ptp_clock_info);
3324 	struct phy_device *phydev = shared->phydev;
3325 
3326 	mutex_lock(&shared->shared_lock);
3327 	lan8814_ptp_clock_step(phydev, delta);
3328 	mutex_unlock(&shared->shared_lock);
3329 
3330 	return 0;
3331 }
3332 
3333 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
3334 {
3335 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3336 							  ptp_clock_info);
3337 	struct phy_device *phydev = shared->phydev;
3338 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
3339 	bool positive = true;
3340 	u32 kszphy_rate_adj;
3341 
3342 	if (scaled_ppm < 0) {
3343 		scaled_ppm = -scaled_ppm;
3344 		positive = false;
3345 	}
3346 
3347 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
3348 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
3349 
3350 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
3351 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
3352 
3353 	if (positive)
3354 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
3355 
3356 	mutex_lock(&shared->shared_lock);
3357 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
3358 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
3359 	mutex_unlock(&shared->shared_lock);
3360 
3361 	return 0;
3362 }
3363 
3364 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
3365 				   s64 period_sec, u32 period_nsec)
3366 {
3367 	lanphy_write_page_reg(phydev, 4,
3368 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
3369 			      lower_16_bits(period_sec));
3370 	lanphy_write_page_reg(phydev, 4,
3371 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
3372 			      upper_16_bits(period_sec));
3373 
3374 	lanphy_write_page_reg(phydev, 4,
3375 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
3376 			      lower_16_bits(period_nsec));
3377 	lanphy_write_page_reg(phydev, 4,
3378 			      LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
3379 			      upper_16_bits(period_nsec) & 0x3fff);
3380 }
3381 
3382 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
3383 				     int pulse_width)
3384 {
3385 	u16 val;
3386 
3387 	val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3388 	/* Set the pulse width of the event */
3389 	val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event));
3390 	/* Make sure that the target clock will be incremented each time when
3391 	 * local time reaches or pass it
3392 	 */
3393 	val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width);
3394 	val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
3395 	/* Set the polarity high */
3396 	val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event);
3397 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3398 }
3399 
3400 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
3401 {
3402 	u16 val;
3403 
3404 	/* Set target to too far in the future, effectively disabling it */
3405 	lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
3406 
3407 	/* And then reload once it recheas the target */
3408 	val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3409 	val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event);
3410 	lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3411 }
3412 
3413 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
3414 {
3415 	u16 val;
3416 
3417 	/* Disable gpio alternate function,
3418 	 * 1: select as gpio,
3419 	 * 0: select alt func
3420 	 */
3421 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3422 	val |= LAN8814_GPIO_EN_BIT(pin);
3423 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3424 
3425 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3426 	val &= ~LAN8814_GPIO_DIR_BIT(pin);
3427 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3428 
3429 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3430 	val &= ~LAN8814_GPIO_BUF_BIT(pin);
3431 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3432 }
3433 
3434 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3435 {
3436 	int val;
3437 
3438 	/* Set as gpio output */
3439 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3440 	val |= LAN8814_GPIO_DIR_BIT(pin);
3441 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3442 
3443 	/* Enable gpio 0:for alternate function, 1:gpio */
3444 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3445 	val &= ~LAN8814_GPIO_EN_BIT(pin);
3446 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3447 
3448 	/* Set buffer type to push pull */
3449 	val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3450 	val |= LAN8814_GPIO_BUF_BIT(pin);
3451 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3452 }
3453 
3454 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3455 			      struct ptp_clock_request *rq, int on)
3456 {
3457 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3458 							  ptp_clock_info);
3459 	struct phy_device *phydev = shared->phydev;
3460 	struct timespec64 ts_on, ts_period;
3461 	s64 on_nsec, period_nsec;
3462 	int pulse_width;
3463 	int pin, event;
3464 
3465 	mutex_lock(&shared->shared_lock);
3466 	event = rq->perout.index;
3467 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3468 	if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3469 		mutex_unlock(&shared->shared_lock);
3470 		return -EBUSY;
3471 	}
3472 
3473 	if (!on) {
3474 		lan8814_ptp_perout_off(phydev, pin);
3475 		lan8814_ptp_disable_event(phydev, event);
3476 		mutex_unlock(&shared->shared_lock);
3477 		return 0;
3478 	}
3479 
3480 	ts_on.tv_sec = rq->perout.on.sec;
3481 	ts_on.tv_nsec = rq->perout.on.nsec;
3482 	on_nsec = timespec64_to_ns(&ts_on);
3483 
3484 	ts_period.tv_sec = rq->perout.period.sec;
3485 	ts_period.tv_nsec = rq->perout.period.nsec;
3486 	period_nsec = timespec64_to_ns(&ts_period);
3487 
3488 	if (period_nsec < 200) {
3489 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3490 				    phydev_name(phydev));
3491 		mutex_unlock(&shared->shared_lock);
3492 		return -EOPNOTSUPP;
3493 	}
3494 
3495 	if (on_nsec >= period_nsec) {
3496 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3497 				    phydev_name(phydev));
3498 		mutex_unlock(&shared->shared_lock);
3499 		return -EINVAL;
3500 	}
3501 
3502 	switch (on_nsec) {
3503 	case 200000000:
3504 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3505 		break;
3506 	case 100000000:
3507 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3508 		break;
3509 	case 50000000:
3510 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3511 		break;
3512 	case 10000000:
3513 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3514 		break;
3515 	case 5000000:
3516 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3517 		break;
3518 	case 1000000:
3519 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3520 		break;
3521 	case 500000:
3522 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3523 		break;
3524 	case 100000:
3525 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3526 		break;
3527 	case 50000:
3528 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3529 		break;
3530 	case 10000:
3531 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3532 		break;
3533 	case 5000:
3534 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3535 		break;
3536 	case 1000:
3537 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3538 		break;
3539 	case 500:
3540 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3541 		break;
3542 	case 100:
3543 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3544 		break;
3545 	default:
3546 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3547 				    phydev_name(phydev));
3548 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3549 		break;
3550 	}
3551 
3552 	/* Configure to pulse every period */
3553 	lan8814_ptp_enable_event(phydev, event, pulse_width);
3554 	lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3555 			       rq->perout.start.nsec);
3556 	lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3557 			       rq->perout.period.nsec);
3558 	lan8814_ptp_perout_on(phydev, pin);
3559 	mutex_unlock(&shared->shared_lock);
3560 
3561 	return 0;
3562 }
3563 
3564 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3565 {
3566 	u16 tmp;
3567 
3568 	/* Set as gpio input */
3569 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3570 	tmp &= ~LAN8814_GPIO_DIR_BIT(pin);
3571 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3572 
3573 	/* Map the pin to ltc pin 0 of the capture map registers */
3574 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3575 	tmp |= pin;
3576 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3577 
3578 	/* Enable capture on the edges of the ltc pin */
3579 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3580 	if (flags & PTP_RISING_EDGE)
3581 		tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0);
3582 	if (flags & PTP_FALLING_EDGE)
3583 		tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0);
3584 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3585 
3586 	/* Enable interrupt top interrupt */
3587 	tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3588 	tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3589 	lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3590 }
3591 
3592 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3593 {
3594 	u16 tmp;
3595 
3596 	/* Set as gpio out */
3597 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3598 	tmp |= LAN8814_GPIO_DIR_BIT(pin);
3599 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3600 
3601 	/* Enable alternate, 0:for alternate function, 1:gpio */
3602 	tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3603 	tmp &= ~LAN8814_GPIO_EN_BIT(pin);
3604 	lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp);
3605 
3606 	/* Clear the mapping of pin to registers 0 of the capture registers */
3607 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3608 	tmp &= ~GENMASK(3, 0);
3609 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3610 
3611 	/* Disable capture on both of the edges */
3612 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3613 	tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
3614 	tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
3615 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3616 
3617 	/* Disable interrupt top interrupt */
3618 	tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3619 	tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3620 	lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3621 }
3622 
3623 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3624 			     struct ptp_clock_request *rq, int on)
3625 {
3626 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3627 							  ptp_clock_info);
3628 	struct phy_device *phydev = shared->phydev;
3629 	int pin;
3630 
3631 	pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3632 			   rq->extts.index);
3633 	if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3634 		return -EINVAL;
3635 
3636 	mutex_lock(&shared->shared_lock);
3637 	if (on)
3638 		lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3639 	else
3640 		lan8814_ptp_extts_off(phydev, pin);
3641 
3642 	mutex_unlock(&shared->shared_lock);
3643 
3644 	return 0;
3645 }
3646 
3647 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3648 				struct ptp_clock_request *rq, int on)
3649 {
3650 	switch (rq->type) {
3651 	case PTP_CLK_REQ_PEROUT:
3652 		return lan8814_ptp_perout(ptpci, rq, on);
3653 	case PTP_CLK_REQ_EXTTS:
3654 		return lan8814_ptp_extts(ptpci, rq, on);
3655 	default:
3656 		return -EINVAL;
3657 	}
3658 }
3659 
3660 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3661 				enum ptp_pin_function func, unsigned int chan)
3662 {
3663 	switch (func) {
3664 	case PTP_PF_NONE:
3665 	case PTP_PF_PEROUT:
3666 		/* Only pins 0 and 1 can generate perout signals. And for pin 0
3667 		 * there is only chan 0 (event A) and for pin 1 there is only
3668 		 * chan 1 (event B)
3669 		 */
3670 		if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3671 			return -1;
3672 		break;
3673 	case PTP_PF_EXTTS:
3674 		if (pin != LAN8814_PTP_EXTTS_NUM)
3675 			return -1;
3676 		break;
3677 	default:
3678 		return -1;
3679 	}
3680 
3681 	return 0;
3682 }
3683 
3684 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3685 {
3686 	struct ptp_header *ptp_header;
3687 	u32 type;
3688 
3689 	type = ptp_classify_raw(skb);
3690 	ptp_header = ptp_parse_header(skb, type);
3691 
3692 	if (!ptp_header)
3693 		return false;
3694 
3695 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
3696 	return true;
3697 }
3698 
3699 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3700 				 u32 seconds, u32 nsec, u16 seq_id)
3701 {
3702 	struct skb_shared_hwtstamps shhwtstamps;
3703 	struct sk_buff *skb, *skb_tmp;
3704 	unsigned long flags;
3705 	bool ret = false;
3706 	u16 skb_sig;
3707 
3708 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3709 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3710 		if (!lan8814_get_sig_tx(skb, &skb_sig))
3711 			continue;
3712 
3713 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3714 			continue;
3715 
3716 		__skb_unlink(skb, &ptp_priv->tx_queue);
3717 		ret = true;
3718 		break;
3719 	}
3720 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3721 
3722 	if (ret) {
3723 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3724 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3725 		skb_complete_tx_timestamp(skb, &shhwtstamps);
3726 	}
3727 }
3728 
3729 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3730 {
3731 	struct phy_device *phydev = ptp_priv->phydev;
3732 	u32 seconds, nsec;
3733 	u16 seq_id;
3734 
3735 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3736 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3737 }
3738 
3739 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3740 {
3741 	struct phy_device *phydev = ptp_priv->phydev;
3742 	u32 reg;
3743 
3744 	do {
3745 		lan8814_dequeue_tx_skb(ptp_priv);
3746 
3747 		/* If other timestamps are available in the FIFO,
3748 		 * process them.
3749 		 */
3750 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3751 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
3752 }
3753 
3754 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
3755 			      struct lan8814_ptp_rx_ts *rx_ts)
3756 {
3757 	struct skb_shared_hwtstamps *shhwtstamps;
3758 	struct sk_buff *skb, *skb_tmp;
3759 	unsigned long flags;
3760 	bool ret = false;
3761 	u16 skb_sig;
3762 
3763 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
3764 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
3765 		if (!lan8814_get_sig_rx(skb, &skb_sig))
3766 			continue;
3767 
3768 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3769 			continue;
3770 
3771 		__skb_unlink(skb, &ptp_priv->rx_queue);
3772 
3773 		ret = true;
3774 		break;
3775 	}
3776 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
3777 
3778 	if (ret) {
3779 		shhwtstamps = skb_hwtstamps(skb);
3780 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3781 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3782 		netif_rx(skb);
3783 	}
3784 
3785 	return ret;
3786 }
3787 
3788 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3789 				struct lan8814_ptp_rx_ts *rx_ts)
3790 {
3791 	unsigned long flags;
3792 
3793 	/* If we failed to match the skb add it to the queue for when
3794 	 * the frame will come
3795 	 */
3796 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3797 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3798 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3799 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3800 	} else {
3801 		kfree(rx_ts);
3802 	}
3803 }
3804 
3805 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3806 {
3807 	struct phy_device *phydev = ptp_priv->phydev;
3808 	struct lan8814_ptp_rx_ts *rx_ts;
3809 	u32 reg;
3810 
3811 	do {
3812 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3813 		if (!rx_ts)
3814 			return;
3815 
3816 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3817 				      &rx_ts->seq_id);
3818 		lan8814_match_rx_ts(ptp_priv, rx_ts);
3819 
3820 		/* If other timestamps are available in the FIFO,
3821 		 * process them.
3822 		 */
3823 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3824 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3825 }
3826 
3827 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3828 {
3829 	struct kszphy_priv *priv = phydev->priv;
3830 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3831 
3832 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3833 		lan8814_get_tx_ts(ptp_priv);
3834 
3835 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3836 		lan8814_get_rx_ts(ptp_priv);
3837 
3838 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3839 		lan8814_flush_fifo(phydev, true);
3840 		skb_queue_purge(&ptp_priv->tx_queue);
3841 	}
3842 
3843 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3844 		lan8814_flush_fifo(phydev, false);
3845 		skb_queue_purge(&ptp_priv->rx_queue);
3846 	}
3847 }
3848 
3849 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
3850 {
3851 	struct phy_device *phydev = shared->phydev;
3852 	struct ptp_clock_event ptp_event = {0};
3853 	unsigned long nsec;
3854 	s64 sec;
3855 	u16 tmp;
3856 
3857 	/* This is 0 because whatever was the input pin it was mapped it to
3858 	 * ltc gpio pin 0
3859 	 */
3860 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL);
3861 	tmp |= PTP_GPIO_SEL_GPIO_SEL(0);
3862 	lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp);
3863 
3864 	tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS);
3865 	if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
3866 	    !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
3867 		return -1;
3868 
3869 	if (tmp & BIT(0)) {
3870 		sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP);
3871 		sec <<= 16;
3872 		sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP);
3873 
3874 		nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3875 		nsec <<= 16;
3876 		nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3877 	} else {
3878 		sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP);
3879 		sec <<= 16;
3880 		sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP);
3881 
3882 		nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3883 		nsec <<= 16;
3884 		nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3885 	}
3886 
3887 	ptp_event.index = 0;
3888 	ptp_event.timestamp = ktime_set(sec, nsec);
3889 	ptp_event.type = PTP_CLOCK_EXTTS;
3890 	ptp_clock_event(shared->ptp_clock, &ptp_event);
3891 
3892 	return 0;
3893 }
3894 
3895 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
3896 {
3897 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
3898 	int ret;
3899 
3900 	mutex_lock(&shared->shared_lock);
3901 	ret = lan8814_gpio_process_cap(shared);
3902 	mutex_unlock(&shared->shared_lock);
3903 
3904 	return ret;
3905 }
3906 
3907 static int lan8804_config_init(struct phy_device *phydev)
3908 {
3909 	int val;
3910 
3911 	/* MDI-X setting for swap A,B transmit */
3912 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
3913 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
3914 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
3915 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
3916 
3917 	/* Make sure that the PHY will not stop generating the clock when the
3918 	 * link partner goes down
3919 	 */
3920 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3921 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3922 
3923 	return 0;
3924 }
3925 
3926 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3927 {
3928 	int status;
3929 
3930 	status = phy_read(phydev, LAN8814_INTS);
3931 	if (status < 0) {
3932 		phy_error(phydev);
3933 		return IRQ_NONE;
3934 	}
3935 
3936 	if (status > 0)
3937 		phy_trigger_machine(phydev);
3938 
3939 	return IRQ_HANDLED;
3940 }
3941 
3942 #define LAN8804_OUTPUT_CONTROL			25
3943 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
3944 #define LAN8804_CONTROL				31
3945 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
3946 
3947 static int lan8804_config_intr(struct phy_device *phydev)
3948 {
3949 	int err;
3950 
3951 	/* This is an internal PHY of lan966x and is not possible to change the
3952 	 * polarity on the GIC found in lan966x, therefore change the polarity
3953 	 * of the interrupt in the PHY from being active low instead of active
3954 	 * high.
3955 	 */
3956 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3957 
3958 	/* By default interrupt buffer is open-drain in which case the interrupt
3959 	 * can be active only low. Therefore change the interrupt buffer to be
3960 	 * push-pull to be able to change interrupt polarity
3961 	 */
3962 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3963 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3964 
3965 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3966 		err = phy_read(phydev, LAN8814_INTS);
3967 		if (err < 0)
3968 			return err;
3969 
3970 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3971 		if (err)
3972 			return err;
3973 	} else {
3974 		err = phy_write(phydev, LAN8814_INTC, 0);
3975 		if (err)
3976 			return err;
3977 
3978 		err = phy_read(phydev, LAN8814_INTS);
3979 		if (err < 0)
3980 			return err;
3981 	}
3982 
3983 	return 0;
3984 }
3985 
3986 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3987 {
3988 	int ret = IRQ_NONE;
3989 	int irq_status;
3990 
3991 	irq_status = phy_read(phydev, LAN8814_INTS);
3992 	if (irq_status < 0) {
3993 		phy_error(phydev);
3994 		return IRQ_NONE;
3995 	}
3996 
3997 	if (irq_status & LAN8814_INT_LINK) {
3998 		phy_trigger_machine(phydev);
3999 		ret = IRQ_HANDLED;
4000 	}
4001 
4002 	while (true) {
4003 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
4004 		if (!irq_status)
4005 			break;
4006 
4007 		lan8814_handle_ptp_interrupt(phydev, irq_status);
4008 		ret = IRQ_HANDLED;
4009 	}
4010 
4011 	if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
4012 		ret = IRQ_HANDLED;
4013 
4014 	return ret;
4015 }
4016 
4017 static int lan8814_ack_interrupt(struct phy_device *phydev)
4018 {
4019 	/* bit[12..0] int status, which is a read and clear register. */
4020 	int rc;
4021 
4022 	rc = phy_read(phydev, LAN8814_INTS);
4023 
4024 	return (rc < 0) ? rc : 0;
4025 }
4026 
4027 static int lan8814_config_intr(struct phy_device *phydev)
4028 {
4029 	int err;
4030 
4031 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
4032 			      LAN8814_INTR_CTRL_REG_POLARITY |
4033 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
4034 
4035 	/* enable / disable interrupts */
4036 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4037 		err = lan8814_ack_interrupt(phydev);
4038 		if (err)
4039 			return err;
4040 
4041 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
4042 	} else {
4043 		err = phy_write(phydev, LAN8814_INTC, 0);
4044 		if (err)
4045 			return err;
4046 
4047 		err = lan8814_ack_interrupt(phydev);
4048 	}
4049 
4050 	return err;
4051 }
4052 
4053 static void lan8814_ptp_init(struct phy_device *phydev)
4054 {
4055 	struct kszphy_priv *priv = phydev->priv;
4056 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4057 	u32 temp;
4058 
4059 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
4060 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4061 		return;
4062 
4063 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
4064 
4065 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
4066 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
4067 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
4068 
4069 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
4070 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
4071 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
4072 
4073 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
4074 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
4075 
4076 	/* Removing default registers configs related to L2 and IP */
4077 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
4078 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
4079 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
4080 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
4081 
4082 	/* Disable checking for minorVersionPTP field */
4083 	lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
4084 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
4085 	lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
4086 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
4087 
4088 	skb_queue_head_init(&ptp_priv->tx_queue);
4089 	skb_queue_head_init(&ptp_priv->rx_queue);
4090 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
4091 	spin_lock_init(&ptp_priv->rx_ts_lock);
4092 
4093 	ptp_priv->phydev = phydev;
4094 
4095 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
4096 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4097 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
4098 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
4099 
4100 	phydev->mii_ts = &ptp_priv->mii_ts;
4101 
4102 	/* Timestamp selected by default to keep legacy API */
4103 	phydev->default_timestamp = true;
4104 }
4105 
4106 static int lan8814_ptp_probe_once(struct phy_device *phydev)
4107 {
4108 	struct lan8814_shared_priv *shared = phy_package_get_priv(phydev);
4109 
4110 	/* Initialise shared lock for clock*/
4111 	mutex_init(&shared->shared_lock);
4112 
4113 	shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
4114 						LAN8814_PTP_GPIO_NUM,
4115 						sizeof(*shared->pin_config),
4116 						GFP_KERNEL);
4117 	if (!shared->pin_config)
4118 		return -ENOMEM;
4119 
4120 	for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) {
4121 		struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
4122 
4123 		memset(ptp_pin, 0, sizeof(*ptp_pin));
4124 		snprintf(ptp_pin->name,
4125 			 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i);
4126 		ptp_pin->index = i;
4127 		ptp_pin->func =  PTP_PF_NONE;
4128 	}
4129 
4130 	shared->ptp_clock_info.owner = THIS_MODULE;
4131 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
4132 	shared->ptp_clock_info.max_adj = 31249999;
4133 	shared->ptp_clock_info.n_alarm = 0;
4134 	shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
4135 	shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM;
4136 	shared->ptp_clock_info.pps = 0;
4137 	shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE |
4138 						       PTP_FALLING_EDGE |
4139 						       PTP_STRICT_FLAGS;
4140 	shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE;
4141 	shared->ptp_clock_info.pin_config = shared->pin_config;
4142 	shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
4143 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
4144 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
4145 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
4146 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
4147 	shared->ptp_clock_info.getcrosststamp = NULL;
4148 	shared->ptp_clock_info.enable = lan8814_ptpci_enable;
4149 	shared->ptp_clock_info.verify = lan8814_ptpci_verify;
4150 
4151 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
4152 					       &phydev->mdio.dev);
4153 	if (IS_ERR(shared->ptp_clock)) {
4154 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
4155 			   PTR_ERR(shared->ptp_clock));
4156 		return -EINVAL;
4157 	}
4158 
4159 	/* Check if PHC support is missing at the configuration level */
4160 	if (!shared->ptp_clock)
4161 		return 0;
4162 
4163 	phydev_dbg(phydev, "successfully registered ptp clock\n");
4164 
4165 	shared->phydev = phydev;
4166 
4167 	/* The EP.4 is shared between all the PHYs in the package and also it
4168 	 * can be accessed by any of the PHYs
4169 	 */
4170 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
4171 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
4172 			      PTP_OPERATING_MODE_STANDALONE_);
4173 
4174 	/* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
4175 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_);
4176 
4177 	return 0;
4178 }
4179 
4180 static void lan8814_setup_led(struct phy_device *phydev, int val)
4181 {
4182 	int temp;
4183 
4184 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
4185 
4186 	if (val)
4187 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
4188 	else
4189 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
4190 
4191 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
4192 }
4193 
4194 static int lan8814_config_init(struct phy_device *phydev)
4195 {
4196 	struct kszphy_priv *lan8814 = phydev->priv;
4197 	int val;
4198 
4199 	/* Reset the PHY */
4200 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
4201 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
4202 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
4203 
4204 	/* Disable ANEG with QSGMII PCS Host side */
4205 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
4206 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
4207 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
4208 
4209 	/* MDI-X setting for swap A,B transmit */
4210 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
4211 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
4212 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
4213 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
4214 
4215 	if (lan8814->led_mode >= 0)
4216 		lan8814_setup_led(phydev, lan8814->led_mode);
4217 
4218 	return 0;
4219 }
4220 
4221 /* It is expected that there will not be any 'lan8814_take_coma_mode'
4222  * function called in suspend. Because the GPIO line can be shared, so if one of
4223  * the phys goes back in coma mode, then all the other PHYs will go, which is
4224  * wrong.
4225  */
4226 static int lan8814_release_coma_mode(struct phy_device *phydev)
4227 {
4228 	struct gpio_desc *gpiod;
4229 
4230 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
4231 					GPIOD_OUT_HIGH_OPEN_DRAIN |
4232 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
4233 	if (IS_ERR(gpiod))
4234 		return PTR_ERR(gpiod);
4235 
4236 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
4237 	gpiod_set_value_cansleep(gpiod, 0);
4238 
4239 	return 0;
4240 }
4241 
4242 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
4243 {
4244 	u16 val;
4245 
4246 	/* It was noticed that when traffic is passing through the PHY and the
4247 	 * cable is removed then the LED was still one even though there is no
4248 	 * link
4249 	 */
4250 	val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE);
4251 	val &= ~LAN8814_EEE_STATE_MASK2P5P;
4252 	lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val);
4253 }
4254 
4255 static void lan8814_update_meas_time(struct phy_device *phydev)
4256 {
4257 	u16 val;
4258 
4259 	/* By setting the measure time to a value of 0xb this will allow cables
4260 	 * longer than 100m to be used. This configuration can be used
4261 	 * regardless of the mode of operation of the PHY
4262 	 */
4263 	val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS);
4264 	val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK;
4265 	val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL;
4266 	lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val);
4267 }
4268 
4269 static int lan8814_probe(struct phy_device *phydev)
4270 {
4271 	const struct kszphy_type *type = phydev->drv->driver_data;
4272 	struct kszphy_priv *priv;
4273 	u16 addr;
4274 	int err;
4275 
4276 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
4277 	if (!priv)
4278 		return -ENOMEM;
4279 
4280 	phydev->priv = priv;
4281 
4282 	priv->type = type;
4283 
4284 	kszphy_parse_led_mode(phydev);
4285 
4286 	/* Strap-in value for PHY address, below register read gives starting
4287 	 * phy address value
4288 	 */
4289 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
4290 	devm_phy_package_join(&phydev->mdio.dev, phydev,
4291 			      addr, sizeof(struct lan8814_shared_priv));
4292 
4293 	if (phy_package_init_once(phydev)) {
4294 		err = lan8814_release_coma_mode(phydev);
4295 		if (err)
4296 			return err;
4297 
4298 		err = lan8814_ptp_probe_once(phydev);
4299 		if (err)
4300 			return err;
4301 	}
4302 
4303 	lan8814_ptp_init(phydev);
4304 
4305 	/* Errata workarounds */
4306 	lan8814_clear_2psp_bit(phydev);
4307 	lan8814_update_meas_time(phydev);
4308 
4309 	return 0;
4310 }
4311 
4312 #define LAN8841_MMD_TIMER_REG			0
4313 #define LAN8841_MMD0_REGISTER_17		17
4314 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
4315 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
4316 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
4317 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
4318 #define LAN8841_MMD_ANALOG_REG			28
4319 #define LAN8841_ANALOG_CONTROL_1		1
4320 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
4321 #define LAN8841_ANALOG_CONTROL_10		13
4322 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
4323 #define LAN8841_ANALOG_CONTROL_11		14
4324 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
4325 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
4326 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
4327 #define LAN8841_BTRX_POWER_DOWN			70
4328 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
4329 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
4330 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
4331 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
4332 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
4333 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
4334 #define LAN8841_ADC_CHANNEL_MASK		198
4335 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
4336 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
4337 #define LAN8841_PTP_RX_VERSION			374
4338 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
4339 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
4340 #define LAN8841_PTP_TX_VERSION			438
4341 #define LAN8841_PTP_CMD_CTL			256
4342 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
4343 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
4344 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
4345 #define LAN8841_PTP_RX_PARSE_CONFIG		368
4346 #define LAN8841_PTP_TX_PARSE_CONFIG		432
4347 #define LAN8841_PTP_RX_MODE			381
4348 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
4349 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
4350 
4351 static int lan8841_config_init(struct phy_device *phydev)
4352 {
4353 	int ret;
4354 
4355 	ret = ksz9131_config_init(phydev);
4356 	if (ret)
4357 		return ret;
4358 
4359 	/* Initialize the HW by resetting everything */
4360 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4361 		       LAN8841_PTP_CMD_CTL,
4362 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
4363 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
4364 
4365 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4366 		       LAN8841_PTP_CMD_CTL,
4367 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
4368 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
4369 
4370 	/* Don't process any frames */
4371 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4372 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
4373 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4374 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
4375 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4376 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
4377 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4378 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
4379 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4380 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
4381 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4382 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
4383 
4384 	/* Disable checking for minorVersionPTP field */
4385 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4386 		      LAN8841_PTP_RX_VERSION, 0xff00);
4387 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4388 		      LAN8841_PTP_TX_VERSION, 0xff00);
4389 
4390 	/* 100BT Clause 40 improvenent errata */
4391 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4392 		      LAN8841_ANALOG_CONTROL_1,
4393 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
4394 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4395 		      LAN8841_ANALOG_CONTROL_10,
4396 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
4397 
4398 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
4399 	 * Magnetics
4400 	 */
4401 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4402 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
4403 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
4404 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4405 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
4406 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
4407 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4408 			      LAN8841_BTRX_POWER_DOWN,
4409 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
4410 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
4411 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
4412 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
4413 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4414 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4415 	}
4416 
4417 	/* LDO Adjustment errata */
4418 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4419 		      LAN8841_ANALOG_CONTROL_11,
4420 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4421 
4422 	/* 100BT RGMII latency tuning errata */
4423 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4424 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
4425 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4426 		      LAN8841_MMD0_REGISTER_17,
4427 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4428 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4429 
4430 	return 0;
4431 }
4432 
4433 #define LAN8841_OUTPUT_CTRL			25
4434 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
4435 #define LAN8841_INT_PTP				BIT(9)
4436 
4437 static int lan8841_config_intr(struct phy_device *phydev)
4438 {
4439 	int err;
4440 
4441 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4442 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4443 
4444 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4445 		err = phy_read(phydev, LAN8814_INTS);
4446 		if (err < 0)
4447 			return err;
4448 
4449 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
4450 		 * even if it PTP is not enabled. Because the underneath blocks
4451 		 * will not enable the PTP so we will never get the PTP
4452 		 * interrupt.
4453 		 */
4454 		err = phy_write(phydev, LAN8814_INTC,
4455 				LAN8814_INT_LINK | LAN8841_INT_PTP);
4456 	} else {
4457 		err = phy_write(phydev, LAN8814_INTC, 0);
4458 		if (err)
4459 			return err;
4460 
4461 		err = phy_read(phydev, LAN8814_INTS);
4462 		if (err < 0)
4463 			return err;
4464 
4465 		/* Getting a positive value doesn't mean that is an error, it
4466 		 * just indicates what was the status. Therefore make sure to
4467 		 * clear the value and say that there is no error.
4468 		 */
4469 		err = 0;
4470 	}
4471 
4472 	return err;
4473 }
4474 
4475 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
4476 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
4477 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
4478 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
4479 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
4480 #define LAN8841_PTP_TX_MSG_HEADER2			455
4481 
4482 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4483 				  u32 *sec, u32 *nsec, u16 *seq)
4484 {
4485 	struct phy_device *phydev = ptp_priv->phydev;
4486 
4487 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4488 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4489 		return false;
4490 
4491 	*nsec = ((*nsec & 0x3fff) << 16);
4492 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4493 
4494 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4495 	*sec = *sec << 16;
4496 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4497 
4498 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4499 
4500 	return true;
4501 }
4502 
4503 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4504 {
4505 	u32 sec, nsec;
4506 	u16 seq;
4507 
4508 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4509 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4510 }
4511 
4512 #define LAN8841_PTP_INT_STS			259
4513 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
4514 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
4515 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
4516 
4517 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4518 {
4519 	struct phy_device *phydev = ptp_priv->phydev;
4520 	int i;
4521 
4522 	for (i = 0; i < FIFO_SIZE; ++i)
4523 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4524 
4525 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4526 }
4527 
4528 #define LAN8841_PTP_GPIO_CAP_STS			506
4529 #define LAN8841_PTP_GPIO_SEL				327
4530 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
4531 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
4532 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
4533 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
4534 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
4535 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
4536 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
4537 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
4538 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
4539 
4540 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4541 {
4542 	struct phy_device *phydev = ptp_priv->phydev;
4543 	struct ptp_clock_event ptp_event = {0};
4544 	int pin, ret, tmp;
4545 	s32 sec, nsec;
4546 
4547 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4548 	if (pin == -1)
4549 		return;
4550 
4551 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4552 	if (tmp < 0)
4553 		return;
4554 
4555 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4556 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4557 	if (ret)
4558 		return;
4559 
4560 	mutex_lock(&ptp_priv->ptp_lock);
4561 	if (tmp & BIT(pin)) {
4562 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4563 		sec <<= 16;
4564 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4565 
4566 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4567 		nsec <<= 16;
4568 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4569 	} else {
4570 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4571 		sec <<= 16;
4572 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4573 
4574 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4575 		nsec <<= 16;
4576 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4577 	}
4578 	mutex_unlock(&ptp_priv->ptp_lock);
4579 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4580 	if (ret)
4581 		return;
4582 
4583 	ptp_event.index = 0;
4584 	ptp_event.timestamp = ktime_set(sec, nsec);
4585 	ptp_event.type = PTP_CLOCK_EXTTS;
4586 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4587 }
4588 
4589 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4590 {
4591 	struct kszphy_priv *priv = phydev->priv;
4592 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4593 	u16 status;
4594 
4595 	do {
4596 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4597 
4598 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4599 			lan8841_ptp_process_tx_ts(ptp_priv);
4600 
4601 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4602 			lan8841_gpio_process_cap(ptp_priv);
4603 
4604 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4605 			lan8841_ptp_flush_fifo(ptp_priv);
4606 			skb_queue_purge(&ptp_priv->tx_queue);
4607 		}
4608 
4609 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4610 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4611 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4612 }
4613 
4614 #define LAN8841_INTS_PTP		BIT(9)
4615 
4616 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4617 {
4618 	irqreturn_t ret = IRQ_NONE;
4619 	int irq_status;
4620 
4621 	irq_status = phy_read(phydev, LAN8814_INTS);
4622 	if (irq_status < 0) {
4623 		phy_error(phydev);
4624 		return IRQ_NONE;
4625 	}
4626 
4627 	if (irq_status & LAN8814_INT_LINK) {
4628 		phy_trigger_machine(phydev);
4629 		ret = IRQ_HANDLED;
4630 	}
4631 
4632 	if (irq_status & LAN8841_INTS_PTP) {
4633 		lan8841_handle_ptp_interrupt(phydev);
4634 		ret = IRQ_HANDLED;
4635 	}
4636 
4637 	return ret;
4638 }
4639 
4640 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4641 			   struct kernel_ethtool_ts_info *info)
4642 {
4643 	struct kszphy_ptp_priv *ptp_priv;
4644 
4645 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4646 
4647 	info->phc_index = ptp_priv->ptp_clock ?
4648 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
4649 	if (info->phc_index == -1)
4650 		return 0;
4651 
4652 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4653 				SOF_TIMESTAMPING_RX_HARDWARE |
4654 				SOF_TIMESTAMPING_RAW_HARDWARE;
4655 
4656 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4657 			 (1 << HWTSTAMP_TX_ON) |
4658 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4659 
4660 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4661 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4662 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4663 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4664 
4665 	return 0;
4666 }
4667 
4668 #define LAN8841_PTP_INT_EN			260
4669 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
4670 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
4671 
4672 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4673 					  bool enable)
4674 {
4675 	struct phy_device *phydev = ptp_priv->phydev;
4676 
4677 	if (enable) {
4678 		/* Enable interrupts on the TX side */
4679 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4680 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4681 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4682 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4683 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4684 
4685 		/* Enable the modification of the frame on RX side,
4686 		 * this will add the ns and 2 bits of sec in the reserved field
4687 		 * of the PTP header
4688 		 */
4689 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4690 			       LAN8841_PTP_RX_MODE,
4691 			       LAN8841_PTP_INSERT_TS_EN |
4692 			       LAN8841_PTP_INSERT_TS_32BIT,
4693 			       LAN8841_PTP_INSERT_TS_EN |
4694 			       LAN8841_PTP_INSERT_TS_32BIT);
4695 
4696 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
4697 	} else {
4698 		/* Disable interrupts on the TX side */
4699 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4700 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4701 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
4702 
4703 		/* Disable modification of the RX frames */
4704 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4705 			       LAN8841_PTP_RX_MODE,
4706 			       LAN8841_PTP_INSERT_TS_EN |
4707 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
4708 
4709 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4710 	}
4711 }
4712 
4713 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
4714 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
4715 #define LAN8841_PTP_TX_MOD			445
4716 
4717 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
4718 			    struct kernel_hwtstamp_config *config,
4719 			    struct netlink_ext_ack *extack)
4720 {
4721 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4722 	struct phy_device *phydev = ptp_priv->phydev;
4723 	int txcfg = 0, rxcfg = 0;
4724 	int pkt_ts_enable;
4725 
4726 	ptp_priv->hwts_tx_type = config->tx_type;
4727 	ptp_priv->rx_filter = config->rx_filter;
4728 
4729 	switch (config->rx_filter) {
4730 	case HWTSTAMP_FILTER_NONE:
4731 		ptp_priv->layer = 0;
4732 		ptp_priv->version = 0;
4733 		break;
4734 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4735 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4736 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4737 		ptp_priv->layer = PTP_CLASS_L4;
4738 		ptp_priv->version = PTP_CLASS_V2;
4739 		break;
4740 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4741 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4742 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4743 		ptp_priv->layer = PTP_CLASS_L2;
4744 		ptp_priv->version = PTP_CLASS_V2;
4745 		break;
4746 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
4747 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
4748 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4749 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
4750 		ptp_priv->version = PTP_CLASS_V2;
4751 		break;
4752 	default:
4753 		return -ERANGE;
4754 	}
4755 
4756 	/* Setup parsing of the frames and enable the timestamping for ptp
4757 	 * frames
4758 	 */
4759 	if (ptp_priv->layer & PTP_CLASS_L2) {
4760 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
4761 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
4762 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
4763 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
4764 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
4765 	}
4766 
4767 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
4768 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
4769 
4770 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
4771 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
4772 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
4773 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
4774 
4775 	/* Enable / disable of the TX timestamp in the SYNC frames */
4776 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
4777 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
4778 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
4779 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
4780 
4781 	/* Now enable/disable the timestamping */
4782 	lan8841_ptp_enable_processing(ptp_priv,
4783 				      config->rx_filter != HWTSTAMP_FILTER_NONE);
4784 
4785 	skb_queue_purge(&ptp_priv->tx_queue);
4786 
4787 	lan8841_ptp_flush_fifo(ptp_priv);
4788 
4789 	return 0;
4790 }
4791 
4792 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
4793 			     struct sk_buff *skb, int type)
4794 {
4795 	struct kszphy_ptp_priv *ptp_priv =
4796 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4797 	struct ptp_header *header = ptp_parse_header(skb, type);
4798 	struct skb_shared_hwtstamps *shhwtstamps;
4799 	struct timespec64 ts;
4800 	unsigned long flags;
4801 	u32 ts_header;
4802 
4803 	if (!header)
4804 		return false;
4805 
4806 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
4807 	    type == PTP_CLASS_NONE)
4808 		return false;
4809 
4810 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
4811 		return false;
4812 
4813 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4814 	ts.tv_sec = ptp_priv->seconds;
4815 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4816 	ts_header = __be32_to_cpu(header->reserved2);
4817 
4818 	shhwtstamps = skb_hwtstamps(skb);
4819 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4820 
4821 	/* Check for any wrap arounds for the second part */
4822 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
4823 		ts.tv_sec -= GENMASK(1, 0) + 1;
4824 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
4825 		ts.tv_sec += 1;
4826 
4827 	shhwtstamps->hwtstamp =
4828 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
4829 			  ts_header & GENMASK(29, 0));
4830 	header->reserved2 = 0;
4831 
4832 	netif_rx(skb);
4833 
4834 	return true;
4835 }
4836 
4837 #define LAN8841_EVENT_A		0
4838 #define LAN8841_EVENT_B		1
4839 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
4840 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
4841 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
4842 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
4843 
4844 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
4845 				  s64 sec, u32 nsec)
4846 {
4847 	struct phy_device *phydev = ptp_priv->phydev;
4848 	int ret;
4849 
4850 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
4851 			    upper_16_bits(sec));
4852 	if (ret)
4853 		return ret;
4854 
4855 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
4856 			    lower_16_bits(sec));
4857 	if (ret)
4858 		return ret;
4859 
4860 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
4861 			    upper_16_bits(nsec));
4862 	if (ret)
4863 		return ret;
4864 
4865 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
4866 			    lower_16_bits(nsec));
4867 }
4868 
4869 #define LAN8841_BUFFER_TIME	2
4870 
4871 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
4872 				     const struct timespec64 *ts)
4873 {
4874 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
4875 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
4876 }
4877 
4878 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
4879 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
4880 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
4881 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
4882 
4883 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
4884 				  s64 sec, u32 nsec)
4885 {
4886 	struct phy_device *phydev = ptp_priv->phydev;
4887 	int ret;
4888 
4889 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
4890 			    upper_16_bits(sec));
4891 	if (ret)
4892 		return ret;
4893 
4894 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
4895 			    lower_16_bits(sec));
4896 	if (ret)
4897 		return ret;
4898 
4899 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
4900 			    upper_16_bits(nsec));
4901 	if (ret)
4902 		return ret;
4903 
4904 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
4905 			     lower_16_bits(nsec));
4906 }
4907 
4908 #define LAN8841_PTP_LTC_SET_SEC_HI	262
4909 #define LAN8841_PTP_LTC_SET_SEC_MID	263
4910 #define LAN8841_PTP_LTC_SET_SEC_LO	264
4911 #define LAN8841_PTP_LTC_SET_NS_HI	265
4912 #define LAN8841_PTP_LTC_SET_NS_LO	266
4913 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
4914 
4915 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
4916 				 const struct timespec64 *ts)
4917 {
4918 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4919 							ptp_clock_info);
4920 	struct phy_device *phydev = ptp_priv->phydev;
4921 	unsigned long flags;
4922 	int ret;
4923 
4924 	/* Set the value to be stored */
4925 	mutex_lock(&ptp_priv->ptp_lock);
4926 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
4927 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
4928 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
4929 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
4930 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
4931 
4932 	/* Set the command to load the LTC */
4933 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4934 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
4935 	ret = lan8841_ptp_update_target(ptp_priv, ts);
4936 	mutex_unlock(&ptp_priv->ptp_lock);
4937 
4938 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4939 	ptp_priv->seconds = ts->tv_sec;
4940 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4941 
4942 	return ret;
4943 }
4944 
4945 #define LAN8841_PTP_LTC_RD_SEC_HI	358
4946 #define LAN8841_PTP_LTC_RD_SEC_MID	359
4947 #define LAN8841_PTP_LTC_RD_SEC_LO	360
4948 #define LAN8841_PTP_LTC_RD_NS_HI	361
4949 #define LAN8841_PTP_LTC_RD_NS_LO	362
4950 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
4951 
4952 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
4953 				 struct timespec64 *ts)
4954 {
4955 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4956 							ptp_clock_info);
4957 	struct phy_device *phydev = ptp_priv->phydev;
4958 	time64_t s;
4959 	s64 ns;
4960 
4961 	mutex_lock(&ptp_priv->ptp_lock);
4962 	/* Issue the command to read the LTC */
4963 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4964 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4965 
4966 	/* Read the LTC */
4967 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4968 	s <<= 16;
4969 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4970 	s <<= 16;
4971 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4972 
4973 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
4974 	ns <<= 16;
4975 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
4976 	mutex_unlock(&ptp_priv->ptp_lock);
4977 
4978 	set_normalized_timespec64(ts, s, ns);
4979 	return 0;
4980 }
4981 
4982 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
4983 				   struct timespec64 *ts)
4984 {
4985 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4986 							ptp_clock_info);
4987 	struct phy_device *phydev = ptp_priv->phydev;
4988 	time64_t s;
4989 
4990 	mutex_lock(&ptp_priv->ptp_lock);
4991 	/* Issue the command to read the LTC */
4992 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4993 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4994 
4995 	/* Read the LTC */
4996 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4997 	s <<= 16;
4998 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4999 	s <<= 16;
5000 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
5001 	mutex_unlock(&ptp_priv->ptp_lock);
5002 
5003 	set_normalized_timespec64(ts, s, 0);
5004 }
5005 
5006 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
5007 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
5008 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
5009 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
5010 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
5011 
5012 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
5013 {
5014 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5015 							ptp_clock_info);
5016 	struct phy_device *phydev = ptp_priv->phydev;
5017 	struct timespec64 ts;
5018 	bool add = true;
5019 	u32 nsec;
5020 	s32 sec;
5021 	int ret;
5022 
5023 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
5024 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
5025 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
5026 	 * increment so the value can be bigger than 15 sec. Therefore limit the
5027 	 * possible adjustments so we will not have these corner cases
5028 	 */
5029 	if (delta > 10000000000LL || delta < -10000000000LL) {
5030 		/* The timeadjustment is too big, so fall back using set time */
5031 		u64 now;
5032 
5033 		ptp->gettime64(ptp, &ts);
5034 
5035 		now = ktime_to_ns(timespec64_to_ktime(ts));
5036 		ts = ns_to_timespec64(now + delta);
5037 
5038 		ptp->settime64(ptp, &ts);
5039 		return 0;
5040 	}
5041 
5042 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
5043 	if (delta < 0 && nsec != 0) {
5044 		/* It is not allowed to adjust low the nsec part, therefore
5045 		 * subtract more from second part and add to nanosecond such
5046 		 * that would roll over, so the second part will increase
5047 		 */
5048 		sec--;
5049 		nsec = NSEC_PER_SEC - nsec;
5050 	}
5051 
5052 	/* Calculate the adjustments and the direction */
5053 	if (delta < 0)
5054 		add = false;
5055 
5056 	if (nsec > 0)
5057 		/* add 8 ns to cover the likely normal increment */
5058 		nsec += 8;
5059 
5060 	if (nsec >= NSEC_PER_SEC) {
5061 		/* carry into seconds */
5062 		sec++;
5063 		nsec -= NSEC_PER_SEC;
5064 	}
5065 
5066 	mutex_lock(&ptp_priv->ptp_lock);
5067 	if (sec) {
5068 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
5069 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
5070 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
5071 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5072 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
5073 	}
5074 
5075 	if (nsec) {
5076 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
5077 			      nsec & 0xffff);
5078 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
5079 			      (nsec >> 16) & 0x3fff);
5080 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
5081 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
5082 	}
5083 	mutex_unlock(&ptp_priv->ptp_lock);
5084 
5085 	/* Update the target clock */
5086 	ptp->gettime64(ptp, &ts);
5087 	mutex_lock(&ptp_priv->ptp_lock);
5088 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
5089 	mutex_unlock(&ptp_priv->ptp_lock);
5090 
5091 	return ret;
5092 }
5093 
5094 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
5095 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
5096 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
5097 
5098 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
5099 {
5100 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5101 							ptp_clock_info);
5102 	struct phy_device *phydev = ptp_priv->phydev;
5103 	bool faster = true;
5104 	u32 rate;
5105 
5106 	if (!scaled_ppm)
5107 		return 0;
5108 
5109 	if (scaled_ppm < 0) {
5110 		scaled_ppm = -scaled_ppm;
5111 		faster = false;
5112 	}
5113 
5114 	rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
5115 	rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
5116 
5117 	mutex_lock(&ptp_priv->ptp_lock);
5118 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
5119 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
5120 			     : upper_16_bits(rate) & 0x3fff);
5121 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
5122 	mutex_unlock(&ptp_priv->ptp_lock);
5123 
5124 	return 0;
5125 }
5126 
5127 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
5128 			      enum ptp_pin_function func, unsigned int chan)
5129 {
5130 	switch (func) {
5131 	case PTP_PF_NONE:
5132 	case PTP_PF_PEROUT:
5133 	case PTP_PF_EXTTS:
5134 		break;
5135 	default:
5136 		return -1;
5137 	}
5138 
5139 	return 0;
5140 }
5141 
5142 #define LAN8841_PTP_GPIO_NUM	10
5143 #define LAN8841_GPIO_EN		128
5144 #define LAN8841_GPIO_DIR	129
5145 #define LAN8841_GPIO_BUF	130
5146 
5147 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5148 {
5149 	struct phy_device *phydev = ptp_priv->phydev;
5150 	int ret;
5151 
5152 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5153 	if (ret)
5154 		return ret;
5155 
5156 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
5157 	if (ret)
5158 		return ret;
5159 
5160 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5161 }
5162 
5163 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
5164 {
5165 	struct phy_device *phydev = ptp_priv->phydev;
5166 	int ret;
5167 
5168 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5169 	if (ret)
5170 		return ret;
5171 
5172 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
5173 	if (ret)
5174 		return ret;
5175 
5176 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5177 }
5178 
5179 #define LAN8841_GPIO_DATA_SEL1				131
5180 #define LAN8841_GPIO_DATA_SEL2				132
5181 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
5182 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
5183 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
5184 #define LAN8841_PTP_GENERAL_CONFIG			257
5185 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
5186 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
5187 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
5188 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
5189 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
5190 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
5191 
5192 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
5193 				    u8 event)
5194 {
5195 	struct phy_device *phydev = ptp_priv->phydev;
5196 	u16 tmp;
5197 	int ret;
5198 
5199 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
5200 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5201 	 * depending on the pin, it requires to read a different register
5202 	 */
5203 	if (pin < 5) {
5204 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
5205 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
5206 	} else {
5207 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
5208 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
5209 	}
5210 	if (ret)
5211 		return ret;
5212 
5213 	/* Disable the event */
5214 	if (event == LAN8841_EVENT_A)
5215 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5216 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
5217 	else
5218 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5219 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
5220 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
5221 }
5222 
5223 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
5224 				    u8 event, int pulse_width)
5225 {
5226 	struct phy_device *phydev = ptp_priv->phydev;
5227 	u16 tmp;
5228 	int ret;
5229 
5230 	/* Enable the event */
5231 	if (event == LAN8841_EVENT_A)
5232 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5233 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5234 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
5235 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
5236 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
5237 	else
5238 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
5239 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5240 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
5241 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
5242 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
5243 	if (ret)
5244 		return ret;
5245 
5246 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
5247 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
5248 	 * depending on the pin, it requires to read a different register
5249 	 */
5250 	if (event == LAN8841_EVENT_A)
5251 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
5252 	else
5253 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
5254 
5255 	if (pin < 5)
5256 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
5257 				       tmp << (3 * pin));
5258 	else
5259 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
5260 				       tmp << (3 * (pin - 5)));
5261 
5262 	return ret;
5263 }
5264 
5265 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
5266 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
5267 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
5268 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
5269 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
5270 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
5271 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
5272 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
5273 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
5274 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
5275 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
5276 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
5277 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
5278 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
5279 
5280 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
5281 			      struct ptp_clock_request *rq, int on)
5282 {
5283 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5284 							ptp_clock_info);
5285 	struct phy_device *phydev = ptp_priv->phydev;
5286 	struct timespec64 ts_on, ts_period;
5287 	s64 on_nsec, period_nsec;
5288 	int pulse_width;
5289 	int pin;
5290 	int ret;
5291 
5292 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
5293 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5294 		return -EINVAL;
5295 
5296 	if (!on) {
5297 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
5298 		if (ret)
5299 			return ret;
5300 
5301 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
5302 	}
5303 
5304 	ts_on.tv_sec = rq->perout.on.sec;
5305 	ts_on.tv_nsec = rq->perout.on.nsec;
5306 	on_nsec = timespec64_to_ns(&ts_on);
5307 
5308 	ts_period.tv_sec = rq->perout.period.sec;
5309 	ts_period.tv_nsec = rq->perout.period.nsec;
5310 	period_nsec = timespec64_to_ns(&ts_period);
5311 
5312 	if (period_nsec < 200) {
5313 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
5314 				    phydev_name(phydev));
5315 		return -EOPNOTSUPP;
5316 	}
5317 
5318 	if (on_nsec >= period_nsec) {
5319 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
5320 				    phydev_name(phydev));
5321 		return -EINVAL;
5322 	}
5323 
5324 	switch (on_nsec) {
5325 	case 200000000:
5326 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
5327 		break;
5328 	case 100000000:
5329 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
5330 		break;
5331 	case 50000000:
5332 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
5333 		break;
5334 	case 10000000:
5335 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
5336 		break;
5337 	case 5000000:
5338 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
5339 		break;
5340 	case 1000000:
5341 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
5342 		break;
5343 	case 500000:
5344 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
5345 		break;
5346 	case 100000:
5347 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
5348 		break;
5349 	case 50000:
5350 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
5351 		break;
5352 	case 10000:
5353 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
5354 		break;
5355 	case 5000:
5356 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
5357 		break;
5358 	case 1000:
5359 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
5360 		break;
5361 	case 500:
5362 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
5363 		break;
5364 	case 100:
5365 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5366 		break;
5367 	default:
5368 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
5369 				    phydev_name(phydev));
5370 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5371 		break;
5372 	}
5373 
5374 	mutex_lock(&ptp_priv->ptp_lock);
5375 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
5376 				     rq->perout.start.nsec);
5377 	mutex_unlock(&ptp_priv->ptp_lock);
5378 	if (ret)
5379 		return ret;
5380 
5381 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
5382 				     rq->perout.period.nsec);
5383 	if (ret)
5384 		return ret;
5385 
5386 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
5387 				       pulse_width);
5388 	if (ret)
5389 		return ret;
5390 
5391 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
5392 	if (ret)
5393 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
5394 
5395 	return ret;
5396 }
5397 
5398 #define LAN8841_PTP_GPIO_CAP_EN			496
5399 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
5400 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
5401 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
5402 
5403 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
5404 				u32 flags)
5405 {
5406 	struct phy_device *phydev = ptp_priv->phydev;
5407 	u16 tmp = 0;
5408 	int ret;
5409 
5410 	/* Set GPIO to be intput */
5411 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5412 	if (ret)
5413 		return ret;
5414 
5415 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5416 	if (ret)
5417 		return ret;
5418 
5419 	/* Enable capture on the edges of the pin */
5420 	if (flags & PTP_RISING_EDGE)
5421 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5422 	if (flags & PTP_FALLING_EDGE)
5423 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5424 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5425 	if (ret)
5426 		return ret;
5427 
5428 	/* Enable interrupt */
5429 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5430 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5431 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5432 }
5433 
5434 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5435 {
5436 	struct phy_device *phydev = ptp_priv->phydev;
5437 	int ret;
5438 
5439 	/* Set GPIO to be output */
5440 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5441 	if (ret)
5442 		return ret;
5443 
5444 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5445 	if (ret)
5446 		return ret;
5447 
5448 	/* Disable capture on both of the edges */
5449 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5450 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5451 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5452 			     0);
5453 	if (ret)
5454 		return ret;
5455 
5456 	/* Disable interrupt */
5457 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5458 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5459 			      0);
5460 }
5461 
5462 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5463 			     struct ptp_clock_request *rq, int on)
5464 {
5465 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5466 							ptp_clock_info);
5467 	int pin;
5468 	int ret;
5469 
5470 	/* Reject requests with unsupported flags */
5471 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5472 				PTP_EXTTS_EDGES |
5473 				PTP_STRICT_FLAGS))
5474 		return -EOPNOTSUPP;
5475 
5476 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5477 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5478 		return -EINVAL;
5479 
5480 	mutex_lock(&ptp_priv->ptp_lock);
5481 	if (on)
5482 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5483 	else
5484 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
5485 	mutex_unlock(&ptp_priv->ptp_lock);
5486 
5487 	return ret;
5488 }
5489 
5490 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5491 			      struct ptp_clock_request *rq, int on)
5492 {
5493 	switch (rq->type) {
5494 	case PTP_CLK_REQ_EXTTS:
5495 		return lan8841_ptp_extts(ptp, rq, on);
5496 	case PTP_CLK_REQ_PEROUT:
5497 		return lan8841_ptp_perout(ptp, rq, on);
5498 	default:
5499 		return -EOPNOTSUPP;
5500 	}
5501 
5502 	return 0;
5503 }
5504 
5505 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5506 {
5507 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5508 							ptp_clock_info);
5509 	struct timespec64 ts;
5510 	unsigned long flags;
5511 
5512 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5513 
5514 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5515 	ptp_priv->seconds = ts.tv_sec;
5516 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5517 
5518 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5519 }
5520 
5521 static struct ptp_clock_info lan8841_ptp_clock_info = {
5522 	.owner		= THIS_MODULE,
5523 	.name		= "lan8841 ptp",
5524 	.max_adj	= 31249999,
5525 	.gettime64	= lan8841_ptp_gettime64,
5526 	.settime64	= lan8841_ptp_settime64,
5527 	.adjtime	= lan8841_ptp_adjtime,
5528 	.adjfine	= lan8841_ptp_adjfine,
5529 	.verify         = lan8841_ptp_verify,
5530 	.enable         = lan8841_ptp_enable,
5531 	.do_aux_work	= lan8841_ptp_do_aux_work,
5532 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
5533 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
5534 	.n_pins         = LAN8841_PTP_GPIO_NUM,
5535 	.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE,
5536 };
5537 
5538 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5539 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5540 
5541 static int lan8841_probe(struct phy_device *phydev)
5542 {
5543 	struct kszphy_ptp_priv *ptp_priv;
5544 	struct kszphy_priv *priv;
5545 	int err;
5546 
5547 	err = kszphy_probe(phydev);
5548 	if (err)
5549 		return err;
5550 
5551 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5552 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5553 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5554 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5555 
5556 	/* Register the clock */
5557 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5558 		return 0;
5559 
5560 	priv = phydev->priv;
5561 	ptp_priv = &priv->ptp_priv;
5562 
5563 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5564 					    LAN8841_PTP_GPIO_NUM,
5565 					    sizeof(*ptp_priv->pin_config),
5566 					    GFP_KERNEL);
5567 	if (!ptp_priv->pin_config)
5568 		return -ENOMEM;
5569 
5570 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5571 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5572 
5573 		snprintf(p->name, sizeof(p->name), "pin%d", i);
5574 		p->index = i;
5575 		p->func = PTP_PF_NONE;
5576 	}
5577 
5578 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5579 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5580 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5581 						 &phydev->mdio.dev);
5582 	if (IS_ERR(ptp_priv->ptp_clock)) {
5583 		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
5584 			   PTR_ERR(ptp_priv->ptp_clock));
5585 		return -EINVAL;
5586 	}
5587 
5588 	if (!ptp_priv->ptp_clock)
5589 		return 0;
5590 
5591 	/* Initialize the SW */
5592 	skb_queue_head_init(&ptp_priv->tx_queue);
5593 	ptp_priv->phydev = phydev;
5594 	mutex_init(&ptp_priv->ptp_lock);
5595 	spin_lock_init(&ptp_priv->seconds_lock);
5596 
5597 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5598 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5599 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5600 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5601 
5602 	phydev->mii_ts = &ptp_priv->mii_ts;
5603 
5604 	/* Timestamp selected by default to keep legacy API */
5605 	phydev->default_timestamp = true;
5606 
5607 	return 0;
5608 }
5609 
5610 static int lan8804_resume(struct phy_device *phydev)
5611 {
5612 	return kszphy_resume(phydev);
5613 }
5614 
5615 static int lan8804_suspend(struct phy_device *phydev)
5616 {
5617 	return kszphy_generic_suspend(phydev);
5618 }
5619 
5620 static int lan8841_resume(struct phy_device *phydev)
5621 {
5622 	return kszphy_generic_resume(phydev);
5623 }
5624 
5625 static int lan8841_suspend(struct phy_device *phydev)
5626 {
5627 	struct kszphy_priv *priv = phydev->priv;
5628 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5629 
5630 	if (ptp_priv->ptp_clock)
5631 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5632 
5633 	return kszphy_generic_suspend(phydev);
5634 }
5635 
5636 static int ksz9131_resume(struct phy_device *phydev)
5637 {
5638 	if (phydev->suspended && phy_interface_is_rgmii(phydev))
5639 		ksz9131_config_rgmii_delay(phydev);
5640 
5641 	return kszphy_resume(phydev);
5642 }
5643 
5644 static struct phy_driver ksphy_driver[] = {
5645 {
5646 	.phy_id		= PHY_ID_KS8737,
5647 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5648 	.name		= "Micrel KS8737",
5649 	/* PHY_BASIC_FEATURES */
5650 	.driver_data	= &ks8737_type,
5651 	.probe		= kszphy_probe,
5652 	.config_init	= kszphy_config_init,
5653 	.config_intr	= kszphy_config_intr,
5654 	.handle_interrupt = kszphy_handle_interrupt,
5655 	.suspend	= kszphy_suspend,
5656 	.resume		= kszphy_resume,
5657 }, {
5658 	.phy_id		= PHY_ID_KSZ8021,
5659 	.phy_id_mask	= 0x00ffffff,
5660 	.name		= "Micrel KSZ8021 or KSZ8031",
5661 	/* PHY_BASIC_FEATURES */
5662 	.driver_data	= &ksz8021_type,
5663 	.probe		= kszphy_probe,
5664 	.config_init	= kszphy_config_init,
5665 	.config_intr	= kszphy_config_intr,
5666 	.handle_interrupt = kszphy_handle_interrupt,
5667 	.get_sset_count = kszphy_get_sset_count,
5668 	.get_strings	= kszphy_get_strings,
5669 	.get_stats	= kszphy_get_stats,
5670 	.suspend	= kszphy_suspend,
5671 	.resume		= kszphy_resume,
5672 }, {
5673 	.phy_id		= PHY_ID_KSZ8031,
5674 	.phy_id_mask	= 0x00ffffff,
5675 	.name		= "Micrel KSZ8031",
5676 	/* PHY_BASIC_FEATURES */
5677 	.driver_data	= &ksz8021_type,
5678 	.probe		= kszphy_probe,
5679 	.config_init	= kszphy_config_init,
5680 	.config_intr	= kszphy_config_intr,
5681 	.handle_interrupt = kszphy_handle_interrupt,
5682 	.get_sset_count = kszphy_get_sset_count,
5683 	.get_strings	= kszphy_get_strings,
5684 	.get_stats	= kszphy_get_stats,
5685 	.suspend	= kszphy_suspend,
5686 	.resume		= kszphy_resume,
5687 }, {
5688 	.phy_id		= PHY_ID_KSZ8041,
5689 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5690 	.name		= "Micrel KSZ8041",
5691 	/* PHY_BASIC_FEATURES */
5692 	.driver_data	= &ksz8041_type,
5693 	.probe		= kszphy_probe,
5694 	.config_init	= ksz8041_config_init,
5695 	.config_aneg	= ksz8041_config_aneg,
5696 	.config_intr	= kszphy_config_intr,
5697 	.handle_interrupt = kszphy_handle_interrupt,
5698 	.get_sset_count = kszphy_get_sset_count,
5699 	.get_strings	= kszphy_get_strings,
5700 	.get_stats	= kszphy_get_stats,
5701 	.suspend	= ksz8041_suspend,
5702 	.resume		= ksz8041_resume,
5703 }, {
5704 	.phy_id		= PHY_ID_KSZ8041RNLI,
5705 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5706 	.name		= "Micrel KSZ8041RNLI",
5707 	/* PHY_BASIC_FEATURES */
5708 	.driver_data	= &ksz8041_type,
5709 	.probe		= kszphy_probe,
5710 	.config_init	= kszphy_config_init,
5711 	.config_intr	= kszphy_config_intr,
5712 	.handle_interrupt = kszphy_handle_interrupt,
5713 	.get_sset_count = kszphy_get_sset_count,
5714 	.get_strings	= kszphy_get_strings,
5715 	.get_stats	= kszphy_get_stats,
5716 	.suspend	= kszphy_suspend,
5717 	.resume		= kszphy_resume,
5718 }, {
5719 	.name		= "Micrel KSZ8051",
5720 	/* PHY_BASIC_FEATURES */
5721 	.driver_data	= &ksz8051_type,
5722 	.probe		= kszphy_probe,
5723 	.config_init	= kszphy_config_init,
5724 	.config_intr	= kszphy_config_intr,
5725 	.handle_interrupt = kszphy_handle_interrupt,
5726 	.get_sset_count = kszphy_get_sset_count,
5727 	.get_strings	= kszphy_get_strings,
5728 	.get_stats	= kszphy_get_stats,
5729 	.match_phy_device = ksz8051_match_phy_device,
5730 	.suspend	= kszphy_suspend,
5731 	.resume		= kszphy_resume,
5732 }, {
5733 	.phy_id		= PHY_ID_KSZ8001,
5734 	.name		= "Micrel KSZ8001 or KS8721",
5735 	.phy_id_mask	= 0x00fffffc,
5736 	/* PHY_BASIC_FEATURES */
5737 	.driver_data	= &ksz8041_type,
5738 	.probe		= kszphy_probe,
5739 	.config_init	= kszphy_config_init,
5740 	.config_intr	= kszphy_config_intr,
5741 	.handle_interrupt = kszphy_handle_interrupt,
5742 	.get_sset_count = kszphy_get_sset_count,
5743 	.get_strings	= kszphy_get_strings,
5744 	.get_stats	= kszphy_get_stats,
5745 	.suspend	= kszphy_suspend,
5746 	.resume		= kszphy_resume,
5747 }, {
5748 	.phy_id		= PHY_ID_KSZ8081,
5749 	.name		= "Micrel KSZ8081 or KSZ8091",
5750 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5751 	.flags		= PHY_POLL_CABLE_TEST,
5752 	/* PHY_BASIC_FEATURES */
5753 	.driver_data	= &ksz8081_type,
5754 	.probe		= kszphy_probe,
5755 	.config_init	= ksz8081_config_init,
5756 	.soft_reset	= genphy_soft_reset,
5757 	.config_aneg	= ksz8081_config_aneg,
5758 	.read_status	= ksz8081_read_status,
5759 	.config_intr	= kszphy_config_intr,
5760 	.handle_interrupt = kszphy_handle_interrupt,
5761 	.get_sset_count = kszphy_get_sset_count,
5762 	.get_strings	= kszphy_get_strings,
5763 	.get_stats	= kszphy_get_stats,
5764 	.suspend	= kszphy_suspend,
5765 	.resume		= kszphy_resume,
5766 	.cable_test_start	= ksz886x_cable_test_start,
5767 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5768 }, {
5769 	.phy_id		= PHY_ID_KSZ8061,
5770 	.name		= "Micrel KSZ8061",
5771 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5772 	/* PHY_BASIC_FEATURES */
5773 	.probe		= kszphy_probe,
5774 	.config_init	= ksz8061_config_init,
5775 	.soft_reset	= genphy_soft_reset,
5776 	.config_intr	= kszphy_config_intr,
5777 	.handle_interrupt = kszphy_handle_interrupt,
5778 	.suspend	= ksz8061_suspend,
5779 	.resume		= ksz8061_resume,
5780 }, {
5781 	.phy_id		= PHY_ID_KSZ9021,
5782 	.phy_id_mask	= 0x000ffffe,
5783 	.name		= "Micrel KSZ9021 Gigabit PHY",
5784 	/* PHY_GBIT_FEATURES */
5785 	.driver_data	= &ksz9021_type,
5786 	.probe		= kszphy_probe,
5787 	.get_features	= ksz9031_get_features,
5788 	.config_init	= ksz9021_config_init,
5789 	.config_intr	= kszphy_config_intr,
5790 	.handle_interrupt = kszphy_handle_interrupt,
5791 	.get_sset_count = kszphy_get_sset_count,
5792 	.get_strings	= kszphy_get_strings,
5793 	.get_stats	= kszphy_get_stats,
5794 	.suspend	= kszphy_suspend,
5795 	.resume		= kszphy_resume,
5796 	.read_mmd	= genphy_read_mmd_unsupported,
5797 	.write_mmd	= genphy_write_mmd_unsupported,
5798 }, {
5799 	.phy_id		= PHY_ID_KSZ9031,
5800 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5801 	.name		= "Micrel KSZ9031 Gigabit PHY",
5802 	.flags		= PHY_POLL_CABLE_TEST,
5803 	.driver_data	= &ksz9021_type,
5804 	.probe		= kszphy_probe,
5805 	.get_features	= ksz9031_get_features,
5806 	.config_init	= ksz9031_config_init,
5807 	.soft_reset	= genphy_soft_reset,
5808 	.read_status	= ksz9031_read_status,
5809 	.config_intr	= kszphy_config_intr,
5810 	.handle_interrupt = kszphy_handle_interrupt,
5811 	.get_sset_count = kszphy_get_sset_count,
5812 	.get_strings	= kszphy_get_strings,
5813 	.get_stats	= kszphy_get_stats,
5814 	.suspend	= kszphy_suspend,
5815 	.resume		= kszphy_resume,
5816 	.cable_test_start	= ksz9x31_cable_test_start,
5817 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
5818 	.set_loopback	= ksz9031_set_loopback,
5819 }, {
5820 	.phy_id		= PHY_ID_LAN8814,
5821 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5822 	.name		= "Microchip INDY Gigabit Quad PHY",
5823 	.flags          = PHY_POLL_CABLE_TEST,
5824 	.config_init	= lan8814_config_init,
5825 	.driver_data	= &lan8814_type,
5826 	.probe		= lan8814_probe,
5827 	.soft_reset	= genphy_soft_reset,
5828 	.read_status	= ksz9031_read_status,
5829 	.get_sset_count	= kszphy_get_sset_count,
5830 	.get_strings	= kszphy_get_strings,
5831 	.get_stats	= kszphy_get_stats,
5832 	.suspend	= genphy_suspend,
5833 	.resume		= kszphy_resume,
5834 	.config_intr	= lan8814_config_intr,
5835 	.handle_interrupt = lan8814_handle_interrupt,
5836 	.cable_test_start	= lan8814_cable_test_start,
5837 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5838 }, {
5839 	.phy_id		= PHY_ID_LAN8804,
5840 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5841 	.name		= "Microchip LAN966X Gigabit PHY",
5842 	.config_init	= lan8804_config_init,
5843 	.driver_data	= &ksz9021_type,
5844 	.probe		= kszphy_probe,
5845 	.soft_reset	= genphy_soft_reset,
5846 	.read_status	= ksz9031_read_status,
5847 	.get_sset_count	= kszphy_get_sset_count,
5848 	.get_strings	= kszphy_get_strings,
5849 	.get_stats	= kszphy_get_stats,
5850 	.suspend	= lan8804_suspend,
5851 	.resume		= lan8804_resume,
5852 	.config_intr	= lan8804_config_intr,
5853 	.handle_interrupt = lan8804_handle_interrupt,
5854 }, {
5855 	.phy_id		= PHY_ID_LAN8841,
5856 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5857 	.name		= "Microchip LAN8841 Gigabit PHY",
5858 	.flags		= PHY_POLL_CABLE_TEST,
5859 	.driver_data	= &lan8841_type,
5860 	.config_init	= lan8841_config_init,
5861 	.probe		= lan8841_probe,
5862 	.soft_reset	= genphy_soft_reset,
5863 	.config_intr	= lan8841_config_intr,
5864 	.handle_interrupt = lan8841_handle_interrupt,
5865 	.get_sset_count = kszphy_get_sset_count,
5866 	.get_strings	= kszphy_get_strings,
5867 	.get_stats	= kszphy_get_stats,
5868 	.suspend	= lan8841_suspend,
5869 	.resume		= lan8841_resume,
5870 	.cable_test_start	= lan8814_cable_test_start,
5871 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5872 }, {
5873 	.phy_id		= PHY_ID_KSZ9131,
5874 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5875 	.name		= "Microchip KSZ9131 Gigabit PHY",
5876 	/* PHY_GBIT_FEATURES */
5877 	.flags		= PHY_POLL_CABLE_TEST,
5878 	.driver_data	= &ksz9131_type,
5879 	.probe		= kszphy_probe,
5880 	.soft_reset	= genphy_soft_reset,
5881 	.config_init	= ksz9131_config_init,
5882 	.config_intr	= kszphy_config_intr,
5883 	.config_aneg	= ksz9131_config_aneg,
5884 	.read_status	= ksz9131_read_status,
5885 	.handle_interrupt = kszphy_handle_interrupt,
5886 	.get_sset_count = kszphy_get_sset_count,
5887 	.get_strings	= kszphy_get_strings,
5888 	.get_stats	= kszphy_get_stats,
5889 	.suspend	= kszphy_suspend,
5890 	.resume		= ksz9131_resume,
5891 	.cable_test_start	= ksz9x31_cable_test_start,
5892 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
5893 	.get_features	= ksz9477_get_features,
5894 }, {
5895 	.phy_id		= PHY_ID_KSZ8873MLL,
5896 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5897 	.name		= "Micrel KSZ8873MLL Switch",
5898 	/* PHY_BASIC_FEATURES */
5899 	.config_init	= kszphy_config_init,
5900 	.config_aneg	= ksz8873mll_config_aneg,
5901 	.read_status	= ksz8873mll_read_status,
5902 	.suspend	= genphy_suspend,
5903 	.resume		= genphy_resume,
5904 }, {
5905 	.phy_id		= PHY_ID_KSZ886X,
5906 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5907 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
5908 	.driver_data	= &ksz886x_type,
5909 	/* PHY_BASIC_FEATURES */
5910 	.flags		= PHY_POLL_CABLE_TEST,
5911 	.config_init	= kszphy_config_init,
5912 	.config_aneg	= ksz886x_config_aneg,
5913 	.read_status	= ksz886x_read_status,
5914 	.suspend	= genphy_suspend,
5915 	.resume		= genphy_resume,
5916 	.cable_test_start	= ksz886x_cable_test_start,
5917 	.cable_test_get_status	= ksz886x_cable_test_get_status,
5918 }, {
5919 	.name		= "Micrel KSZ87XX Switch",
5920 	/* PHY_BASIC_FEATURES */
5921 	.config_init	= kszphy_config_init,
5922 	.match_phy_device = ksz8795_match_phy_device,
5923 	.suspend	= genphy_suspend,
5924 	.resume		= genphy_resume,
5925 }, {
5926 	.phy_id		= PHY_ID_KSZ9477,
5927 	.phy_id_mask	= MICREL_PHY_ID_MASK,
5928 	.name		= "Microchip KSZ9477",
5929 	.probe		= kszphy_probe,
5930 	/* PHY_GBIT_FEATURES */
5931 	.config_init	= ksz9477_config_init,
5932 	.config_intr	= kszphy_config_intr,
5933 	.config_aneg	= ksz9477_config_aneg,
5934 	.read_status	= ksz9477_read_status,
5935 	.handle_interrupt = kszphy_handle_interrupt,
5936 	.suspend	= genphy_suspend,
5937 	.resume		= ksz9477_resume,
5938 	.get_phy_stats	= kszphy_get_phy_stats,
5939 	.update_stats	= kszphy_update_stats,
5940 	.cable_test_start	= ksz9x31_cable_test_start,
5941 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
5942 	.get_sqi	= kszphy_get_sqi,
5943 	.get_sqi_max	= kszphy_get_sqi_max,
5944 } };
5945 
5946 module_phy_driver(ksphy_driver);
5947 
5948 MODULE_DESCRIPTION("Micrel PHY driver");
5949 MODULE_AUTHOR("David J. Choi");
5950 MODULE_LICENSE("GPL");
5951 
5952 static const struct mdio_device_id __maybe_unused micrel_tbl[] = {
5953 	{ PHY_ID_KSZ9021, 0x000ffffe },
5954 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
5955 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
5956 	{ PHY_ID_KSZ8001, 0x00fffffc },
5957 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
5958 	{ PHY_ID_KSZ8021, 0x00ffffff },
5959 	{ PHY_ID_KSZ8031, 0x00ffffff },
5960 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
5961 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
5962 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
5963 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
5964 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
5965 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
5966 	{ PHY_ID_KSZ9477, MICREL_PHY_ID_MASK },
5967 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
5968 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
5969 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
5970 	{ }
5971 };
5972 
5973 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
5974