xref: /linux/drivers/net/phy/micrel.c (revision 8f5b5f78113e881cb8570c961b0dc42b218a1b9e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * drivers/net/phy/micrel.c
4  *
5  * Driver for Micrel PHYs
6  *
7  * Author: David J. Choi
8  *
9  * Copyright (c) 2010-2013 Micrel, Inc.
10  * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11  *
12  * Support : Micrel Phys:
13  *		Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14  *		100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15  *			   ksz8021, ksz8031, ksz8051,
16  *			   ksz8081, ksz8091,
17  *			   ksz8061,
18  *		Switch : ksz8873, ksz886x
19  *			 ksz9477, lan8804
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36 
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO				0x16
39 #define KSZPHY_OMSO_FACTORY_TEST		BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF			BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON		BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE		BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE		BIT(0)
44 
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS			0x1B
47 #define KSZPHY_INTCS_JABBER			BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR		BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE		BIT(13)
50 #define KSZPHY_INTCS_PARELLEL			BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK		BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN			BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT		BIT(9)
54 #define KSZPHY_INTCS_LINK_UP			BIT(8)
55 #define KSZPHY_INTCS_ALL			(KSZPHY_INTCS_LINK_UP |\
56 						KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS		BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS		BIT(0)
59 #define KSZPHY_INTCS_STATUS			(KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 						 KSZPHY_INTCS_LINK_UP_STATUS)
61 
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD				0x1d
64 #define KSZ8081_LMD_ENABLE_TEST			BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL			0
66 #define KSZ8081_LMD_STAT_OPEN			1
67 #define KSZ8081_LMD_STAT_SHORT			2
68 #define KSZ8081_LMD_STAT_FAIL			3
69 #define KSZ8081_LMD_STAT_MASK			GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR		BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK		GENMASK(8, 0)
73 
74 #define KSZ9x31_LMD				0x12
75 #define KSZ9x31_LMD_VCT_EN			BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX			BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n)			(((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT		0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI		BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO		BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK		GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL		0
83 #define KSZ9x31_LMD_VCT_ST_OPEN			1
84 #define KSZ9x31_LMD_VCT_ST_SHORT		2
85 #define KSZ9x31_LMD_VCT_ST_FAIL			3
86 #define KSZ9x31_LMD_VCT_ST_MASK			GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID	BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG	BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100		BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP		BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK	GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK	GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK		GENMASK(7, 0)
94 
95 #define KSZPHY_WIRE_PAIR_MASK			0x3
96 
97 #define LAN8814_CABLE_DIAG			0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK		GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK	GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT			12
101 
102 #define LAN8814_WIRE_PAIR_MASK			0xF
103 
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC				0x18
106 #define LAN8814_INTS				0x1B
107 
108 #define LAN8814_INT_LINK_DOWN			BIT(2)
109 #define LAN8814_INT_LINK_UP			BIT(0)
110 #define LAN8814_INT_LINK			(LAN8814_INT_LINK_UP |\
111 						 LAN8814_INT_LINK_DOWN)
112 
113 #define LAN8814_INTR_CTRL_REG			0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY		BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE	BIT(0)
116 
117 #define LAN8814_EEE_STATE			0x38
118 #define LAN8814_EEE_STATE_MASK2P5P		BIT(10)
119 
120 #define LAN8814_PD_CONTROLS			0x9d
121 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK	GENMASK(3, 0)
122 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL	0xb
123 
124 /* Represents 1ppm adjustment in 2^32 format with
125  * each nsec contains 4 clock cycles.
126  * The value is calculated as following: (1/1000000)/((2^-32)/4)
127  */
128 #define LAN8814_1PPM_FORMAT			17179
129 
130 /* Represents 1ppm adjustment in 2^32 format with
131  * each nsec contains 8 clock cycles.
132  * The value is calculated as following: (1/1000000)/((2^-32)/8)
133  */
134 #define LAN8841_1PPM_FORMAT			34360
135 
136 #define PTP_RX_VERSION				0x0248
137 #define PTP_TX_VERSION				0x0288
138 #define PTP_MAX_VERSION(x)			(((x) & GENMASK(7, 0)) << 8)
139 #define PTP_MIN_VERSION(x)			((x) & GENMASK(7, 0))
140 
141 #define PTP_RX_MOD				0x024F
142 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
143 #define PTP_RX_TIMESTAMP_EN			0x024D
144 #define PTP_TX_TIMESTAMP_EN			0x028D
145 
146 #define PTP_TIMESTAMP_EN_SYNC_			BIT(0)
147 #define PTP_TIMESTAMP_EN_DREQ_			BIT(1)
148 #define PTP_TIMESTAMP_EN_PDREQ_			BIT(2)
149 #define PTP_TIMESTAMP_EN_PDRES_			BIT(3)
150 
151 #define PTP_TX_PARSE_L2_ADDR_EN			0x0284
152 #define PTP_RX_PARSE_L2_ADDR_EN			0x0244
153 
154 #define PTP_TX_PARSE_IP_ADDR_EN			0x0285
155 #define PTP_RX_PARSE_IP_ADDR_EN			0x0245
156 #define LTC_HARD_RESET				0x023F
157 #define LTC_HARD_RESET_				BIT(0)
158 
159 #define TSU_HARD_RESET				0x02C1
160 #define TSU_HARD_RESET_				BIT(0)
161 
162 #define PTP_CMD_CTL				0x0200
163 #define PTP_CMD_CTL_PTP_DISABLE_		BIT(0)
164 #define PTP_CMD_CTL_PTP_ENABLE_			BIT(1)
165 #define PTP_CMD_CTL_PTP_CLOCK_READ_		BIT(3)
166 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_		BIT(4)
167 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_		BIT(5)
168 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_		BIT(6)
169 
170 #define PTP_CLOCK_SET_SEC_HI			0x0205
171 #define PTP_CLOCK_SET_SEC_MID			0x0206
172 #define PTP_CLOCK_SET_SEC_LO			0x0207
173 #define PTP_CLOCK_SET_NS_HI			0x0208
174 #define PTP_CLOCK_SET_NS_LO			0x0209
175 
176 #define PTP_CLOCK_READ_SEC_HI			0x0229
177 #define PTP_CLOCK_READ_SEC_MID			0x022A
178 #define PTP_CLOCK_READ_SEC_LO			0x022B
179 #define PTP_CLOCK_READ_NS_HI			0x022C
180 #define PTP_CLOCK_READ_NS_LO			0x022D
181 
182 #define PTP_OPERATING_MODE			0x0241
183 #define PTP_OPERATING_MODE_STANDALONE_		BIT(0)
184 
185 #define PTP_TX_MOD				0x028F
186 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_	BIT(12)
187 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
188 
189 #define PTP_RX_PARSE_CONFIG			0x0242
190 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
191 #define PTP_RX_PARSE_CONFIG_IPV4_EN_		BIT(1)
192 #define PTP_RX_PARSE_CONFIG_IPV6_EN_		BIT(2)
193 
194 #define PTP_TX_PARSE_CONFIG			0x0282
195 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_		BIT(0)
196 #define PTP_TX_PARSE_CONFIG_IPV4_EN_		BIT(1)
197 #define PTP_TX_PARSE_CONFIG_IPV6_EN_		BIT(2)
198 
199 #define PTP_CLOCK_RATE_ADJ_HI			0x020C
200 #define PTP_CLOCK_RATE_ADJ_LO			0x020D
201 #define PTP_CLOCK_RATE_ADJ_DIR_			BIT(15)
202 
203 #define PTP_LTC_STEP_ADJ_HI			0x0212
204 #define PTP_LTC_STEP_ADJ_LO			0x0213
205 #define PTP_LTC_STEP_ADJ_DIR_			BIT(15)
206 
207 #define LAN8814_INTR_STS_REG			0x0033
208 #define LAN8814_INTR_STS_REG_1588_TSU0_		BIT(0)
209 #define LAN8814_INTR_STS_REG_1588_TSU1_		BIT(1)
210 #define LAN8814_INTR_STS_REG_1588_TSU2_		BIT(2)
211 #define LAN8814_INTR_STS_REG_1588_TSU3_		BIT(3)
212 
213 #define PTP_CAP_INFO				0x022A
214 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val)	(((reg_val) & 0x0f00) >> 8)
215 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val)	((reg_val) & 0x000f)
216 
217 #define PTP_TX_EGRESS_SEC_HI			0x0296
218 #define PTP_TX_EGRESS_SEC_LO			0x0297
219 #define PTP_TX_EGRESS_NS_HI			0x0294
220 #define PTP_TX_EGRESS_NS_LO			0x0295
221 #define PTP_TX_MSG_HEADER2			0x0299
222 
223 #define PTP_RX_INGRESS_SEC_HI			0x0256
224 #define PTP_RX_INGRESS_SEC_LO			0x0257
225 #define PTP_RX_INGRESS_NS_HI			0x0254
226 #define PTP_RX_INGRESS_NS_LO			0x0255
227 #define PTP_RX_MSG_HEADER2			0x0259
228 
229 #define PTP_TSU_INT_EN				0x0200
230 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_	BIT(3)
231 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_		BIT(2)
232 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_	BIT(1)
233 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_		BIT(0)
234 
235 #define PTP_TSU_INT_STS				0x0201
236 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_	BIT(3)
237 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_		BIT(2)
238 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_	BIT(1)
239 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_		BIT(0)
240 
241 #define LAN8814_LED_CTRL_1			0x0
242 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_	BIT(6)
243 
244 /* PHY Control 1 */
245 #define MII_KSZPHY_CTRL_1			0x1e
246 #define KSZ8081_CTRL1_MDIX_STAT			BIT(4)
247 
248 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
249 #define MII_KSZPHY_CTRL_2			0x1f
250 #define MII_KSZPHY_CTRL				MII_KSZPHY_CTRL_2
251 /* bitmap of PHY register to set interrupt mode */
252 #define KSZ8081_CTRL2_HP_MDIX			BIT(15)
253 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT		BIT(14)
254 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX		BIT(13)
255 #define KSZ8081_CTRL2_FORCE_LINK		BIT(11)
256 #define KSZ8081_CTRL2_POWER_SAVING		BIT(10)
257 #define KSZPHY_CTRL_INT_ACTIVE_HIGH		BIT(9)
258 #define KSZPHY_RMII_REF_CLK_SEL			BIT(7)
259 
260 /* Write/read to/from extended registers */
261 #define MII_KSZPHY_EXTREG			0x0b
262 #define KSZPHY_EXTREG_WRITE			0x8000
263 
264 #define MII_KSZPHY_EXTREG_WRITE			0x0c
265 #define MII_KSZPHY_EXTREG_READ			0x0d
266 
267 /* Extended registers */
268 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW		0x104
269 #define MII_KSZPHY_RX_DATA_PAD_SKEW		0x105
270 #define MII_KSZPHY_TX_DATA_PAD_SKEW		0x106
271 
272 #define PS_TO_REG				200
273 #define FIFO_SIZE				8
274 
275 /* Delay used to get the second part from the LTC */
276 #define LAN8841_GET_SEC_LTC_DELAY		(500 * NSEC_PER_MSEC)
277 
278 struct kszphy_hw_stat {
279 	const char *string;
280 	u8 reg;
281 	u8 bits;
282 };
283 
284 static struct kszphy_hw_stat kszphy_hw_stats[] = {
285 	{ "phy_receive_errors", 21, 16},
286 	{ "phy_idle_errors", 10, 8 },
287 };
288 
289 struct kszphy_type {
290 	u32 led_mode_reg;
291 	u16 interrupt_level_mask;
292 	u16 cable_diag_reg;
293 	unsigned long pair_mask;
294 	u16 disable_dll_tx_bit;
295 	u16 disable_dll_rx_bit;
296 	u16 disable_dll_mask;
297 	bool has_broadcast_disable;
298 	bool has_nand_tree_disable;
299 	bool has_rmii_ref_clk_sel;
300 };
301 
302 /* Shared structure between the PHYs of the same package. */
303 struct lan8814_shared_priv {
304 	struct phy_device *phydev;
305 	struct ptp_clock *ptp_clock;
306 	struct ptp_clock_info ptp_clock_info;
307 
308 	/* Reference counter to how many ports in the package are enabling the
309 	 * timestamping
310 	 */
311 	u8 ref;
312 
313 	/* Lock for ptp_clock and ref */
314 	struct mutex shared_lock;
315 };
316 
317 struct lan8814_ptp_rx_ts {
318 	struct list_head list;
319 	u32 seconds;
320 	u32 nsec;
321 	u16 seq_id;
322 };
323 
324 struct kszphy_ptp_priv {
325 	struct mii_timestamper mii_ts;
326 	struct phy_device *phydev;
327 
328 	struct sk_buff_head tx_queue;
329 	struct sk_buff_head rx_queue;
330 
331 	struct list_head rx_ts_list;
332 	/* Lock for Rx ts fifo */
333 	spinlock_t rx_ts_lock;
334 
335 	int hwts_tx_type;
336 	enum hwtstamp_rx_filters rx_filter;
337 	int layer;
338 	int version;
339 
340 	struct ptp_clock *ptp_clock;
341 	struct ptp_clock_info ptp_clock_info;
342 	/* Lock for ptp_clock */
343 	struct mutex ptp_lock;
344 	struct ptp_pin_desc *pin_config;
345 
346 	s64 seconds;
347 	/* Lock for accessing seconds */
348 	spinlock_t seconds_lock;
349 };
350 
351 struct kszphy_priv {
352 	struct kszphy_ptp_priv ptp_priv;
353 	const struct kszphy_type *type;
354 	int led_mode;
355 	u16 vct_ctrl1000;
356 	bool rmii_ref_clk_sel;
357 	bool rmii_ref_clk_sel_val;
358 	u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
359 };
360 
361 static const struct kszphy_type lan8814_type = {
362 	.led_mode_reg		= ~LAN8814_LED_CTRL_1,
363 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
364 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
365 };
366 
367 static const struct kszphy_type ksz886x_type = {
368 	.cable_diag_reg		= KSZ8081_LMD,
369 	.pair_mask		= KSZPHY_WIRE_PAIR_MASK,
370 };
371 
372 static const struct kszphy_type ksz8021_type = {
373 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
374 	.has_broadcast_disable	= true,
375 	.has_nand_tree_disable	= true,
376 	.has_rmii_ref_clk_sel	= true,
377 };
378 
379 static const struct kszphy_type ksz8041_type = {
380 	.led_mode_reg		= MII_KSZPHY_CTRL_1,
381 };
382 
383 static const struct kszphy_type ksz8051_type = {
384 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
385 	.has_nand_tree_disable	= true,
386 };
387 
388 static const struct kszphy_type ksz8081_type = {
389 	.led_mode_reg		= MII_KSZPHY_CTRL_2,
390 	.has_broadcast_disable	= true,
391 	.has_nand_tree_disable	= true,
392 	.has_rmii_ref_clk_sel	= true,
393 };
394 
395 static const struct kszphy_type ks8737_type = {
396 	.interrupt_level_mask	= BIT(14),
397 };
398 
399 static const struct kszphy_type ksz9021_type = {
400 	.interrupt_level_mask	= BIT(14),
401 };
402 
403 static const struct kszphy_type ksz9131_type = {
404 	.interrupt_level_mask	= BIT(14),
405 	.disable_dll_tx_bit	= BIT(12),
406 	.disable_dll_rx_bit	= BIT(12),
407 	.disable_dll_mask	= BIT_MASK(12),
408 };
409 
410 static const struct kszphy_type lan8841_type = {
411 	.disable_dll_tx_bit	= BIT(14),
412 	.disable_dll_rx_bit	= BIT(14),
413 	.disable_dll_mask	= BIT_MASK(14),
414 	.cable_diag_reg		= LAN8814_CABLE_DIAG,
415 	.pair_mask		= LAN8814_WIRE_PAIR_MASK,
416 };
417 
418 static int kszphy_extended_write(struct phy_device *phydev,
419 				u32 regnum, u16 val)
420 {
421 	phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
422 	return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
423 }
424 
425 static int kszphy_extended_read(struct phy_device *phydev,
426 				u32 regnum)
427 {
428 	phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
429 	return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
430 }
431 
432 static int kszphy_ack_interrupt(struct phy_device *phydev)
433 {
434 	/* bit[7..0] int status, which is a read and clear register. */
435 	int rc;
436 
437 	rc = phy_read(phydev, MII_KSZPHY_INTCS);
438 
439 	return (rc < 0) ? rc : 0;
440 }
441 
442 static int kszphy_config_intr(struct phy_device *phydev)
443 {
444 	const struct kszphy_type *type = phydev->drv->driver_data;
445 	int temp, err;
446 	u16 mask;
447 
448 	if (type && type->interrupt_level_mask)
449 		mask = type->interrupt_level_mask;
450 	else
451 		mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
452 
453 	/* set the interrupt pin active low */
454 	temp = phy_read(phydev, MII_KSZPHY_CTRL);
455 	if (temp < 0)
456 		return temp;
457 	temp &= ~mask;
458 	phy_write(phydev, MII_KSZPHY_CTRL, temp);
459 
460 	/* enable / disable interrupts */
461 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
462 		err = kszphy_ack_interrupt(phydev);
463 		if (err)
464 			return err;
465 
466 		err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
467 	} else {
468 		err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
469 		if (err)
470 			return err;
471 
472 		err = kszphy_ack_interrupt(phydev);
473 	}
474 
475 	return err;
476 }
477 
478 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
479 {
480 	int irq_status;
481 
482 	irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
483 	if (irq_status < 0) {
484 		phy_error(phydev);
485 		return IRQ_NONE;
486 	}
487 
488 	if (!(irq_status & KSZPHY_INTCS_STATUS))
489 		return IRQ_NONE;
490 
491 	phy_trigger_machine(phydev);
492 
493 	return IRQ_HANDLED;
494 }
495 
496 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
497 {
498 	int ctrl;
499 
500 	ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
501 	if (ctrl < 0)
502 		return ctrl;
503 
504 	if (val)
505 		ctrl |= KSZPHY_RMII_REF_CLK_SEL;
506 	else
507 		ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
508 
509 	return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
510 }
511 
512 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
513 {
514 	int rc, temp, shift;
515 
516 	switch (reg) {
517 	case MII_KSZPHY_CTRL_1:
518 		shift = 14;
519 		break;
520 	case MII_KSZPHY_CTRL_2:
521 		shift = 4;
522 		break;
523 	default:
524 		return -EINVAL;
525 	}
526 
527 	temp = phy_read(phydev, reg);
528 	if (temp < 0) {
529 		rc = temp;
530 		goto out;
531 	}
532 
533 	temp &= ~(3 << shift);
534 	temp |= val << shift;
535 	rc = phy_write(phydev, reg, temp);
536 out:
537 	if (rc < 0)
538 		phydev_err(phydev, "failed to set led mode\n");
539 
540 	return rc;
541 }
542 
543 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
544  * unique (non-broadcast) address on a shared bus.
545  */
546 static int kszphy_broadcast_disable(struct phy_device *phydev)
547 {
548 	int ret;
549 
550 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
551 	if (ret < 0)
552 		goto out;
553 
554 	ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
555 out:
556 	if (ret)
557 		phydev_err(phydev, "failed to disable broadcast address\n");
558 
559 	return ret;
560 }
561 
562 static int kszphy_nand_tree_disable(struct phy_device *phydev)
563 {
564 	int ret;
565 
566 	ret = phy_read(phydev, MII_KSZPHY_OMSO);
567 	if (ret < 0)
568 		goto out;
569 
570 	if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
571 		return 0;
572 
573 	ret = phy_write(phydev, MII_KSZPHY_OMSO,
574 			ret & ~KSZPHY_OMSO_NAND_TREE_ON);
575 out:
576 	if (ret)
577 		phydev_err(phydev, "failed to disable NAND tree mode\n");
578 
579 	return ret;
580 }
581 
582 /* Some config bits need to be set again on resume, handle them here. */
583 static int kszphy_config_reset(struct phy_device *phydev)
584 {
585 	struct kszphy_priv *priv = phydev->priv;
586 	int ret;
587 
588 	if (priv->rmii_ref_clk_sel) {
589 		ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
590 		if (ret) {
591 			phydev_err(phydev,
592 				   "failed to set rmii reference clock\n");
593 			return ret;
594 		}
595 	}
596 
597 	if (priv->type && priv->led_mode >= 0)
598 		kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
599 
600 	return 0;
601 }
602 
603 static int kszphy_config_init(struct phy_device *phydev)
604 {
605 	struct kszphy_priv *priv = phydev->priv;
606 	const struct kszphy_type *type;
607 
608 	if (!priv)
609 		return 0;
610 
611 	type = priv->type;
612 
613 	if (type && type->has_broadcast_disable)
614 		kszphy_broadcast_disable(phydev);
615 
616 	if (type && type->has_nand_tree_disable)
617 		kszphy_nand_tree_disable(phydev);
618 
619 	return kszphy_config_reset(phydev);
620 }
621 
622 static int ksz8041_fiber_mode(struct phy_device *phydev)
623 {
624 	struct device_node *of_node = phydev->mdio.dev.of_node;
625 
626 	return of_property_read_bool(of_node, "micrel,fiber-mode");
627 }
628 
629 static int ksz8041_config_init(struct phy_device *phydev)
630 {
631 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
632 
633 	/* Limit supported and advertised modes in fiber mode */
634 	if (ksz8041_fiber_mode(phydev)) {
635 		phydev->dev_flags |= MICREL_PHY_FXEN;
636 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
637 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
638 
639 		linkmode_and(phydev->supported, phydev->supported, mask);
640 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
641 				 phydev->supported);
642 		linkmode_and(phydev->advertising, phydev->advertising, mask);
643 		linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
644 				 phydev->advertising);
645 		phydev->autoneg = AUTONEG_DISABLE;
646 	}
647 
648 	return kszphy_config_init(phydev);
649 }
650 
651 static int ksz8041_config_aneg(struct phy_device *phydev)
652 {
653 	/* Skip auto-negotiation in fiber mode */
654 	if (phydev->dev_flags & MICREL_PHY_FXEN) {
655 		phydev->speed = SPEED_100;
656 		return 0;
657 	}
658 
659 	return genphy_config_aneg(phydev);
660 }
661 
662 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
663 					    const bool ksz_8051)
664 {
665 	int ret;
666 
667 	if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
668 		return 0;
669 
670 	ret = phy_read(phydev, MII_BMSR);
671 	if (ret < 0)
672 		return ret;
673 
674 	/* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
675 	 * exact PHY ID. However, they can be told apart by the extended
676 	 * capability registers presence. The KSZ8051 PHY has them while
677 	 * the switch does not.
678 	 */
679 	ret &= BMSR_ERCAP;
680 	if (ksz_8051)
681 		return ret;
682 	else
683 		return !ret;
684 }
685 
686 static int ksz8051_match_phy_device(struct phy_device *phydev)
687 {
688 	return ksz8051_ksz8795_match_phy_device(phydev, true);
689 }
690 
691 static int ksz8081_config_init(struct phy_device *phydev)
692 {
693 	/* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
694 	 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
695 	 * pull-down is missing, the factory test mode should be cleared by
696 	 * manually writing a 0.
697 	 */
698 	phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
699 
700 	return kszphy_config_init(phydev);
701 }
702 
703 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
704 {
705 	u16 val;
706 
707 	switch (ctrl) {
708 	case ETH_TP_MDI:
709 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
710 		break;
711 	case ETH_TP_MDI_X:
712 		val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
713 			KSZ8081_CTRL2_MDI_MDI_X_SELECT;
714 		break;
715 	case ETH_TP_MDI_AUTO:
716 		val = 0;
717 		break;
718 	default:
719 		return 0;
720 	}
721 
722 	return phy_modify(phydev, MII_KSZPHY_CTRL_2,
723 			  KSZ8081_CTRL2_HP_MDIX |
724 			  KSZ8081_CTRL2_MDI_MDI_X_SELECT |
725 			  KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
726 			  KSZ8081_CTRL2_HP_MDIX | val);
727 }
728 
729 static int ksz8081_config_aneg(struct phy_device *phydev)
730 {
731 	int ret;
732 
733 	ret = genphy_config_aneg(phydev);
734 	if (ret)
735 		return ret;
736 
737 	/* The MDI-X configuration is automatically changed by the PHY after
738 	 * switching from autoneg off to on. So, take MDI-X configuration under
739 	 * own control and set it after autoneg configuration was done.
740 	 */
741 	return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
742 }
743 
744 static int ksz8081_mdix_update(struct phy_device *phydev)
745 {
746 	int ret;
747 
748 	ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
749 	if (ret < 0)
750 		return ret;
751 
752 	if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
753 		if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
754 			phydev->mdix_ctrl = ETH_TP_MDI_X;
755 		else
756 			phydev->mdix_ctrl = ETH_TP_MDI;
757 	} else {
758 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
759 	}
760 
761 	ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
762 	if (ret < 0)
763 		return ret;
764 
765 	if (ret & KSZ8081_CTRL1_MDIX_STAT)
766 		phydev->mdix = ETH_TP_MDI;
767 	else
768 		phydev->mdix = ETH_TP_MDI_X;
769 
770 	return 0;
771 }
772 
773 static int ksz8081_read_status(struct phy_device *phydev)
774 {
775 	int ret;
776 
777 	ret = ksz8081_mdix_update(phydev);
778 	if (ret < 0)
779 		return ret;
780 
781 	return genphy_read_status(phydev);
782 }
783 
784 static int ksz8061_config_init(struct phy_device *phydev)
785 {
786 	int ret;
787 
788 	ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
789 	if (ret)
790 		return ret;
791 
792 	return kszphy_config_init(phydev);
793 }
794 
795 static int ksz8795_match_phy_device(struct phy_device *phydev)
796 {
797 	return ksz8051_ksz8795_match_phy_device(phydev, false);
798 }
799 
800 static int ksz9021_load_values_from_of(struct phy_device *phydev,
801 				       const struct device_node *of_node,
802 				       u16 reg,
803 				       const char *field1, const char *field2,
804 				       const char *field3, const char *field4)
805 {
806 	int val1 = -1;
807 	int val2 = -2;
808 	int val3 = -3;
809 	int val4 = -4;
810 	int newval;
811 	int matches = 0;
812 
813 	if (!of_property_read_u32(of_node, field1, &val1))
814 		matches++;
815 
816 	if (!of_property_read_u32(of_node, field2, &val2))
817 		matches++;
818 
819 	if (!of_property_read_u32(of_node, field3, &val3))
820 		matches++;
821 
822 	if (!of_property_read_u32(of_node, field4, &val4))
823 		matches++;
824 
825 	if (!matches)
826 		return 0;
827 
828 	if (matches < 4)
829 		newval = kszphy_extended_read(phydev, reg);
830 	else
831 		newval = 0;
832 
833 	if (val1 != -1)
834 		newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
835 
836 	if (val2 != -2)
837 		newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
838 
839 	if (val3 != -3)
840 		newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
841 
842 	if (val4 != -4)
843 		newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
844 
845 	return kszphy_extended_write(phydev, reg, newval);
846 }
847 
848 static int ksz9021_config_init(struct phy_device *phydev)
849 {
850 	const struct device_node *of_node;
851 	const struct device *dev_walker;
852 
853 	/* The Micrel driver has a deprecated option to place phy OF
854 	 * properties in the MAC node. Walk up the tree of devices to
855 	 * find a device with an OF node.
856 	 */
857 	dev_walker = &phydev->mdio.dev;
858 	do {
859 		of_node = dev_walker->of_node;
860 		dev_walker = dev_walker->parent;
861 
862 	} while (!of_node && dev_walker);
863 
864 	if (of_node) {
865 		ksz9021_load_values_from_of(phydev, of_node,
866 				    MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
867 				    "txen-skew-ps", "txc-skew-ps",
868 				    "rxdv-skew-ps", "rxc-skew-ps");
869 		ksz9021_load_values_from_of(phydev, of_node,
870 				    MII_KSZPHY_RX_DATA_PAD_SKEW,
871 				    "rxd0-skew-ps", "rxd1-skew-ps",
872 				    "rxd2-skew-ps", "rxd3-skew-ps");
873 		ksz9021_load_values_from_of(phydev, of_node,
874 				    MII_KSZPHY_TX_DATA_PAD_SKEW,
875 				    "txd0-skew-ps", "txd1-skew-ps",
876 				    "txd2-skew-ps", "txd3-skew-ps");
877 	}
878 	return 0;
879 }
880 
881 #define KSZ9031_PS_TO_REG		60
882 
883 /* Extended registers */
884 /* MMD Address 0x0 */
885 #define MII_KSZ9031RN_FLP_BURST_TX_LO	3
886 #define MII_KSZ9031RN_FLP_BURST_TX_HI	4
887 
888 /* MMD Address 0x2 */
889 #define MII_KSZ9031RN_CONTROL_PAD_SKEW	4
890 #define MII_KSZ9031RN_RX_CTL_M		GENMASK(7, 4)
891 #define MII_KSZ9031RN_TX_CTL_M		GENMASK(3, 0)
892 
893 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW	5
894 #define MII_KSZ9031RN_RXD3		GENMASK(15, 12)
895 #define MII_KSZ9031RN_RXD2		GENMASK(11, 8)
896 #define MII_KSZ9031RN_RXD1		GENMASK(7, 4)
897 #define MII_KSZ9031RN_RXD0		GENMASK(3, 0)
898 
899 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW	6
900 #define MII_KSZ9031RN_TXD3		GENMASK(15, 12)
901 #define MII_KSZ9031RN_TXD2		GENMASK(11, 8)
902 #define MII_KSZ9031RN_TXD1		GENMASK(7, 4)
903 #define MII_KSZ9031RN_TXD0		GENMASK(3, 0)
904 
905 #define MII_KSZ9031RN_CLK_PAD_SKEW	8
906 #define MII_KSZ9031RN_GTX_CLK		GENMASK(9, 5)
907 #define MII_KSZ9031RN_RX_CLK		GENMASK(4, 0)
908 
909 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
910  * provide different RGMII options we need to configure delay offset
911  * for each pad relative to build in delay.
912  */
913 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
914  * 1.80ns
915  */
916 #define RX_ID				0x7
917 #define RX_CLK_ID			0x19
918 
919 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
920  * internal 1.2ns delay.
921  */
922 #define RX_ND				0xc
923 #define RX_CLK_ND			0x0
924 
925 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
926 #define TX_ID				0x0
927 #define TX_CLK_ID			0x1f
928 
929 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
930  * dealy
931  */
932 #define TX_ND				0x7
933 #define TX_CLK_ND			0xf
934 
935 /* MMD Address 0x1C */
936 #define MII_KSZ9031RN_EDPD		0x23
937 #define MII_KSZ9031RN_EDPD_ENABLE	BIT(0)
938 
939 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
940 				       const struct device_node *of_node,
941 				       u16 reg, size_t field_sz,
942 				       const char *field[], u8 numfields,
943 				       bool *update)
944 {
945 	int val[4] = {-1, -2, -3, -4};
946 	int matches = 0;
947 	u16 mask;
948 	u16 maxval;
949 	u16 newval;
950 	int i;
951 
952 	for (i = 0; i < numfields; i++)
953 		if (!of_property_read_u32(of_node, field[i], val + i))
954 			matches++;
955 
956 	if (!matches)
957 		return 0;
958 
959 	*update |= true;
960 
961 	if (matches < numfields)
962 		newval = phy_read_mmd(phydev, 2, reg);
963 	else
964 		newval = 0;
965 
966 	maxval = (field_sz == 4) ? 0xf : 0x1f;
967 	for (i = 0; i < numfields; i++)
968 		if (val[i] != -(i + 1)) {
969 			mask = 0xffff;
970 			mask ^= maxval << (field_sz * i);
971 			newval = (newval & mask) |
972 				(((val[i] / KSZ9031_PS_TO_REG) & maxval)
973 					<< (field_sz * i));
974 		}
975 
976 	return phy_write_mmd(phydev, 2, reg, newval);
977 }
978 
979 /* Center KSZ9031RNX FLP timing at 16ms. */
980 static int ksz9031_center_flp_timing(struct phy_device *phydev)
981 {
982 	int result;
983 
984 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
985 			       0x0006);
986 	if (result)
987 		return result;
988 
989 	result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
990 			       0x1A80);
991 	if (result)
992 		return result;
993 
994 	return genphy_restart_aneg(phydev);
995 }
996 
997 /* Enable energy-detect power-down mode */
998 static int ksz9031_enable_edpd(struct phy_device *phydev)
999 {
1000 	int reg;
1001 
1002 	reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1003 	if (reg < 0)
1004 		return reg;
1005 	return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1006 			     reg | MII_KSZ9031RN_EDPD_ENABLE);
1007 }
1008 
1009 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1010 {
1011 	u16 rx, tx, rx_clk, tx_clk;
1012 	int ret;
1013 
1014 	switch (phydev->interface) {
1015 	case PHY_INTERFACE_MODE_RGMII:
1016 		tx = TX_ND;
1017 		tx_clk = TX_CLK_ND;
1018 		rx = RX_ND;
1019 		rx_clk = RX_CLK_ND;
1020 		break;
1021 	case PHY_INTERFACE_MODE_RGMII_ID:
1022 		tx = TX_ID;
1023 		tx_clk = TX_CLK_ID;
1024 		rx = RX_ID;
1025 		rx_clk = RX_CLK_ID;
1026 		break;
1027 	case PHY_INTERFACE_MODE_RGMII_RXID:
1028 		tx = TX_ND;
1029 		tx_clk = TX_CLK_ND;
1030 		rx = RX_ID;
1031 		rx_clk = RX_CLK_ID;
1032 		break;
1033 	case PHY_INTERFACE_MODE_RGMII_TXID:
1034 		tx = TX_ID;
1035 		tx_clk = TX_CLK_ID;
1036 		rx = RX_ND;
1037 		rx_clk = RX_CLK_ND;
1038 		break;
1039 	default:
1040 		return 0;
1041 	}
1042 
1043 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1044 			    FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1045 			    FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1046 	if (ret < 0)
1047 		return ret;
1048 
1049 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1050 			    FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1051 			    FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1052 			    FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1053 			    FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1054 	if (ret < 0)
1055 		return ret;
1056 
1057 	ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1058 			    FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1059 			    FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1060 			    FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1061 			    FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1062 	if (ret < 0)
1063 		return ret;
1064 
1065 	return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1066 			     FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1067 			     FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1068 }
1069 
1070 static int ksz9031_config_init(struct phy_device *phydev)
1071 {
1072 	const struct device_node *of_node;
1073 	static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1074 	static const char *rx_data_skews[4] = {
1075 		"rxd0-skew-ps", "rxd1-skew-ps",
1076 		"rxd2-skew-ps", "rxd3-skew-ps"
1077 	};
1078 	static const char *tx_data_skews[4] = {
1079 		"txd0-skew-ps", "txd1-skew-ps",
1080 		"txd2-skew-ps", "txd3-skew-ps"
1081 	};
1082 	static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1083 	const struct device *dev_walker;
1084 	int result;
1085 
1086 	result = ksz9031_enable_edpd(phydev);
1087 	if (result < 0)
1088 		return result;
1089 
1090 	/* The Micrel driver has a deprecated option to place phy OF
1091 	 * properties in the MAC node. Walk up the tree of devices to
1092 	 * find a device with an OF node.
1093 	 */
1094 	dev_walker = &phydev->mdio.dev;
1095 	do {
1096 		of_node = dev_walker->of_node;
1097 		dev_walker = dev_walker->parent;
1098 	} while (!of_node && dev_walker);
1099 
1100 	if (of_node) {
1101 		bool update = false;
1102 
1103 		if (phy_interface_is_rgmii(phydev)) {
1104 			result = ksz9031_config_rgmii_delay(phydev);
1105 			if (result < 0)
1106 				return result;
1107 		}
1108 
1109 		ksz9031_of_load_skew_values(phydev, of_node,
1110 				MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1111 				clk_skews, 2, &update);
1112 
1113 		ksz9031_of_load_skew_values(phydev, of_node,
1114 				MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1115 				control_skews, 2, &update);
1116 
1117 		ksz9031_of_load_skew_values(phydev, of_node,
1118 				MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1119 				rx_data_skews, 4, &update);
1120 
1121 		ksz9031_of_load_skew_values(phydev, of_node,
1122 				MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1123 				tx_data_skews, 4, &update);
1124 
1125 		if (update && !phy_interface_is_rgmii(phydev))
1126 			phydev_warn(phydev,
1127 				    "*-skew-ps values should be used only with RGMII PHY modes\n");
1128 
1129 		/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1130 		 * When the device links in the 1000BASE-T slave mode only,
1131 		 * the optional 125MHz reference output clock (CLK125_NDO)
1132 		 * has wide duty cycle variation.
1133 		 *
1134 		 * The optional CLK125_NDO clock does not meet the RGMII
1135 		 * 45/55 percent (min/max) duty cycle requirement and therefore
1136 		 * cannot be used directly by the MAC side for clocking
1137 		 * applications that have setup/hold time requirements on
1138 		 * rising and falling clock edges.
1139 		 *
1140 		 * Workaround:
1141 		 * Force the phy to be the master to receive a stable clock
1142 		 * which meets the duty cycle requirement.
1143 		 */
1144 		if (of_property_read_bool(of_node, "micrel,force-master")) {
1145 			result = phy_read(phydev, MII_CTRL1000);
1146 			if (result < 0)
1147 				goto err_force_master;
1148 
1149 			/* enable master mode, config & prefer master */
1150 			result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1151 			result = phy_write(phydev, MII_CTRL1000, result);
1152 			if (result < 0)
1153 				goto err_force_master;
1154 		}
1155 	}
1156 
1157 	return ksz9031_center_flp_timing(phydev);
1158 
1159 err_force_master:
1160 	phydev_err(phydev, "failed to force the phy to master mode\n");
1161 	return result;
1162 }
1163 
1164 #define KSZ9131_SKEW_5BIT_MAX	2400
1165 #define KSZ9131_SKEW_4BIT_MAX	800
1166 #define KSZ9131_OFFSET		700
1167 #define KSZ9131_STEP		100
1168 
1169 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1170 				       struct device_node *of_node,
1171 				       u16 reg, size_t field_sz,
1172 				       char *field[], u8 numfields)
1173 {
1174 	int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1175 		      -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1176 	int skewval, skewmax = 0;
1177 	int matches = 0;
1178 	u16 maxval;
1179 	u16 newval;
1180 	u16 mask;
1181 	int i;
1182 
1183 	/* psec properties in dts should mean x pico seconds */
1184 	if (field_sz == 5)
1185 		skewmax = KSZ9131_SKEW_5BIT_MAX;
1186 	else
1187 		skewmax = KSZ9131_SKEW_4BIT_MAX;
1188 
1189 	for (i = 0; i < numfields; i++)
1190 		if (!of_property_read_s32(of_node, field[i], &skewval)) {
1191 			if (skewval < -KSZ9131_OFFSET)
1192 				skewval = -KSZ9131_OFFSET;
1193 			else if (skewval > skewmax)
1194 				skewval = skewmax;
1195 
1196 			val[i] = skewval + KSZ9131_OFFSET;
1197 			matches++;
1198 		}
1199 
1200 	if (!matches)
1201 		return 0;
1202 
1203 	if (matches < numfields)
1204 		newval = phy_read_mmd(phydev, 2, reg);
1205 	else
1206 		newval = 0;
1207 
1208 	maxval = (field_sz == 4) ? 0xf : 0x1f;
1209 	for (i = 0; i < numfields; i++)
1210 		if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1211 			mask = 0xffff;
1212 			mask ^= maxval << (field_sz * i);
1213 			newval = (newval & mask) |
1214 				(((val[i] / KSZ9131_STEP) & maxval)
1215 					<< (field_sz * i));
1216 		}
1217 
1218 	return phy_write_mmd(phydev, 2, reg, newval);
1219 }
1220 
1221 #define KSZ9131RN_MMD_COMMON_CTRL_REG	2
1222 #define KSZ9131RN_RXC_DLL_CTRL		76
1223 #define KSZ9131RN_TXC_DLL_CTRL		77
1224 #define KSZ9131RN_DLL_ENABLE_DELAY	0
1225 
1226 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1227 {
1228 	const struct kszphy_type *type = phydev->drv->driver_data;
1229 	u16 rxcdll_val, txcdll_val;
1230 	int ret;
1231 
1232 	switch (phydev->interface) {
1233 	case PHY_INTERFACE_MODE_RGMII:
1234 		rxcdll_val = type->disable_dll_rx_bit;
1235 		txcdll_val = type->disable_dll_tx_bit;
1236 		break;
1237 	case PHY_INTERFACE_MODE_RGMII_ID:
1238 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1239 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1240 		break;
1241 	case PHY_INTERFACE_MODE_RGMII_RXID:
1242 		rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1243 		txcdll_val = type->disable_dll_tx_bit;
1244 		break;
1245 	case PHY_INTERFACE_MODE_RGMII_TXID:
1246 		rxcdll_val = type->disable_dll_rx_bit;
1247 		txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1248 		break;
1249 	default:
1250 		return 0;
1251 	}
1252 
1253 	ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1254 			     KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1255 			     rxcdll_val);
1256 	if (ret < 0)
1257 		return ret;
1258 
1259 	return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1260 			      KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1261 			      txcdll_val);
1262 }
1263 
1264 /* Silicon Errata DS80000693B
1265  *
1266  * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1267  * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1268  * according to the datasheet (off if there is no link).
1269  */
1270 static int ksz9131_led_errata(struct phy_device *phydev)
1271 {
1272 	int reg;
1273 
1274 	reg = phy_read_mmd(phydev, 2, 0);
1275 	if (reg < 0)
1276 		return reg;
1277 
1278 	if (!(reg & BIT(4)))
1279 		return 0;
1280 
1281 	return phy_set_bits(phydev, 0x1e, BIT(9));
1282 }
1283 
1284 static int ksz9131_config_init(struct phy_device *phydev)
1285 {
1286 	struct device_node *of_node;
1287 	char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1288 	char *rx_data_skews[4] = {
1289 		"rxd0-skew-psec", "rxd1-skew-psec",
1290 		"rxd2-skew-psec", "rxd3-skew-psec"
1291 	};
1292 	char *tx_data_skews[4] = {
1293 		"txd0-skew-psec", "txd1-skew-psec",
1294 		"txd2-skew-psec", "txd3-skew-psec"
1295 	};
1296 	char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1297 	const struct device *dev_walker;
1298 	int ret;
1299 
1300 	dev_walker = &phydev->mdio.dev;
1301 	do {
1302 		of_node = dev_walker->of_node;
1303 		dev_walker = dev_walker->parent;
1304 	} while (!of_node && dev_walker);
1305 
1306 	if (!of_node)
1307 		return 0;
1308 
1309 	if (phy_interface_is_rgmii(phydev)) {
1310 		ret = ksz9131_config_rgmii_delay(phydev);
1311 		if (ret < 0)
1312 			return ret;
1313 	}
1314 
1315 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1316 					  MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1317 					  clk_skews, 2);
1318 	if (ret < 0)
1319 		return ret;
1320 
1321 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1322 					  MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1323 					  control_skews, 2);
1324 	if (ret < 0)
1325 		return ret;
1326 
1327 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1328 					  MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1329 					  rx_data_skews, 4);
1330 	if (ret < 0)
1331 		return ret;
1332 
1333 	ret = ksz9131_of_load_skew_values(phydev, of_node,
1334 					  MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1335 					  tx_data_skews, 4);
1336 	if (ret < 0)
1337 		return ret;
1338 
1339 	ret = ksz9131_led_errata(phydev);
1340 	if (ret < 0)
1341 		return ret;
1342 
1343 	return 0;
1344 }
1345 
1346 #define MII_KSZ9131_AUTO_MDIX		0x1C
1347 #define MII_KSZ9131_AUTO_MDI_SET	BIT(7)
1348 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF	BIT(6)
1349 
1350 static int ksz9131_mdix_update(struct phy_device *phydev)
1351 {
1352 	int ret;
1353 
1354 	ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX);
1355 	if (ret < 0)
1356 		return ret;
1357 
1358 	if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) {
1359 		if (ret & MII_KSZ9131_AUTO_MDI_SET)
1360 			phydev->mdix_ctrl = ETH_TP_MDI;
1361 		else
1362 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1363 	} else {
1364 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1365 	}
1366 
1367 	if (ret & MII_KSZ9131_AUTO_MDI_SET)
1368 		phydev->mdix = ETH_TP_MDI;
1369 	else
1370 		phydev->mdix = ETH_TP_MDI_X;
1371 
1372 	return 0;
1373 }
1374 
1375 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1376 {
1377 	u16 val;
1378 
1379 	switch (ctrl) {
1380 	case ETH_TP_MDI:
1381 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1382 		      MII_KSZ9131_AUTO_MDI_SET;
1383 		break;
1384 	case ETH_TP_MDI_X:
1385 		val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1386 		break;
1387 	case ETH_TP_MDI_AUTO:
1388 		val = 0;
1389 		break;
1390 	default:
1391 		return 0;
1392 	}
1393 
1394 	return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1395 			  MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1396 			  MII_KSZ9131_AUTO_MDI_SET, val);
1397 }
1398 
1399 static int ksz9131_read_status(struct phy_device *phydev)
1400 {
1401 	int ret;
1402 
1403 	ret = ksz9131_mdix_update(phydev);
1404 	if (ret < 0)
1405 		return ret;
1406 
1407 	return genphy_read_status(phydev);
1408 }
1409 
1410 static int ksz9131_config_aneg(struct phy_device *phydev)
1411 {
1412 	int ret;
1413 
1414 	ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1415 	if (ret)
1416 		return ret;
1417 
1418 	return genphy_config_aneg(phydev);
1419 }
1420 
1421 static int ksz9477_get_features(struct phy_device *phydev)
1422 {
1423 	int ret;
1424 
1425 	ret = genphy_read_abilities(phydev);
1426 	if (ret)
1427 		return ret;
1428 
1429 	/* The "EEE control and capability 1" (Register 3.20) seems to be
1430 	 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1431 	 * on the 7.60 will affect 3.20. So, we need to construct our own list
1432 	 * of caps.
1433 	 * KSZ8563R should have 100BaseTX/Full only.
1434 	 */
1435 	linkmode_and(phydev->supported_eee, phydev->supported,
1436 		     PHY_EEE_CAP1_FEATURES);
1437 
1438 	return 0;
1439 }
1440 
1441 #define KSZ8873MLL_GLOBAL_CONTROL_4	0x06
1442 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX	BIT(6)
1443 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED	BIT(4)
1444 static int ksz8873mll_read_status(struct phy_device *phydev)
1445 {
1446 	int regval;
1447 
1448 	/* dummy read */
1449 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1450 
1451 	regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1452 
1453 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1454 		phydev->duplex = DUPLEX_HALF;
1455 	else
1456 		phydev->duplex = DUPLEX_FULL;
1457 
1458 	if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1459 		phydev->speed = SPEED_10;
1460 	else
1461 		phydev->speed = SPEED_100;
1462 
1463 	phydev->link = 1;
1464 	phydev->pause = phydev->asym_pause = 0;
1465 
1466 	return 0;
1467 }
1468 
1469 static int ksz9031_get_features(struct phy_device *phydev)
1470 {
1471 	int ret;
1472 
1473 	ret = genphy_read_abilities(phydev);
1474 	if (ret < 0)
1475 		return ret;
1476 
1477 	/* Silicon Errata Sheet (DS80000691D or DS80000692D):
1478 	 * Whenever the device's Asymmetric Pause capability is set to 1,
1479 	 * link-up may fail after a link-up to link-down transition.
1480 	 *
1481 	 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1482 	 *
1483 	 * Workaround:
1484 	 * Do not enable the Asymmetric Pause capability bit.
1485 	 */
1486 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1487 
1488 	/* We force setting the Pause capability as the core will force the
1489 	 * Asymmetric Pause capability to 1 otherwise.
1490 	 */
1491 	linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1492 
1493 	return 0;
1494 }
1495 
1496 static int ksz9031_read_status(struct phy_device *phydev)
1497 {
1498 	int err;
1499 	int regval;
1500 
1501 	err = genphy_read_status(phydev);
1502 	if (err)
1503 		return err;
1504 
1505 	/* Make sure the PHY is not broken. Read idle error count,
1506 	 * and reset the PHY if it is maxed out.
1507 	 */
1508 	regval = phy_read(phydev, MII_STAT1000);
1509 	if ((regval & 0xFF) == 0xFF) {
1510 		phy_init_hw(phydev);
1511 		phydev->link = 0;
1512 		if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1513 			phydev->drv->config_intr(phydev);
1514 		return genphy_config_aneg(phydev);
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1521 {
1522 	struct kszphy_priv *priv = phydev->priv;
1523 	int ret;
1524 
1525 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1526 	 * Prior to running the cable diagnostics, Auto-negotiation should
1527 	 * be disabled, full duplex set and the link speed set to 1000Mbps
1528 	 * via the Basic Control Register.
1529 	 */
1530 	ret = phy_modify(phydev, MII_BMCR,
1531 			 BMCR_SPEED1000 | BMCR_FULLDPLX |
1532 			 BMCR_ANENABLE | BMCR_SPEED100,
1533 			 BMCR_SPEED1000 | BMCR_FULLDPLX);
1534 	if (ret)
1535 		return ret;
1536 
1537 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1538 	 * The Master-Slave configuration should be set to Slave by writing
1539 	 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1540 	 * Register.
1541 	 */
1542 	ret = phy_read(phydev, MII_CTRL1000);
1543 	if (ret < 0)
1544 		return ret;
1545 
1546 	/* Cache these bits, they need to be restored once LinkMD finishes. */
1547 	priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1548 	ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1549 	ret |= CTL1000_ENABLE_MASTER;
1550 
1551 	return phy_write(phydev, MII_CTRL1000, ret);
1552 }
1553 
1554 static int ksz9x31_cable_test_result_trans(u16 status)
1555 {
1556 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1557 	case KSZ9x31_LMD_VCT_ST_NORMAL:
1558 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1559 	case KSZ9x31_LMD_VCT_ST_OPEN:
1560 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1561 	case KSZ9x31_LMD_VCT_ST_SHORT:
1562 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1563 	case KSZ9x31_LMD_VCT_ST_FAIL:
1564 		fallthrough;
1565 	default:
1566 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1567 	}
1568 }
1569 
1570 static bool ksz9x31_cable_test_failed(u16 status)
1571 {
1572 	int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1573 
1574 	return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1575 }
1576 
1577 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1578 {
1579 	switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1580 	case KSZ9x31_LMD_VCT_ST_OPEN:
1581 		fallthrough;
1582 	case KSZ9x31_LMD_VCT_ST_SHORT:
1583 		return true;
1584 	}
1585 	return false;
1586 }
1587 
1588 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1589 {
1590 	int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1591 
1592 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1593 	 *
1594 	 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1595 	 */
1596 	if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1597 		dt = clamp(dt - 22, 0, 255);
1598 
1599 	return (dt * 400) / 10;
1600 }
1601 
1602 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1603 {
1604 	int val, ret;
1605 
1606 	ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1607 				    !(val & KSZ9x31_LMD_VCT_EN),
1608 				    30000, 100000, true);
1609 
1610 	return ret < 0 ? ret : 0;
1611 }
1612 
1613 static int ksz9x31_cable_test_get_pair(int pair)
1614 {
1615 	static const int ethtool_pair[] = {
1616 		ETHTOOL_A_CABLE_PAIR_A,
1617 		ETHTOOL_A_CABLE_PAIR_B,
1618 		ETHTOOL_A_CABLE_PAIR_C,
1619 		ETHTOOL_A_CABLE_PAIR_D,
1620 	};
1621 
1622 	return ethtool_pair[pair];
1623 }
1624 
1625 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1626 {
1627 	int ret, val;
1628 
1629 	/* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1630 	 * To test each individual cable pair, set the cable pair in the Cable
1631 	 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1632 	 * Diagnostic Register, along with setting the Cable Diagnostics Test
1633 	 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1634 	 * will self clear when the test is concluded.
1635 	 */
1636 	ret = phy_write(phydev, KSZ9x31_LMD,
1637 			KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1638 	if (ret)
1639 		return ret;
1640 
1641 	ret = ksz9x31_cable_test_wait_for_completion(phydev);
1642 	if (ret)
1643 		return ret;
1644 
1645 	val = phy_read(phydev, KSZ9x31_LMD);
1646 	if (val < 0)
1647 		return val;
1648 
1649 	if (ksz9x31_cable_test_failed(val))
1650 		return -EAGAIN;
1651 
1652 	ret = ethnl_cable_test_result(phydev,
1653 				      ksz9x31_cable_test_get_pair(pair),
1654 				      ksz9x31_cable_test_result_trans(val));
1655 	if (ret)
1656 		return ret;
1657 
1658 	if (!ksz9x31_cable_test_fault_length_valid(val))
1659 		return 0;
1660 
1661 	return ethnl_cable_test_fault_length(phydev,
1662 					     ksz9x31_cable_test_get_pair(pair),
1663 					     ksz9x31_cable_test_fault_length(phydev, val));
1664 }
1665 
1666 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1667 					 bool *finished)
1668 {
1669 	struct kszphy_priv *priv = phydev->priv;
1670 	unsigned long pair_mask = 0xf;
1671 	int retries = 20;
1672 	int pair, ret, rv;
1673 
1674 	*finished = false;
1675 
1676 	/* Try harder if link partner is active */
1677 	while (pair_mask && retries--) {
1678 		for_each_set_bit(pair, &pair_mask, 4) {
1679 			ret = ksz9x31_cable_test_one_pair(phydev, pair);
1680 			if (ret == -EAGAIN)
1681 				continue;
1682 			if (ret < 0)
1683 				return ret;
1684 			clear_bit(pair, &pair_mask);
1685 		}
1686 		/* If link partner is in autonegotiation mode it will send 2ms
1687 		 * of FLPs with at least 6ms of silence.
1688 		 * Add 2ms sleep to have better chances to hit this silence.
1689 		 */
1690 		if (pair_mask)
1691 			usleep_range(2000, 3000);
1692 	}
1693 
1694 	/* Report remaining unfinished pair result as unknown. */
1695 	for_each_set_bit(pair, &pair_mask, 4) {
1696 		ret = ethnl_cable_test_result(phydev,
1697 					      ksz9x31_cable_test_get_pair(pair),
1698 					      ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1699 	}
1700 
1701 	*finished = true;
1702 
1703 	/* Restore cached bits from before LinkMD got started. */
1704 	rv = phy_modify(phydev, MII_CTRL1000,
1705 			CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1706 			priv->vct_ctrl1000);
1707 	if (rv)
1708 		return rv;
1709 
1710 	return ret;
1711 }
1712 
1713 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1714 {
1715 	return 0;
1716 }
1717 
1718 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1719 {
1720 	u16 val;
1721 
1722 	switch (ctrl) {
1723 	case ETH_TP_MDI:
1724 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1725 		break;
1726 	case ETH_TP_MDI_X:
1727 		/* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1728 		 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1729 		 * sheet seems to be missing:
1730 		 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1731 		 * 0 = Normal operation (transmit on TX+/TX- pins)
1732 		 */
1733 		val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1734 		break;
1735 	case ETH_TP_MDI_AUTO:
1736 		val = 0;
1737 		break;
1738 	default:
1739 		return 0;
1740 	}
1741 
1742 	return phy_modify(phydev, MII_BMCR,
1743 			  KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1744 			  KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1745 			  KSZ886X_BMCR_HP_MDIX | val);
1746 }
1747 
1748 static int ksz886x_config_aneg(struct phy_device *phydev)
1749 {
1750 	int ret;
1751 
1752 	ret = genphy_config_aneg(phydev);
1753 	if (ret)
1754 		return ret;
1755 
1756 	if (phydev->autoneg != AUTONEG_ENABLE) {
1757 		/* When autonegotation is disabled, we need to manually force
1758 		 * the link state. If we don't do this, the PHY will keep
1759 		 * sending Fast Link Pulses (FLPs) which are part of the
1760 		 * autonegotiation process. This is not desired when
1761 		 * autonegotiation is off.
1762 		 */
1763 		ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1764 				   KSZ886X_CTRL_FORCE_LINK);
1765 		if (ret)
1766 			return ret;
1767 	} else {
1768 		/* If we had previously forced the link state, we need to
1769 		 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1770 		 * will not perform autonegotiation.
1771 		 */
1772 		ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1773 				     KSZ886X_CTRL_FORCE_LINK);
1774 		if (ret)
1775 			return ret;
1776 	}
1777 
1778 	/* The MDI-X configuration is automatically changed by the PHY after
1779 	 * switching from autoneg off to on. So, take MDI-X configuration under
1780 	 * own control and set it after autoneg configuration was done.
1781 	 */
1782 	return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1783 }
1784 
1785 static int ksz886x_mdix_update(struct phy_device *phydev)
1786 {
1787 	int ret;
1788 
1789 	ret = phy_read(phydev, MII_BMCR);
1790 	if (ret < 0)
1791 		return ret;
1792 
1793 	if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1794 		if (ret & KSZ886X_BMCR_FORCE_MDI)
1795 			phydev->mdix_ctrl = ETH_TP_MDI_X;
1796 		else
1797 			phydev->mdix_ctrl = ETH_TP_MDI;
1798 	} else {
1799 		phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1800 	}
1801 
1802 	ret = phy_read(phydev, MII_KSZPHY_CTRL);
1803 	if (ret < 0)
1804 		return ret;
1805 
1806 	/* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1807 	if (ret & KSZ886X_CTRL_MDIX_STAT)
1808 		phydev->mdix = ETH_TP_MDI_X;
1809 	else
1810 		phydev->mdix = ETH_TP_MDI;
1811 
1812 	return 0;
1813 }
1814 
1815 static int ksz886x_read_status(struct phy_device *phydev)
1816 {
1817 	int ret;
1818 
1819 	ret = ksz886x_mdix_update(phydev);
1820 	if (ret < 0)
1821 		return ret;
1822 
1823 	return genphy_read_status(phydev);
1824 }
1825 
1826 struct ksz9477_errata_write {
1827 	u8 dev_addr;
1828 	u8 reg_addr;
1829 	u16 val;
1830 };
1831 
1832 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1833 	 /* Register settings are needed to improve PHY receive performance */
1834 	{0x01, 0x6f, 0xdd0b},
1835 	{0x01, 0x8f, 0x6032},
1836 	{0x01, 0x9d, 0x248c},
1837 	{0x01, 0x75, 0x0060},
1838 	{0x01, 0xd3, 0x7777},
1839 	{0x1c, 0x06, 0x3008},
1840 	{0x1c, 0x08, 0x2000},
1841 
1842 	/* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1843 	{0x1c, 0x04, 0x00d0},
1844 
1845 	/* Register settings are required to meet data sheet supply current specifications */
1846 	{0x1c, 0x13, 0x6eff},
1847 	{0x1c, 0x14, 0xe6ff},
1848 	{0x1c, 0x15, 0x6eff},
1849 	{0x1c, 0x16, 0xe6ff},
1850 	{0x1c, 0x17, 0x00ff},
1851 	{0x1c, 0x18, 0x43ff},
1852 	{0x1c, 0x19, 0xc3ff},
1853 	{0x1c, 0x1a, 0x6fff},
1854 	{0x1c, 0x1b, 0x07ff},
1855 	{0x1c, 0x1c, 0x0fff},
1856 	{0x1c, 0x1d, 0xe7ff},
1857 	{0x1c, 0x1e, 0xefff},
1858 	{0x1c, 0x20, 0xeeee},
1859 };
1860 
1861 static int ksz9477_config_init(struct phy_device *phydev)
1862 {
1863 	int err;
1864 	int i;
1865 
1866 	/* Apply PHY settings to address errata listed in
1867 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1868 	 * Silicon Errata and Data Sheet Clarification documents.
1869 	 *
1870 	 * Document notes: Before configuring the PHY MMD registers, it is
1871 	 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1872 	 * disabled by writing to register 0xN100-0xN101. After writing the
1873 	 * MMD registers, and after all errata workarounds that involve PHY
1874 	 * register settings, write register 0xN100-0xN101 again to enable
1875 	 * and restart auto-negotiation.
1876 	 */
1877 	err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1878 	if (err)
1879 		return err;
1880 
1881 	for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1882 		const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1883 
1884 		err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1885 		if (err)
1886 			return err;
1887 	}
1888 
1889 	/* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
1890 	 * in this switch shall be regarded as broken.
1891 	 */
1892 	if (phydev->dev_flags & MICREL_NO_EEE)
1893 		phydev->eee_broken_modes = -1;
1894 
1895 	err = genphy_restart_aneg(phydev);
1896 	if (err)
1897 		return err;
1898 
1899 	return kszphy_config_init(phydev);
1900 }
1901 
1902 static int kszphy_get_sset_count(struct phy_device *phydev)
1903 {
1904 	return ARRAY_SIZE(kszphy_hw_stats);
1905 }
1906 
1907 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
1908 {
1909 	int i;
1910 
1911 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
1912 		strscpy(data + i * ETH_GSTRING_LEN,
1913 			kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
1914 	}
1915 }
1916 
1917 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
1918 {
1919 	struct kszphy_hw_stat stat = kszphy_hw_stats[i];
1920 	struct kszphy_priv *priv = phydev->priv;
1921 	int val;
1922 	u64 ret;
1923 
1924 	val = phy_read(phydev, stat.reg);
1925 	if (val < 0) {
1926 		ret = U64_MAX;
1927 	} else {
1928 		val = val & ((1 << stat.bits) - 1);
1929 		priv->stats[i] += val;
1930 		ret = priv->stats[i];
1931 	}
1932 
1933 	return ret;
1934 }
1935 
1936 static void kszphy_get_stats(struct phy_device *phydev,
1937 			     struct ethtool_stats *stats, u64 *data)
1938 {
1939 	int i;
1940 
1941 	for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
1942 		data[i] = kszphy_get_stat(phydev, i);
1943 }
1944 
1945 static int kszphy_suspend(struct phy_device *phydev)
1946 {
1947 	/* Disable PHY Interrupts */
1948 	if (phy_interrupt_is_valid(phydev)) {
1949 		phydev->interrupts = PHY_INTERRUPT_DISABLED;
1950 		if (phydev->drv->config_intr)
1951 			phydev->drv->config_intr(phydev);
1952 	}
1953 
1954 	return genphy_suspend(phydev);
1955 }
1956 
1957 static void kszphy_parse_led_mode(struct phy_device *phydev)
1958 {
1959 	const struct kszphy_type *type = phydev->drv->driver_data;
1960 	const struct device_node *np = phydev->mdio.dev.of_node;
1961 	struct kszphy_priv *priv = phydev->priv;
1962 	int ret;
1963 
1964 	if (type && type->led_mode_reg) {
1965 		ret = of_property_read_u32(np, "micrel,led-mode",
1966 					   &priv->led_mode);
1967 
1968 		if (ret)
1969 			priv->led_mode = -1;
1970 
1971 		if (priv->led_mode > 3) {
1972 			phydev_err(phydev, "invalid led mode: 0x%02x\n",
1973 				   priv->led_mode);
1974 			priv->led_mode = -1;
1975 		}
1976 	} else {
1977 		priv->led_mode = -1;
1978 	}
1979 }
1980 
1981 static int kszphy_resume(struct phy_device *phydev)
1982 {
1983 	int ret;
1984 
1985 	genphy_resume(phydev);
1986 
1987 	/* After switching from power-down to normal mode, an internal global
1988 	 * reset is automatically generated. Wait a minimum of 1 ms before
1989 	 * read/write access to the PHY registers.
1990 	 */
1991 	usleep_range(1000, 2000);
1992 
1993 	ret = kszphy_config_reset(phydev);
1994 	if (ret)
1995 		return ret;
1996 
1997 	/* Enable PHY Interrupts */
1998 	if (phy_interrupt_is_valid(phydev)) {
1999 		phydev->interrupts = PHY_INTERRUPT_ENABLED;
2000 		if (phydev->drv->config_intr)
2001 			phydev->drv->config_intr(phydev);
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 static int kszphy_probe(struct phy_device *phydev)
2008 {
2009 	const struct kszphy_type *type = phydev->drv->driver_data;
2010 	const struct device_node *np = phydev->mdio.dev.of_node;
2011 	struct kszphy_priv *priv;
2012 	struct clk *clk;
2013 
2014 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2015 	if (!priv)
2016 		return -ENOMEM;
2017 
2018 	phydev->priv = priv;
2019 
2020 	priv->type = type;
2021 
2022 	kszphy_parse_led_mode(phydev);
2023 
2024 	clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2025 	/* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2026 	if (!IS_ERR_OR_NULL(clk)) {
2027 		unsigned long rate = clk_get_rate(clk);
2028 		bool rmii_ref_clk_sel_25_mhz;
2029 
2030 		if (type)
2031 			priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2032 		rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2033 				"micrel,rmii-reference-clock-select-25-mhz");
2034 
2035 		if (rate > 24500000 && rate < 25500000) {
2036 			priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2037 		} else if (rate > 49500000 && rate < 50500000) {
2038 			priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2039 		} else {
2040 			phydev_err(phydev, "Clock rate out of range: %ld\n",
2041 				   rate);
2042 			return -EINVAL;
2043 		}
2044 	} else if (!clk) {
2045 		/* unnamed clock from the generic ethernet-phy binding */
2046 		clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2047 		if (IS_ERR(clk))
2048 			return PTR_ERR(clk);
2049 	}
2050 
2051 	if (ksz8041_fiber_mode(phydev))
2052 		phydev->port = PORT_FIBRE;
2053 
2054 	/* Support legacy board-file configuration */
2055 	if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2056 		priv->rmii_ref_clk_sel = true;
2057 		priv->rmii_ref_clk_sel_val = true;
2058 	}
2059 
2060 	return 0;
2061 }
2062 
2063 static int lan8814_cable_test_start(struct phy_device *phydev)
2064 {
2065 	/* If autoneg is enabled, we won't be able to test cross pair
2066 	 * short. In this case, the PHY will "detect" a link and
2067 	 * confuse the internal state machine - disable auto neg here.
2068 	 * Set the speed to 1000mbit and full duplex.
2069 	 */
2070 	return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2071 			  BMCR_SPEED1000 | BMCR_FULLDPLX);
2072 }
2073 
2074 static int ksz886x_cable_test_start(struct phy_device *phydev)
2075 {
2076 	if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2077 		return -EOPNOTSUPP;
2078 
2079 	/* If autoneg is enabled, we won't be able to test cross pair
2080 	 * short. In this case, the PHY will "detect" a link and
2081 	 * confuse the internal state machine - disable auto neg here.
2082 	 * If autoneg is disabled, we should set the speed to 10mbit.
2083 	 */
2084 	return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2085 }
2086 
2087 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2088 {
2089 	switch (FIELD_GET(mask, status)) {
2090 	case KSZ8081_LMD_STAT_NORMAL:
2091 		return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2092 	case KSZ8081_LMD_STAT_SHORT:
2093 		return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2094 	case KSZ8081_LMD_STAT_OPEN:
2095 		return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2096 	case KSZ8081_LMD_STAT_FAIL:
2097 		fallthrough;
2098 	default:
2099 		return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2100 	}
2101 }
2102 
2103 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2104 {
2105 	return FIELD_GET(mask, status) ==
2106 		KSZ8081_LMD_STAT_FAIL;
2107 }
2108 
2109 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2110 {
2111 	switch (FIELD_GET(mask, status)) {
2112 	case KSZ8081_LMD_STAT_OPEN:
2113 		fallthrough;
2114 	case KSZ8081_LMD_STAT_SHORT:
2115 		return true;
2116 	}
2117 	return false;
2118 }
2119 
2120 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2121 							   u16 status, u16 data_mask)
2122 {
2123 	int dt;
2124 
2125 	/* According to the data sheet the distance to the fault is
2126 	 * DELTA_TIME * 0.4 meters for ksz phys.
2127 	 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2128 	 */
2129 	dt = FIELD_GET(data_mask, status);
2130 
2131 	if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2132 		return ((dt - 22) * 800) / 10;
2133 	else
2134 		return (dt * 400) / 10;
2135 }
2136 
2137 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2138 {
2139 	const struct kszphy_type *type = phydev->drv->driver_data;
2140 	int val, ret;
2141 
2142 	ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2143 				    !(val & KSZ8081_LMD_ENABLE_TEST),
2144 				    30000, 100000, true);
2145 
2146 	return ret < 0 ? ret : 0;
2147 }
2148 
2149 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2150 {
2151 	static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2152 					    ETHTOOL_A_CABLE_PAIR_B,
2153 					    ETHTOOL_A_CABLE_PAIR_C,
2154 					    ETHTOOL_A_CABLE_PAIR_D,
2155 					  };
2156 	u32 fault_length;
2157 	int ret;
2158 	int val;
2159 
2160 	val = KSZ8081_LMD_ENABLE_TEST;
2161 	val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2162 
2163 	ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2164 	if (ret < 0)
2165 		return ret;
2166 
2167 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2168 	if (ret)
2169 		return ret;
2170 
2171 	val = phy_read(phydev, LAN8814_CABLE_DIAG);
2172 	if (val < 0)
2173 		return val;
2174 
2175 	if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2176 		return -EAGAIN;
2177 
2178 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2179 				      ksz886x_cable_test_result_trans(val,
2180 								      LAN8814_CABLE_DIAG_STAT_MASK
2181 								      ));
2182 	if (ret)
2183 		return ret;
2184 
2185 	if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2186 		return 0;
2187 
2188 	fault_length = ksz886x_cable_test_fault_length(phydev, val,
2189 						       LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2190 
2191 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2192 }
2193 
2194 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2195 {
2196 	static const int ethtool_pair[] = {
2197 		ETHTOOL_A_CABLE_PAIR_A,
2198 		ETHTOOL_A_CABLE_PAIR_B,
2199 	};
2200 	int ret, val, mdix;
2201 	u32 fault_length;
2202 
2203 	/* There is no way to choice the pair, like we do one ksz9031.
2204 	 * We can workaround this limitation by using the MDI-X functionality.
2205 	 */
2206 	if (pair == 0)
2207 		mdix = ETH_TP_MDI;
2208 	else
2209 		mdix = ETH_TP_MDI_X;
2210 
2211 	switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2212 	case PHY_ID_KSZ8081:
2213 		ret = ksz8081_config_mdix(phydev, mdix);
2214 		break;
2215 	case PHY_ID_KSZ886X:
2216 		ret = ksz886x_config_mdix(phydev, mdix);
2217 		break;
2218 	default:
2219 		ret = -ENODEV;
2220 	}
2221 
2222 	if (ret)
2223 		return ret;
2224 
2225 	/* Now we are ready to fire. This command will send a 100ns pulse
2226 	 * to the pair.
2227 	 */
2228 	ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2229 	if (ret)
2230 		return ret;
2231 
2232 	ret = ksz886x_cable_test_wait_for_completion(phydev);
2233 	if (ret)
2234 		return ret;
2235 
2236 	val = phy_read(phydev, KSZ8081_LMD);
2237 	if (val < 0)
2238 		return val;
2239 
2240 	if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2241 		return -EAGAIN;
2242 
2243 	ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2244 				      ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2245 	if (ret)
2246 		return ret;
2247 
2248 	if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2249 		return 0;
2250 
2251 	fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2252 
2253 	return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2254 }
2255 
2256 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2257 					 bool *finished)
2258 {
2259 	const struct kszphy_type *type = phydev->drv->driver_data;
2260 	unsigned long pair_mask = type->pair_mask;
2261 	int retries = 20;
2262 	int ret = 0;
2263 	int pair;
2264 
2265 	*finished = false;
2266 
2267 	/* Try harder if link partner is active */
2268 	while (pair_mask && retries--) {
2269 		for_each_set_bit(pair, &pair_mask, 4) {
2270 			if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2271 				ret = lan8814_cable_test_one_pair(phydev, pair);
2272 			else
2273 				ret = ksz886x_cable_test_one_pair(phydev, pair);
2274 			if (ret == -EAGAIN)
2275 				continue;
2276 			if (ret < 0)
2277 				return ret;
2278 			clear_bit(pair, &pair_mask);
2279 		}
2280 		/* If link partner is in autonegotiation mode it will send 2ms
2281 		 * of FLPs with at least 6ms of silence.
2282 		 * Add 2ms sleep to have better chances to hit this silence.
2283 		 */
2284 		if (pair_mask)
2285 			msleep(2);
2286 	}
2287 
2288 	*finished = true;
2289 
2290 	return ret;
2291 }
2292 
2293 #define LAN_EXT_PAGE_ACCESS_CONTROL			0x16
2294 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA		0x17
2295 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC		0x4000
2296 
2297 #define LAN8814_QSGMII_SOFT_RESET			0x43
2298 #define LAN8814_QSGMII_SOFT_RESET_BIT			BIT(0)
2299 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG		0x13
2300 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA	BIT(3)
2301 #define LAN8814_ALIGN_SWAP				0x4a
2302 #define LAN8814_ALIGN_TX_A_B_SWAP			0x1
2303 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2304 
2305 #define LAN8804_ALIGN_SWAP				0x4a
2306 #define LAN8804_ALIGN_TX_A_B_SWAP			0x1
2307 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK			GENMASK(2, 0)
2308 #define LAN8814_CLOCK_MANAGEMENT			0xd
2309 #define LAN8814_LINK_QUALITY				0x8e
2310 
2311 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2312 {
2313 	int data;
2314 
2315 	phy_lock_mdio_bus(phydev);
2316 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2317 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2318 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2319 		    (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2320 	data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2321 	phy_unlock_mdio_bus(phydev);
2322 
2323 	return data;
2324 }
2325 
2326 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2327 				 u16 val)
2328 {
2329 	phy_lock_mdio_bus(phydev);
2330 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2331 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2332 	__phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2333 		    page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2334 
2335 	val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2336 	if (val != 0)
2337 		phydev_err(phydev, "Error: phy_write has returned error %d\n",
2338 			   val);
2339 	phy_unlock_mdio_bus(phydev);
2340 	return val;
2341 }
2342 
2343 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2344 {
2345 	u16 val = 0;
2346 
2347 	if (enable)
2348 		val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2349 		      PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2350 		      PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2351 		      PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2352 
2353 	return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2354 }
2355 
2356 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2357 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2358 {
2359 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2360 	*seconds = (*seconds << 16) |
2361 		   lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2362 
2363 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2364 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2365 			lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2366 
2367 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2368 }
2369 
2370 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2371 				  u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2372 {
2373 	*seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2374 	*seconds = *seconds << 16 |
2375 		   lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2376 
2377 	*nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2378 	*nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2379 			lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2380 
2381 	*seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2382 }
2383 
2384 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info)
2385 {
2386 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2387 	struct phy_device *phydev = ptp_priv->phydev;
2388 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2389 
2390 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2391 				SOF_TIMESTAMPING_RX_HARDWARE |
2392 				SOF_TIMESTAMPING_RAW_HARDWARE;
2393 
2394 	info->phc_index = ptp_clock_index(shared->ptp_clock);
2395 
2396 	info->tx_types =
2397 		(1 << HWTSTAMP_TX_OFF) |
2398 		(1 << HWTSTAMP_TX_ON) |
2399 		(1 << HWTSTAMP_TX_ONESTEP_SYNC);
2400 
2401 	info->rx_filters =
2402 		(1 << HWTSTAMP_FILTER_NONE) |
2403 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2404 		(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2405 		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2406 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2407 
2408 	return 0;
2409 }
2410 
2411 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2412 {
2413 	int i;
2414 
2415 	for (i = 0; i < FIFO_SIZE; ++i)
2416 		lanphy_read_page_reg(phydev, 5,
2417 				     egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2418 
2419 	/* Read to clear overflow status bit */
2420 	lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2421 }
2422 
2423 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2424 			    struct kernel_hwtstamp_config *config,
2425 			    struct netlink_ext_ack *extack)
2426 {
2427 	struct kszphy_ptp_priv *ptp_priv =
2428 			  container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2429 	struct phy_device *phydev = ptp_priv->phydev;
2430 	struct lan8814_shared_priv *shared = phydev->shared->priv;
2431 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2432 	int txcfg = 0, rxcfg = 0;
2433 	int pkt_ts_enable;
2434 	int tx_mod;
2435 
2436 	ptp_priv->hwts_tx_type = config->tx_type;
2437 	ptp_priv->rx_filter = config->rx_filter;
2438 
2439 	switch (config->rx_filter) {
2440 	case HWTSTAMP_FILTER_NONE:
2441 		ptp_priv->layer = 0;
2442 		ptp_priv->version = 0;
2443 		break;
2444 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2445 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2446 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2447 		ptp_priv->layer = PTP_CLASS_L4;
2448 		ptp_priv->version = PTP_CLASS_V2;
2449 		break;
2450 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2451 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2452 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2453 		ptp_priv->layer = PTP_CLASS_L2;
2454 		ptp_priv->version = PTP_CLASS_V2;
2455 		break;
2456 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2457 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2458 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2459 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2460 		ptp_priv->version = PTP_CLASS_V2;
2461 		break;
2462 	default:
2463 		return -ERANGE;
2464 	}
2465 
2466 	if (ptp_priv->layer & PTP_CLASS_L2) {
2467 		rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2468 		txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2469 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
2470 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2471 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2472 	}
2473 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2474 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2475 
2476 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2477 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2478 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2479 	lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2480 
2481 	tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
2482 	if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
2483 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2484 				      tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2485 	} else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
2486 		lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2487 				      tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2488 	}
2489 
2490 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2491 		lan8814_config_ts_intr(ptp_priv->phydev, true);
2492 	else
2493 		lan8814_config_ts_intr(ptp_priv->phydev, false);
2494 
2495 	mutex_lock(&shared->shared_lock);
2496 	if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2497 		shared->ref++;
2498 	else
2499 		shared->ref--;
2500 
2501 	if (shared->ref)
2502 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2503 				      PTP_CMD_CTL_PTP_ENABLE_);
2504 	else
2505 		lanphy_write_page_reg(ptp_priv->phydev, 4, PTP_CMD_CTL,
2506 				      PTP_CMD_CTL_PTP_DISABLE_);
2507 	mutex_unlock(&shared->shared_lock);
2508 
2509 	/* In case of multiple starts and stops, these needs to be cleared */
2510 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2511 		list_del(&rx_ts->list);
2512 		kfree(rx_ts);
2513 	}
2514 	skb_queue_purge(&ptp_priv->rx_queue);
2515 	skb_queue_purge(&ptp_priv->tx_queue);
2516 
2517 	lan8814_flush_fifo(ptp_priv->phydev, false);
2518 	lan8814_flush_fifo(ptp_priv->phydev, true);
2519 
2520 	return 0;
2521 }
2522 
2523 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2524 			     struct sk_buff *skb, int type)
2525 {
2526 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2527 
2528 	switch (ptp_priv->hwts_tx_type) {
2529 	case HWTSTAMP_TX_ONESTEP_SYNC:
2530 		if (ptp_msg_is_sync(skb, type)) {
2531 			kfree_skb(skb);
2532 			return;
2533 		}
2534 		fallthrough;
2535 	case HWTSTAMP_TX_ON:
2536 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2537 		skb_queue_tail(&ptp_priv->tx_queue, skb);
2538 		break;
2539 	case HWTSTAMP_TX_OFF:
2540 	default:
2541 		kfree_skb(skb);
2542 		break;
2543 	}
2544 }
2545 
2546 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2547 {
2548 	struct ptp_header *ptp_header;
2549 	u32 type;
2550 
2551 	skb_push(skb, ETH_HLEN);
2552 	type = ptp_classify_raw(skb);
2553 	ptp_header = ptp_parse_header(skb, type);
2554 	skb_pull_inline(skb, ETH_HLEN);
2555 
2556 	if (!ptp_header)
2557 		return false;
2558 
2559 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2560 	return true;
2561 }
2562 
2563 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2564 				 struct sk_buff *skb)
2565 {
2566 	struct skb_shared_hwtstamps *shhwtstamps;
2567 	struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2568 	unsigned long flags;
2569 	bool ret = false;
2570 	u16 skb_sig;
2571 
2572 	if (!lan8814_get_sig_rx(skb, &skb_sig))
2573 		return ret;
2574 
2575 	/* Iterate over all RX timestamps and match it with the received skbs */
2576 	spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2577 	list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2578 		/* Check if we found the signature we were looking for. */
2579 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2580 			continue;
2581 
2582 		shhwtstamps = skb_hwtstamps(skb);
2583 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2584 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2585 						  rx_ts->nsec);
2586 		list_del(&rx_ts->list);
2587 		kfree(rx_ts);
2588 
2589 		ret = true;
2590 		break;
2591 	}
2592 	spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2593 
2594 	if (ret)
2595 		netif_rx(skb);
2596 	return ret;
2597 }
2598 
2599 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2600 {
2601 	struct kszphy_ptp_priv *ptp_priv =
2602 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2603 
2604 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2605 	    type == PTP_CLASS_NONE)
2606 		return false;
2607 
2608 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2609 		return false;
2610 
2611 	/* If we failed to match then add it to the queue for when the timestamp
2612 	 * will come
2613 	 */
2614 	if (!lan8814_match_rx_skb(ptp_priv, skb))
2615 		skb_queue_tail(&ptp_priv->rx_queue, skb);
2616 
2617 	return true;
2618 }
2619 
2620 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2621 				  time64_t sec, u32 nsec)
2622 {
2623 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
2624 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
2625 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
2626 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
2627 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
2628 
2629 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2630 }
2631 
2632 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2633 				  time64_t *sec, u32 *nsec)
2634 {
2635 	lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2636 
2637 	*sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
2638 	*sec <<= 16;
2639 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2640 	*sec <<= 16;
2641 	*sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2642 
2643 	*nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2644 	*nsec <<= 16;
2645 	*nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2646 }
2647 
2648 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2649 				   struct timespec64 *ts)
2650 {
2651 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2652 							  ptp_clock_info);
2653 	struct phy_device *phydev = shared->phydev;
2654 	u32 nano_seconds;
2655 	time64_t seconds;
2656 
2657 	mutex_lock(&shared->shared_lock);
2658 	lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2659 	mutex_unlock(&shared->shared_lock);
2660 	ts->tv_sec = seconds;
2661 	ts->tv_nsec = nano_seconds;
2662 
2663 	return 0;
2664 }
2665 
2666 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2667 				   const struct timespec64 *ts)
2668 {
2669 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2670 							  ptp_clock_info);
2671 	struct phy_device *phydev = shared->phydev;
2672 
2673 	mutex_lock(&shared->shared_lock);
2674 	lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2675 	mutex_unlock(&shared->shared_lock);
2676 
2677 	return 0;
2678 }
2679 
2680 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2681 				   s64 time_step_ns)
2682 {
2683 	u32 nano_seconds_step;
2684 	u64 abs_time_step_ns;
2685 	time64_t set_seconds;
2686 	u32 nano_seconds;
2687 	u32 remainder;
2688 	s32 seconds;
2689 
2690 	if (time_step_ns >  15000000000LL) {
2691 		/* convert to clock set */
2692 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2693 		set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2694 					   &remainder);
2695 		nano_seconds += remainder;
2696 		if (nano_seconds >= 1000000000) {
2697 			set_seconds++;
2698 			nano_seconds -= 1000000000;
2699 		}
2700 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2701 		return;
2702 	} else if (time_step_ns < -15000000000LL) {
2703 		/* convert to clock set */
2704 		time_step_ns = -time_step_ns;
2705 
2706 		lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2707 		set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2708 					   &remainder);
2709 		nano_seconds_step = remainder;
2710 		if (nano_seconds < nano_seconds_step) {
2711 			set_seconds--;
2712 			nano_seconds += 1000000000;
2713 		}
2714 		nano_seconds -= nano_seconds_step;
2715 		lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2716 		return;
2717 	}
2718 
2719 	/* do clock step */
2720 	if (time_step_ns >= 0) {
2721 		abs_time_step_ns = (u64)time_step_ns;
2722 		seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2723 					   &remainder);
2724 		nano_seconds = remainder;
2725 	} else {
2726 		abs_time_step_ns = (u64)(-time_step_ns);
2727 		seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2728 			    &remainder));
2729 		nano_seconds = remainder;
2730 		if (nano_seconds > 0) {
2731 			/* subtracting nano seconds is not allowed
2732 			 * convert to subtracting from seconds,
2733 			 * and adding to nanoseconds
2734 			 */
2735 			seconds--;
2736 			nano_seconds = (1000000000 - nano_seconds);
2737 		}
2738 	}
2739 
2740 	if (nano_seconds > 0) {
2741 		/* add 8 ns to cover the likely normal increment */
2742 		nano_seconds += 8;
2743 	}
2744 
2745 	if (nano_seconds >= 1000000000) {
2746 		/* carry into seconds */
2747 		seconds++;
2748 		nano_seconds -= 1000000000;
2749 	}
2750 
2751 	while (seconds) {
2752 		if (seconds > 0) {
2753 			u32 adjustment_value = (u32)seconds;
2754 			u16 adjustment_value_lo, adjustment_value_hi;
2755 
2756 			if (adjustment_value > 0xF)
2757 				adjustment_value = 0xF;
2758 
2759 			adjustment_value_lo = adjustment_value & 0xffff;
2760 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2761 
2762 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2763 					      adjustment_value_lo);
2764 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2765 					      PTP_LTC_STEP_ADJ_DIR_ |
2766 					      adjustment_value_hi);
2767 			seconds -= ((s32)adjustment_value);
2768 		} else {
2769 			u32 adjustment_value = (u32)(-seconds);
2770 			u16 adjustment_value_lo, adjustment_value_hi;
2771 
2772 			if (adjustment_value > 0xF)
2773 				adjustment_value = 0xF;
2774 
2775 			adjustment_value_lo = adjustment_value & 0xffff;
2776 			adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2777 
2778 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2779 					      adjustment_value_lo);
2780 			lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2781 					      adjustment_value_hi);
2782 			seconds += ((s32)adjustment_value);
2783 		}
2784 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2785 				      PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2786 	}
2787 	if (nano_seconds) {
2788 		u16 nano_seconds_lo;
2789 		u16 nano_seconds_hi;
2790 
2791 		nano_seconds_lo = nano_seconds & 0xffff;
2792 		nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2793 
2794 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2795 				      nano_seconds_lo);
2796 		lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2797 				      PTP_LTC_STEP_ADJ_DIR_ |
2798 				      nano_seconds_hi);
2799 		lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2800 				      PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2801 	}
2802 }
2803 
2804 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2805 {
2806 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2807 							  ptp_clock_info);
2808 	struct phy_device *phydev = shared->phydev;
2809 
2810 	mutex_lock(&shared->shared_lock);
2811 	lan8814_ptp_clock_step(phydev, delta);
2812 	mutex_unlock(&shared->shared_lock);
2813 
2814 	return 0;
2815 }
2816 
2817 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
2818 {
2819 	struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2820 							  ptp_clock_info);
2821 	struct phy_device *phydev = shared->phydev;
2822 	u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
2823 	bool positive = true;
2824 	u32 kszphy_rate_adj;
2825 
2826 	if (scaled_ppm < 0) {
2827 		scaled_ppm = -scaled_ppm;
2828 		positive = false;
2829 	}
2830 
2831 	kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
2832 	kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
2833 
2834 	kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
2835 	kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
2836 
2837 	if (positive)
2838 		kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
2839 
2840 	mutex_lock(&shared->shared_lock);
2841 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
2842 	lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
2843 	mutex_unlock(&shared->shared_lock);
2844 
2845 	return 0;
2846 }
2847 
2848 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
2849 {
2850 	struct ptp_header *ptp_header;
2851 	u32 type;
2852 
2853 	type = ptp_classify_raw(skb);
2854 	ptp_header = ptp_parse_header(skb, type);
2855 
2856 	if (!ptp_header)
2857 		return false;
2858 
2859 	*sig = (__force u16)(ntohs(ptp_header->sequence_id));
2860 	return true;
2861 }
2862 
2863 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
2864 				 u32 seconds, u32 nsec, u16 seq_id)
2865 {
2866 	struct skb_shared_hwtstamps shhwtstamps;
2867 	struct sk_buff *skb, *skb_tmp;
2868 	unsigned long flags;
2869 	bool ret = false;
2870 	u16 skb_sig;
2871 
2872 	spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
2873 	skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
2874 		if (!lan8814_get_sig_tx(skb, &skb_sig))
2875 			continue;
2876 
2877 		if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
2878 			continue;
2879 
2880 		__skb_unlink(skb, &ptp_priv->tx_queue);
2881 		ret = true;
2882 		break;
2883 	}
2884 	spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
2885 
2886 	if (ret) {
2887 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2888 		shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
2889 		skb_complete_tx_timestamp(skb, &shhwtstamps);
2890 	}
2891 }
2892 
2893 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
2894 {
2895 	struct phy_device *phydev = ptp_priv->phydev;
2896 	u32 seconds, nsec;
2897 	u16 seq_id;
2898 
2899 	lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
2900 	lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
2901 }
2902 
2903 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
2904 {
2905 	struct phy_device *phydev = ptp_priv->phydev;
2906 	u32 reg;
2907 
2908 	do {
2909 		lan8814_dequeue_tx_skb(ptp_priv);
2910 
2911 		/* If other timestamps are available in the FIFO,
2912 		 * process them.
2913 		 */
2914 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2915 	} while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
2916 }
2917 
2918 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
2919 			      struct lan8814_ptp_rx_ts *rx_ts)
2920 {
2921 	struct skb_shared_hwtstamps *shhwtstamps;
2922 	struct sk_buff *skb, *skb_tmp;
2923 	unsigned long flags;
2924 	bool ret = false;
2925 	u16 skb_sig;
2926 
2927 	spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
2928 	skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
2929 		if (!lan8814_get_sig_rx(skb, &skb_sig))
2930 			continue;
2931 
2932 		if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2933 			continue;
2934 
2935 		__skb_unlink(skb, &ptp_priv->rx_queue);
2936 
2937 		ret = true;
2938 		break;
2939 	}
2940 	spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
2941 
2942 	if (ret) {
2943 		shhwtstamps = skb_hwtstamps(skb);
2944 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2945 		shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
2946 		netif_rx(skb);
2947 	}
2948 
2949 	return ret;
2950 }
2951 
2952 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
2953 				struct lan8814_ptp_rx_ts *rx_ts)
2954 {
2955 	unsigned long flags;
2956 
2957 	/* If we failed to match the skb add it to the queue for when
2958 	 * the frame will come
2959 	 */
2960 	if (!lan8814_match_skb(ptp_priv, rx_ts)) {
2961 		spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2962 		list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
2963 		spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2964 	} else {
2965 		kfree(rx_ts);
2966 	}
2967 }
2968 
2969 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
2970 {
2971 	struct phy_device *phydev = ptp_priv->phydev;
2972 	struct lan8814_ptp_rx_ts *rx_ts;
2973 	u32 reg;
2974 
2975 	do {
2976 		rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
2977 		if (!rx_ts)
2978 			return;
2979 
2980 		lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
2981 				      &rx_ts->seq_id);
2982 		lan8814_match_rx_ts(ptp_priv, rx_ts);
2983 
2984 		/* If other timestamps are available in the FIFO,
2985 		 * process them.
2986 		 */
2987 		reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
2988 	} while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
2989 }
2990 
2991 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
2992 {
2993 	struct kszphy_priv *priv = phydev->priv;
2994 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
2995 
2996 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
2997 		lan8814_get_tx_ts(ptp_priv);
2998 
2999 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3000 		lan8814_get_rx_ts(ptp_priv);
3001 
3002 	if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3003 		lan8814_flush_fifo(phydev, true);
3004 		skb_queue_purge(&ptp_priv->tx_queue);
3005 	}
3006 
3007 	if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3008 		lan8814_flush_fifo(phydev, false);
3009 		skb_queue_purge(&ptp_priv->rx_queue);
3010 	}
3011 }
3012 
3013 static int lan8804_config_init(struct phy_device *phydev)
3014 {
3015 	int val;
3016 
3017 	/* MDI-X setting for swap A,B transmit */
3018 	val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
3019 	val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
3020 	val |= LAN8804_ALIGN_TX_A_B_SWAP;
3021 	lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
3022 
3023 	/* Make sure that the PHY will not stop generating the clock when the
3024 	 * link partner goes down
3025 	 */
3026 	lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3027 	lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3028 
3029 	return 0;
3030 }
3031 
3032 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3033 {
3034 	int status;
3035 
3036 	status = phy_read(phydev, LAN8814_INTS);
3037 	if (status < 0) {
3038 		phy_error(phydev);
3039 		return IRQ_NONE;
3040 	}
3041 
3042 	if (status > 0)
3043 		phy_trigger_machine(phydev);
3044 
3045 	return IRQ_HANDLED;
3046 }
3047 
3048 #define LAN8804_OUTPUT_CONTROL			25
3049 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER	BIT(14)
3050 #define LAN8804_CONTROL				31
3051 #define LAN8804_CONTROL_INTR_POLARITY		BIT(14)
3052 
3053 static int lan8804_config_intr(struct phy_device *phydev)
3054 {
3055 	int err;
3056 
3057 	/* This is an internal PHY of lan966x and is not possible to change the
3058 	 * polarity on the GIC found in lan966x, therefore change the polarity
3059 	 * of the interrupt in the PHY from being active low instead of active
3060 	 * high.
3061 	 */
3062 	phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3063 
3064 	/* By default interrupt buffer is open-drain in which case the interrupt
3065 	 * can be active only low. Therefore change the interrupt buffer to be
3066 	 * push-pull to be able to change interrupt polarity
3067 	 */
3068 	phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3069 		  LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3070 
3071 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3072 		err = phy_read(phydev, LAN8814_INTS);
3073 		if (err < 0)
3074 			return err;
3075 
3076 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3077 		if (err)
3078 			return err;
3079 	} else {
3080 		err = phy_write(phydev, LAN8814_INTC, 0);
3081 		if (err)
3082 			return err;
3083 
3084 		err = phy_read(phydev, LAN8814_INTS);
3085 		if (err < 0)
3086 			return err;
3087 	}
3088 
3089 	return 0;
3090 }
3091 
3092 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3093 {
3094 	int ret = IRQ_NONE;
3095 	int irq_status;
3096 
3097 	irq_status = phy_read(phydev, LAN8814_INTS);
3098 	if (irq_status < 0) {
3099 		phy_error(phydev);
3100 		return IRQ_NONE;
3101 	}
3102 
3103 	if (irq_status & LAN8814_INT_LINK) {
3104 		phy_trigger_machine(phydev);
3105 		ret = IRQ_HANDLED;
3106 	}
3107 
3108 	while (true) {
3109 		irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3110 		if (!irq_status)
3111 			break;
3112 
3113 		lan8814_handle_ptp_interrupt(phydev, irq_status);
3114 		ret = IRQ_HANDLED;
3115 	}
3116 
3117 	return ret;
3118 }
3119 
3120 static int lan8814_ack_interrupt(struct phy_device *phydev)
3121 {
3122 	/* bit[12..0] int status, which is a read and clear register. */
3123 	int rc;
3124 
3125 	rc = phy_read(phydev, LAN8814_INTS);
3126 
3127 	return (rc < 0) ? rc : 0;
3128 }
3129 
3130 static int lan8814_config_intr(struct phy_device *phydev)
3131 {
3132 	int err;
3133 
3134 	lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3135 			      LAN8814_INTR_CTRL_REG_POLARITY |
3136 			      LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3137 
3138 	/* enable / disable interrupts */
3139 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3140 		err = lan8814_ack_interrupt(phydev);
3141 		if (err)
3142 			return err;
3143 
3144 		err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3145 	} else {
3146 		err = phy_write(phydev, LAN8814_INTC, 0);
3147 		if (err)
3148 			return err;
3149 
3150 		err = lan8814_ack_interrupt(phydev);
3151 	}
3152 
3153 	return err;
3154 }
3155 
3156 static void lan8814_ptp_init(struct phy_device *phydev)
3157 {
3158 	struct kszphy_priv *priv = phydev->priv;
3159 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3160 	u32 temp;
3161 
3162 	if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3163 	    !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3164 		return;
3165 
3166 	lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3167 
3168 	temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3169 	temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3170 	lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3171 
3172 	temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3173 	temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3174 	lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3175 
3176 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3177 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3178 
3179 	/* Removing default registers configs related to L2 and IP */
3180 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3181 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3182 	lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3183 	lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3184 
3185 	/* Disable checking for minorVersionPTP field */
3186 	lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3187 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3188 	lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3189 			      PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3190 
3191 	skb_queue_head_init(&ptp_priv->tx_queue);
3192 	skb_queue_head_init(&ptp_priv->rx_queue);
3193 	INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3194 	spin_lock_init(&ptp_priv->rx_ts_lock);
3195 
3196 	ptp_priv->phydev = phydev;
3197 
3198 	ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3199 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3200 	ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3201 	ptp_priv->mii_ts.ts_info  = lan8814_ts_info;
3202 
3203 	phydev->mii_ts = &ptp_priv->mii_ts;
3204 }
3205 
3206 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3207 {
3208 	struct lan8814_shared_priv *shared = phydev->shared->priv;
3209 
3210 	/* Initialise shared lock for clock*/
3211 	mutex_init(&shared->shared_lock);
3212 
3213 	shared->ptp_clock_info.owner = THIS_MODULE;
3214 	snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3215 	shared->ptp_clock_info.max_adj = 31249999;
3216 	shared->ptp_clock_info.n_alarm = 0;
3217 	shared->ptp_clock_info.n_ext_ts = 0;
3218 	shared->ptp_clock_info.n_pins = 0;
3219 	shared->ptp_clock_info.pps = 0;
3220 	shared->ptp_clock_info.pin_config = NULL;
3221 	shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3222 	shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3223 	shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3224 	shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3225 	shared->ptp_clock_info.getcrosststamp = NULL;
3226 
3227 	shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3228 					       &phydev->mdio.dev);
3229 	if (IS_ERR(shared->ptp_clock)) {
3230 		phydev_err(phydev, "ptp_clock_register failed %lu\n",
3231 			   PTR_ERR(shared->ptp_clock));
3232 		return -EINVAL;
3233 	}
3234 
3235 	/* Check if PHC support is missing at the configuration level */
3236 	if (!shared->ptp_clock)
3237 		return 0;
3238 
3239 	phydev_dbg(phydev, "successfully registered ptp clock\n");
3240 
3241 	shared->phydev = phydev;
3242 
3243 	/* The EP.4 is shared between all the PHYs in the package and also it
3244 	 * can be accessed by any of the PHYs
3245 	 */
3246 	lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3247 	lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3248 			      PTP_OPERATING_MODE_STANDALONE_);
3249 
3250 	return 0;
3251 }
3252 
3253 static void lan8814_setup_led(struct phy_device *phydev, int val)
3254 {
3255 	int temp;
3256 
3257 	temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3258 
3259 	if (val)
3260 		temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3261 	else
3262 		temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3263 
3264 	lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3265 }
3266 
3267 static int lan8814_config_init(struct phy_device *phydev)
3268 {
3269 	struct kszphy_priv *lan8814 = phydev->priv;
3270 	int val;
3271 
3272 	/* Reset the PHY */
3273 	val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3274 	val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3275 	lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3276 
3277 	/* Disable ANEG with QSGMII PCS Host side */
3278 	val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3279 	val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3280 	lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3281 
3282 	/* MDI-X setting for swap A,B transmit */
3283 	val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3284 	val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3285 	val |= LAN8814_ALIGN_TX_A_B_SWAP;
3286 	lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3287 
3288 	if (lan8814->led_mode >= 0)
3289 		lan8814_setup_led(phydev, lan8814->led_mode);
3290 
3291 	return 0;
3292 }
3293 
3294 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3295  * function called in suspend. Because the GPIO line can be shared, so if one of
3296  * the phys goes back in coma mode, then all the other PHYs will go, which is
3297  * wrong.
3298  */
3299 static int lan8814_release_coma_mode(struct phy_device *phydev)
3300 {
3301 	struct gpio_desc *gpiod;
3302 
3303 	gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3304 					GPIOD_OUT_HIGH_OPEN_DRAIN |
3305 					GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3306 	if (IS_ERR(gpiod))
3307 		return PTR_ERR(gpiod);
3308 
3309 	gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3310 	gpiod_set_value_cansleep(gpiod, 0);
3311 
3312 	return 0;
3313 }
3314 
3315 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
3316 {
3317 	u16 val;
3318 
3319 	/* It was noticed that when traffic is passing through the PHY and the
3320 	 * cable is removed then the LED was still one even though there is no
3321 	 * link
3322 	 */
3323 	val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE);
3324 	val &= ~LAN8814_EEE_STATE_MASK2P5P;
3325 	lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val);
3326 }
3327 
3328 static void lan8814_update_meas_time(struct phy_device *phydev)
3329 {
3330 	u16 val;
3331 
3332 	/* By setting the measure time to a value of 0xb this will allow cables
3333 	 * longer than 100m to be used. This configuration can be used
3334 	 * regardless of the mode of operation of the PHY
3335 	 */
3336 	val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS);
3337 	val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK;
3338 	val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL;
3339 	lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val);
3340 }
3341 
3342 static int lan8814_probe(struct phy_device *phydev)
3343 {
3344 	const struct kszphy_type *type = phydev->drv->driver_data;
3345 	struct kszphy_priv *priv;
3346 	u16 addr;
3347 	int err;
3348 
3349 	priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3350 	if (!priv)
3351 		return -ENOMEM;
3352 
3353 	phydev->priv = priv;
3354 
3355 	priv->type = type;
3356 
3357 	kszphy_parse_led_mode(phydev);
3358 
3359 	/* Strap-in value for PHY address, below register read gives starting
3360 	 * phy address value
3361 	 */
3362 	addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3363 	devm_phy_package_join(&phydev->mdio.dev, phydev,
3364 			      addr, sizeof(struct lan8814_shared_priv));
3365 
3366 	if (phy_package_init_once(phydev)) {
3367 		err = lan8814_release_coma_mode(phydev);
3368 		if (err)
3369 			return err;
3370 
3371 		err = lan8814_ptp_probe_once(phydev);
3372 		if (err)
3373 			return err;
3374 	}
3375 
3376 	lan8814_ptp_init(phydev);
3377 
3378 	/* Errata workarounds */
3379 	lan8814_clear_2psp_bit(phydev);
3380 	lan8814_update_meas_time(phydev);
3381 
3382 	return 0;
3383 }
3384 
3385 #define LAN8841_MMD_TIMER_REG			0
3386 #define LAN8841_MMD0_REGISTER_17		17
3387 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x)	((x) & 0x3)
3388 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS	BIT(3)
3389 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG	2
3390 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK	BIT(14)
3391 #define LAN8841_MMD_ANALOG_REG			28
3392 #define LAN8841_ANALOG_CONTROL_1		1
3393 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x)	(((x) & 0x3) << 5)
3394 #define LAN8841_ANALOG_CONTROL_10		13
3395 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x)	((x) & 0x3)
3396 #define LAN8841_ANALOG_CONTROL_11		14
3397 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x)	(((x) & 0x7) << 12)
3398 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT	69
3399 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
3400 #define LAN8841_BTRX_POWER_DOWN			70
3401 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A	BIT(0)
3402 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A	BIT(1)
3403 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B	BIT(2)
3404 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B	BIT(3)
3405 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C	BIT(5)
3406 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D	BIT(7)
3407 #define LAN8841_ADC_CHANNEL_MASK		198
3408 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN		370
3409 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN		371
3410 #define LAN8841_PTP_RX_VERSION			374
3411 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN		434
3412 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN		435
3413 #define LAN8841_PTP_TX_VERSION			438
3414 #define LAN8841_PTP_CMD_CTL			256
3415 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE		BIT(2)
3416 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE		BIT(1)
3417 #define LAN8841_PTP_CMD_CTL_PTP_RESET		BIT(0)
3418 #define LAN8841_PTP_RX_PARSE_CONFIG		368
3419 #define LAN8841_PTP_TX_PARSE_CONFIG		432
3420 #define LAN8841_PTP_RX_MODE			381
3421 #define LAN8841_PTP_INSERT_TS_EN		BIT(0)
3422 #define LAN8841_PTP_INSERT_TS_32BIT		BIT(1)
3423 
3424 static int lan8841_config_init(struct phy_device *phydev)
3425 {
3426 	int ret;
3427 
3428 	ret = ksz9131_config_init(phydev);
3429 	if (ret)
3430 		return ret;
3431 
3432 	/* Initialize the HW by resetting everything */
3433 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3434 		       LAN8841_PTP_CMD_CTL,
3435 		       LAN8841_PTP_CMD_CTL_PTP_RESET,
3436 		       LAN8841_PTP_CMD_CTL_PTP_RESET);
3437 
3438 	phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3439 		       LAN8841_PTP_CMD_CTL,
3440 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE,
3441 		       LAN8841_PTP_CMD_CTL_PTP_ENABLE);
3442 
3443 	/* Don't process any frames */
3444 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3445 		      LAN8841_PTP_RX_PARSE_CONFIG, 0);
3446 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3447 		      LAN8841_PTP_TX_PARSE_CONFIG, 0);
3448 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3449 		      LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
3450 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3451 		      LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
3452 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3453 		      LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
3454 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3455 		      LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
3456 
3457 	/* Disable checking for minorVersionPTP field */
3458 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3459 		      LAN8841_PTP_RX_VERSION, 0xff00);
3460 	phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3461 		      LAN8841_PTP_TX_VERSION, 0xff00);
3462 
3463 	/* 100BT Clause 40 improvenent errata */
3464 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3465 		      LAN8841_ANALOG_CONTROL_1,
3466 		      LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
3467 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3468 		      LAN8841_ANALOG_CONTROL_10,
3469 		      LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
3470 
3471 	/* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
3472 	 * Magnetics
3473 	 */
3474 	ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3475 			   LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
3476 	if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
3477 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3478 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
3479 			      LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
3480 		phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3481 			      LAN8841_BTRX_POWER_DOWN,
3482 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
3483 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
3484 			      LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
3485 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
3486 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
3487 			      LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
3488 	}
3489 
3490 	/* LDO Adjustment errata */
3491 	phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
3492 		      LAN8841_ANALOG_CONTROL_11,
3493 		      LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
3494 
3495 	/* 100BT RGMII latency tuning errata */
3496 	phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
3497 		      LAN8841_ADC_CHANNEL_MASK, 0x0);
3498 	phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
3499 		      LAN8841_MMD0_REGISTER_17,
3500 		      LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
3501 		      LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
3502 
3503 	return 0;
3504 }
3505 
3506 #define LAN8841_OUTPUT_CTRL			25
3507 #define LAN8841_OUTPUT_CTRL_INT_BUFFER		BIT(14)
3508 #define LAN8841_INT_PTP				BIT(9)
3509 
3510 static int lan8841_config_intr(struct phy_device *phydev)
3511 {
3512 	int err;
3513 
3514 	phy_modify(phydev, LAN8841_OUTPUT_CTRL,
3515 		   LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
3516 
3517 	if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3518 		err = phy_read(phydev, LAN8814_INTS);
3519 		if (err)
3520 			return err;
3521 
3522 		/* Enable / disable interrupts. It is OK to enable PTP interrupt
3523 		 * even if it PTP is not enabled. Because the underneath blocks
3524 		 * will not enable the PTP so we will never get the PTP
3525 		 * interrupt.
3526 		 */
3527 		err = phy_write(phydev, LAN8814_INTC,
3528 				LAN8814_INT_LINK | LAN8841_INT_PTP);
3529 	} else {
3530 		err = phy_write(phydev, LAN8814_INTC, 0);
3531 		if (err)
3532 			return err;
3533 
3534 		err = phy_read(phydev, LAN8814_INTS);
3535 	}
3536 
3537 	return err;
3538 }
3539 
3540 #define LAN8841_PTP_TX_EGRESS_SEC_LO			453
3541 #define LAN8841_PTP_TX_EGRESS_SEC_HI			452
3542 #define LAN8841_PTP_TX_EGRESS_NS_LO			451
3543 #define LAN8841_PTP_TX_EGRESS_NS_HI			450
3544 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID		BIT(15)
3545 #define LAN8841_PTP_TX_MSG_HEADER2			455
3546 
3547 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
3548 				  u32 *sec, u32 *nsec, u16 *seq)
3549 {
3550 	struct phy_device *phydev = ptp_priv->phydev;
3551 
3552 	*nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
3553 	if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
3554 		return false;
3555 
3556 	*nsec = ((*nsec & 0x3fff) << 16);
3557 	*nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
3558 
3559 	*sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
3560 	*sec = *sec << 16;
3561 	*sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
3562 
3563 	*seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3564 
3565 	return true;
3566 }
3567 
3568 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3569 {
3570 	u32 sec, nsec;
3571 	u16 seq;
3572 
3573 	while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
3574 		lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
3575 }
3576 
3577 #define LAN8841_PTP_INT_STS			259
3578 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT	BIT(13)
3579 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT	BIT(12)
3580 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT	BIT(2)
3581 
3582 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
3583 {
3584 	struct phy_device *phydev = ptp_priv->phydev;
3585 	int i;
3586 
3587 	for (i = 0; i < FIFO_SIZE; ++i)
3588 		phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
3589 
3590 	phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3591 }
3592 
3593 #define LAN8841_PTP_GPIO_CAP_STS			506
3594 #define LAN8841_PTP_GPIO_SEL				327
3595 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio)		((gpio) << 8)
3596 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP		498
3597 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP		499
3598 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP		500
3599 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP		501
3600 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP		502
3601 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP		503
3602 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP		504
3603 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP		505
3604 
3605 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
3606 {
3607 	struct phy_device *phydev = ptp_priv->phydev;
3608 	struct ptp_clock_event ptp_event = {0};
3609 	int pin, ret, tmp;
3610 	s32 sec, nsec;
3611 
3612 	pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
3613 	if (pin == -1)
3614 		return;
3615 
3616 	tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
3617 	if (tmp < 0)
3618 		return;
3619 
3620 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
3621 			    LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
3622 	if (ret)
3623 		return;
3624 
3625 	mutex_lock(&ptp_priv->ptp_lock);
3626 	if (tmp & BIT(pin)) {
3627 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
3628 		sec <<= 16;
3629 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
3630 
3631 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3632 		nsec <<= 16;
3633 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
3634 	} else {
3635 		sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
3636 		sec <<= 16;
3637 		sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
3638 
3639 		nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3640 		nsec <<= 16;
3641 		nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
3642 	}
3643 	mutex_unlock(&ptp_priv->ptp_lock);
3644 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
3645 	if (ret)
3646 		return;
3647 
3648 	ptp_event.index = 0;
3649 	ptp_event.timestamp = ktime_set(sec, nsec);
3650 	ptp_event.type = PTP_CLOCK_EXTTS;
3651 	ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
3652 }
3653 
3654 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
3655 {
3656 	struct kszphy_priv *priv = phydev->priv;
3657 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3658 	u16 status;
3659 
3660 	do {
3661 		status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
3662 
3663 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
3664 			lan8841_ptp_process_tx_ts(ptp_priv);
3665 
3666 		if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
3667 			lan8841_gpio_process_cap(ptp_priv);
3668 
3669 		if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
3670 			lan8841_ptp_flush_fifo(ptp_priv);
3671 			skb_queue_purge(&ptp_priv->tx_queue);
3672 		}
3673 
3674 	} while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
3675 			   LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
3676 			   LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
3677 }
3678 
3679 #define LAN8841_INTS_PTP		BIT(9)
3680 
3681 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
3682 {
3683 	irqreturn_t ret = IRQ_NONE;
3684 	int irq_status;
3685 
3686 	irq_status = phy_read(phydev, LAN8814_INTS);
3687 	if (irq_status < 0) {
3688 		phy_error(phydev);
3689 		return IRQ_NONE;
3690 	}
3691 
3692 	if (irq_status & LAN8814_INT_LINK) {
3693 		phy_trigger_machine(phydev);
3694 		ret = IRQ_HANDLED;
3695 	}
3696 
3697 	if (irq_status & LAN8841_INTS_PTP) {
3698 		lan8841_handle_ptp_interrupt(phydev);
3699 		ret = IRQ_HANDLED;
3700 	}
3701 
3702 	return ret;
3703 }
3704 
3705 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
3706 			   struct ethtool_ts_info *info)
3707 {
3708 	struct kszphy_ptp_priv *ptp_priv;
3709 
3710 	ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3711 
3712 	info->phc_index = ptp_priv->ptp_clock ?
3713 				ptp_clock_index(ptp_priv->ptp_clock) : -1;
3714 	if (info->phc_index == -1)
3715 		return 0;
3716 
3717 	info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
3718 				SOF_TIMESTAMPING_RX_HARDWARE |
3719 				SOF_TIMESTAMPING_RAW_HARDWARE;
3720 
3721 	info->tx_types = (1 << HWTSTAMP_TX_OFF) |
3722 			 (1 << HWTSTAMP_TX_ON) |
3723 			 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
3724 
3725 	info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
3726 			   (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
3727 			   (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
3728 			   (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
3729 
3730 	return 0;
3731 }
3732 
3733 #define LAN8841_PTP_INT_EN			260
3734 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN	BIT(13)
3735 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN		BIT(12)
3736 
3737 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
3738 					  bool enable)
3739 {
3740 	struct phy_device *phydev = ptp_priv->phydev;
3741 
3742 	if (enable) {
3743 		/* Enable interrupts on the TX side */
3744 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3745 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3746 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
3747 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3748 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
3749 
3750 		/* Enable the modification of the frame on RX side,
3751 		 * this will add the ns and 2 bits of sec in the reserved field
3752 		 * of the PTP header
3753 		 */
3754 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3755 			       LAN8841_PTP_RX_MODE,
3756 			       LAN8841_PTP_INSERT_TS_EN |
3757 			       LAN8841_PTP_INSERT_TS_32BIT,
3758 			       LAN8841_PTP_INSERT_TS_EN |
3759 			       LAN8841_PTP_INSERT_TS_32BIT);
3760 
3761 		ptp_schedule_worker(ptp_priv->ptp_clock, 0);
3762 	} else {
3763 		/* Disable interrupts on the TX side */
3764 		phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
3765 			       LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
3766 			       LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
3767 
3768 		/* Disable modification of the RX frames */
3769 		phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
3770 			       LAN8841_PTP_RX_MODE,
3771 			       LAN8841_PTP_INSERT_TS_EN |
3772 			       LAN8841_PTP_INSERT_TS_32BIT, 0);
3773 
3774 		ptp_cancel_worker_sync(ptp_priv->ptp_clock);
3775 	}
3776 }
3777 
3778 #define LAN8841_PTP_RX_TIMESTAMP_EN		379
3779 #define LAN8841_PTP_TX_TIMESTAMP_EN		443
3780 #define LAN8841_PTP_TX_MOD			445
3781 
3782 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
3783 			    struct kernel_hwtstamp_config *config,
3784 			    struct netlink_ext_ack *extack)
3785 {
3786 	struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3787 	struct phy_device *phydev = ptp_priv->phydev;
3788 	int txcfg = 0, rxcfg = 0;
3789 	int pkt_ts_enable;
3790 
3791 	ptp_priv->hwts_tx_type = config->tx_type;
3792 	ptp_priv->rx_filter = config->rx_filter;
3793 
3794 	switch (config->rx_filter) {
3795 	case HWTSTAMP_FILTER_NONE:
3796 		ptp_priv->layer = 0;
3797 		ptp_priv->version = 0;
3798 		break;
3799 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3800 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3801 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3802 		ptp_priv->layer = PTP_CLASS_L4;
3803 		ptp_priv->version = PTP_CLASS_V2;
3804 		break;
3805 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3806 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3807 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3808 		ptp_priv->layer = PTP_CLASS_L2;
3809 		ptp_priv->version = PTP_CLASS_V2;
3810 		break;
3811 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3812 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3813 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3814 		ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
3815 		ptp_priv->version = PTP_CLASS_V2;
3816 		break;
3817 	default:
3818 		return -ERANGE;
3819 	}
3820 
3821 	/* Setup parsing of the frames and enable the timestamping for ptp
3822 	 * frames
3823 	 */
3824 	if (ptp_priv->layer & PTP_CLASS_L2) {
3825 		rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
3826 		txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
3827 	} else if (ptp_priv->layer & PTP_CLASS_L4) {
3828 		rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
3829 		txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
3830 	}
3831 
3832 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
3833 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
3834 
3835 	pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
3836 			PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
3837 	phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
3838 	phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
3839 
3840 	/* Enable / disable of the TX timestamp in the SYNC frames */
3841 	phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
3842 		       PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
3843 		       ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
3844 				PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
3845 
3846 	/* Now enable/disable the timestamping */
3847 	lan8841_ptp_enable_processing(ptp_priv,
3848 				      config->rx_filter != HWTSTAMP_FILTER_NONE);
3849 
3850 	skb_queue_purge(&ptp_priv->tx_queue);
3851 
3852 	lan8841_ptp_flush_fifo(ptp_priv);
3853 
3854 	return 0;
3855 }
3856 
3857 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
3858 			     struct sk_buff *skb, int type)
3859 {
3860 	struct kszphy_ptp_priv *ptp_priv =
3861 			container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
3862 	struct ptp_header *header = ptp_parse_header(skb, type);
3863 	struct skb_shared_hwtstamps *shhwtstamps;
3864 	struct timespec64 ts;
3865 	unsigned long flags;
3866 	u32 ts_header;
3867 
3868 	if (!header)
3869 		return false;
3870 
3871 	if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
3872 	    type == PTP_CLASS_NONE)
3873 		return false;
3874 
3875 	if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
3876 		return false;
3877 
3878 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
3879 	ts.tv_sec = ptp_priv->seconds;
3880 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
3881 	ts_header = __be32_to_cpu(header->reserved2);
3882 
3883 	shhwtstamps = skb_hwtstamps(skb);
3884 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3885 
3886 	/* Check for any wrap arounds for the second part */
3887 	if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
3888 		ts.tv_sec -= GENMASK(1, 0) + 1;
3889 	else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
3890 		ts.tv_sec += 1;
3891 
3892 	shhwtstamps->hwtstamp =
3893 		ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
3894 			  ts_header & GENMASK(29, 0));
3895 	header->reserved2 = 0;
3896 
3897 	netif_rx(skb);
3898 
3899 	return true;
3900 }
3901 
3902 #define LAN8841_EVENT_A		0
3903 #define LAN8841_EVENT_B		1
3904 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 278 : 288)
3905 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 279 : 289)
3906 #define LAN8841_PTP_LTC_TARGET_NS_HI(event)	((event) == LAN8841_EVENT_A ? 280 : 290)
3907 #define LAN8841_PTP_LTC_TARGET_NS_LO(event)	((event) == LAN8841_EVENT_A ? 281 : 291)
3908 
3909 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
3910 				  s64 sec, u32 nsec)
3911 {
3912 	struct phy_device *phydev = ptp_priv->phydev;
3913 	int ret;
3914 
3915 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
3916 			    upper_16_bits(sec));
3917 	if (ret)
3918 		return ret;
3919 
3920 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
3921 			    lower_16_bits(sec));
3922 	if (ret)
3923 		return ret;
3924 
3925 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
3926 			    upper_16_bits(nsec));
3927 	if (ret)
3928 		return ret;
3929 
3930 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
3931 			    lower_16_bits(nsec));
3932 }
3933 
3934 #define LAN8841_BUFFER_TIME	2
3935 
3936 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
3937 				     const struct timespec64 *ts)
3938 {
3939 	return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
3940 				      ts->tv_sec + LAN8841_BUFFER_TIME, 0);
3941 }
3942 
3943 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event)	((event) == LAN8841_EVENT_A ? 282 : 292)
3944 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event)	((event) == LAN8841_EVENT_A ? 283 : 293)
3945 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event)	((event) == LAN8841_EVENT_A ? 284 : 294)
3946 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event)	((event) == LAN8841_EVENT_A ? 285 : 295)
3947 
3948 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
3949 				  s64 sec, u32 nsec)
3950 {
3951 	struct phy_device *phydev = ptp_priv->phydev;
3952 	int ret;
3953 
3954 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
3955 			    upper_16_bits(sec));
3956 	if (ret)
3957 		return ret;
3958 
3959 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
3960 			    lower_16_bits(sec));
3961 	if (ret)
3962 		return ret;
3963 
3964 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
3965 			    upper_16_bits(nsec));
3966 	if (ret)
3967 		return ret;
3968 
3969 	return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
3970 			     lower_16_bits(nsec));
3971 }
3972 
3973 #define LAN8841_PTP_LTC_SET_SEC_HI	262
3974 #define LAN8841_PTP_LTC_SET_SEC_MID	263
3975 #define LAN8841_PTP_LTC_SET_SEC_LO	264
3976 #define LAN8841_PTP_LTC_SET_NS_HI	265
3977 #define LAN8841_PTP_LTC_SET_NS_LO	266
3978 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD	BIT(4)
3979 
3980 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
3981 				 const struct timespec64 *ts)
3982 {
3983 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
3984 							ptp_clock_info);
3985 	struct phy_device *phydev = ptp_priv->phydev;
3986 	unsigned long flags;
3987 	int ret;
3988 
3989 	/* Set the value to be stored */
3990 	mutex_lock(&ptp_priv->ptp_lock);
3991 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
3992 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
3993 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
3994 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
3995 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
3996 
3997 	/* Set the command to load the LTC */
3998 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
3999 		      LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
4000 	ret = lan8841_ptp_update_target(ptp_priv, ts);
4001 	mutex_unlock(&ptp_priv->ptp_lock);
4002 
4003 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4004 	ptp_priv->seconds = ts->tv_sec;
4005 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4006 
4007 	return ret;
4008 }
4009 
4010 #define LAN8841_PTP_LTC_RD_SEC_HI	358
4011 #define LAN8841_PTP_LTC_RD_SEC_MID	359
4012 #define LAN8841_PTP_LTC_RD_SEC_LO	360
4013 #define LAN8841_PTP_LTC_RD_NS_HI	361
4014 #define LAN8841_PTP_LTC_RD_NS_LO	362
4015 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ	BIT(3)
4016 
4017 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
4018 				 struct timespec64 *ts)
4019 {
4020 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4021 							ptp_clock_info);
4022 	struct phy_device *phydev = ptp_priv->phydev;
4023 	time64_t s;
4024 	s64 ns;
4025 
4026 	mutex_lock(&ptp_priv->ptp_lock);
4027 	/* Issue the command to read the LTC */
4028 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4029 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4030 
4031 	/* Read the LTC */
4032 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4033 	s <<= 16;
4034 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4035 	s <<= 16;
4036 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4037 
4038 	ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
4039 	ns <<= 16;
4040 	ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
4041 	mutex_unlock(&ptp_priv->ptp_lock);
4042 
4043 	set_normalized_timespec64(ts, s, ns);
4044 	return 0;
4045 }
4046 
4047 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
4048 				   struct timespec64 *ts)
4049 {
4050 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4051 							ptp_clock_info);
4052 	struct phy_device *phydev = ptp_priv->phydev;
4053 	time64_t s;
4054 
4055 	mutex_lock(&ptp_priv->ptp_lock);
4056 	/* Issue the command to read the LTC */
4057 	phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4058 		      LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4059 
4060 	/* Read the LTC */
4061 	s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4062 	s <<= 16;
4063 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4064 	s <<= 16;
4065 	s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4066 	mutex_unlock(&ptp_priv->ptp_lock);
4067 
4068 	set_normalized_timespec64(ts, s, 0);
4069 }
4070 
4071 #define LAN8841_PTP_LTC_STEP_ADJ_LO			276
4072 #define LAN8841_PTP_LTC_STEP_ADJ_HI			275
4073 #define LAN8841_PTP_LTC_STEP_ADJ_DIR			BIT(15)
4074 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS	BIT(5)
4075 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS	BIT(6)
4076 
4077 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4078 {
4079 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4080 							ptp_clock_info);
4081 	struct phy_device *phydev = ptp_priv->phydev;
4082 	struct timespec64 ts;
4083 	bool add = true;
4084 	u32 nsec;
4085 	s32 sec;
4086 	int ret;
4087 
4088 	/* The HW allows up to 15 sec to adjust the time, but here we limit to
4089 	 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4090 	 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4091 	 * increment so the value can be bigger than 15 sec. Therefore limit the
4092 	 * possible adjustments so we will not have these corner cases
4093 	 */
4094 	if (delta > 10000000000LL || delta < -10000000000LL) {
4095 		/* The timeadjustment is too big, so fall back using set time */
4096 		u64 now;
4097 
4098 		ptp->gettime64(ptp, &ts);
4099 
4100 		now = ktime_to_ns(timespec64_to_ktime(ts));
4101 		ts = ns_to_timespec64(now + delta);
4102 
4103 		ptp->settime64(ptp, &ts);
4104 		return 0;
4105 	}
4106 
4107 	sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4108 	if (delta < 0 && nsec != 0) {
4109 		/* It is not allowed to adjust low the nsec part, therefore
4110 		 * subtract more from second part and add to nanosecond such
4111 		 * that would roll over, so the second part will increase
4112 		 */
4113 		sec--;
4114 		nsec = NSEC_PER_SEC - nsec;
4115 	}
4116 
4117 	/* Calculate the adjustments and the direction */
4118 	if (delta < 0)
4119 		add = false;
4120 
4121 	if (nsec > 0)
4122 		/* add 8 ns to cover the likely normal increment */
4123 		nsec += 8;
4124 
4125 	if (nsec >= NSEC_PER_SEC) {
4126 		/* carry into seconds */
4127 		sec++;
4128 		nsec -= NSEC_PER_SEC;
4129 	}
4130 
4131 	mutex_lock(&ptp_priv->ptp_lock);
4132 	if (sec) {
4133 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4134 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4135 			      add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4136 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4137 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4138 	}
4139 
4140 	if (nsec) {
4141 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4142 			      nsec & 0xffff);
4143 		phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4144 			      (nsec >> 16) & 0x3fff);
4145 		phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4146 			      LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4147 	}
4148 	mutex_unlock(&ptp_priv->ptp_lock);
4149 
4150 	/* Update the target clock */
4151 	ptp->gettime64(ptp, &ts);
4152 	mutex_lock(&ptp_priv->ptp_lock);
4153 	ret = lan8841_ptp_update_target(ptp_priv, &ts);
4154 	mutex_unlock(&ptp_priv->ptp_lock);
4155 
4156 	return ret;
4157 }
4158 
4159 #define LAN8841_PTP_LTC_RATE_ADJ_HI		269
4160 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR		BIT(15)
4161 #define LAN8841_PTP_LTC_RATE_ADJ_LO		270
4162 
4163 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4164 {
4165 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4166 							ptp_clock_info);
4167 	struct phy_device *phydev = ptp_priv->phydev;
4168 	bool faster = true;
4169 	u32 rate;
4170 
4171 	if (!scaled_ppm)
4172 		return 0;
4173 
4174 	if (scaled_ppm < 0) {
4175 		scaled_ppm = -scaled_ppm;
4176 		faster = false;
4177 	}
4178 
4179 	rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4180 	rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4181 
4182 	mutex_lock(&ptp_priv->ptp_lock);
4183 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4184 		      faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4185 			     : upper_16_bits(rate) & 0x3fff);
4186 	phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4187 	mutex_unlock(&ptp_priv->ptp_lock);
4188 
4189 	return 0;
4190 }
4191 
4192 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4193 			      enum ptp_pin_function func, unsigned int chan)
4194 {
4195 	switch (func) {
4196 	case PTP_PF_NONE:
4197 	case PTP_PF_PEROUT:
4198 	case PTP_PF_EXTTS:
4199 		break;
4200 	default:
4201 		return -1;
4202 	}
4203 
4204 	return 0;
4205 }
4206 
4207 #define LAN8841_PTP_GPIO_NUM	10
4208 #define LAN8841_GPIO_EN		128
4209 #define LAN8841_GPIO_DIR	129
4210 #define LAN8841_GPIO_BUF	130
4211 
4212 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4213 {
4214 	struct phy_device *phydev = ptp_priv->phydev;
4215 	int ret;
4216 
4217 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4218 	if (ret)
4219 		return ret;
4220 
4221 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4222 	if (ret)
4223 		return ret;
4224 
4225 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4226 }
4227 
4228 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4229 {
4230 	struct phy_device *phydev = ptp_priv->phydev;
4231 	int ret;
4232 
4233 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4234 	if (ret)
4235 		return ret;
4236 
4237 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4238 	if (ret)
4239 		return ret;
4240 
4241 	return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4242 }
4243 
4244 #define LAN8841_GPIO_DATA_SEL1				131
4245 #define LAN8841_GPIO_DATA_SEL2				132
4246 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK	GENMASK(2, 0)
4247 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A	1
4248 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B	2
4249 #define LAN8841_PTP_GENERAL_CONFIG			257
4250 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A	BIT(1)
4251 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B	BIT(3)
4252 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK	GENMASK(7, 4)
4253 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK	GENMASK(11, 8)
4254 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A		4
4255 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B		7
4256 
4257 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4258 				    u8 event)
4259 {
4260 	struct phy_device *phydev = ptp_priv->phydev;
4261 	u16 tmp;
4262 	int ret;
4263 
4264 	/* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4265 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4266 	 * depending on the pin, it requires to read a different register
4267 	 */
4268 	if (pin < 5) {
4269 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4270 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4271 	} else {
4272 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4273 		ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4274 	}
4275 	if (ret)
4276 		return ret;
4277 
4278 	/* Disable the event */
4279 	if (event == LAN8841_EVENT_A)
4280 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4281 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4282 	else
4283 		tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4284 		      LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4285 	return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4286 }
4287 
4288 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4289 				    u8 event, int pulse_width)
4290 {
4291 	struct phy_device *phydev = ptp_priv->phydev;
4292 	u16 tmp;
4293 	int ret;
4294 
4295 	/* Enable the event */
4296 	if (event == LAN8841_EVENT_A)
4297 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4298 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4299 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4300 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4301 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4302 	else
4303 		ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4304 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4305 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4306 				     LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4307 				     pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4308 	if (ret)
4309 		return ret;
4310 
4311 	/* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4312 	 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4313 	 * depending on the pin, it requires to read a different register
4314 	 */
4315 	if (event == LAN8841_EVENT_A)
4316 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4317 	else
4318 		tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4319 
4320 	if (pin < 5)
4321 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4322 				       tmp << (3 * pin));
4323 	else
4324 		ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4325 				       tmp << (3 * (pin - 5)));
4326 
4327 	return ret;
4328 }
4329 
4330 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS	13
4331 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS	12
4332 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS	11
4333 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS	10
4334 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS	9
4335 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS	8
4336 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US	7
4337 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US	6
4338 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US	5
4339 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US	4
4340 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US	3
4341 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US	2
4342 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS	1
4343 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS	0
4344 
4345 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4346 			      struct ptp_clock_request *rq, int on)
4347 {
4348 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4349 							ptp_clock_info);
4350 	struct phy_device *phydev = ptp_priv->phydev;
4351 	struct timespec64 ts_on, ts_period;
4352 	s64 on_nsec, period_nsec;
4353 	int pulse_width;
4354 	int pin;
4355 	int ret;
4356 
4357 	if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4358 		return -EOPNOTSUPP;
4359 
4360 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4361 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4362 		return -EINVAL;
4363 
4364 	if (!on) {
4365 		ret = lan8841_ptp_perout_off(ptp_priv, pin);
4366 		if (ret)
4367 			return ret;
4368 
4369 		return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4370 	}
4371 
4372 	ts_on.tv_sec = rq->perout.on.sec;
4373 	ts_on.tv_nsec = rq->perout.on.nsec;
4374 	on_nsec = timespec64_to_ns(&ts_on);
4375 
4376 	ts_period.tv_sec = rq->perout.period.sec;
4377 	ts_period.tv_nsec = rq->perout.period.nsec;
4378 	period_nsec = timespec64_to_ns(&ts_period);
4379 
4380 	if (period_nsec < 200) {
4381 		pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
4382 				    phydev_name(phydev));
4383 		return -EOPNOTSUPP;
4384 	}
4385 
4386 	if (on_nsec >= period_nsec) {
4387 		pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
4388 				    phydev_name(phydev));
4389 		return -EINVAL;
4390 	}
4391 
4392 	switch (on_nsec) {
4393 	case 200000000:
4394 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
4395 		break;
4396 	case 100000000:
4397 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
4398 		break;
4399 	case 50000000:
4400 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
4401 		break;
4402 	case 10000000:
4403 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
4404 		break;
4405 	case 5000000:
4406 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
4407 		break;
4408 	case 1000000:
4409 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
4410 		break;
4411 	case 500000:
4412 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
4413 		break;
4414 	case 100000:
4415 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
4416 		break;
4417 	case 50000:
4418 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
4419 		break;
4420 	case 10000:
4421 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
4422 		break;
4423 	case 5000:
4424 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
4425 		break;
4426 	case 1000:
4427 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
4428 		break;
4429 	case 500:
4430 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
4431 		break;
4432 	case 100:
4433 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4434 		break;
4435 	default:
4436 		pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
4437 				    phydev_name(phydev));
4438 		pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
4439 		break;
4440 	}
4441 
4442 	mutex_lock(&ptp_priv->ptp_lock);
4443 	ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
4444 				     rq->perout.start.nsec);
4445 	mutex_unlock(&ptp_priv->ptp_lock);
4446 	if (ret)
4447 		return ret;
4448 
4449 	ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
4450 				     rq->perout.period.nsec);
4451 	if (ret)
4452 		return ret;
4453 
4454 	ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
4455 				       pulse_width);
4456 	if (ret)
4457 		return ret;
4458 
4459 	ret = lan8841_ptp_perout_on(ptp_priv, pin);
4460 	if (ret)
4461 		lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
4462 
4463 	return ret;
4464 }
4465 
4466 #define LAN8841_PTP_GPIO_CAP_EN			496
4467 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio)	(BIT(gpio))
4468 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio)	(BIT(gpio) << 8)
4469 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN	BIT(2)
4470 
4471 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
4472 				u32 flags)
4473 {
4474 	struct phy_device *phydev = ptp_priv->phydev;
4475 	u16 tmp = 0;
4476 	int ret;
4477 
4478 	/* Set GPIO to be intput */
4479 	ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4480 	if (ret)
4481 		return ret;
4482 
4483 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4484 	if (ret)
4485 		return ret;
4486 
4487 	/* Enable capture on the edges of the pin */
4488 	if (flags & PTP_RISING_EDGE)
4489 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
4490 	if (flags & PTP_FALLING_EDGE)
4491 		tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
4492 	ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
4493 	if (ret)
4494 		return ret;
4495 
4496 	/* Enable interrupt */
4497 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4498 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4499 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
4500 }
4501 
4502 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4503 {
4504 	struct phy_device *phydev = ptp_priv->phydev;
4505 	int ret;
4506 
4507 	/* Set GPIO to be output */
4508 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4509 	if (ret)
4510 		return ret;
4511 
4512 	ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4513 	if (ret)
4514 		return ret;
4515 
4516 	/* Disable capture on both of the edges */
4517 	ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
4518 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
4519 			     LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
4520 			     0);
4521 	if (ret)
4522 		return ret;
4523 
4524 	/* Disable interrupt */
4525 	return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4526 			      LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
4527 			      0);
4528 }
4529 
4530 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
4531 			     struct ptp_clock_request *rq, int on)
4532 {
4533 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4534 							ptp_clock_info);
4535 	int pin;
4536 	int ret;
4537 
4538 	/* Reject requests with unsupported flags */
4539 	if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
4540 				PTP_EXTTS_EDGES |
4541 				PTP_STRICT_FLAGS))
4542 		return -EOPNOTSUPP;
4543 
4544 	pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
4545 	if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4546 		return -EINVAL;
4547 
4548 	mutex_lock(&ptp_priv->ptp_lock);
4549 	if (on)
4550 		ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
4551 	else
4552 		ret = lan8841_ptp_extts_off(ptp_priv, pin);
4553 	mutex_unlock(&ptp_priv->ptp_lock);
4554 
4555 	return ret;
4556 }
4557 
4558 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
4559 			      struct ptp_clock_request *rq, int on)
4560 {
4561 	switch (rq->type) {
4562 	case PTP_CLK_REQ_EXTTS:
4563 		return lan8841_ptp_extts(ptp, rq, on);
4564 	case PTP_CLK_REQ_PEROUT:
4565 		return lan8841_ptp_perout(ptp, rq, on);
4566 	default:
4567 		return -EOPNOTSUPP;
4568 	}
4569 
4570 	return 0;
4571 }
4572 
4573 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
4574 {
4575 	struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4576 							ptp_clock_info);
4577 	struct timespec64 ts;
4578 	unsigned long flags;
4579 
4580 	lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
4581 
4582 	spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4583 	ptp_priv->seconds = ts.tv_sec;
4584 	spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4585 
4586 	return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
4587 }
4588 
4589 static struct ptp_clock_info lan8841_ptp_clock_info = {
4590 	.owner		= THIS_MODULE,
4591 	.name		= "lan8841 ptp",
4592 	.max_adj	= 31249999,
4593 	.gettime64	= lan8841_ptp_gettime64,
4594 	.settime64	= lan8841_ptp_settime64,
4595 	.adjtime	= lan8841_ptp_adjtime,
4596 	.adjfine	= lan8841_ptp_adjfine,
4597 	.verify         = lan8841_ptp_verify,
4598 	.enable         = lan8841_ptp_enable,
4599 	.do_aux_work	= lan8841_ptp_do_aux_work,
4600 	.n_per_out      = LAN8841_PTP_GPIO_NUM,
4601 	.n_ext_ts       = LAN8841_PTP_GPIO_NUM,
4602 	.n_pins         = LAN8841_PTP_GPIO_NUM,
4603 };
4604 
4605 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
4606 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
4607 
4608 static int lan8841_probe(struct phy_device *phydev)
4609 {
4610 	struct kszphy_ptp_priv *ptp_priv;
4611 	struct kszphy_priv *priv;
4612 	int err;
4613 
4614 	err = kszphy_probe(phydev);
4615 	if (err)
4616 		return err;
4617 
4618 	if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4619 			 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
4620 	    LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
4621 		phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
4622 
4623 	/* Register the clock */
4624 	if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
4625 		return 0;
4626 
4627 	priv = phydev->priv;
4628 	ptp_priv = &priv->ptp_priv;
4629 
4630 	ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
4631 					    LAN8841_PTP_GPIO_NUM,
4632 					    sizeof(*ptp_priv->pin_config),
4633 					    GFP_KERNEL);
4634 	if (!ptp_priv->pin_config)
4635 		return -ENOMEM;
4636 
4637 	for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
4638 		struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
4639 
4640 		snprintf(p->name, sizeof(p->name), "pin%d", i);
4641 		p->index = i;
4642 		p->func = PTP_PF_NONE;
4643 	}
4644 
4645 	ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
4646 	ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
4647 	ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
4648 						 &phydev->mdio.dev);
4649 	if (IS_ERR(ptp_priv->ptp_clock)) {
4650 		phydev_err(phydev, "ptp_clock_register failed: %lu\n",
4651 			   PTR_ERR(ptp_priv->ptp_clock));
4652 		return -EINVAL;
4653 	}
4654 
4655 	if (!ptp_priv->ptp_clock)
4656 		return 0;
4657 
4658 	/* Initialize the SW */
4659 	skb_queue_head_init(&ptp_priv->tx_queue);
4660 	ptp_priv->phydev = phydev;
4661 	mutex_init(&ptp_priv->ptp_lock);
4662 	spin_lock_init(&ptp_priv->seconds_lock);
4663 
4664 	ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
4665 	ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
4666 	ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
4667 	ptp_priv->mii_ts.ts_info = lan8841_ts_info;
4668 
4669 	phydev->mii_ts = &ptp_priv->mii_ts;
4670 
4671 	return 0;
4672 }
4673 
4674 static int lan8841_suspend(struct phy_device *phydev)
4675 {
4676 	struct kszphy_priv *priv = phydev->priv;
4677 	struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4678 
4679 	ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4680 
4681 	return genphy_suspend(phydev);
4682 }
4683 
4684 static struct phy_driver ksphy_driver[] = {
4685 {
4686 	.phy_id		= PHY_ID_KS8737,
4687 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4688 	.name		= "Micrel KS8737",
4689 	/* PHY_BASIC_FEATURES */
4690 	.driver_data	= &ks8737_type,
4691 	.probe		= kszphy_probe,
4692 	.config_init	= kszphy_config_init,
4693 	.config_intr	= kszphy_config_intr,
4694 	.handle_interrupt = kszphy_handle_interrupt,
4695 	.suspend	= kszphy_suspend,
4696 	.resume		= kszphy_resume,
4697 }, {
4698 	.phy_id		= PHY_ID_KSZ8021,
4699 	.phy_id_mask	= 0x00ffffff,
4700 	.name		= "Micrel KSZ8021 or KSZ8031",
4701 	/* PHY_BASIC_FEATURES */
4702 	.driver_data	= &ksz8021_type,
4703 	.probe		= kszphy_probe,
4704 	.config_init	= kszphy_config_init,
4705 	.config_intr	= kszphy_config_intr,
4706 	.handle_interrupt = kszphy_handle_interrupt,
4707 	.get_sset_count = kszphy_get_sset_count,
4708 	.get_strings	= kszphy_get_strings,
4709 	.get_stats	= kszphy_get_stats,
4710 	.suspend	= kszphy_suspend,
4711 	.resume		= kszphy_resume,
4712 }, {
4713 	.phy_id		= PHY_ID_KSZ8031,
4714 	.phy_id_mask	= 0x00ffffff,
4715 	.name		= "Micrel KSZ8031",
4716 	/* PHY_BASIC_FEATURES */
4717 	.driver_data	= &ksz8021_type,
4718 	.probe		= kszphy_probe,
4719 	.config_init	= kszphy_config_init,
4720 	.config_intr	= kszphy_config_intr,
4721 	.handle_interrupt = kszphy_handle_interrupt,
4722 	.get_sset_count = kszphy_get_sset_count,
4723 	.get_strings	= kszphy_get_strings,
4724 	.get_stats	= kszphy_get_stats,
4725 	.suspend	= kszphy_suspend,
4726 	.resume		= kszphy_resume,
4727 }, {
4728 	.phy_id		= PHY_ID_KSZ8041,
4729 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4730 	.name		= "Micrel KSZ8041",
4731 	/* PHY_BASIC_FEATURES */
4732 	.driver_data	= &ksz8041_type,
4733 	.probe		= kszphy_probe,
4734 	.config_init	= ksz8041_config_init,
4735 	.config_aneg	= ksz8041_config_aneg,
4736 	.config_intr	= kszphy_config_intr,
4737 	.handle_interrupt = kszphy_handle_interrupt,
4738 	.get_sset_count = kszphy_get_sset_count,
4739 	.get_strings	= kszphy_get_strings,
4740 	.get_stats	= kszphy_get_stats,
4741 	/* No suspend/resume callbacks because of errata DS80000700A,
4742 	 * receiver error following software power down.
4743 	 */
4744 }, {
4745 	.phy_id		= PHY_ID_KSZ8041RNLI,
4746 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4747 	.name		= "Micrel KSZ8041RNLI",
4748 	/* PHY_BASIC_FEATURES */
4749 	.driver_data	= &ksz8041_type,
4750 	.probe		= kszphy_probe,
4751 	.config_init	= kszphy_config_init,
4752 	.config_intr	= kszphy_config_intr,
4753 	.handle_interrupt = kszphy_handle_interrupt,
4754 	.get_sset_count = kszphy_get_sset_count,
4755 	.get_strings	= kszphy_get_strings,
4756 	.get_stats	= kszphy_get_stats,
4757 	.suspend	= kszphy_suspend,
4758 	.resume		= kszphy_resume,
4759 }, {
4760 	.name		= "Micrel KSZ8051",
4761 	/* PHY_BASIC_FEATURES */
4762 	.driver_data	= &ksz8051_type,
4763 	.probe		= kszphy_probe,
4764 	.config_init	= kszphy_config_init,
4765 	.config_intr	= kszphy_config_intr,
4766 	.handle_interrupt = kszphy_handle_interrupt,
4767 	.get_sset_count = kszphy_get_sset_count,
4768 	.get_strings	= kszphy_get_strings,
4769 	.get_stats	= kszphy_get_stats,
4770 	.match_phy_device = ksz8051_match_phy_device,
4771 	.suspend	= kszphy_suspend,
4772 	.resume		= kszphy_resume,
4773 }, {
4774 	.phy_id		= PHY_ID_KSZ8001,
4775 	.name		= "Micrel KSZ8001 or KS8721",
4776 	.phy_id_mask	= 0x00fffffc,
4777 	/* PHY_BASIC_FEATURES */
4778 	.driver_data	= &ksz8041_type,
4779 	.probe		= kszphy_probe,
4780 	.config_init	= kszphy_config_init,
4781 	.config_intr	= kszphy_config_intr,
4782 	.handle_interrupt = kszphy_handle_interrupt,
4783 	.get_sset_count = kszphy_get_sset_count,
4784 	.get_strings	= kszphy_get_strings,
4785 	.get_stats	= kszphy_get_stats,
4786 	.suspend	= kszphy_suspend,
4787 	.resume		= kszphy_resume,
4788 }, {
4789 	.phy_id		= PHY_ID_KSZ8081,
4790 	.name		= "Micrel KSZ8081 or KSZ8091",
4791 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4792 	.flags		= PHY_POLL_CABLE_TEST,
4793 	/* PHY_BASIC_FEATURES */
4794 	.driver_data	= &ksz8081_type,
4795 	.probe		= kszphy_probe,
4796 	.config_init	= ksz8081_config_init,
4797 	.soft_reset	= genphy_soft_reset,
4798 	.config_aneg	= ksz8081_config_aneg,
4799 	.read_status	= ksz8081_read_status,
4800 	.config_intr	= kszphy_config_intr,
4801 	.handle_interrupt = kszphy_handle_interrupt,
4802 	.get_sset_count = kszphy_get_sset_count,
4803 	.get_strings	= kszphy_get_strings,
4804 	.get_stats	= kszphy_get_stats,
4805 	.suspend	= kszphy_suspend,
4806 	.resume		= kszphy_resume,
4807 	.cable_test_start	= ksz886x_cable_test_start,
4808 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4809 }, {
4810 	.phy_id		= PHY_ID_KSZ8061,
4811 	.name		= "Micrel KSZ8061",
4812 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4813 	/* PHY_BASIC_FEATURES */
4814 	.probe		= kszphy_probe,
4815 	.config_init	= ksz8061_config_init,
4816 	.config_intr	= kszphy_config_intr,
4817 	.handle_interrupt = kszphy_handle_interrupt,
4818 	.suspend	= kszphy_suspend,
4819 	.resume		= kszphy_resume,
4820 }, {
4821 	.phy_id		= PHY_ID_KSZ9021,
4822 	.phy_id_mask	= 0x000ffffe,
4823 	.name		= "Micrel KSZ9021 Gigabit PHY",
4824 	/* PHY_GBIT_FEATURES */
4825 	.driver_data	= &ksz9021_type,
4826 	.probe		= kszphy_probe,
4827 	.get_features	= ksz9031_get_features,
4828 	.config_init	= ksz9021_config_init,
4829 	.config_intr	= kszphy_config_intr,
4830 	.handle_interrupt = kszphy_handle_interrupt,
4831 	.get_sset_count = kszphy_get_sset_count,
4832 	.get_strings	= kszphy_get_strings,
4833 	.get_stats	= kszphy_get_stats,
4834 	.suspend	= kszphy_suspend,
4835 	.resume		= kszphy_resume,
4836 	.read_mmd	= genphy_read_mmd_unsupported,
4837 	.write_mmd	= genphy_write_mmd_unsupported,
4838 }, {
4839 	.phy_id		= PHY_ID_KSZ9031,
4840 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4841 	.name		= "Micrel KSZ9031 Gigabit PHY",
4842 	.flags		= PHY_POLL_CABLE_TEST,
4843 	.driver_data	= &ksz9021_type,
4844 	.probe		= kszphy_probe,
4845 	.get_features	= ksz9031_get_features,
4846 	.config_init	= ksz9031_config_init,
4847 	.soft_reset	= genphy_soft_reset,
4848 	.read_status	= ksz9031_read_status,
4849 	.config_intr	= kszphy_config_intr,
4850 	.handle_interrupt = kszphy_handle_interrupt,
4851 	.get_sset_count = kszphy_get_sset_count,
4852 	.get_strings	= kszphy_get_strings,
4853 	.get_stats	= kszphy_get_stats,
4854 	.suspend	= kszphy_suspend,
4855 	.resume		= kszphy_resume,
4856 	.cable_test_start	= ksz9x31_cable_test_start,
4857 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4858 }, {
4859 	.phy_id		= PHY_ID_LAN8814,
4860 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4861 	.name		= "Microchip INDY Gigabit Quad PHY",
4862 	.flags          = PHY_POLL_CABLE_TEST,
4863 	.config_init	= lan8814_config_init,
4864 	.driver_data	= &lan8814_type,
4865 	.probe		= lan8814_probe,
4866 	.soft_reset	= genphy_soft_reset,
4867 	.read_status	= ksz9031_read_status,
4868 	.get_sset_count	= kszphy_get_sset_count,
4869 	.get_strings	= kszphy_get_strings,
4870 	.get_stats	= kszphy_get_stats,
4871 	.suspend	= genphy_suspend,
4872 	.resume		= kszphy_resume,
4873 	.config_intr	= lan8814_config_intr,
4874 	.handle_interrupt = lan8814_handle_interrupt,
4875 	.cable_test_start	= lan8814_cable_test_start,
4876 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4877 }, {
4878 	.phy_id		= PHY_ID_LAN8804,
4879 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4880 	.name		= "Microchip LAN966X Gigabit PHY",
4881 	.config_init	= lan8804_config_init,
4882 	.driver_data	= &ksz9021_type,
4883 	.probe		= kszphy_probe,
4884 	.soft_reset	= genphy_soft_reset,
4885 	.read_status	= ksz9031_read_status,
4886 	.get_sset_count	= kszphy_get_sset_count,
4887 	.get_strings	= kszphy_get_strings,
4888 	.get_stats	= kszphy_get_stats,
4889 	.suspend	= genphy_suspend,
4890 	.resume		= kszphy_resume,
4891 	.config_intr	= lan8804_config_intr,
4892 	.handle_interrupt = lan8804_handle_interrupt,
4893 }, {
4894 	.phy_id		= PHY_ID_LAN8841,
4895 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4896 	.name		= "Microchip LAN8841 Gigabit PHY",
4897 	.flags		= PHY_POLL_CABLE_TEST,
4898 	.driver_data	= &lan8841_type,
4899 	.config_init	= lan8841_config_init,
4900 	.probe		= lan8841_probe,
4901 	.soft_reset	= genphy_soft_reset,
4902 	.config_intr	= lan8841_config_intr,
4903 	.handle_interrupt = lan8841_handle_interrupt,
4904 	.get_sset_count = kszphy_get_sset_count,
4905 	.get_strings	= kszphy_get_strings,
4906 	.get_stats	= kszphy_get_stats,
4907 	.suspend	= lan8841_suspend,
4908 	.resume		= genphy_resume,
4909 	.cable_test_start	= lan8814_cable_test_start,
4910 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4911 }, {
4912 	.phy_id		= PHY_ID_KSZ9131,
4913 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4914 	.name		= "Microchip KSZ9131 Gigabit PHY",
4915 	/* PHY_GBIT_FEATURES */
4916 	.flags		= PHY_POLL_CABLE_TEST,
4917 	.driver_data	= &ksz9131_type,
4918 	.probe		= kszphy_probe,
4919 	.soft_reset	= genphy_soft_reset,
4920 	.config_init	= ksz9131_config_init,
4921 	.config_intr	= kszphy_config_intr,
4922 	.config_aneg	= ksz9131_config_aneg,
4923 	.read_status	= ksz9131_read_status,
4924 	.handle_interrupt = kszphy_handle_interrupt,
4925 	.get_sset_count = kszphy_get_sset_count,
4926 	.get_strings	= kszphy_get_strings,
4927 	.get_stats	= kszphy_get_stats,
4928 	.suspend	= kszphy_suspend,
4929 	.resume		= kszphy_resume,
4930 	.cable_test_start	= ksz9x31_cable_test_start,
4931 	.cable_test_get_status	= ksz9x31_cable_test_get_status,
4932 	.get_features	= ksz9477_get_features,
4933 }, {
4934 	.phy_id		= PHY_ID_KSZ8873MLL,
4935 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4936 	.name		= "Micrel KSZ8873MLL Switch",
4937 	/* PHY_BASIC_FEATURES */
4938 	.config_init	= kszphy_config_init,
4939 	.config_aneg	= ksz8873mll_config_aneg,
4940 	.read_status	= ksz8873mll_read_status,
4941 	.suspend	= genphy_suspend,
4942 	.resume		= genphy_resume,
4943 }, {
4944 	.phy_id		= PHY_ID_KSZ886X,
4945 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4946 	.name		= "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
4947 	.driver_data	= &ksz886x_type,
4948 	/* PHY_BASIC_FEATURES */
4949 	.flags		= PHY_POLL_CABLE_TEST,
4950 	.config_init	= kszphy_config_init,
4951 	.config_aneg	= ksz886x_config_aneg,
4952 	.read_status	= ksz886x_read_status,
4953 	.suspend	= genphy_suspend,
4954 	.resume		= genphy_resume,
4955 	.cable_test_start	= ksz886x_cable_test_start,
4956 	.cable_test_get_status	= ksz886x_cable_test_get_status,
4957 }, {
4958 	.name		= "Micrel KSZ87XX Switch",
4959 	/* PHY_BASIC_FEATURES */
4960 	.config_init	= kszphy_config_init,
4961 	.match_phy_device = ksz8795_match_phy_device,
4962 	.suspend	= genphy_suspend,
4963 	.resume		= genphy_resume,
4964 }, {
4965 	.phy_id		= PHY_ID_KSZ9477,
4966 	.phy_id_mask	= MICREL_PHY_ID_MASK,
4967 	.name		= "Microchip KSZ9477",
4968 	/* PHY_GBIT_FEATURES */
4969 	.config_init	= ksz9477_config_init,
4970 	.config_intr	= kszphy_config_intr,
4971 	.handle_interrupt = kszphy_handle_interrupt,
4972 	.suspend	= genphy_suspend,
4973 	.resume		= genphy_resume,
4974 	.get_features	= ksz9477_get_features,
4975 } };
4976 
4977 module_phy_driver(ksphy_driver);
4978 
4979 MODULE_DESCRIPTION("Micrel PHY driver");
4980 MODULE_AUTHOR("David J. Choi");
4981 MODULE_LICENSE("GPL");
4982 
4983 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
4984 	{ PHY_ID_KSZ9021, 0x000ffffe },
4985 	{ PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
4986 	{ PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
4987 	{ PHY_ID_KSZ8001, 0x00fffffc },
4988 	{ PHY_ID_KS8737, MICREL_PHY_ID_MASK },
4989 	{ PHY_ID_KSZ8021, 0x00ffffff },
4990 	{ PHY_ID_KSZ8031, 0x00ffffff },
4991 	{ PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
4992 	{ PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
4993 	{ PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
4994 	{ PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
4995 	{ PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
4996 	{ PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
4997 	{ PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
4998 	{ PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
4999 	{ PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
5000 	{ }
5001 };
5002 
5003 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
5004