1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * drivers/net/phy/micrel.c 4 * 5 * Driver for Micrel PHYs 6 * 7 * Author: David J. Choi 8 * 9 * Copyright (c) 2010-2013 Micrel, Inc. 10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org> 11 * 12 * Support : Micrel Phys: 13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 15 * ksz8021, ksz8031, ksz8051, 16 * ksz8081, ksz8091, 17 * ksz8061, 18 * Switch : ksz8873, ksz886x 19 * ksz9477, lan8804 20 */ 21 22 #include <linux/bitfield.h> 23 #include <linux/ethtool_netlink.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/phy.h> 27 #include <linux/micrel_phy.h> 28 #include <linux/of.h> 29 #include <linux/clk.h> 30 #include <linux/delay.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/ptp_clock.h> 33 #include <linux/ptp_classify.h> 34 #include <linux/net_tstamp.h> 35 #include <linux/gpio/consumer.h> 36 37 #include "phylib.h" 38 39 /* Operation Mode Strap Override */ 40 #define MII_KSZPHY_OMSO 0x16 41 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) 42 #define KSZPHY_OMSO_B_CAST_OFF BIT(9) 43 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) 44 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) 45 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) 46 47 /* general Interrupt control/status reg in vendor specific block. */ 48 #define MII_KSZPHY_INTCS 0x1B 49 #define KSZPHY_INTCS_JABBER BIT(15) 50 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) 51 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) 52 #define KSZPHY_INTCS_PARELLEL BIT(12) 53 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) 54 #define KSZPHY_INTCS_LINK_DOWN BIT(10) 55 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) 56 #define KSZPHY_INTCS_LINK_UP BIT(8) 57 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ 58 KSZPHY_INTCS_LINK_DOWN) 59 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) 60 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) 61 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ 62 KSZPHY_INTCS_LINK_UP_STATUS) 63 64 /* LinkMD Control/Status */ 65 #define KSZ8081_LMD 0x1d 66 #define KSZ8081_LMD_ENABLE_TEST BIT(15) 67 #define KSZ8081_LMD_STAT_NORMAL 0 68 #define KSZ8081_LMD_STAT_OPEN 1 69 #define KSZ8081_LMD_STAT_SHORT 2 70 #define KSZ8081_LMD_STAT_FAIL 3 71 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) 72 /* Short cable (<10 meter) has been detected by LinkMD */ 73 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) 74 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) 75 76 #define KSZ9x31_LMD 0x12 77 #define KSZ9x31_LMD_VCT_EN BIT(15) 78 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) 79 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) 80 #define KSZ9x31_LMD_VCT_SEL_RESULT 0 81 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) 82 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) 83 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) 84 #define KSZ9x31_LMD_VCT_ST_NORMAL 0 85 #define KSZ9x31_LMD_VCT_ST_OPEN 1 86 #define KSZ9x31_LMD_VCT_ST_SHORT 2 87 #define KSZ9x31_LMD_VCT_ST_FAIL 3 88 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) 89 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) 90 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) 91 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) 92 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) 93 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) 94 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) 95 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) 96 97 #define KSZPHY_WIRE_PAIR_MASK 0x3 98 99 #define LAN8814_CABLE_DIAG 0x12 100 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) 101 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) 102 #define LAN8814_PAIR_BIT_SHIFT 12 103 104 #define LAN8814_WIRE_PAIR_MASK 0xF 105 106 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ 107 #define LAN8814_INTC 0x18 108 #define LAN8814_INTS 0x1B 109 110 #define LAN8814_INT_LINK_DOWN BIT(2) 111 #define LAN8814_INT_LINK_UP BIT(0) 112 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ 113 LAN8814_INT_LINK_DOWN) 114 115 #define LAN8814_INTR_CTRL_REG 0x34 116 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) 117 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) 118 119 #define LAN8814_EEE_STATE 0x38 120 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) 121 122 #define LAN8814_PD_CONTROLS 0x9d 123 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) 124 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb 125 126 /* Represents 1ppm adjustment in 2^32 format with 127 * each nsec contains 4 clock cycles. 128 * The value is calculated as following: (1/1000000)/((2^-32)/4) 129 */ 130 #define LAN8814_1PPM_FORMAT 17179 131 132 /* Represents 1ppm adjustment in 2^32 format with 133 * each nsec contains 8 clock cycles. 134 * The value is calculated as following: (1/1000000)/((2^-32)/8) 135 */ 136 #define LAN8841_1PPM_FORMAT 34360 137 138 #define PTP_RX_VERSION 0x0248 139 #define PTP_TX_VERSION 0x0288 140 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) 141 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) 142 143 #define PTP_RX_MOD 0x024F 144 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 145 #define PTP_RX_TIMESTAMP_EN 0x024D 146 #define PTP_TX_TIMESTAMP_EN 0x028D 147 148 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) 149 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) 150 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) 151 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) 152 153 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 154 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 155 156 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 157 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 158 #define LTC_HARD_RESET 0x023F 159 #define LTC_HARD_RESET_ BIT(0) 160 161 #define TSU_HARD_RESET 0x02C1 162 #define TSU_HARD_RESET_ BIT(0) 163 164 #define PTP_CMD_CTL 0x0200 165 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) 166 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) 167 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) 168 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) 169 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) 170 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) 171 172 #define PTP_COMMON_INT_ENA 0x0204 173 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) 174 175 #define PTP_CLOCK_SET_SEC_HI 0x0205 176 #define PTP_CLOCK_SET_SEC_MID 0x0206 177 #define PTP_CLOCK_SET_SEC_LO 0x0207 178 #define PTP_CLOCK_SET_NS_HI 0x0208 179 #define PTP_CLOCK_SET_NS_LO 0x0209 180 181 #define PTP_CLOCK_READ_SEC_HI 0x0229 182 #define PTP_CLOCK_READ_SEC_MID 0x022A 183 #define PTP_CLOCK_READ_SEC_LO 0x022B 184 #define PTP_CLOCK_READ_NS_HI 0x022C 185 #define PTP_CLOCK_READ_NS_LO 0x022D 186 187 #define PTP_GPIO_SEL 0x0230 188 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) 189 #define PTP_GPIO_CAP_MAP_LO 0x0232 190 191 #define PTP_GPIO_CAP_EN 0x0233 192 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) 193 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 194 195 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 196 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 197 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 198 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 199 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 200 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A 201 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B 202 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C 203 204 #define PTP_GPIO_CAP_STS 0x023D 205 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) 206 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) 207 208 #define PTP_OPERATING_MODE 0x0241 209 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) 210 211 #define PTP_TX_MOD 0x028F 212 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) 213 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) 214 215 #define PTP_RX_PARSE_CONFIG 0x0242 216 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 217 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) 218 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) 219 220 #define PTP_TX_PARSE_CONFIG 0x0282 221 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) 222 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) 223 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) 224 225 #define PTP_CLOCK_RATE_ADJ_HI 0x020C 226 #define PTP_CLOCK_RATE_ADJ_LO 0x020D 227 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) 228 229 #define PTP_LTC_STEP_ADJ_HI 0x0212 230 #define PTP_LTC_STEP_ADJ_LO 0x0213 231 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) 232 233 #define LAN8814_INTR_STS_REG 0x0033 234 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) 235 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) 236 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) 237 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) 238 239 #define PTP_CAP_INFO 0x022A 240 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) 241 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) 242 243 #define PTP_TX_EGRESS_SEC_HI 0x0296 244 #define PTP_TX_EGRESS_SEC_LO 0x0297 245 #define PTP_TX_EGRESS_NS_HI 0x0294 246 #define PTP_TX_EGRESS_NS_LO 0x0295 247 #define PTP_TX_MSG_HEADER2 0x0299 248 249 #define PTP_RX_INGRESS_SEC_HI 0x0256 250 #define PTP_RX_INGRESS_SEC_LO 0x0257 251 #define PTP_RX_INGRESS_NS_HI 0x0254 252 #define PTP_RX_INGRESS_NS_LO 0x0255 253 #define PTP_RX_MSG_HEADER2 0x0259 254 255 #define PTP_TSU_INT_EN 0x0200 256 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) 257 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) 258 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) 259 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) 260 261 #define PTP_TSU_INT_STS 0x0201 262 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) 263 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) 264 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) 265 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) 266 267 #define LAN8814_LED_CTRL_1 0x0 268 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) 269 270 /* PHY Control 1 */ 271 #define MII_KSZPHY_CTRL_1 0x1e 272 #define KSZ8081_CTRL1_MDIX_STAT BIT(4) 273 274 /* PHY Control 2 / PHY Control (if no PHY Control 1) */ 275 #define MII_KSZPHY_CTRL_2 0x1f 276 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 277 /* bitmap of PHY register to set interrupt mode */ 278 #define KSZ8081_CTRL2_HP_MDIX BIT(15) 279 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) 280 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) 281 #define KSZ8081_CTRL2_FORCE_LINK BIT(11) 282 #define KSZ8081_CTRL2_POWER_SAVING BIT(10) 283 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) 284 #define KSZPHY_RMII_REF_CLK_SEL BIT(7) 285 286 /* Write/read to/from extended registers */ 287 #define MII_KSZPHY_EXTREG 0x0b 288 #define KSZPHY_EXTREG_WRITE 0x8000 289 290 #define MII_KSZPHY_EXTREG_WRITE 0x0c 291 #define MII_KSZPHY_EXTREG_READ 0x0d 292 293 /* Extended registers */ 294 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 295 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 296 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 297 298 #define PS_TO_REG 200 299 #define FIFO_SIZE 8 300 301 #define LAN8814_PTP_GPIO_NUM 24 302 #define LAN8814_PTP_PEROUT_NUM 2 303 #define LAN8814_PTP_EXTTS_NUM 3 304 305 #define LAN8814_BUFFER_TIME 2 306 307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 319 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 320 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 321 322 #define LAN8814_GPIO_EN1 0x20 323 #define LAN8814_GPIO_EN2 0x21 324 #define LAN8814_GPIO_DIR1 0x22 325 #define LAN8814_GPIO_DIR2 0x23 326 #define LAN8814_GPIO_BUF1 0x24 327 #define LAN8814_GPIO_BUF2 0x25 328 329 #define LAN8814_GPIO_EN_ADDR(pin) \ 330 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) 331 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) 332 #define LAN8814_GPIO_DIR_ADDR(pin) \ 333 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) 334 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) 335 #define LAN8814_GPIO_BUF_ADDR(pin) \ 336 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) 337 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) 338 339 #define LAN8814_EVENT_A 0 340 #define LAN8814_EVENT_B 1 341 342 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ 344 ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) 345 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ 346 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) 347 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ 348 ((event) ? BIT(2) : BIT(0)) 349 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ 350 ((event) ? BIT(3) : BIT(1)) 351 352 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) 353 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) 354 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) 355 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) 356 357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) 358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) 359 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) 360 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) 361 362 /* Delay used to get the second part from the LTC */ 363 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) 364 365 struct kszphy_hw_stat { 366 const char *string; 367 u8 reg; 368 u8 bits; 369 }; 370 371 static struct kszphy_hw_stat kszphy_hw_stats[] = { 372 { "phy_receive_errors", 21, 16}, 373 { "phy_idle_errors", 10, 8 }, 374 }; 375 376 struct kszphy_type { 377 u32 led_mode_reg; 378 u16 interrupt_level_mask; 379 u16 cable_diag_reg; 380 unsigned long pair_mask; 381 u16 disable_dll_tx_bit; 382 u16 disable_dll_rx_bit; 383 u16 disable_dll_mask; 384 bool has_broadcast_disable; 385 bool has_nand_tree_disable; 386 bool has_rmii_ref_clk_sel; 387 }; 388 389 /* Shared structure between the PHYs of the same package. */ 390 struct lan8814_shared_priv { 391 struct phy_device *phydev; 392 struct ptp_clock *ptp_clock; 393 struct ptp_clock_info ptp_clock_info; 394 struct ptp_pin_desc *pin_config; 395 396 /* Lock for ptp_clock */ 397 struct mutex shared_lock; 398 }; 399 400 struct lan8814_ptp_rx_ts { 401 struct list_head list; 402 u32 seconds; 403 u32 nsec; 404 u16 seq_id; 405 }; 406 407 struct kszphy_ptp_priv { 408 struct mii_timestamper mii_ts; 409 struct phy_device *phydev; 410 411 struct sk_buff_head tx_queue; 412 struct sk_buff_head rx_queue; 413 414 struct list_head rx_ts_list; 415 /* Lock for Rx ts fifo */ 416 spinlock_t rx_ts_lock; 417 418 int hwts_tx_type; 419 enum hwtstamp_rx_filters rx_filter; 420 int layer; 421 int version; 422 423 struct ptp_clock *ptp_clock; 424 struct ptp_clock_info ptp_clock_info; 425 /* Lock for ptp_clock */ 426 struct mutex ptp_lock; 427 struct ptp_pin_desc *pin_config; 428 429 s64 seconds; 430 /* Lock for accessing seconds */ 431 spinlock_t seconds_lock; 432 }; 433 434 struct kszphy_phy_stats { 435 u64 rx_err_pkt_cnt; 436 }; 437 438 struct kszphy_priv { 439 struct kszphy_ptp_priv ptp_priv; 440 const struct kszphy_type *type; 441 struct clk *clk; 442 int led_mode; 443 u16 vct_ctrl1000; 444 bool rmii_ref_clk_sel; 445 bool rmii_ref_clk_sel_val; 446 bool clk_enable; 447 u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; 448 struct kszphy_phy_stats phy_stats; 449 }; 450 451 struct lan8842_phy_stats { 452 u64 rx_packets; 453 u64 rx_errors; 454 u64 tx_packets; 455 u64 tx_errors; 456 }; 457 458 struct lan8842_priv { 459 struct lan8842_phy_stats phy_stats; 460 }; 461 462 static const struct kszphy_type lan8814_type = { 463 .led_mode_reg = ~LAN8814_LED_CTRL_1, 464 .cable_diag_reg = LAN8814_CABLE_DIAG, 465 .pair_mask = LAN8814_WIRE_PAIR_MASK, 466 }; 467 468 static const struct kszphy_type ksz886x_type = { 469 .cable_diag_reg = KSZ8081_LMD, 470 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 471 }; 472 473 static const struct kszphy_type ksz8021_type = { 474 .led_mode_reg = MII_KSZPHY_CTRL_2, 475 .has_broadcast_disable = true, 476 .has_nand_tree_disable = true, 477 .has_rmii_ref_clk_sel = true, 478 }; 479 480 static const struct kszphy_type ksz8041_type = { 481 .led_mode_reg = MII_KSZPHY_CTRL_1, 482 }; 483 484 static const struct kszphy_type ksz8051_type = { 485 .led_mode_reg = MII_KSZPHY_CTRL_2, 486 .has_nand_tree_disable = true, 487 }; 488 489 static const struct kszphy_type ksz8081_type = { 490 .led_mode_reg = MII_KSZPHY_CTRL_2, 491 .cable_diag_reg = KSZ8081_LMD, 492 .pair_mask = KSZPHY_WIRE_PAIR_MASK, 493 .has_broadcast_disable = true, 494 .has_nand_tree_disable = true, 495 .has_rmii_ref_clk_sel = true, 496 }; 497 498 static const struct kszphy_type ks8737_type = { 499 .interrupt_level_mask = BIT(14), 500 }; 501 502 static const struct kszphy_type ksz9021_type = { 503 .interrupt_level_mask = BIT(14), 504 }; 505 506 static const struct kszphy_type ksz9131_type = { 507 .interrupt_level_mask = BIT(14), 508 .disable_dll_tx_bit = BIT(12), 509 .disable_dll_rx_bit = BIT(12), 510 .disable_dll_mask = BIT_MASK(12), 511 }; 512 513 static const struct kszphy_type lan8841_type = { 514 .disable_dll_tx_bit = BIT(14), 515 .disable_dll_rx_bit = BIT(14), 516 .disable_dll_mask = BIT_MASK(14), 517 .cable_diag_reg = LAN8814_CABLE_DIAG, 518 .pair_mask = LAN8814_WIRE_PAIR_MASK, 519 }; 520 521 static int kszphy_extended_write(struct phy_device *phydev, 522 u32 regnum, u16 val) 523 { 524 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); 525 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); 526 } 527 528 static int kszphy_extended_read(struct phy_device *phydev, 529 u32 regnum) 530 { 531 phy_write(phydev, MII_KSZPHY_EXTREG, regnum); 532 return phy_read(phydev, MII_KSZPHY_EXTREG_READ); 533 } 534 535 static int kszphy_ack_interrupt(struct phy_device *phydev) 536 { 537 /* bit[7..0] int status, which is a read and clear register. */ 538 int rc; 539 540 rc = phy_read(phydev, MII_KSZPHY_INTCS); 541 542 return (rc < 0) ? rc : 0; 543 } 544 545 static int kszphy_config_intr(struct phy_device *phydev) 546 { 547 const struct kszphy_type *type = phydev->drv->driver_data; 548 int temp, err; 549 u16 mask; 550 551 if (type && type->interrupt_level_mask) 552 mask = type->interrupt_level_mask; 553 else 554 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; 555 556 /* set the interrupt pin active low */ 557 temp = phy_read(phydev, MII_KSZPHY_CTRL); 558 if (temp < 0) 559 return temp; 560 temp &= ~mask; 561 phy_write(phydev, MII_KSZPHY_CTRL, temp); 562 563 /* enable / disable interrupts */ 564 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 565 err = kszphy_ack_interrupt(phydev); 566 if (err) 567 return err; 568 569 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); 570 } else { 571 err = phy_write(phydev, MII_KSZPHY_INTCS, 0); 572 if (err) 573 return err; 574 575 err = kszphy_ack_interrupt(phydev); 576 } 577 578 return err; 579 } 580 581 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) 582 { 583 int irq_status; 584 585 irq_status = phy_read(phydev, MII_KSZPHY_INTCS); 586 if (irq_status < 0) { 587 phy_error(phydev); 588 return IRQ_NONE; 589 } 590 591 if (!(irq_status & KSZPHY_INTCS_STATUS)) 592 return IRQ_NONE; 593 594 phy_trigger_machine(phydev); 595 596 return IRQ_HANDLED; 597 } 598 599 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) 600 { 601 int ctrl; 602 603 ctrl = phy_read(phydev, MII_KSZPHY_CTRL); 604 if (ctrl < 0) 605 return ctrl; 606 607 if (val) 608 ctrl |= KSZPHY_RMII_REF_CLK_SEL; 609 else 610 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; 611 612 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); 613 } 614 615 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) 616 { 617 int rc, temp, shift; 618 619 switch (reg) { 620 case MII_KSZPHY_CTRL_1: 621 shift = 14; 622 break; 623 case MII_KSZPHY_CTRL_2: 624 shift = 4; 625 break; 626 default: 627 return -EINVAL; 628 } 629 630 temp = phy_read(phydev, reg); 631 if (temp < 0) { 632 rc = temp; 633 goto out; 634 } 635 636 temp &= ~(3 << shift); 637 temp |= val << shift; 638 rc = phy_write(phydev, reg, temp); 639 out: 640 if (rc < 0) 641 phydev_err(phydev, "failed to set led mode\n"); 642 643 return rc; 644 } 645 646 /* Disable PHY address 0 as the broadcast address, so that it can be used as a 647 * unique (non-broadcast) address on a shared bus. 648 */ 649 static int kszphy_broadcast_disable(struct phy_device *phydev) 650 { 651 int ret; 652 653 ret = phy_read(phydev, MII_KSZPHY_OMSO); 654 if (ret < 0) 655 goto out; 656 657 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); 658 out: 659 if (ret) 660 phydev_err(phydev, "failed to disable broadcast address\n"); 661 662 return ret; 663 } 664 665 static int kszphy_nand_tree_disable(struct phy_device *phydev) 666 { 667 int ret; 668 669 ret = phy_read(phydev, MII_KSZPHY_OMSO); 670 if (ret < 0) 671 goto out; 672 673 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) 674 return 0; 675 676 ret = phy_write(phydev, MII_KSZPHY_OMSO, 677 ret & ~KSZPHY_OMSO_NAND_TREE_ON); 678 out: 679 if (ret) 680 phydev_err(phydev, "failed to disable NAND tree mode\n"); 681 682 return ret; 683 } 684 685 /* Some config bits need to be set again on resume, handle them here. */ 686 static int kszphy_config_reset(struct phy_device *phydev) 687 { 688 struct kszphy_priv *priv = phydev->priv; 689 int ret; 690 691 if (priv->rmii_ref_clk_sel) { 692 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); 693 if (ret) { 694 phydev_err(phydev, 695 "failed to set rmii reference clock\n"); 696 return ret; 697 } 698 } 699 700 if (priv->type && priv->led_mode >= 0) 701 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); 702 703 return 0; 704 } 705 706 static int kszphy_config_init(struct phy_device *phydev) 707 { 708 struct kszphy_priv *priv = phydev->priv; 709 const struct kszphy_type *type; 710 711 if (!priv) 712 return 0; 713 714 type = priv->type; 715 716 if (type && type->has_broadcast_disable) 717 kszphy_broadcast_disable(phydev); 718 719 if (type && type->has_nand_tree_disable) 720 kszphy_nand_tree_disable(phydev); 721 722 return kszphy_config_reset(phydev); 723 } 724 725 static int ksz8041_fiber_mode(struct phy_device *phydev) 726 { 727 struct device_node *of_node = phydev->mdio.dev.of_node; 728 729 return of_property_read_bool(of_node, "micrel,fiber-mode"); 730 } 731 732 static int ksz8041_config_init(struct phy_device *phydev) 733 { 734 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 735 736 /* Limit supported and advertised modes in fiber mode */ 737 if (ksz8041_fiber_mode(phydev)) { 738 phydev->dev_flags |= MICREL_PHY_FXEN; 739 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); 740 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); 741 742 linkmode_and(phydev->supported, phydev->supported, mask); 743 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 744 phydev->supported); 745 linkmode_and(phydev->advertising, phydev->advertising, mask); 746 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, 747 phydev->advertising); 748 phydev->autoneg = AUTONEG_DISABLE; 749 } 750 751 return kszphy_config_init(phydev); 752 } 753 754 static int ksz8041_config_aneg(struct phy_device *phydev) 755 { 756 /* Skip auto-negotiation in fiber mode */ 757 if (phydev->dev_flags & MICREL_PHY_FXEN) { 758 phydev->speed = SPEED_100; 759 return 0; 760 } 761 762 return genphy_config_aneg(phydev); 763 } 764 765 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, 766 const bool ksz_8051) 767 { 768 int ret; 769 770 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) 771 return 0; 772 773 ret = phy_read(phydev, MII_BMSR); 774 if (ret < 0) 775 return ret; 776 777 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same 778 * exact PHY ID. However, they can be told apart by the extended 779 * capability registers presence. The KSZ8051 PHY has them while 780 * the switch does not. 781 */ 782 ret &= BMSR_ERCAP; 783 if (ksz_8051) 784 return ret; 785 else 786 return !ret; 787 } 788 789 static int ksz8051_match_phy_device(struct phy_device *phydev, 790 const struct phy_driver *phydrv) 791 { 792 return ksz8051_ksz8795_match_phy_device(phydev, true); 793 } 794 795 static int ksz8081_config_init(struct phy_device *phydev) 796 { 797 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line 798 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a 799 * pull-down is missing, the factory test mode should be cleared by 800 * manually writing a 0. 801 */ 802 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); 803 804 return kszphy_config_init(phydev); 805 } 806 807 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) 808 { 809 u16 val; 810 811 switch (ctrl) { 812 case ETH_TP_MDI: 813 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; 814 break; 815 case ETH_TP_MDI_X: 816 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | 817 KSZ8081_CTRL2_MDI_MDI_X_SELECT; 818 break; 819 case ETH_TP_MDI_AUTO: 820 val = 0; 821 break; 822 default: 823 return 0; 824 } 825 826 return phy_modify(phydev, MII_KSZPHY_CTRL_2, 827 KSZ8081_CTRL2_HP_MDIX | 828 KSZ8081_CTRL2_MDI_MDI_X_SELECT | 829 KSZ8081_CTRL2_DISABLE_AUTO_MDIX, 830 KSZ8081_CTRL2_HP_MDIX | val); 831 } 832 833 static int ksz8081_config_aneg(struct phy_device *phydev) 834 { 835 int ret; 836 837 ret = genphy_config_aneg(phydev); 838 if (ret) 839 return ret; 840 841 /* The MDI-X configuration is automatically changed by the PHY after 842 * switching from autoneg off to on. So, take MDI-X configuration under 843 * own control and set it after autoneg configuration was done. 844 */ 845 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); 846 } 847 848 static int ksz8081_mdix_update(struct phy_device *phydev) 849 { 850 int ret; 851 852 ret = phy_read(phydev, MII_KSZPHY_CTRL_2); 853 if (ret < 0) 854 return ret; 855 856 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { 857 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) 858 phydev->mdix_ctrl = ETH_TP_MDI_X; 859 else 860 phydev->mdix_ctrl = ETH_TP_MDI; 861 } else { 862 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 863 } 864 865 ret = phy_read(phydev, MII_KSZPHY_CTRL_1); 866 if (ret < 0) 867 return ret; 868 869 if (ret & KSZ8081_CTRL1_MDIX_STAT) 870 phydev->mdix = ETH_TP_MDI; 871 else 872 phydev->mdix = ETH_TP_MDI_X; 873 874 return 0; 875 } 876 877 static int ksz8081_read_status(struct phy_device *phydev) 878 { 879 int ret; 880 881 ret = ksz8081_mdix_update(phydev); 882 if (ret < 0) 883 return ret; 884 885 return genphy_read_status(phydev); 886 } 887 888 static int ksz8061_config_init(struct phy_device *phydev) 889 { 890 int ret; 891 892 /* Chip can be powered down by the bootstrap code. */ 893 ret = phy_read(phydev, MII_BMCR); 894 if (ret < 0) 895 return ret; 896 if (ret & BMCR_PDOWN) { 897 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); 898 if (ret < 0) 899 return ret; 900 usleep_range(1000, 2000); 901 } 902 903 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 904 if (ret) 905 return ret; 906 907 return kszphy_config_init(phydev); 908 } 909 910 static int ksz8795_match_phy_device(struct phy_device *phydev, 911 const struct phy_driver *phydrv) 912 { 913 return ksz8051_ksz8795_match_phy_device(phydev, false); 914 } 915 916 static int ksz9021_load_values_from_of(struct phy_device *phydev, 917 const struct device_node *of_node, 918 u16 reg, 919 const char *field1, const char *field2, 920 const char *field3, const char *field4) 921 { 922 int val1 = -1; 923 int val2 = -2; 924 int val3 = -3; 925 int val4 = -4; 926 int newval; 927 int matches = 0; 928 929 if (!of_property_read_u32(of_node, field1, &val1)) 930 matches++; 931 932 if (!of_property_read_u32(of_node, field2, &val2)) 933 matches++; 934 935 if (!of_property_read_u32(of_node, field3, &val3)) 936 matches++; 937 938 if (!of_property_read_u32(of_node, field4, &val4)) 939 matches++; 940 941 if (!matches) 942 return 0; 943 944 if (matches < 4) 945 newval = kszphy_extended_read(phydev, reg); 946 else 947 newval = 0; 948 949 if (val1 != -1) 950 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); 951 952 if (val2 != -2) 953 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); 954 955 if (val3 != -3) 956 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); 957 958 if (val4 != -4) 959 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); 960 961 return kszphy_extended_write(phydev, reg, newval); 962 } 963 964 static int ksz9021_config_init(struct phy_device *phydev) 965 { 966 const struct device_node *of_node; 967 const struct device *dev_walker; 968 969 /* The Micrel driver has a deprecated option to place phy OF 970 * properties in the MAC node. Walk up the tree of devices to 971 * find a device with an OF node. 972 */ 973 dev_walker = &phydev->mdio.dev; 974 do { 975 of_node = dev_walker->of_node; 976 dev_walker = dev_walker->parent; 977 978 } while (!of_node && dev_walker); 979 980 if (of_node) { 981 ksz9021_load_values_from_of(phydev, of_node, 982 MII_KSZPHY_CLK_CONTROL_PAD_SKEW, 983 "txen-skew-ps", "txc-skew-ps", 984 "rxdv-skew-ps", "rxc-skew-ps"); 985 ksz9021_load_values_from_of(phydev, of_node, 986 MII_KSZPHY_RX_DATA_PAD_SKEW, 987 "rxd0-skew-ps", "rxd1-skew-ps", 988 "rxd2-skew-ps", "rxd3-skew-ps"); 989 ksz9021_load_values_from_of(phydev, of_node, 990 MII_KSZPHY_TX_DATA_PAD_SKEW, 991 "txd0-skew-ps", "txd1-skew-ps", 992 "txd2-skew-ps", "txd3-skew-ps"); 993 } 994 return 0; 995 } 996 997 #define KSZ9031_PS_TO_REG 60 998 999 /* Extended registers */ 1000 /* MMD Address 0x0 */ 1001 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 1002 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 1003 1004 /* MMD Address 0x2 */ 1005 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 1006 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) 1007 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) 1008 1009 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 1010 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) 1011 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) 1012 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) 1013 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) 1014 1015 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 1016 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) 1017 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) 1018 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) 1019 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) 1020 1021 #define MII_KSZ9031RN_CLK_PAD_SKEW 8 1022 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) 1023 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) 1024 1025 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To 1026 * provide different RGMII options we need to configure delay offset 1027 * for each pad relative to build in delay. 1028 */ 1029 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of 1030 * 1.80ns 1031 */ 1032 #define RX_ID 0x7 1033 #define RX_CLK_ID 0x19 1034 1035 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the 1036 * internal 1.2ns delay. 1037 */ 1038 #define RX_ND 0xc 1039 #define RX_CLK_ND 0x0 1040 1041 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ 1042 #define TX_ID 0x0 1043 #define TX_CLK_ID 0x1f 1044 1045 /* set tx and tx_clk to "No delay adjustment" to keep 0ns 1046 * dealy 1047 */ 1048 #define TX_ND 0x7 1049 #define TX_CLK_ND 0xf 1050 1051 /* MMD Address 0x1C */ 1052 #define MII_KSZ9031RN_EDPD 0x23 1053 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) 1054 1055 static int ksz9031_set_loopback(struct phy_device *phydev, bool enable, 1056 int speed) 1057 { 1058 u16 ctl = BMCR_LOOPBACK; 1059 int val; 1060 1061 if (!enable) 1062 return genphy_loopback(phydev, enable, 0); 1063 1064 if (speed == SPEED_10 || speed == SPEED_100 || speed == SPEED_1000) 1065 phydev->speed = speed; 1066 else if (speed) 1067 return -EINVAL; 1068 phydev->duplex = DUPLEX_FULL; 1069 1070 ctl |= mii_bmcr_encode_fixed(phydev->speed, phydev->duplex); 1071 1072 phy_write(phydev, MII_BMCR, ctl); 1073 1074 return phy_read_poll_timeout(phydev, MII_BMSR, val, val & BMSR_LSTATUS, 1075 5000, 500000, true); 1076 } 1077 1078 static int ksz9031_of_load_skew_values(struct phy_device *phydev, 1079 const struct device_node *of_node, 1080 u16 reg, size_t field_sz, 1081 const char *field[], u8 numfields, 1082 bool *update) 1083 { 1084 int val[4] = {-1, -2, -3, -4}; 1085 int matches = 0; 1086 u16 mask; 1087 u16 maxval; 1088 u16 newval; 1089 int i; 1090 1091 for (i = 0; i < numfields; i++) 1092 if (!of_property_read_u32(of_node, field[i], val + i)) 1093 matches++; 1094 1095 if (!matches) 1096 return 0; 1097 1098 *update |= true; 1099 1100 if (matches < numfields) 1101 newval = phy_read_mmd(phydev, 2, reg); 1102 else 1103 newval = 0; 1104 1105 maxval = (field_sz == 4) ? 0xf : 0x1f; 1106 for (i = 0; i < numfields; i++) 1107 if (val[i] != -(i + 1)) { 1108 mask = 0xffff; 1109 mask ^= maxval << (field_sz * i); 1110 newval = (newval & mask) | 1111 (((val[i] / KSZ9031_PS_TO_REG) & maxval) 1112 << (field_sz * i)); 1113 } 1114 1115 return phy_write_mmd(phydev, 2, reg, newval); 1116 } 1117 1118 /* Center KSZ9031RNX FLP timing at 16ms. */ 1119 static int ksz9031_center_flp_timing(struct phy_device *phydev) 1120 { 1121 int result; 1122 1123 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 1124 0x0006); 1125 if (result) 1126 return result; 1127 1128 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 1129 0x1A80); 1130 if (result) 1131 return result; 1132 1133 return genphy_restart_aneg(phydev); 1134 } 1135 1136 /* Enable energy-detect power-down mode */ 1137 static int ksz9031_enable_edpd(struct phy_device *phydev) 1138 { 1139 int reg; 1140 1141 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); 1142 if (reg < 0) 1143 return reg; 1144 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, 1145 reg | MII_KSZ9031RN_EDPD_ENABLE); 1146 } 1147 1148 static int ksz9031_config_rgmii_delay(struct phy_device *phydev) 1149 { 1150 u16 rx, tx, rx_clk, tx_clk; 1151 int ret; 1152 1153 switch (phydev->interface) { 1154 case PHY_INTERFACE_MODE_RGMII: 1155 tx = TX_ND; 1156 tx_clk = TX_CLK_ND; 1157 rx = RX_ND; 1158 rx_clk = RX_CLK_ND; 1159 break; 1160 case PHY_INTERFACE_MODE_RGMII_ID: 1161 tx = TX_ID; 1162 tx_clk = TX_CLK_ID; 1163 rx = RX_ID; 1164 rx_clk = RX_CLK_ID; 1165 break; 1166 case PHY_INTERFACE_MODE_RGMII_RXID: 1167 tx = TX_ND; 1168 tx_clk = TX_CLK_ND; 1169 rx = RX_ID; 1170 rx_clk = RX_CLK_ID; 1171 break; 1172 case PHY_INTERFACE_MODE_RGMII_TXID: 1173 tx = TX_ID; 1174 tx_clk = TX_CLK_ID; 1175 rx = RX_ND; 1176 rx_clk = RX_CLK_ND; 1177 break; 1178 default: 1179 return 0; 1180 } 1181 1182 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, 1183 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | 1184 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); 1185 if (ret < 0) 1186 return ret; 1187 1188 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 1189 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | 1190 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | 1191 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | 1192 FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); 1193 if (ret < 0) 1194 return ret; 1195 1196 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 1197 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | 1198 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | 1199 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | 1200 FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); 1201 if (ret < 0) 1202 return ret; 1203 1204 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, 1205 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | 1206 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); 1207 } 1208 1209 static int ksz9031_config_init(struct phy_device *phydev) 1210 { 1211 const struct device_node *of_node; 1212 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; 1213 static const char *rx_data_skews[4] = { 1214 "rxd0-skew-ps", "rxd1-skew-ps", 1215 "rxd2-skew-ps", "rxd3-skew-ps" 1216 }; 1217 static const char *tx_data_skews[4] = { 1218 "txd0-skew-ps", "txd1-skew-ps", 1219 "txd2-skew-ps", "txd3-skew-ps" 1220 }; 1221 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; 1222 const struct device *dev_walker; 1223 int result; 1224 1225 result = ksz9031_enable_edpd(phydev); 1226 if (result < 0) 1227 return result; 1228 1229 /* The Micrel driver has a deprecated option to place phy OF 1230 * properties in the MAC node. Walk up the tree of devices to 1231 * find a device with an OF node. 1232 */ 1233 dev_walker = &phydev->mdio.dev; 1234 do { 1235 of_node = dev_walker->of_node; 1236 dev_walker = dev_walker->parent; 1237 } while (!of_node && dev_walker); 1238 1239 if (of_node) { 1240 bool update = false; 1241 1242 if (phy_interface_is_rgmii(phydev)) { 1243 result = ksz9031_config_rgmii_delay(phydev); 1244 if (result < 0) 1245 return result; 1246 } 1247 1248 ksz9031_of_load_skew_values(phydev, of_node, 1249 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1250 clk_skews, 2, &update); 1251 1252 ksz9031_of_load_skew_values(phydev, of_node, 1253 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1254 control_skews, 2, &update); 1255 1256 ksz9031_of_load_skew_values(phydev, of_node, 1257 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1258 rx_data_skews, 4, &update); 1259 1260 ksz9031_of_load_skew_values(phydev, of_node, 1261 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1262 tx_data_skews, 4, &update); 1263 1264 if (update && !phy_interface_is_rgmii(phydev)) 1265 phydev_warn(phydev, 1266 "*-skew-ps values should be used only with RGMII PHY modes\n"); 1267 1268 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1269 * When the device links in the 1000BASE-T slave mode only, 1270 * the optional 125MHz reference output clock (CLK125_NDO) 1271 * has wide duty cycle variation. 1272 * 1273 * The optional CLK125_NDO clock does not meet the RGMII 1274 * 45/55 percent (min/max) duty cycle requirement and therefore 1275 * cannot be used directly by the MAC side for clocking 1276 * applications that have setup/hold time requirements on 1277 * rising and falling clock edges. 1278 * 1279 * Workaround: 1280 * Force the phy to be the master to receive a stable clock 1281 * which meets the duty cycle requirement. 1282 */ 1283 if (of_property_read_bool(of_node, "micrel,force-master")) { 1284 result = phy_read(phydev, MII_CTRL1000); 1285 if (result < 0) 1286 goto err_force_master; 1287 1288 /* enable master mode, config & prefer master */ 1289 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; 1290 result = phy_write(phydev, MII_CTRL1000, result); 1291 if (result < 0) 1292 goto err_force_master; 1293 } 1294 } 1295 1296 return ksz9031_center_flp_timing(phydev); 1297 1298 err_force_master: 1299 phydev_err(phydev, "failed to force the phy to master mode\n"); 1300 return result; 1301 } 1302 1303 #define KSZ9131_SKEW_5BIT_MAX 2400 1304 #define KSZ9131_SKEW_4BIT_MAX 800 1305 #define KSZ9131_OFFSET 700 1306 #define KSZ9131_STEP 100 1307 1308 static int ksz9131_of_load_skew_values(struct phy_device *phydev, 1309 struct device_node *of_node, 1310 u16 reg, size_t field_sz, 1311 char *field[], u8 numfields) 1312 { 1313 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), 1314 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; 1315 int skewval, skewmax = 0; 1316 int matches = 0; 1317 u16 maxval; 1318 u16 newval; 1319 u16 mask; 1320 int i; 1321 1322 /* psec properties in dts should mean x pico seconds */ 1323 if (field_sz == 5) 1324 skewmax = KSZ9131_SKEW_5BIT_MAX; 1325 else 1326 skewmax = KSZ9131_SKEW_4BIT_MAX; 1327 1328 for (i = 0; i < numfields; i++) 1329 if (!of_property_read_s32(of_node, field[i], &skewval)) { 1330 if (skewval < -KSZ9131_OFFSET) 1331 skewval = -KSZ9131_OFFSET; 1332 else if (skewval > skewmax) 1333 skewval = skewmax; 1334 1335 val[i] = skewval + KSZ9131_OFFSET; 1336 matches++; 1337 } 1338 1339 if (!matches) 1340 return 0; 1341 1342 if (matches < numfields) 1343 newval = phy_read_mmd(phydev, 2, reg); 1344 else 1345 newval = 0; 1346 1347 maxval = (field_sz == 4) ? 0xf : 0x1f; 1348 for (i = 0; i < numfields; i++) 1349 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { 1350 mask = 0xffff; 1351 mask ^= maxval << (field_sz * i); 1352 newval = (newval & mask) | 1353 (((val[i] / KSZ9131_STEP) & maxval) 1354 << (field_sz * i)); 1355 } 1356 1357 return phy_write_mmd(phydev, 2, reg, newval); 1358 } 1359 1360 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 1361 #define KSZ9131RN_RXC_DLL_CTRL 76 1362 #define KSZ9131RN_TXC_DLL_CTRL 77 1363 #define KSZ9131RN_DLL_ENABLE_DELAY 0 1364 1365 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) 1366 { 1367 const struct kszphy_type *type = phydev->drv->driver_data; 1368 u16 rxcdll_val, txcdll_val; 1369 int ret; 1370 1371 switch (phydev->interface) { 1372 case PHY_INTERFACE_MODE_RGMII: 1373 rxcdll_val = type->disable_dll_rx_bit; 1374 txcdll_val = type->disable_dll_tx_bit; 1375 break; 1376 case PHY_INTERFACE_MODE_RGMII_ID: 1377 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1378 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1379 break; 1380 case PHY_INTERFACE_MODE_RGMII_RXID: 1381 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1382 txcdll_val = type->disable_dll_tx_bit; 1383 break; 1384 case PHY_INTERFACE_MODE_RGMII_TXID: 1385 rxcdll_val = type->disable_dll_rx_bit; 1386 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; 1387 break; 1388 default: 1389 return 0; 1390 } 1391 1392 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1393 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, 1394 rxcdll_val); 1395 if (ret < 0) 1396 return ret; 1397 1398 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 1399 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, 1400 txcdll_val); 1401 } 1402 1403 /* Silicon Errata DS80000693B 1404 * 1405 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link 1406 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves 1407 * according to the datasheet (off if there is no link). 1408 */ 1409 static int ksz9131_led_errata(struct phy_device *phydev) 1410 { 1411 int reg; 1412 1413 reg = phy_read_mmd(phydev, 2, 0); 1414 if (reg < 0) 1415 return reg; 1416 1417 if (!(reg & BIT(4))) 1418 return 0; 1419 1420 return phy_set_bits(phydev, 0x1e, BIT(9)); 1421 } 1422 1423 static int ksz9131_config_init(struct phy_device *phydev) 1424 { 1425 struct device_node *of_node; 1426 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; 1427 char *rx_data_skews[4] = { 1428 "rxd0-skew-psec", "rxd1-skew-psec", 1429 "rxd2-skew-psec", "rxd3-skew-psec" 1430 }; 1431 char *tx_data_skews[4] = { 1432 "txd0-skew-psec", "txd1-skew-psec", 1433 "txd2-skew-psec", "txd3-skew-psec" 1434 }; 1435 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; 1436 const struct device *dev_walker; 1437 int ret; 1438 1439 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1440 1441 dev_walker = &phydev->mdio.dev; 1442 do { 1443 of_node = dev_walker->of_node; 1444 dev_walker = dev_walker->parent; 1445 } while (!of_node && dev_walker); 1446 1447 if (!of_node) 1448 return 0; 1449 1450 if (phy_interface_is_rgmii(phydev)) { 1451 ret = ksz9131_config_rgmii_delay(phydev); 1452 if (ret < 0) 1453 return ret; 1454 } 1455 1456 ret = ksz9131_of_load_skew_values(phydev, of_node, 1457 MII_KSZ9031RN_CLK_PAD_SKEW, 5, 1458 clk_skews, 2); 1459 if (ret < 0) 1460 return ret; 1461 1462 ret = ksz9131_of_load_skew_values(phydev, of_node, 1463 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, 1464 control_skews, 2); 1465 if (ret < 0) 1466 return ret; 1467 1468 ret = ksz9131_of_load_skew_values(phydev, of_node, 1469 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, 1470 rx_data_skews, 4); 1471 if (ret < 0) 1472 return ret; 1473 1474 ret = ksz9131_of_load_skew_values(phydev, of_node, 1475 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, 1476 tx_data_skews, 4); 1477 if (ret < 0) 1478 return ret; 1479 1480 ret = ksz9131_led_errata(phydev); 1481 if (ret < 0) 1482 return ret; 1483 1484 return 0; 1485 } 1486 1487 #define MII_KSZ9131_AUTO_MDIX 0x1C 1488 #define MII_KSZ9131_AUTO_MDI_SET BIT(7) 1489 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) 1490 #define MII_KSZ9131_DIG_AXAN_STS 0x14 1491 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14) 1492 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12) 1493 1494 static int ksz9131_mdix_update(struct phy_device *phydev) 1495 { 1496 int ret; 1497 1498 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) { 1499 phydev->mdix = phydev->mdix_ctrl; 1500 } else { 1501 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS); 1502 if (ret < 0) 1503 return ret; 1504 1505 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) { 1506 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT) 1507 phydev->mdix = ETH_TP_MDI; 1508 else 1509 phydev->mdix = ETH_TP_MDI_X; 1510 } else { 1511 phydev->mdix = ETH_TP_MDI_INVALID; 1512 } 1513 } 1514 1515 return 0; 1516 } 1517 1518 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) 1519 { 1520 u16 val; 1521 1522 switch (ctrl) { 1523 case ETH_TP_MDI: 1524 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1525 MII_KSZ9131_AUTO_MDI_SET; 1526 break; 1527 case ETH_TP_MDI_X: 1528 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; 1529 break; 1530 case ETH_TP_MDI_AUTO: 1531 val = 0; 1532 break; 1533 default: 1534 return 0; 1535 } 1536 1537 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, 1538 MII_KSZ9131_AUTO_MDIX_SWAP_OFF | 1539 MII_KSZ9131_AUTO_MDI_SET, val); 1540 } 1541 1542 static int ksz9131_read_status(struct phy_device *phydev) 1543 { 1544 int ret; 1545 1546 ret = ksz9131_mdix_update(phydev); 1547 if (ret < 0) 1548 return ret; 1549 1550 return genphy_read_status(phydev); 1551 } 1552 1553 static int ksz9131_config_aneg(struct phy_device *phydev) 1554 { 1555 int ret; 1556 1557 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 1558 if (ret) 1559 return ret; 1560 1561 return genphy_config_aneg(phydev); 1562 } 1563 1564 static int ksz9477_get_features(struct phy_device *phydev) 1565 { 1566 int ret; 1567 1568 ret = genphy_read_abilities(phydev); 1569 if (ret) 1570 return ret; 1571 1572 /* The "EEE control and capability 1" (Register 3.20) seems to be 1573 * influenced by the "EEE advertisement 1" (Register 7.60). Changes 1574 * on the 7.60 will affect 3.20. So, we need to construct our own list 1575 * of caps. 1576 * KSZ8563R should have 100BaseTX/Full only. 1577 */ 1578 linkmode_and(phydev->supported_eee, phydev->supported, 1579 PHY_EEE_CAP1_FEATURES); 1580 1581 return 0; 1582 } 1583 1584 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 1585 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) 1586 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) 1587 static int ksz8873mll_read_status(struct phy_device *phydev) 1588 { 1589 int regval; 1590 1591 /* dummy read */ 1592 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1593 1594 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); 1595 1596 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) 1597 phydev->duplex = DUPLEX_HALF; 1598 else 1599 phydev->duplex = DUPLEX_FULL; 1600 1601 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) 1602 phydev->speed = SPEED_10; 1603 else 1604 phydev->speed = SPEED_100; 1605 1606 phydev->link = 1; 1607 phydev->pause = phydev->asym_pause = 0; 1608 1609 return 0; 1610 } 1611 1612 static int ksz9031_get_features(struct phy_device *phydev) 1613 { 1614 int ret; 1615 1616 ret = genphy_read_abilities(phydev); 1617 if (ret < 0) 1618 return ret; 1619 1620 /* Silicon Errata Sheet (DS80000691D or DS80000692D): 1621 * Whenever the device's Asymmetric Pause capability is set to 1, 1622 * link-up may fail after a link-up to link-down transition. 1623 * 1624 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue 1625 * 1626 * Workaround: 1627 * Do not enable the Asymmetric Pause capability bit. 1628 */ 1629 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); 1630 1631 /* We force setting the Pause capability as the core will force the 1632 * Asymmetric Pause capability to 1 otherwise. 1633 */ 1634 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); 1635 1636 return 0; 1637 } 1638 1639 static int ksz9031_read_status(struct phy_device *phydev) 1640 { 1641 int err; 1642 int regval; 1643 1644 err = genphy_read_status(phydev); 1645 if (err) 1646 return err; 1647 1648 /* Make sure the PHY is not broken. Read idle error count, 1649 * and reset the PHY if it is maxed out. 1650 */ 1651 regval = phy_read(phydev, MII_STAT1000); 1652 if ((regval & 0xFF) == 0xFF) { 1653 phy_init_hw(phydev); 1654 phydev->link = 0; 1655 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) 1656 phydev->drv->config_intr(phydev); 1657 return genphy_config_aneg(phydev); 1658 } 1659 1660 return 0; 1661 } 1662 1663 static int ksz9x31_cable_test_start(struct phy_device *phydev) 1664 { 1665 struct kszphy_priv *priv = phydev->priv; 1666 int ret; 1667 1668 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1669 * Prior to running the cable diagnostics, Auto-negotiation should 1670 * be disabled, full duplex set and the link speed set to 1000Mbps 1671 * via the Basic Control Register. 1672 */ 1673 ret = phy_modify(phydev, MII_BMCR, 1674 BMCR_SPEED1000 | BMCR_FULLDPLX | 1675 BMCR_ANENABLE | BMCR_SPEED100, 1676 BMCR_SPEED1000 | BMCR_FULLDPLX); 1677 if (ret) 1678 return ret; 1679 1680 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1681 * The Master-Slave configuration should be set to Slave by writing 1682 * a value of 0x1000 to the Auto-Negotiation Master Slave Control 1683 * Register. 1684 */ 1685 ret = phy_read(phydev, MII_CTRL1000); 1686 if (ret < 0) 1687 return ret; 1688 1689 /* Cache these bits, they need to be restored once LinkMD finishes. */ 1690 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1691 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); 1692 ret |= CTL1000_ENABLE_MASTER; 1693 1694 return phy_write(phydev, MII_CTRL1000, ret); 1695 } 1696 1697 static int ksz9x31_cable_test_result_trans(u16 status) 1698 { 1699 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1700 case KSZ9x31_LMD_VCT_ST_NORMAL: 1701 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 1702 case KSZ9x31_LMD_VCT_ST_OPEN: 1703 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 1704 case KSZ9x31_LMD_VCT_ST_SHORT: 1705 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 1706 case KSZ9x31_LMD_VCT_ST_FAIL: 1707 fallthrough; 1708 default: 1709 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 1710 } 1711 } 1712 1713 static bool ksz9x31_cable_test_failed(u16 status) 1714 { 1715 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); 1716 1717 return stat == KSZ9x31_LMD_VCT_ST_FAIL; 1718 } 1719 1720 static bool ksz9x31_cable_test_fault_length_valid(u16 status) 1721 { 1722 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { 1723 case KSZ9x31_LMD_VCT_ST_OPEN: 1724 fallthrough; 1725 case KSZ9x31_LMD_VCT_ST_SHORT: 1726 return true; 1727 } 1728 return false; 1729 } 1730 1731 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) 1732 { 1733 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); 1734 1735 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1736 * 1737 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity 1738 */ 1739 if (phydev_id_compare(phydev, PHY_ID_KSZ9131) || 1740 phydev_id_compare(phydev, PHY_ID_KSZ9477)) 1741 dt = clamp(dt - 22, 0, 255); 1742 1743 return (dt * 400) / 10; 1744 } 1745 1746 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) 1747 { 1748 int val, ret; 1749 1750 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, 1751 !(val & KSZ9x31_LMD_VCT_EN), 1752 30000, 100000, true); 1753 1754 return ret < 0 ? ret : 0; 1755 } 1756 1757 static int ksz9x31_cable_test_get_pair(int pair) 1758 { 1759 static const int ethtool_pair[] = { 1760 ETHTOOL_A_CABLE_PAIR_A, 1761 ETHTOOL_A_CABLE_PAIR_B, 1762 ETHTOOL_A_CABLE_PAIR_C, 1763 ETHTOOL_A_CABLE_PAIR_D, 1764 }; 1765 1766 return ethtool_pair[pair]; 1767 } 1768 1769 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) 1770 { 1771 int ret, val; 1772 1773 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic 1774 * To test each individual cable pair, set the cable pair in the Cable 1775 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable 1776 * Diagnostic Register, along with setting the Cable Diagnostics Test 1777 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit 1778 * will self clear when the test is concluded. 1779 */ 1780 ret = phy_write(phydev, KSZ9x31_LMD, 1781 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); 1782 if (ret) 1783 return ret; 1784 1785 ret = ksz9x31_cable_test_wait_for_completion(phydev); 1786 if (ret) 1787 return ret; 1788 1789 val = phy_read(phydev, KSZ9x31_LMD); 1790 if (val < 0) 1791 return val; 1792 1793 if (ksz9x31_cable_test_failed(val)) 1794 return -EAGAIN; 1795 1796 ret = ethnl_cable_test_result(phydev, 1797 ksz9x31_cable_test_get_pair(pair), 1798 ksz9x31_cable_test_result_trans(val)); 1799 if (ret) 1800 return ret; 1801 1802 if (!ksz9x31_cable_test_fault_length_valid(val)) 1803 return 0; 1804 1805 return ethnl_cable_test_fault_length(phydev, 1806 ksz9x31_cable_test_get_pair(pair), 1807 ksz9x31_cable_test_fault_length(phydev, val)); 1808 } 1809 1810 static int ksz9x31_cable_test_get_status(struct phy_device *phydev, 1811 bool *finished) 1812 { 1813 struct kszphy_priv *priv = phydev->priv; 1814 unsigned long pair_mask; 1815 int retries = 20; 1816 int pair, ret, rv; 1817 1818 *finished = false; 1819 1820 if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1821 phydev->supported) || 1822 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1823 phydev->supported)) 1824 pair_mask = 0xf; /* All pairs */ 1825 else 1826 pair_mask = 0x3; /* Pairs A and B only */ 1827 1828 /* Try harder if link partner is active */ 1829 while (pair_mask && retries--) { 1830 for_each_set_bit(pair, &pair_mask, 4) { 1831 ret = ksz9x31_cable_test_one_pair(phydev, pair); 1832 if (ret == -EAGAIN) 1833 continue; 1834 if (ret < 0) 1835 return ret; 1836 clear_bit(pair, &pair_mask); 1837 } 1838 /* If link partner is in autonegotiation mode it will send 2ms 1839 * of FLPs with at least 6ms of silence. 1840 * Add 2ms sleep to have better chances to hit this silence. 1841 */ 1842 if (pair_mask) 1843 usleep_range(2000, 3000); 1844 } 1845 1846 /* Report remaining unfinished pair result as unknown. */ 1847 for_each_set_bit(pair, &pair_mask, 4) { 1848 ret = ethnl_cable_test_result(phydev, 1849 ksz9x31_cable_test_get_pair(pair), 1850 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); 1851 } 1852 1853 *finished = true; 1854 1855 /* Restore cached bits from before LinkMD got started. */ 1856 rv = phy_modify(phydev, MII_CTRL1000, 1857 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, 1858 priv->vct_ctrl1000); 1859 if (rv) 1860 return rv; 1861 1862 return ret; 1863 } 1864 1865 static int ksz8873mll_config_aneg(struct phy_device *phydev) 1866 { 1867 return 0; 1868 } 1869 1870 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) 1871 { 1872 u16 val; 1873 1874 switch (ctrl) { 1875 case ETH_TP_MDI: 1876 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; 1877 break; 1878 case ETH_TP_MDI_X: 1879 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit 1880 * counter intuitive, the "-X" in "1 = Force MDI" in the data 1881 * sheet seems to be missing: 1882 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) 1883 * 0 = Normal operation (transmit on TX+/TX- pins) 1884 */ 1885 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; 1886 break; 1887 case ETH_TP_MDI_AUTO: 1888 val = 0; 1889 break; 1890 default: 1891 return 0; 1892 } 1893 1894 return phy_modify(phydev, MII_BMCR, 1895 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | 1896 KSZ886X_BMCR_DISABLE_AUTO_MDIX, 1897 KSZ886X_BMCR_HP_MDIX | val); 1898 } 1899 1900 static int ksz886x_config_aneg(struct phy_device *phydev) 1901 { 1902 int ret; 1903 1904 ret = genphy_config_aneg(phydev); 1905 if (ret) 1906 return ret; 1907 1908 if (phydev->autoneg != AUTONEG_ENABLE) { 1909 /* When autonegotation is disabled, we need to manually force 1910 * the link state. If we don't do this, the PHY will keep 1911 * sending Fast Link Pulses (FLPs) which are part of the 1912 * autonegotiation process. This is not desired when 1913 * autonegotiation is off. 1914 */ 1915 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, 1916 KSZ886X_CTRL_FORCE_LINK); 1917 if (ret) 1918 return ret; 1919 } else { 1920 /* If we had previously forced the link state, we need to 1921 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY 1922 * will not perform autonegotiation. 1923 */ 1924 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, 1925 KSZ886X_CTRL_FORCE_LINK); 1926 if (ret) 1927 return ret; 1928 } 1929 1930 /* The MDI-X configuration is automatically changed by the PHY after 1931 * switching from autoneg off to on. So, take MDI-X configuration under 1932 * own control and set it after autoneg configuration was done. 1933 */ 1934 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); 1935 } 1936 1937 static int ksz886x_mdix_update(struct phy_device *phydev) 1938 { 1939 int ret; 1940 1941 ret = phy_read(phydev, MII_BMCR); 1942 if (ret < 0) 1943 return ret; 1944 1945 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { 1946 if (ret & KSZ886X_BMCR_FORCE_MDI) 1947 phydev->mdix_ctrl = ETH_TP_MDI_X; 1948 else 1949 phydev->mdix_ctrl = ETH_TP_MDI; 1950 } else { 1951 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1952 } 1953 1954 ret = phy_read(phydev, MII_KSZPHY_CTRL); 1955 if (ret < 0) 1956 return ret; 1957 1958 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ 1959 if (ret & KSZ886X_CTRL_MDIX_STAT) 1960 phydev->mdix = ETH_TP_MDI_X; 1961 else 1962 phydev->mdix = ETH_TP_MDI; 1963 1964 return 0; 1965 } 1966 1967 static int ksz886x_read_status(struct phy_device *phydev) 1968 { 1969 int ret; 1970 1971 ret = ksz886x_mdix_update(phydev); 1972 if (ret < 0) 1973 return ret; 1974 1975 return genphy_read_status(phydev); 1976 } 1977 1978 static int ksz9477_mdix_update(struct phy_device *phydev) 1979 { 1980 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) 1981 phydev->mdix = phydev->mdix_ctrl; 1982 else 1983 phydev->mdix = ETH_TP_MDI_INVALID; 1984 1985 return 0; 1986 } 1987 1988 static int ksz9477_read_mdix_ctrl(struct phy_device *phydev) 1989 { 1990 int val; 1991 1992 val = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); 1993 if (val < 0) 1994 return val; 1995 1996 if (!(val & MII_KSZ9131_AUTO_MDIX_SWAP_OFF)) 1997 phydev->mdix_ctrl = ETH_TP_MDI_AUTO; 1998 else if (val & MII_KSZ9131_AUTO_MDI_SET) 1999 phydev->mdix_ctrl = ETH_TP_MDI; 2000 else 2001 phydev->mdix_ctrl = ETH_TP_MDI_X; 2002 2003 return 0; 2004 } 2005 2006 static int ksz9477_read_status(struct phy_device *phydev) 2007 { 2008 int ret; 2009 2010 ret = ksz9477_mdix_update(phydev); 2011 if (ret) 2012 return ret; 2013 2014 return genphy_read_status(phydev); 2015 } 2016 2017 static int ksz9477_config_aneg(struct phy_device *phydev) 2018 { 2019 int ret; 2020 2021 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); 2022 if (ret) 2023 return ret; 2024 2025 return genphy_config_aneg(phydev); 2026 } 2027 2028 struct ksz9477_errata_write { 2029 u8 dev_addr; 2030 u8 reg_addr; 2031 u16 val; 2032 }; 2033 2034 static const struct ksz9477_errata_write ksz9477_errata_writes[] = { 2035 /* Register settings are needed to improve PHY receive performance */ 2036 {0x01, 0x6f, 0xdd0b}, 2037 {0x01, 0x8f, 0x6032}, 2038 {0x01, 0x9d, 0x248c}, 2039 {0x01, 0x75, 0x0060}, 2040 {0x01, 0xd3, 0x7777}, 2041 {0x1c, 0x06, 0x3008}, 2042 {0x1c, 0x08, 0x2000}, 2043 2044 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ 2045 {0x1c, 0x04, 0x00d0}, 2046 2047 /* Register settings are required to meet data sheet supply current specifications */ 2048 {0x1c, 0x13, 0x6eff}, 2049 {0x1c, 0x14, 0xe6ff}, 2050 {0x1c, 0x15, 0x6eff}, 2051 {0x1c, 0x16, 0xe6ff}, 2052 {0x1c, 0x17, 0x00ff}, 2053 {0x1c, 0x18, 0x43ff}, 2054 {0x1c, 0x19, 0xc3ff}, 2055 {0x1c, 0x1a, 0x6fff}, 2056 {0x1c, 0x1b, 0x07ff}, 2057 {0x1c, 0x1c, 0x0fff}, 2058 {0x1c, 0x1d, 0xe7ff}, 2059 {0x1c, 0x1e, 0xefff}, 2060 {0x1c, 0x20, 0xeeee}, 2061 }; 2062 2063 static int ksz9477_phy_errata(struct phy_device *phydev) 2064 { 2065 int err; 2066 int i; 2067 2068 /* Apply PHY settings to address errata listed in 2069 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 2070 * Silicon Errata and Data Sheet Clarification documents. 2071 * 2072 * Document notes: Before configuring the PHY MMD registers, it is 2073 * necessary to set the PHY to 100 Mbps speed with auto-negotiation 2074 * disabled by writing to register 0xN100-0xN101. After writing the 2075 * MMD registers, and after all errata workarounds that involve PHY 2076 * register settings, write register 0xN100-0xN101 again to enable 2077 * and restart auto-negotiation. 2078 */ 2079 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); 2080 if (err) 2081 return err; 2082 2083 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { 2084 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; 2085 2086 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); 2087 if (err) 2088 return err; 2089 } 2090 2091 err = genphy_restart_aneg(phydev); 2092 if (err) 2093 return err; 2094 2095 return err; 2096 } 2097 2098 static int ksz9477_config_init(struct phy_device *phydev) 2099 { 2100 int err; 2101 2102 /* Only KSZ9897 family of switches needs this fix. */ 2103 if ((phydev->phy_id & 0xf) == 1) { 2104 err = ksz9477_phy_errata(phydev); 2105 if (err) 2106 return err; 2107 } 2108 2109 /* Read initial MDI-X config state. So, we do not need to poll it 2110 * later on. 2111 */ 2112 err = ksz9477_read_mdix_ctrl(phydev); 2113 if (err) 2114 return err; 2115 2116 return kszphy_config_init(phydev); 2117 } 2118 2119 static int kszphy_get_sset_count(struct phy_device *phydev) 2120 { 2121 return ARRAY_SIZE(kszphy_hw_stats); 2122 } 2123 2124 static void kszphy_get_strings(struct phy_device *phydev, u8 *data) 2125 { 2126 int i; 2127 2128 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2129 ethtool_puts(&data, kszphy_hw_stats[i].string); 2130 } 2131 2132 static u64 kszphy_get_stat(struct phy_device *phydev, int i) 2133 { 2134 struct kszphy_hw_stat stat = kszphy_hw_stats[i]; 2135 struct kszphy_priv *priv = phydev->priv; 2136 int val; 2137 u64 ret; 2138 2139 val = phy_read(phydev, stat.reg); 2140 if (val < 0) { 2141 ret = U64_MAX; 2142 } else { 2143 val = val & ((1 << stat.bits) - 1); 2144 priv->stats[i] += val; 2145 ret = priv->stats[i]; 2146 } 2147 2148 return ret; 2149 } 2150 2151 static void kszphy_get_stats(struct phy_device *phydev, 2152 struct ethtool_stats *stats, u64 *data) 2153 { 2154 int i; 2155 2156 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) 2157 data[i] = kszphy_get_stat(phydev, i); 2158 } 2159 2160 /* KSZ9477 PHY RXER Counter. Probably supported by other PHYs like KSZ9313, 2161 * etc. The counter is incremented when the PHY receives a frame with one or 2162 * more symbol errors. The counter is cleared when the register is read. 2163 */ 2164 #define MII_KSZ9477_PHY_RXER_COUNTER 0x15 2165 2166 static int kszphy_update_stats(struct phy_device *phydev) 2167 { 2168 struct kszphy_priv *priv = phydev->priv; 2169 int ret; 2170 2171 ret = phy_read(phydev, MII_KSZ9477_PHY_RXER_COUNTER); 2172 if (ret < 0) 2173 return ret; 2174 2175 priv->phy_stats.rx_err_pkt_cnt += ret; 2176 2177 return 0; 2178 } 2179 2180 static void kszphy_get_phy_stats(struct phy_device *phydev, 2181 struct ethtool_eth_phy_stats *eth_stats, 2182 struct ethtool_phy_stats *stats) 2183 { 2184 struct kszphy_priv *priv = phydev->priv; 2185 2186 stats->rx_errors = priv->phy_stats.rx_err_pkt_cnt; 2187 } 2188 2189 /* Base register for Signal Quality Indicator (SQI) - Channel A 2190 * 2191 * MMD Address: MDIO_MMD_PMAPMD (0x01) 2192 * Register: 0xAC (Channel A) 2193 * Each channel (pair) has its own register: 2194 * Channel A: 0xAC 2195 * Channel B: 0xAD 2196 * Channel C: 0xAE 2197 * Channel D: 0xAF 2198 */ 2199 #define KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A 0xac 2200 2201 /* SQI field mask for bits [14:8] 2202 * 2203 * SQI indicates relative quality of the signal. 2204 * A lower value indicates better signal quality. 2205 */ 2206 #define KSZ9477_MMD_SQI_MASK GENMASK(14, 8) 2207 2208 #define KSZ9477_MAX_CHANNELS 4 2209 #define KSZ9477_SQI_MAX 7 2210 2211 /* Number of SQI samples to average for a stable result. 2212 * 2213 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2214 * For noisy environments, a minimum of 30–50 readings is recommended. 2215 */ 2216 #define KSZ9477_SQI_SAMPLE_COUNT 40 2217 2218 /* The hardware SQI register provides a raw value from 0-127, where a lower 2219 * value indicates better signal quality. However, empirical testing has 2220 * shown that only the 0-7 range is relevant for a functional link. A raw 2221 * value of 8 or higher was measured directly before link drop. This aligns 2222 * with the OPEN Alliance recommendation that SQI=0 should represent the 2223 * pre-failure state. 2224 * 2225 * This table provides a non-linear mapping from the useful raw hardware 2226 * values (0-7) to the standard 0-7 SQI scale, where higher is better. 2227 */ 2228 static const u8 ksz_sqi_mapping[] = { 2229 7, /* raw 0 -> SQI 7 */ 2230 7, /* raw 1 -> SQI 7 */ 2231 6, /* raw 2 -> SQI 6 */ 2232 5, /* raw 3 -> SQI 5 */ 2233 4, /* raw 4 -> SQI 4 */ 2234 3, /* raw 5 -> SQI 3 */ 2235 2, /* raw 6 -> SQI 2 */ 2236 1, /* raw 7 -> SQI 1 */ 2237 }; 2238 2239 /** 2240 * kszphy_get_sqi - Read, average, and map Signal Quality Index (SQI) 2241 * @phydev: the PHY device 2242 * 2243 * This function reads and processes the raw Signal Quality Index from the 2244 * PHY. Based on empirical testing, a raw value of 8 or higher indicates a 2245 * pre-failure state and is mapped to SQI 0. Raw values from 0-7 are 2246 * mapped to the standard 0-7 SQI scale via a lookup table. 2247 * 2248 * Return: SQI value (0–7), or a negative errno on failure. 2249 */ 2250 static int kszphy_get_sqi(struct phy_device *phydev) 2251 { 2252 int sum[KSZ9477_MAX_CHANNELS] = { 0 }; 2253 int worst_sqi = KSZ9477_SQI_MAX; 2254 int i, val, raw_sqi, ch; 2255 u8 channels; 2256 2257 /* Determine applicable channels based on link speed */ 2258 if (phydev->speed == SPEED_1000) 2259 channels = 4; 2260 else if (phydev->speed == SPEED_100) 2261 channels = 1; 2262 else 2263 return -EOPNOTSUPP; 2264 2265 /* Sample and accumulate SQI readings for each pair (currently only one). 2266 * 2267 * Reference: KSZ9477S Datasheet DS00002392C, Section 4.1.11 (page 26) 2268 * - The SQI register is updated every 2 µs. 2269 * - Values may fluctuate significantly, even in low-noise environments. 2270 * - For reliable estimation, average a minimum of 30–50 samples 2271 * (recommended for noisy environments) 2272 * - In noisy environments, individual readings are highly unreliable. 2273 * 2274 * We use 40 samples per pair with a delay of 3 µs between each 2275 * read to ensure new values are captured (2 µs update interval). 2276 */ 2277 for (i = 0; i < KSZ9477_SQI_SAMPLE_COUNT; i++) { 2278 for (ch = 0; ch < channels; ch++) { 2279 val = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, 2280 KSZ9477_MMD_SIGNAL_QUALITY_CHAN_A + ch); 2281 if (val < 0) 2282 return val; 2283 2284 raw_sqi = FIELD_GET(KSZ9477_MMD_SQI_MASK, val); 2285 sum[ch] += raw_sqi; 2286 2287 /* We communicate with the PHY via MDIO via SPI or 2288 * I2C, which is relatively slow. At least slower than 2289 * the update interval of the SQI register. 2290 * So, we can skip the delay between reads. 2291 */ 2292 } 2293 } 2294 2295 /* Calculate average for each channel and find the worst SQI */ 2296 for (ch = 0; ch < channels; ch++) { 2297 int avg_raw_sqi = sum[ch] / KSZ9477_SQI_SAMPLE_COUNT; 2298 int mapped_sqi; 2299 2300 /* Handle the pre-fail/failed state first. */ 2301 if (avg_raw_sqi >= ARRAY_SIZE(ksz_sqi_mapping)) 2302 mapped_sqi = 0; 2303 else 2304 /* Use the lookup table for the good signal range. */ 2305 mapped_sqi = ksz_sqi_mapping[avg_raw_sqi]; 2306 2307 if (mapped_sqi < worst_sqi) 2308 worst_sqi = mapped_sqi; 2309 } 2310 2311 return worst_sqi; 2312 } 2313 2314 static int kszphy_get_sqi_max(struct phy_device *phydev) 2315 { 2316 return KSZ9477_SQI_MAX; 2317 } 2318 2319 static void kszphy_enable_clk(struct phy_device *phydev) 2320 { 2321 struct kszphy_priv *priv = phydev->priv; 2322 2323 if (!priv->clk_enable && priv->clk) { 2324 clk_prepare_enable(priv->clk); 2325 priv->clk_enable = true; 2326 } 2327 } 2328 2329 static void kszphy_disable_clk(struct phy_device *phydev) 2330 { 2331 struct kszphy_priv *priv = phydev->priv; 2332 2333 if (priv->clk_enable && priv->clk) { 2334 clk_disable_unprepare(priv->clk); 2335 priv->clk_enable = false; 2336 } 2337 } 2338 2339 static int kszphy_generic_resume(struct phy_device *phydev) 2340 { 2341 kszphy_enable_clk(phydev); 2342 2343 return genphy_resume(phydev); 2344 } 2345 2346 static int kszphy_generic_suspend(struct phy_device *phydev) 2347 { 2348 int ret; 2349 2350 ret = genphy_suspend(phydev); 2351 if (ret) 2352 return ret; 2353 2354 kszphy_disable_clk(phydev); 2355 2356 return 0; 2357 } 2358 2359 static int kszphy_suspend(struct phy_device *phydev) 2360 { 2361 /* Disable PHY Interrupts */ 2362 if (phy_interrupt_is_valid(phydev)) { 2363 phydev->interrupts = PHY_INTERRUPT_DISABLED; 2364 if (phydev->drv->config_intr) 2365 phydev->drv->config_intr(phydev); 2366 } 2367 2368 return kszphy_generic_suspend(phydev); 2369 } 2370 2371 static void kszphy_parse_led_mode(struct phy_device *phydev) 2372 { 2373 const struct kszphy_type *type = phydev->drv->driver_data; 2374 const struct device_node *np = phydev->mdio.dev.of_node; 2375 struct kszphy_priv *priv = phydev->priv; 2376 int ret; 2377 2378 if (type && type->led_mode_reg) { 2379 ret = of_property_read_u32(np, "micrel,led-mode", 2380 &priv->led_mode); 2381 2382 if (ret) 2383 priv->led_mode = -1; 2384 2385 if (priv->led_mode > 3) { 2386 phydev_err(phydev, "invalid led mode: 0x%02x\n", 2387 priv->led_mode); 2388 priv->led_mode = -1; 2389 } 2390 } else { 2391 priv->led_mode = -1; 2392 } 2393 } 2394 2395 static int kszphy_resume(struct phy_device *phydev) 2396 { 2397 int ret; 2398 2399 ret = kszphy_generic_resume(phydev); 2400 if (ret) 2401 return ret; 2402 2403 /* After switching from power-down to normal mode, an internal global 2404 * reset is automatically generated. Wait a minimum of 1 ms before 2405 * read/write access to the PHY registers. 2406 */ 2407 usleep_range(1000, 2000); 2408 2409 ret = kszphy_config_reset(phydev); 2410 if (ret) 2411 return ret; 2412 2413 /* Enable PHY Interrupts */ 2414 if (phy_interrupt_is_valid(phydev)) { 2415 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2416 if (phydev->drv->config_intr) 2417 phydev->drv->config_intr(phydev); 2418 } 2419 2420 return 0; 2421 } 2422 2423 /* Because of errata DS80000700A, receiver error following software 2424 * power down. Suspend and resume callbacks only disable and enable 2425 * external rmii reference clock. 2426 */ 2427 static int ksz8041_resume(struct phy_device *phydev) 2428 { 2429 kszphy_enable_clk(phydev); 2430 2431 return 0; 2432 } 2433 2434 static int ksz8041_suspend(struct phy_device *phydev) 2435 { 2436 kszphy_disable_clk(phydev); 2437 2438 return 0; 2439 } 2440 2441 static int ksz9477_resume(struct phy_device *phydev) 2442 { 2443 int ret; 2444 2445 /* No need to initialize registers if not powered down. */ 2446 ret = phy_read(phydev, MII_BMCR); 2447 if (ret < 0) 2448 return ret; 2449 if (!(ret & BMCR_PDOWN)) 2450 return 0; 2451 2452 genphy_resume(phydev); 2453 2454 /* After switching from power-down to normal mode, an internal global 2455 * reset is automatically generated. Wait a minimum of 1 ms before 2456 * read/write access to the PHY registers. 2457 */ 2458 usleep_range(1000, 2000); 2459 2460 /* Only KSZ9897 family of switches needs this fix. */ 2461 if ((phydev->phy_id & 0xf) == 1) { 2462 ret = ksz9477_phy_errata(phydev); 2463 if (ret) 2464 return ret; 2465 } 2466 2467 /* Enable PHY Interrupts */ 2468 if (phy_interrupt_is_valid(phydev)) { 2469 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2470 if (phydev->drv->config_intr) 2471 phydev->drv->config_intr(phydev); 2472 } 2473 2474 return 0; 2475 } 2476 2477 static int ksz8061_resume(struct phy_device *phydev) 2478 { 2479 int ret; 2480 2481 /* This function can be called twice when the Ethernet device is on. */ 2482 ret = phy_read(phydev, MII_BMCR); 2483 if (ret < 0) 2484 return ret; 2485 if (!(ret & BMCR_PDOWN)) 2486 return 0; 2487 2488 ret = kszphy_generic_resume(phydev); 2489 if (ret) 2490 return ret; 2491 2492 usleep_range(1000, 2000); 2493 2494 /* Re-program the value after chip is reset. */ 2495 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); 2496 if (ret) 2497 return ret; 2498 2499 /* Enable PHY Interrupts */ 2500 if (phy_interrupt_is_valid(phydev)) { 2501 phydev->interrupts = PHY_INTERRUPT_ENABLED; 2502 if (phydev->drv->config_intr) 2503 phydev->drv->config_intr(phydev); 2504 } 2505 2506 return 0; 2507 } 2508 2509 static int ksz8061_suspend(struct phy_device *phydev) 2510 { 2511 return kszphy_suspend(phydev); 2512 } 2513 2514 static int kszphy_probe(struct phy_device *phydev) 2515 { 2516 const struct kszphy_type *type = phydev->drv->driver_data; 2517 const struct device_node *np = phydev->mdio.dev.of_node; 2518 struct kszphy_priv *priv; 2519 struct clk *clk; 2520 2521 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 2522 if (!priv) 2523 return -ENOMEM; 2524 2525 phydev->priv = priv; 2526 2527 priv->type = type; 2528 2529 kszphy_parse_led_mode(phydev); 2530 2531 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); 2532 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ 2533 if (!IS_ERR_OR_NULL(clk)) { 2534 unsigned long rate = clk_get_rate(clk); 2535 bool rmii_ref_clk_sel_25_mhz; 2536 2537 if (type) 2538 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; 2539 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, 2540 "micrel,rmii-reference-clock-select-25-mhz"); 2541 2542 if (rate > 24500000 && rate < 25500000) { 2543 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; 2544 } else if (rate > 49500000 && rate < 50500000) { 2545 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; 2546 } else { 2547 phydev_err(phydev, "Clock rate out of range: %ld\n", 2548 rate); 2549 return -EINVAL; 2550 } 2551 } else if (!clk) { 2552 /* unnamed clock from the generic ethernet-phy binding */ 2553 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); 2554 } 2555 2556 if (IS_ERR(clk)) 2557 return PTR_ERR(clk); 2558 2559 clk_disable_unprepare(clk); 2560 priv->clk = clk; 2561 2562 if (ksz8041_fiber_mode(phydev)) 2563 phydev->port = PORT_FIBRE; 2564 2565 /* Support legacy board-file configuration */ 2566 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { 2567 priv->rmii_ref_clk_sel = true; 2568 priv->rmii_ref_clk_sel_val = true; 2569 } 2570 2571 return 0; 2572 } 2573 2574 static int lan8814_cable_test_start(struct phy_device *phydev) 2575 { 2576 /* If autoneg is enabled, we won't be able to test cross pair 2577 * short. In this case, the PHY will "detect" a link and 2578 * confuse the internal state machine - disable auto neg here. 2579 * Set the speed to 1000mbit and full duplex. 2580 */ 2581 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, 2582 BMCR_SPEED1000 | BMCR_FULLDPLX); 2583 } 2584 2585 static int ksz886x_cable_test_start(struct phy_device *phydev) 2586 { 2587 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) 2588 return -EOPNOTSUPP; 2589 2590 /* If autoneg is enabled, we won't be able to test cross pair 2591 * short. In this case, the PHY will "detect" a link and 2592 * confuse the internal state machine - disable auto neg here. 2593 * If autoneg is disabled, we should set the speed to 10mbit. 2594 */ 2595 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); 2596 } 2597 2598 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) 2599 { 2600 switch (FIELD_GET(mask, status)) { 2601 case KSZ8081_LMD_STAT_NORMAL: 2602 return ETHTOOL_A_CABLE_RESULT_CODE_OK; 2603 case KSZ8081_LMD_STAT_SHORT: 2604 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; 2605 case KSZ8081_LMD_STAT_OPEN: 2606 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; 2607 case KSZ8081_LMD_STAT_FAIL: 2608 fallthrough; 2609 default: 2610 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; 2611 } 2612 } 2613 2614 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) 2615 { 2616 return FIELD_GET(mask, status) == 2617 KSZ8081_LMD_STAT_FAIL; 2618 } 2619 2620 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) 2621 { 2622 switch (FIELD_GET(mask, status)) { 2623 case KSZ8081_LMD_STAT_OPEN: 2624 fallthrough; 2625 case KSZ8081_LMD_STAT_SHORT: 2626 return true; 2627 } 2628 return false; 2629 } 2630 2631 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, 2632 u16 status, u16 data_mask) 2633 { 2634 int dt; 2635 2636 /* According to the data sheet the distance to the fault is 2637 * DELTA_TIME * 0.4 meters for ksz phys. 2638 * (DELTA_TIME - 22) * 0.8 for lan8814 phy. 2639 */ 2640 dt = FIELD_GET(data_mask, status); 2641 2642 if (phydev_id_compare(phydev, PHY_ID_LAN8814)) 2643 return ((dt - 22) * 800) / 10; 2644 else 2645 return (dt * 400) / 10; 2646 } 2647 2648 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) 2649 { 2650 const struct kszphy_type *type = phydev->drv->driver_data; 2651 int val, ret; 2652 2653 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, 2654 !(val & KSZ8081_LMD_ENABLE_TEST), 2655 30000, 100000, true); 2656 2657 return ret < 0 ? ret : 0; 2658 } 2659 2660 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) 2661 { 2662 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, 2663 ETHTOOL_A_CABLE_PAIR_B, 2664 ETHTOOL_A_CABLE_PAIR_C, 2665 ETHTOOL_A_CABLE_PAIR_D, 2666 }; 2667 u32 fault_length; 2668 int ret; 2669 int val; 2670 2671 val = KSZ8081_LMD_ENABLE_TEST; 2672 val = val | (pair << LAN8814_PAIR_BIT_SHIFT); 2673 2674 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); 2675 if (ret < 0) 2676 return ret; 2677 2678 ret = ksz886x_cable_test_wait_for_completion(phydev); 2679 if (ret) 2680 return ret; 2681 2682 val = phy_read(phydev, LAN8814_CABLE_DIAG); 2683 if (val < 0) 2684 return val; 2685 2686 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2687 return -EAGAIN; 2688 2689 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2690 ksz886x_cable_test_result_trans(val, 2691 LAN8814_CABLE_DIAG_STAT_MASK 2692 )); 2693 if (ret) 2694 return ret; 2695 2696 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) 2697 return 0; 2698 2699 fault_length = ksz886x_cable_test_fault_length(phydev, val, 2700 LAN8814_CABLE_DIAG_VCT_DATA_MASK); 2701 2702 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2703 } 2704 2705 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) 2706 { 2707 static const int ethtool_pair[] = { 2708 ETHTOOL_A_CABLE_PAIR_A, 2709 ETHTOOL_A_CABLE_PAIR_B, 2710 }; 2711 int ret, val, mdix; 2712 u32 fault_length; 2713 2714 /* There is no way to choice the pair, like we do one ksz9031. 2715 * We can workaround this limitation by using the MDI-X functionality. 2716 */ 2717 if (pair == 0) 2718 mdix = ETH_TP_MDI; 2719 else 2720 mdix = ETH_TP_MDI_X; 2721 2722 switch (phydev->phy_id & MICREL_PHY_ID_MASK) { 2723 case PHY_ID_KSZ8081: 2724 ret = ksz8081_config_mdix(phydev, mdix); 2725 break; 2726 case PHY_ID_KSZ886X: 2727 ret = ksz886x_config_mdix(phydev, mdix); 2728 break; 2729 default: 2730 ret = -ENODEV; 2731 } 2732 2733 if (ret) 2734 return ret; 2735 2736 /* Now we are ready to fire. This command will send a 100ns pulse 2737 * to the pair. 2738 */ 2739 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); 2740 if (ret) 2741 return ret; 2742 2743 ret = ksz886x_cable_test_wait_for_completion(phydev); 2744 if (ret) 2745 return ret; 2746 2747 val = phy_read(phydev, KSZ8081_LMD); 2748 if (val < 0) 2749 return val; 2750 2751 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) 2752 return -EAGAIN; 2753 2754 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], 2755 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); 2756 if (ret) 2757 return ret; 2758 2759 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) 2760 return 0; 2761 2762 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); 2763 2764 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); 2765 } 2766 2767 static int ksz886x_cable_test_get_status(struct phy_device *phydev, 2768 bool *finished) 2769 { 2770 const struct kszphy_type *type = phydev->drv->driver_data; 2771 unsigned long pair_mask = type->pair_mask; 2772 int retries = 20; 2773 int ret = 0; 2774 int pair; 2775 2776 *finished = false; 2777 2778 /* Try harder if link partner is active */ 2779 while (pair_mask && retries--) { 2780 for_each_set_bit(pair, &pair_mask, 4) { 2781 if (type->cable_diag_reg == LAN8814_CABLE_DIAG) 2782 ret = lan8814_cable_test_one_pair(phydev, pair); 2783 else 2784 ret = ksz886x_cable_test_one_pair(phydev, pair); 2785 if (ret == -EAGAIN) 2786 continue; 2787 if (ret < 0) 2788 return ret; 2789 clear_bit(pair, &pair_mask); 2790 } 2791 /* If link partner is in autonegotiation mode it will send 2ms 2792 * of FLPs with at least 6ms of silence. 2793 * Add 2ms sleep to have better chances to hit this silence. 2794 */ 2795 if (pair_mask) 2796 msleep(2); 2797 } 2798 2799 *finished = true; 2800 2801 return ret; 2802 } 2803 2804 /** 2805 * LAN8814_PAGE_AFE_PMA - Selects Extended Page 1. 2806 * 2807 * This page appears to control the Analog Front-End (AFE) and Physical 2808 * Medium Attachment (PMA) layers. It is used to access registers like 2809 * LAN8814_PD_CONTROLS and LAN8814_LINK_QUALITY. 2810 */ 2811 #define LAN8814_PAGE_AFE_PMA 1 2812 2813 /** 2814 * LAN8814_PAGE_PCS_DIGITAL - Selects Extended Page 2. 2815 * 2816 * This page seems dedicated to the Physical Coding Sublayer (PCS) and other 2817 * digital logic. It is used for MDI-X alignment (LAN8814_ALIGN_SWAP) and EEE 2818 * state (LAN8814_EEE_STATE) in the LAN8814, and is repurposed for statistics 2819 * and self-test counters in the LAN8842. 2820 */ 2821 #define LAN8814_PAGE_PCS_DIGITAL 2 2822 2823 /** 2824 * LAN8814_PAGE_COMMON_REGS - Selects Extended Page 4. 2825 * 2826 * This page contains device-common registers that affect the entire chip. 2827 * It includes controls for chip-level resets, strap status, GPIO, 2828 * QSGMII, the shared 1588 PTP block, and the PVT monitor. 2829 */ 2830 #define LAN8814_PAGE_COMMON_REGS 4 2831 2832 /** 2833 * LAN8814_PAGE_PORT_REGS - Selects Extended Page 5. 2834 * 2835 * This page contains port-specific registers that must be accessed 2836 * on a per-port basis. It includes controls for port LEDs, QSGMII PCS, 2837 * rate adaptation FIFOs, and the per-port 1588 TSU block. 2838 */ 2839 #define LAN8814_PAGE_PORT_REGS 5 2840 2841 /** 2842 * LAN8814_PAGE_SYSTEM_CTRL - Selects Extended Page 31. 2843 * 2844 * This page appears to hold fundamental system or global controls. In the 2845 * driver, it is used by the related LAN8804 to access the 2846 * LAN8814_CLOCK_MANAGEMENT register. 2847 */ 2848 #define LAN8814_PAGE_SYSTEM_CTRL 31 2849 2850 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 2851 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 2852 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 2853 2854 #define LAN8814_QSGMII_SOFT_RESET 0x43 2855 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) 2856 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 2857 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) 2858 #define LAN8814_ALIGN_SWAP 0x4a 2859 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 2860 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2861 2862 #define LAN8804_ALIGN_SWAP 0x4a 2863 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 2864 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) 2865 #define LAN8814_CLOCK_MANAGEMENT 0xd 2866 #define LAN8814_LINK_QUALITY 0x8e 2867 2868 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) 2869 { 2870 int data; 2871 2872 phy_lock_mdio_bus(phydev); 2873 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2874 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2875 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2876 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2877 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); 2878 phy_unlock_mdio_bus(phydev); 2879 2880 return data; 2881 } 2882 2883 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, 2884 u16 val) 2885 { 2886 phy_lock_mdio_bus(phydev); 2887 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2888 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2889 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2890 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); 2891 2892 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); 2893 if (val != 0) 2894 phydev_err(phydev, "Error: phy_write has returned error %d\n", 2895 val); 2896 phy_unlock_mdio_bus(phydev); 2897 return val; 2898 } 2899 2900 static int lanphy_modify_page_reg(struct phy_device *phydev, int page, u16 addr, 2901 u16 mask, u16 set) 2902 { 2903 int ret; 2904 2905 phy_lock_mdio_bus(phydev); 2906 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); 2907 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); 2908 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, 2909 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); 2910 ret = __phy_modify_changed(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, 2911 mask, set); 2912 phy_unlock_mdio_bus(phydev); 2913 2914 if (ret < 0) 2915 phydev_err(phydev, "__phy_modify_changed() failed: %pe\n", 2916 ERR_PTR(ret)); 2917 2918 return ret; 2919 } 2920 2921 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) 2922 { 2923 u16 val = 0; 2924 2925 if (enable) 2926 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | 2927 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | 2928 PTP_TSU_INT_EN_PTP_RX_TS_EN_ | 2929 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; 2930 2931 return lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2932 PTP_TSU_INT_EN, val); 2933 } 2934 2935 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, 2936 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2937 { 2938 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2939 PTP_RX_INGRESS_SEC_HI); 2940 *seconds = (*seconds << 16) | 2941 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2942 PTP_RX_INGRESS_SEC_LO); 2943 2944 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2945 PTP_RX_INGRESS_NS_HI); 2946 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2947 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2948 PTP_RX_INGRESS_NS_LO); 2949 2950 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2951 PTP_RX_MSG_HEADER2); 2952 } 2953 2954 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, 2955 u32 *seconds, u32 *nano_seconds, u16 *seq_id) 2956 { 2957 *seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2958 PTP_TX_EGRESS_SEC_HI); 2959 *seconds = *seconds << 16 | 2960 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2961 PTP_TX_EGRESS_SEC_LO); 2962 2963 *nano_seconds = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2964 PTP_TX_EGRESS_NS_HI); 2965 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | 2966 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2967 PTP_TX_EGRESS_NS_LO); 2968 2969 *seq_id = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 2970 PTP_TX_MSG_HEADER2); 2971 } 2972 2973 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info) 2974 { 2975 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 2976 struct lan8814_shared_priv *shared = phy_package_get_priv(ptp_priv->phydev); 2977 2978 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 2979 SOF_TIMESTAMPING_RX_HARDWARE | 2980 SOF_TIMESTAMPING_RAW_HARDWARE; 2981 2982 info->phc_index = ptp_clock_index(shared->ptp_clock); 2983 2984 info->tx_types = 2985 (1 << HWTSTAMP_TX_OFF) | 2986 (1 << HWTSTAMP_TX_ON) | 2987 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 2988 2989 info->rx_filters = 2990 (1 << HWTSTAMP_FILTER_NONE) | 2991 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | 2992 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 2993 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 2994 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2995 2996 return 0; 2997 } 2998 2999 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) 3000 { 3001 int i; 3002 3003 for (i = 0; i < FIFO_SIZE; ++i) 3004 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3005 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); 3006 3007 /* Read to clear overflow status bit */ 3008 lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TSU_INT_STS); 3009 } 3010 3011 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, 3012 struct kernel_hwtstamp_config *config, 3013 struct netlink_ext_ack *extack) 3014 { 3015 struct kszphy_ptp_priv *ptp_priv = 3016 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3017 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3018 int txcfg = 0, rxcfg = 0; 3019 int pkt_ts_enable; 3020 3021 ptp_priv->hwts_tx_type = config->tx_type; 3022 ptp_priv->rx_filter = config->rx_filter; 3023 3024 switch (config->rx_filter) { 3025 case HWTSTAMP_FILTER_NONE: 3026 ptp_priv->layer = 0; 3027 ptp_priv->version = 0; 3028 break; 3029 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3030 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3031 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3032 ptp_priv->layer = PTP_CLASS_L4; 3033 ptp_priv->version = PTP_CLASS_V2; 3034 break; 3035 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3036 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3037 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3038 ptp_priv->layer = PTP_CLASS_L2; 3039 ptp_priv->version = PTP_CLASS_V2; 3040 break; 3041 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3042 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3043 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3044 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 3045 ptp_priv->version = PTP_CLASS_V2; 3046 break; 3047 default: 3048 return -ERANGE; 3049 } 3050 3051 if (ptp_priv->layer & PTP_CLASS_L2) { 3052 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; 3053 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; 3054 } else if (ptp_priv->layer & PTP_CLASS_L4) { 3055 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 3056 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 3057 } 3058 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3059 PTP_RX_PARSE_CONFIG, rxcfg); 3060 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3061 PTP_TX_PARSE_CONFIG, txcfg); 3062 3063 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 3064 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 3065 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3066 PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 3067 lanphy_write_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3068 PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 3069 3070 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { 3071 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3072 PTP_TX_MOD, 3073 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3074 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); 3075 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { 3076 lanphy_modify_page_reg(ptp_priv->phydev, LAN8814_PAGE_PORT_REGS, 3077 PTP_TX_MOD, 3078 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 3079 0); 3080 } 3081 3082 if (config->rx_filter != HWTSTAMP_FILTER_NONE) 3083 lan8814_config_ts_intr(ptp_priv->phydev, true); 3084 else 3085 lan8814_config_ts_intr(ptp_priv->phydev, false); 3086 3087 /* In case of multiple starts and stops, these needs to be cleared */ 3088 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3089 list_del(&rx_ts->list); 3090 kfree(rx_ts); 3091 } 3092 skb_queue_purge(&ptp_priv->rx_queue); 3093 skb_queue_purge(&ptp_priv->tx_queue); 3094 3095 lan8814_flush_fifo(ptp_priv->phydev, false); 3096 lan8814_flush_fifo(ptp_priv->phydev, true); 3097 3098 return 0; 3099 } 3100 3101 static void lan8814_txtstamp(struct mii_timestamper *mii_ts, 3102 struct sk_buff *skb, int type) 3103 { 3104 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3105 3106 switch (ptp_priv->hwts_tx_type) { 3107 case HWTSTAMP_TX_ONESTEP_SYNC: 3108 if (ptp_msg_is_sync(skb, type)) { 3109 kfree_skb(skb); 3110 return; 3111 } 3112 fallthrough; 3113 case HWTSTAMP_TX_ON: 3114 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3115 skb_queue_tail(&ptp_priv->tx_queue, skb); 3116 break; 3117 case HWTSTAMP_TX_OFF: 3118 default: 3119 kfree_skb(skb); 3120 break; 3121 } 3122 } 3123 3124 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) 3125 { 3126 struct ptp_header *ptp_header; 3127 u32 type; 3128 3129 skb_push(skb, ETH_HLEN); 3130 type = ptp_classify_raw(skb); 3131 ptp_header = ptp_parse_header(skb, type); 3132 skb_pull_inline(skb, ETH_HLEN); 3133 3134 if (!ptp_header) 3135 return false; 3136 3137 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3138 return true; 3139 } 3140 3141 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, 3142 struct sk_buff *skb) 3143 { 3144 struct skb_shared_hwtstamps *shhwtstamps; 3145 struct lan8814_ptp_rx_ts *rx_ts, *tmp; 3146 unsigned long flags; 3147 bool ret = false; 3148 u16 skb_sig; 3149 3150 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3151 return ret; 3152 3153 /* Iterate over all RX timestamps and match it with the received skbs */ 3154 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3155 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { 3156 /* Check if we found the signature we were looking for. */ 3157 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3158 continue; 3159 3160 shhwtstamps = skb_hwtstamps(skb); 3161 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3162 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, 3163 rx_ts->nsec); 3164 list_del(&rx_ts->list); 3165 kfree(rx_ts); 3166 3167 ret = true; 3168 break; 3169 } 3170 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3171 3172 if (ret) 3173 netif_rx(skb); 3174 return ret; 3175 } 3176 3177 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) 3178 { 3179 struct kszphy_ptp_priv *ptp_priv = 3180 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 3181 3182 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 3183 type == PTP_CLASS_NONE) 3184 return false; 3185 3186 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 3187 return false; 3188 3189 /* If we failed to match then add it to the queue for when the timestamp 3190 * will come 3191 */ 3192 if (!lan8814_match_rx_skb(ptp_priv, skb)) 3193 skb_queue_tail(&ptp_priv->rx_queue, skb); 3194 3195 return true; 3196 } 3197 3198 static void lan8814_ptp_clock_set(struct phy_device *phydev, 3199 time64_t sec, u32 nsec) 3200 { 3201 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3202 PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); 3203 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3204 PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); 3205 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3206 PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); 3207 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3208 PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); 3209 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3210 PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); 3211 3212 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3213 PTP_CMD_CTL_PTP_CLOCK_LOAD_); 3214 } 3215 3216 static void lan8814_ptp_clock_get(struct phy_device *phydev, 3217 time64_t *sec, u32 *nsec) 3218 { 3219 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3220 PTP_CMD_CTL_PTP_CLOCK_READ_); 3221 3222 *sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3223 PTP_CLOCK_READ_SEC_HI); 3224 *sec <<= 16; 3225 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3226 PTP_CLOCK_READ_SEC_MID); 3227 *sec <<= 16; 3228 *sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3229 PTP_CLOCK_READ_SEC_LO); 3230 3231 *nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3232 PTP_CLOCK_READ_NS_HI); 3233 *nsec <<= 16; 3234 *nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3235 PTP_CLOCK_READ_NS_LO); 3236 } 3237 3238 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, 3239 struct timespec64 *ts) 3240 { 3241 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3242 ptp_clock_info); 3243 struct phy_device *phydev = shared->phydev; 3244 u32 nano_seconds; 3245 time64_t seconds; 3246 3247 mutex_lock(&shared->shared_lock); 3248 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); 3249 mutex_unlock(&shared->shared_lock); 3250 ts->tv_sec = seconds; 3251 ts->tv_nsec = nano_seconds; 3252 3253 return 0; 3254 } 3255 3256 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, 3257 const struct timespec64 *ts) 3258 { 3259 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3260 ptp_clock_info); 3261 struct phy_device *phydev = shared->phydev; 3262 3263 mutex_lock(&shared->shared_lock); 3264 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); 3265 mutex_unlock(&shared->shared_lock); 3266 3267 return 0; 3268 } 3269 3270 static void lan8814_ptp_set_target(struct phy_device *phydev, int event, 3271 s64 start_sec, u32 start_nsec) 3272 { 3273 /* Set the start time */ 3274 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3275 LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), 3276 lower_16_bits(start_sec)); 3277 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3278 LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), 3279 upper_16_bits(start_sec)); 3280 3281 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3282 LAN8814_PTP_CLOCK_TARGET_NS_LO(event), 3283 lower_16_bits(start_nsec)); 3284 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3285 LAN8814_PTP_CLOCK_TARGET_NS_HI(event), 3286 upper_16_bits(start_nsec) & 0x3fff); 3287 } 3288 3289 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) 3290 { 3291 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, 3292 sec + LAN8814_BUFFER_TIME, 0); 3293 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, 3294 sec + LAN8814_BUFFER_TIME, 0); 3295 } 3296 3297 static void lan8814_ptp_clock_step(struct phy_device *phydev, 3298 s64 time_step_ns) 3299 { 3300 u32 nano_seconds_step; 3301 u64 abs_time_step_ns; 3302 time64_t set_seconds; 3303 u32 nano_seconds; 3304 u32 remainder; 3305 s32 seconds; 3306 3307 if (time_step_ns > 15000000000LL) { 3308 /* convert to clock set */ 3309 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3310 set_seconds += div_u64_rem(time_step_ns, 1000000000LL, 3311 &remainder); 3312 nano_seconds += remainder; 3313 if (nano_seconds >= 1000000000) { 3314 set_seconds++; 3315 nano_seconds -= 1000000000; 3316 } 3317 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3318 lan8814_ptp_update_target(phydev, set_seconds); 3319 return; 3320 } else if (time_step_ns < -15000000000LL) { 3321 /* convert to clock set */ 3322 time_step_ns = -time_step_ns; 3323 3324 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); 3325 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, 3326 &remainder); 3327 nano_seconds_step = remainder; 3328 if (nano_seconds < nano_seconds_step) { 3329 set_seconds--; 3330 nano_seconds += 1000000000; 3331 } 3332 nano_seconds -= nano_seconds_step; 3333 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); 3334 lan8814_ptp_update_target(phydev, set_seconds); 3335 return; 3336 } 3337 3338 /* do clock step */ 3339 if (time_step_ns >= 0) { 3340 abs_time_step_ns = (u64)time_step_ns; 3341 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, 3342 &remainder); 3343 nano_seconds = remainder; 3344 } else { 3345 abs_time_step_ns = (u64)(-time_step_ns); 3346 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, 3347 &remainder)); 3348 nano_seconds = remainder; 3349 if (nano_seconds > 0) { 3350 /* subtracting nano seconds is not allowed 3351 * convert to subtracting from seconds, 3352 * and adding to nanoseconds 3353 */ 3354 seconds--; 3355 nano_seconds = (1000000000 - nano_seconds); 3356 } 3357 } 3358 3359 if (nano_seconds > 0) { 3360 /* add 8 ns to cover the likely normal increment */ 3361 nano_seconds += 8; 3362 } 3363 3364 if (nano_seconds >= 1000000000) { 3365 /* carry into seconds */ 3366 seconds++; 3367 nano_seconds -= 1000000000; 3368 } 3369 3370 while (seconds) { 3371 u32 nsec; 3372 3373 if (seconds > 0) { 3374 u32 adjustment_value = (u32)seconds; 3375 u16 adjustment_value_lo, adjustment_value_hi; 3376 3377 if (adjustment_value > 0xF) 3378 adjustment_value = 0xF; 3379 3380 adjustment_value_lo = adjustment_value & 0xffff; 3381 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3382 3383 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3384 PTP_LTC_STEP_ADJ_LO, 3385 adjustment_value_lo); 3386 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3387 PTP_LTC_STEP_ADJ_HI, 3388 PTP_LTC_STEP_ADJ_DIR_ | 3389 adjustment_value_hi); 3390 seconds -= ((s32)adjustment_value); 3391 3392 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3393 set_seconds -= adjustment_value; 3394 lan8814_ptp_update_target(phydev, set_seconds); 3395 } else { 3396 u32 adjustment_value = (u32)(-seconds); 3397 u16 adjustment_value_lo, adjustment_value_hi; 3398 3399 if (adjustment_value > 0xF) 3400 adjustment_value = 0xF; 3401 3402 adjustment_value_lo = adjustment_value & 0xffff; 3403 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; 3404 3405 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3406 PTP_LTC_STEP_ADJ_LO, 3407 adjustment_value_lo); 3408 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3409 PTP_LTC_STEP_ADJ_HI, 3410 adjustment_value_hi); 3411 seconds += ((s32)adjustment_value); 3412 3413 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); 3414 set_seconds += adjustment_value; 3415 lan8814_ptp_update_target(phydev, set_seconds); 3416 } 3417 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3418 PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_); 3419 } 3420 if (nano_seconds) { 3421 u16 nano_seconds_lo; 3422 u16 nano_seconds_hi; 3423 3424 nano_seconds_lo = nano_seconds & 0xffff; 3425 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; 3426 3427 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3428 PTP_LTC_STEP_ADJ_LO, 3429 nano_seconds_lo); 3430 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3431 PTP_LTC_STEP_ADJ_HI, 3432 PTP_LTC_STEP_ADJ_DIR_ | 3433 nano_seconds_hi); 3434 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 3435 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); 3436 } 3437 } 3438 3439 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) 3440 { 3441 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3442 ptp_clock_info); 3443 struct phy_device *phydev = shared->phydev; 3444 3445 mutex_lock(&shared->shared_lock); 3446 lan8814_ptp_clock_step(phydev, delta); 3447 mutex_unlock(&shared->shared_lock); 3448 3449 return 0; 3450 } 3451 3452 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) 3453 { 3454 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3455 ptp_clock_info); 3456 struct phy_device *phydev = shared->phydev; 3457 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; 3458 bool positive = true; 3459 u32 kszphy_rate_adj; 3460 3461 if (scaled_ppm < 0) { 3462 scaled_ppm = -scaled_ppm; 3463 positive = false; 3464 } 3465 3466 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); 3467 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; 3468 3469 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; 3470 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; 3471 3472 if (positive) 3473 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; 3474 3475 mutex_lock(&shared->shared_lock); 3476 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_HI, 3477 kszphy_rate_adj_hi); 3478 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CLOCK_RATE_ADJ_LO, 3479 kszphy_rate_adj_lo); 3480 mutex_unlock(&shared->shared_lock); 3481 3482 return 0; 3483 } 3484 3485 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, 3486 s64 period_sec, u32 period_nsec) 3487 { 3488 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3489 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), 3490 lower_16_bits(period_sec)); 3491 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3492 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), 3493 upper_16_bits(period_sec)); 3494 3495 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3496 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), 3497 lower_16_bits(period_nsec)); 3498 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3499 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), 3500 upper_16_bits(period_nsec) & 0x3fff); 3501 } 3502 3503 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, 3504 int pulse_width) 3505 { 3506 /* Set the pulse width of the event, 3507 * Make sure that the target clock will be incremented each time when 3508 * local time reaches or pass it 3509 * Set the polarity high 3510 */ 3511 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3512 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) | 3513 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3514 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) | 3515 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event), 3516 LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width) | 3517 LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event)); 3518 } 3519 3520 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) 3521 { 3522 /* Set target to too far in the future, effectively disabling it */ 3523 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); 3524 3525 /* And then reload once it recheas the target */ 3526 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_PTP_GENERAL_CONFIG, 3527 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event), 3528 LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); 3529 } 3530 3531 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) 3532 { 3533 /* Disable gpio alternate function, 3534 * 1: select as gpio, 3535 * 0: select alt func 3536 */ 3537 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3538 LAN8814_GPIO_EN_ADDR(pin), 3539 LAN8814_GPIO_EN_BIT(pin), 3540 LAN8814_GPIO_EN_BIT(pin)); 3541 3542 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3543 LAN8814_GPIO_DIR_ADDR(pin), 3544 LAN8814_GPIO_DIR_BIT(pin), 3545 0); 3546 3547 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3548 LAN8814_GPIO_BUF_ADDR(pin), 3549 LAN8814_GPIO_BUF_BIT(pin), 3550 0); 3551 } 3552 3553 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) 3554 { 3555 /* Set as gpio output */ 3556 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3557 LAN8814_GPIO_DIR_ADDR(pin), 3558 LAN8814_GPIO_DIR_BIT(pin), 3559 LAN8814_GPIO_DIR_BIT(pin)); 3560 3561 /* Enable gpio 0:for alternate function, 1:gpio */ 3562 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3563 LAN8814_GPIO_EN_ADDR(pin), 3564 LAN8814_GPIO_EN_BIT(pin), 3565 0); 3566 3567 /* Set buffer type to push pull */ 3568 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3569 LAN8814_GPIO_BUF_ADDR(pin), 3570 LAN8814_GPIO_BUF_BIT(pin), 3571 LAN8814_GPIO_BUF_BIT(pin)); 3572 } 3573 3574 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, 3575 struct ptp_clock_request *rq, int on) 3576 { 3577 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3578 ptp_clock_info); 3579 struct phy_device *phydev = shared->phydev; 3580 struct timespec64 ts_on, ts_period; 3581 s64 on_nsec, period_nsec; 3582 int pulse_width; 3583 int pin, event; 3584 3585 mutex_lock(&shared->shared_lock); 3586 event = rq->perout.index; 3587 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); 3588 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { 3589 mutex_unlock(&shared->shared_lock); 3590 return -EBUSY; 3591 } 3592 3593 if (!on) { 3594 lan8814_ptp_perout_off(phydev, pin); 3595 lan8814_ptp_disable_event(phydev, event); 3596 mutex_unlock(&shared->shared_lock); 3597 return 0; 3598 } 3599 3600 ts_on.tv_sec = rq->perout.on.sec; 3601 ts_on.tv_nsec = rq->perout.on.nsec; 3602 on_nsec = timespec64_to_ns(&ts_on); 3603 3604 ts_period.tv_sec = rq->perout.period.sec; 3605 ts_period.tv_nsec = rq->perout.period.nsec; 3606 period_nsec = timespec64_to_ns(&ts_period); 3607 3608 if (period_nsec < 200) { 3609 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 3610 phydev_name(phydev)); 3611 mutex_unlock(&shared->shared_lock); 3612 return -EOPNOTSUPP; 3613 } 3614 3615 if (on_nsec >= period_nsec) { 3616 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 3617 phydev_name(phydev)); 3618 mutex_unlock(&shared->shared_lock); 3619 return -EINVAL; 3620 } 3621 3622 switch (on_nsec) { 3623 case 200000000: 3624 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 3625 break; 3626 case 100000000: 3627 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 3628 break; 3629 case 50000000: 3630 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 3631 break; 3632 case 10000000: 3633 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 3634 break; 3635 case 5000000: 3636 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 3637 break; 3638 case 1000000: 3639 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 3640 break; 3641 case 500000: 3642 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 3643 break; 3644 case 100000: 3645 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 3646 break; 3647 case 50000: 3648 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 3649 break; 3650 case 10000: 3651 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 3652 break; 3653 case 5000: 3654 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 3655 break; 3656 case 1000: 3657 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 3658 break; 3659 case 500: 3660 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 3661 break; 3662 case 100: 3663 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3664 break; 3665 default: 3666 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 3667 phydev_name(phydev)); 3668 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 3669 break; 3670 } 3671 3672 /* Configure to pulse every period */ 3673 lan8814_ptp_enable_event(phydev, event, pulse_width); 3674 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, 3675 rq->perout.start.nsec); 3676 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, 3677 rq->perout.period.nsec); 3678 lan8814_ptp_perout_on(phydev, pin); 3679 mutex_unlock(&shared->shared_lock); 3680 3681 return 0; 3682 } 3683 3684 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) 3685 { 3686 /* Set as gpio input */ 3687 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3688 LAN8814_GPIO_DIR_ADDR(pin), 3689 LAN8814_GPIO_DIR_BIT(pin), 3690 0); 3691 3692 /* Map the pin to ltc pin 0 of the capture map registers */ 3693 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3694 PTP_GPIO_CAP_MAP_LO, pin, pin); 3695 3696 /* Enable capture on the edges of the ltc pin */ 3697 if (flags & PTP_RISING_EDGE) 3698 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3699 PTP_GPIO_CAP_EN, 3700 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0), 3701 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0)); 3702 if (flags & PTP_FALLING_EDGE) 3703 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3704 PTP_GPIO_CAP_EN, 3705 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0), 3706 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0)); 3707 3708 /* Enable interrupt top interrupt */ 3709 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3710 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3711 PTP_COMMON_INT_ENA_GPIO_CAP_EN); 3712 } 3713 3714 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) 3715 { 3716 /* Set as gpio out */ 3717 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3718 LAN8814_GPIO_DIR_ADDR(pin), 3719 LAN8814_GPIO_DIR_BIT(pin), 3720 LAN8814_GPIO_DIR_BIT(pin)); 3721 3722 /* Enable alternate, 0:for alternate function, 1:gpio */ 3723 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3724 LAN8814_GPIO_EN_ADDR(pin), 3725 LAN8814_GPIO_EN_BIT(pin), 3726 0); 3727 3728 /* Clear the mapping of pin to registers 0 of the capture registers */ 3729 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3730 PTP_GPIO_CAP_MAP_LO, 3731 GENMASK(3, 0), 3732 0); 3733 3734 /* Disable capture on both of the edges */ 3735 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_CAP_EN, 3736 PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 3737 PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 3738 0); 3739 3740 /* Disable interrupt top interrupt */ 3741 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_COMMON_INT_ENA, 3742 PTP_COMMON_INT_ENA_GPIO_CAP_EN, 3743 0); 3744 } 3745 3746 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, 3747 struct ptp_clock_request *rq, int on) 3748 { 3749 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, 3750 ptp_clock_info); 3751 struct phy_device *phydev = shared->phydev; 3752 int pin; 3753 3754 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, 3755 rq->extts.index); 3756 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) 3757 return -EINVAL; 3758 3759 mutex_lock(&shared->shared_lock); 3760 if (on) 3761 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); 3762 else 3763 lan8814_ptp_extts_off(phydev, pin); 3764 3765 mutex_unlock(&shared->shared_lock); 3766 3767 return 0; 3768 } 3769 3770 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, 3771 struct ptp_clock_request *rq, int on) 3772 { 3773 switch (rq->type) { 3774 case PTP_CLK_REQ_PEROUT: 3775 return lan8814_ptp_perout(ptpci, rq, on); 3776 case PTP_CLK_REQ_EXTTS: 3777 return lan8814_ptp_extts(ptpci, rq, on); 3778 default: 3779 return -EINVAL; 3780 } 3781 } 3782 3783 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, 3784 enum ptp_pin_function func, unsigned int chan) 3785 { 3786 switch (func) { 3787 case PTP_PF_NONE: 3788 case PTP_PF_PEROUT: 3789 /* Only pins 0 and 1 can generate perout signals. And for pin 0 3790 * there is only chan 0 (event A) and for pin 1 there is only 3791 * chan 1 (event B) 3792 */ 3793 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) 3794 return -1; 3795 break; 3796 case PTP_PF_EXTTS: 3797 if (pin != LAN8814_PTP_EXTTS_NUM) 3798 return -1; 3799 break; 3800 default: 3801 return -1; 3802 } 3803 3804 return 0; 3805 } 3806 3807 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) 3808 { 3809 struct ptp_header *ptp_header; 3810 u32 type; 3811 3812 type = ptp_classify_raw(skb); 3813 ptp_header = ptp_parse_header(skb, type); 3814 3815 if (!ptp_header) 3816 return false; 3817 3818 *sig = (__force u16)(ntohs(ptp_header->sequence_id)); 3819 return true; 3820 } 3821 3822 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, 3823 u32 seconds, u32 nsec, u16 seq_id) 3824 { 3825 struct skb_shared_hwtstamps shhwtstamps; 3826 struct sk_buff *skb, *skb_tmp; 3827 unsigned long flags; 3828 bool ret = false; 3829 u16 skb_sig; 3830 3831 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); 3832 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { 3833 if (!lan8814_get_sig_tx(skb, &skb_sig)) 3834 continue; 3835 3836 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) 3837 continue; 3838 3839 __skb_unlink(skb, &ptp_priv->tx_queue); 3840 ret = true; 3841 break; 3842 } 3843 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); 3844 3845 if (ret) { 3846 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 3847 shhwtstamps.hwtstamp = ktime_set(seconds, nsec); 3848 skb_complete_tx_timestamp(skb, &shhwtstamps); 3849 } 3850 } 3851 3852 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) 3853 { 3854 struct phy_device *phydev = ptp_priv->phydev; 3855 u32 seconds, nsec; 3856 u16 seq_id; 3857 3858 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); 3859 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); 3860 } 3861 3862 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) 3863 { 3864 struct phy_device *phydev = ptp_priv->phydev; 3865 u32 reg; 3866 3867 do { 3868 lan8814_dequeue_tx_skb(ptp_priv); 3869 3870 /* If other timestamps are available in the FIFO, 3871 * process them. 3872 */ 3873 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3874 PTP_CAP_INFO); 3875 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); 3876 } 3877 3878 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, 3879 struct lan8814_ptp_rx_ts *rx_ts) 3880 { 3881 struct skb_shared_hwtstamps *shhwtstamps; 3882 struct sk_buff *skb, *skb_tmp; 3883 unsigned long flags; 3884 bool ret = false; 3885 u16 skb_sig; 3886 3887 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); 3888 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { 3889 if (!lan8814_get_sig_rx(skb, &skb_sig)) 3890 continue; 3891 3892 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) 3893 continue; 3894 3895 __skb_unlink(skb, &ptp_priv->rx_queue); 3896 3897 ret = true; 3898 break; 3899 } 3900 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); 3901 3902 if (ret) { 3903 shhwtstamps = skb_hwtstamps(skb); 3904 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3905 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); 3906 netif_rx(skb); 3907 } 3908 3909 return ret; 3910 } 3911 3912 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, 3913 struct lan8814_ptp_rx_ts *rx_ts) 3914 { 3915 unsigned long flags; 3916 3917 /* If we failed to match the skb add it to the queue for when 3918 * the frame will come 3919 */ 3920 if (!lan8814_match_skb(ptp_priv, rx_ts)) { 3921 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); 3922 list_add(&rx_ts->list, &ptp_priv->rx_ts_list); 3923 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); 3924 } else { 3925 kfree(rx_ts); 3926 } 3927 } 3928 3929 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) 3930 { 3931 struct phy_device *phydev = ptp_priv->phydev; 3932 struct lan8814_ptp_rx_ts *rx_ts; 3933 u32 reg; 3934 3935 do { 3936 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); 3937 if (!rx_ts) 3938 return; 3939 3940 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, 3941 &rx_ts->seq_id); 3942 lan8814_match_rx_ts(ptp_priv, rx_ts); 3943 3944 /* If other timestamps are available in the FIFO, 3945 * process them. 3946 */ 3947 reg = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 3948 PTP_CAP_INFO); 3949 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); 3950 } 3951 3952 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) 3953 { 3954 struct kszphy_priv *priv = phydev->priv; 3955 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 3956 3957 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) 3958 lan8814_get_tx_ts(ptp_priv); 3959 3960 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) 3961 lan8814_get_rx_ts(ptp_priv); 3962 3963 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { 3964 lan8814_flush_fifo(phydev, true); 3965 skb_queue_purge(&ptp_priv->tx_queue); 3966 } 3967 3968 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { 3969 lan8814_flush_fifo(phydev, false); 3970 skb_queue_purge(&ptp_priv->rx_queue); 3971 } 3972 } 3973 3974 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) 3975 { 3976 struct phy_device *phydev = shared->phydev; 3977 struct ptp_clock_event ptp_event = {0}; 3978 unsigned long nsec; 3979 s64 sec; 3980 u16 tmp; 3981 3982 /* This is 0 because whatever was the input pin it was mapped it to 3983 * ltc gpio pin 0 3984 */ 3985 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_GPIO_SEL, 3986 PTP_GPIO_SEL_GPIO_SEL(0), 3987 PTP_GPIO_SEL_GPIO_SEL(0)); 3988 3989 tmp = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3990 PTP_GPIO_CAP_STS); 3991 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && 3992 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) 3993 return -1; 3994 3995 if (tmp & BIT(0)) { 3996 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 3997 PTP_GPIO_RE_LTC_SEC_HI_CAP); 3998 sec <<= 16; 3999 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4000 PTP_GPIO_RE_LTC_SEC_LO_CAP); 4001 4002 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4003 PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4004 nsec <<= 16; 4005 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4006 PTP_GPIO_RE_LTC_NS_LO_CAP); 4007 } else { 4008 sec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4009 PTP_GPIO_FE_LTC_SEC_HI_CAP); 4010 sec <<= 16; 4011 sec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4012 PTP_GPIO_FE_LTC_SEC_LO_CAP); 4013 4014 nsec = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4015 PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4016 nsec <<= 16; 4017 nsec |= lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4018 PTP_GPIO_RE_LTC_NS_LO_CAP); 4019 } 4020 4021 ptp_event.index = 0; 4022 ptp_event.timestamp = ktime_set(sec, nsec); 4023 ptp_event.type = PTP_CLOCK_EXTTS; 4024 ptp_clock_event(shared->ptp_clock, &ptp_event); 4025 4026 return 0; 4027 } 4028 4029 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) 4030 { 4031 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4032 int ret; 4033 4034 mutex_lock(&shared->shared_lock); 4035 ret = lan8814_gpio_process_cap(shared); 4036 mutex_unlock(&shared->shared_lock); 4037 4038 return ret; 4039 } 4040 4041 static int lan8804_config_init(struct phy_device *phydev) 4042 { 4043 /* MDI-X setting for swap A,B transmit */ 4044 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8804_ALIGN_SWAP, 4045 LAN8804_ALIGN_TX_A_B_SWAP_MASK, 4046 LAN8804_ALIGN_TX_A_B_SWAP); 4047 4048 /* Make sure that the PHY will not stop generating the clock when the 4049 * link partner goes down 4050 */ 4051 lanphy_write_page_reg(phydev, LAN8814_PAGE_SYSTEM_CTRL, 4052 LAN8814_CLOCK_MANAGEMENT, 0x27e); 4053 lanphy_read_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_LINK_QUALITY); 4054 4055 return 0; 4056 } 4057 4058 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) 4059 { 4060 int status; 4061 4062 status = phy_read(phydev, LAN8814_INTS); 4063 if (status < 0) { 4064 phy_error(phydev); 4065 return IRQ_NONE; 4066 } 4067 4068 if (status > 0) 4069 phy_trigger_machine(phydev); 4070 4071 return IRQ_HANDLED; 4072 } 4073 4074 #define LAN8804_OUTPUT_CONTROL 25 4075 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) 4076 #define LAN8804_CONTROL 31 4077 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) 4078 4079 static int lan8804_config_intr(struct phy_device *phydev) 4080 { 4081 int err; 4082 4083 /* This is an internal PHY of lan966x and is not possible to change the 4084 * polarity on the GIC found in lan966x, therefore change the polarity 4085 * of the interrupt in the PHY from being active low instead of active 4086 * high. 4087 */ 4088 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); 4089 4090 /* By default interrupt buffer is open-drain in which case the interrupt 4091 * can be active only low. Therefore change the interrupt buffer to be 4092 * push-pull to be able to change interrupt polarity 4093 */ 4094 phy_write(phydev, LAN8804_OUTPUT_CONTROL, 4095 LAN8804_OUTPUT_CONTROL_INTR_BUFFER); 4096 4097 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4098 err = phy_read(phydev, LAN8814_INTS); 4099 if (err < 0) 4100 return err; 4101 4102 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4103 if (err) 4104 return err; 4105 } else { 4106 err = phy_write(phydev, LAN8814_INTC, 0); 4107 if (err) 4108 return err; 4109 4110 err = phy_read(phydev, LAN8814_INTS); 4111 if (err < 0) 4112 return err; 4113 } 4114 4115 return 0; 4116 } 4117 4118 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) 4119 { 4120 int ret = IRQ_NONE; 4121 int irq_status; 4122 4123 irq_status = phy_read(phydev, LAN8814_INTS); 4124 if (irq_status < 0) { 4125 phy_error(phydev); 4126 return IRQ_NONE; 4127 } 4128 4129 if (irq_status & LAN8814_INT_LINK) { 4130 phy_trigger_machine(phydev); 4131 ret = IRQ_HANDLED; 4132 } 4133 4134 while (true) { 4135 irq_status = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4136 PTP_TSU_INT_STS); 4137 if (!irq_status) 4138 break; 4139 4140 lan8814_handle_ptp_interrupt(phydev, irq_status); 4141 ret = IRQ_HANDLED; 4142 } 4143 4144 if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) 4145 ret = IRQ_HANDLED; 4146 4147 return ret; 4148 } 4149 4150 static int lan8814_ack_interrupt(struct phy_device *phydev) 4151 { 4152 /* bit[12..0] int status, which is a read and clear register. */ 4153 int rc; 4154 4155 rc = phy_read(phydev, LAN8814_INTS); 4156 4157 return (rc < 0) ? rc : 0; 4158 } 4159 4160 static int lan8814_config_intr(struct phy_device *phydev) 4161 { 4162 int err; 4163 4164 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, LAN8814_INTR_CTRL_REG, 4165 LAN8814_INTR_CTRL_REG_POLARITY | 4166 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 4167 4168 /* enable / disable interrupts */ 4169 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4170 err = lan8814_ack_interrupt(phydev); 4171 if (err) 4172 return err; 4173 4174 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 4175 } else { 4176 err = phy_write(phydev, LAN8814_INTC, 0); 4177 if (err) 4178 return err; 4179 4180 err = lan8814_ack_interrupt(phydev); 4181 } 4182 4183 return err; 4184 } 4185 4186 static void lan8814_ptp_init(struct phy_device *phydev) 4187 { 4188 struct kszphy_priv *priv = phydev->priv; 4189 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4190 4191 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || 4192 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 4193 return; 4194 4195 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4196 TSU_HARD_RESET, TSU_HARD_RESET_); 4197 4198 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_MOD, 4199 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4200 PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4201 4202 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_MOD, 4203 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_, 4204 PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_); 4205 4206 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4207 PTP_RX_PARSE_CONFIG, 0); 4208 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4209 PTP_TX_PARSE_CONFIG, 0); 4210 4211 /* Removing default registers configs related to L2 and IP */ 4212 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4213 PTP_TX_PARSE_L2_ADDR_EN, 0); 4214 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4215 PTP_RX_PARSE_L2_ADDR_EN, 0); 4216 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4217 PTP_TX_PARSE_IP_ADDR_EN, 0); 4218 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4219 PTP_RX_PARSE_IP_ADDR_EN, 0); 4220 4221 /* Disable checking for minorVersionPTP field */ 4222 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_RX_VERSION, 4223 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4224 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, PTP_TX_VERSION, 4225 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); 4226 4227 skb_queue_head_init(&ptp_priv->tx_queue); 4228 skb_queue_head_init(&ptp_priv->rx_queue); 4229 INIT_LIST_HEAD(&ptp_priv->rx_ts_list); 4230 spin_lock_init(&ptp_priv->rx_ts_lock); 4231 4232 ptp_priv->phydev = phydev; 4233 4234 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; 4235 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 4236 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; 4237 ptp_priv->mii_ts.ts_info = lan8814_ts_info; 4238 4239 phydev->mii_ts = &ptp_priv->mii_ts; 4240 4241 /* Timestamp selected by default to keep legacy API */ 4242 phydev->default_timestamp = true; 4243 } 4244 4245 static int lan8814_ptp_probe_once(struct phy_device *phydev) 4246 { 4247 struct lan8814_shared_priv *shared = phy_package_get_priv(phydev); 4248 4249 /* Initialise shared lock for clock*/ 4250 mutex_init(&shared->shared_lock); 4251 4252 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, 4253 LAN8814_PTP_GPIO_NUM, 4254 sizeof(*shared->pin_config), 4255 GFP_KERNEL); 4256 if (!shared->pin_config) 4257 return -ENOMEM; 4258 4259 for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) { 4260 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; 4261 4262 memset(ptp_pin, 0, sizeof(*ptp_pin)); 4263 snprintf(ptp_pin->name, 4264 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i); 4265 ptp_pin->index = i; 4266 ptp_pin->func = PTP_PF_NONE; 4267 } 4268 4269 shared->ptp_clock_info.owner = THIS_MODULE; 4270 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); 4271 shared->ptp_clock_info.max_adj = 31249999; 4272 shared->ptp_clock_info.n_alarm = 0; 4273 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; 4274 shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM; 4275 shared->ptp_clock_info.pps = 0; 4276 shared->ptp_clock_info.supported_extts_flags = PTP_RISING_EDGE | 4277 PTP_FALLING_EDGE | 4278 PTP_STRICT_FLAGS; 4279 shared->ptp_clock_info.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE; 4280 shared->ptp_clock_info.pin_config = shared->pin_config; 4281 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; 4282 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; 4283 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; 4284 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; 4285 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; 4286 shared->ptp_clock_info.getcrosststamp = NULL; 4287 shared->ptp_clock_info.enable = lan8814_ptpci_enable; 4288 shared->ptp_clock_info.verify = lan8814_ptpci_verify; 4289 4290 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, 4291 &phydev->mdio.dev); 4292 if (IS_ERR(shared->ptp_clock)) { 4293 phydev_err(phydev, "ptp_clock_register failed %lu\n", 4294 PTR_ERR(shared->ptp_clock)); 4295 return -EINVAL; 4296 } 4297 4298 /* Check if PHC support is missing at the configuration level */ 4299 if (!shared->ptp_clock) 4300 return 0; 4301 4302 phydev_dbg(phydev, "successfully registered ptp clock\n"); 4303 4304 shared->phydev = phydev; 4305 4306 /* The EP.4 is shared between all the PHYs in the package and also it 4307 * can be accessed by any of the PHYs 4308 */ 4309 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4310 LTC_HARD_RESET, LTC_HARD_RESET_); 4311 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_OPERATING_MODE, 4312 PTP_OPERATING_MODE_STANDALONE_); 4313 4314 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ 4315 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, PTP_CMD_CTL, 4316 PTP_CMD_CTL_PTP_ENABLE_); 4317 4318 return 0; 4319 } 4320 4321 static void lan8814_setup_led(struct phy_device *phydev, int val) 4322 { 4323 int temp; 4324 4325 temp = lanphy_read_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4326 LAN8814_LED_CTRL_1); 4327 4328 if (val) 4329 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4330 else 4331 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; 4332 4333 lanphy_write_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 4334 LAN8814_LED_CTRL_1, temp); 4335 } 4336 4337 static int lan8814_config_init(struct phy_device *phydev) 4338 { 4339 struct kszphy_priv *lan8814 = phydev->priv; 4340 4341 /* Reset the PHY */ 4342 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4343 LAN8814_QSGMII_SOFT_RESET, 4344 LAN8814_QSGMII_SOFT_RESET_BIT, 4345 LAN8814_QSGMII_SOFT_RESET_BIT); 4346 4347 /* Disable ANEG with QSGMII PCS Host side */ 4348 lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 4349 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 4350 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 4351 0); 4352 4353 /* MDI-X setting for swap A,B transmit */ 4354 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_ALIGN_SWAP, 4355 LAN8814_ALIGN_TX_A_B_SWAP_MASK, 4356 LAN8814_ALIGN_TX_A_B_SWAP); 4357 4358 if (lan8814->led_mode >= 0) 4359 lan8814_setup_led(phydev, lan8814->led_mode); 4360 4361 return 0; 4362 } 4363 4364 /* It is expected that there will not be any 'lan8814_take_coma_mode' 4365 * function called in suspend. Because the GPIO line can be shared, so if one of 4366 * the phys goes back in coma mode, then all the other PHYs will go, which is 4367 * wrong. 4368 */ 4369 static int lan8814_release_coma_mode(struct phy_device *phydev) 4370 { 4371 struct gpio_desc *gpiod; 4372 4373 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", 4374 GPIOD_OUT_HIGH_OPEN_DRAIN | 4375 GPIOD_FLAGS_BIT_NONEXCLUSIVE); 4376 if (IS_ERR(gpiod)) 4377 return PTR_ERR(gpiod); 4378 4379 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); 4380 gpiod_set_value_cansleep(gpiod, 0); 4381 4382 return 0; 4383 } 4384 4385 static void lan8814_clear_2psp_bit(struct phy_device *phydev) 4386 { 4387 /* It was noticed that when traffic is passing through the PHY and the 4388 * cable is removed then the LED was still one even though there is no 4389 * link 4390 */ 4391 lanphy_modify_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, LAN8814_EEE_STATE, 4392 LAN8814_EEE_STATE_MASK2P5P, 4393 0); 4394 } 4395 4396 static void lan8814_update_meas_time(struct phy_device *phydev) 4397 { 4398 /* By setting the measure time to a value of 0xb this will allow cables 4399 * longer than 100m to be used. This configuration can be used 4400 * regardless of the mode of operation of the PHY 4401 */ 4402 lanphy_modify_page_reg(phydev, LAN8814_PAGE_AFE_PMA, LAN8814_PD_CONTROLS, 4403 LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK, 4404 LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL); 4405 } 4406 4407 static int lan8814_probe(struct phy_device *phydev) 4408 { 4409 const struct kszphy_type *type = phydev->drv->driver_data; 4410 struct kszphy_priv *priv; 4411 u16 addr; 4412 int err; 4413 4414 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 4415 if (!priv) 4416 return -ENOMEM; 4417 4418 phydev->priv = priv; 4419 4420 priv->type = type; 4421 4422 kszphy_parse_led_mode(phydev); 4423 4424 /* Strap-in value for PHY address, below register read gives starting 4425 * phy address value 4426 */ 4427 addr = lanphy_read_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 0) & 0x1F; 4428 devm_phy_package_join(&phydev->mdio.dev, phydev, 4429 addr, sizeof(struct lan8814_shared_priv)); 4430 4431 if (phy_package_init_once(phydev)) { 4432 err = lan8814_release_coma_mode(phydev); 4433 if (err) 4434 return err; 4435 4436 err = lan8814_ptp_probe_once(phydev); 4437 if (err) 4438 return err; 4439 } 4440 4441 lan8814_ptp_init(phydev); 4442 4443 /* Errata workarounds */ 4444 lan8814_clear_2psp_bit(phydev); 4445 lan8814_update_meas_time(phydev); 4446 4447 return 0; 4448 } 4449 4450 #define LAN8841_MMD_TIMER_REG 0 4451 #define LAN8841_MMD0_REGISTER_17 17 4452 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) 4453 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) 4454 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 4455 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) 4456 #define LAN8841_MMD_ANALOG_REG 28 4457 #define LAN8841_ANALOG_CONTROL_1 1 4458 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) 4459 #define LAN8841_ANALOG_CONTROL_10 13 4460 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) 4461 #define LAN8841_ANALOG_CONTROL_11 14 4462 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) 4463 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 4464 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc 4465 #define LAN8841_BTRX_POWER_DOWN 70 4466 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) 4467 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) 4468 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) 4469 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) 4470 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) 4471 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) 4472 #define LAN8841_ADC_CHANNEL_MASK 198 4473 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 4474 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 4475 #define LAN8841_PTP_RX_VERSION 374 4476 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 4477 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 4478 #define LAN8841_PTP_TX_VERSION 438 4479 #define LAN8841_PTP_CMD_CTL 256 4480 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) 4481 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) 4482 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) 4483 #define LAN8841_PTP_RX_PARSE_CONFIG 368 4484 #define LAN8841_PTP_TX_PARSE_CONFIG 432 4485 #define LAN8841_PTP_RX_MODE 381 4486 #define LAN8841_PTP_INSERT_TS_EN BIT(0) 4487 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) 4488 4489 static int lan8841_config_init(struct phy_device *phydev) 4490 { 4491 int ret; 4492 4493 ret = ksz9131_config_init(phydev); 4494 if (ret) 4495 return ret; 4496 4497 /* Initialize the HW by resetting everything */ 4498 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4499 LAN8841_PTP_CMD_CTL, 4500 LAN8841_PTP_CMD_CTL_PTP_RESET, 4501 LAN8841_PTP_CMD_CTL_PTP_RESET); 4502 4503 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4504 LAN8841_PTP_CMD_CTL, 4505 LAN8841_PTP_CMD_CTL_PTP_ENABLE, 4506 LAN8841_PTP_CMD_CTL_PTP_ENABLE); 4507 4508 /* Don't process any frames */ 4509 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4510 LAN8841_PTP_RX_PARSE_CONFIG, 0); 4511 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4512 LAN8841_PTP_TX_PARSE_CONFIG, 0); 4513 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4514 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); 4515 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4516 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); 4517 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4518 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); 4519 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4520 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); 4521 4522 /* Disable checking for minorVersionPTP field */ 4523 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4524 LAN8841_PTP_RX_VERSION, 0xff00); 4525 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4526 LAN8841_PTP_TX_VERSION, 0xff00); 4527 4528 /* 100BT Clause 40 improvenent errata */ 4529 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4530 LAN8841_ANALOG_CONTROL_1, 4531 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); 4532 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4533 LAN8841_ANALOG_CONTROL_10, 4534 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); 4535 4536 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap 4537 * Magnetics 4538 */ 4539 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4540 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); 4541 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { 4542 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4543 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, 4544 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); 4545 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4546 LAN8841_BTRX_POWER_DOWN, 4547 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | 4548 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | 4549 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | 4550 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | 4551 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | 4552 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); 4553 } 4554 4555 /* LDO Adjustment errata */ 4556 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, 4557 LAN8841_ANALOG_CONTROL_11, 4558 LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); 4559 4560 /* 100BT RGMII latency tuning errata */ 4561 phy_write_mmd(phydev, MDIO_MMD_PMAPMD, 4562 LAN8841_ADC_CHANNEL_MASK, 0x0); 4563 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, 4564 LAN8841_MMD0_REGISTER_17, 4565 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | 4566 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); 4567 4568 return 0; 4569 } 4570 4571 #define LAN8841_OUTPUT_CTRL 25 4572 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) 4573 #define LAN8841_INT_PTP BIT(9) 4574 4575 static int lan8841_config_intr(struct phy_device *phydev) 4576 { 4577 int err; 4578 4579 phy_modify(phydev, LAN8841_OUTPUT_CTRL, 4580 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); 4581 4582 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 4583 err = phy_read(phydev, LAN8814_INTS); 4584 if (err < 0) 4585 return err; 4586 4587 /* Enable / disable interrupts. It is OK to enable PTP interrupt 4588 * even if it PTP is not enabled. Because the underneath blocks 4589 * will not enable the PTP so we will never get the PTP 4590 * interrupt. 4591 */ 4592 err = phy_write(phydev, LAN8814_INTC, 4593 LAN8814_INT_LINK | LAN8841_INT_PTP); 4594 } else { 4595 err = phy_write(phydev, LAN8814_INTC, 0); 4596 if (err) 4597 return err; 4598 4599 err = phy_read(phydev, LAN8814_INTS); 4600 if (err < 0) 4601 return err; 4602 4603 /* Getting a positive value doesn't mean that is an error, it 4604 * just indicates what was the status. Therefore make sure to 4605 * clear the value and say that there is no error. 4606 */ 4607 err = 0; 4608 } 4609 4610 return err; 4611 } 4612 4613 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 4614 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 4615 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 4616 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 4617 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) 4618 #define LAN8841_PTP_TX_MSG_HEADER2 455 4619 4620 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, 4621 u32 *sec, u32 *nsec, u16 *seq) 4622 { 4623 struct phy_device *phydev = ptp_priv->phydev; 4624 4625 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); 4626 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) 4627 return false; 4628 4629 *nsec = ((*nsec & 0x3fff) << 16); 4630 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); 4631 4632 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); 4633 *sec = *sec << 16; 4634 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); 4635 4636 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4637 4638 return true; 4639 } 4640 4641 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) 4642 { 4643 u32 sec, nsec; 4644 u16 seq; 4645 4646 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) 4647 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); 4648 } 4649 4650 #define LAN8841_PTP_INT_STS 259 4651 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) 4652 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) 4653 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) 4654 4655 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) 4656 { 4657 struct phy_device *phydev = ptp_priv->phydev; 4658 int i; 4659 4660 for (i = 0; i < FIFO_SIZE; ++i) 4661 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); 4662 4663 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4664 } 4665 4666 #define LAN8841_PTP_GPIO_CAP_STS 506 4667 #define LAN8841_PTP_GPIO_SEL 327 4668 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) 4669 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 4670 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 4671 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 4672 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 4673 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 4674 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 4675 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 4676 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 4677 4678 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) 4679 { 4680 struct phy_device *phydev = ptp_priv->phydev; 4681 struct ptp_clock_event ptp_event = {0}; 4682 int pin, ret, tmp; 4683 s32 sec, nsec; 4684 4685 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); 4686 if (pin == -1) 4687 return; 4688 4689 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); 4690 if (tmp < 0) 4691 return; 4692 4693 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 4694 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); 4695 if (ret) 4696 return; 4697 4698 mutex_lock(&ptp_priv->ptp_lock); 4699 if (tmp & BIT(pin)) { 4700 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); 4701 sec <<= 16; 4702 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); 4703 4704 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; 4705 nsec <<= 16; 4706 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); 4707 } else { 4708 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); 4709 sec <<= 16; 4710 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); 4711 4712 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; 4713 nsec <<= 16; 4714 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); 4715 } 4716 mutex_unlock(&ptp_priv->ptp_lock); 4717 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); 4718 if (ret) 4719 return; 4720 4721 ptp_event.index = 0; 4722 ptp_event.timestamp = ktime_set(sec, nsec); 4723 ptp_event.type = PTP_CLOCK_EXTTS; 4724 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); 4725 } 4726 4727 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) 4728 { 4729 struct kszphy_priv *priv = phydev->priv; 4730 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 4731 u16 status; 4732 4733 do { 4734 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); 4735 4736 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) 4737 lan8841_ptp_process_tx_ts(ptp_priv); 4738 4739 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) 4740 lan8841_gpio_process_cap(ptp_priv); 4741 4742 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { 4743 lan8841_ptp_flush_fifo(ptp_priv); 4744 skb_queue_purge(&ptp_priv->tx_queue); 4745 } 4746 4747 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | 4748 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | 4749 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); 4750 } 4751 4752 #define LAN8841_INTS_PTP BIT(9) 4753 4754 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) 4755 { 4756 irqreturn_t ret = IRQ_NONE; 4757 int irq_status; 4758 4759 irq_status = phy_read(phydev, LAN8814_INTS); 4760 if (irq_status < 0) { 4761 phy_error(phydev); 4762 return IRQ_NONE; 4763 } 4764 4765 if (irq_status & LAN8814_INT_LINK) { 4766 phy_trigger_machine(phydev); 4767 ret = IRQ_HANDLED; 4768 } 4769 4770 if (irq_status & LAN8841_INTS_PTP) { 4771 lan8841_handle_ptp_interrupt(phydev); 4772 ret = IRQ_HANDLED; 4773 } 4774 4775 return ret; 4776 } 4777 4778 static int lan8841_ts_info(struct mii_timestamper *mii_ts, 4779 struct kernel_ethtool_ts_info *info) 4780 { 4781 struct kszphy_ptp_priv *ptp_priv; 4782 4783 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4784 4785 info->phc_index = ptp_priv->ptp_clock ? 4786 ptp_clock_index(ptp_priv->ptp_clock) : -1; 4787 if (info->phc_index == -1) 4788 return 0; 4789 4790 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | 4791 SOF_TIMESTAMPING_RX_HARDWARE | 4792 SOF_TIMESTAMPING_RAW_HARDWARE; 4793 4794 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 4795 (1 << HWTSTAMP_TX_ON) | 4796 (1 << HWTSTAMP_TX_ONESTEP_SYNC); 4797 4798 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 4799 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | 4800 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | 4801 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 4802 4803 return 0; 4804 } 4805 4806 #define LAN8841_PTP_INT_EN 260 4807 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) 4808 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) 4809 4810 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, 4811 bool enable) 4812 { 4813 struct phy_device *phydev = ptp_priv->phydev; 4814 4815 if (enable) { 4816 /* Enable interrupts on the TX side */ 4817 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4818 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4819 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 4820 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4821 LAN8841_PTP_INT_EN_PTP_TX_TS_EN); 4822 4823 /* Enable the modification of the frame on RX side, 4824 * this will add the ns and 2 bits of sec in the reserved field 4825 * of the PTP header 4826 */ 4827 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4828 LAN8841_PTP_RX_MODE, 4829 LAN8841_PTP_INSERT_TS_EN | 4830 LAN8841_PTP_INSERT_TS_32BIT, 4831 LAN8841_PTP_INSERT_TS_EN | 4832 LAN8841_PTP_INSERT_TS_32BIT); 4833 4834 ptp_schedule_worker(ptp_priv->ptp_clock, 0); 4835 } else { 4836 /* Disable interrupts on the TX side */ 4837 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 4838 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | 4839 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); 4840 4841 /* Disable modification of the RX frames */ 4842 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 4843 LAN8841_PTP_RX_MODE, 4844 LAN8841_PTP_INSERT_TS_EN | 4845 LAN8841_PTP_INSERT_TS_32BIT, 0); 4846 4847 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 4848 } 4849 } 4850 4851 #define LAN8841_PTP_RX_TIMESTAMP_EN 379 4852 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 4853 #define LAN8841_PTP_TX_MOD 445 4854 4855 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, 4856 struct kernel_hwtstamp_config *config, 4857 struct netlink_ext_ack *extack) 4858 { 4859 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4860 struct phy_device *phydev = ptp_priv->phydev; 4861 int txcfg = 0, rxcfg = 0; 4862 int pkt_ts_enable; 4863 4864 ptp_priv->hwts_tx_type = config->tx_type; 4865 ptp_priv->rx_filter = config->rx_filter; 4866 4867 switch (config->rx_filter) { 4868 case HWTSTAMP_FILTER_NONE: 4869 ptp_priv->layer = 0; 4870 ptp_priv->version = 0; 4871 break; 4872 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 4873 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 4874 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 4875 ptp_priv->layer = PTP_CLASS_L4; 4876 ptp_priv->version = PTP_CLASS_V2; 4877 break; 4878 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 4879 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 4880 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 4881 ptp_priv->layer = PTP_CLASS_L2; 4882 ptp_priv->version = PTP_CLASS_V2; 4883 break; 4884 case HWTSTAMP_FILTER_PTP_V2_EVENT: 4885 case HWTSTAMP_FILTER_PTP_V2_SYNC: 4886 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 4887 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; 4888 ptp_priv->version = PTP_CLASS_V2; 4889 break; 4890 default: 4891 return -ERANGE; 4892 } 4893 4894 /* Setup parsing of the frames and enable the timestamping for ptp 4895 * frames 4896 */ 4897 if (ptp_priv->layer & PTP_CLASS_L2) { 4898 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; 4899 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; 4900 } else if (ptp_priv->layer & PTP_CLASS_L4) { 4901 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; 4902 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; 4903 } 4904 4905 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); 4906 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); 4907 4908 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | 4909 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; 4910 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); 4911 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); 4912 4913 /* Enable / disable of the TX timestamp in the SYNC frames */ 4914 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, 4915 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, 4916 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? 4917 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); 4918 4919 /* Now enable/disable the timestamping */ 4920 lan8841_ptp_enable_processing(ptp_priv, 4921 config->rx_filter != HWTSTAMP_FILTER_NONE); 4922 4923 skb_queue_purge(&ptp_priv->tx_queue); 4924 4925 lan8841_ptp_flush_fifo(ptp_priv); 4926 4927 return 0; 4928 } 4929 4930 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, 4931 struct sk_buff *skb, int type) 4932 { 4933 struct kszphy_ptp_priv *ptp_priv = 4934 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); 4935 struct ptp_header *header = ptp_parse_header(skb, type); 4936 struct skb_shared_hwtstamps *shhwtstamps; 4937 struct timespec64 ts; 4938 unsigned long flags; 4939 u32 ts_header; 4940 4941 if (!header) 4942 return false; 4943 4944 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || 4945 type == PTP_CLASS_NONE) 4946 return false; 4947 4948 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) 4949 return false; 4950 4951 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 4952 ts.tv_sec = ptp_priv->seconds; 4953 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 4954 ts_header = __be32_to_cpu(header->reserved2); 4955 4956 shhwtstamps = skb_hwtstamps(skb); 4957 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 4958 4959 /* Check for any wrap arounds for the second part */ 4960 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) 4961 ts.tv_sec -= GENMASK(1, 0) + 1; 4962 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) 4963 ts.tv_sec += 1; 4964 4965 shhwtstamps->hwtstamp = 4966 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, 4967 ts_header & GENMASK(29, 0)); 4968 header->reserved2 = 0; 4969 4970 netif_rx(skb); 4971 4972 return true; 4973 } 4974 4975 #define LAN8841_EVENT_A 0 4976 #define LAN8841_EVENT_B 1 4977 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) 4978 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) 4979 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) 4980 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) 4981 4982 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, 4983 s64 sec, u32 nsec) 4984 { 4985 struct phy_device *phydev = ptp_priv->phydev; 4986 int ret; 4987 4988 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), 4989 upper_16_bits(sec)); 4990 if (ret) 4991 return ret; 4992 4993 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), 4994 lower_16_bits(sec)); 4995 if (ret) 4996 return ret; 4997 4998 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, 4999 upper_16_bits(nsec)); 5000 if (ret) 5001 return ret; 5002 5003 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), 5004 lower_16_bits(nsec)); 5005 } 5006 5007 #define LAN8841_BUFFER_TIME 2 5008 5009 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, 5010 const struct timespec64 *ts) 5011 { 5012 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, 5013 ts->tv_sec + LAN8841_BUFFER_TIME, 0); 5014 } 5015 5016 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) 5017 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) 5018 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) 5019 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) 5020 5021 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, 5022 s64 sec, u32 nsec) 5023 { 5024 struct phy_device *phydev = ptp_priv->phydev; 5025 int ret; 5026 5027 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), 5028 upper_16_bits(sec)); 5029 if (ret) 5030 return ret; 5031 5032 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), 5033 lower_16_bits(sec)); 5034 if (ret) 5035 return ret; 5036 5037 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, 5038 upper_16_bits(nsec)); 5039 if (ret) 5040 return ret; 5041 5042 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), 5043 lower_16_bits(nsec)); 5044 } 5045 5046 #define LAN8841_PTP_LTC_SET_SEC_HI 262 5047 #define LAN8841_PTP_LTC_SET_SEC_MID 263 5048 #define LAN8841_PTP_LTC_SET_SEC_LO 264 5049 #define LAN8841_PTP_LTC_SET_NS_HI 265 5050 #define LAN8841_PTP_LTC_SET_NS_LO 266 5051 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) 5052 5053 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, 5054 const struct timespec64 *ts) 5055 { 5056 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5057 ptp_clock_info); 5058 struct phy_device *phydev = ptp_priv->phydev; 5059 unsigned long flags; 5060 int ret; 5061 5062 /* Set the value to be stored */ 5063 mutex_lock(&ptp_priv->ptp_lock); 5064 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); 5065 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); 5066 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); 5067 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); 5068 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); 5069 5070 /* Set the command to load the LTC */ 5071 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5072 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); 5073 ret = lan8841_ptp_update_target(ptp_priv, ts); 5074 mutex_unlock(&ptp_priv->ptp_lock); 5075 5076 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5077 ptp_priv->seconds = ts->tv_sec; 5078 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5079 5080 return ret; 5081 } 5082 5083 #define LAN8841_PTP_LTC_RD_SEC_HI 358 5084 #define LAN8841_PTP_LTC_RD_SEC_MID 359 5085 #define LAN8841_PTP_LTC_RD_SEC_LO 360 5086 #define LAN8841_PTP_LTC_RD_NS_HI 361 5087 #define LAN8841_PTP_LTC_RD_NS_LO 362 5088 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) 5089 5090 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, 5091 struct timespec64 *ts) 5092 { 5093 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5094 ptp_clock_info); 5095 struct phy_device *phydev = ptp_priv->phydev; 5096 time64_t s; 5097 s64 ns; 5098 5099 mutex_lock(&ptp_priv->ptp_lock); 5100 /* Issue the command to read the LTC */ 5101 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5102 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5103 5104 /* Read the LTC */ 5105 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5106 s <<= 16; 5107 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5108 s <<= 16; 5109 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5110 5111 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; 5112 ns <<= 16; 5113 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); 5114 mutex_unlock(&ptp_priv->ptp_lock); 5115 5116 set_normalized_timespec64(ts, s, ns); 5117 return 0; 5118 } 5119 5120 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, 5121 struct timespec64 *ts) 5122 { 5123 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5124 ptp_clock_info); 5125 struct phy_device *phydev = ptp_priv->phydev; 5126 time64_t s; 5127 5128 mutex_lock(&ptp_priv->ptp_lock); 5129 /* Issue the command to read the LTC */ 5130 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5131 LAN8841_PTP_CMD_CTL_PTP_LTC_READ); 5132 5133 /* Read the LTC */ 5134 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); 5135 s <<= 16; 5136 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); 5137 s <<= 16; 5138 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); 5139 mutex_unlock(&ptp_priv->ptp_lock); 5140 5141 set_normalized_timespec64(ts, s, 0); 5142 } 5143 5144 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 5145 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 5146 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) 5147 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) 5148 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) 5149 5150 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 5151 { 5152 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5153 ptp_clock_info); 5154 struct phy_device *phydev = ptp_priv->phydev; 5155 struct timespec64 ts; 5156 bool add = true; 5157 u32 nsec; 5158 s32 sec; 5159 int ret; 5160 5161 /* The HW allows up to 15 sec to adjust the time, but here we limit to 5162 * 10 sec the adjustment. The reason is, in case the adjustment is 14 5163 * sec and 999999999 nsec, then we add 8ns to compansate the actual 5164 * increment so the value can be bigger than 15 sec. Therefore limit the 5165 * possible adjustments so we will not have these corner cases 5166 */ 5167 if (delta > 10000000000LL || delta < -10000000000LL) { 5168 /* The timeadjustment is too big, so fall back using set time */ 5169 u64 now; 5170 5171 ptp->gettime64(ptp, &ts); 5172 5173 now = ktime_to_ns(timespec64_to_ktime(ts)); 5174 ts = ns_to_timespec64(now + delta); 5175 5176 ptp->settime64(ptp, &ts); 5177 return 0; 5178 } 5179 5180 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); 5181 if (delta < 0 && nsec != 0) { 5182 /* It is not allowed to adjust low the nsec part, therefore 5183 * subtract more from second part and add to nanosecond such 5184 * that would roll over, so the second part will increase 5185 */ 5186 sec--; 5187 nsec = NSEC_PER_SEC - nsec; 5188 } 5189 5190 /* Calculate the adjustments and the direction */ 5191 if (delta < 0) 5192 add = false; 5193 5194 if (nsec > 0) 5195 /* add 8 ns to cover the likely normal increment */ 5196 nsec += 8; 5197 5198 if (nsec >= NSEC_PER_SEC) { 5199 /* carry into seconds */ 5200 sec++; 5201 nsec -= NSEC_PER_SEC; 5202 } 5203 5204 mutex_lock(&ptp_priv->ptp_lock); 5205 if (sec) { 5206 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); 5207 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5208 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); 5209 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5210 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); 5211 } 5212 5213 if (nsec) { 5214 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, 5215 nsec & 0xffff); 5216 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, 5217 (nsec >> 16) & 0x3fff); 5218 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, 5219 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); 5220 } 5221 mutex_unlock(&ptp_priv->ptp_lock); 5222 5223 /* Update the target clock */ 5224 ptp->gettime64(ptp, &ts); 5225 mutex_lock(&ptp_priv->ptp_lock); 5226 ret = lan8841_ptp_update_target(ptp_priv, &ts); 5227 mutex_unlock(&ptp_priv->ptp_lock); 5228 5229 return ret; 5230 } 5231 5232 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 5233 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) 5234 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 5235 5236 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 5237 { 5238 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5239 ptp_clock_info); 5240 struct phy_device *phydev = ptp_priv->phydev; 5241 bool faster = true; 5242 u32 rate; 5243 5244 if (!scaled_ppm) 5245 return 0; 5246 5247 if (scaled_ppm < 0) { 5248 scaled_ppm = -scaled_ppm; 5249 faster = false; 5250 } 5251 5252 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); 5253 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; 5254 5255 mutex_lock(&ptp_priv->ptp_lock); 5256 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, 5257 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) 5258 : upper_16_bits(rate) & 0x3fff); 5259 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); 5260 mutex_unlock(&ptp_priv->ptp_lock); 5261 5262 return 0; 5263 } 5264 5265 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, 5266 enum ptp_pin_function func, unsigned int chan) 5267 { 5268 switch (func) { 5269 case PTP_PF_NONE: 5270 case PTP_PF_PEROUT: 5271 case PTP_PF_EXTTS: 5272 break; 5273 default: 5274 return -1; 5275 } 5276 5277 return 0; 5278 } 5279 5280 #define LAN8841_PTP_GPIO_NUM 10 5281 #define LAN8841_GPIO_EN 128 5282 #define LAN8841_GPIO_DIR 129 5283 #define LAN8841_GPIO_BUF 130 5284 5285 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5286 { 5287 struct phy_device *phydev = ptp_priv->phydev; 5288 int ret; 5289 5290 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5291 if (ret) 5292 return ret; 5293 5294 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5295 if (ret) 5296 return ret; 5297 5298 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5299 } 5300 5301 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) 5302 { 5303 struct phy_device *phydev = ptp_priv->phydev; 5304 int ret; 5305 5306 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5307 if (ret) 5308 return ret; 5309 5310 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); 5311 if (ret) 5312 return ret; 5313 5314 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5315 } 5316 5317 #define LAN8841_GPIO_DATA_SEL1 131 5318 #define LAN8841_GPIO_DATA_SEL2 132 5319 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) 5320 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 5321 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 5322 #define LAN8841_PTP_GENERAL_CONFIG 257 5323 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) 5324 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) 5325 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) 5326 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) 5327 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 5328 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 5329 5330 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5331 u8 event) 5332 { 5333 struct phy_device *phydev = ptp_priv->phydev; 5334 u16 tmp; 5335 int ret; 5336 5337 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO 5338 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5339 * depending on the pin, it requires to read a different register 5340 */ 5341 if (pin < 5) { 5342 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); 5343 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); 5344 } else { 5345 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); 5346 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); 5347 } 5348 if (ret) 5349 return ret; 5350 5351 /* Disable the event */ 5352 if (event == LAN8841_EVENT_A) 5353 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5354 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; 5355 else 5356 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5357 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; 5358 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); 5359 } 5360 5361 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, 5362 u8 event, int pulse_width) 5363 { 5364 struct phy_device *phydev = ptp_priv->phydev; 5365 u16 tmp; 5366 int ret; 5367 5368 /* Enable the event */ 5369 if (event == LAN8841_EVENT_A) 5370 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5371 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5372 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, 5373 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | 5374 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); 5375 else 5376 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, 5377 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5378 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, 5379 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | 5380 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); 5381 if (ret) 5382 return ret; 5383 5384 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO 5385 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore 5386 * depending on the pin, it requires to read a different register 5387 */ 5388 if (event == LAN8841_EVENT_A) 5389 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; 5390 else 5391 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; 5392 5393 if (pin < 5) 5394 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, 5395 tmp << (3 * pin)); 5396 else 5397 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, 5398 tmp << (3 * (pin - 5))); 5399 5400 return ret; 5401 } 5402 5403 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 5404 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 5405 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 5406 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 5407 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 5408 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 5409 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 5410 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 5411 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 5412 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 5413 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 5414 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 5415 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 5416 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 5417 5418 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, 5419 struct ptp_clock_request *rq, int on) 5420 { 5421 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5422 ptp_clock_info); 5423 struct phy_device *phydev = ptp_priv->phydev; 5424 struct timespec64 ts_on, ts_period; 5425 s64 on_nsec, period_nsec; 5426 int pulse_width; 5427 int pin; 5428 int ret; 5429 5430 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); 5431 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5432 return -EINVAL; 5433 5434 if (!on) { 5435 ret = lan8841_ptp_perout_off(ptp_priv, pin); 5436 if (ret) 5437 return ret; 5438 5439 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); 5440 } 5441 5442 ts_on.tv_sec = rq->perout.on.sec; 5443 ts_on.tv_nsec = rq->perout.on.nsec; 5444 on_nsec = timespec64_to_ns(&ts_on); 5445 5446 ts_period.tv_sec = rq->perout.period.sec; 5447 ts_period.tv_nsec = rq->perout.period.nsec; 5448 period_nsec = timespec64_to_ns(&ts_period); 5449 5450 if (period_nsec < 200) { 5451 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", 5452 phydev_name(phydev)); 5453 return -EOPNOTSUPP; 5454 } 5455 5456 if (on_nsec >= period_nsec) { 5457 pr_warn_ratelimited("%s: pulse width must be smaller than period\n", 5458 phydev_name(phydev)); 5459 return -EINVAL; 5460 } 5461 5462 switch (on_nsec) { 5463 case 200000000: 5464 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; 5465 break; 5466 case 100000000: 5467 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; 5468 break; 5469 case 50000000: 5470 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; 5471 break; 5472 case 10000000: 5473 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; 5474 break; 5475 case 5000000: 5476 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; 5477 break; 5478 case 1000000: 5479 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; 5480 break; 5481 case 500000: 5482 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; 5483 break; 5484 case 100000: 5485 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; 5486 break; 5487 case 50000: 5488 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; 5489 break; 5490 case 10000: 5491 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; 5492 break; 5493 case 5000: 5494 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; 5495 break; 5496 case 1000: 5497 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; 5498 break; 5499 case 500: 5500 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; 5501 break; 5502 case 100: 5503 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5504 break; 5505 default: 5506 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", 5507 phydev_name(phydev)); 5508 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; 5509 break; 5510 } 5511 5512 mutex_lock(&ptp_priv->ptp_lock); 5513 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, 5514 rq->perout.start.nsec); 5515 mutex_unlock(&ptp_priv->ptp_lock); 5516 if (ret) 5517 return ret; 5518 5519 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, 5520 rq->perout.period.nsec); 5521 if (ret) 5522 return ret; 5523 5524 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, 5525 pulse_width); 5526 if (ret) 5527 return ret; 5528 5529 ret = lan8841_ptp_perout_on(ptp_priv, pin); 5530 if (ret) 5531 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); 5532 5533 return ret; 5534 } 5535 5536 #define LAN8841_PTP_GPIO_CAP_EN 496 5537 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) 5538 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) 5539 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) 5540 5541 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, 5542 u32 flags) 5543 { 5544 struct phy_device *phydev = ptp_priv->phydev; 5545 u16 tmp = 0; 5546 int ret; 5547 5548 /* Set GPIO to be intput */ 5549 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5550 if (ret) 5551 return ret; 5552 5553 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5554 if (ret) 5555 return ret; 5556 5557 /* Enable capture on the edges of the pin */ 5558 if (flags & PTP_RISING_EDGE) 5559 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); 5560 if (flags & PTP_FALLING_EDGE) 5561 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); 5562 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); 5563 if (ret) 5564 return ret; 5565 5566 /* Enable interrupt */ 5567 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5568 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5569 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); 5570 } 5571 5572 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) 5573 { 5574 struct phy_device *phydev = ptp_priv->phydev; 5575 int ret; 5576 5577 /* Set GPIO to be output */ 5578 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); 5579 if (ret) 5580 return ret; 5581 5582 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); 5583 if (ret) 5584 return ret; 5585 5586 /* Disable capture on both of the edges */ 5587 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, 5588 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | 5589 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 5590 0); 5591 if (ret) 5592 return ret; 5593 5594 /* Disable interrupt */ 5595 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, 5596 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 5597 0); 5598 } 5599 5600 static int lan8841_ptp_extts(struct ptp_clock_info *ptp, 5601 struct ptp_clock_request *rq, int on) 5602 { 5603 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5604 ptp_clock_info); 5605 int pin; 5606 int ret; 5607 5608 /* Reject requests with unsupported flags */ 5609 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | 5610 PTP_EXTTS_EDGES | 5611 PTP_STRICT_FLAGS)) 5612 return -EOPNOTSUPP; 5613 5614 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); 5615 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) 5616 return -EINVAL; 5617 5618 mutex_lock(&ptp_priv->ptp_lock); 5619 if (on) 5620 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); 5621 else 5622 ret = lan8841_ptp_extts_off(ptp_priv, pin); 5623 mutex_unlock(&ptp_priv->ptp_lock); 5624 5625 return ret; 5626 } 5627 5628 static int lan8841_ptp_enable(struct ptp_clock_info *ptp, 5629 struct ptp_clock_request *rq, int on) 5630 { 5631 switch (rq->type) { 5632 case PTP_CLK_REQ_EXTTS: 5633 return lan8841_ptp_extts(ptp, rq, on); 5634 case PTP_CLK_REQ_PEROUT: 5635 return lan8841_ptp_perout(ptp, rq, on); 5636 default: 5637 return -EOPNOTSUPP; 5638 } 5639 5640 return 0; 5641 } 5642 5643 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) 5644 { 5645 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, 5646 ptp_clock_info); 5647 struct timespec64 ts; 5648 unsigned long flags; 5649 5650 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); 5651 5652 spin_lock_irqsave(&ptp_priv->seconds_lock, flags); 5653 ptp_priv->seconds = ts.tv_sec; 5654 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); 5655 5656 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); 5657 } 5658 5659 static struct ptp_clock_info lan8841_ptp_clock_info = { 5660 .owner = THIS_MODULE, 5661 .name = "lan8841 ptp", 5662 .max_adj = 31249999, 5663 .gettime64 = lan8841_ptp_gettime64, 5664 .settime64 = lan8841_ptp_settime64, 5665 .adjtime = lan8841_ptp_adjtime, 5666 .adjfine = lan8841_ptp_adjfine, 5667 .verify = lan8841_ptp_verify, 5668 .enable = lan8841_ptp_enable, 5669 .do_aux_work = lan8841_ptp_do_aux_work, 5670 .n_per_out = LAN8841_PTP_GPIO_NUM, 5671 .n_ext_ts = LAN8841_PTP_GPIO_NUM, 5672 .n_pins = LAN8841_PTP_GPIO_NUM, 5673 .supported_perout_flags = PTP_PEROUT_DUTY_CYCLE, 5674 }; 5675 5676 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 5677 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) 5678 5679 static int lan8841_probe(struct phy_device *phydev) 5680 { 5681 struct kszphy_ptp_priv *ptp_priv; 5682 struct kszphy_priv *priv; 5683 int err; 5684 5685 err = kszphy_probe(phydev); 5686 if (err) 5687 return err; 5688 5689 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, 5690 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & 5691 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) 5692 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; 5693 5694 /* Register the clock */ 5695 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) 5696 return 0; 5697 5698 priv = phydev->priv; 5699 ptp_priv = &priv->ptp_priv; 5700 5701 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, 5702 LAN8841_PTP_GPIO_NUM, 5703 sizeof(*ptp_priv->pin_config), 5704 GFP_KERNEL); 5705 if (!ptp_priv->pin_config) 5706 return -ENOMEM; 5707 5708 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { 5709 struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; 5710 5711 snprintf(p->name, sizeof(p->name), "pin%d", i); 5712 p->index = i; 5713 p->func = PTP_PF_NONE; 5714 } 5715 5716 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; 5717 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; 5718 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, 5719 &phydev->mdio.dev); 5720 if (IS_ERR(ptp_priv->ptp_clock)) { 5721 phydev_err(phydev, "ptp_clock_register failed: %lu\n", 5722 PTR_ERR(ptp_priv->ptp_clock)); 5723 return -EINVAL; 5724 } 5725 5726 if (!ptp_priv->ptp_clock) 5727 return 0; 5728 5729 /* Initialize the SW */ 5730 skb_queue_head_init(&ptp_priv->tx_queue); 5731 ptp_priv->phydev = phydev; 5732 mutex_init(&ptp_priv->ptp_lock); 5733 spin_lock_init(&ptp_priv->seconds_lock); 5734 5735 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; 5736 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; 5737 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; 5738 ptp_priv->mii_ts.ts_info = lan8841_ts_info; 5739 5740 phydev->mii_ts = &ptp_priv->mii_ts; 5741 5742 /* Timestamp selected by default to keep legacy API */ 5743 phydev->default_timestamp = true; 5744 5745 return 0; 5746 } 5747 5748 static int lan8804_resume(struct phy_device *phydev) 5749 { 5750 return kszphy_resume(phydev); 5751 } 5752 5753 static int lan8804_suspend(struct phy_device *phydev) 5754 { 5755 return kszphy_generic_suspend(phydev); 5756 } 5757 5758 static int lan8841_resume(struct phy_device *phydev) 5759 { 5760 return kszphy_generic_resume(phydev); 5761 } 5762 5763 static int lan8841_suspend(struct phy_device *phydev) 5764 { 5765 struct kszphy_priv *priv = phydev->priv; 5766 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; 5767 5768 if (ptp_priv->ptp_clock) 5769 ptp_cancel_worker_sync(ptp_priv->ptp_clock); 5770 5771 return kszphy_generic_suspend(phydev); 5772 } 5773 5774 static int ksz9131_resume(struct phy_device *phydev) 5775 { 5776 if (phydev->suspended && phy_interface_is_rgmii(phydev)) 5777 ksz9131_config_rgmii_delay(phydev); 5778 5779 return kszphy_resume(phydev); 5780 } 5781 5782 #define LAN8842_SELF_TEST 14 /* 0x0e */ 5783 #define LAN8842_SELF_TEST_RX_CNT_ENA BIT(8) 5784 #define LAN8842_SELF_TEST_TX_CNT_ENA BIT(4) 5785 5786 static int lan8842_probe(struct phy_device *phydev) 5787 { 5788 struct lan8842_priv *priv; 5789 int ret; 5790 5791 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); 5792 if (!priv) 5793 return -ENOMEM; 5794 5795 phydev->priv = priv; 5796 5797 /* Similar to lan8814 this PHY has a pin which needs to be pulled down 5798 * to enable to pass any traffic through it. Therefore use the same 5799 * function as lan8814 5800 */ 5801 ret = lan8814_release_coma_mode(phydev); 5802 if (ret) 5803 return ret; 5804 5805 /* Enable to count the RX and TX packets */ 5806 ret = lanphy_write_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 5807 LAN8842_SELF_TEST, 5808 LAN8842_SELF_TEST_RX_CNT_ENA | 5809 LAN8842_SELF_TEST_TX_CNT_ENA); 5810 if (ret < 0) 5811 return ret; 5812 5813 return 0; 5814 } 5815 5816 static int lan8842_config_init(struct phy_device *phydev) 5817 { 5818 int ret; 5819 5820 /* Reset the PHY */ 5821 ret = lanphy_modify_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5822 LAN8814_QSGMII_SOFT_RESET, 5823 LAN8814_QSGMII_SOFT_RESET_BIT, 5824 LAN8814_QSGMII_SOFT_RESET_BIT); 5825 if (ret < 0) 5826 return ret; 5827 5828 /* To allow the PHY to control the LEDs the GPIOs of the PHY should have 5829 * a function mode and not the GPIO. Apparently by default the value is 5830 * GPIO and not function even though the datasheet it says that it is 5831 * function. Therefore set this value. 5832 */ 5833 return lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5834 LAN8814_GPIO_EN2, 0); 5835 } 5836 5837 #define LAN8842_INTR_CTRL_REG 52 /* 0x34 */ 5838 5839 static int lan8842_config_intr(struct phy_device *phydev) 5840 { 5841 int err; 5842 5843 lanphy_write_page_reg(phydev, LAN8814_PAGE_COMMON_REGS, 5844 LAN8842_INTR_CTRL_REG, 5845 LAN8814_INTR_CTRL_REG_INTR_ENABLE); 5846 5847 /* enable / disable interrupts */ 5848 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { 5849 err = lan8814_ack_interrupt(phydev); 5850 if (err) 5851 return err; 5852 5853 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); 5854 } else { 5855 err = phy_write(phydev, LAN8814_INTC, 0); 5856 if (err) 5857 return err; 5858 5859 err = lan8814_ack_interrupt(phydev); 5860 } 5861 5862 return err; 5863 } 5864 5865 static unsigned int lan8842_inband_caps(struct phy_device *phydev, 5866 phy_interface_t interface) 5867 { 5868 /* Inband configuration can be enabled or disabled using the registers 5869 * PCS1G_ANEG_CONFIG. 5870 */ 5871 return LINK_INBAND_DISABLE | LINK_INBAND_ENABLE; 5872 } 5873 5874 static int lan8842_config_inband(struct phy_device *phydev, unsigned int modes) 5875 { 5876 bool enable; 5877 5878 if (modes == LINK_INBAND_DISABLE) 5879 enable = false; 5880 else 5881 enable = true; 5882 5883 /* Disable or enable in-band autoneg with PCS Host side 5884 * It has the same address as lan8814 5885 */ 5886 return lanphy_modify_page_reg(phydev, LAN8814_PAGE_PORT_REGS, 5887 LAN8814_QSGMII_PCS1G_ANEG_CONFIG, 5888 LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA, 5889 enable ? LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA : 0); 5890 } 5891 5892 static irqreturn_t lan8842_handle_interrupt(struct phy_device *phydev) 5893 { 5894 int ret = IRQ_NONE; 5895 int irq_status; 5896 5897 irq_status = phy_read(phydev, LAN8814_INTS); 5898 if (irq_status < 0) { 5899 phy_error(phydev); 5900 return IRQ_NONE; 5901 } 5902 5903 if (irq_status & LAN8814_INT_LINK) { 5904 phy_trigger_machine(phydev); 5905 ret = IRQ_HANDLED; 5906 } 5907 5908 return ret; 5909 } 5910 5911 static u64 lan8842_get_stat(struct phy_device *phydev, int count, int *regs) 5912 { 5913 u64 ret = 0; 5914 int val; 5915 5916 for (int j = 0; j < count; ++j) { 5917 val = lanphy_read_page_reg(phydev, LAN8814_PAGE_PCS_DIGITAL, 5918 regs[j]); 5919 if (val < 0) 5920 return U64_MAX; 5921 5922 ret <<= 16; 5923 ret += val; 5924 } 5925 return ret; 5926 } 5927 5928 static int lan8842_update_stats(struct phy_device *phydev) 5929 { 5930 struct lan8842_priv *priv = phydev->priv; 5931 int rx_packets_regs[] = {88, 61, 60}; 5932 int rx_errors_regs[] = {63, 62}; 5933 int tx_packets_regs[] = {89, 85, 84}; 5934 int tx_errors_regs[] = {87, 86}; 5935 5936 priv->phy_stats.rx_packets = lan8842_get_stat(phydev, 5937 ARRAY_SIZE(rx_packets_regs), 5938 rx_packets_regs); 5939 priv->phy_stats.rx_errors = lan8842_get_stat(phydev, 5940 ARRAY_SIZE(rx_errors_regs), 5941 rx_errors_regs); 5942 priv->phy_stats.tx_packets = lan8842_get_stat(phydev, 5943 ARRAY_SIZE(tx_packets_regs), 5944 tx_packets_regs); 5945 priv->phy_stats.tx_errors = lan8842_get_stat(phydev, 5946 ARRAY_SIZE(tx_errors_regs), 5947 tx_errors_regs); 5948 5949 return 0; 5950 } 5951 5952 static void lan8842_get_phy_stats(struct phy_device *phydev, 5953 struct ethtool_eth_phy_stats *eth_stats, 5954 struct ethtool_phy_stats *stats) 5955 { 5956 struct lan8842_priv *priv = phydev->priv; 5957 5958 stats->rx_packets = priv->phy_stats.rx_packets; 5959 stats->rx_errors = priv->phy_stats.rx_errors; 5960 stats->tx_packets = priv->phy_stats.tx_packets; 5961 stats->tx_errors = priv->phy_stats.tx_errors; 5962 } 5963 5964 static struct phy_driver ksphy_driver[] = { 5965 { 5966 PHY_ID_MATCH_MODEL(PHY_ID_KS8737), 5967 .name = "Micrel KS8737", 5968 /* PHY_BASIC_FEATURES */ 5969 .driver_data = &ks8737_type, 5970 .probe = kszphy_probe, 5971 .config_init = kszphy_config_init, 5972 .config_intr = kszphy_config_intr, 5973 .handle_interrupt = kszphy_handle_interrupt, 5974 .suspend = kszphy_suspend, 5975 .resume = kszphy_resume, 5976 }, { 5977 .phy_id = PHY_ID_KSZ8021, 5978 .phy_id_mask = 0x00ffffff, 5979 .name = "Micrel KSZ8021 or KSZ8031", 5980 /* PHY_BASIC_FEATURES */ 5981 .driver_data = &ksz8021_type, 5982 .probe = kszphy_probe, 5983 .config_init = kszphy_config_init, 5984 .config_intr = kszphy_config_intr, 5985 .handle_interrupt = kszphy_handle_interrupt, 5986 .get_sset_count = kszphy_get_sset_count, 5987 .get_strings = kszphy_get_strings, 5988 .get_stats = kszphy_get_stats, 5989 .suspend = kszphy_suspend, 5990 .resume = kszphy_resume, 5991 }, { 5992 .phy_id = PHY_ID_KSZ8031, 5993 .phy_id_mask = 0x00ffffff, 5994 .name = "Micrel KSZ8031", 5995 /* PHY_BASIC_FEATURES */ 5996 .driver_data = &ksz8021_type, 5997 .probe = kszphy_probe, 5998 .config_init = kszphy_config_init, 5999 .config_intr = kszphy_config_intr, 6000 .handle_interrupt = kszphy_handle_interrupt, 6001 .get_sset_count = kszphy_get_sset_count, 6002 .get_strings = kszphy_get_strings, 6003 .get_stats = kszphy_get_stats, 6004 .suspend = kszphy_suspend, 6005 .resume = kszphy_resume, 6006 }, { 6007 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041), 6008 .name = "Micrel KSZ8041", 6009 /* PHY_BASIC_FEATURES */ 6010 .driver_data = &ksz8041_type, 6011 .probe = kszphy_probe, 6012 .config_init = ksz8041_config_init, 6013 .config_aneg = ksz8041_config_aneg, 6014 .config_intr = kszphy_config_intr, 6015 .handle_interrupt = kszphy_handle_interrupt, 6016 .get_sset_count = kszphy_get_sset_count, 6017 .get_strings = kszphy_get_strings, 6018 .get_stats = kszphy_get_stats, 6019 .suspend = ksz8041_suspend, 6020 .resume = ksz8041_resume, 6021 }, { 6022 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI), 6023 .name = "Micrel KSZ8041RNLI", 6024 /* PHY_BASIC_FEATURES */ 6025 .driver_data = &ksz8041_type, 6026 .probe = kszphy_probe, 6027 .config_init = kszphy_config_init, 6028 .config_intr = kszphy_config_intr, 6029 .handle_interrupt = kszphy_handle_interrupt, 6030 .get_sset_count = kszphy_get_sset_count, 6031 .get_strings = kszphy_get_strings, 6032 .get_stats = kszphy_get_stats, 6033 .suspend = kszphy_suspend, 6034 .resume = kszphy_resume, 6035 }, { 6036 .name = "Micrel KSZ8051", 6037 /* PHY_BASIC_FEATURES */ 6038 .driver_data = &ksz8051_type, 6039 .probe = kszphy_probe, 6040 .config_init = kszphy_config_init, 6041 .config_intr = kszphy_config_intr, 6042 .handle_interrupt = kszphy_handle_interrupt, 6043 .get_sset_count = kszphy_get_sset_count, 6044 .get_strings = kszphy_get_strings, 6045 .get_stats = kszphy_get_stats, 6046 .match_phy_device = ksz8051_match_phy_device, 6047 .suspend = kszphy_suspend, 6048 .resume = kszphy_resume, 6049 }, { 6050 .phy_id = PHY_ID_KSZ8001, 6051 .name = "Micrel KSZ8001 or KS8721", 6052 .phy_id_mask = 0x00fffffc, 6053 /* PHY_BASIC_FEATURES */ 6054 .driver_data = &ksz8041_type, 6055 .probe = kszphy_probe, 6056 .config_init = kszphy_config_init, 6057 .config_intr = kszphy_config_intr, 6058 .handle_interrupt = kszphy_handle_interrupt, 6059 .get_sset_count = kszphy_get_sset_count, 6060 .get_strings = kszphy_get_strings, 6061 .get_stats = kszphy_get_stats, 6062 .suspend = kszphy_suspend, 6063 .resume = kszphy_resume, 6064 }, { 6065 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081), 6066 .name = "Micrel KSZ8081 or KSZ8091", 6067 .flags = PHY_POLL_CABLE_TEST, 6068 /* PHY_BASIC_FEATURES */ 6069 .driver_data = &ksz8081_type, 6070 .probe = kszphy_probe, 6071 .config_init = ksz8081_config_init, 6072 .soft_reset = genphy_soft_reset, 6073 .config_aneg = ksz8081_config_aneg, 6074 .read_status = ksz8081_read_status, 6075 .config_intr = kszphy_config_intr, 6076 .handle_interrupt = kszphy_handle_interrupt, 6077 .get_sset_count = kszphy_get_sset_count, 6078 .get_strings = kszphy_get_strings, 6079 .get_stats = kszphy_get_stats, 6080 .suspend = kszphy_suspend, 6081 .resume = kszphy_resume, 6082 .cable_test_start = ksz886x_cable_test_start, 6083 .cable_test_get_status = ksz886x_cable_test_get_status, 6084 }, { 6085 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061), 6086 .name = "Micrel KSZ8061", 6087 /* PHY_BASIC_FEATURES */ 6088 .probe = kszphy_probe, 6089 .config_init = ksz8061_config_init, 6090 .soft_reset = genphy_soft_reset, 6091 .config_intr = kszphy_config_intr, 6092 .handle_interrupt = kszphy_handle_interrupt, 6093 .suspend = ksz8061_suspend, 6094 .resume = ksz8061_resume, 6095 }, { 6096 .phy_id = PHY_ID_KSZ9021, 6097 .phy_id_mask = 0x000ffffe, 6098 .name = "Micrel KSZ9021 Gigabit PHY", 6099 /* PHY_GBIT_FEATURES */ 6100 .driver_data = &ksz9021_type, 6101 .probe = kszphy_probe, 6102 .get_features = ksz9031_get_features, 6103 .config_init = ksz9021_config_init, 6104 .config_intr = kszphy_config_intr, 6105 .handle_interrupt = kszphy_handle_interrupt, 6106 .get_sset_count = kszphy_get_sset_count, 6107 .get_strings = kszphy_get_strings, 6108 .get_stats = kszphy_get_stats, 6109 .suspend = kszphy_suspend, 6110 .resume = kszphy_resume, 6111 .read_mmd = genphy_read_mmd_unsupported, 6112 .write_mmd = genphy_write_mmd_unsupported, 6113 }, { 6114 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031), 6115 .name = "Micrel KSZ9031 Gigabit PHY", 6116 .flags = PHY_POLL_CABLE_TEST, 6117 .driver_data = &ksz9021_type, 6118 .probe = kszphy_probe, 6119 .get_features = ksz9031_get_features, 6120 .config_init = ksz9031_config_init, 6121 .soft_reset = genphy_soft_reset, 6122 .read_status = ksz9031_read_status, 6123 .config_intr = kszphy_config_intr, 6124 .handle_interrupt = kszphy_handle_interrupt, 6125 .get_sset_count = kszphy_get_sset_count, 6126 .get_strings = kszphy_get_strings, 6127 .get_stats = kszphy_get_stats, 6128 .suspend = kszphy_suspend, 6129 .resume = kszphy_resume, 6130 .cable_test_start = ksz9x31_cable_test_start, 6131 .cable_test_get_status = ksz9x31_cable_test_get_status, 6132 .set_loopback = ksz9031_set_loopback, 6133 }, { 6134 PHY_ID_MATCH_MODEL(PHY_ID_LAN8814), 6135 .name = "Microchip INDY Gigabit Quad PHY", 6136 .flags = PHY_POLL_CABLE_TEST, 6137 .config_init = lan8814_config_init, 6138 .driver_data = &lan8814_type, 6139 .probe = lan8814_probe, 6140 .soft_reset = genphy_soft_reset, 6141 .read_status = ksz9031_read_status, 6142 .get_sset_count = kszphy_get_sset_count, 6143 .get_strings = kszphy_get_strings, 6144 .get_stats = kszphy_get_stats, 6145 .suspend = genphy_suspend, 6146 .resume = kszphy_resume, 6147 .config_intr = lan8814_config_intr, 6148 .handle_interrupt = lan8814_handle_interrupt, 6149 .cable_test_start = lan8814_cable_test_start, 6150 .cable_test_get_status = ksz886x_cable_test_get_status, 6151 }, { 6152 PHY_ID_MATCH_MODEL(PHY_ID_LAN8804), 6153 .name = "Microchip LAN966X Gigabit PHY", 6154 .config_init = lan8804_config_init, 6155 .driver_data = &ksz9021_type, 6156 .probe = kszphy_probe, 6157 .soft_reset = genphy_soft_reset, 6158 .read_status = ksz9031_read_status, 6159 .get_sset_count = kszphy_get_sset_count, 6160 .get_strings = kszphy_get_strings, 6161 .get_stats = kszphy_get_stats, 6162 .suspend = lan8804_suspend, 6163 .resume = lan8804_resume, 6164 .config_intr = lan8804_config_intr, 6165 .handle_interrupt = lan8804_handle_interrupt, 6166 }, { 6167 PHY_ID_MATCH_MODEL(PHY_ID_LAN8841), 6168 .name = "Microchip LAN8841 Gigabit PHY", 6169 .flags = PHY_POLL_CABLE_TEST, 6170 .driver_data = &lan8841_type, 6171 .config_init = lan8841_config_init, 6172 .probe = lan8841_probe, 6173 .soft_reset = genphy_soft_reset, 6174 .config_intr = lan8841_config_intr, 6175 .handle_interrupt = lan8841_handle_interrupt, 6176 .get_sset_count = kszphy_get_sset_count, 6177 .get_strings = kszphy_get_strings, 6178 .get_stats = kszphy_get_stats, 6179 .suspend = lan8841_suspend, 6180 .resume = lan8841_resume, 6181 .cable_test_start = lan8814_cable_test_start, 6182 .cable_test_get_status = ksz886x_cable_test_get_status, 6183 }, { 6184 PHY_ID_MATCH_MODEL(PHY_ID_LAN8842), 6185 .name = "Microchip LAN8842 Gigabit PHY", 6186 .flags = PHY_POLL_CABLE_TEST, 6187 .driver_data = &lan8814_type, 6188 .probe = lan8842_probe, 6189 .config_init = lan8842_config_init, 6190 .config_intr = lan8842_config_intr, 6191 .inband_caps = lan8842_inband_caps, 6192 .config_inband = lan8842_config_inband, 6193 .handle_interrupt = lan8842_handle_interrupt, 6194 .get_phy_stats = lan8842_get_phy_stats, 6195 .update_stats = lan8842_update_stats, 6196 .cable_test_start = lan8814_cable_test_start, 6197 .cable_test_get_status = ksz886x_cable_test_get_status, 6198 }, { 6199 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131), 6200 .name = "Microchip KSZ9131 Gigabit PHY", 6201 /* PHY_GBIT_FEATURES */ 6202 .flags = PHY_POLL_CABLE_TEST, 6203 .driver_data = &ksz9131_type, 6204 .probe = kszphy_probe, 6205 .soft_reset = genphy_soft_reset, 6206 .config_init = ksz9131_config_init, 6207 .config_intr = kszphy_config_intr, 6208 .config_aneg = ksz9131_config_aneg, 6209 .read_status = ksz9131_read_status, 6210 .handle_interrupt = kszphy_handle_interrupt, 6211 .get_sset_count = kszphy_get_sset_count, 6212 .get_strings = kszphy_get_strings, 6213 .get_stats = kszphy_get_stats, 6214 .suspend = kszphy_suspend, 6215 .resume = ksz9131_resume, 6216 .cable_test_start = ksz9x31_cable_test_start, 6217 .cable_test_get_status = ksz9x31_cable_test_get_status, 6218 .get_features = ksz9477_get_features, 6219 }, { 6220 PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL), 6221 .name = "Micrel KSZ8873MLL Switch", 6222 /* PHY_BASIC_FEATURES */ 6223 .config_init = kszphy_config_init, 6224 .config_aneg = ksz8873mll_config_aneg, 6225 .read_status = ksz8873mll_read_status, 6226 .suspend = genphy_suspend, 6227 .resume = genphy_resume, 6228 }, { 6229 PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X), 6230 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", 6231 .driver_data = &ksz886x_type, 6232 /* PHY_BASIC_FEATURES */ 6233 .flags = PHY_POLL_CABLE_TEST, 6234 .config_init = kszphy_config_init, 6235 .config_aneg = ksz886x_config_aneg, 6236 .read_status = ksz886x_read_status, 6237 .suspend = genphy_suspend, 6238 .resume = genphy_resume, 6239 .cable_test_start = ksz886x_cable_test_start, 6240 .cable_test_get_status = ksz886x_cable_test_get_status, 6241 }, { 6242 .name = "Micrel KSZ87XX Switch", 6243 /* PHY_BASIC_FEATURES */ 6244 .config_init = kszphy_config_init, 6245 .match_phy_device = ksz8795_match_phy_device, 6246 .suspend = genphy_suspend, 6247 .resume = genphy_resume, 6248 }, { 6249 PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477), 6250 .name = "Microchip KSZ9477", 6251 .probe = kszphy_probe, 6252 /* PHY_GBIT_FEATURES */ 6253 .config_init = ksz9477_config_init, 6254 .config_intr = kszphy_config_intr, 6255 .config_aneg = ksz9477_config_aneg, 6256 .read_status = ksz9477_read_status, 6257 .handle_interrupt = kszphy_handle_interrupt, 6258 .suspend = genphy_suspend, 6259 .resume = ksz9477_resume, 6260 .get_phy_stats = kszphy_get_phy_stats, 6261 .update_stats = kszphy_update_stats, 6262 .cable_test_start = ksz9x31_cable_test_start, 6263 .cable_test_get_status = ksz9x31_cable_test_get_status, 6264 .get_sqi = kszphy_get_sqi, 6265 .get_sqi_max = kszphy_get_sqi_max, 6266 } }; 6267 6268 module_phy_driver(ksphy_driver); 6269 6270 MODULE_DESCRIPTION("Micrel PHY driver"); 6271 MODULE_AUTHOR("David J. Choi"); 6272 MODULE_LICENSE("GPL"); 6273 6274 static const struct mdio_device_id __maybe_unused micrel_tbl[] = { 6275 { PHY_ID_KSZ9021, 0x000ffffe }, 6276 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9031) }, 6277 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9131) }, 6278 { PHY_ID_KSZ8001, 0x00fffffc }, 6279 { PHY_ID_MATCH_MODEL(PHY_ID_KS8737) }, 6280 { PHY_ID_KSZ8021, 0x00ffffff }, 6281 { PHY_ID_KSZ8031, 0x00ffffff }, 6282 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041) }, 6283 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8041RNLI) }, 6284 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8051) }, 6285 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8061) }, 6286 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8081) }, 6287 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ8873MLL) }, 6288 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ886X) }, 6289 { PHY_ID_MATCH_MODEL(PHY_ID_KSZ9477) }, 6290 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8814) }, 6291 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8804) }, 6292 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8841) }, 6293 { PHY_ID_MATCH_MODEL(PHY_ID_LAN8842) }, 6294 { } 6295 }; 6296 6297 MODULE_DEVICE_TABLE(mdio, micrel_tbl); 6298